1
|
Rath SK, Dash AK, Sarkar N, Panchpuri M. A Glimpse for the subsistence from pandemic SARS-CoV-2 infection. Bioorg Chem 2025; 154:107977. [PMID: 39603070 DOI: 10.1016/j.bioorg.2024.107977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 11/13/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024]
Abstract
COVID-19 is an emerging viral pandemic caused by SARS-CoV-2, which is the causative agent of unprecedented disease-causing public health threats globally. Worldwide, this outbreak is wreaking havoc due to failure in risk assessment regarding the urgency of the pandemic. As per the reports, many secondary complications which include neurological, nephrological, gastrointestinal, cardiovascular, immune, and hepatic abnormalities, are linked with COVID -19 infection which is associated with prominent respiratory disorders including pneumonia. Hindering the initial binding of the virus with Angiotensin-converting enzyme 2 (ACE2) through the spike protein is one potential boulevard of monoclonal antibodies. Although some drug regimens and vaccines have shown safety in trials, none have been entirely successful yet. This review highlights, some of the potential antibodies (tocilizumab, Sarilumab, Avdoralimab, Lenzilumab, Interferon (alfa /beta /gamma)) screened against SARS-CoV-2 and the most promising drugs (Favipiravir, Hydroxychloroquine, Niclosamide, Ribavirin, Baricitinib, Remdesivir, Arbidol Losartan, Ritonavir, Lopinavir, Baloxavir, Nitazoxanide, Camostat) in various stages of development with their synthetic protocol and their clinical projects are discussed to counter COVID -19.
Collapse
Affiliation(s)
- Santosh K Rath
- School of Pharmaceuticals and Population Health Informatics, Faculty of Pharmacy, DIT University, Dehradun, Uttarakhand, 248009, India.
| | | | - Nandan Sarkar
- Department of Pharmaceutical Technology, School of Health and Medical Sciences, Adamas University, Barasat, Kolkata 700126, India
| | - Mitali Panchpuri
- School of Pharmaceuticals and Population Health Informatics, Faculty of Pharmacy, DIT University, Dehradun, Uttarakhand, 248009, India
| |
Collapse
|
2
|
Khan M, Huang X, Ye X, Zhang D, Wang B, Xu A, Li R, Ren A, Chen C, Song J, Zheng R, Yuan Y, Lin J. Necroptosis-based glioblastoma prognostic subtypes: implications for TME remodeling and therapy response. Ann Med 2024; 56:2405079. [PMID: 39387496 PMCID: PMC11469424 DOI: 10.1080/07853890.2024.2405079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/14/2024] [Accepted: 08/28/2024] [Indexed: 10/15/2024] Open
Abstract
BACKGROUND Glioblastoma (GBM) is an aggressive primary brain tumor with a high recurrence rate and poor prognosis. Necroptosis, a pathological hallmark of GBM, is poorly understood in terms of its role in prognosis, tumor microenvironment (TME) alteration, and immunotherapy. METHODS & RESULTS We assessed the expression of 55 necroptosis-related genes in GBM and normal brain tissues. We identified necroptosis-stratified clusters using Uni-Cox and Least Absolute Shrinkage and Selection Operator (LASSO) regression to establish the 10-gene Glioblastoma Necroptosis Index (GNI). GNI demonstrated significant prognostic efficacy in the TCGA dataset (n = 160) and internal validation dataset (n = 345) and in external validation cohorts (n = 591). The GNI-high subgroup displayed a mesenchymal phenotype, lacking the IDH1 mutation, and MGMT methylation. This subgroup was characterized by significant enrichment in inflammatory and humoral immune pathways with prominent cell adhesion molecules (CD44 and ICAM1), inflammatory cytokines (TGFB1, IL1B, and IL10), and chemokines (CX3CL1, CXCL9, and CCL5). The TME in this subgroup showed elevated infiltration of M0 macrophages, neutrophils, mast cells, and regulatory T cells. GNI-related genes appeared to limit macrophage polarization, as confirmed by immunohistochemistry and flow cytometry. The top 30% high-risk score subset exhibited increased CD8 T cell infiltration and enhanced cytolytic activity. GNI showed promise in predicting responses to immunotherapy and targeted treatment. CONCLUSIONS Our study highlights the role of necroptosis-related genes in glioblastoma (GBM) and their effects on the tumor microenvironment and patient prognosis. TheGNI demonstrates potential as a prognostic marker and provides insights into immune characteristics and treatment responsiveness.
Collapse
Affiliation(s)
- Muhammad Khan
- Department of Radiation Oncology, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Xiuting Huang
- Department of Radiation Oncology, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Xiaoxin Ye
- Department of Radiation Oncology, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Donghui Zhang
- Department of Pathology, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Baiyao Wang
- Department of Radiation Oncology, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Anan Xu
- Department of Radiation Oncology, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Rong Li
- Department of Radiation Oncology, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Anbang Ren
- Department of Radiation Oncology, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Chengcong Chen
- Department of Radiation Oncology, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Jingjing Song
- Department of Pathology, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Rong Zheng
- Department of Radiation Oncology, Fujian Medical University Union Hospital, Fuzhou, People’s Republic of China
- Fujian Key Laboratory of Intelligent Imaging and Precision Radiotherapy for Tumors, Fujian Medical University, Fuzhou, People’s Republic of China
- Clinical Research Center for Radiology and Radiotherapy of Fujian Province (Digestive, Hematological and Breast Malignancies), Fuzhou, People’s Republic of China
| | - Yawei Yuan
- Department of Radiation Oncology, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Jie Lin
- Department of Radiation Oncology, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, People’s Republic of China
| |
Collapse
|
3
|
Zhao HZ, Liu CY, Song QJ, Guo H, Wen YJ, Wang FX. Acquisition of different transcriptional shear mRNA and biological function of porcine interleukin 18 binding protein in PRRSV infection. mBio 2024; 15:e0064024. [PMID: 38727246 PMCID: PMC11237624 DOI: 10.1128/mbio.00640-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 04/01/2024] [Indexed: 06/13/2024] Open
Abstract
Interleukin-18 binding protein (IL-18BP), a natural regulator molecule of the pro-inflammatory cytokine interleukin-18 (IL-18), plays an important role in regulating the expression of the cellular immunity factor interferon-γ (IFN-γ). In a previous RNA-seq analysis of porcine alveolar macrophages (PAM) infected with the TIM and TJ strains of porcine reproductive and respiratory syndrome virus (PRRSV), we unexpectedly found that the mRNA expression of porcine interleukin 18-binding protein (pIL-18BP) in PAM cells infected with the TJM strain was significantly higher than that infected with the TJ strain. Studies have shown that human interleukin-18 binding protein (hIL-18bp) plays an important role in regulating cellular immunity in the course of the disease. However, there is a research gap on pIL-18BP. At the same time, PRRSV infection in pigs triggers weak cellular immune response problems. To explore the expression and the role of pIL-18BP in the cellular immune response induced by PRRSV, we strived to acquire the pIL-18BP gene from PAM or peripheral blood mononuclear cell (PBMC) with RT-PCR and sequencing. Furthermore, pIL-18BP and pIL-18 were both expressed prokaryotically and eukaryotically. The colocalization and interaction based on recombinant pIL-18BP and pIL-18 on cells were confirmed in vitro. Finally, the expression of pIL-18BP, pIL-18, and pIFN-γ was explored in pigs with different PRRSV infection states to interpret the biological function of pIL-18BP in vivo. The results showed there were five shear mutants of pIL-18BP. The mutant with the longest coding region was selected for subsequent functional validation. First, it was demonstrated that TJM-induced pIL-18BP mRNA expression was higher than that of TJ. A direct interaction between pIL-18BP and pIL-18 was confirmed through fluorescence colocalization, bimolecular fluorescent complimentary (BIFC), and co-immunoprecipitation (CO-IP). pIL-18BP also can regulate pIFN-γ mRNA expression. Finally, the expression of pIL-18BP, pIL-18, and pIFN-γ was explored in different PRRSV infection states. Surprisingly, both mRNA and protein expression of pIL-18 were suppressed. These findings fill the gap in understanding the roles played by pIL-18BP in PRRSV infection and provide a foundation for further research.IMPORTANCEPRRSV-infected pigs elicit a weak cellular immune response and the mechanisms of cellular immune regulation induced by PRRSV have not yet been fully elucidated. In this study, we investigated the role of pIL-18BP in PRRSV-induced immune response referring to the regulation of human IL-18BP to human interferon-gamma (hIFN-γ). This is expected to be used as a method to enhance the cellular immune response induced by the PRRSV vaccine. Here, we mined five transcripts of the pIL-18BP gene and demonstrated that it interacts with pIL-18 and regulates pIFN-γ mRNA expression. Surprisingly, we also found that both mRNA and protein expression of pIL-18 were suppressed under different PRRSV strains of infection status. These results have led to a renewed understanding of the roles of pIL-18BP and pIL-18 in cellular immunity induced by PRRSV infection, which has important implications for the prevention and control of PRRS.
Collapse
Affiliation(s)
- Hong-Zhe Zhao
- Key Laboratory for Clinical Diagnosis and Treatment of Animal Diseases of Ministry of Agriculture, College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Chun-Yu Liu
- Medical Experiment Center, Inner Mongolia Medical University, Hohhot, China
| | - Qian-Jin Song
- Yinchuan Animal Husbandry Technology Extension Service Center, Yinchuan, China
| | - Hao Guo
- Key Laboratory for Clinical Diagnosis and Treatment of Animal Diseases of Ministry of Agriculture, College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Yong-Jun Wen
- Key Laboratory for Clinical Diagnosis and Treatment of Animal Diseases of Ministry of Agriculture, College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Feng-Xue Wang
- Key Laboratory for Clinical Diagnosis and Treatment of Animal Diseases of Ministry of Agriculture, College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|
4
|
Qian H, Yang X, Zhang T, Zou P, Zhang Y, Tian W, Mao Z, Wei J. Improving the safety of CAR-T-cell therapy: The risk and prevention of viral infection for patients with relapsed or refractory B-cell lymphoma undergoing CAR-T-cell therapy. Am J Hematol 2024; 99:662-678. [PMID: 38197307 DOI: 10.1002/ajh.27198] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/05/2023] [Accepted: 12/15/2023] [Indexed: 01/11/2024]
Abstract
Chimeric antigen receptor (CAR) T-cell therapy, an innovative immunotherapeutic against relapsed/refractory B-cell lymphoma, faces challenges due to frequent viral infections. Despite this, a comprehensive review addressing risk assessment, surveillance, and treatment management is notably absent. This review elucidates immune response compromises during viral infections in CAR-T recipients, collates susceptibility risk factors, and deliberates on preventive strategies. In the post-pandemic era, marked by the Omicron variant, new and severe threats to CAR-T therapy emerge, necessitating exploration of preventive and treatment measures for COVID-19. Overall, the review provides recommendations for viral infection prophylaxis and management, enhancing CAR-T product safety and recipient survival.
Collapse
Affiliation(s)
- Hu Qian
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xingcheng Yang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tingting Zhang
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
- Department of Hematology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
- Sino-German Joint Oncological Research Laboratory, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, China
| | - Ping Zou
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yicheng Zhang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weiwei Tian
- Department of Hematology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
- Sino-German Joint Oncological Research Laboratory, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, China
| | - Zekai Mao
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jia Wei
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Hematology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
- Sino-German Joint Oncological Research Laboratory, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, China
| |
Collapse
|
5
|
Ndoricyimpaye EL, Van Snick J, Robert R, Bikorimana E, Majyambere O, Mukantwari E, Nshimiyimana T, Mbonigaba V, Coutelier JP, Rujeni N. Cytokine Kinetics during Progression of COVID-19 in Rwanda Patients: Could IL-9/IFNγ Ratio Predict Disease Severity? Int J Mol Sci 2023; 24:12272. [PMID: 37569646 PMCID: PMC10418469 DOI: 10.3390/ijms241512272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 08/13/2023] Open
Abstract
For effective treatments and preventive measures against severe COVID-19, it is essential to determine early markers of disease severity in different populations. We analysed the cytokine kinetics of 129 COVID-19 patients with mild symptoms, 68 severe cases, and 20 healthy controls for the first time in Rwanda. Pro-inflammatory (IFNγ, IL-6, TNFα), Treg (IL-10, TGFβ1, TGFβ3), Th9 (IL-9), Th17 (IL-17), and Th2 (IL-4, IL-13) cytokines, total IgM and IgG, as well as gene expressions of FoxP3, STAT5+, IFNγ-R1, and ROR alpha+, were measured at day 1, day 7, day 14, day 21, and day 28 post-infection. Severe cases showed a significantly stronger increase than mild patients in levels of all cytokines (except IL-9) and all gene expression on day 1 of infection. Some cytokine levels dropped to levels comparable to mild cases at later time points. Further analysis identified IFNγ as a marker of severity throughout the disease course, while TGFβ1, IL-6, and IL-17 were markers of severity only at an early phase. Importantly, this study revealed a striking low IL-9 level and high IFNγ/IL-9 ratio in the plasma of patients who later died compared to mild and severe cases who recovered, suggesting that this could be an important biomarker for predicting the severity of COVID-19 and post-COVID-19 syndrome.
Collapse
Affiliation(s)
- Ella Larissa Ndoricyimpaye
- Department of Biomedical Laboratory Sciences, School of Health Sciences, College of Medicine and Health Sciences, University of Rwanda, Kigali P.O. Box 3248, Rwanda; (E.L.N.); (R.R.); (O.M.); (T.N.); (J.P.C.)
- de Duve Institute, Université Catholique de Louvain, 1348 Brussels, Belgium
| | - Jacques Van Snick
- Ludwig Institute for Cancer Research, Universite Catholique de Louvain, 1348 Brussels, Belgium;
| | - Rutayisire Robert
- Department of Biomedical Laboratory Sciences, School of Health Sciences, College of Medicine and Health Sciences, University of Rwanda, Kigali P.O. Box 3248, Rwanda; (E.L.N.); (R.R.); (O.M.); (T.N.); (J.P.C.)
- National Reference Laboratory, Rwanda Biomedical Center, Kigali P.O. Box 4285, Rwanda; (E.M.); (V.M.)
| | - Emmanuel Bikorimana
- Department of General Nursing, School of Nursing, College of Medicine and Health Science, University of Rwanda, Kigali P.O. Box 3248, Rwanda;
| | - Onesphore Majyambere
- Department of Biomedical Laboratory Sciences, School of Health Sciences, College of Medicine and Health Sciences, University of Rwanda, Kigali P.O. Box 3248, Rwanda; (E.L.N.); (R.R.); (O.M.); (T.N.); (J.P.C.)
| | - Enatha Mukantwari
- National Reference Laboratory, Rwanda Biomedical Center, Kigali P.O. Box 4285, Rwanda; (E.M.); (V.M.)
| | - Thaddée Nshimiyimana
- Department of Biomedical Laboratory Sciences, School of Health Sciences, College of Medicine and Health Sciences, University of Rwanda, Kigali P.O. Box 3248, Rwanda; (E.L.N.); (R.R.); (O.M.); (T.N.); (J.P.C.)
| | - Valens Mbonigaba
- National Reference Laboratory, Rwanda Biomedical Center, Kigali P.O. Box 4285, Rwanda; (E.M.); (V.M.)
| | - Jean Paul Coutelier
- Department of Biomedical Laboratory Sciences, School of Health Sciences, College of Medicine and Health Sciences, University of Rwanda, Kigali P.O. Box 3248, Rwanda; (E.L.N.); (R.R.); (O.M.); (T.N.); (J.P.C.)
- de Duve Institute, Université Catholique de Louvain, 1348 Brussels, Belgium
| | - Nadine Rujeni
- Department of Biomedical Laboratory Sciences, School of Health Sciences, College of Medicine and Health Sciences, University of Rwanda, Kigali P.O. Box 3248, Rwanda; (E.L.N.); (R.R.); (O.M.); (T.N.); (J.P.C.)
| |
Collapse
|
6
|
Abstract
COVID-19 illness is associated with diverse neurological manifestations. Its exceptionally high prevalence results from unprecedented genetic diversity, genomic recombination, and superspreading. With each new mutation and variant, there are foreseeable risks of rising fatality and novel neurological motor complications in childhood and adult cases. This chapter provides an extensive review of COVID-19 neurological illness, notably the motor manifestations. Innovative treatments have been developed to stem the spread of infectious contagious illness, and attenuate the resultant cytokine storm and other postinfectious immune aspects responsible for postacute COVID-19 syndrome due to the multiplier effect of infection, immunity, and inflammation, termed I3.
Collapse
Affiliation(s)
- David S Younger
- Department of Clinical Medicine and Neuroscience, CUNY School of Medicine, New York, NY, United States; Department of Medicine, Section of Internal Medicine and Neurology, White Plains Hospital, White Plains, NY, United States.
| |
Collapse
|
7
|
Prajapati SK, Malaiya A, Mishra G, Jain D, Kesharwani P, Mody N, Ahmadi A, Paliwal R, Jain A. An exhaustive comprehension of the role of herbal medicines in Pre- and Post-COVID manifestations. JOURNAL OF ETHNOPHARMACOLOGY 2022; 296:115420. [PMID: 35654349 PMCID: PMC9150915 DOI: 10.1016/j.jep.2022.115420] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/24/2022] [Accepted: 05/27/2022] [Indexed: 05/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The coronavirus disease (COVID-19) has relentlessly spread all over the world even after the advent of vaccines. It demands management, treatment, and prevention as well with utmost safety and effectiveness. It is well researched that herbal medicines or natural products have shown promising outcomes to strengthen immunity with antiviral potential against SARS-COV-2. AIM OF THE REVIEW Our objective is to provide a comprehensive insight into the preventive and therapeutic effects of herbal medicines and products (Ayurvedic) for pre-and post-COVID manifestations. MATERIAL AND METHOD The database used in the text is collected and compiled from Scopus, PubMed, Nature, Elsevier, Web of Science, bioRxiv, medRxiv, American Chemical Society, and clinicaltrials.gov up to January 2022. Articles from non-academic sources such as websites and news were also retrieved. Exploration of the studies was executed to recognize supplementary publications of research studies and systematic reviews. The keywords, such as "SARS-COV-2, coronavirus, COVID-19, herbal drugs, immunity, herbal immunomodulators, infection, herbal antiviral drugs, and WHO recommendation" were thoroughly searched. Chemical structures were drawn using the software Chemdraw Professional 15.0.0.160 (PerkinElmer Informatics, Inc.). RESULT A plethora of literature supports that the use of herbal regimens not only strengthen immunity but can also treat SARS-COV-2 infection with minimal side effects. This review summarizes the mechanistic insights into herbal therapy engaging interferons and antibodies to boost the response against SARS-COV-2 infection, several clinical trials, and in silico studies (computational approaches) on selected natural products including, Ashwagandha, Guduchi, Yashtimadhu, Tulsi, etc. as preventive and therapeutic measures against COVID. We have also emphasized the exploitation of herbal medicine-based pharmaceutical products along with perspectives for unseen upcoming alike diseases. CONCLUSION According to the current state of art and cutting-edge research on herbal medicines have showed a significant promise as modern COVID tools. Since vaccination cannot be purported as a long-term cure for viral infections, herbal/natural medicines can only be considered a viable alternative to current remedies, as conceived from our collected data to unroot recurring viral infections.
Collapse
Affiliation(s)
- Shiv Kumar Prajapati
- Institute of Pharmacy, Ram-Eesh Institute of Vocational and Technical Education, Greater Noida, 201310, UP, India
| | - Akanksha Malaiya
- Nanomedicine and Bioengineering Research Laboratory, Department of Pharmacy, Indira Gandhi National Tribal University, Amarkantak, 484886, MP, India
| | - Gaurav Mishra
- Institute of Medical Sciences, Faculty of Ayurveda, Department of Medicinal Chemistry, Banaras Hindu University, Varanasi, 221005, UP, India
| | - Dolly Jain
- Department of Pharmacy, Oriental University, Indore, 453555, Madhya Pradesh, India; Adina College of Pharmacy, Sagar, 470002, MP, India
| | - Payal Kesharwani
- Institute of Pharmacy, Ram-Eesh Institute of Vocational and Technical Education, Greater Noida, 201310, UP, India
| | - Nishi Mody
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University, Sagar, 470003, MP, India
| | - Amirhossein Ahmadi
- Pharmaceutical Sciences Research Centre, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, 48175866, Iran
| | - Rishi Paliwal
- Nanomedicine and Bioengineering Research Laboratory, Department of Pharmacy, Indira Gandhi National Tribal University, Amarkantak, 484886, MP, India
| | - Ankit Jain
- Department of Materials Engineering, Indian Institute of Science, Bangalore, 560012, Karnataka, India.
| |
Collapse
|
8
|
SARS-CoV-2 infection: Pathogenesis, Immune Responses, Diagnosis. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2022. [DOI: 10.22207/jpam.16.3.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
COVID-19 has emerged as the most alarming infection of the present time instigated by the virus SARS-CoV-2. In spite of advanced research technologies, the exact pathophysiology and treatment of the condition still need to be explored. However, SARS-CoV-2 has several structural and functional similarities that resemble SARS-CoV and MERS-CoV which may be beneficial in exploring the possible treatment and diagnostic strategies for SARS-CoV-2. This review discusses the pathogen phenotype, genotype, replication, pathophysiology, elicited immune response and emerging variants of SARS-CoV-2 and their similarities with other similar viruses. SARS-CoV-2 infection is detected by a number of diagnostics techniques, their advantages and limitations are also discussed in detail. The review also focuses on nanotechnology-based easy and fast detection of SARS-CoV-2 infection. Various pathways which might play a vital role during SARS-CoV-2 infection have been elaborately discussed since immune response plays a major role during viral infections.
Collapse
|
9
|
Li S, Wang J, Yan Y, Zhang Z, Gong W, Nie S. Clinical Characterization and Possible Pathological Mechanism of Acute Myocardial Injury in COVID-19. Front Cardiovasc Med 2022; 9:862571. [PMID: 35387441 PMCID: PMC8979292 DOI: 10.3389/fcvm.2022.862571] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 02/14/2022] [Indexed: 01/08/2023] Open
Abstract
COVID-19 is a respiratory disease that can cause damage to multiple organs throughout the body. Cardiovascular complications related to COVID-19 mainly include acute myocardial injury, heart failure, acute coronary syndrome, arrhythmia, myocarditis. Among them, myocardial injury is the most common complication in COVID-19 hospitalized patients, and is associated with poor prognosis such as death and arrhythmias. There is a continuous relationship between myocardial injury and the severity of COVID-19. The incidence of myocardial injury is higher in critically ill patients and dead patients, and myocardial injury is more likely to occur in the elderly critically ill patients with comorbidities. Myocardial injury is usually accompanied by more electrocardiogram abnormalities, higher inflammation markers and more obvious echocardiographic abnormalities. According to reports, COVID-19 patients with a history of cardiovascular disease have a higher in-hospital mortality, especially in the elder patients. At present, the mechanism of myocardial injury in COVID-19 is still unclear. There may be direct injury of myocardial cells, systemic inflammatory response, hypoxia, prethrombotic and procoagulant state, myocardial interstitial fibrosis, interferon-mediated immune response and coronary artery plaque instability and other related factors, and angiotensin-converting enzyme-2 receptor may play a key role in the myocardial injury in COVID-19.
Collapse
Affiliation(s)
- Siyi Li
- Coronary Heart Disease Center, Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing, China
| | - Jinan Wang
- The Affiliated Rehabilitation Hospital of Chongqing Medical University, Chongqing, China
| | - Yan Yan
- Coronary Heart Disease Center, Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing, China
| | - Zekun Zhang
- Coronary Heart Disease Center, Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing, China
| | - Wei Gong
- Coronary Heart Disease Center, Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing, China
| | - Shaoping Nie
- Coronary Heart Disease Center, Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing, China
| |
Collapse
|
10
|
So B, Kwon KH. The impact of physical activity on well-being, lifestyle and health promotion in an era of COVID-19 and SARS-CoV-2 variant. Postgrad Med 2022; 134:349-358. [DOI: 10.1080/00325481.2022.2052467] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Bohee So
- Division of Beauty Arts Care, Department of Practical Arts, Graduate School of Culture and Arts, Dongguk University, Seoul 04620, Republic of Korea
| | - Ki Han Kwon
- College of General Education, Kookmin University, Seoul 02707, Republic of Korea
| |
Collapse
|
11
|
Rommasi F, Nasiri MJ, Mirsaeidi M. Immunomodulatory agents for COVID-19 treatment: possible mechanism of action and immunopathology features. Mol Cell Biochem 2022; 477:711-726. [PMID: 35013850 PMCID: PMC8747854 DOI: 10.1007/s11010-021-04325-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 12/01/2021] [Indexed: 02/06/2023]
Abstract
The novel coronavirus pandemic has emerged as one of the significant medical-health challenges of the current century. The World Health Organization has named this new virus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Since the first detection of SARS-CoV-2 in November 2019 in Wuhan, China, physicians, researchers, and others have made it their top priority to find drugs and cures that can effectively treat patients and reduce mortality rates. The symptoms of Coronavirus Disease 2019 (COVID-19) include fever, dry cough, body aches, and anosmia. Various therapeutic compounds have been investigated and applied to mitigate the symptoms in COVID-19 patients and cure the disease. Degenerative virus analyses of the infection incidence and COVID-19 have demonstrated that SARS-CoV-2 penetrates the pulmonary alveoli's endothelial cells through Angiotensin-Converting Enzyme 2 (ACE2) receptors on the membrane, stimulates various signaling pathways and causes excessive secretion of cytokines. The continuous triggering of the innate and acquired immune system, as well as the overproduction of pro-inflammatory factors, cause a severe condition in the COVID-19 patients, which is called "cytokine storm". It can lead to acute respiratory distress syndrome (ARDS) in critical patients. Severe and critical COVID-19 cases demand oxygen therapy and mechanical ventilator support. Various drugs, including immunomodulatory and immunosuppressive agents (e.g., monoclonal antibodies (mAbs) and interleukin antagonists) have been utilized in clinical trials. However, the studies and clinical trials have documented diverging findings, which seem to be due to the differences in these drugs' possible mechanisms of action. These drugs' mechanism of action generally includes suppressing or modulating the immune system, preventing the development of cytokine storm via various signaling pathways, and enhancing the blood vessels' diameter in the lungs. In this review article, multiple medications from different drug families are discussed, and their possible mechanisms of action are also described.
Collapse
Affiliation(s)
- Foad Rommasi
- Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran.
| | - Mohammad Javad Nasiri
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Mirsaeidi
- Department of Pulmonary and Critical Care, Miller School of Medicine, University of Miami, Miami, FL, USA
| |
Collapse
|
12
|
Gjorgieva A, Maksimova V, Smilkov K. Plant bioactive compounds affecting biomarkers and final outcome of COVID-19. ARHIV ZA FARMACIJU 2022. [DOI: 10.5937/arhfarm72-36150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Herbal medicinal products are known for their widespread use toward various viral infections and ease of disease symptoms. Therefore, the sudden appearance of the Severe Acute Respiratory Syndrome-related Coronavirus 2 (SARS-CoV-2) and COVID-19 disease was no exception. Bioactive compounds from natural plant origin could act on several disease levels: through essential immunological pathways, affecting COVID-19 biomarkers, or by halting or modulating SARS-CoV-2. In this paper, we review the recently published data regarding the use of plant bioactive compounds in the prevention/treatment of COVID-19. The mode of actions responsible for these effects is discussed, including the inhibition of attachment, penetration and release of the virus, actions affecting RNA, protein synthesis and viral proteases, as well as other mechanisms. The reviewed information suggests that plant bioactive compounds can be used alone or in combinations, but upcoming, extensive and global studies on several factors involved are needed to recognize indicative characteristics and various patterns of bioactive compounds use, related with an array of biomarkers connected to different elements of inflammatory and immune-related processes of COVID-19 disease.
Collapse
|
13
|
Farahani M, Niknam Z, Mohammadi Amirabad L, Amiri-Dashatan N, Koushki M, Nemati M, Danesh Pouya F, Rezaei-Tavirani M, Rasmi Y, Tayebi L. Molecular pathways involved in COVID-19 and potential pathway-based therapeutic targets. Biomed Pharmacother 2022; 145:112420. [PMID: 34801852 PMCID: PMC8585639 DOI: 10.1016/j.biopha.2021.112420] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/05/2021] [Accepted: 11/10/2021] [Indexed: 01/08/2023] Open
Abstract
Deciphering the molecular downstream consequences of severe acute respiratory syndrome coronavirus (SARS-CoV)- 2 infection is important for a greater understanding of the disease and treatment planning. Furthermore, greater understanding of the underlying mechanisms of diagnostic and therapeutic strategies can help in the development of vaccines and drugs against COVID-19. At present, the molecular mechanisms of SARS-CoV-2 in the host cells are not sufficiently comprehended. Some of the mechanisms are proposed considering the existing similarities between SARS-CoV-2 and the other members of the β-CoVs, and others are explained based on studies advanced in the structure and function of SARS-CoV-2. In this review, we endeavored to map the possible mechanisms of the host response following SARS-CoV-2 infection and surveyed current research conducted by in vitro, in vivo and human observations, as well as existing suggestions. We addressed the specific signaling events that can cause cytokine storm and demonstrated three forms of cell death signaling following virus infection, including apoptosis, pyroptosis, and necroptosis. Given the elicited signaling pathways, we introduced possible pathway-based therapeutic targets; ADAM17 was especially highlighted as one of the most important elements of several signaling pathways involved in the immunopathogenesis of COVID-19. We also provided the possible drug candidates against these targets. Moreover, the cytokine-cytokine receptor interaction pathway was found as one of the important cross-talk pathways through a pathway-pathway interaction analysis for SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Masoumeh Farahani
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Niknam
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Nasrin Amiri-Dashatan
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Zanjan Metabolic Diseases Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mehdi Koushki
- Department of Clinical Biochemistry, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mohadeseh Nemati
- Department of Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Fahima Danesh Pouya
- Department of Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Mostafa Rezaei-Tavirani
- Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Yousef Rasmi
- Department of Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran; Cellular and Molecular Research Center, Urmia University of Medical Sciences, Urmia, Iran.
| | - Lobat Tayebi
- Marquette University School of Dentistry, Milwaukee, WI 53233, USA
| |
Collapse
|
14
|
Schroeter CB, Huntemann N, Bock S, Nelke C, Kremer D, Pfeffer K, Meuth SG, Ruck T. Crosstalk of Microorganisms and Immune Responses in Autoimmune Neuroinflammation: A Focus on Regulatory T Cells. Front Immunol 2021; 12:747143. [PMID: 34691057 PMCID: PMC8529161 DOI: 10.3389/fimmu.2021.747143] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 09/20/2021] [Indexed: 12/22/2022] Open
Abstract
Regulatory T cells (Tregs) are the major determinant of peripheral immune tolerance. Many Treg subsets have been described, however thymus-derived and peripherally induced Tregs remain the most important subpopulations. In multiple sclerosis, a prototypical autoimmune disorder of the central nervous system, Treg dysfunction is a pathogenic hallmark. In contrast, induction of Treg proliferation and enhancement of their function are central immune evasion mechanisms of infectious pathogens. In accordance, Treg expansion is compartmentalized to tissues with high viral replication and prolonged in chronic infections. In friend retrovirus infection, Treg expansion is mainly based on excessive interleukin-2 production by infected effector T cells. Moreover, pathogens seem also to enhance Treg functions as shown in human immunodeficiency virus infection, where Tregs express higher levels of effector molecules such as cytotoxic T-lymphocyte-associated protein 4, CD39 and cAMP and show increased suppressive capacity. Thus, insights into the molecular mechanisms by which intracellular pathogens alter Treg functions might aid to find new therapeutic approaches to target central nervous system autoimmunity. In this review, we summarize the current knowledge of the role of pathogens for Treg function in the context of autoimmune neuroinflammation. We discuss the mechanistic implications for future therapies and provide an outlook for new research directions.
Collapse
Affiliation(s)
- Christina B Schroeter
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Niklas Huntemann
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Stefanie Bock
- Department of Neurology With Institute of Translational Neurology, University of Münster, Münster, Germany
| | - Christopher Nelke
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - David Kremer
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Klaus Pfeffer
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Sven G Meuth
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Tobias Ruck
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
15
|
Alturaiki W, Mubarak A, Al Jurayyan A, Hemida MG. The pivotal roles of the host immune response in the fine-tuning the infection and the development of the vaccines for SARS-CoV-2. Hum Vaccin Immunother 2021; 17:3297-3309. [PMID: 34114940 PMCID: PMC8204314 DOI: 10.1080/21645515.2021.1935172] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/03/2021] [Accepted: 05/24/2021] [Indexed: 02/07/2023] Open
Abstract
SARS-CoV2 infection induces various degrees of infections ranging from asymptomatic to severe cases and death. Virus/host interplay contributes substantially to these outcomes. This highlights the potential roles of the host immune system in fighting virus infections. SARS-CoV-2. We highlighted the potential roles of host immune response in the modulation of the outcomes of SARS-CoV infections. The newly emerged SARS-CoV-2 mutants complicated the control and mitigation strategies measures. We are highlighting the current progress of some already deployed vaccines worldwide as well as those still in the pipelines. Recent studies from the large ongoing global vaccination campaign are showing promising results in reducing the hospitality rates as well as the number of severe SARS-CoV-2 infected patients. Careful monitoring of the genetic changes of the virus should be practiced. This is to prepare some highly sensitive diagnostic assays as well as to prepare some homologous vaccines matching the circulating strains in the future.
Collapse
Affiliation(s)
- Wael Alturaiki
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah, Saudi Arabia
| | - Ayman Mubarak
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Abduallah Al Jurayyan
- Immunology and HLA Department, Pathology and Laboratory Medicine, King Fahad Medical City, Riyadh, Al-Ahsa, Saudi Arabia
| | - Maged Gomaa Hemida
- Department of Microbiology, College of Veterinary Medicine, King Faisal University, Saudi Arabia
- Department of Virology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr Ash Shaykh, Egypt
| |
Collapse
|
16
|
Singh R, Goel S, Bourgeade P, Aleya L, Tewari D. Ayurveda Rasayana as antivirals and immunomodulators: potential applications in COVID-19. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:55925-55951. [PMID: 34491498 PMCID: PMC8422837 DOI: 10.1007/s11356-021-16280-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 08/27/2021] [Indexed: 05/08/2023]
Abstract
Coronavirus disease (COVID-19) has been declared as a pandemic by the World Health Organization with rapid spread across 216 countries. COVID-19 pandemic has left its imprints on various health systems globally and caused immense social and economic disruptions. The scientific community across the globe is in a quest for digging the effective treatment for COVID-19 and exploring potential leads from traditional systems of healthcare across the world too. Ayurveda (Indian traditional system of medicine) has a comprehensive aspect of immunity through Rasayana which is a rejuvenation therapy. Here we attempt to generate the potential leads based on the classical text from Ayurveda in general and Rasayana in particular to develop effective antiviral and/or immunomodulator for potential or adjunct therapy in SARS-CoV-2. The Rasayana acts not only by resisting body to restrain or withstand the strength, severity or progression of a disease but also by promoting power of the body to prevent the manifestation of a disease. These Rasayana herbs are common in practice as immunomodulator, antiviral and protectives. The studies on Rasayana can provide an insight into the future course of research for the plausible development of effective management of COVID-19 by the utilization and development of various traditional systems of healthcare. Keeping in view the current pandemic situation, there is an urgent need of developing potential medicines. This study proposes certain prominent medicinal plants which may be further studied for drug development process and also in clinical setup under repurposing of these herbs.
Collapse
Affiliation(s)
- Rajeshwari Singh
- Central Council for Research in Ayurvedic Sciences, Ministry of AYUSH, Government of India, Janakpuri, New Delhi, 110058, India
| | - Sumeet Goel
- Central Council for Research in Ayurvedic Sciences, Ministry of AYUSH, Government of India, Janakpuri, New Delhi, 110058, India
| | - Pascale Bourgeade
- Chrono-Environnement Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, F-25030, Besançon Cedex, France
| | - Lotfi Aleya
- Chrono-Environnement Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, F-25030, Besançon Cedex, France.
| | - Devesh Tewari
- Department of Pharmacognosy, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India.
| |
Collapse
|
17
|
Bewley KR, Gooch K, Thomas KM, Longet S, Wiblin N, Hunter L, Chan K, Brown P, Russell RA, Ho C, Slack G, Humphries HE, Alden L, Allen L, Aram M, Baker N, Brunt E, Cobb R, Fotheringham S, Harris D, Kennard C, Leung S, Ryan K, Tolley H, Wand N, White A, Sibley L, Sarfas C, Pearson G, Rayner E, Xue X, Lambe T, Charlton S, Gilbert S, Sattentau QJ, Gleeson F, Hall Y, Funnell S, Sharpe S, Salguero FJ, Gorringe A, Carroll M. Immunological and pathological outcomes of SARS-CoV-2 challenge following formalin-inactivated vaccine in ferrets and rhesus macaques. SCIENCE ADVANCES 2021; 7:eabg7996. [PMID: 34516768 PMCID: PMC8442907 DOI: 10.1126/sciadv.abg7996] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 07/21/2021] [Indexed: 05/16/2023]
Abstract
There is an urgent requirement for safe and effective vaccines to prevent COVID-19. A concern for the development of new viral vaccines is the potential to induce vaccine-enhanced disease (VED). This was reported in several preclinical studies with both SARS-CoV-1 and MERS vaccines but has not been reported with SARS-CoV-2 vaccines. We have used ferrets and rhesus macaques challenged with SARS-CoV-2 to assess the potential for VED in animals vaccinated with formaldehyde-inactivated SARS-CoV-2 (FIV) formulated with Alhydrogel, compared to a negative control vaccine. We showed no evidence of enhanced disease in ferrets or rhesus macaques given FIV except for mild transient enhanced disease seen 7 days after infection in ferrets. This increased lung pathology was observed at day 7 but was resolved by day 15. We also demonstrate that formaldehyde treatment of SARS-CoV-2 reduces exposure of the spike receptor binding domain providing a mechanistic explanation for suboptimal immunity.
Collapse
Affiliation(s)
| | - Karen Gooch
- Public Health England, Porton Down, Salisbury SP4 0JG, UK
| | | | | | - Nathan Wiblin
- Public Health England, Porton Down, Salisbury SP4 0JG, UK
| | - Laura Hunter
- Public Health England, Porton Down, Salisbury SP4 0JG, UK
| | - Kin Chan
- Public Health England, Porton Down, Salisbury SP4 0JG, UK
| | - Phillip Brown
- Public Health England, Porton Down, Salisbury SP4 0JG, UK
| | - Rebecca A. Russell
- The Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Catherine Ho
- Public Health England, Porton Down, Salisbury SP4 0JG, UK
| | - Gillian Slack
- Public Health England, Porton Down, Salisbury SP4 0JG, UK
| | | | - Leonie Alden
- Public Health England, Porton Down, Salisbury SP4 0JG, UK
| | - Lauren Allen
- Public Health England, Porton Down, Salisbury SP4 0JG, UK
| | - Marilyn Aram
- Public Health England, Porton Down, Salisbury SP4 0JG, UK
| | - Natalie Baker
- Public Health England, Porton Down, Salisbury SP4 0JG, UK
| | - Emily Brunt
- Public Health England, Porton Down, Salisbury SP4 0JG, UK
| | - Rebecca Cobb
- Public Health England, Porton Down, Salisbury SP4 0JG, UK
| | | | - Debbie Harris
- Public Health England, Porton Down, Salisbury SP4 0JG, UK
| | | | | | - Kathryn Ryan
- Public Health England, Porton Down, Salisbury SP4 0JG, UK
| | - Howard Tolley
- Public Health England, Porton Down, Salisbury SP4 0JG, UK
| | - Nadina Wand
- Public Health England, Porton Down, Salisbury SP4 0JG, UK
| | - Andrew White
- Public Health England, Porton Down, Salisbury SP4 0JG, UK
| | - Laura Sibley
- Public Health England, Porton Down, Salisbury SP4 0JG, UK
| | | | - Geoff Pearson
- Public Health England, Porton Down, Salisbury SP4 0JG, UK
| | - Emma Rayner
- Public Health England, Porton Down, Salisbury SP4 0JG, UK
| | - Xiaochao Xue
- The Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Teresa Lambe
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, UK
| | - Sue Charlton
- Public Health England, Porton Down, Salisbury SP4 0JG, UK
| | - Sarah Gilbert
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, UK
| | - Quentin J. Sattentau
- The Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Fergus Gleeson
- Oxford Departments of Radiology and Nuclear Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 7LE, UK
| | - Yper Hall
- Public Health England, Porton Down, Salisbury SP4 0JG, UK
| | - Simon Funnell
- Public Health England, Porton Down, Salisbury SP4 0JG, UK
- Quadram Institute Bioscience, Norwich Research Park, Norfolk, UK
| | - Sally Sharpe
- Public Health England, Porton Down, Salisbury SP4 0JG, UK
| | | | | | - Miles Carroll
- Public Health England, Porton Down, Salisbury SP4 0JG, UK
- Pandemic Preparedness Centre, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7LG, UK
| |
Collapse
|
18
|
Mir A, Kalan Farmanfarma K, Salehiniya H, Shakiba A, Mahdavifar N. Laboratory and demographic findings among patients with coronavirus disease 2019: A review. Monaldi Arch Chest Dis 2021; 91. [PMID: 34258956 DOI: 10.4081/monaldi.2021.1694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 03/15/2021] [Indexed: 01/08/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is the third known animal coronavirus, after severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome coronavirus (MERS-CoV). The mean age of the infected patients was estimated to be between 50 and 69 years old. Accordingly, the COVID-19 mortality rate was calculated as 15%. In this regard, the essential component of prevention and planning is knowledge of laboratory and demographic findings among COVID-19 patients; therefore, the present study was conducted to investigate laboratory and demographic findings among these patients worldwide. This systematic review was performed on the articles published in English between January 1, 2019 and May 4, 2020, using MeSH-compliant keywords such as "COVID-19", "Laboratory, coronavirus disease-19 testing", and " demography " in international databases (PubMed, and web of science Scopus). Thereafter, the articles relevant to laboratory and demographic findings among COVID-19 patients were included in the final review. Reviewing the included articles showed changes in the mean lymphocytes count ranged from 0.7 to 39 in hospital or severe cases. Moreover, Leukopenia was not observed in patients with thrombocytopenia. In addition, C-reactive protein (CRP), leukocytes, D-dimer, FDP, FIB, neutrophils, AST, serum creatinine, t-troponin, troponin I, and blood bilirubin levels showed increasing trends in most studies conducted on COVID-19 patients. Notably, the elevated LDH level was more common among children than adults. According to the results of the present study, and by considering the clinical characteristics of COVID-19 patients on the one hand, and considering the changes in laboratory samples such as lymphocytes and other blood markers due to the damaged myocardial, hepatic, and renal tissues on the other hand, it is recommended to confirm the diagnosis of this infection by evaluating the patients' blood samples using other diagnostic methods like lung scan.
Collapse
Affiliation(s)
- Atefeh Mir
- Clinical Research Center of Sabzevar Vasei Hospital, Sabzevar University of Medical Sciences, Sabzevar.
| | - Khadijeh Kalan Farmanfarma
- Department of Epidemiology, Health Promotion Research Center, Zahedan University of Medical Sciences, Zahedan.
| | - Hamid Salehiniya
- Social Determinants of Health Research Center, Birjand University of Medical Sciences, Birjand.
| | - Abolfazl Shakiba
- Department of Internal Medicine, School of Medicine, Leishmaniasis Research Center, Vasei Hospital, Sabzevar University of Medical Sciences, Sabzevar.
| | - Neda Mahdavifar
- Department of Biostatistics and Epidemiology, School of Health, NonCommunicable Diseases Research Center, Sabzevar University of Medical Sciences, Sabzevar.
| |
Collapse
|
19
|
Inflammation and tumor progression: signaling pathways and targeted intervention. Signal Transduct Target Ther 2021; 6:263. [PMID: 34248142 PMCID: PMC8273155 DOI: 10.1038/s41392-021-00658-5] [Citation(s) in RCA: 1033] [Impact Index Per Article: 258.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 05/11/2021] [Accepted: 05/23/2021] [Indexed: 02/06/2023] Open
Abstract
Cancer development and its response to therapy are regulated by inflammation, which either promotes or suppresses tumor progression, potentially displaying opposing effects on therapeutic outcomes. Chronic inflammation facilitates tumor progression and treatment resistance, whereas induction of acute inflammatory reactions often stimulates the maturation of dendritic cells (DCs) and antigen presentation, leading to anti-tumor immune responses. In addition, multiple signaling pathways, such as nuclear factor kappa B (NF-kB), Janus kinase/signal transducers and activators of transcription (JAK-STAT), toll-like receptor (TLR) pathways, cGAS/STING, and mitogen-activated protein kinase (MAPK); inflammatory factors, including cytokines (e.g., interleukin (IL), interferon (IFN), and tumor necrosis factor (TNF)-α), chemokines (e.g., C-C motif chemokine ligands (CCLs) and C-X-C motif chemokine ligands (CXCLs)), growth factors (e.g., vascular endothelial growth factor (VEGF), transforming growth factor (TGF)-β), and inflammasome; as well as inflammatory metabolites including prostaglandins, leukotrienes, thromboxane, and specialized proresolving mediators (SPM), have been identified as pivotal regulators of the initiation and resolution of inflammation. Nowadays, local irradiation, recombinant cytokines, neutralizing antibodies, small-molecule inhibitors, DC vaccines, oncolytic viruses, TLR agonists, and SPM have been developed to specifically modulate inflammation in cancer therapy, with some of these factors already undergoing clinical trials. Herein, we discuss the initiation and resolution of inflammation, the crosstalk between tumor development and inflammatory processes. We also highlight potential targets for harnessing inflammation in the treatment of cancer.
Collapse
|
20
|
Tang Y, Sun J, Pan H, Yao F, Yuan Y, Zeng M, Ye G, Yang G, Zheng B, Fan J, Pan Y, Zhao Z, Guo S, Liu Y, Liao F, Duan Y, Jiao X, Li Y. Aberrant cytokine expression in COVID-19 patients: Associations between cytokines and disease severity. Cytokine 2021; 143:155523. [PMID: 33840589 PMCID: PMC8011640 DOI: 10.1016/j.cyto.2021.155523] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 02/12/2021] [Accepted: 03/28/2021] [Indexed: 02/05/2023]
Abstract
Cytokines play pleiotropic, antagonistic, and collaborative in viral disease. The high morbidity and mortality of coronavirus disease 2019 (COVID-19) make it a significant threat to global public health. Elucidating its pathogenesis is essential to finding effective therapy. A retrospective study was conducted on 71 patients hospitalized with COVID-19. Data on cytokines, T lymphocytes, and other clinical and laboratory characteristics were collected from patients with variable disease severity. The effects of cytokines on the overall survival (OS) and event-free survival (EFS) of patients were analyzed. The critically severe and severe patients had higher infection indexes and significant multiple organ function abnormalities than the mild patients (P < 0.05). IL-6 and IL-10 were significantly higher in the critically severe patients than in the severe and mild patients (P < 0.05). IL-6 and IL-10 were closely associated with white blood cells, neutrophils, T lymphocyte subsets, D-D dimer, blood urea nitrogen, complement C1q, procalcitonin C-reactive protein. Moreover, the IL-6 and IL-10 levels were closely correlated to dyspnea and dizziness (P < 0.05). The patients with higher IL-10 levels had shorter OS than the group with lower levels (P < 0.05). The older patients with higher levels of single IL-6 or IL-10 tended to have shorter EFS (P < 0.05), while the patients who had more elevated IL-6 and IL-10 had shorter OS (P < 0.05). The Cox proportional hazard model revealed that IL-6 was the independent factor affecting EFS. IL-6 and IL-10 play crucial roles in COVID-19 prognosis.
Collapse
Affiliation(s)
- Yueting Tang
- Department of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 86-027-67812888, China.
| | - Jiayu Sun
- Department of Cell Biology, Shantou University Medical College, Shantou, Guangdong, China.
| | - Huaqin Pan
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 86-027-67813517, China.
| | - Fen Yao
- Department of Cell Biology, Shantou University Medical College, Shantou, Guangdong, China.
| | - Yumeng Yuan
- Department of Cell Biology, Shantou University Medical College, Shantou, Guangdong, China.
| | - Mi Zeng
- Department of Cell Biology, Shantou University Medical College, Shantou, Guangdong, China.
| | - Guangming Ye
- Center for Clinical Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China.
| | - Gui Yang
- Department of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 86-027-67812888, China.
| | - Bokun Zheng
- Department of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 86-027-67812888, China.
| | - Junli Fan
- Department of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 86-027-67812888, China.
| | - Yunbao Pan
- Department of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 86-027-67812888, China.
| | - Ziwu Zhao
- Department of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 86-027-67812888, China.
| | - Shuang Guo
- Department of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 86-027-67812888, China.
| | - Yinjuan Liu
- Department of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 86-027-67812888, China.
| | - Fanlu Liao
- Department of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 86-027-67812888, China.
| | - Yongwei Duan
- Department of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 86-027-67812888, China.
| | - Xiaoyang Jiao
- Department of Cell Biology, Shantou University Medical College, Shantou, Guangdong, China.
| | - Yirong Li
- Department of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 86-027-67812888, China.
| |
Collapse
|
21
|
Maghool F, Valiani A, Safari T, Emami MH, Mohammadzadeh S. Gastrointestinal and renal complications in SARS-CoV-2-infected patients: Role of immune system. Scand J Immunol 2021; 93:e12999. [PMID: 33190306 PMCID: PMC7744842 DOI: 10.1111/sji.12999] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/08/2020] [Accepted: 11/11/2020] [Indexed: 01/08/2023]
Abstract
The recent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) disease has been accompanied by various gastrointestinal (GI) and renal manifestations in significant portion of infected patients. Beside studies on the respiratory complications of coronavirus infection, understanding the essential immunological processes underlying the different clinical manifestations of virus infection is crucial for the identification and development of effective therapies. In addition to the respiratory tract, the digestive and urinary systems are the major sources of virus transmission. Thus, knowledge about the invasion mechanisms of SARS-CoV-2 in these systems and the immune system responses is important for implementing the infection prevention strategies. This article presents an overview of the gut and renal complications in SARS-CoV-2 infection. We focus on how SARS-CoV-2 interacts with the immune system and the consequent contribution of immune system, gut, and renal dysfunctions in the development of disease.
Collapse
Affiliation(s)
- Fatemeh Maghool
- Poursina Hakim Digestive Diseases Research CenterIsfahan University of Medical SciencesIsfahanIran
| | - Ali Valiani
- Department of Anatomical SciencesMedical SchoolIsfahan University of Medical SciencesIsfahanIran
| | - Tahereh Safari
- Department of PhysiologyZahedan University of Medical SciencesZahedanIran
| | - Mohammad Hassan Emami
- Poursina Hakim Digestive Diseases Research CenterIsfahan University of Medical SciencesIsfahanIran
| | - Samane Mohammadzadeh
- Poursina Hakim Digestive Diseases Research CenterIsfahan University of Medical SciencesIsfahanIran
| |
Collapse
|
22
|
Yang B, Chang X, Huang J, Pan W, Si Z, Zhang C, Li H. The role of IL-6/lymphocyte ratio in the peripheral blood of severe patients with COVID-19. Int Immunopharmacol 2021; 97:107569. [PMID: 33933851 PMCID: PMC7953449 DOI: 10.1016/j.intimp.2021.107569] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 02/28/2021] [Accepted: 03/05/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND To investigate the prognostic value of a novel immune-inflammatory index, the interleukin-6-to-lymphocyte ratio (IL-6/LY), with the clinical outcomes of severe coronavirus disease 2019 (COVID-19) cases. METHODS A cohort study of COVID-19 patients in Tongji Hospital, from January 2020 to February 2020, was evaluated. Kaplan-Meier method and the log-rank test was performed to analyze survival data. Univariate and multivariate analyses were performed with COX proportional hazard regression model. The primary and secondary outcomes were in-hospital mortality and multiple organ dysfunction syndrome (MODS), respectively. RESULTS Total 320 adult patients were enrolled in our analyses. Patients were divided into low IL-6/LY group and high IL-6/LY group based on the cutoff value with 2.50. The Kaplan-Meier survival curves showed that high-value group (IL-6/LY ≥ 2.50) had a greater risk of poor prognosis (P < 0.001, respectively). Multivariate analysis indicated that IL-6/LY was the independent risk predictor for in-hospital mortality (hazard ratio [HR], 3.404; 95% confidence interval [CI], 1.090-10.633, P = 0.035) and MODS development (HR, 4.143; 95%CI, 1.321-12.986, P = 0.015). Meanwhile, IL-6/LY was positively correlated with the MuLBSTA score (r = 0.137, P = 0.031), suggesting that IL-6/LY was associated with long-term mortality (90-day). Furthermore, kinetic analysis revealed that the dynamic changes of inflammatory immune indexes were related to the severity of the disease. CONCLUSIONS The elevated IL-6/LY was related with the increased risk of poor prognosis. Not only that, IL-6/LY could be used for risk stratification and early clinical identification of high-risk patients.
Collapse
Affiliation(s)
- Boyi Yang
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiaoyan Chang
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jiabao Huang
- Department of General Practice, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, Guangdong, China
| | - Wen Pan
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhilong Si
- Department of Gastrointestinal Surgery, The Forth Hospital of Wuhan Affiliated with Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Cuntai Zhang
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hong Li
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
23
|
Luo P, Liu Y, Liu D, Li J. Perspectives for the Use of N-acetylcysteine as a Candidate Drug to Treat COVID-19. Mini Rev Med Chem 2021; 21:268-272. [PMID: 33109047 DOI: 10.2174/1389557520666201027160833] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 09/01/2020] [Accepted: 09/13/2020] [Indexed: 11/22/2022]
Abstract
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndromerelated coronavirus-2 (SARS-CoV-2), has become an ongoing pandemic worldwide. However, there are no vaccines or antiviral drugs with proven clinical efficacy. Therefore, a remedial measure is urgently needed to combat the devastating COVID-19. The pharmacological activities of Nacetylcysteine (NAC) and its potential functions in inhibiting the progression of COVID-19 make it a promising therapeutic agent for the infection. In this mini-review, we discussed the therapeutic potential of NAC in COVID-19 from the perspective of its multisite pharmacological actions.
Collapse
Affiliation(s)
- Pan Luo
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yi Liu
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Dong Liu
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Juan Li
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
24
|
Kumar S, Kumar S, Karim A, Bisht K, Ghani A, Munda VS. Outbreak of Respiratory Infection: nCoV-2019 Current Status and Its Impact on Global Health. CURRENT RESPIRATORY MEDICINE REVIEWS 2021. [DOI: 10.2174/1573398x16999201203162129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Novel coronavirus-2019 (nCoV-2019) emerged as a potentially infectious respiratory
disease caused by newly discovered β-coronavirus. nCoV-19 has emerged as a global pandemic
due to the rapid transmission and high infection rate commonly involved in acute respiratory illness.
Literature search includes various databases like Google Scholar, PubMed, ScienceDirect,
and Scopus for studies published using a different combination of keywords “coronavius”,
“COVID-19”, “SARS”, “MERS”, “antiviral drugs”, “vaccines”, and “immunity”. We collected epidemiology
data from the Worldometer portal (data available till 9 October, 2020). Fever, dry
cough, dyspnea, sore throat, or fatigue are common clinical symptoms of the infection. Cytotoxic
T-cells and T-helper cells plus Cytotoxic T cells (CD8+) account for maximum (approximately
80%) of total infiltrate in the pulmonary region of the affected nCoV individuals and act as a significant
contributor to the clearance of the infection. This review intends to outline the literature concerning
the mode of actual transmission, immune response, and possible therapeutic approach
against the virus.
Collapse
Affiliation(s)
- Saurabh Kumar
- Department of Science & Technology (DST) - Centre for Policy Research, Indian Institute of Science (IISc), Bengaluru, Karnataka 560012, India
| | - Sandeep Kumar
- Department of Histopathology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Adil Karim
- Department of Immunopathology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Kamlesh Bisht
- Department of Medical Microbiology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Abdul Ghani
- Department of Histopathology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Vimal Singh Munda
- Department of Medical Microbiology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| |
Collapse
|
25
|
Hyder Pottoo F, Abu-Izneid T, Mohammad Ibrahim A, Noushad Javed M, AlHajri N, Hamrouni AM. Immune system response during viral Infections: Immunomodulators, cytokine storm (CS) and Immunotherapeutics in COVID-19. Saudi Pharm J 2021; 29:173-187. [PMID: 33519271 PMCID: PMC7833973 DOI: 10.1016/j.jsps.2020.12.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 12/31/2020] [Indexed: 12/15/2022] Open
Abstract
Coronaviruses are non-segmented and single stranded positive-sense RNA (+ssRNA) viruses. To date, 06 human coronaviruses (HCoVs) are reported; α-CoVs (HCoVs-NL63 and HCoVs-229E) and β-CoVs (HCoVs-OC43, HCoVs-HKU1, SARS-CoV, MERS-CoV). While, novel coronavirus (SARS-CoV-2) is the most recent member. The genome sequence of SARS-CoV-2 is 82% similar to SARS-COV-1. The compelling evidences link the progression of viral infection of SARS-CoV-2 with excessive inflammation as a result of the exaggerated immune response and elevated production of "immunocytokines" resulting in cytokine storm (CS); followed by a series of events, like acute organ damage, acute respiratory distress syndrome (ARDS) as well as death. Hence attempts to reduce cytokine storm are now being considered as a new paradigm shift in the clinical management of SARS-CoV-2. Tocilizumab (IL-6 blocker), Baricitinib (JAKs and AAK1 inhibitor), TNFα inhibitors (Infliximab, Adalimumab, Certolizumab) are currently being evaluated for possible block of the CS. Hence, rationalizing anti-inflammatory therapeutics would be the most judicious approach for significant reduction in COVID-19 mortality. In order to elucidate optimized and rationaled use of different therapeutics in COVID-19, we collated latest available information from emerging scientific evidences, integrated previous attempts as well as clinical successes, and various adopted approaches to mitigate past outbreaks with of SARS-CoV and MERS CoV.
Collapse
Affiliation(s)
- Faheem Hyder Pottoo
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P. O. Box 1982, Dammam 31441, Saudi Arabia
| | - Tareq Abu-Izneid
- Pharmaceutical Sciences, College of Pharmacy, Al Ain University, Al Ain, Abu Dhabi, United Arab Emirates
| | - Abdallah Mohammad Ibrahim
- Fundamentals of Nursing Department, College of Nursing, Imam Abdulrahman Bin Faisal University, P.O.BOX 1982, Dammam 31441, Saudi Arabia
| | - Md. Noushad Javed
- Department of Pharmaceutics, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New-Delhi, India
| | - Noora AlHajri
- Department of Epidemiology and Population Health, College of Medicine, Khalifa University, United Arab Emirates
| | - Amar M. Hamrouni
- Pharmaceutical Sciences, College of Pharmacy, Al Ain University, Al Ain, Abu Dhabi, United Arab Emirates
| |
Collapse
|
26
|
Sami R, Fathi F, Eskandari N, Ahmadi M, ArefNezhad R, Motedayyen H. Characterizing the immune responses of those who survived or succumbed to COVID-19: Can immunological signatures predict outcome? Cytokine 2021; 140:155439. [PMID: 33524886 PMCID: PMC7837287 DOI: 10.1016/j.cyto.2021.155439] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Immunodeficiency has pivotal role in the pathogenesis of coronavirus disease 2019 (COVID-19). Several studies have indicated defects in the immune system of COVID-19 patients at different disease stages. Therefore, this study investigated whether alters in immune responses of COVID-19 patients may be considered as predicting factors for disease outcome. METHODS The percentages of innate and adoptive immune cells in the recovered and dead patients with COVID-19, and healthy subjects were determined by flow cytometry. The levels of pro- and anti-inflammatory cytokines and other immune factors were also measured by enzyme-linked immunosorbent assay. RESULTS At the first day of hospitalization, the frequencies of CD56dim CD16+ NK cells and CD56bright CD16dim/- NK cells in patients who died during treatment were significantly increased compared to recovered and healthy individuals (P < 0.0001). The recovered and dead patients had a significant increase in monocyte number in comparison with healthy subjects (P < 0.05). No significant change was observed in Th1 cell numbers between the recovered and dead patients while Th2, Th17 cell, and Treg percentages in death cases were significantly lower than healthy control and those recovered, unlike exhausted CD4 + and CD8 + T cells and activated CD4 + T cells (P < 0.0001-0.05). The activated CD8 + T cell was significantly higher in the recovered patients than healthy individuals (P < 0.0001-0.05). IL-1α, IL-1β, IL-6, and TNF-α levels in patients were significantly increased (P < 0.0001-0.01). However, there were no differences in TNF-α and IL-1β levels between dead and recovered patients. Unlike TGF-β1 level, IL-10 was significantly increased in recovered patients (P < 0.05). Lymphocyte numbers in recovered patients were significantly increased compared to dead patients, unlike ESR value (P < 0.001-0.01). CRP value in recovered patients significantly differed from dead patients (P < 0.001). CONCLUSION Changes in frequencies of some immune cells and levels of some immune factors may be considered as predictors of mortality in COVID-19 patients.
Collapse
Affiliation(s)
- Ramin Sami
- Department of Internal Medicine, School of Medicine, Khorshid Hospital, Isfahan University of Medical Science, Isfahan, Iran
| | - Farshid Fathi
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nahid Eskandari
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Meysam Ahmadi
- Legal Medicine Research Center, Legal Medicine Organization, Tehran, Iran; School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza ArefNezhad
- Exir Azma Salam Iranian Institute, Research and Development Department, Tehran, Iran; Department of Anatomy, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hossein Motedayyen
- Autoimmune Diseases Research Center, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
27
|
Li X, Li T, Wang H. Treatment and prognosis of COVID-19: Current scenario and prospects (Review). Exp Ther Med 2021; 21:3. [PMID: 33235612 PMCID: PMC7678645 DOI: 10.3892/etm.2020.9435] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 09/22/2020] [Indexed: 12/24/2022] Open
Abstract
SARS-CoV-2 is the seventh member of the family of coronaviruses that can cause infections in humans, termed as COVID-19, which is now a global pandemic. Because it is a novel virus, considerable efforts and extensive studies are needed to fully understand its characteristics. Its symptoms and severity range from mild to critical, depending on several factors, such as host susceptibility to the virus and their immune system, with the most common symptoms being fever, fatigue, sore throat and runny nose. There is no clear treatment available yet, though several options are being explored, with research for vaccines being at the forefront. Traditional Chinese Medicine may also be used as a treatment option. Since this virus is similar to the SARS-CoV and MERS viruses, considerable insight can be gained from previous studies. Although many patients recover completely, there are several factors that lead to poor prognosis. This review summarizes the research carried out so far in terms of treatment options and prognosis factors associated with COVID-19.
Collapse
Affiliation(s)
- Xuemei Li
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Tao Li
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Anhui Anti-Inflammatory and Immune Medicine Innovation Team, Hefei, Anhui 230032, P.R. China
| | - Huihui Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| |
Collapse
|
28
|
Saeidi A, Tayebi SM, To-aj O, Karimi N, Kamankesh S, Niazi S, Khosravi A, Khademosharie M, Soltani M, Johnson KE, Rashid H, Laher I, Hackney AC, Zouhal H. Physical Activity and Natural Products and Minerals in the SARS-CoV-2 Pandemic: An Update. ANNALS OF APPLIED SPORT SCIENCE 2021; 9:e976. [PMID: 35237740 PMCID: PMC8887880 DOI: 10.29252/aassjournal.976] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Coronavirus-disease 19 (COVID-19) has rapidly become a global public health issue, and there is a desperate need for strategies of prevention, reduction, and treatment to halt the epidemic. The coronavirus affects the immune system, and individuals with a compromised immune system, such as those with diabetes, hypertension, obesity, are more susceptible to this virus. Lifestyle-related variables such as physical activity and nutritional supplements can decrease inflammatory markers, increase anti-inflammatory and antioxidant status, and improve the immune system. Lifesty-lerelated variables play preventive roles against various infectious diseases including COVID-19. This review highlights the effects of physical activity and nutrients supplements on the immune system and their possible benefits in combating the harms caused by infection with the COVID-19 virus.
Collapse
Affiliation(s)
- Ayoub Saeidi
- Damghan Branch, Islamic Azad University, Damghan,
Iran
| | | | - Oam To-aj
- Bangkok Thonburi University, Bangkok, Thailand
- Corresponding Authors: 1. Oam To-aj,
PhD. , 2. Hassane Zouhal,
Professor.
| | | | | | | | | | | | | | | | - Harunor Rashid
- National Centre for Immunisation Research &
Surveillance of Vaccine Preventable Diseases (NCIRS), Westmead, Australia
| | - Ismail Laher
- University of British Columbia, Vancouver, Canada
| | | | - Hassane Zouhal
- University of Rennes 2, Rennes, France
- Corresponding Authors: 1. Oam To-aj,
PhD. , 2. Hassane Zouhal,
Professor.
| |
Collapse
|
29
|
Loganathan S, Kuppusamy M, Wankhar W, Gurugubelli KR, Mahadevappa VH, Lepcha L, Choudhary AK. Angiotensin-converting enzyme 2 (ACE2): COVID 19 gate way to multiple organ failure syndromes. Respir Physiol Neurobiol 2021; 283:103548. [PMID: 32956843 PMCID: PMC7500408 DOI: 10.1016/j.resp.2020.103548] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/16/2020] [Accepted: 09/16/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Globally, the current medical emergency for novel coronavirus 2019 (COVID-19) leads to respiratory distress syndrome and death. PURPOSE This review highlighted the effect of COVID-19 on systemic multiple organ failure syndromes. This review is intended to fill a gap in information about human physiological response to COVID-19 infections. This review may shed some light on other potential mechanisms and approaches in COVID -19 infections towards systemic multiorgan failure syndromes. FINDING SARS-CoV-2 intervened mainly in the lung with progression to pneumonia and acute respiratory distress syndrome (ARDS) via the angiotensin-converting enzyme 2(ACE2) receptor. Depending on the viral load, infection spread through the ACE2 receptor further to various organs such as heart, liver, kidney, brain, endothelium, GIT, immune cell, and RBC (thromboembolism). This may be aggravated by cytokine storm with the extensive release of proinflammatory cytokines from the deregulating immune system. CONCLUSION The widespread and vicious combinations of cytokines with organ crosstalk contribute to systemic hyper inflammation and ultimately lead to multiple organ dysfunction (Fig. 1). This comprehensive study comprises various manifestations of different organs in COVID-19 and may assist the clinicians and scientists pertaining to a broad approach to fight COVID 19.
Collapse
Affiliation(s)
- Sundareswaran Loganathan
- Department of Physiology, All India Institute of Medical Science, Mangalagiri, Andhra Pradesh, 522503, India.
| | - Maheshkumar Kuppusamy
- Department of Biochemistry and Physiology, Government Yoga and Naturopathy Medical College and Hospital, Chennai, 600106, India.
| | - Wankupar Wankhar
- Department of Paramedical Science, Assam Down Town University, Guwahati, 781026, India.
| | - Krishna Rao Gurugubelli
- Department of Biochemistry, All India Institute of Medical Science, Mangalagiri, Andhra Pradesh, 522503, India.
| | | | - Lhakit Lepcha
- Department of Paramedical Science, Assam Down Town University, Guwahati, 781026, India.
| | - Arbind Kumar Choudhary
- Department of Physiology, All India Institute of Medical Science, Raebareli, Uttar Pradesh, India.
| |
Collapse
|
30
|
Ghazavi A, Ganji A, Keshavarzian N, Rabiemajd S, Mosayebi G. Cytokine profile and disease severity in patients with COVID-19. Cytokine 2021; 137:155323. [PMID: 33045526 PMCID: PMC7524708 DOI: 10.1016/j.cyto.2020.155323] [Citation(s) in RCA: 128] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 09/15/2020] [Accepted: 09/25/2020] [Indexed: 01/02/2023]
Abstract
Cytokine dysregulation is the proposed mechanism for Coronavirus disease 2019 (COVID-19). The aim of this study was to evaluate the serum levels of interferon (IFN)-γ, interleukin (IL)-5, IL-8, Il-9, IL-17, TGF-β and IFN-γ in patients infected with SARS-CoV-2. The study was conducted between 63 adult patients with COVID-19 and compared with 33 age and gender-matched healthy subjects as controls. The age range in both groups was 50-70 years. The patients were classified into mild group (33 patients) and severe group (30 patients). Serum samples were collected from all participants and tested for the cytokine levels by ELISA (enzyme-linked immunosorbent assay) method. Statistical analysis was performed using the one-way ANOVA. The mean serum levels of IFN-γ, TGF-β, IL-17 and IL-8 in the COVID-19 patients were significantly higher than those observed in the control group. A comparison of between the mild and severe groups showed significant differences in TGF-β levels. The mean concentration of serum IL-5 and IL-9 in patients with COVID-19 did not differ from those in the control group. Systemic IL-17 levels correlated positively and significantly with TGF-β in patients with COVID-19. Th1 (IFN-γ), Treg (TGF-β), and Th17 (IL-17) cytokines concentration were increased in COVID-19 patients. Interferon-γ and IL-17 are involved in inducing and mediating proinflammatory responses. Our data suggest that TGF-β can be used as a predictive factor of disease severity in patients with COVID-19.
Collapse
Affiliation(s)
- Ali Ghazavi
- Department of Immunology & Microbiology, School of Medicine, Arak University of Medical Sciences, Arak, Iran; Traditional and Complementary Medicine Research Center (TCMRC), Arak University of Medical Sciences, Arak, Iran; Infectious Diseases Research Center (IDRC), Arak University of Medical Sciences, Arak, Iran
| | - Ali Ganji
- Department of Immunology & Microbiology, School of Medicine, Arak University of Medical Sciences, Arak, Iran; Molecular and Medicine Research Center, Arak University of Medical Sciences, Arak, Iran
| | - Nafiseh Keshavarzian
- Department of Immunology & Microbiology, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Somayeh Rabiemajd
- Department of Immunology & Microbiology, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Ghasem Mosayebi
- Department of Immunology & Microbiology, School of Medicine, Arak University of Medical Sciences, Arak, Iran; Molecular and Medicine Research Center, Arak University of Medical Sciences, Arak, Iran.
| |
Collapse
|
31
|
Iwamura APD, Tavares da Silva MR, Hümmelgen AL, Soeiro Pereira PV, Falcai A, Grumach AS, Goudouris E, Neto AC, Prando C. Immunity and inflammatory biomarkers in COVID-19: A systematic review. Rev Med Virol 2020; 31:e2199. [PMID: 34260778 DOI: 10.1002/rmv.2199] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 12/27/2022]
Abstract
Coronavirus disease 2019 (COVID-19) is a clinical syndrome caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus. Patients can be asymptomatic or present respiratory and gastrointestinal symptoms, and even multiple-organ failure which can lead to death. The balance between an effective antiviral response and dysregulated immune response is the key factor determining the severity of COVID-19 progression. A systematic review was performed using the NCBI-PubMed database to find the articles related to COVID-19 immunity and inflammatory response published from 1 December 2019 to 15 April 2020. Haematological, immunological and biochemical parameters were extracted and correlated with disease severity, age and presence of comorbidities. Twelve articles were analysed comprising a total of 1042 hospitalized patients infected with SARS-CoV-2 and 95 different parameters. Total lymphocyte count and levels of CD3+ and CD4+ T cells were decreased in severe and critical cases. Neutrophilia was found in patients who progressed to acute respiratory distress syndrome (ARDS). Interleukin-six (IL-6) was high in mild and severe patients regardless of comorbidities. Erythrocyte sedimentation rate (ESR) and count and C-reactive protein (CRP) levels were increased regardless of disease severity or presence of comorbidities. High levels of D-dimer and lactate dehydrogenase were present in diabetic patients and patients who developed ARDS. Procalcitonin levels were elevated to varying degrees in severe and critical patients. We conclude that the total lymphocyte count, CD3+ and CD4+ T cells are low, especially in severe and critical COVID-19 patients; ESR, CRP and IL-6 were elevated, independent of the severity of disease. Understanding the inflammatory response of COVID-19 patients is essential for the development of better therapeutic and management strategies.
Collapse
Affiliation(s)
- Ana Paula D Iwamura
- Genetics of Rare Diseases, Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, Paraná, Brazil.,Biotechnology Applied to Children and Adolescent Health Post Graduation Program, Faculdades Pequeno Príncipe, Curitiba, Paraná, Brazil
| | | | - Ana Luísa Hümmelgen
- Genetics of Rare Diseases, Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, Paraná, Brazil.,Medical School, Faculdades Pequeno Príncipe, Curitiba, Paraná, Brazil
| | | | - Angela Falcai
- Laboratory of Environmental Microbiology, Universidade CEUMA, Maranhão, Brazil
| | | | - Ekaterini Goudouris
- Pediatrics Department, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Antônio Condino Neto
- Department of Immunology, Biomecial Sciences Institute, Universidade de São Paulo, São Paulo, Brazil
| | - Carolina Prando
- Genetics of Rare Diseases, Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, Paraná, Brazil.,Biotechnology Applied to Children and Adolescent Health Post Graduation Program, Faculdades Pequeno Príncipe, Curitiba, Paraná, Brazil.,Clinical Immunology, Hospital Pequeno Príncipe, Curitiba, Paraná, Brazil
| |
Collapse
|
32
|
Li X, Rong Y, Zhang P, Wang J, Qie L, Rong L, Xu J. Differences in Clinical Features and Laboratory Results between Adults and Children with SARS-CoV-2 Infection. BIOMED RESEARCH INTERNATIONAL 2020; 2020:6342598. [PMID: 33294449 PMCID: PMC7712632 DOI: 10.1155/2020/6342598] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 10/30/2020] [Accepted: 11/17/2020] [Indexed: 01/08/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in children accounts for a small proportion of all infections and is usually mild or asymptomatic. There are few studies on the clinical characteristics of SARS-CoV-2 infection in children, and the causes of the low prevalence in children remain unclear. Herein, we compared the epidemiological and clinical characteristics of SARS-CoV-2 infection between adults and children. Fifty-two patients with Coronavirus Disease 2019 (COVID-19) were retrospectively analyzed, including 38 adults and 14 children. Their clinical information such as epidemiological exposure history, laboratory indicators, chest computed tomography (CT) performance, and number of SARS-CoV-2 positive days were analyzed and compared. In children, 5 (35.71%) had mild COVID-19 and 9 (64.29%) had common type, while, in adults, 9 (23.68%) cases were mild, and 29 (76.32%) were common COVID-19. Among them, family clustering infection accounted for 50% (7/14) of child cases and 23.68% (9/36) of adult cases. Epidemiological exposure history, clinical classification, clinical symptoms, chest CT manifestations, and number of SARS-CoV-2-positive days were not significantly different between children and adults. However, the percentage of neutrophils in adults was significantly higher than that in children (P < 0.05). The percentage and absolute value of lymphocytes, platelet counts, aspartate aminotransferase, and aspartate aminotransferase/alanine aminotransferase in adults were lower than those in children (P < 0.05). Conclusively, children infected with SARS-CoV-2 show the characteristics of family clustering, and the proportion of mild and asymptomatic infections is higher. For families with a history of epidemiological exposure, routine SARS-CoV-2 nucleic acid testing and chest CT examination should be performed in asymptomatic children to determine whether they are infected. Unlike adults, although the reduction of lymphocytes and platelets in children is not common, it is necessary to be alert to the increased risk of liver damage in children.
Collapse
Affiliation(s)
- Xiaoli Li
- Department of Respiratory and Critical Care Medicine, Shenzhen Hospital, Southern Medical University, Shenzhen 518101, China
| | - Yan Rong
- Department of Respiratory and Critical Care Medicine, Shenzhen Hospital, Southern Medical University, Shenzhen 518101, China
| | - Peiyan Zhang
- Department of Infectious Diseases, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen 518000, China
| | - Junli Wang
- Department of Respiratory and Critical Care Medicine, Shenzhen Hospital, Southern Medical University, Shenzhen 518101, China
| | - Liping Qie
- Department of Pediatrics, Shenzhen Hospital, Southern Medical University, Shenzhen 518101, China
| | - Lei Rong
- Department of Respiratory and Critical Care Medicine, Shenzhen Hospital, Southern Medical University, Shenzhen 518101, China
| | - Jian Xu
- Department of Respiratory and Critical Care Medicine, Shenzhen Hospital, Southern Medical University, Shenzhen 518101, China
| |
Collapse
|
33
|
Chen J, Han T, Huang M, Yang Y, Shang F, Zheng Y, Zhao W, Luo L, Han X, Lin A, Zhao H, Gu Q, Shi Y, Li J, Xu X, Liu K, Deng Y, Jia E, Cao Q. Clinical characteristics of asymptomatic carriers of novel coronavirus disease 2019: A multi-center study in Jiangsu Province. Virulence 2020; 11:1557-1568. [PMID: 33138692 PMCID: PMC7644248 DOI: 10.1080/21505594.2020.1840122] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 10/15/2020] [Accepted: 10/16/2020] [Indexed: 02/08/2023] Open
Abstract
Asymptomatic SARS-CoV-2-infected individuals are thought to play major roles in virus transmission. This study aimed to analyze the characteristics of asymptomatic carriers with COVID-19 to control the spread of the virus. We retrospectively investigated the clinical characteristics of 648 consecutive subjects who were enrolled in the study and were divided into asymptomatic carriers, mild cases, ordinary cases, severe or critical cases, and evaluated their impact on disease severity by means of Spearman correlation and multiple regression analyses. Receiver operating characteristic curve analysis was conducted to determine the optimum cutoff levels of laboratory findings for diagnostic predictors of asymptomatic carriers of COVID-19. In our study, a total of 648 subjects on admission with a mean age of 45.61 y including 345 males and 303 females were enrolled in our study. The leukocyte, lymphocyte, eosinophil, platelet, C-reactive protein, interleukin-6, CD3+, CD4+, and CD8 + T lymphocyte levels, and the erythrocyte sedimentation rate differed significantly among the groups (all p ≤ 0.05). Disease severity was negatively associated with the CD3+ (r = -0.340; p < 0.001), CD4+ (r = -0.290; p = 0.001) and CD8+ (r = -0.322; p < 0.001) T lymphocyte levels. The significant diagnostic predictors of asymptomatic carriers of COVID-19 included the blood cell, cytokine, and T lymphocyte subset levels. Inflammation and immune response may play important roles in disease progression. Hence, the laboratory parameters identified should be considered in clinical practice, which provide new insights into the identification of asymptomatic individuals and the prevention of virus transmission.
Collapse
Affiliation(s)
- Jiaxin Chen
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Tao Han
- Department of Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Mao Huang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yi Yang
- Department of Critical Care Medicine, Zhongda Hospital of Southeast University, Nanjing, Jiangsu Province, China
| | - Futai Shang
- Department of Critical Care Medicine, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Huaian, Jiangsu Province, China
| | - Yishan Zheng
- Department of Critical Care Medicine, Nanjing No.2 Hospital, Nanjing, Jiangsu Province, China
| | - Wenjing Zhao
- Department of Critical Care Medicine, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Liang Luo
- Department of Critical Care Medicine, Wuxi No. 2 People's Hospital, Wuxi, Jiangsu Province, China
| | - Xudong Han
- Department of Critical Care Medicine, The Third People’s Hospital of Nantong City Affiliated to Nantong University, Nantong, Jiangsu Province, China
| | - Aihua Lin
- Department of Critical Care Medicine, Suqian People’s Hospital of Nanjing Gulou Hospital Group, Suqian, Jiangsu Province, China
| | - Hongsheng Zhao
- Department of Critical Care Medicine, The Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Qin Gu
- Department of Critical Care Medicine, Nanjing Drum Tower Hospital, The Affiliated Nanjing University Medical School, Nanjing, Jiangsu Province, China
| | - Yi Shi
- Department of Pulmonary and Critical Care Medicine, Nanjing Jinlin Hospital, Nanjing, Jiangsu Province, China
| | - Jun Li
- Department of Infectious Diseases, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Xingxiang Xu
- Department of Pulmonary and Critical Care Medicine, Northern Jiangsu People’s Hospital, Yangzhou, Jiangsu Province, China
| | - Kexi Liu
- Department of Critical Care Medicine, Lianyungang First People’s Hospital, Lianyungang, Jiangsu Province, China
| | - Yijun Deng
- Department of Critical Care Medicine, Yancheng First People’s Hospital, Yancheng, Jiangsu Province, China
| | - Enzhi Jia
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Quan Cao
- Department of Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| |
Collapse
|
34
|
Safar HA, Mustafa AS, McHugh TD. COVID-19 vaccine development: What lessons can we learn from TB? Ann Clin Microbiol Antimicrob 2020; 19:56. [PMID: 33256750 PMCID: PMC7702199 DOI: 10.1186/s12941-020-00402-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 11/19/2020] [Indexed: 12/18/2022] Open
Abstract
At the time of writing, the SARS-CoV-2 virus has infected more than 49 million people causing more than 1.2 million deaths worldwide since its emergence from Wuhan, China in December 2019. Vaccine development against SARS-CoV-2 has drawn the global attention in order to stop the spread of the virus, with more than 10 vaccines being tested in phase III clinical trials, as of November 2020. However, critical to vaccine development is consideration of the immunological response elicited as well as biological features of the vaccine and both need to be evaluated thoroughly. Tuberculosis is also a major infectious respiratory disease of worldwide prevalence and the vaccine development for tuberculosis has been ongoing for decades. In this review, we highlight some of the common features, challenges and complications in tuberculosis vaccine development, which may also be relevant for, and inform, COVID-19 vaccine development.
Collapse
Affiliation(s)
- Hussain A Safar
- Centre for Clinical Microbiology, Division of Infection and Immunity, University College London, London, UK.
| | - Abu Salim Mustafa
- Department of Microbiology, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Timothy D McHugh
- Centre for Clinical Microbiology, Division of Infection and Immunity, University College London, London, UK
| |
Collapse
|
35
|
M R, S S, Jose SP, Rajan S, Thomas S, Jagmag T, Tilwani J. Biochemical and immunological aspects of COVID-19 infection and therapeutical intervention of oral low dose cytokine therapy: a systematic review. Immunopharmacol Immunotoxicol 2020; 43:22-29. [PMID: 33106053 DOI: 10.1080/08923973.2020.1842444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The novel coronavirus (SARS-CoV-2) pandemic has now spread to all corners of the world. It causes severe respiratory syndromes which is one of the leading causes of death. Evidence shows that the novel SARS-CoV-2 has close similarities with other coronaviruses, SARS and MERS. So, SARS-CoV-2 might use the similar mechanisms of these viruses to attack the host cells. The severity of COVID-19 is associated with various factors, one of the major reasons is immune dysregulation or immune suppression. Immunity plays a significant role in maintaining the body in a healthy condition. In order to induce a timely immune response against the invaded pathogens, both innate and adaptive immunity must be in an active state. During the viral infection, there will be an excessive generation of pro-inflammatory cytokines known as cytokine storm and also, the antiviral agents in the body gets inhibited or inactivated through viral mechanisms. Thus, this might be the reason for the transition from mild symptoms to more severe medical conditions which leads to an immediate need for the invention of a new medicine.This review aims to show the host-viral interaction along with immune response, antiviral mechanism and effectiveness of oral low dose cytokines against the virus as a therapeutic approach.
Collapse
Affiliation(s)
- Ratheesh M
- Department of Biochemistry, St. Thomas College, Pala, Kottayam, India
| | - Sheethal S
- Department of Biochemistry, St. Thomas College, Pala, Kottayam, India
| | - Svenia P Jose
- Department of Biochemistry, St. Thomas College, Pala, Kottayam, India
| | - Sony Rajan
- Department of Biochemistry, St. Thomas College, Pala, Kottayam, India
| | - Sulumol Thomas
- Department of Biochemistry, St. Thomas College, Pala, Kottayam, India
| | | | | |
Collapse
|
36
|
Yan L, Cai B, Li Y, Wang MJ, An YF, Deng R, Li DD, Wang LC, Xu H, Gao XD, Wang LL. Dynamics of NK, CD8 and Tfh cell mediated the production of cytokines and antiviral antibodies in Chinese patients with moderate COVID-19. J Cell Mol Med 2020; 24:14270-14279. [PMID: 33145962 PMCID: PMC7753779 DOI: 10.1111/jcmm.16044] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 10/11/2020] [Accepted: 10/12/2020] [Indexed: 02/05/2023] Open
Abstract
Recent studies have demonstrated a marked decrease in peripheral lymphocyte levels in patients with coronavirus disease 2019 (COVID‐19) caused by severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2). Few studies have focused on the changes of NK, T‐ and B‐cell subsets, inflammatory cytokines and virus‐specific antibodies in patients with moderate COVID‐19. A total of 11 RT‐PCR‐confirmed convalescent patients with COVID‐19 and 11 patients with non‐SARS‐CoV‐2 pneumonia (control patients) were enrolled in this study. NK, CD8+ T, CD4+ T, Tfh‐like and B‐cell subsets were analysed using flow cytometry. Cytokines and SARS‐CoV‐2‐specific antibodies were analysed using an electrochemiluminescence immunoassay. NK cell counts were significantly higher in patients with COVID‐19 than in control patients (P = 0.017). Effector memory CD8+ T‐cell counts significantly increased in patients with COVID‐19 during a convalescent period of 1 week (P = 0.041). TIM‐3+ Tfh‐like cell and CD226+ Tfh‐like cell counts significantly increased (P = 0.027) and decreased (P = 0.022), respectively, during the same period. Moreover, ICOS+ Tfh‐like cell counts tended to decrease (P = 0.074). No abnormal increase in cytokine levels was observed. The high expression of NK cells is important in innate immune response against SARS‐CoV‐2. The increase in effector memory CD8+ T‐cell counts, the up‐regulation of inhibitory molecules and the down‐regulation of active molecules on CD4+ T cells and Tfh‐like cells in patients with COVID‐19 would benefit the maintenance of balanced cellular and humoural immune responses, may prevent the development of severe cases and contribute to the recovery of patients with COVID‐19.
Collapse
Affiliation(s)
- Lin Yan
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Bei Cai
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Li
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Min-Jin Wang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Yun-Fei An
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Rong Deng
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Dong-Dong Li
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Li-Chun Wang
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Huan Xu
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Xue-Dan Gao
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Lan-Lan Wang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
37
|
Iqbal MS, Sardar N, Akmal W, Sultan R, Abdullah H, Qindeel M, Dhama K, Bilal M. ROLE OF TOLL-LIKE RECEPTORS IN CORONAVIRUS INFECTION AND IMMUNE RESPONSE. ACTA ACUST UNITED AC 2020. [DOI: 10.18006/2020.8(spl-1-sars-cov-2).s66.s78] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The emergence of a novel coronavirus referred to as SARS-CoV-2 has become a global health apprehension due to rapid transmission tendency, severity, and wide geographical spread. This emergence was started from Wuhan, China in 2019 from the zoonotic source and spread worldwide, infecting almost half of the community on this earth. Many of the receptors are involved in proceeding with this infection in the organism's body. Toll-like receptors (TLRs) play essential and protective functions from a wide range of microbial pathogens. Small setup of TLR adaptor proteins leads to activate nuclear factor kappa B (NF-kB) and interferon-regulatory factor (IRF). Consequently, various advanced inflammatory cytokines, chemokines, and interferon reaction properties can be up-regulated. Similarly, TLR flagging works on autophagy in macrophages. Autophagy is a cell response to starvation that helps to eliminate damaged cytosol organelles and persistent proteins. It is also able to prevent the replication of intracellular pathogens. Several microbes subvert the autophagy pathways to sustain their viability. This review investigates how TLRs can modulate a macrophagic system and analyze the role of natural resistance autophagy.
Collapse
|
38
|
Micronutrients and bioactive compounds in the immunological pathways related to SARS-CoV-2 (adults and elderly). Eur J Nutr 2020; 60:559-579. [PMID: 33084959 PMCID: PMC7576552 DOI: 10.1007/s00394-020-02410-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 10/06/2020] [Indexed: 01/08/2023]
Abstract
The new coronavirus pandemic is affecting the entire world with more than 25 million confirmed cases in August 2020 according to the World Health Organization. It is known that the virus can affect several tissues and can progress to a respiratory failure in severe cases. To prevent the progression to this stage of the disease and minimize all the damage caused by coronavirus (SARS-CoV-2) the immune system must be in its integrity. A healthy nutritional status are fundamental to efficient immunological protection and consequently a good response to SARS-CoV-2. Micronutrients and bioactive compounds perform functions in immune cells that are extremely essential to stop SARS-CoV-2. Their adequate consumption is part of a non-pharmacological intervention to keep the immune system functioning. This review has as main objective to inform how micronutrients and bioactive compounds could act in the essential immunological pathways could stop SARS-CoV-2, focusing on the functions that have already established in the literature and transposing to this scenario.
Collapse
|
39
|
Zhang B, Yue D, Wang Y, Wang F, Wu S, Hou H. The dynamics of immune response in COVID-19 patients with different illness severity. J Med Virol 2020; 93:1070-1077. [PMID: 32910461 DOI: 10.1002/jmv.26504] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 07/30/2020] [Accepted: 07/31/2020] [Indexed: 12/15/2022]
Abstract
This study aimed to analyze the dynamic changes of lymphocyte subsets and specific antibodies in coronavirus disease 2019 (COVID-19) patients with different illness severity. The amounts of lymphocyte subsets and the levels of immunoglobulin M (IgM) and IgG antibody were retrospectively analyzed in 707 COVID-19 cases. The amounts of lymphocyte subsets were significantly decreased with the increased severity of illness and the levels of IgM and IgG were lower in critical cases than severe and moderate cases. In deceased patients, the lymphocytes subsets were significantly lower than recovered patients. However, the relationship between the levels of IgM and IgG and the amounts of lymphocyte subsets were not significantly correlated. During different stages of COVID-19, the total T cell, CD4+ T cell, and CD8+ T cell counts were gradually recovered to the normal levels in severe and critical groups but the changing trend was relatively stable in the moderate group. The production of IgM and IgG antibodies were delayed in critical groups but also could reach the peak levels at one month after illness onset and decreased to background levels. To detect the kinetics of lymphocytes and antibodies has important clinical value in predicting the illness severity and understanding the pathogenesis of COVID-19.
Collapse
Affiliation(s)
- Bo Zhang
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Daoyuan Yue
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yun Wang
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Wang
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shiji Wu
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongyan Hou
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
40
|
Fatone MC. COVID-19: A Great Mime or a Trigger Event of Autoimmune Manifestations? Curr Rheumatol Rev 2020; 17:7-16. [PMID: 33019935 DOI: 10.2174/1573397116666201005122603] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 12/18/2022]
Abstract
Viruses can induce autoimmune diseases, in addition to genetic predisposition and environmental factors. Particularly, coronaviruses are mentioned among the viruses implicated in autoimmunity. Today, the world's greatest threat derives from the pandemic of a new human coronavirus, called "severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the responsible agent of coronavirus disease 2019 (COVID-19). First case of COVID-19 was identified in Wuhan, the capital of Hubei, China, in December 2019 and quickly spread around the world. This review focuses on autoimmune manifestations described during COVID-19, including pro-thrombotic state associated with antiphospholipid antibodies (aPL), acute interstitial pneumonia, macrophage activation syndrome, lymphocytopenia, systemic vasculitis, and autoimmune skin lesions. This offers the opportunity to highlight the pathogenetic mechanisms common to COVID-19 and several autoimmune diseases in order to identify new therapeutic targets. In a supposed preliminary pathogenetic model, SARS-CoV-2 plays a direct role in triggering widespread microthrombosis and microvascular inflammation, because it is able to induce transient aPL, endothelial damage and complement activation at the same time. Hence, endothelium might represent the common pathway in which autoimmunity and infection converge. In addition, autoimmune phenomena in COVID-19 can be explained by regulatory T cells impairment and cytokines cascade.
Collapse
|
41
|
Flanagan KL, Best E, Crawford NW, Giles M, Koirala A, Macartney K, Russell F, Teh BW, Wen SCH. Progress and Pitfalls in the Quest for Effective SARS-CoV-2 (COVID-19) Vaccines. Front Immunol 2020; 11:579250. [PMID: 33123165 PMCID: PMC7566192 DOI: 10.3389/fimmu.2020.579250] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 08/31/2020] [Indexed: 12/15/2022] Open
Abstract
There are currently around 200 SARS-CoV-2 candidate vaccines in preclinical and clinical trials throughout the world. The various candidates employ a range of vaccine strategies including some novel approaches. Currently, the goal is to prove that they are safe and immunogenic in humans (phase 1/2 studies) with several now advancing into phase 2 and 3 trials to demonstrate efficacy and gather comprehensive data on safety. It is highly likely that many vaccines will be shown to stimulate antibody and T cell responses in healthy individuals and have an acceptable safety profile, but the key will be to confirm that they protect against COVID-19. There is much hope that SARS-CoV-2 vaccines will be rolled out to the entire world to contain the pandemic and avert its most damaging impacts. However, in all likelihood this will initially require a targeted approach toward key vulnerable groups. Collaborative efforts are underway to ensure manufacturing can occur at the unprecedented scale and speed required to immunize billions of people. Ensuring deployment also occurs equitably across the globe will be critical. Careful evaluation and ongoing surveillance for safety will be required to address theoretical concerns regarding immune enhancement seen in previous contexts. Herein, we review the current knowledge about the immune response to this novel virus as it pertains to the design of effective and safe SARS-CoV-2 vaccines and the range of novel and established approaches to vaccine development being taken. We provide details of some of the frontrunner vaccines and discuss potential issues including adverse effects, scale-up and delivery.
Collapse
Affiliation(s)
- Katie L. Flanagan
- Department of Infectious Diseases, Launceston General Hospital, Launceston, TAS, Australia
- Faculty of Health Sciences and School of Medicine, University of Tasmania, Launceston, TAS, Australia
- School of Health and Biomedical Science, Royal Melbourne Institute of Technology (RMIT) University, Melbourne, VIC, Australia
- Department of Immunology and Pathology, Monash University, Melbourne, VIC, Australia
| | - Emma Best
- Department of Paediatric Infectious Diseases, Starship Children's Hospital, Auckland, New Zealand
- Department of Paediatrics: Child and Youth Health, University of Auckland, Auckland, New Zealand
| | - Nigel W. Crawford
- Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
- Murdoch Children's Research Institute, Royal Children's Hospital Immunisation Service, Melbourne, VIC, Australia
| | - Michelle Giles
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC, Australia
- Infectious Diseases Unit, Alfred Health, Melbourne, VIC, Australia
| | - Archana Koirala
- Department of Child and Adolescent Health, University of Sydney, Sydney, NSW, Australia
- National Centre for Immunisation Research & Surveillance (NCIRS), Sydney, NSW, Australia
- Department of Infectious Diseases, Nepean Hospital, Sydney, NSW, Australia
| | - Kristine Macartney
- Department of Child and Adolescent Health, University of Sydney, Sydney, NSW, Australia
- National Centre for Immunisation Research & Surveillance (NCIRS), Sydney, NSW, Australia
| | - Fiona Russell
- Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
- Murdoch Children's Research Institute, Royal Children's Hospital Immunisation Service, Melbourne, VIC, Australia
| | - Benjamin W. Teh
- Department of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Sophie CH Wen
- Infection Management Prevention Services, Queensland Children's Hospital, South Brisbane, QLD, Australia
- University of Queensland Centre for Clinical Research (UQCCR), University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
42
|
Tang X, Luo Y, Song Y, Fan H, Dong S, Liu P, Chen Y. Neurological manifestations in COVID-19 and its possible mechanism. Aging (Albany NY) 2020; 12:18754-18764. [PMID: 32986016 PMCID: PMC7585068 DOI: 10.18632/aging.103732] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 07/07/2020] [Indexed: 02/06/2023]
Abstract
In December 2019, the first cases of the acute respiratory illness now known as Corona Virus Disease 2019 (COVID-19) occurred in Wuhan, Hubei Province, China. The main clinical manifestations of COVID-19 are a fever, dry cough and general weakness, although in some patients, a headache, tight chest, diarrhea, etc. are the first clinical manifestations. Neurological practice is involved in all aspects of medicine, from primary care for patients with migraines to consultations with patients in the intensive care unit. Few disorders spare the nervous system, and newly emerging infections are no exception. As neurologists, we are concerned about the effects of SARS-CoV-2 infections on the nervous system. Multiple neuropathy, rhabdomyolysis, cerebrovascular disease, central nervous system infections and other common neurological diseases require attention during this outbreak.
Collapse
Affiliation(s)
- Xiaojia Tang
- Department of Neurology, Dalian Medical University, Dalian 116000, Liaoning, China
- Department of Neurology, Clinical Medical College, Yangzhou University, Yangzhou 225001, Jiangsu, China
| | - Yuhan Luo
- Department of Neurology, Dalian Medical University, Dalian 116000, Liaoning, China
- Department of Neurology, Clinical Medical College, Yangzhou University, Yangzhou 225001, Jiangsu, China
| | - Yuxia Song
- Department of Neurology, Dalian Medical University, Dalian 116000, Liaoning, China
- Department of Neurology, Clinical Medical College, Yangzhou University, Yangzhou 225001, Jiangsu, China
| | - Hongyang Fan
- Department of Neurology, Clinical Medical College, Yangzhou University, Yangzhou 225001, Jiangsu, China
| | - Sisi Dong
- The Second Xiangya Hospital, Central South University, Changsha 410000, Hunan Province, China
| | - Peipei Liu
- Department of Neurology, Clinical Medical College, Yangzhou University, Yangzhou 225001, Jiangsu, China
| | - Yingzhu Chen
- Department of Neurology, Clinical Medical College, Yangzhou University, Yangzhou 225001, Jiangsu, China
| |
Collapse
|
43
|
Tiruneh FT. Clinical Profile of Covid-19 in Children, Review of Existing Literatures. Pediatric Health Med Ther 2020; 11:385-392. [PMID: 33061744 PMCID: PMC7518768 DOI: 10.2147/phmt.s266063] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 08/25/2020] [Indexed: 12/14/2022] Open
Abstract
WHO has confirmed that COVID-19 disease is a pandemic on March 11, 2020. The disease is caused by a new virus called SARS-CoV-2. Since, the pandemic was announced around 18,854,287 cases and 708,639 deaths were reported as of August 7, 2020. This review aimed to explore the etiology, pathogenesis, manifestation and complication. The phylogenetic study showed that SARS-CoV-2 is a single-stranded RNA virus. The virus is very contagious and has rapidly spread globally. Its unique structure called S glycoproteins help the virus enters in and cause infection in the body. Children's body reacts against SARS-CoV-2 infections through the involvement of innate and adaptive immune system. The clinical manifestation in children is not specific and not determined. However, fever and cough have mostly been profiled. Though the severe condition is rarely reported in children compared with adults, life-threatening complications, and death associated with COVID-19 disease have been documented. Underlying chronic pulmonary disease, cardiovascular disease, immunosuppression, and obesity significantly contribute to the complications.
Collapse
Affiliation(s)
- Firew Tiyare Tiruneh
- Department of Midwifery, College of Health Science, Mizan Tepi University, Mizan Teferi, Ethiopia
| |
Collapse
|
44
|
Gao M, Liu Y, Guo M, Wang Q, Wang Y, Fan J, Shen Y, Hou J, Wan Y, Zhu Z. Regulatory CD4 + and CD8 + T cells are negatively correlated with CD4 + /CD8 + T cell ratios in patients acutely infected with SARS-CoV-2. J Leukoc Biol 2020; 109:91-97. [PMID: 32930458 DOI: 10.1002/jlb.5cova0720-421rr] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/24/2020] [Accepted: 08/25/2020] [Indexed: 12/21/2022] Open
Abstract
Regulatory T cell can protect against severe forms of coronaviral infections attributable to host inflammatory responses. But its role in the pathogenesis of COVID-19 is still unclear. In this study, frequencies of total and multiple subsets of lymphocytes in peripheral blood of COVID-19 patients and discharged individuals were analyzed using a multicolor flow cytometry assay. Plasma concentration of IL-10 was measured using a microsphere-based immunoassay kit. Comparing to healthy controls, the frequencies of total lymphocytes and T cells decreased significantly in both acutely infected COVID-19 patients and discharged individuals. The frequencies of total lymphocytes correlated negatively with the frequencies of CD3- CD56+ NK cells. The frequencies of regulatory CD8+ CD25+ T cells correlated with CD4+ /CD8+ T cell ratios positively, while the frequencies of regulatory CD4+ CD25+ CD127- T cells correlated negatively with CD4+ /CD8+ T cell ratios. Ratios of CD4+ /CD8+ T cells increased significantly in patients beyond age of 45 years. And accordingly, the frequencies of regulatory CD8+ CD25+ T cells were also found significantly increased in these patients. Collectively, the results suggest that regulatory CD4+ and CD8+ T cells may play distinct roles in the pathogenesis of COVID-19. Moreover, the data indicate that NK cells might contribute to the COVID-19 associated lymphopenia.
Collapse
Affiliation(s)
- Menglu Gao
- Department of Laboratory Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Yili Liu
- Department of Laboratory Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Mingquan Guo
- Department of Laboratory Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Qianying Wang
- Department of Laboratory Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Yan Wang
- Department of Laboratory Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Jian Fan
- Department of Laboratory Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Yinzhong Shen
- Department of Laboratory Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Junjie Hou
- Shanghai Runda Rongjia Biotechnology Co., Ltd, Shanghai, China
| | - Yanmin Wan
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China.,Department of Radiology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Zhaoqin Zhu
- Department of Laboratory Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| |
Collapse
|
45
|
Liu D, Lan L, Luo D, Zhao B, Wei G, He Y, Zhang R, Liu Y. Lymphocyte subsets with the lowest decline at baseline and the slow lowest rise during recovery in COVID-19 critical illness patients with diabetes mellitus. Diabetes Res Clin Pract 2020; 167:108341. [PMID: 32707212 PMCID: PMC7373679 DOI: 10.1016/j.diabres.2020.108341] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/06/2020] [Accepted: 07/02/2020] [Indexed: 12/25/2022]
Abstract
BACKGROUND Host dysregulation of immune response was highly involved in the pathological process of Coronavirus disease 2019 (COVID-19), especially COVID-19 severe cases with DM. AIM In this study we aimed at the dynamic change of peripheral lymphocyte and subsets during COVID-19 covery. METHODS The peripheral lymphocyte and subsets of 95 confirmed cases with COVID-19 from baseline to four weeks were compared between critical illness and non-critical illness cases with or without DM. RESULTS The dynamic characteristics of lymphocyte and subsets in COVID-19 patients was that it reduced significantly at one week, rapidly elevated to the peak at two weeks after onset, then gradually declined during recovery. The COVID-19 critical illness patients with DM had the lowest decline at one week and the slow lowest rise at two weeks after onset, while COVID-19 non-critical illness patients with DM had the rapid highest rise at two weeks after onset, both of them had similar lymphocyte and subsets at five weeks after onset and lower than those patients without DM. CONCLUSIONS These findings provide a reference for clinicians that for COVID-19 patients with DM and the lowest decline of lymphocyte and subsets, immunomodulatory therapy as soon as possible might avoid or slow down disease progression; moreover for COVID-19 critical illness patients with or without DM and non-critical illness patients with DM, continuous immunomodulatory therapy in later stages of disease might speed up virus clearance, shorten hospital stay, improve disease prognosis in COVID-19 critical illness patients with DM.
Collapse
Affiliation(s)
- Dafeng Liu
- Department of Internal Medicine, The Public and Health Clinic Centre of Chengdu, Chengdu, China.
| | - Lijuan Lan
- Department of Internal Medicine, The Public and Health Clinic Centre of Chengdu, Chengdu, China
| | - Dongxia Luo
- Department of Science and Education, The Public and Health Clinic Centre of Chengdu, Chengdu, China
| | - Bennan Zhao
- Department of Internal Medicine, The Public and Health Clinic Centre of Chengdu, Chengdu, China
| | - Guo Wei
- Department of Surgical Second Ward, The Public and Health Clinic Centre of Chengdu, Chengdu, China
| | - Yinsheng He
- Department of Internal Medicine, The Public and Health Clinic Centre of Chengdu, Chengdu, China
| | - Renqing Zhang
- Department of Vice Headmaster's Office, The Public and Health Clinic Centre of Chengdu, Chengdu, China.
| | - Yaling Liu
- Department of Internal Medicine, The Public and Health Clinic Centre of Chengdu, Chengdu, China.
| |
Collapse
|
46
|
Huang M, Wang Y, Ye J, Da H, Fang S, Chen L. Dynamic changes of T-lymphocyte subsets and the correlations with 89 patients with coronavirus disease 2019 (COVID-19). ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1145. [PMID: 33240994 PMCID: PMC7576080 DOI: 10.21037/atm-20-5479] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Background In December 2019, an outbreak of coronavirus disease 2019 (COVID-19), caused by a novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), occurred in Wuhan City, Hubei Province, China. The coronavirus has spread throughout the world, posing a severe threat to human health. By using flow cytometry, here we observed the dynamic changes of peripheral blood T lymphocyte subsets in COVID-19 patients, with an attempt to explore their roles in the pathogenesis of COVID-19 and their impacts on prognosis. Methods Eighty-nine COVID-19 patients were divided into a moderate group (n=70) and the severe/critical group (n=19) according to the disease severity. Furthermore, the severe/critical patients were divided into the improved group (n=14) and unimproved group (n=5) according to the outcomes. The absolute peripheral blood lymphocytes counts and subsets, including CD45+, CD3+, CD4+, and CD8+, in the acute phase, and flow cytometry measured the recovery phase for all patients. Then, the results were compared with those in the normal control group. Results The absolute counts of lymphocytes, T lymphocytes, and their subsets decreased during the acute phase in COVID-19 patients, especially in the severe/critical group. The T-lymphocyte count reached the lowest point on the 14th day in the severe/critical group. It rose with fluctuations to the normal level in the improved group as the immune function recovered; in the unimproved group, however, the T-lymphocyte count remained at a low level or even continued to decrease. The percentages of CD4+ and CD8+ T lymphocytes showed no visible change in the improved group; however, the percentage of CD8+ T cells dropped in the unimproved group, resulting in higher CD4+/CD8+ ratio. Conclusions T lymphocytes count, and their subsets can be used for monitoring the immune functions and predicting the prognosis of COVID-19 patients.
Collapse
Affiliation(s)
- Mingxiang Huang
- Fuzhou Pulmonary Hospital & Fujian Medical University Clinical Teaching Hospital, Fuzhou, China
| | - Yao Wang
- Fuzhou Pulmonary Hospital & Fujian Medical University Clinical Teaching Hospital, Fuzhou, China
| | - Jing Ye
- Fuzhou Pulmonary Hospital & Fujian Medical University Clinical Teaching Hospital, Fuzhou, China
| | - Hongqiang Da
- Fuzhou Pulmonary Hospital & Fujian Medical University Clinical Teaching Hospital, Fuzhou, China
| | - Sufang Fang
- Fuzhou Pulmonary Hospital & Fujian Medical University Clinical Teaching Hospital, Fuzhou, China
| | - Lizhou Chen
- Fuzhou Pulmonary Hospital & Fujian Medical University Clinical Teaching Hospital, Fuzhou, China
| |
Collapse
|
47
|
Yeleswaram S, Smith P, Burn T, Covington M, Juvekar A, Li Y, Squier P, Langmuir P. Inhibition of cytokine signaling by ruxolitinib and implications for COVID-19 treatment. Clin Immunol 2020; 218:108517. [PMID: 32585295 PMCID: PMC7308779 DOI: 10.1016/j.clim.2020.108517] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/16/2020] [Accepted: 06/17/2020] [Indexed: 01/08/2023]
Abstract
Approximately 15% of patients with coronavirus disease 2019 (COVID-19) experience severe disease, and 5% progress to critical stage that can result in rapid death. No vaccines or antiviral treatments have yet proven effective against COVID-19. Patients with severe COVID-19 experience elevated plasma levels of pro-inflammatory cytokines, which can result in cytokine storm, followed by massive immune cell infiltration into the lungs leading to alveolar damage, decreased lung function, and rapid progression to death. As many of the elevated cytokines signal through Janus kinase (JAK)1/JAK2, inhibition of these pathways with ruxolitinib has the potential to mitigate the COVID-19-associated cytokine storm and reduce mortality. This is supported by preclinical and clinical data from other diseases with hyperinflammatory states, where ruxolitinib has been shown to reduce cytokine levels and improve outcomes. The urgent need for treatments for patients with severe disease support expedited investigation of ruxolitinib for patients with COVID-19.
Collapse
Affiliation(s)
- Swamy Yeleswaram
- Incyte Research Institute, Incyte Corporation, 1801 Augustine Road, Wilmington, DE 19803, USA.
| | - Paul Smith
- Incyte Research Institute, Incyte Corporation, 1801 Augustine Road, Wilmington, DE 19803, USA.
| | - Timothy Burn
- Incyte Research Institute, Incyte Corporation, 1801 Augustine Road, Wilmington, DE 19803, USA.
| | - Maryanne Covington
- Incyte Research Institute, Incyte Corporation, 1801 Augustine Road, Wilmington, DE 19803, USA.
| | - Ashish Juvekar
- Incyte Research Institute, Incyte Corporation, 1801 Augustine Road, Wilmington, DE 19803, USA.
| | - Yanlong Li
- Incyte Research Institute, Incyte Corporation, 1801 Augustine Road, Wilmington, DE 19803, USA.
| | - Peg Squier
- Incyte Corporation, 1801 Augustine Road, Wilmington, DE 19803, USA.
| | - Peter Langmuir
- Incyte Corporation, 1801 Augustine Road, Wilmington, DE 19803, USA.
| |
Collapse
|
48
|
Oladele JO, Ajayi EI, Oyeleke OM, Oladele OT, Olowookere BD, Adeniyi BM, Oyewole OI, Oladiji AT. A systematic review on COVID-19 pandemic with special emphasis on curative potentials of Nigeria based medicinal plants. Heliyon 2020; 6:e04897. [PMID: 32929412 PMCID: PMC7480258 DOI: 10.1016/j.heliyon.2020.e04897] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/16/2020] [Accepted: 09/07/2020] [Indexed: 01/08/2023] Open
Abstract
Despite the frightening mortality rate associated with COVID-19, there is no known approved drug to effectively combat the pandemic. COVID-19 clinical manifestations include fever, fatigue, cough, shortness of breath, and other complications. At present, there is no known effective treatment or vaccine that can mitigate/inhibit SARS-CoV-2. Available clinical intervention for COVID-19 is only palliative and limited to support. Thus, there is an exigent need for effective and non-invasive treatment. This article evaluates the possible mechanism of actions of SARS-CoV-2 and present Nigeria based medicinal plants which have pharmacological and biological activities that can mitigate the hallmarks of the pathogenesis of COVID-19. SARS-CoV-2 mode of actions includes hyper-inflammation characterized by a severe and fatal hyper-cytokinaemia with multi-organ failure; immunosuppression; reduction of angiotensin-converting enzyme 2 (ACE2) to enhance pulmonary vascular permeability causing damage to the alveoli; and further activated by open reading frame (ORF)3a, ORF3b, and ORF7a via c-Jun N- terminal kinase (JNK) pathway which induces lung damage. These mechanisms of action of SARS-CoV-2 can be mitigated by a combination therapy of medicinal herbs based on their pharmacological activities. Since the clinical manifestations of COVID-19 are multifactorial with co-morbidities, we strongly recommend the use of combined therapy such that two or more herbs with specific therapeutic actions are administered to combat the mediators of the disease.
Collapse
Affiliation(s)
- Johnson O. Oladele
- Biochemistry Unit, Department of Chemical Sciences, Kings University, Ode-Omu, Osun State, Nigeria
| | - Ebenezer I. Ajayi
- Membrane Biophysics and Nanotechnology Laboratories, Mercedes and Martin Ferreyra Institute of Medicine, IMMF-INIMEC-CONICET-UNC, Cordoba, Argentina
- Diabesity Complications & Other Neglected Infectious Diseases Group, Department of Biochemistry, Osun State University, Osogbo, Nigeria
| | - Oyedotun M. Oyeleke
- Biochemistry Unit, Department of Chemical Sciences, Kings University, Ode-Omu, Osun State, Nigeria
| | - Oluwaseun T. Oladele
- Phytomedicine and Molecular Toxicology Research Laboratories, Department of Biochemistry, Osun State University, Osogbo, Nigeria
| | - Boyede D. Olowookere
- Biochemistry Unit, Department of Chemical Sciences, Kings University, Ode-Omu, Osun State, Nigeria
| | - Boluwaji M. Adeniyi
- Centre of Excellence for Food Technology and Research -Benue State University, Nigerian Stored Products Research Institute, Ibadan, Nigeria
| | - Olu I. Oyewole
- Phytomedicine and Molecular Toxicology Research Laboratories, Department of Biochemistry, Osun State University, Osogbo, Nigeria
| | | |
Collapse
|
49
|
Liu G, Zhang S, Hu H, Liu T, Huang J. The role of neutrophil-lymphocyte ratio and lymphocyte-monocyte ratio in the prognosis of type 2 diabetics with COVID-19. Scott Med J 2020; 65:154-160. [PMID: 32865157 DOI: 10.1177/0036933020953516] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVES To assess the prognostic value of neutrophil-lymphocyte ratio, lymphocyte-monocyte ratio and red cell distribution width in type 2 diabetics with COVID-19. METHODS We collected the data of type 2 diabetics with COVID-19 treated in our hospital from January 28 to March 15, 2020 and performed a retrospective analysis. Using severity, duration of hospital stay, and the time required for nucleic acid results became negative as prognostic indicators, we explored the relationship between these inflammation-based markers and prognosis of type 2 diabetics with COVID-19. RESULTS A total of 134 type 2 diabetics with COVID-19 were selected for this study. Correlation analysis showed that NLR, LMR and RDW were correlated with prognosis (P < 0.05). In multivariate regression analysis after controlling for the relevant confounding factors, COVID-19 diabetes patients with higher NLR had heavier severity, longer duration of hospital stay, more time required for nucleic acid results became negative, and heavier hospital expenses (P < 0.05). ROC curve result displayed that higher NLR predicted all prognostic indicators with statistical significance, and lower LMR predicted severe and extremely severe with statistical significance (P < 0.05). CONCLUSIONS NLR is a more powerful and practical marker for predicting the prognosis of type 2 diabetic COVID-19 patients that is simple and fast.
Collapse
Affiliation(s)
- Gaoli Liu
- Attending Physician, Department of Thoracic surgery, Renmin Hospital of Wuhan University, PR China
| | - Shaowen Zhang
- Attending Physician, Department of Thoracic surgery, Renmin Hospital of Wuhan University, PR China
| | - Haifeng Hu
- Attending Physician, Department of Thoracic surgery, Renmin Hospital of Wuhan University, PR China
| | - TingTing Liu
- Attending Physician, Department of Cardiac Function, Renmin Hospital of Wuhan University, PR China
| | - Jie Huang
- Chief Physician, Department of Thoracic surgery, Renmin Hospital of Wuhan University, PR China
| |
Collapse
|
50
|
Gadi N, Wu SC, Spihlman AP, Moulton VR. What's Sex Got to Do With COVID-19? Gender-Based Differences in the Host Immune Response to Coronaviruses. Front Immunol 2020; 11:2147. [PMID: 32983176 PMCID: PMC7485092 DOI: 10.3389/fimmu.2020.02147] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 08/07/2020] [Indexed: 01/08/2023] Open
Abstract
The novel severe acute respiratory syndrome coronavirus 2, the cause of the coronavirus disease 2019 (COVID-19) pandemic, has ravaged the world, with over 22 million total cases and over 770,000 deaths worldwide as of August 18, 2020. While the elderly are most severely affected, implicating an age bias, a striking factor in the demographics of this deadly disease is the gender bias, with higher numbers of cases, greater disease severity, and higher death rates among men than women across the lifespan. While pre-existing comorbidities and social, behavioral, and lifestyle factors contribute to this bias, biological factors underlying the host immune response may be crucial contributors. Women mount stronger immune responses to infections and vaccinations and outlive men. Sex-based biological factors underlying the immune response are therefore important determinants of susceptibility to infections, disease outcomes, and mortality. Despite this, gender is a profoundly understudied and often overlooked variable in research related to the immune response and infectious diseases, and it is largely ignored in drug and vaccine clinical trials. Understanding these factors will not only help better understand the pathogenesis of COVID-19, but it will also guide the design of effective therapies and vaccine strategies for gender-based personalized medicine. This review focuses on sex-based differences in genes, sex hormones, and the microbiome underlying the host immune response and their relevance to infections with a focus on coronaviruses.
Collapse
Affiliation(s)
- Nirupa Gadi
- Division of Rheumatology and Clinical Immunology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- School of Medicine, Boston University, Boston, MA, United States
| | - Samantha C. Wu
- Division of Rheumatology and Clinical Immunology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- School of Medicine, Boston University, Boston, MA, United States
| | - Allison P. Spihlman
- Division of Rheumatology and Clinical Immunology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- School of Medicine, Boston University, Boston, MA, United States
| | - Vaishali R. Moulton
- Division of Rheumatology and Clinical Immunology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| |
Collapse
|