1
|
Ding J, Liu XC, Hong J, Zhang QM, Xu XW, Liu YQ, Yu CQ. Knowledge about, attitudes toward and acceptance and predictors of intention to receive the mpox vaccine among cancer patients in China: A cross-sectional survey. Hum Vaccin Immunother 2024; 20:2337157. [PMID: 38644633 PMCID: PMC11037286 DOI: 10.1080/21645515.2024.2337157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 03/27/2024] [Indexed: 04/23/2024] Open
Abstract
This study aimed to investigate the knowledge about, attitudes toward, and acceptance and predictors of receiving the mpox vaccine among Chinese cancer patients. Patients were selected using a convenience sampling method. A web-based self-report questionnaire was developed to assess cancer patients' knowledge, attitudes, and acceptance regarding the mpox vaccine. Multivariate logistic regression analysis was used to determine predictors of acceptance of the mpox vaccine. A total of 805 cancer patients were included in this study, with a vaccine hesitancy rate of 27.08%. Approximately 66% of the patients' information about mpox and the vaccine came from the mass media, and there was a significant bias in the hesitant group's knowledge about mpox and the vaccine. Multivariable logistic regression analysis suggested that retirement; chemotherapy; the belief that the mpox vaccine could prevent disease, that vaccination should be compulsory when appropriate and that the mpox vaccine prevents mpox and reduces complications; the willingness to pay for the mpox vaccine; the willingness to recommend that friends and family receive the mpox vaccine; and the belief that the mpox vaccine should be distributed fairly and equitably were factors that promoted vaccination. The belief that mpox worsens tumor prognosis was a driving factor for vaccine hesitancy. This study investigated the knowledge of cancer patients about mpox and the vaccine, evaluated the acceptance and hesitancy rates of the mpox vaccine and examined the predictors of vaccination intention. We suggest that the government scientifically promote the vaccine and develop policies such as free vaccination and personalized vaccination to increase the awareness and acceptance rate of the mpox vaccine.
Collapse
Affiliation(s)
- Jie Ding
- School of Traditional Chinese Medicine, Naval Medical University, Shanghai, China
- TCM gynecology department, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Xing-Chen Liu
- Pathology department, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Jing Hong
- School of Traditional Chinese Medicine, Naval Medical University, Shanghai, China
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China
- Department of Integrative Oncology, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Qing-Mei Zhang
- Anesthesiology department, Chaohu Hospital, Anhui Medical University, Hefei, Anhui Province, China
| | - Xiao-Wan Xu
- Department of Integrative Oncology, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Yi-Qun Liu
- TCM gynecology department, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Chao-Qin Yu
- School of Traditional Chinese Medicine, Naval Medical University, Shanghai, China
- TCM gynecology department, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| |
Collapse
|
2
|
Croasdale CR, Weinlander E, Boyce TG. Mpox Keratitis: A Case Report and Review. Cornea 2024; 43:1319-1331. [PMID: 38967497 PMCID: PMC11365600 DOI: 10.1097/ico.0000000000003614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 07/06/2024]
Abstract
PURPOSE Mpox is a rare infectious disease. Lack of knowledge among eye care professionals regarding mpox keratitis greatly reduces the likelihood of diagnosis and effective management. This report and review seek to increase the knowledge of mpox keratitis among eye care professionals. METHODS We report a patient with mpox keratitis who underwent successful penetrating keratoplasty, with 20 years of follow-up. A systematic literature search and review of cases of mpox keratitis from 1970 to 2024 was performed. RESULTS A total of 24 articles and 2 abstracts reporting 35 cases of mpox keratitis were identified. A frequency of 0.5% to 1.0% may be the lower range of mpox keratitis among symptomatic patients with a confirmed mpox diagnosis. Mpox keratitis occurred with and without systemic mpox. Initial misdiagnoses were common (40%). Polymerase chain reaction results aided clinical diagnosis. Corneal disease ranged from mild epitheliopathy to fulminant ulcerative keratitis. Outcomes ranged from 20/20 acuity to no light perception. In the absence of fulminant systemic disease, tecovirimat was associated with clinical improvement of mpox keratitis in almost all cases. Our case is the only known report of successful penetrating keratoplasty for mpox keratitis and the only case whereby monkeypox virus was cultured from the corneal surface. CONCLUSIONS Mpox keratitis is rare but can result in severe vision loss and blindness. Systemic tecovirimat seems to be effective in treating mpox keratitis, although the low frequency of keratitis precludes clinical trials. Topical steroids may extend virus survival in the cornea. Polymerase chain reaction may help confirm mpox corneal involvement.
Collapse
Affiliation(s)
| | - Eric Weinlander
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI; and
| | - Thomas G. Boyce
- Pediatric Infectious Diseases, Marshfield Clinic, Marshfield, WI
| |
Collapse
|
3
|
Chamari K, Saad HB, Dhahbi W, Washif JA, El Omri A, Zmijewski P, Dergaa I. Mpox in sports: A comprehensive framework for anticipatory planning and risk mitigation in football based on lessons from COVID-19. Biol Sport 2024; 41:317-335. [PMID: 39416489 PMCID: PMC11475015 DOI: 10.5114/biolsport.2024.144014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 09/22/2024] [Accepted: 09/30/2024] [Indexed: 10/19/2024] Open
Abstract
The World Health Organization's declaration of mpox (formerly known as monkeypox) as a public health emergency of international concern (PHEIC) in July 2022, followed by its resurgence in 2024, has sparked concerns about its potential impact on sports, especially contact sports such as football. Although mpox is not a pandemic (as of late September 2024), the coronavirus disease 2019 (COVID-19) experience offers valuable lessons for proactive planning in sports. Our conceptual framework has been designed to draw insightful lessons from the COVID-19 pandemic to assist sports organizations in planning for and preventing similar situations. We aimed to draw lessons from COVID-19 to help sports organizations enhance practical preparedness through effective planning and mitigation strategies. Accordingly, we sought to assess the potential impact of mpox on sports, with a focus on football (soccer), and to develop strategies for prevention, management, and preparedness based on epidemiological insights and lessons from COVID-19 pandemic experience. Here we review mpox's pathophysiology and possibility of transmission in sports settings and discuss tailored strategies, including risk assessments, testing protocols, hygiene measures, and return-to-play policies. This review highlights key differences between mpox and COVID-19 in transmission, incubation, and management, emphasizing the need for customized prevention and control measures in sports. We propose innovative risk assessment methods using global positioning system tracking and machine learning for contact analysis, alongside tailored testing and hygiene protocols. We emphasize the importance of proactive planning, noting improved preparedness in the sports community compared to the early days of COVID-19. In conclusion, our proposed framework provides sports organizations with practical tools to manage potential risks associated with mpox, ensuring the continuity of activities while prioritizing public health.
Collapse
Affiliation(s)
- Karim Chamari
- Research & Education, Naufar, Wellness and Recovery Center, Doha, Qatar
| | - Helmi Ben Saad
- Heart Failure Research Laboratory (LR12SP09), Farhat Hached Hospital, Faculty of Medicine of Sousse, University of Sousse, Tunisia
| | - Wissem Dhahbi
- High Institute of Sport and Physical Education of El Kef, University of Jendouba, El Kef, Tunisia
- Qatar Police Academy, Police College, Training Department, Doha, Qatar
| | - Jad Adrian Washif
- Sports Performance Division, Institut Sukan Negara Malaysia (National Sports Institute of Malaysia), Kuala Lumpur, Malaysia
| | - Abdelfatteh El Omri
- Surgical Research Section, Department of Surgery, Hamad Medical Corporation, Doha 3050, Qatar
| | - Piotr Zmijewski
- Institute of Sport - National Research Institute, Warsaw, Poland
| | - Ismail Dergaa
- Higher Institute of Sports and Physical Education of Ksar Said, University of Manouba, Manouba, Tunisia
| |
Collapse
|
4
|
Nguyen M, Doan T, Seitzman GD. Ocular manifestations of mpox. Curr Opin Ophthalmol 2024; 35:423-429. [PMID: 38847744 PMCID: PMC11309912 DOI: 10.1097/icu.0000000000001066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
PURPOSE OF REVIEW To highlight the clinical features of mpox with an emphasis on ocular manifestations and to review treatment options for this re-emerging infectious disease. RECENT FINDINGS Ocular involvement of mpox varies by clade. The most recent 2022 outbreak appears to be associated with fewer conjunctivitis cases compared to previous outbreaks. However, the ocular findings occurring during this newly emerging clade can be visually threatening and include cases of keratitis, rapidly progressing scleritis, and necrotizing periorbital rashes. SUMMARY Ocular mpox is an important clinical feature of systemic mpox virus (MPXV) infection. Heightened clinical suspicion allows for a timely diagnosis and the initiation of antiviral treatment, when appropriate. Randomized clinical trials for mpox systemic and ocular treatment efficacy are lacking. Prior clinical experience with smallpox and in-vitro mpox data support the use of systemic antivirals such as tecovirimat, cidofovir, brincidofovir and topical use of trifluridine in ocular mpox management, though treatment-resistant infection can occur and portend a poor prognosis.
Collapse
Affiliation(s)
- Minh Nguyen
- Francis I. Proctor Foundation, Department of Ophthalmology, University of California, San Francisco, California, USA
- Department of Ophthalmology, University of California, San Francisco, California, USA
| | - Thuy Doan
- Francis I. Proctor Foundation, Department of Ophthalmology, University of California, San Francisco, California, USA
- Department of Ophthalmology, University of California, San Francisco, California, USA
| | - Gerami D. Seitzman
- Francis I. Proctor Foundation, Department of Ophthalmology, University of California, San Francisco, California, USA
- Department of Ophthalmology, University of California, San Francisco, California, USA
| |
Collapse
|
5
|
Chakravarty N, Hemani D, Paravastu R, Ahmad Z, Palani SN, Arumugaswami V, Kumar A. Mpox Virus and its ocular surface manifestations. Ocul Surf 2024; 34:108-121. [PMID: 38972544 DOI: 10.1016/j.jtos.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/28/2024] [Accepted: 07/04/2024] [Indexed: 07/09/2024]
Abstract
The Mpox virus (MPXV) is the causative agent of human Mpox disease - a debilitating rash illness similar to smallpox. Although Clade I MPXV has remained endemic to West and Central Africa, Clade II MPXV has been responsible for many outbreaks worldwide. The most recent outbreak in 2022 resulted from the rapid spread of a new clade of MPXV, classified into Clade IIb - a distinct lineage from the previously circulating viral strains. The rapid spread and increased severity of Mpox disease by the Clade IIb strain have raised the serious public health imperative of better understanding the host and viral determinants during MPXV infection. In addition to typical skin rashes, including in the periorbital area, MPXV causes moderate to severe ophthalmic manifestations - most commonly, ocular surface complications (e.g., keratitis, conjunctivitis, blepharitis). While ocular manifestations of Clade I Mpox within the Congo basin have been well-reported, global incidence trends of ocular Mpox cases by Clade IIb are still emerging. Given the demonstrated ability of all MPXV strains to auto-inoculate ocular tissue, alongside the enhanced transmissibility of the Clade IIb virus, there is an urgent need to elucidate the mechanisms by which MPXV causes ocular anomalies. In this review, we discuss the viral and genomic structures of MPXV, the epidemiology, and pathology of systemic and ocular Mpox, as well as potential prophylactic and therapeutic interventions.
Collapse
Affiliation(s)
- Nikhil Chakravarty
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA; School of Medicine, California University of Science and Medicine, Colton, CA, USA
| | - Darshi Hemani
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University, Detroit, MI, USA
| | - Ramya Paravastu
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Zeeshan Ahmad
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University, Detroit, MI, USA
| | - Sankara Naynar Palani
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Vaithilingaraja Arumugaswami
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, USA; California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA, USA.
| | - Ashok Kumar
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University, Detroit, MI, USA.
| |
Collapse
|
6
|
Sun J, Yuan B, Sun Z, Zhu J, Deng Y, Gong Y, Chen Y. MpoxNet: dual-branch deep residual squeeze and excitation monkeypox classification network with attention mechanism. Front Cell Infect Microbiol 2024; 14:1397316. [PMID: 38912211 PMCID: PMC11190078 DOI: 10.3389/fcimb.2024.1397316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 05/08/2024] [Indexed: 06/25/2024] Open
Abstract
While the world struggles to recover from the devastation wrought by the widespread spread of COVID-19, monkeypox virus has emerged as a new global pandemic threat. In this paper, a high precision and lightweight classification network MpoxNet based on ConvNext is proposed to meet the need of fast and safe detection of monkeypox classification. In this method, a two-branch depth-separable convolution residual Squeeze and Excitation module is designed. This design aims to extract more feature information with two branches, and greatly reduces the number of parameters in the model by using depth-separable convolution. In addition, our method introduces a convolutional attention module to enhance the extraction of key features within the receptive field. The experimental results show that MpoxNet has achieved remarkable results in monkeypox disease classification, the accuracy rate is 95.28%, the precision rate is 96.40%, the recall rate is 93.00%, and the F1-Score is 95.80%. This is significantly better than the current mainstream classification model. It is worth noting that the FLOPS and the number of parameters of MpoxNet are only 30.68% and 31.87% of those of ConvNext-Tiny, indicating that the model has a small computational burden and model complexity while efficient performance.
Collapse
Affiliation(s)
- Jingbo Sun
- School of Electronic Information, Xijing University, Xi’an, China
- Shaanxi Key Laboratory of Integrated and Intelligent Navigation, The 20th Research Institute of China Electronics Technology Group Corporation, Xi’an, China
- Xi’an Key Laboratory of High Precision Industrial Intelligent Vision Measurement Technology, Xijing University, Xi’an, China
| | - Baoxi Yuan
- School of Electronic Information, Xijing University, Xi’an, China
- Shaanxi Key Laboratory of Integrated and Intelligent Navigation, The 20th Research Institute of China Electronics Technology Group Corporation, Xi’an, China
- Xi’an Key Laboratory of High Precision Industrial Intelligent Vision Measurement Technology, Xijing University, Xi’an, China
| | - Zhaocheng Sun
- School of Electronic Information, Xijing University, Xi’an, China
| | - Jiajun Zhu
- School of Electronic Information, Xijing University, Xi’an, China
| | - Yuxin Deng
- School of Electronic Information, Xijing University, Xi’an, China
| | - Yi Gong
- School of Electronic Information, Xijing University, Xi’an, China
| | - Yuhe Chen
- School of Electronic Information, Xijing University, Xi’an, China
| |
Collapse
|
7
|
Domínguez García L, Gutierrez-Arroyo A, Miguel-Buckley R, Martin Ucero A, Cantizani J, Boto-de-Los-Bueis A. Persistent and Severe Mpox Keratitis Despite Systemic and Topical Treatment. Cornea 2024; 43:777-783. [PMID: 38456834 DOI: 10.1097/ico.0000000000003485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 12/12/2023] [Indexed: 03/09/2024]
Abstract
PURPOSE The purpose of this study was to report a case of peripheral ulcerative keratitis in a patient diagnosed with corneal polymerase chain reaction (PCR) and a positive mpox culture. METHODS This is a case report. RESULTS An immunocompetent 54-year-old man was diagnosed with conjunctivitis in his left eye 15 days after being diagnosed with mucocutaneous monkeypox. He received treatment with dexamethasone 0.1% and tobramycin 0.3% eye drops for 2 weeks. Two weeks after discontinuing this treatment, he developed peripheral ulcerative keratitis and a paracentral epithelial defect. Mpox keratitis was diagnosed by corneal culture and PCR. Corneal inflammation persisted for more than 6 months, manifested as corneal epithelial defect, limbitis, endotheliitis, neurotrophic changes, and trabeculitis. This persistence was observed alongside positive corneal PCR results, despite undergoing 2 courses of trifluorothymidine, 2 courses of oral tecovirimat, and intravenous cidofovir. An amniotic membrane transplantation was then performed. CONCLUSIONS Persistent corneal pain and replication are possible with the mpox virus, even in immunocompetent patients. Having received treatment with topical corticosteroids before antiviral treatment for the pox virus may have contributed to the severity and persistence of the clinical condition. Cycle threshold PCR values can be used to support the diagnosis and monitor treatment effectiveness.
Collapse
Affiliation(s)
| | | | - Rosa Miguel-Buckley
- Infectious Diseases Unit, Internal Medicine Department, La Paz University Hospital, IdiPAZ, Center for Biomedical Research in Infectious Diseases Network (CIBERINFEC), Madrid, Spain; and
| | - Ana Martin Ucero
- Department of Ophthalmology, La Paz University Hospital, Madrid, Spain
| | | | | |
Collapse
|
8
|
Acharya A, Kumar N, Singh K, Byrareddy SN. "Mpox in MSM: Tackling Stigma, Minimizing Risk Factors, Exploring Pathogenesis, and Treatment Approaches". Biomed J 2024:100746. [PMID: 38734408 DOI: 10.1016/j.bj.2024.100746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 04/07/2024] [Accepted: 05/05/2024] [Indexed: 05/13/2024] Open
Abstract
Mpox is a zoonotic disease caused by the monkeypox virus (MPV), primarily found in Central and West African countries. The typical presentation of the disease before the 2022 mpox outbreak includes a febrile prodrome 5-13 days post-exposure, accompanied by lymphadenopathy, malaise, headache, and muscle aches. Unexpectedly, during the 2022 outbreak, several cases of atypical presentations of the disease were reported, such as the absence of prodromal symptoms and the presence of genital skin lesions suggestive of sexual transmission. As per the World Health Organization (WHO), as of March 20, 2024, 94,707 cases of mpox were reported worldwide, resulting in 181 deaths (22 in African endemic regions and 159 in non-endemic countries). The United States Centers for Disease Control and Prevention (CDC) reports a total of 32,063 cases (33.85% of total cases globally), with 58 deaths (32.04% of global deaths) due to mpox. Person-to-person transmission of mpox can occur through respiratory droplets and sustained close contact. However, during the 2022 outbreak of mpox, a high incidence of anal and perianal lesions among MSMs indicated sexual transmission of MPV as a major route of transmission. Since MSMs are disproportionately at risk for HIV transmission, this review discusses the risk factors, transmission patterns, pathogenesis, vaccine, and treatment options for mpox among MSM and people living with HIV (PLWH). Furthermore, we provide a brief perspective on the evolution of the MPV in immunocompromised people like PLWH.
Collapse
Affiliation(s)
- Arpan Acharya
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Narendra Kumar
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Kamal Singh
- Department of Veterinary Pathobiology, College of Veterinary Medicine, and Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
| | - Siddappa N Byrareddy
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA; Department of Genetics, Cell Biology and Anatomy, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA; Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
9
|
Piparva KG, Fichadiya N, Joshi T, Malek S. Monkeypox: From Emerging Trends to Therapeutic Concerns. Cureus 2024; 16:e58866. [PMID: 38800170 PMCID: PMC11116278 DOI: 10.7759/cureus.58866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/23/2024] [Indexed: 05/29/2024] Open
Abstract
Monkeypox is a zoonotic viral disease. Monkeypox was first reported in humans about 54 years ago. Prior to the global outbreak, monkeypox was endemic to the rainforests of central and western African countries. In the last three years, increasing numbers of human monkeypox have been reported from various countries. Responding to the severity, monkeypox was declared a Public Health Emergency of International Concern by the World Health Organization. In the absence of approved drugs or clinical studies, repurposed drugs and therapeutic medical countermeasures effective against other orthopoxviruses have been utilized to treat severe human monkeypox cases. Currently, clinical trials are underway exploring the potential therapeutic effectiveness of tecovirimate in human monkeypox cases. Monoclonal antibodies, IFN-β, resveratrol, and 15 triple-targeting FDA-approved drugs represent potential new drug targets for human monkeypox, necessitating further research.
Collapse
Affiliation(s)
- Kiran G Piparva
- Department of Pharmacology, All India Institute of Medical Sciences (AIIMS) Rajkot, Rajkot, IND
| | - Nilesh Fichadiya
- Department of Preventive and Social Medicine, Pandit Deendayal Upadhyay (PDU) Government Medical College, Rajkot, IND
| | - Tejal Joshi
- Department of Microbiology, Pandit Deendayal Upadhyay (PDU) Government Medical College, Rajkot, IND
| | - Shahenaz Malek
- Department of Pharmacology, Government Medical College, Surat, IND
| |
Collapse
|
10
|
Sun Y, Nie W, Tian D, Ye Q. Human monkeypox virus: Epidemiologic review and research progress in diagnosis and treatment. J Clin Virol 2024; 171:105662. [PMID: 38432097 DOI: 10.1016/j.jcv.2024.105662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/22/2024] [Accepted: 02/25/2024] [Indexed: 03/05/2024]
Abstract
Monkeypox virus (MPXV) is responsible for causing a zoonotic disease called monkeypox (mpox), which sporadically infects humans in West and Central Africa. It first infected humans in 1970 and, along with the variola virus, belongs to the genus Orthopoxvirus in the poxvirus family. Since the World Health Organization declared the MPXV outbreak a "Public Health Emergency of International Concern" on July 23, 2022, the number of infected patients has increased dramatically. To control this epidemic and address this previously neglected disease, MPXV needs to be better understood and reevaluated. In this review, we cover recent research on MPXV, including its genomic and pathogenic characteristics, transmission, mutations and mechanisms, clinical characteristics, epidemiology, laboratory diagnosis, and treatment measures, as well as prevention of MPXV infection in light of the 2022 and 2023 global outbreaks. The 2022 MPXV outbreak has been primarily associated with close intimate contact, including sexual activity, with most cases diagnosed among men who have sex with men. The incubation period of MPXV infection usually lasts from 6 to 13 days, and symptoms include fever, muscle pains, headache, swollen lymph nodes, and a characteristic painful rash, including several stages, such as macules, papules, blisters, pustules, scabs, and scab shedding involving the genitals and anus. Polymerase chain reaction (PCR) is usually used to detect MPXV in skin lesion material. Treatment includes supportive care, antivirals, and intravenous vaccinia immune globulin. Smallpox vaccines have been designed with four givens emergency approval for use against MPXV infection.
Collapse
Affiliation(s)
- Yanhong Sun
- Department of Clinical Laboratory, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China
| | - Wenjian Nie
- Department of Clinical Laboratory, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China
| | - Dandan Tian
- Department of Clinical Laboratory, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China
| | - Qing Ye
- Department of Clinical Laboratory, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China.
| |
Collapse
|
11
|
Brien SC, LeBreton M, Doty JB, Mauldin MR, Morgan CN, Pieracci EG, Ritter JM, Matheny A, Tafon BG, Tamoufe U, Missoup AD, Nwobegahay J, Takuo JM, Nkom F, Mouiche MMM, Feussom JMK, Wilkins K, Wade A, McCollum AM. Clinical Manifestations of an Outbreak of Monkeypox Virus in Captive Chimpanzees in Cameroon, 2016. J Infect Dis 2024; 229:S275-S284. [PMID: 38164967 DOI: 10.1093/infdis/jiad601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/16/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024] Open
Abstract
Monkeypox virus (MPXV) is a reemerging virus of global concern. An outbreak of clade I MPXV affected 20 captive chimpanzees in Cameroon in 2016. We describe the epidemiology, virology, phylogenetics, and clinical progression of this outbreak. Clinical signs included exanthema, facial swelling, perilaryngeal swelling, and eschar. Mpox can be lethal in captive chimpanzees, with death likely resulting from respiratory complications. We advise avoiding anesthesia in animals with respiratory signs to reduce the likelihood of death. This outbreak presented a risk to animal care staff. There is a need for increased awareness and a One Health approach to preparation for outbreaks in wildlife rescue centers in primate range states where MPXV occurs. Control measures should include quarantining affected animals, limiting human contacts, surveillance of humans and animals, use of personal protective equipment, and regular decontamination of enclosures.
Collapse
Affiliation(s)
- Stephanie C Brien
- Royal (Dick) School of Veterinary Studies and the Roslin Institute, Easter Bush Campus, The University of Edinburgh, Roslin, United Kingdom
- Ape Action Africa, Mefou Park, Cameroon
| | | | - Jeffrey B Doty
- Division of High Consequence Pathogens and Pathology, US Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Matthew R Mauldin
- Division of High Consequence Pathogens and Pathology, US Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Clint N Morgan
- Division of High Consequence Pathogens and Pathology, US Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Emily G Pieracci
- Division of High Consequence Pathogens and Pathology, US Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Jana M Ritter
- Division of High Consequence Pathogens and Pathology, US Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Audrey Matheny
- Division of High Consequence Pathogens and Pathology, US Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | | | | - Alain D Missoup
- Zoology Unit, Laboratory of Biology and Physiology of Animal Organisms, Faculty of Science, University of Douala, Cameroon
| | | | | | | | - Moctar M M Mouiche
- Mosaic, Yaoundé, Cameroon
- School of Veterinary Medicine and Sciences, University of Ngaounderé, Cameroon
| | - Jean Marc K Feussom
- Cameroon Epidemiological Network for Animal Diseases, Directorate of Veterinary Services, Ministry of Livestock, Fisheries and Animal Industries, Yaoundé, Cameroon
| | - Kimberly Wilkins
- Division of High Consequence Pathogens and Pathology, US Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Abel Wade
- National Veterinary Laboratory, Garoua, Cameroon
| | - Andrea M McCollum
- Division of High Consequence Pathogens and Pathology, US Centers for Disease Control and Prevention, Atlanta, GA, USA
| |
Collapse
|
12
|
Maqbool KU, Akhtar MT, Ayub S, Simran FNU, Malik J, Malik M, Zubair R, Mehmoodi A. Role of vaccination in patients with human monkeypox virus and its cardiovascular manifestations. Ann Med Surg (Lond) 2024; 86:1506-1516. [PMID: 38463133 PMCID: PMC10923390 DOI: 10.1097/ms9.0000000000001674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 12/20/2023] [Indexed: 03/12/2024] Open
Abstract
Human monkeypox, caused by the monkeypox virus (MPXV), is an emerging infectious disease with the potential for human-to-human transmission and diverse clinical presentations. While generally considered milder than smallpox, it can lead to severe cardiovascular complications. The virus primarily spreads through contact with infected animals or through human-to-human transmission. Cardiovascular involvement in human monkeypox is rare but has been associated with myocarditis, pericarditis, arrhythmias, and even fulminant myocardial infarction. Vaccination plays a crucial role in preventing and controlling monkeypox, but the eradication of smallpox has left global populations vulnerable. This review explores the cardiovascular manifestations of human monkeypox, the role of vaccination in disease prevention, and the importance of continued research and development of effective vaccines to protect against this emerging infectious threat. The global impact of monkeypox outbreaks, particularly on vulnerable populations, further highlights the importance of understanding and addressing this disease.
Collapse
Affiliation(s)
| | | | - Shayan Ayub
- Department of Cardiovascular Medicine, Cardiovascular Analytics Group
| | - FNU Simran
- Department of Cardiovascular Medicine, Cardiovascular Analytics Group
| | - Jahanzeb Malik
- Department of Cardiovascular Medicine, Cardiovascular Analytics Group
| | - Maria Malik
- Department of Cardiovascular Medicine, Cardiovascular Analytics Group
| | - Rafia Zubair
- Department of Cardiovascular Medicine, Cardiovascular Analytics Group
| | - Amin Mehmoodi
- Department of Medicine, Ibn e Seena Hospital, Kabul, Afghanistan
| |
Collapse
|
13
|
Ejaz M, Jabeen M, Sharif M, Syed MA, Shah PT, Faryal R. Human monkeypox: An updated appraisal on epidemiology, evolution, pathogenesis, clinical manifestations, and treatment strategies. J Basic Microbiol 2024; 64:e2300455. [PMID: 37867205 DOI: 10.1002/jobm.202300455] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/13/2023] [Accepted: 10/04/2023] [Indexed: 10/24/2023]
Abstract
Monkeypox (Mpox) is a zoonotic viral disease caused by the monkeypox virus (MPXV), a member of the Orthopoxvirus genus. The recent occurrence of Mpox infections has become a significant global issue in recent months. Despite being an old disease with a low mortality rate, the ongoing multicountry outbreak is atypical due to its occurrence in nonendemic countries. The current review encompasses a comprehensive analysis of the literature pertaining to MPXV, with the aim of consolidating the existing data on the virus's epidemiological, biological, and clinical characteristics, as well as vaccination and treatment regimens against the virus.
Collapse
Affiliation(s)
- Mohammad Ejaz
- Department of Microbiology, Government Postgraduate College Mandian, Abbottabad, Pakistan
- Department of Microbiology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Momina Jabeen
- National Center for Bioinformatics, Quaid-i-Azam University, Islamabad, Pakistan
| | - Mehmoona Sharif
- Department of Microbiology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Muhammad Ali Syed
- Department of Microbiology, The University of Haripur, Haripur, Pakistan
| | - Pir T Shah
- Institute of Biomedical Sciences, Shanxi University, Taiyuan, Shanxi, China
| | - Rani Faryal
- Department of Microbiology, Quaid-i-Azam University, Islamabad, Pakistan
| |
Collapse
|
14
|
Kalaba MH, El-Sherbiny GM, Sharaf MH, Farghal EE. Biological Characteristics and Pathogenesis of Monkeypox Virus: An Overview. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1451:91-109. [PMID: 38801573 DOI: 10.1007/978-3-031-57165-7_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Although the smallpox virus has been eradicated worldwide, the World Health Organization (WHO) has issued a warning about the virus's potential to propagate globally. The WHO labeled monkeypox a world public health emergency in July 2022, requiring urgent prevention and treatment. The monkeypox virus is a part of the Poxviridae family, Orthopoxvirus genus, and is accountable for smallpox, which has killed over a million people in the past. Natural hosts of the virus include squirrels, Gambian rodents, chimpanzees, and other monkeys. The monkeypox virus has transmitted to humans through primary vectors (various animal species) and secondary vectors, including direct touch with lesions, breathing particles from body fluids, and infected bedding. The viral particles are ovoid or brick-shaped, 200-250 nm in diameter, contain a single double-stranded DNA molecule, and reproduce only in the cytoplasm of infected cells. Monkeypox causes fever, cold, muscle pains, headache, fatigue, and backache. The phylogenetic investigation distinguished between two genetic clades of monkeypox: the more pathogenic Congo Basin clade and the West Africa clade. In recent years, the geographical spread of the human monkeypox virus has accelerated despite a paucity of information regarding the disease's emergence, ecology, and epidemiology. Using lesion samples and polymerase chain reaction (PCR), the monkeypox virus was diagnosed. In the USA, the improved Ankara vaccine can now be used to protect people who are at a higher risk of getting monkeypox. Antivirals that we have now work well against smallpox and may stop the spread of monkeypox, but there is no particular therapy for monkeypox.
Collapse
Affiliation(s)
- Mohamed H Kalaba
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo, 11884, Egypt
| | - Gamal M El-Sherbiny
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo, 11884, Egypt.
| | - Mohammed H Sharaf
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo, 11884, Egypt
| | - Eman E Farghal
- Clinical and Chemical Pathology, Faculty of Medicine, Tanta University, Tanta, Egypt
| |
Collapse
|
15
|
Shah BM, Modi P. Breaking Barriers: Current Advances and Future Directions in Mpox Therapy. Curr Drug Targets 2024; 25:62-76. [PMID: 38151842 DOI: 10.2174/0113894501281263231218070841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/21/2023] [Accepted: 11/28/2023] [Indexed: 12/29/2023]
Abstract
BACKGROUND Mpox, a newly discovered zoonotic infection, can be transmitted from animal to human and between humans. Serological and genomic studies are used to identify the virus. OBJECTIVE Currently, there are no proven effective treatments for Mpox. Also, the safety and efficacy of intravenous vaccinia immune globulin, oral Tecovirimat (an inhibitor of intracellular viral release), and oral Brincidofovir (a DNA polymerase inhibitor) against the Mpox virus are uncertain, highlighting the need for more effective and safe treatments. As a result, drug repurposing has emerged as a promising strategy to identify previously licensed drugs that can be repurposed to treat Mpox. RESULTS Various approaches have been employed to identify previously approved drugs that can target specific Mpox virus proteins, including thymidylate kinase, D9 decapping enzyme, E8 protein, Topoisomerase1, p37, envelope proteins (D13, A26, and H3), F13 protein, virus's main cysteine proteases, and DNA polymerase. CONCLUSION In this summary, we provide an overview of potential drugs that could be used to treat Mpox and discuss the underlying biological processes of their actions.
Collapse
Affiliation(s)
- Bhumi M Shah
- Department of Pharmaceutical Chemistry, L.J. Institute of Pharmacy, L.J. University, Ahmedabad, Gujarat 382210, India
| | - Palmi Modi
- Department of Pharmaceutical Chemistry, L.J. Institute of Pharmacy, L.J. University, Ahmedabad, Gujarat 382210, India
| |
Collapse
|
16
|
Nucera F, Bonina L, Cipolla A, Pirina P, Hansbro PM, Adcock IM, Caramori G. Poxviridae Pneumonia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1451:183-204. [PMID: 38801579 DOI: 10.1007/978-3-031-57165-7_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Poxviridae family includes several viruses that infecting humans usually causes skin lesions only, but in some cases their clinical course is complicated by viral pneumonia (with or without bacterial superinfections). Historically variola virus has been the poxviridae most frequently associated with the development of pneumonia with many large outbreaks worldwide before its eradication in 1980. It is still considered a biological threat for its potential in biological warfare and bioterrorism. Smallpox pneumonia can be severe with the onset of acute respiratory distress syndrome (ARDS) and death. Vaccinia virus, used for vaccination against smallpox exceptionally, in immunocompromised patients, can induce generalized (with also lung involvement) severe disease after vaccination. MPXV virus occasionally can cause pneumonia particularly in immunocompromised patients. The pathophysiology of poxviridae pneumonia is still an area of active research; however, in animal models these viruses can cause both direct damage to the lower airways epithelium and a hyperinflammatory syndrome, like a cytokine storm. Multiple mechanisms of immune evasion have also been described. The treatment of poxviridae pneumonia is mainly based on careful supportive care. Despite the absence of randomized clinical trials in patients with poxviridae pneumonia there are antiviral drugs, such as tecovirimat, cidofovir and brincidofovir, FDA-approved for use in smallpox and also available under an expanded access protocol for treatment of MPXV. There are 2 (replication-deficient modified vaccinia Ankara and replication-competent vaccinia virus) smallpox vaccines FDA-approved with the first one also approved for prevention of MPXV in adults that are at high risk of infection.
Collapse
Affiliation(s)
- Francesco Nucera
- Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università degli Studi di Messina, Messina, Italy
| | - Letterio Bonina
- Virologia, Dipartimento di Patologia delle Malattie Umane "G. Barresi", Università degli Studi di Messina, Messina, Italy
| | - Antonino Cipolla
- Pneumologia, Dipartimento di Medicina Clinica e Sperimentale, Università degli Studi di Catania, Catania, Italy
| | - Pietro Pirina
- Pneumologia, Dipartimento di Medicina, Chirurgia e Farmacia, Università degli Studi di Sassari, Sassari, Italy
| | - Philip M Hansbro
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Sydney, Australia
| | - Ian M Adcock
- Airway Disease Section, National Heart and Lung Institute, Imperial College London, London, UK
| | - Gaetano Caramori
- Pulmonology, Department of Medicine and Surgery, University of Parma, Parma, Italy.
| |
Collapse
|
17
|
Borcak D, Özdemir YE, Yesilbag Z, Ensaroğlu E, Akkaya S, Yaşar KK. Assessment of Knowledge and Concern of People Living with HIV Regarding Human Mpox and Vaccination. Curr HIV Res 2024; 22:120-127. [PMID: 38698752 DOI: 10.2174/011570162x293673240427062123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/01/2024] [Accepted: 04/11/2024] [Indexed: 05/05/2024]
Abstract
INTRODUCTION Mpox virus is an orthopoxvirus that causes the zoonotic infectious disease known as mpox. The disease can also spread from humans to humans. It can be transmitted through contact with bodily fluids, lesions on the skin, or internal mucosal surfaces. METHOD The number of mpox cases increased during the COVID-19 pandemic. Early diagnosis and prompt management of mpox are critical in people living with HIV (PLHIV). In this study, a cross-sectional survey was conducted among PLHIV followed at the outpatient clinic between 20 April-20 August 2023. A questionnaire was used to assess the knowledge and anxiety levels of patients as well as their opinions about vaccination against mpox. The severity of symptoms in the past two weeks was assessed using the Generalised Anxiety Disorder 7-item scale. A total of 203 PLHIV were interviewed for this survey study. RESULT The mean age was 39.37±11.93. The majority of them were male (86.7%), and 41.4% were men who have sex with men (MSM). Only 21 of the surveyed participants (10.4%) had a "good knowledge" score about mpox. The mean knowledge score on human Mpox was 2.05 (min:0-max:8), and 107 (52.7%) had a score of 0. CONCLUSION The future study should focus on continuous education, promoting awareness through programs and establishing measures to successfully overcome identified variables that contribute to mpox pandemic understanding and attitudes. Applying the lessons learned from the COVID-19 pandemic will help the management of mpox virus.
Collapse
Affiliation(s)
- Deniz Borcak
- Department of Infectious Diseases and Clinical Microbiology, Bakırköy Dr. Sadi Konuk Training and Research Hospital, Bakırköy, Istanbul, Turkey
| | - Yusuf Emre Özdemir
- Department of Infectious Diseases and Clinical Microbiology, Bakırköy Dr. Sadi Konuk Training and Research Hospital, Bakırköy, Istanbul, Turkey
| | - Zuhal Yesilbag
- Department of Infectious Diseases and Clinical Microbiology, Bakırköy Dr. Sadi Konuk Training and Research Hospital, Bakırköy, Istanbul, Turkey
| | - Esra Ensaroğlu
- Department of Infectious Diseases and Clinical Microbiology, Bakırköy Dr. Sadi Konuk Training and Research Hospital, Bakırköy, Istanbul, Turkey
| | - Samiha Akkaya
- Department of Infectious Diseases and Clinical Microbiology, Bakırköy Dr. Sadi Konuk Training and Research Hospital, Bakırköy, Istanbul, Turkey
| | - Kadriye Kart Yaşar
- Department of Infectious Diseases and Clinical Microbiology, Bakırköy Dr. Sadi Konuk Training and Research Hospital, Bakırköy, Istanbul, Turkey
| |
Collapse
|
18
|
Asadi Noghabi F, G. Rizk J, Makkar D, Roozbeh N, Ghelichpour S, Zarei A. Managing Monkeypox Virus Infections: A Contemporary Review. IRANIAN JOURNAL OF MEDICAL SCIENCES 2024; 49:1-9. [PMID: 38322157 PMCID: PMC10839137 DOI: 10.30476/ijms.2022.96738.2837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/30/2022] [Accepted: 11/22/2022] [Indexed: 02/08/2024]
Abstract
Monkeypox is an infectious and contagious zoonotic disease caused by the Orthopoxvirus species and was first identified in Africa. Recently, this infectious disease has spread widely in many parts of the world. Fever, fatigue, headache, and rash are common symptoms of monkeypox. The presence of lymphadenopathy is another prominent and key symptom of monkeypox, which distinguishes this disease from other diseases and is useful for diagnosing the disease. This disease is transmitted to humans through contact with or eating infected animals as well as objects infected with the virus. One of the ways to diagnose this disease is through PCR testing of lesions and secretions. To prevent the disease, vaccines such as JYNNEOS and ACAM2000 are available, but they are not accessible to all people in the world, and their effectiveness and safety need further investigation. However, preventive measures such as avoiding contact with people infected with the virus and using appropriate personal protective equipment are mandatory. The disease therapy is based on medicines such as brincidofovir, cidofovir, and Vaccinia Immune Globulin Intravenous. The injectable format of tecovirimat was approved recently, in May 2022. Considering the importance of clinical care in this disease, awareness about the side effects of medicines, nutrition, care for conjunctivitis, skin rash, washing and bathing at home, and so on can be useful in controlling and managing the disease.
Collapse
Affiliation(s)
- Fariba Asadi Noghabi
- Department of Nursing, School of Nursing and Midwifery, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - John G. Rizk
- Department of Pharmaceutical Health Services Research Center, School of Pharmacy, University of Maryland, Baltimore, MD, USA
| | | | - Nasibeh Roozbeh
- Mother and Child Welfare Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Soleyman Ghelichpour
- Student Research Committee, School of Nursing and Midwifery, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Aref Zarei
- Department of Nursing, School of Nursing and Midwifery, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| |
Collapse
|
19
|
Ciepłucha HD, Bożejko M, Piesiak P, Serafińska S, Szetela B. Bacterial Pneumonia and Cryptogenic Pleuritis after Probable Monkeypox Virus Infection: A Case Report. Infect Dis Rep 2023; 15:795-805. [PMID: 38131884 PMCID: PMC10742663 DOI: 10.3390/idr15060071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/08/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023] Open
Abstract
A large number of monkeypox (MPOX) cases have been reported in Europe and North America in 2022, and a new outbreak of this disease was declared. We describe a case of a patient with probable monkeypox during the height of this epidemic in Poland. The patient's symptoms resolved within two weeks, but over the next two months, he developed community-acquired pneumonia requiring hospitalization and, subsequently, non-specific pleuritis. The simultaneous occurrence of such severe infections in a previously healthy young man is not typical and suggests a potential underlying cause. We believe the potential association of these diseases with probable monkeypox virus infection is very likely. Cases of monkeypox pneumonia, both viral and secondary bacterial, have already been reported in the literature. Cases of viral pleuritis in the course of MPOX in animals have also been described; however, to our knowledge, no similar cases have been described in humans to date. Our case indicates that it is important to monitor patients after MPOX in order to respond promptly to potentially life-threatening but, as of yet, not fully understood complications.
Collapse
Affiliation(s)
- Hubert Dawid Ciepłucha
- Department of Infectious Diseases, Liver Diseases and Acquired Immune Deficiencies, Wroclaw Medical University, 51-149 Wroclaw, Poland
| | - Mateusz Bożejko
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland
| | - Paweł Piesiak
- Lower Silesian Oncology, Pulmonology and Hematology Center, 53-439 Wroclaw, Poland
| | - Sylwia Serafińska
- Department of Infectious Diseases and Hepatology, Wroclaw Medical University, 51-149 Wroclaw, Poland
| | - Bartosz Szetela
- Department of Infectious Diseases, Liver Diseases and Acquired Immune Deficiencies, Wroclaw Medical University, 51-149 Wroclaw, Poland
| |
Collapse
|
20
|
Yashavarddhan MH, Bohra D, Rana R, Tuli HS, Ranjan V, Rana DS, Ganguly NK. Comprehensive overview of 2022 human monkeypox outbreak and its pathology, prevention, and treatment: A strategy for disease control. Microbiol Res 2023; 277:127504. [PMID: 37812873 DOI: 10.1016/j.micres.2023.127504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/18/2023] [Accepted: 09/18/2023] [Indexed: 10/11/2023]
Abstract
The 2022 Monkeypox virus, an evolved DNA strain originating in Africa, exhibits heightened human-to-human transmissibility and potential animal transmission. Its host remains unidentified. While its initial slow transmission rate restrained global impact, 2022 saw a surge in cases, causing widespread concern in over 103 countries by September. This virus's distinctive human-to-human transmission marks a crucial shift, demanding a prompt revaluation of containment strategies. However, the host source for this shift requires urgent research attention. Regrettably, no universal preventive or curative methods have emerged for this evolved virus. Repurposed from smallpox vaccines, only some vaccinations offer a partial defense. Solely one therapeutic drug is available. The article's essence is to provide a comprehensive grasp of the virus's epidemiology, morphology, immune invasion mechanisms, and existing preventive and treatment measures. This knowledge equips researchers to devise strategies against its spread and potential public health implications.
Collapse
Affiliation(s)
- M H Yashavarddhan
- Department of Biotechnology & Research, Sir Ganga Ram Hospital, New Delhi 110060, India
| | - Deepika Bohra
- Department of Biotechnology & Research, Sir Ganga Ram Hospital, New Delhi 110060, India
| | - Rashmi Rana
- Department of Biotechnology & Research, Sir Ganga Ram Hospital, New Delhi 110060, India.
| | | | - Vivek Ranjan
- Department of Blood Transfusion Medicine, Sir Ganga Ram Hospital, New Delhi 110060, India
| | | | - Nirmal Kumar Ganguly
- Department of Biotechnology & Research, Sir Ganga Ram Hospital, New Delhi 110060, India
| |
Collapse
|
21
|
Li M, Ren Z, Wang Y, Jiang Y, Yang M, Li D, Chen J, Liang Z, Lin Y, Zeng Z, Xu R, Wang Y, Zhu L, Xiao W, Wu Q, Zhang B, Wan C, Yang Y, Wu B, Peng J, Zhao W, Shen C. Three neutralizing mAbs induced by MPXV A29L protein recognizing different epitopes act synergistically against orthopoxvirus. Emerg Microbes Infect 2023; 12:2223669. [PMID: 37288876 PMCID: PMC10286687 DOI: 10.1080/22221751.2023.2223669] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/06/2023] [Indexed: 06/09/2023]
Abstract
The worldwide outbreak of the monkeypox virus (MPXV) has become a "Public Health Emergency of International Concern" (PHEIC). Severe monkeypox virus infection can be fatal, however, effective therapeutic methods are yet to be developed. Mice were immunized with A35R protein and A29L protein of MPXV, and the binding and neutralizing activities of the immune sera against poxvirus-associated antigens and viruses were identified. A29L protein and A35R protein-specific monoclonal antibodies (mAbs) were generated and their antiviral activities of these mAbs were characterized in vitro and in vivo. Immunization with the MPXV A29L protein and A35R protein induced neutralizing antibodies against the orthopoxvirus in mice. None of the mAbs screened in this study against A35R could effectively neutralize the vaccinia virus (VACV), while three mAbs against A29L protein, 9F8, 3A1 and 2D1 were confirmed to have strong broad binding and neutralizing activities against orthopoxvirus, among which 9F8 showed the best neutralizing activity. 9F8, 3A1, and 2D1 recognized different epitopes on MPXV A29L protein, showing synergistic antiviral activity in vitro against the VACV Tian Tan and WR strains; the best activity was observed when the three antibodies were combined. In the vivo antiviral prophylactic and therapeutic experiments, 9F8 showed complete protective activity, whereas 3A1 and 2D1 showed partial protective activity. Similarly, the three antibodies showed synergistic antiviral protective activity against the two VACVs. In conclusion, three mAbs recognized different epitopes on MPXV A29L protein were developed and showed synergistic effects against orthopoxvirus.
Collapse
Affiliation(s)
- Mengjun Li
- BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health; Department of Laboratory Medicine, Zhujiang Hospital; Southern Medical University, Guangzhou, People’s Republic of China
| | - Zuning Ren
- BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health; Department of Laboratory Medicine, Zhujiang Hospital; Southern Medical University, Guangzhou, People’s Republic of China
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Yuelin Wang
- BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health; Department of Laboratory Medicine, Zhujiang Hospital; Southern Medical University, Guangzhou, People’s Republic of China
| | - Yushan Jiang
- BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health; Department of Laboratory Medicine, Zhujiang Hospital; Southern Medical University, Guangzhou, People’s Republic of China
| | - Minghui Yang
- Advanced Research Institute of Multidisciplinary Sciences, Beijing Institute of Technology, Beijing, People’s Republic of China
| | - Delin Li
- Laboratory of Protein Engineering and Vaccines, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, People’s Republic of China
| | - Jiayin Chen
- BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health; Department of Laboratory Medicine, Zhujiang Hospital; Southern Medical University, Guangzhou, People’s Republic of China
| | - Zuxin Liang
- BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health; Department of Laboratory Medicine, Zhujiang Hospital; Southern Medical University, Guangzhou, People’s Republic of China
| | - Yuhao Lin
- BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health; Department of Laboratory Medicine, Zhujiang Hospital; Southern Medical University, Guangzhou, People’s Republic of China
| | - Zhujun Zeng
- BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health; Department of Laboratory Medicine, Zhujiang Hospital; Southern Medical University, Guangzhou, People’s Republic of China
- Medical Laboratory Dept, Guangdong Provincial Hospital of Chinese Medicine, Zhuhai, People’s Republic of China
| | - Rui Xu
- Medical Laboratory Dept, Guangdong Provincial Hospital of Chinese Medicine, Zhuhai, People’s Republic of China
| | - Yiting Wang
- Department of Laboratory, Shenzhen Longhua Maternity and Child Healthcare Hospital, Shenzhen, People’s Republic of China
| | - Li Zhu
- BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health; Department of Laboratory Medicine, Zhujiang Hospital; Southern Medical University, Guangzhou, People’s Republic of China
| | - Weiwei Xiao
- BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health; Department of Laboratory Medicine, Zhujiang Hospital; Southern Medical University, Guangzhou, People’s Republic of China
| | - Qinghua Wu
- BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health; Department of Laboratory Medicine, Zhujiang Hospital; Southern Medical University, Guangzhou, People’s Republic of China
| | - Bao Zhang
- BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health; Department of Laboratory Medicine, Zhujiang Hospital; Southern Medical University, Guangzhou, People’s Republic of China
| | - Chengsong Wan
- BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health; Department of Laboratory Medicine, Zhujiang Hospital; Southern Medical University, Guangzhou, People’s Republic of China
| | - Yang Yang
- Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, People’s Republic of China
| | - Bo Wu
- Hoyotek Biomedical Co., Ltd., Tianjin, People’s Republic of China
| | - Jie Peng
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Wei Zhao
- BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health; Department of Laboratory Medicine, Zhujiang Hospital; Southern Medical University, Guangzhou, People’s Republic of China
| | - Chenguang Shen
- BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health; Department of Laboratory Medicine, Zhujiang Hospital; Southern Medical University, Guangzhou, People’s Republic of China
| |
Collapse
|
22
|
Okwor T, Mbala PK, Evans DH, Kindrachuk J. A contemporary review of clade-specific virological differences in monkeypox viruses. Clin Microbiol Infect 2023; 29:1502-1507. [PMID: 37507009 DOI: 10.1016/j.cmi.2023.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 07/08/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023]
Abstract
BACKGROUND Monkeypox virus (MPXV) is an emerging zoonotic virus that has had on-going public health impacts in endemic regions of Central and West Africa for over a half-century. Historically, the MPXV clade endemic in regions of Central Africa is associated with higher morbidity and mortality as compared with the clade endemic in West Africa. OBJECTIVES Here, we review the virological characteristics of MPXV and discuss potential relationships between virulence factors and clade- (and subclade-) specific differences in virulence and transmission patterns. SOURCES Targeted search was conducted in PubMed using ((monkeypox virus) OR (Orthopoxvirus)) AND (zoonosis)) OR ((monkeypox) OR (human mpox). CONTENT Forty-seven references were considered that included three publicly available data reports and/or press releases, one book chapter, and 44 published manuscripts. IMPLICATIONS Although zoonosis has been historically linked to emergence events in humans, epidemiological analyses of more recent outbreaks have identified increasing frequencies of human-to-human transmission. Furthermore, viral transmission during the 2022 global human mpox outbreak, caused by a recently identified MPXV subclade, has relied exclusively on human-to-human contact with no known zoonotic link.
Collapse
Affiliation(s)
- Tochi Okwor
- Department of Planning, Research & Statistics, Nigeria Centre for Disease Control and Prevention, Abuja, Nigeria
| | - Placide K Mbala
- Département de Virologie, Institut National de Recherche Biomédicale, Kinshasa, Democratic Republic of the Congo; Département de Biologie Médicale, Université de Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - David H Evans
- Department of Medical Microbiology & Immunology and Li Ka Shing Institute of Virology, The University of Alberta, Edmonton, Alberta, Canada
| | - Jason Kindrachuk
- Department of Medical Microbiology & Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada.
| |
Collapse
|
23
|
Islam MM, Dutta P, Rashid R, Jaffery SS, Islam A, Farag E, Zughaier SM, Bansal D, Hassan MM. Pathogenicity and virulence of monkeypox at the human-animal-ecology interface. Virulence 2023; 14:2186357. [PMID: 36864002 PMCID: PMC10012937 DOI: 10.1080/21505594.2023.2186357] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 02/27/2023] [Indexed: 03/04/2023] Open
Abstract
Monkeypox (Mpox) was mostly limited to Central and Western Africa, but recently it has been reported globally. The current review presents an update on the virus, including ecology and evolution, possible drivers of transmission, clinical features and management, knowledge gaps, and research priorities to reduce the disease transmission. The origin, reservoir(s) and the sylvatic cycle of the virus in the natural ecosystem are yet to be confirmed. Humans acquire the infection through contact with infected animals, humans, and natural hosts. The major drivers of disease transmission include trapping, hunting, bushmeat consumption, animal trade, and travel to endemic countries. However, in the 2022 epidemic, the majority of the infected humans in non-endemic countries had a history of direct contact with clinical or asymptomatic persons through sexual activity. The prevention and control strategies should include deterring misinformation and stigma, promoting appropriate social and behavioural changes, including healthy life practices, instituting contact tracing and management, and using the smallpox vaccine for high-risk people. Additionally, longer-term preparedness should be emphasized using the One Health approach, such as systems strengthening, surveillance and detection of the virus across regions, early case detection, and integrating measures to mitigate the socio-economic effects of outbreaks.
Collapse
Affiliation(s)
| | - Pronesh Dutta
- Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh
| | - Rijwana Rashid
- Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh
| | - Syed Shariq Jaffery
- Department of Health Protection and Communicable Disease Control, Ministry of Public Health, Doha, Qatar
| | | | - Elmoubashar Farag
- Department of Health Protection and Communicable Disease Control, Ministry of Public Health, Doha, Qatar
| | - Susu M Zughaier
- College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Devendra Bansal
- Department of Health Protection and Communicable Disease Control, Ministry of Public Health, Doha, Qatar
| | - Mohammad Mahmudul Hassan
- Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh
- Queensland Alliance for One Health Sciences, School of Veterinary Science, The University of Queensland, Gatton, Australia
| |
Collapse
|
24
|
Khan S, Irfan M, Hameed AR, Ullah A, Abideen SA, Ahmad S, Haq MU, El Bakri Y, Al-Harbi AI, Ali M, Haleem A. Vaccinomics to design a multi-epitope-based vaccine against monkeypox virus using surface-associated proteins. J Biomol Struct Dyn 2023; 41:10859-10868. [PMID: 36533379 DOI: 10.1080/07391102.2022.2158942] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022]
Abstract
In 2022, the ongoing multi-country outbreak of monkeypox virus-now occurring outside Africa, too is a global health concern. Monkeypox is a zoonotic virus, which causes disease mainly in animals, and then it is transferred to humans. Recently, in the monkeypox epidemic, a large number of human cases emerged while the global health community worked to tackle the outbreak and save lives. Herein, a multi-epitope-based vaccine is designed against monkeypox virus using two surface-associated proteins: MPXVgp002 accession number > YP_010377003.1 and MPXVgp008 accession number > YP_010377007.1 proteins. These proteins were utilized for B- and T-cell epitopes prediction. The epitopes were further screened, and the screen filtered KCKDNEYRSR, RSCNTTHNR, and RTRRETGAS with the antigenicity scores of 0.5279, 0.5604, and 0.7628, respectively. Overall, the epitopes can induce immunity in 99.74% population of the world. Further, GPGPG linkers were used for joining the epitopes and EAAAK linker was used for adjuvant attachment. It has a three-dimensional structure modelled for retaining the structural stability. Three pairs of amino acid residues that were able to make disulfide bonds were chosen: Gly1-Ser82, Cys7-Tyr10, and Phe51-Ile55. Molecular docking of vaccine was done with toll-like receptors, viz., 2, 3, 4, and 8 immune cell receptors. The docking results revealed that the vaccine as potential molecule due to its better binding affinity with toll-like receptors 2, 3, 4 and 8. Top complex in docking in with each receptor was selected based on lowest energy scores- -888.7 kcal/mol (TLR-2), -976.3 kcal/mol (TLR-3), -801.9 kcal/mol (TLR-4), and -955.4 kcal/mol (TLR-4)-were subjected to simulation. The docked complexes were evaluated in 500 ns of MD simulation. Throughout the simulation time, no significant deviation occurred. This confirmed that the vaccine as potential vaccine candidate to interact with immune cell receptors. This interaction is important for the immune system activation. In conclusion, the proposed vaccine construct against monkeypox could induce an effective immune response and speed up the vaccine development process. However, the study is completely based on the computational approach, hence, the experimental validation is required.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Saifullah Khan
- Institute of Biotechnology and Microbiology, Bacha Khan University, Charsadda, Pakistan
| | - Muhammad Irfan
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, Florida, USA
| | - Alaa R Hameed
- Department of Medical Laboratory Techniques, School of Life Sciences, Dijlah University College, Baghdad, Iraq
| | - Asad Ullah
- Department of Health and Biological Sciences, Abasyn University, Peshawar, Pakistan
| | - Syed Ainul Abideen
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Sajjad Ahmad
- Department of Health and Biological Sciences, Abasyn University, Peshawar, Pakistan
| | - Mahboob Ul Haq
- Department of Pharmacy, Abasyn University, Peshawar, Pakistan
| | - Youness El Bakri
- Department of Theoretical and Applied Chemistry, South Ural State University, Chelyabinsk, Russian Federation
| | - Alhanouf I Al-Harbi
- Department of Medical Laboratory, College of Applied Medical Sciences, Taibah University, Yanbu, Saudi Arabia
| | - Mahwish Ali
- Department of Biological Science, National University of Medical Sciences, Rawalpindi, Pakistan
| | - Abdul Haleem
- Department of Microbiology, Quaid-i-Azam University, Islamabad, Pakistan
| |
Collapse
|
25
|
Lucena-Neto FD, Falcão LFM, Vieira-Junior AS, Moraes ECS, David JPF, Silva CC, Sousa JR, Duarte MIS, Vasconcelos PFC, Quaresma JAS. Monkeypox Virus Immune Evasion and Eye Manifestation: Beyond Eyelid Implications. Viruses 2023; 15:2301. [PMID: 38140542 PMCID: PMC10747317 DOI: 10.3390/v15122301] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023] Open
Abstract
Monkeypox virus (MPXV), belonging to the Poxviridae family and Orthopoxvirus genus, is closely related to the smallpox virus. Initial prodromal symptoms typically include headache, fever, and lymphadenopathy. This review aims to detail various ocular manifestations and immune evasion associated with the monkeypox viral infection and its complications, making it appropriate as a narrative review. Common external ocular manifestations of MPXV typically involve a generalized pustular rash, keratitis, discharges, and dried secretions related to conjunctival pustules, photophobia, and lacrimation. Orthopoxviruses can evade host immune responses by secreting proteins that antagonize the functions of host IFNγ, CC and CXC chemokines, IL-1β, and the complement system. One of the most important transcription factors downstream of pattern recognition receptors binding is IRF3, which controls the expression of the crucial antiviral molecules IFNα and IFNβ. We strongly recommend that ophthalmologists include MPXV as part of their differential diagnosis when they encounter similar cases presenting with ophthalmic manifestations such as conjunctivitis, blepharitis, or corneal lesions. Furthermore, because non-vaccinated individuals are more likely to exhibit these symptoms, it is recommended that healthcare administrators prioritize smallpox vaccination for at-risk groups, including very young children, pregnant women, older adults, and immunocompromised individuals, especially those in close contact with MPXV cases.
Collapse
Affiliation(s)
- Francisco D. Lucena-Neto
- Department of Infectious Disease, School of Medicine, State University of Pará, Belém 66087-670, PA, Brazil; (F.D.L.-N.); (L.F.M.F.); (A.S.V.-J.); (C.C.S.); (J.R.S.); (P.F.C.V.)
| | - Luiz F. M. Falcão
- Department of Infectious Disease, School of Medicine, State University of Pará, Belém 66087-670, PA, Brazil; (F.D.L.-N.); (L.F.M.F.); (A.S.V.-J.); (C.C.S.); (J.R.S.); (P.F.C.V.)
| | - Adolfo S. Vieira-Junior
- Department of Infectious Disease, School of Medicine, State University of Pará, Belém 66087-670, PA, Brazil; (F.D.L.-N.); (L.F.M.F.); (A.S.V.-J.); (C.C.S.); (J.R.S.); (P.F.C.V.)
| | - Evelly C. S. Moraes
- Department of Infectious Disease, School of Medicine, Federal University of Pará, Belém 66075-110, PA, Brazil; (E.C.S.M.); (J.P.F.D.)
| | - Joacy P. F. David
- Department of Infectious Disease, School of Medicine, Federal University of Pará, Belém 66075-110, PA, Brazil; (E.C.S.M.); (J.P.F.D.)
| | - Camilla C. Silva
- Department of Infectious Disease, School of Medicine, State University of Pará, Belém 66087-670, PA, Brazil; (F.D.L.-N.); (L.F.M.F.); (A.S.V.-J.); (C.C.S.); (J.R.S.); (P.F.C.V.)
| | - Jorge R. Sousa
- Department of Infectious Disease, School of Medicine, State University of Pará, Belém 66087-670, PA, Brazil; (F.D.L.-N.); (L.F.M.F.); (A.S.V.-J.); (C.C.S.); (J.R.S.); (P.F.C.V.)
| | - Maria I. S. Duarte
- Department of Infectious Disease, School of Medicine, São Paulo University, São Paulo 01246-904, SP, Brazil;
| | - Pedro F. C. Vasconcelos
- Department of Infectious Disease, School of Medicine, State University of Pará, Belém 66087-670, PA, Brazil; (F.D.L.-N.); (L.F.M.F.); (A.S.V.-J.); (C.C.S.); (J.R.S.); (P.F.C.V.)
| | - Juarez A. S. Quaresma
- Department of Infectious Disease, School of Medicine, State University of Pará, Belém 66087-670, PA, Brazil; (F.D.L.-N.); (L.F.M.F.); (A.S.V.-J.); (C.C.S.); (J.R.S.); (P.F.C.V.)
- Department of Infectious Disease, School of Medicine, Federal University of Pará, Belém 66075-110, PA, Brazil; (E.C.S.M.); (J.P.F.D.)
- Department of Infectious Disease, School of Medicine, São Paulo University, São Paulo 01246-904, SP, Brazil;
- Virology Section, Evandro Chagas Institute, Ananindeua 67030-000, PA, Brazil
| |
Collapse
|
26
|
Malciolu-Nica MA, Costescu C, Popescu CP, Florescu SA, Oprea C. Mpox-Related Ophthalmic Disease: A Rare Case Report. AIDS Res Hum Retroviruses 2023; 39:616-620. [PMID: 37756367 DOI: 10.1089/aid.2023.0010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023] Open
Abstract
Monkeypox virus (mpox), a double-stranded DNA virus belonging to the Orthopox genus, can affect vulnerable anatomic sites, including the eyes, causing a monkeypox-related ophthalmic disease. The mpox virus may enter the eye via autoinoculation and cause multiple problems from mild lesions including conjunctivitis, blepharitis, keratitis, to severe ones such as corneal ulcers, corneal scarring, and rarely loss of vision. The aim of this article is to aggregate from an ophthalmologic point of view what is presently known about mpox-related ophthalmic disease (mpoxROD) and to present a particular case of a 41-year-old, white, bisexual, HIV positive male, with severe ocular complications. This article presents the first reported case in Romania, of severe mpoxROD, with clinically relevant information for infectious disease doctors and especially for ophthalmologists.
Collapse
Affiliation(s)
| | - Cristiana Costescu
- Victor Babes Clinical Hospital for Infectious and Tropical Diseases, Bucharest, Romania
| | - Corneliu Petru Popescu
- Victor Babes Clinical Hospital for Infectious and Tropical Diseases, Bucharest, Romania
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Simin Aysel Florescu
- Victor Babes Clinical Hospital for Infectious and Tropical Diseases, Bucharest, Romania
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Cristiana Oprea
- Victor Babes Clinical Hospital for Infectious and Tropical Diseases, Bucharest, Romania
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| |
Collapse
|
27
|
Mohanto S, Faiyazuddin M, Dilip Gholap A, Jc D, Bhunia A, Subbaram K, Gulzar Ahmed M, Nag S, Shabib Akhtar M, Bonilla-Aldana DK, Sah S, Malik S, Haleem Al-Qaim Z, Barboza JJ, Sah R. Addressing the resurgence of global monkeypox (Mpox) through advanced drug delivery platforms. Travel Med Infect Dis 2023; 56:102636. [PMID: 37633474 DOI: 10.1016/j.tmaid.2023.102636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 08/28/2023]
Abstract
Monkeypox (Mpox) is a transmissible infection induced by the Monkeypox virus (a double-stranded DNA virus), recognised under the family orthopoxvirus genus. Monkeypox, like endemic diseases, is a substantial concern worldwide; thus, comprehending the pathogenesis and mutagenesis of amino acids is indispensable to combat the infection. According to the World Health Organization's report, about 89 thousand cases with 160 mortalities have been reported from 114 countries worldwide. The conventional orthopoxvirus vaccines developed on live attenuated viruses exempted any clinical validation from combating monkeypox due to inadequate immunogenicity, toxicity, instability, and multiple doses. Therefore, novel drug delivery systems come into the conception with high biological and mechanical characteristics to address the resurgence of Global Monkeypox. The edges of metallic biomaterials, novel molecules, and vaccine development in targeted therapy increase the modulation of the immune response and blockage of host-virus interaction, with enhanced stability for the antigens. Thus, this review strives to comprehend the viral cell pathogenesis concerning amino acid mutagenesis and current epidemiological standards of the Monkeypox disease across the globe. Furthermore, the review also recapitulates the various clinical challenges, current therapies, and progressive nanomedicine utilisation in the Monkeypox outbreak reinforced by various clinical trial reports. The contemporary challenges of novel drug delivery systems in Monkeypox treatment cannot be overlooked, and thus, authors have outlined the future strategies to develop successful nanomedicine to combat monkeypox. Future pandemics are inevitable but can be satisfactorily handled if we comprehend the crises, innovate, and develop cutting-edge technologies, especially by delving into frontiers like nanotechnology.
Collapse
Affiliation(s)
- Sourav Mohanto
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, 575018, India
| | - Md Faiyazuddin
- School of Pharmacy, Al-Karim University, Katihar, Bihar, 845106, India; Nano Drug Delivery®, Chapel Hill, NC, USA
| | - Amol Dilip Gholap
- Department of Pharmaceutics, St. John Institute of Pharmacy and Research, Palghar, Maharashtra, 401404, India
| | - Darshan Jc
- Department of Pharmacy Practice, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, 575018, India
| | - Adrija Bhunia
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, 575018, India
| | - Kannan Subbaram
- School of Medicine, The Maldives National University, Male', Maldives
| | - Mohammed Gulzar Ahmed
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, 575018, India
| | - Sagnik Nag
- Department of Bio-Sciences, School of Bio-Sciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Mohammad Shabib Akhtar
- Department of Clinical Pharmacy, College of Pharmacy, Najran University, Najran, Kingdom of Saudi Arabia
| | | | - Sanjit Sah
- Global Consortium for Public Health and Research, Datta Meghe Institute of Higher Education and Research, Jawaharlal Nehru Medical College, Wardha, 442001, India; SR Sanjeevani Hospital, Kalyanpur-10, Siraha, Nepal
| | - Sumira Malik
- Amity Institute of Biotechnology, Amity University, Jharkhand, 834002, Ranchi, India; School of Applied Sciences, Uttaranchal University, Dehradun, India
| | - Zahraa Haleem Al-Qaim
- Department of Anesthesia Techniques, Al-Mustaqbal University College, 51001, Hillah, Babylon, Iraq
| | - Joshuan J Barboza
- Escuela de Medicina, Universidad César Vallejo, Trujillo, 13007, Peru
| | - Ranjit Sah
- Tribhuvan University Teaching Hospital, Kathmandu, 46000, Nepal; Department of Clinical Microbiology, DY Patil Medical College, Hospital and Research Centre, DY Patil Vidyapeeth, Pune, 411000, Maharashtra, India; Department of Public Health Dentistry, Dr. D.Y. Patil Dental College and Hospital, Dr. D.Y. Patil Vidyapeeth, Pune, 411018, Maharashtra, India
| |
Collapse
|
28
|
Pereira PLG, Flores ERM, da Silva TPR, Faria APV, Ribeiro EEN, Sato APS, Gomes LP, Matozinhos FP. Epidemiology of monkeypox notifications in the state of Minas Gerais, Brazil. Rev Bras Enferm 2023; 76:e20220598. [PMID: 37820161 PMCID: PMC10561937 DOI: 10.1590/0034-7167-2022-0598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/06/2023] [Indexed: 10/13/2023] Open
Abstract
OBJECTIVES to describe the epidemiological profile of suspected, confirmed, and probable cases of monkeypox in the state of Minas Gerais, Brazil. METHODS a descriptive, retrospective study of reported suspected, confirmed, and probable cases of monkeypox infection in the state of Minas Gerais, Brazil. The study period was from the first notification, on June 11, to September 7, 2022. RESULTS a total of 759 suspected, confirmed, and probable cases of monkeypox infection were reported, with 35.44% suspected, 53.75% confirmed, and 10.81% probable cases, respectively. As for the coexisting diseases within confirmed cases, 38.79% were related to people living with human immunodeficiency virus, and 13.74% had some active sexually transmitted infection. Regarding the evolution of confirmed cases, 47.43% were cured. CONCLUSIONS the results contribute to greater knowledge and control of the infection by allowing better disease management and care offered in health services.
Collapse
|
29
|
Rishi E, Thomas J, Fashina T, Kim L, Yeh S. Emerging Pathogenic Viral Infections of the Eye. Annu Rev Vis Sci 2023; 9:71-89. [PMID: 37018917 DOI: 10.1146/annurev-vision-100820-010504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
Global health security threats and the public health impact resulting from emerging infectious diseases including the ongoing COVID-19 pandemic and recent Ebola virus disease outbreaks continuously emphasize the need for a comprehensive approach to preparedness, management of disease outbreaks, and health sequelae associated with emergent pathogens. A spectrum of associated ophthalmic manifestations, along with the potential persistence of emerging viral pathogens in ocular tissues, highlight the importance of an ophthalmic approach to contributing to efforts in the response to public health emergencies from disease outbreaks. This article summarizes the ophthalmic and systemic findings, epidemiology, and therapeutics for emerging viral pathogens identified by the World Health Organization as high-priority pathogens with epidemic potential.
Collapse
Affiliation(s)
- Ekta Rishi
- Department of Ophthalmology and Visual Sciences, Truhlsen Eye Institute, University of Nebraska Medical Center, Omaha, Nebraska, USA; , ,
| | | | - Tolulope Fashina
- Department of Ophthalmology and Visual Sciences, Truhlsen Eye Institute, University of Nebraska Medical Center, Omaha, Nebraska, USA; , ,
| | - Lucas Kim
- Mercer University School of Medicine, Augusta, Georgia, USA;
| | - Steven Yeh
- Department of Ophthalmology and Visual Sciences, Truhlsen Eye Institute, University of Nebraska Medical Center, Omaha, Nebraska, USA; , ,
- Global Center for Health Security, University of Nebraska Medical Center, Omaha, Nebraska, USA
| |
Collapse
|
30
|
Dubey T, Chakole S, Agrawal S, Gupta A, Munjewar PK, Sharma R, Yelne S. Enhancing Nursing Care in Monkeypox (Mpox) Patients: Differential Diagnoses, Prevention Measures, and Therapeutic Interventions. Cureus 2023; 15:e44687. [PMID: 37809174 PMCID: PMC10551575 DOI: 10.7759/cureus.44687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/04/2023] [Indexed: 10/10/2023] Open
Abstract
Monkeypox (Mpox), a rare zoonotic viral infection caused by the monkeypox virus, has been gaining attention due to its potential for human-to-human transmission and its clinical resemblance to other poxvirus infections, such as smallpox and chickenpox. Enhancing nursing care for monkeypox patients is imperative to manage and contain its spread effectively. This review analyzes the key aspects of enhancing nursing care in monkeypox patients, focusing on differential diagnoses, prevention measures, and therapeutic interventions. Differential diagnosis is crucial in terms of the early recognition and management of monkeypox. Given its similarity to other poxvirus infections, a thorough assessment of clinical symptoms, travel history, and exposure to potential reservoir hosts is essential. Nursing professionals play a pivotal role in eliciting comprehensive patient histories and relaying this information to the medical team for accurate diagnosis. Prevention measures constitute a vital component of nursing care in monkeypox management. Implementing stringent infection prevention and control practices, including isolation protocols, personal protective equipment (PPE) usage, and hand hygiene, is imperative to curbing nosocomial transmission. Nurses are at the forefront of enforcing these measures, educating patients, families, and healthcare staff about their significance, and ensuring strict adherence. Therapeutic interventions in monkeypox largely focus on supportive care and symptom management. Nurses occupy a central role in administering antiviral medications, providing wound care for skin lesions, and monitoring patients for potential complications such as secondary bacterial infections. Psychosocial support is equally important, as patients often experience fear and anxiety due to the disease's contagious nature. Nursing professionals offer compassionate care, address patients' emotional needs, and facilitate communication between patients and their families. Enhancing nursing care for monkeypox entails a multifaceted approach involving differential diagnoses, prevention measures, and therapeutic interventions. Nursing professionals serve as frontline caregivers, pivotal in early diagnosis, effective prevention strategies, and comprehensive patient management. As the global healthcare community faces an influx of emerging infectious diseases, the lessons learned from managing monkeypox can contribute to the creation of a more resilient and responsive nursing workforce capable of effectively addressing future health challenges.
Collapse
Affiliation(s)
- Tanishq Dubey
- General Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Swarupa Chakole
- Community Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Suyash Agrawal
- Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Anannya Gupta
- Internal Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Pratiksha K Munjewar
- Medical Surgical Nursing, Smt. Radhikabai Meghe Memorial College of Nursing, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Ranjana Sharma
- Medical Surgical Nursing, Smt. Radhikabai Meghe Memorial College of Nursing, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Seema Yelne
- Nursing, Shalinitai Meghe College of Nursing, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
31
|
Mitchell DT, Mentz JA, Wu-Fienberg Y, Chen W, Greives MR, Marques ES. Monkeypox Presenting as a Hand Consult in the Emergency Department: Two Case Reports. Hand (N Y) 2023; 18:NP1-NP5. [PMID: 37291857 PMCID: PMC10470237 DOI: 10.1177/15589447231177098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The ongoing outbreak of the monkeypox virus (now referred to as "mpox") was deemed a public health emergency by the World Health Organization in 2022. The United States now reports the highest number of mpox cases, with 29 980 cases and 21 deaths as of January 11, 2023. The most common presenting symptom is a pruritic, vesicular rash that commonly involves the hands. While covering hand call, our division has encountered 2 cases of mpox in the emergency department for which the chief complaint was a hand lesion. Because hand surgeons will be called upon to make an initial diagnosis, the purpose of these case reports is to describe the presentation, disease course, treatment, and outcomes of these mpox patients. These patients had both uncontrolled HIV as well as other sexually transmitted disease. Symptoms included painful vesicular hand lesions with ulceration and eventual central necrosis, followed by similar lesions on the face, trunk, and genital area. Diagnosis was made using nucleic acid amplification testing through polymerase chain reaction. The patients were treated with restoration of immunity through control of HIV as well as treatment of all secondary bacterial infections. One patient died in the hospital, and the other survived without any long-term defects.
Collapse
Affiliation(s)
| | - James A. Mentz
- The University of Texas Health Science Center at Houston, USA
| | | | - Wendy Chen
- The University of Texas Health Science Center at Houston, USA
| | | | - Erik S. Marques
- The University of Texas Health Science Center at Houston, USA
| |
Collapse
|
32
|
Eustaquio PC, Salmon-Trejo LA, McGuire LC, Ellington SR. Epidemiologic and Clinical Features of Mpox in Adults Aged >50 Years - United States, May 2022-May 2023. MMWR. MORBIDITY AND MORTALITY WEEKLY REPORT 2023; 72:893-896. [PMID: 37590262 PMCID: PMC10441827 DOI: 10.15585/mmwr.mm7233a3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
During May 2022-May 2023, approximately 30,000 mpox cases were reported in the United States, predominantly among young adult men. Persons aged >50 years might experience more severe mpox disease because of a higher prevalence of comorbidities. Conversely, they could have residual protection from childhood smallpox vaccination against monkeypox virus infection and severe mpox, as has been suggested by investigation of some previous mpox outbreaks. To examine the characteristics of mpox cases among adults aged >50 years, analysts compared mpox epidemiology and clinical outcomes among all adults aged ≥18 years, by age group. Further, outcomes were compared among adults aged >50 years by JYNNEOS vaccination status. During May 10, 2022-May 17, 2023, among 29,984 adults with probable or confirmed mpox reported to CDC, 2,909 (9.7%) were aged >50 years, 96.3% of whom were cisgender men. Compared with adults aged 18-50 years, adults aged >50 years had higher prevalences of immunocompromising conditions (p<0.001) and HIV infection (p<0.001). Among adults with mpox aged >50 years, 27.6% had received JYNNEOS vaccination; this group had lower prevalences of constitutional symptoms (p<0.001), pruritus (p<0.001), and hospitalization (p = 0.002) compared with those who had not received JYNNEOS vaccine. Currently recommended JYNNEOS vaccination among all adults at risk for mpox should be encouraged, irrespective of childhood smallpox vaccination status.
Collapse
|
33
|
Rojas-Carabali W, Cifuentes-González C, Agrawal R, de-la-Torre A. Spectrum of ophthalmic manifestations in monkeypox virus infection worldwide: Systematic review and meta-analysis. Heliyon 2023; 9:e18561. [PMID: 37576249 PMCID: PMC10413003 DOI: 10.1016/j.heliyon.2023.e18561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 07/17/2023] [Accepted: 07/20/2023] [Indexed: 08/15/2023] Open
Abstract
Mpox virus infection is a significant public health concern worldwide due to its potential severity and the likelihood of outbreaks occurring across different regions. Ophthalmic manifestations of the disease have been linked with more severe cases, leading to the need for hospitalization and antiviral therapy. A systematic review and meta-analysis were conducted following PRISMA guidelines to summarize the literature available on this topic. The review revealed that ophthalmic manifestations, such as conjunctivitis and periocular umbilicated lesions, are the most common in Mpox virus infections. However, severe manifestations, such as corneal opacity, that can potentially cause blindness may also occur. Antiviral treatment with tecovirimat and topical management for conjunctivitis can be considered for severe cases. However, the evidence quality is poor due to the predominance of case reports and imprecise characterization of the ophthalmic manifestations. Overall, ophthalmologists and healthcare professionals should be aware of these manifestations for early diagnosis and timely treatment.
Collapse
Affiliation(s)
- William Rojas-Carabali
- Neuroscience (NEUROS) Research Group, Neurovitae Center for Neuroscience, Institute of Translational Medicine (IMT), Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Colombia
- Advanced Ophthalmic Imaging Laboratory, Department of Ophthalmology, New York University School of Medicine, USA
| | - Carlos Cifuentes-González
- Neuroscience (NEUROS) Research Group, Neurovitae Center for Neuroscience, Institute of Translational Medicine (IMT), Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Colombia
| | - Rupesh Agrawal
- National Healthcare Group Eye Institute, Tan Tock Seng Hospital, Singapore
- Ocular Infections and AntiMicrobials Group, Singapore Eye Research Institute, Singapore
- Duke NUS Medical School, Singapore
- Lee Kong Chian School of Medicine, Singapore
| | - Alejandra de-la-Torre
- Neuroscience (NEUROS) Research Group, Neurovitae Center for Neuroscience, Institute of Translational Medicine (IMT), Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Colombia
| |
Collapse
|
34
|
Zahmatyar M, Fazlollahi A, Motamedi A, Zolfi M, Seyedi F, Nejadghaderi SA, Sullman MJM, Mohammadinasab R, Kolahi AA, Arshi S, Safiri S. Human monkeypox: history, presentations, transmission, epidemiology, diagnosis, treatment, and prevention. Front Med (Lausanne) 2023; 10:1157670. [PMID: 37547598 PMCID: PMC10397518 DOI: 10.3389/fmed.2023.1157670] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 07/03/2023] [Indexed: 08/08/2023] Open
Abstract
Human monkeypox is a zoonotic infection that is similar to the diseases caused by other poxviruses. It is endemic among wild rodents in the rainforests of Central and Western Africa, and can be transmitted via direct skin contact or mucosal exposure to infected animals. The initial symptoms include fever, headache, myalgia, fatigue, and lymphadenopathy, the last of which is the main symptom that distinguishes it from smallpox. In order to prevent and manage the disease, those who are infected must be rapidly diagnosed and isolated. Several vaccines have already been developed (e.g., JYNNEOS, ACAM2000 and ACAM3000) and antiviral drugs (e.g., cidofovir and tecovirimat) can also be used to treat the disease. In the present study, we reviewed the history, morphology, clinical presentations, transmission routes, diagnosis, prevention, and potential treatment strategies for monkeypox, in order to enable health authorities and physicians to better deal with this emerging crisis.
Collapse
Affiliation(s)
- Mahdi Zahmatyar
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Neurosciences Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Asra Fazlollahi
- Neurosciences Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Motamedi
- Neurosciences Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maedeh Zolfi
- Neurosciences Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Seyedi
- Neurosciences Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyed Aria Nejadghaderi
- Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Systematic Review and Meta-analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mark J. M. Sullman
- Department of Life and Health Sciences, University of Nicosia, Nicosia, Cyprus
- Department of Social Sciences, University of Nicosia, Nicosia, Cyprus
| | - Reza Mohammadinasab
- Department of History of Medicine, School of Traditional Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali-Asghar Kolahi
- Social Determinants of Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahnam Arshi
- Social Determinants of Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeid Safiri
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
- Social Determinants of Health Research Center, Department of Community Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
35
|
Martínez-Fernández DE, Fernández-Quezada D, Casillas-Muñoz FAG, Carrillo-Ballesteros FJ, Ortega-Prieto AM, Jimenez-Guardeño JM, Regla-Nava JA. Human Monkeypox: A Comprehensive Overview of Epidemiology, Pathogenesis, Diagnosis, Treatment, and Prevention Strategies. Pathogens 2023; 12:947. [PMID: 37513794 PMCID: PMC10384102 DOI: 10.3390/pathogens12070947] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/16/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
Monkeypox virus (MPXV) is an emerging zoonotic virus that belongs to the Orthopoxvirus genus and presents clinical symptoms similar to those of smallpox, such as fever and vesicular-pustular skin lesions. However, the differential diagnosis between smallpox and monkeypox is that smallpox does not cause lymphadenopathy but monkeypox generates swelling in the lymph nodes. Since the eradication of smallpox, MPXV has been identified as the most common Orthopoxvirus to cause human disease. Despite MPXV being endemic to certain regions of Africa, the current MPXV outbreak, which began in early 2022, has spread to numerous countries worldwide, raising global concern. As of the end of May 2023, over 87,545 cases and 141 deaths have been reported, with most cases identified in non-endemic countries, primarily due to human-to-human transmission. To better understand this emerging threat, this review presents an overview of key aspects of MPXV infection, including its animal reservoirs, modes of transmission, animal models, epidemiology, clinical and immunological features, diagnosis, treatments, vaccines, and prevention strategies. The material presented here provides a comprehensive understanding of MPXV as a disease, while emphasizing the significance and unique characteristics of the 2022 outbreak. This offers valuable information that can inform future research and aid in the development of effective interventions.
Collapse
Affiliation(s)
| | - David Fernández-Quezada
- Department of Neurosciences, University Center for Health Science (CUCS), University of Guadalajara, Guadalajara 44340, Mexico
| | | | | | - Ana Maria Ortega-Prieto
- Department of Microbiology, University of Málaga, 29010 Málaga, Spain
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, 29590 Málaga, Spain
| | - Jose M Jimenez-Guardeño
- Department of Microbiology, University of Málaga, 29010 Málaga, Spain
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, 29590 Málaga, Spain
| | - Jose Angel Regla-Nava
- Department of Microbiology and Pathology, University Center for Health Science (CUCS), University of Guadalajara, Guadalajara 44340, Mexico
| |
Collapse
|
36
|
Alves M, Asbell P, Dogru M, Giannaccare G, Grau A, Gregory D, Kim DH, Marini MC, Ngo W, Nowinska A, Saldanha IJ, Villani E, Wakamatsu TH, Yu M, Stapleton F. TFOS Lifestyle Report: Impact of environmental conditions on the ocular surface. Ocul Surf 2023; 29:1-52. [PMID: 37062427 DOI: 10.1016/j.jtos.2023.04.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 04/06/2023] [Indexed: 04/18/2023]
Abstract
Environmental risk factors that have an impact on the ocular surface were reviewed and associations with age and sex, race/ethnicity, geographical area, seasonality, prevalence and possible interactions between risk factors are reviewed. Environmental factors can be (a) climate-related: temperature, humidity, wind speed, altitude, dew point, ultraviolet light, and allergen or (b) outdoor and indoor pollution: gases, particulate matter, and other sources of airborne pollutants. Temperature affects ocular surface homeostasis directly and indirectly, precipitating ocular surface diseases and/or symptoms, including trachoma. Humidity is negatively associated with dry eye disease. There is little data on wind speed and dewpoint. High altitude and ultraviolet light exposure are associated with pterygium, ocular surface degenerations and neoplastic disease. Pollution is associated with dry eye disease and conjunctivitis. Primary Sjögren syndrome is associated with exposure to chemical solvents. Living within a potential zone of active volcanic eruption is associated with eye irritation. Indoor pollution, "sick" building or house can also be associated with eye irritation. Most ocular surface conditions are multifactorial, and several environmental factors may contribute to specific diseases. A systematic review was conducted to answer the following research question: "What are the associations between outdoor environment pollution and signs or symptoms of dry eye disease in humans?" Dry eye disease is associated with air pollution (from NO2) and soil pollution (from chromium), but not from air pollution from CO or PM10. Future research should adequately account for confounders, follow up over time, and report results separately for ocular surface findings, including signs and symptoms.
Collapse
Affiliation(s)
- Monica Alves
- Department of Ophthalmology and Otorhinolaryngology, University of Campinas Campinas, Brazil.
| | - Penny Asbell
- Department of Bioengineering, University of Memphis, Memphis, USA
| | - Murat Dogru
- School of Optometry and Vision Science, UNSW, Sydney, NSW, Australia
| | - Giuseppe Giannaccare
- Department of Ophthalmology, University Magna Graecia of Catanzaro, Cantanzaro, Italy
| | - Arturo Grau
- Department of Ophthalmology, Pontifical Catholic University of Chile, Santiago, Chile
| | - Darren Gregory
- Department of Ophthalmology, University of Colorado School of Medicine, Aurora, USA
| | - Dong Hyun Kim
- Department of Ophthalmology, Korea University College of Medicine, Seoul, South Korea
| | | | - William Ngo
- School of Optometry & Vision Science, University of Waterloo, Waterloo, Canada
| | - Anna Nowinska
- Clinical Department of Ophthalmology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Ian J Saldanha
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Edoardo Villani
- Department of Clinical Sciences and Community Health, University of Milan, Eye Clinic, San Giuseppe Hospital, IRCCS Multimedica, Milan, Italy
| | - Tais Hitomi Wakamatsu
- Department of Ophthalmology and Visual Sciences, Paulista School of Medicine, São Paulo Hospital, Federal University of São Paulo, Brazil
| | - Mitasha Yu
- Sensory Functions, Disability and Rehabilitation Unit, World Health Organization, Geneva, Switzerland
| | - Fiona Stapleton
- School of Optometry and Vision Science, UNSW, Sydney, NSW, Australia
| |
Collapse
|
37
|
Chenchula S, Ghanta MK, Amerneni KC, Rajakarunakaran P, Chandra MB, Chavan M, Gupta R. A systematic review to identify novel clinical characteristics of monkeypox virus infection and therapeutic and preventive strategies to combat the virus. Arch Virol 2023; 168:195. [PMID: 37386209 DOI: 10.1007/s00705-023-05808-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 05/02/2023] [Indexed: 07/01/2023]
Abstract
Since May 2022, there has been a global increase in the number of Mpox virus (MPXV) cases in countries that were previously considered non-endemic. In July 2022, the World Health Organization (WHO) declared this outbreak a public health emergency of international concern. The objective of this systematic review is to examine the novel clinical features of Mpox and to assess the available treatment options for managing the disease in patients who are afflicted with it. We conducted a systematic search in several databases, including PubMed, Google Scholar, Cochrane Library, and the grey literature, from May 2022 to February 2023. We identified 21 eligible studies, which included 18,275 Mpox cases, for final qualitative analysis. The majority of cases were reported in men who have sex with men (MSM) and immunocompromised individuals with HIV (36.1%). The median incubation period was 7 days (IQR: 3-21). The novel clinical manifestations include severe skin lesions on the palms, oral and anogenital regions, as well as proctitis, penile edema, tonsillitis, ocular disease, myalgia, lethargy, and sore throat, without any preceding prodromal symptoms or systemic illness. In addition, fully asymptomatic cases were documented, and various complications, including encephalomyelitis and angina, were noted. Clinicians must be familiar with these novel clinical characteristics, as they can aid in testing and tracing such patients, as well as asymptomatic high-risk populations such as heterosexuals and MSM. In addition to supportive care, currently, there are several effective prophylactic and treatment strategies available to combat Mpox, including the vaccines ACAM2000 and MVA-BN7, as well as the immunoglobulin VIGIV and the antivirals tecovirimat, brincidofovir, and cidofovir against severe Mpox infection.
Collapse
Affiliation(s)
- Santenna Chenchula
- Department of Pharmacology, All India Institute of Medical Sciences, Bhopal, India.
| | - Mohan Krishna Ghanta
- Department of Pharmacology, MVJ Medical College and Research Hospital, Bangalore, Karnataka, India
| | | | | | | | - Madhavrao Chavan
- Department of Pharmacology, All India Institute of Medical Sciences, Mangalagiri, India
| | - Rupesh Gupta
- Department of Internal Medicine, Government Medical College, Shahdol, Madhya Pradesh, India
| |
Collapse
|
38
|
Rabaan AA, Al-Shwaikh SA, Alfouzan WA, Al-Bahar AM, Garout M, Halwani MA, Albayat H, Almutairi NB, Alsaeed M, Alestad JH, Al-Mozaini MA, Ashgar TMA, Alotaibi S, Abuzaid AA, Aldawood Y, Alsaleh AA, Al-Afghani HM, Altowaileb JA, Alshukairi AN, Arteaga-Livias K, Singh KKB, Imran M. A Comprehensive Review on Monkeypox Viral Disease with Potential Diagnostics and Therapeutic Options. Biomedicines 2023; 11:1826. [PMID: 37509466 PMCID: PMC10376530 DOI: 10.3390/biomedicines11071826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/20/2023] [Accepted: 06/23/2023] [Indexed: 07/30/2023] Open
Abstract
The purpose of this review is to give an up-to-date, thorough, and timely overview of monkeypox (Mpox), a severe infectious viral disease. Furthermore, this review provides an up-to-date treatment option for Mpox. The monkeypox virus (MPXV) has remained the most virulent poxvirus for humans since the elimination of smallpox approximately 41 years ago, with distribution mainly in central and west Africa. Mpox in humans is a zoonotically transferred disease that results in symptoms like those of smallpox. It had spread throughout west and central Africa when it was first diagnosed in the Republic of Congo in 1970. Mpox has become a major threat to global health security, necessitating a quick response by virologists, veterinarians, public health professionals, doctors, and researchers to create high-efficiency diagnostic tests, vaccinations, antivirals, and other infection control techniques. The emergence of epidemics outside of Africa emphasizes the disease's global significance. A better understanding of Mpox's dynamic epidemiology may be attained by increased surveillance and identification of cases.
Collapse
Affiliation(s)
- Ali A Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
- Department of Public Health and Nutrition, The University of Haripur, Haripur 22610, Pakistan
| | - Seham A Al-Shwaikh
- Department of Commitment Management, Directorate of Health Affairs in the Eastern Province, Dammam 31176, Saudi Arabia
| | - Wadha A Alfouzan
- Department of Microbiology, Faculty of Medicine, Kuwait University, Safat 13110, Kuwait
- Microbiology Unit, Department of Laboratories, Farwania Hospital, Farwania 85000, Kuwait
| | - Ali M Al-Bahar
- Department of Laboratory, Dhahran Long Term Care Hospital, Dhahran 34257, Saudi Arabia
| | - Mohammed Garout
- Department of Community Medicine and Health Care for Pilgrims, Faculty of Medicine, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Muhammad A Halwani
- Department of Medical Microbiology, Faculty of Medicine, Al Baha University, Al Baha 4781, Saudi Arabia
| | - Hawra Albayat
- Infectious Disease Department, King Saud Medical City, Riyadh 7790, Saudi Arabia
| | - Norah B Almutairi
- Infectious Disease Department, King Saud Medical City, Riyadh 7790, Saudi Arabia
| | - Mohammed Alsaeed
- Infectious Disease Division, Department of Medicine, Prince Sultan Military Medical City, Riyadh 11159, Saudi Arabia
| | - Jeehan H Alestad
- Immunology and Infectious Microbiology Department, University of Glasgow, Glasgow G1 1XQ, UK
- Microbiology Department, Collage of Medicine, Jabriya 46300, Kuwait
| | - Maha A Al-Mozaini
- Immunocompromsised Host Research Section, Department of Infection and Immunity, King Faisal, Specialist Hospital and Research Centre, Riyadh 11564, Saudi Arabia
| | - Tala M Al Ashgar
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Riyadh 11481, Saudi Arabia
| | - Sultan Alotaibi
- Molecular Microbiology Department, King Fahad Medical City, Riyadh 11525, Saudi Arabia
| | - Abdulmonem A Abuzaid
- Medical Microbiology Department, Security Forces Hospital Programme, Dammam 32314, Saudi Arabia
| | - Yahya Aldawood
- Clinical Laboratory Science Department, Mohammed Al-Mana College for Medical Sciences, Dammam 34222, Saudi Arabia
| | - Abdulmonem A Alsaleh
- Clinical Laboratory Science Department, Mohammed Al-Mana College for Medical Sciences, Dammam 34222, Saudi Arabia
| | - Hani M Al-Afghani
- Laboratory Department, Security Forces Hospital, Makkah 24269, Saudi Arabia
- iGene Center for Research and Training, Jeddah 2022, Saudi Arabia
| | - Jaffar A Altowaileb
- Microbiology Laboratory, Laboratory Department, Qatif Central Hospital, Qatif 32654, Saudi Arabia
| | - Abeer N Alshukairi
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
- Department of Medicine, King Faisal Specialist Hospital and Research Center, Jeddah 22233, Saudi Arabia
| | - Kovy Arteaga-Livias
- Escuela de Medicina-Filial Ica, Universidad Privada San Juan Bautista, Ica 11000, Peru
- Escuela de Medicina, Universidad Nacional Hermilio Valdizán, Huanuco 10000, Peru
| | - Kirnpal Kaur Banga Singh
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Malaysia
| | - Mohd Imran
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia
| |
Collapse
|
39
|
Cuomo JD, Khalil BW, Abdelmessih MM, Anwar M, Akri AE, Piccarelli M. A Case Report of Pedal Monkeypox in a HIV Patient: A Challenging Diagnosis with a Misleading History. FOOT & ANKLE SURGERY (NEW YORK, N.Y.) 2023:100284. [PMID: 37360541 PMCID: PMC10271939 DOI: 10.1016/j.fastrc.2023.100284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/16/2023] [Accepted: 03/23/2023] [Indexed: 06/28/2023]
Abstract
Pedal Monkeypox is a disease which can mimic many other pedal conditions. It should always be considered in differential diagnosis. A young male HIV patient who presented with a tender foot lesion and diagnosed with pedal Monkeypox as a result of performed tests is discussed hereby in the case report. We expect that this case report adds to the existing literature on this subject.
Collapse
Affiliation(s)
- Joseph D Cuomo
- Institution: 1. Richmond University Medical Center, Staten Island, NY
| | - Beshoy W Khalil
- Institution: 1. Richmond University Medical Center, Staten Island, NY
| | | | - Mohamed Anwar
- Institution: 1. Richmond University Medical Center, Staten Island, NY
| | | | | |
Collapse
|
40
|
Swed S, Alibrahim H, Bohsas H, Aljabali A, Almoshantaf MB, Sawaf B, Shoib S, Patwary MM, Albazee E, Lee KY, Farwati A, Seijari MN, Hafez W, Rakab A. Monkeypox in Syria: Highlighting an awareness issue. IJID REGIONS 2023; 7:271-276. [PMID: 37200559 PMCID: PMC10116148 DOI: 10.1016/j.ijregi.2023.04.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 04/10/2023] [Accepted: 04/11/2023] [Indexed: 05/20/2023]
Abstract
Background The World Health Organization (WHO) verified 780 cases of monkeypox across 27 countries between 13 May 2022 and 2 June 2022. The aim of our study was to assess the level of awareness of human monkeypox virus among Syrian medical students, general practitioners, medical residents, and specialists. Methods A cross-sectional online survey was performed in Syria between May 2 and September 8, 2022. The survey consisted of 53 questions within the following three categories: demographic information, work-related details, and monkeypox knowledge. Results In total, 1257 Syrian healthcare workers and medical students were enrolled in our study. The animal host and incubation time for monkeypox were correctly identified by just 2.7% and 33.3% of responders, respectively. Sixty percent of the study sample thought that the symptoms of monkeypox and smallpox are identical. No statistically significant associations were found between predictor variables and knowledge regarding monkeypox (p-value > 0.05). Conclusion Education and awareness regarding monkeypox vaccinations are of paramount importance. It is essential that clinical doctors are adequately aware of this disease, in order to avoid an uncontrolled situation, as experienced with COVID-19.
Collapse
Affiliation(s)
- Sarya Swed
- Faculty of Medicine Aleppo University, Aleppo, Syria
| | | | | | | | | | - Bisher Sawaf
- Department of Internal Medicine, Hamad Medical Corporation, Doha, Qatar
| | - Sheikh Shoib
- JLNM Hospital, Rainawari, Srinagar
- Directorate of Health Services, J&K, India
| | - Muhammad Mainuddin Patwary
- Environment and Sustainability Research Initiative, Khulna, 9208, Bangladesh
- Environmental Science Discipline, Life Science School, Khulna University, Khulna, 9208, Bangladesh
| | - Ebraheem Albazee
- Kuwait Institute for Medical Specializations, Kuwait City, Kuwait
| | - Ka Yiu Lee
- Department of Health Sciences, Mid Sweden University, Sweden
| | - Amr Farwati
- Department of Internal Medicine, Hamad Medical Corporation, Doha, Qatar
| | | | - Wael Hafez
- NMC Royal Hospital, 16th Street, Khalifa City, Abu Dhabi, UAE
- Medical Research Division, Department of Internal Medicine, The National Research Centre, Cairo, Egypt
| | - Amine Rakab
- Assistant Professor of Clinical Medicine, Medicine, Weill Cornell Medical College, Qatar
| |
Collapse
|
41
|
Elsheikh R, Makram AM, Vasanthakumaran T, Tomar S, Shamim K, Tranh ND, Elsheikh SS, Van NT, Huy NT. Monkeypox: A comprehensive review of a multifaceted virus. INFECTIOUS MEDICINE 2023; 2:74-88. [PMID: 38077831 PMCID: PMC10699692 DOI: 10.1016/j.imj.2023.04.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/23/2023] [Accepted: 04/29/2023] [Indexed: 03/11/2024]
Abstract
In May 2022, the world witnessed the re-emergence of the zoonotic disease monkeypox. While this was not the first epidemic of this disease, what differentiated the outbreak was the rapid global spread and increase of cases, which led the WHO to declare monkeypox a global health emergency. Although the disease spreads mainly through inadequately cooked meat of various rodent species, this virus also shows droplet, respiratory, sexual, and even vertical transmission. Monkeypox further multiplies in lymphoproliferative organs and presents with a classical smallpox-like rash, fever, headache, and muscle aches. Diagnosis is confirmed with a polymerase-chain-reaction test and is managed largely supportively with possible usage of some antivirals and immunoglobulins. Moreover, some pre-exposure and postexposure prophylactic vaccines have been developed. This paper aims to conduct an in-depth review of the historical epidemics, transmission, pathophysiology, clinical presentation, and management of the monkeypox disease.
Collapse
Affiliation(s)
- Randa Elsheikh
- Deanery of Biomedical Sciences at Edinburgh Medical School, University of Edinburgh, Edinburgh EH10 5HF, United Kingdom
- Online Research Club (http://www.onlineresearchclub.org), Nagasaki 852-8523, Japan
| | - Abdelrahman M. Makram
- Online Research Club (http://www.onlineresearchclub.org), Nagasaki 852-8523, Japan
- School of Public Health, Imperial College London, London SW7 2BX, United Kingdom
| | - Tamilarasy Vasanthakumaran
- Online Research Club (http://www.onlineresearchclub.org), Nagasaki 852-8523, Japan
- Global Clinical Scholars Research Training, Harvard Medical School, Boston, MA 02115, USA
| | | | | | - Nguyen Dong Tranh
- Online Research Club (http://www.onlineresearchclub.org), Nagasaki 852-8523, Japan
- Department of Infection Control, Binh Dinh Provincial General Hospital, Binh Dinh 55000, Vietnam
| | | | - Nguyen Thanh Van
- Online Research Club (http://www.onlineresearchclub.org), Nagasaki 852-8523, Japan
- Global Clinical Scholars Research Training, Harvard Medical School, Boston, MA 02115, USA
| | - Nguyen Tien Huy
- Online Research Club (http://www.onlineresearchclub.org), Nagasaki 852-8523, Japan
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki 852-8523, Japan
| |
Collapse
|
42
|
Ajmal A, Mahmood A, Hayat C, Hakami MA, Alotaibi BS, Umair M, Abdalla AN, Li P, He P, Wadood A, Hu J. Computer-assisted drug repurposing for thymidylate kinase drug target in monkeypox virus. Front Cell Infect Microbiol 2023; 13:1159389. [PMID: 37313340 PMCID: PMC10258308 DOI: 10.3389/fcimb.2023.1159389] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 05/10/2023] [Indexed: 06/15/2023] Open
Abstract
Introduction Monkeypox is a zoonotic disease caused by brick-shaped enveloped monkeypox (Mpox) virus that belongs to the family of ancient viruses known as Poxviridae. Subsequently, the viruses have been reported in various countries. The virus is transmitted by respiratory droplets, skin lesions, and infected body fluids. The infected patients experience fluid-filled blisters, maculopapular rash, myalgia, and fever. Due to the lack of effective drugs or vaccines, there is a need to identify the most potent and effective drugs to reduce the spread of monkeypox. The current study aimed to use computational methods to quickly identify potentially effective drugs against the Mpox virus. Methods In our study, the Mpox protein thymidylate kinase (A48R) was targeted because it is a unique drug target. We screened a library of 9000 FDA-approved compounds of the DrugBank database by using various in silico approaches, such as molecular docking and molecular dynamic (MD) simulation. Results Based on docking score and interaction analysis, compounds DB12380, DB13276, DB13276, DB11740, DB14675, DB11978, DB08526, DB06573, DB15796, DB08223, DB11736, DB16250, and DB16335 were predicted as the most potent. To examine the dynamic behavior and stability of the docked complexes, three compounds-DB16335, DB15796, and DB16250 -along with the Apo state were simulated for 300ns. The results revealed that compound DB16335 revealed the best docking score (-9.57 kcal/mol) against the Mpox protein thymidylate kinase. Discussion Additionally, during the 300 ns MD simulation period, thymidylate kinase DB16335 showed great stability. Further, in vitro and in vivo study is recommended for the final predicted compounds.
Collapse
Affiliation(s)
- Amar Ajmal
- Department of Biochemistry, Computational Medicinal Chemistry Laboratory, Abdul Wali Khan University, Mardan, Pakistan
| | - Arif Mahmood
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Chandni Hayat
- Department of Biochemistry, Computational Medicinal Chemistry Laboratory, Abdul Wali Khan University, Mardan, Pakistan
| | - Mohammed Ageeli Hakami
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Al-Quwayiyah, Shaqra University, Riyadh, Saudi Arabia
| | - Bader S. Alotaibi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Al-Quwayiyah, Shaqra University, Riyadh, Saudi Arabia
| | - Muhammad Umair
- Department of Life Sciences, School of Science, University of Management and Technology (UMT), Lahore, Pakistan
| | - Ashraf N. Abdalla
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ping Li
- Institute of Biomedical Sciences, Shanxi University, Taiyuan, China
| | - Pei He
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Abdul Wadood
- Department of Biochemistry, Computational Medicinal Chemistry Laboratory, Abdul Wali Khan University, Mardan, Pakistan
| | - Junjian Hu
- Department of Central Laboratory, SSL Central Hospital of Dongguan City, Affiliated Dongguan Shilong People’s Hospital of Southern Medical University, Dongguan, China
| |
Collapse
|
43
|
Khamees A, Awadi S, Al-Shami K, Alkhoun HA, Al-Eitan SF, Alsheikh AM, Saeed A, Al-Zoubi RM, Zoubi MSA. Human monkeypox virus in the shadow of the COVID-19 pandemic. J Infect Public Health 2023; 16:1149-1157. [PMID: 37269693 DOI: 10.1016/j.jiph.2023.05.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/31/2023] [Accepted: 05/10/2023] [Indexed: 06/05/2023] Open
Abstract
BACKGROUND The end of smallpox in 1980 and the subsequent stopping of vaccination against smallpox was followed by the emergence of monkeypox (mpox), a viral disease of animal origin, meaning that it is transmitted from animal to human. The symptoms of mpox are similar to smallpox, except that they are less severe in terms of clinical features. In the case of public health, the mpox virus is one of the most important orthopoxviruses (such as variola, cowpox, and vaccinia) that come from the family Poxviridae. Mpox occurs mostly in central Africa and sometimes in tropical rainforests or some urban areas. Also, there are threats other than COVID-19, that must be addressed and prevented from spreading, as there has been an outbreak of mpox cases since May 7, 2022, throughout the USA, Europe, Australia, and part of Africa. OBJECTIVES In this review, we will discuss mpox between the past, the present and during the COVID-19 pandemic. Also, it offers an updated summary of the taxonomy, etiology, transmission, and epidemiology of mpox illness. In addition, the current review aims to highlight the importance of emerging pandemics in the same era such as mpox and COVID-19. METHODS A literature search was done for the study using online sources like PubMed and Google Scholar. Publications in English were included. Data for study variables were extracted. After the duplicate articles were eliminated, full-text screening was performed on the papers' titles and abstracts. RESULTS The evaluation included a series documenting mpox virus outbreaks, and both prospective and retrospectiveinvestigations. CONCLUSIONS monkeypox is a viral disease caused by the monkeypox virus (MPXV), which is primarily found in central and western Africa. The disease is transmitted from animals to humans and presents symptoms similar to those of smallpox, including fever, headache, muscle aches, and a rash. Monkeypox can lead to complications such as secondary integument infection, bronchopneumonia, sepsis, and encephalitis, as well as corneal infection that can result in blindness. There is no specific clinically proven treatment for monkeypox, and treatment is primarily supportive. However, antiviral drugs and vaccines are available for cross-protection against the virus, and strict infection control measures and vaccination of close contacts of affected individuals can help prevent and control outbreaks.
Collapse
Affiliation(s)
- Almu'atasim Khamees
- Faculty of Medicine, Yarmouk University, P.O Box 566, 21163 Irbid, Jordan; Department of General Surgery, King Hussein Cancer Center, Amman, 11941, Jordan.
| | - Sajeda Awadi
- Faculty of Medicine, Yarmouk University, P.O Box 566, 21163 Irbid, Jordan.
| | - Khayry Al-Shami
- Faculty of Medicine, Yarmouk University, P.O Box 566, 21163 Irbid, Jordan.
| | - Hayat Abu Alkhoun
- Faculty of Medicine, Yarmouk University, P.O Box 566, 21163 Irbid, Jordan.
| | - Sharaf F Al-Eitan
- Faculty of Medicine, Yarmouk University, P.O Box 566, 21163 Irbid, Jordan.
| | | | - Ahmad Saeed
- Faculty of Medicine, Yarmouk University, P.O Box 566, 21163 Irbid, Jordan.
| | - Raed M Al-Zoubi
- Surgical Research Section, Department of Surgery, Hamad Medical Corporation, Doha, Qatar; Department of Biomedical Sciences, College of Health Sciences, QU-Health, Qatar University, Doha 2713, Qatar; Department of Chemistry, Jordan University of Science and Technology, P.O.Box 3030, Irbid 22110, Jordan.
| | | |
Collapse
|
44
|
Issa AW, Alkhofash NF, Gopinath D, Varma SR. Oral Manifestations in Monkeypox: A Scoping Review on Implications for Oral Health. Dent J (Basel) 2023; 11:dj11050132. [PMID: 37232783 DOI: 10.3390/dj11050132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/30/2023] [Accepted: 05/10/2023] [Indexed: 05/27/2023] Open
Abstract
BACKGROUND The monkeypox outbreak in 2022 caused concern in the public. Infected patients usually present prodromal symptoms, such as lesions on their skin and mucous membranes, including the oral cavity. The current study aims to review the most common oral/perioral manifestations reported to date. METHODS A literature search was conducted in the PubMed, Research Gate, and Wiley Online Library databases, as well as in the Google search engine, using keywords related to the condition. Of the 56 publications identified, 30 were selected, including 27 case reports, two case series types, and one cross-sectional study published from 2003 to 2023 in endemic and non-endemic countries. Of the 54 patients in these studies, data on the oral symptoms and sites of monkeypox were interpreted from 47 patients. RESULTS Oral/perioral signs as one of the initial manifestations were reported in 23 out of 47 patients (48.93%). Out of the 47 patients with oral/perioral involvement, the most common signs/symptoms were sore throat, followed by ulcers, vesicles, dysphagia and odynophagia, and erythema. CONCLUSION The most common oral symptom of monkeypox is sore throat, followed by ulcers. The symptoms usually occur in the pharynx/oropharynx, followed by the tonsils and tongue. Adequate knowledge about the characteristics of this virus and their association with the oral cavity is necessary, and could help oral health professionals to distinguish between different infections.
Collapse
Affiliation(s)
- Asmaa Wajeeh Issa
- Department of Clinical Sciences, Ajman University, Ajman P.O. Box 346, United Arab Emirates
| | - Nada Fayyad Alkhofash
- Department of Clinical Sciences, Ajman University, Ajman P.O. Box 346, United Arab Emirates
| | - Divya Gopinath
- Department of Basic Sciences, Ajman University, Ajman P.O. Box 346, United Arab Emirates
- Center for Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman P.O. Box 346, United Arab Emirates
| | - Sudhir Rama Varma
- Department of Clinical Sciences, Ajman University, Ajman P.O. Box 346, United Arab Emirates
- Center for Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman P.O. Box 346, United Arab Emirates
| |
Collapse
|
45
|
Barshak MB, Dugdale CM, Pineda R. Case 14-2023: A 31-Year-Old Man with Redness of the Right Eye. N Engl J Med 2023; 388:1800-1810. [PMID: 37163627 DOI: 10.1056/nejmcpc2211511] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Affiliation(s)
- Miriam B Barshak
- From the Department of Medicine, Massachusetts General Hospital (M.B.B., C.M.D.), the Departments of Medicine (M.B.B., C.M.D.) and Ophthalmology (R.P.), Harvard Medical School, and the Department of Ophthalmology, Massachusetts Eye and Ear (R.P.) - all in Boston
| | - Caitlin M Dugdale
- From the Department of Medicine, Massachusetts General Hospital (M.B.B., C.M.D.), the Departments of Medicine (M.B.B., C.M.D.) and Ophthalmology (R.P.), Harvard Medical School, and the Department of Ophthalmology, Massachusetts Eye and Ear (R.P.) - all in Boston
| | - Roberto Pineda
- From the Department of Medicine, Massachusetts General Hospital (M.B.B., C.M.D.), the Departments of Medicine (M.B.B., C.M.D.) and Ophthalmology (R.P.), Harvard Medical School, and the Department of Ophthalmology, Massachusetts Eye and Ear (R.P.) - all in Boston
| |
Collapse
|
46
|
Vardhan S, Sahoo SK. Computational studies on searching potential phytochemicals against DNA polymerase activity of the monkeypox virus. J Tradit Complement Med 2023; 13:S2225-4110(23)00055-X. [PMID: 37360910 PMCID: PMC10165885 DOI: 10.1016/j.jtcme.2023.04.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 04/25/2023] [Accepted: 04/25/2023] [Indexed: 06/28/2023] Open
Abstract
Objectives The outbreak of monkeypox virus (MPXV) is an emerging epidemic of medical concern with 65353 confirmed cases of infection and a fatality of 115 worldwide. Since May 2022, MPXV has been rapidly disseminating across the globe through various modes of transmission, including direct contact, respiratory droplets, and consensual sex. Because of the limited medical countermeasures available to treat MPXV, the present study aimed to identify potential phytochemicals (limonoids, triterpenoids, and polyphenols) as antagonists to target the DNA polymerase protein of MPXV with the ultimate goal to inhibit the viral DNA replication mechanism and immune-mediated responses. Methods The protein-DNA and protein-ligand molecular docking were performed with the help of computational programs AutoDock Vina, iGEMDOCK and HDOCK server. The BIOVIA Discovery studio and ChimeraX were used to evaluate the protein-ligand interactions. The GROMACS 2021 was used for the molecular dynamics simulations. The ADME and toxicity properties were computed by using online servers SwissADME and pKCSM. Results Molecular docking of 609 phytochemicals and molecular dynamics simulations of lead phytochemicals glycyrrhizinic acid and apigenin-7-O-glucuronide generated useful data that supported the ability of phytochemicals to obstruct the DNA polymerase activity of the monkeypox virus. Conclusions The computational results supported that appropriate phytochemicals can be used to formulate an adjuvant therapy for the monkeypox virus.
Collapse
Affiliation(s)
- Seshu Vardhan
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology (SVNIT), Surat, 395007, Gujarat, India
| | - Suban K. Sahoo
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology (SVNIT), Surat, 395007, Gujarat, India
| |
Collapse
|
47
|
Shamim MA, Satapathy P, Padhi BK, Veeramachaneni SD, Akhtar N, Pradhan A, Agrawal A, Dwivedi P, Mohanty A, Pradhan KB, Kabir R, Rabaan AA, Alotaibi J, Al Ismail ZA, Alsoliabi ZA, Al Fraij A, Sah R, Rodriguez-Morales AJ. Pharmacological treatment and vaccines in monkeypox virus: a narrative review and bibliometric analysis. Front Pharmacol 2023; 14:1149909. [PMID: 37214444 PMCID: PMC10196034 DOI: 10.3389/fphar.2023.1149909] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 04/25/2023] [Indexed: 05/24/2023] Open
Abstract
Mpox (earlier known as monkeypox) virus infection is a recognized public health emergency. There has been little research on the treatment options. This article reviews the specific drugs used to treat mpox virus infection and the vaccines used here. Instead of focusing on the mechanistic basis, this review narrates the practical, real-life experiences of individual patients of mpox virus disease being administered these medicines. We conducted a bibliometric analysis on the treatment of the mpox virus using data from several databases like PubMed, Scopus, and Embase. The research on this topic has grown tremendously recently but it is highly concentrated in a few countries. Cidofovir is the most studied drug. This is because it is indicated and also used off-label for several conditions. The drugs used for mpox virus infection include tecovirimat, cidofovir, brincidofovir, vaccinia immune globulin, and trifluridine. Tecovirimat is used most frequently. It is a promising option in progressive mpox disease in terms of both efficacy and safety. Brincidofovir has been associated with treatment discontinuation due to elevated hepatic enzymes. Cidofovir is also not the preferred drug, often used because of the unavailability of tecovirimat. Trifluridine is used topically as an add-on agent along with tecovirimat for ocular manifestations of mpox virus disease. No study reports individual patient data for vaccinia immune globulin. Though no vaccine is currently approved for mpox virus infection, ACAM 2000 and JYNNEOS are the vaccines being mainly considered. ACAM 2000 is capable of replicating and may cause severe adverse reactions. It is used when JYNNEOS is contraindicated. Several drugs and vaccines are under development and have been discussed alongside pragmatic aspects of mpox virus treatment and prevention. Further studies can provide more insight into the safety and efficacy of Tecovirimat in actively progressing mpox virus disease.
Collapse
Affiliation(s)
| | - Prakisini Satapathy
- Department of Virology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Bijaya Kumar Padhi
- Department of Community Medicine, School of Public Health, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | | | - Naushaba Akhtar
- Indian Council of Medical Research—Regional Medical Research Centre, Bhubaneswar, India
| | - Anindita Pradhan
- Department of Pharmacology, All India Institute of Medical Sciences, Jodhpur, India
| | - Abhimanyu Agrawal
- Department of Pharmacology, All India Institute of Medical Sciences, Bathinda, India
| | - Pradeep Dwivedi
- Department of Pharmacology, All India Institute of Medical Sciences, Jodhpur, India
- Centre of Excellence for Tribal Health, All India Institute of Medical Sciences, Jodhpur, India
| | - Aroop Mohanty
- All India Institute of Medical Sciences, Gorakhpur, India
| | | | - Russell Kabir
- School of Allied Health, Anglia Ruskin University, Essex, United Kingdom
| | - Ali A. Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran, Saudi Arabia
| | - Jawaher Alotaibi
- Infectious Diseases Unit, King Faisal Specialist Hospital and Research Center, Department of Medicine, Riyadh, Saudi Arabia
| | - Zainab A. Al Ismail
- Long Term Care Department, Dhahran Long Term Hospital, Dhahran, Saudi Arabia
| | | | - Ali Al Fraij
- Medical Laboratories and Blood Bank Department, Jubail Health Network, Jubail, Saudi Arabia
| | - Ranjit Sah
- Tribhuvan University Teaching Hospital, Institute of Medicine, Kathmandu, Nepal
- Harvard Medical School, Boston, MA, United States
- Dr. D. Y. Patil Medical College, Hospital and Research Centre, Dr D. Y. Patil Vidyapeeth, Pune, Maharashtra, India
| | - Alfonso J. Rodriguez-Morales
- Faculty of Health Sciences, Universidad Científica del Sur, Lima, Peru
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, Lebanon
| |
Collapse
|
48
|
Gurnani B, Kaur K, Chaudhary S, Balakrishnan H. Ophthalmic manifestations of monkeypox infection. Indian J Ophthalmol 2023; 71:1687-1697. [PMID: 37203020 PMCID: PMC10391517 DOI: 10.4103/ijo.ijo_2032_22] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023] Open
Abstract
After the global COVID-19 pandemic, there has been an alarming concern with the monkeypox (mpox) outbreak, which has affected more than 110 countries worldwide. Monkeypox virus is a doublestranded DNA virus of the genus Orthopox of the Poxviridae family, which causes this zoonotic disease. Recently, the mpox outbreak was declared by the World Health Organization (WHO) as a public health emergency of international concern (PHEIC). Monkeypox patients can present with ophthalmic manifestation and ophthalmologists have a role to play in managing this rare entity. Apart from causing systemic involvement such as skin lesions, respiratory infection and involvement of body fluids, Monkeypox related ophthalmic disease (MPXROD) causes varied ocular manifestations such as lid and adnexal involvement, periorbital and lid lesion, periorbital rash, conjunctivitis, blepharocounctivitis and keratitis. A detailed literature review shows few reports on MPXROD infections with limited overview on management strategies. The current review article is aimed to provide the ophthalmologist with an overview of the disease with a spotlight on ophthalmic features. We briefly discuss the morphology of the MPX, various modes of transmission, an infectious pathway of the virus, and the host immune response. A brief overview of the systemic manifestations and complications has also been elucidated. We especially highlight the detailed ophthalmic manifestations of mpox, their management, and prevention of vision threatening sequelae.
Collapse
Affiliation(s)
- Bharat Gurnani
- Cornea and Refractive Services, Dr. Om Parkash Eye Institute, Mall Road, Amritsar, Punjab, India
| | - Kirandeep Kaur
- Pediatric Ophthalmology and Strabismus, Dr. Om Parkash Eye Institute, Mall Road, Amritsar, Punjab, India
| | - Sameer Chaudhary
- Aravind Eye Hospital and Post Graduate Institute of Ophthalmology, Madurai, Tamil Nadu, India
| | | |
Collapse
|
49
|
Maredia H, Sartori-Valinotti JC, Ranganath N, Tosh PK, O'Horo JC, Shah AS. Supportive Care Management Recommendations for Mucocutaneous Manifestations of Monkeypox Infection. Mayo Clin Proc 2023:S0025-6196(23)00030-7. [PMID: 37125977 PMCID: PMC10148669 DOI: 10.1016/j.mayocp.2023.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 01/10/2023] [Accepted: 01/27/2023] [Indexed: 05/02/2023]
Affiliation(s)
| | | | - Nischal Ranganath
- Division of Public Health, Infectious Diseases and Occupational Medicine, Mayo Clinic, Rochester, MN
| | - Pritish K Tosh
- Division of Public Health, Infectious Diseases and Occupational Medicine, Mayo Clinic, Rochester, MN
| | - John C O'Horo
- Division of Public Health, Infectious Diseases and Occupational Medicine, Mayo Clinic, Rochester, MN; Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, MN
| | - Aditya S Shah
- Division of Public Health, Infectious Diseases and Occupational Medicine, Mayo Clinic, Rochester, MN
| |
Collapse
|
50
|
Sahu A, Gaur M, Mahanandia NC, Subudhi E, Swain RP, Subudhi BB. Identification of core therapeutic targets for Monkeypox virus and repurposing potential of drugs against them: An in silico approach. Comput Biol Med 2023; 161:106971. [PMID: 37211001 DOI: 10.1016/j.compbiomed.2023.106971] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 04/11/2023] [Accepted: 04/19/2023] [Indexed: 05/23/2023]
Abstract
Monkeypox virus (mpox virus) outbreak has rapidly spread to 82 non-endemic countries. Although it primarily causes skin lesions, secondary complications and high mortality (1-10%) in vulnerable populations have made it an emerging threat. Since there is no specific vaccine/antiviral, it is desirable to repurpose existing drugs against mpox virus. With little knowledge about the lifecycle of mpox virus, identifying potential inhibitors is a challenge. Nevertheless, the available genomes of mpox virus in public databases represent a goldmine of untapped possibilities to identify druggable targets for the structure-based identification of inhibitors. Leveraging this resource, we combined genomics and subtractive proteomics to identify highly druggable core proteins of mpox virus. This was followed by virtual screening to identify inhibitors with affinities for multiple targets. 125 publicly available genomes of mpox virus were mined to identify 69 highly conserved proteins. These proteins were then curated manually. These curated proteins were funnelled through a subtractive proteomics pipeline to identify 4 highly druggable, non-host homologous targets namely; A20R, I7L, Top1B and VETFS. High-throughput virtual screening of 5893 highly curated approved/investigational drugs led to the identification of common as well as unique potential inhibitors with high binding affinities. The common inhibitors, i.e., batefenterol, burixafor and eluxadoline were further validated by molecular dynamics simulation to identify their best potential binding modes. The affinity of these inhibitors suggests their repurposing potential. This work can encourage further experimental validation for possible therapeutic management of mpox.
Collapse
Affiliation(s)
- Anshuman Sahu
- Drug Development and Analysis Laboratory, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, 751030, India
| | - Mahendra Gaur
- Drug Development and Analysis Laboratory, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, 751030, India; Department of Biotechnology, Punjabi University, Patiala, 147002, India
| | - Nimai Charan Mahanandia
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, Pusa, New Delhi, 110012, India
| | - Enketeswara Subudhi
- Centre for Biotechnology, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, 751030, India
| | - Ranjit Prasad Swain
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, 751030, India
| | - Bharat Bhusan Subudhi
- Drug Development and Analysis Laboratory, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, 751030, India.
| |
Collapse
|