1
|
Fang Z, Yu P, Zhu W. Development of mRNA rabies vaccines. Hum Vaccin Immunother 2024; 20:2382499. [PMID: 39069645 PMCID: PMC11290775 DOI: 10.1080/21645515.2024.2382499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/08/2024] [Accepted: 07/17/2024] [Indexed: 07/30/2024] Open
Abstract
Rabies, primarily transmitted to humans by dogs (accounting for 99% of cases). Once rabies occurs, its mortality rate is approximately 100%. Post-exposure prophylaxis (PEP) is critical for preventing the onset of rabies after exposure to rabid animals, and vaccination is a pivotal element of PEP. However, high costs and complex immunization protocols have led to poor adherence to rabies vaccinations. Consequently, there is an urgent need to develop new rabies vaccines that are safe, highly immunogenic, and cost-effective to improve compliance and effectively prevent rabies. In recent years, mRNA vaccines have made significant progress in the structural modification and optimization of delivery systems. Various mRNA vaccines are currently undergoing clinical trials, positioning them as viable alternatives to the traditional rabies vaccines. In this article, we discuss a novel mRNA rabies vaccine currently undergoing clinical and preclinical testing, and evaluate its potential to replace existing vaccines.
Collapse
Affiliation(s)
- Zixin Fang
- National Institute for Viral Disease Control and Prevention, China CDC, Key Laboratory of Biosafety, National Health Commission, Beijing, People’s Republic of China
| | - Pengcheng Yu
- National Institute for Viral Disease Control and Prevention, China CDC, Key Laboratory of Biosafety, National Health Commission, Beijing, People’s Republic of China
| | - Wuyang Zhu
- National Institute for Viral Disease Control and Prevention, China CDC, Key Laboratory of Biosafety, National Health Commission, Beijing, People’s Republic of China
| |
Collapse
|
2
|
Xia W, Wu J. Flagellate bacteria-mediated tumour antigen delivery: A novel approach to enhance dendritic cell activation for in situ cancer vaccination. Microb Biotechnol 2024; 17:e70028. [PMID: 39422491 PMCID: PMC11487680 DOI: 10.1111/1751-7915.70028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 09/26/2024] [Indexed: 10/19/2024] Open
Abstract
In situ vaccination is a therapeutic approach aimed at exploiting tumour antigens available at a tumour site to induce tumour-specific adaptive immune responses. Antigens released from dying tumour cells are assumed to be taken up by activated dendritic cells and presented to T cells that seek out and destroy tumour cells. This process is significantly impeded in the immunosuppressive microenvironment of tumours. There is a growing trend in in situ vaccine strategies that utilize bacteria as natural adjuvants or as factories for cytokines, aiming to enhance the presentation of in situ antigens by antigen-presenting cells. Recently, a novel approach using flagellate bacteria-mediated antigen delivery to activate dendritic cells has been proposed. This method actively facilitates the delivery of intratumoral antigens, improving their presentation for in situ cancer vaccination. Here, we highlight how flagellate bacteria-mediated antigen delivery enhances the immune activation capabilities of in situ vaccines. Meanwhile, we provide perspectives and outlooks on these promising antigen delivery technologies.
Collapse
Affiliation(s)
- Wen Xia
- State Key Laboratory of Pharmaceutical BiotechnologyMedical School of Nanjing UniversityNanjingChina
- Chemistry and Biomedicine Innovation CentreNanjing UniversityNanjingChina
- Jiangsu Key Laboratory of Molecular MedicineNanjing UniversityNanjingChina
| | - Jinhui Wu
- State Key Laboratory of Pharmaceutical BiotechnologyMedical School of Nanjing UniversityNanjingChina
- Chemistry and Biomedicine Innovation CentreNanjing UniversityNanjingChina
- Jiangsu Key Laboratory of Molecular MedicineNanjing UniversityNanjingChina
| |
Collapse
|
3
|
Wang Y, Liu C, Fang C, Peng Q, Qin W, Yan X, Zhang K. Engineered Cancer Nanovaccines: A New Frontier in Cancer Therapy. NANO-MICRO LETTERS 2024; 17:30. [PMID: 39347944 PMCID: PMC11442722 DOI: 10.1007/s40820-024-01533-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/08/2024] [Indexed: 10/01/2024]
Abstract
Vaccinations are essential for preventing and treating disease, especially cancer nanovaccines, which have gained considerable interest recently for their strong anti-tumor immune capabilities. Vaccines can prompt the immune system to generate antibodies and activate various immune cells, leading to a response against tumor tissues and reducing the negative effects and recurrence risks of traditional chemotherapy and surgery. To enhance the flexibility and targeting of vaccines, nanovaccines utilize nanotechnology to encapsulate or carry antigens at the nanoscale level, enabling more controlled and precise drug delivery to enhance immune responses. Cancer nanovaccines function by encapsulating tumor-specific antigens or tumor-associated antigens within nanomaterials. The small size of these nanomaterials allows for precise targeting of T cells, dendritic cells, or cancer cells, thereby eliciting a more potent anti-tumor response. In this paper, we focus on the classification of carriers for cancer nanovaccines, the roles of different target cells, and clinically tested cancer nanovaccines, discussing strategies for effectively inducing cytotoxic T lymphocytes responses and optimizing antigen presentation, while also looking ahead to the translational challenges of moving from animal experiments to clinical trials.
Collapse
Affiliation(s)
- Yijie Wang
- Central Laboratory and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu, 610072, People's Republic of China
| | - Congrui Liu
- Central Laboratory and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu, 610072, People's Republic of China
| | - Chao Fang
- Central Laboratory and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu, 610072, People's Republic of China
| | - Qiuxia Peng
- Central Laboratory and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu, 610072, People's Republic of China
- Department of Stomatology and Central Laboratory, School of Medicine, Shanghai Tenth People's Hospital, Tongji University, NO. 301 Yan-Chang-Zhong Road, Shanghai, 200072, People's Republic of China
| | - Wen Qin
- Central Laboratory and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu, 610072, People's Republic of China
| | - Xuebing Yan
- Jiangsu Provincial Innovation and Practice Base for Postdoctors, Suining People's Hospital, Affiliated Hospital of Xuzhou Medical University, No.2, Bayi West Road, Suining, Xu Zhou, 221000, Jiangsu Province, People's Republic of China.
| | - Kun Zhang
- Central Laboratory and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu, 610072, People's Republic of China.
| |
Collapse
|
4
|
Chen L, Kang Z, Shen J, Zhao R, Miao Y, Zhang L, Zheng Z, Zhang Z, Liu N, Wang C, Fang H, Zhou J, Wang Y, Liu Z, Yang Y, Chen Q. An emerging antibacterial nanovaccine for enhanced chemotherapy by selectively eliminating tumor-colonizing bacteria. Sci Bull (Beijing) 2024; 69:2565-2579. [PMID: 38918142 DOI: 10.1016/j.scib.2024.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 04/22/2024] [Accepted: 06/11/2024] [Indexed: 06/27/2024]
Abstract
Fusobacterium nucleatum (F. nucleatum), an oral anaerobe, is prevalent in colorectal cancer and is closely related to increased cancer cell growth, metastasis, and poor treatment outcomes. Bacterial vaccines capable of selectively eliminating bacteria present a promising approach to targeting intratumor F. nucleatum, thereby enhancing cancer treatment. Although adjuvants have been employed to enhance the immune response, the vaccine's effectiveness is constrained by inadequate T-cell activation necessary for eradicating intracellular pathogens. In this study, we developed a minimalistic, biomimetic nanovaccine by integrating highly immunostimulatory adjuvant cholesterol-modified CpG oligonucleotides into the autologously derived F. nucleatum membranes. Compared to the traditional vaccines consisting of inactivated bacteria and Alum adjuvant, the nanovaccine coupled with bacterial membranes and adjuvants could remarkably improve multiple antigens and adjuvant co-delivery to dendritic cells, maximizing their ability to achieve effective antigen presentation and strong downstream immune progress. Notably, the nanovaccine exhibits outstanding selective prophylactic and therapeutic effects, eliminating F. nucleatum without affecting intratumoral and gut microbiota. It significantly enhances chemotherapy efficacy and reduces cancer metastasis in F. nucleatum-infected colorectal cancer. Overall, this work represents the rational application of bacterial nanovaccine and provides a blueprint for future development in enhancing the antitumor effect against bacterial-infected cancer.
Collapse
Affiliation(s)
- Linfu Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Zheyu Kang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Jingjing Shen
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Rui Zhao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Yu Miao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Lin Zhang
- Department of Gynecologic Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Zixuan Zheng
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Zhemin Zhang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Nanhui Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Cheng Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Huapan Fang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Jun Zhou
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Yudong Wang
- Department of Gynecologic Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Zhuang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Yang Yang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Qian Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China.
| |
Collapse
|
5
|
Fathi Kisomi M, Yadegar A, Shekari T, Amin M, Llopis-Lorente A, Liu C, Haririan I, Aghdaei HA, Shokrgozar MA, Zali MR, Rad-Malekshahi M, Miri AH, Hamblin MR, Wacker MG. Unveiling the potential role of micro/nano biomaterials in the treatment of Helicobacter pylori infection. Expert Rev Anti Infect Ther 2024; 22:613-630. [PMID: 39210553 DOI: 10.1080/14787210.2024.2391910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/09/2024] [Indexed: 09/04/2024]
Abstract
INTRODUCTION Helicobacter pylori causes stubborn infections and leads to a variety of stomach disorders, such as peptic ulcer, chronic atrophic gastritis, and gastric cancer. Although antibiotic-based approaches have been widely used against H. pylori, some challenges such as antibiotic resistance are increasing in severity. Therefore, simpler but more effective strategies are needed. AREAS COVERED In this review, basic information on functionalized and non-functionalized micro/nano biomaterials and routes of administration for H. pylori inhibition are provided in an easy-to-understand format. Afterward, in vitro and in vivo studies of some promising bio-platforms including metal-based biomaterials, biopolymers, small-molecule saccharides, and vaccines for H. pylori inhibition are discussed in a holistic manner. EXPERT OPINION Functionalized or non-functionalized micro/nano biomaterials loaded with anti-H. pylori agents can show efficient bactericidal activity with no/slight negative influence on the host gastrointestinal microbiota. However, this claim needs to be substantiated with hard data such as assessment of the biopharmaceutical parameters of anti-H. pylori systems and the measurement of diversity/abundance of bacterial genera in the host gastric/gut microbiota before and after H. pylori eradication.
Collapse
Affiliation(s)
- Misagh Fathi Kisomi
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tara Shekari
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohsen Amin
- Department of Drug and Food Control, Faculty of Pharmacy, and the Institute of Pharmaceutical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Antoni Llopis-Lorente
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Valencia, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Chenguang Liu
- College of Marine Life Science, Ocean University of China, Qingdao, P.R. China
| | - Ismaeil Haririan
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Asadzadeh Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mazda Rad-Malekshahi
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Hossein Miri
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, South Africa
| | - Matthias G Wacker
- Department of Pharmacy, Faculty of Science, National University of Singapore, 4 Science Drive 2, Singapore 117545, Singapore
| |
Collapse
|
6
|
Yang B, Nie J, Guo A, Xie N, Cui Y, Sun W, Li Y, Li X, Wu Y, Liu Y. MIL-53(Al)-oil/water emulsion composite as an adjuvant promotes immune responses to an inactivated pseudorabies virus vaccine in mice and pigs. Acta Biomater 2024; 183:330-340. [PMID: 38838909 DOI: 10.1016/j.actbio.2024.05.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/07/2024] [Accepted: 05/30/2024] [Indexed: 06/07/2024]
Abstract
Although vaccination with inactivated vaccines is a popular preventive method against pseudorabies virus (PRV) infection, inactivated vaccines have poor protection efficiency because of their weak immunogenicity. The development of an effective adjuvant is urgently needed to improve the efficacy of inactivated PRV vaccines. In this study, a promising nanocomposite adjuvant named as MIL@A-SW01-C was developed by combining polyacrylic acid-coated metal-organic framework MIL-53(Al) (MIL@A) and squalene (oil)-in-water emulsion (SW01) and then mixing it with a carbomer solution. One part of the MIL@A was loaded onto the oil/water interface of SW01 emulsion via hydrophobic interaction and coordination, while another part was dispersed in the continuous water phase using carbomer. MIL@A-SW01-C showed good biocompatibility, high PRV (antigen)-loading capability, and sustained antigen release. Furthermore, the MIL@A-SW01-C adjuvanted PRV vaccine induced high specific serum antibody titers, increased splenocyte proliferation and cytokine secretion, and a more balanced Th1/Th2 immune response compared with commercial adjuvants, such as alum and biphasic 201. In the mouse challenge experiment, two- and one-shot vaccinations resulted in survival rates of 73.3 % and 86.7 %, respectively. After one-shot vaccination, the host animal pigs were also challenged with wild PRV. A protection rate of 100 % was achieved, which was much higher than that observed with commercial adjuvants. This study not only establishes the superiority of MIL@A-SW01-C composite nanoadjuvant for inactivated PRV vaccine in mice and pigs but also presents an effective method for developing promising nanoadjuvants. STATEMENT OF SIGNIFICANCE: We have developed a nanocomposite of MIL-53(Al) and oil-in-water emulsion (MIL@A-SW01-C) as a promising adjuvant for the inactivated PRV vaccines. MIL@A-SW01-C has good biocompatibility, high PRV (antigen) loading capability, and prolonged antigen release. The developed nanoadjuvant induced much higher specific IgG antibody titers, increased splenocyte proliferation and cytokine secretion, and a more balanced Th1/Th2 immune response than commercial adjuvants alum and biphasic 201. In mouse challenge experiments, survival rates of 73.3 % and 86.7 % were achieved from two-shot and one-shot vaccinations, respectively. At the same time, a protection rate of 100 % was achieved with the host animal pigs challenged with wild PRV.
Collapse
Affiliation(s)
- Bing Yang
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Jingjing Nie
- China National Biotec Group Adnova Co. Ltd., Wuhan 430073, China
| | - Anan Guo
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Niling Xie
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Yandong Cui
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Wen Sun
- Sinopharm Animal Health Co., Ltd., Wuhan 430073, China.
| | - Yuan Li
- Central Laboratory of Yongchuan Hospital, Chongqing Medical University, Chongqing 402160, China
| | - Xiangting Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Yang Wu
- China National Biotec Group Adnova Co. Ltd., Wuhan 430073, China; State Key Laboratory of Novel Vaccines for Emerging Infectious Diseases, Beijing 100098, China.
| | - Yingshuai Liu
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Materials and Energy, Southwest University, Chongqing 400715, China.
| |
Collapse
|
7
|
Shetty S, Alvarado PC, Pettie D, Collier JH. Next-Generation Vaccine Development with Nanomaterials: Recent Advances, Possibilities, and Challenges. Annu Rev Biomed Eng 2024; 26:273-306. [PMID: 38959389 DOI: 10.1146/annurev-bioeng-110122-124359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Nanomaterials are becoming important tools for vaccine development owing to their tunable and adaptable nature. Unique properties of nanomaterials afford opportunities to modulate trafficking through various tissues, complement or augment adjuvant activities, and specify antigen valency and display. This versatility has enabled recent work designing nanomaterial vaccines for a broad range of diseases, including cancer, inflammatory diseases, and various infectious diseases. Recent successes of nanoparticle vaccines during the coronavirus disease 2019 (COVID-19) pandemic have fueled enthusiasm further. In this review, the most recent developments in nanovaccines for infectious disease, cancer, inflammatory diseases, allergic diseases, and nanoadjuvants are summarized. Additionally, challenges and opportunities for clinical translation of this unique class of materials are discussed.
Collapse
Affiliation(s)
- Shamitha Shetty
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA; , , ,
| | - Pablo Cordero Alvarado
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA; , , ,
| | - Deleah Pettie
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA; , , ,
| | - Joel H Collier
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA; , , ,
| |
Collapse
|
8
|
Ren F, Wang F, Baghdasaryan A, Li Y, Liu H, Hsu R, Wang C, Li J, Zhong Y, Salazar F, Xu C, Jiang Y, Ma Z, Zhu G, Zhao X, Wong KK, Willis R, Christopher Garcia K, Wu A, Mellins E, Dai H. Shortwave-infrared-light-emitting probes for the in vivo tracking of cancer vaccines and the elicited immune responses. Nat Biomed Eng 2024; 8:726-739. [PMID: 37620621 PMCID: PMC11250370 DOI: 10.1038/s41551-023-01083-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 07/27/2023] [Indexed: 08/26/2023]
Abstract
Tracking and imaging immune cells in vivo non-invasively would offer insights into the immune responses induced by vaccination. Here we report a cancer vaccine consisting of polymer-coated NaErF4/NaYF4 core-shell down-conversion nanoparticles emitting luminescence in the near-infrared spectral window IIb (1,500-1,700 nm in wavelength) and with surface-conjugated antigen (ovalbumin) and electrostatically complexed adjuvant (class-B cytosine-phosphate-guanine). Whole-body wide-field imaging of the subcutaneously injected vaccine in tumour-bearing mice revealed rapid migration of the nanoparticles to lymph nodes through lymphatic vessels, with two doses of the vaccine leading to the complete eradication of pre-existing tumours and to the prophylactic inhibition of tumour growth. The abundance of antigen-specific CD8+ T lymphocytes in the tumour microenvironment correlated with vaccine efficacy, as we show via continuous-wave imaging and lifetime imaging of two intravenously injected near-infrared-emitting probes (CD8+-T-cell-targeted NaYbF4/NaYF4 nanoparticles and H-2Kb/ovalbumin257-264 tetramer/PbS/CdS quantum dots) excited at different wavelengths, and by volumetrically visualizing the three nanoparticles via light-sheet microscopy with structured illumination. Nanoparticle-based vaccines and imaging probes emitting infrared light may facilitate the design and optimization of immunotherapies.
Collapse
Affiliation(s)
- Fuqiang Ren
- Department of Chemistry and Bio-X, Stanford University, Stanford, CA, USA
| | - Feifei Wang
- Department of Chemistry and Bio-X, Stanford University, Stanford, CA, USA
| | - Ani Baghdasaryan
- Department of Chemistry and Bio-X, Stanford University, Stanford, CA, USA
| | - Ying Li
- Department of Pediatrics, Human Gene Therapy, Stanford University, Stanford, CA, USA
| | - Haoran Liu
- Department of Chemistry and Bio-X, Stanford University, Stanford, CA, USA
| | - RuSiou Hsu
- Department of Chemistry and Bio-X, Stanford University, Stanford, CA, USA
| | - Chuchu Wang
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Jiachen Li
- Department of Chemistry and Bio-X, Stanford University, Stanford, CA, USA
| | - Yeteng Zhong
- Department of Chemistry and Bio-X, Stanford University, Stanford, CA, USA
| | - Felix Salazar
- Department of Radiation Oncology, City of Hope, CA, USA
| | - Chun Xu
- Department of Chemistry and Bio-X, Stanford University, Stanford, CA, USA
| | - Yingying Jiang
- Department of Chemistry and Bio-X, Stanford University, Stanford, CA, USA
| | - Zhuoran Ma
- Department of Chemistry and Bio-X, Stanford University, Stanford, CA, USA
| | - Guanzhou Zhu
- Department of Chemistry and Bio-X, Stanford University, Stanford, CA, USA
| | - Xiang Zhao
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Kerry Kaili Wong
- Department of Pediatrics, Human Gene Therapy, Stanford University, Stanford, CA, USA
| | - Richard Willis
- NIH Tetramer Facility at Emory Vaccine Center, Emory University, Atlanta, GA, USA
| | - K Christopher Garcia
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Anna Wu
- Department of Radiation Oncology, City of Hope, CA, USA
| | - Elizabeth Mellins
- Department of Pediatrics, Human Gene Therapy, Stanford University, Stanford, CA, USA
| | - Hongjie Dai
- Department of Chemistry and Bio-X, Stanford University, Stanford, CA, USA.
| |
Collapse
|
9
|
Liang C, Meng F, Zhang Y, Chen Y, Luo L, Li H, Tu X, He F, Luo Z, Wang Q, Zhang J. In vivo quantitative characterization of nano adjuvant transport in the tracheal layer by photoacoustic imaging. BIOMEDICAL OPTICS EXPRESS 2024; 15:3962-3974. [PMID: 38867767 PMCID: PMC11166438 DOI: 10.1364/boe.527912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/15/2024] [Accepted: 05/15/2024] [Indexed: 06/14/2024]
Abstract
Adjuvants are indispensable ingredients in vaccine formulations. Evaluating the in vivo transport processes of adjuvants, particularly for inhalation formulations, presents substantial challenges. In this study, a nanosized adjuvant aluminum hydroxide (AlOOH) was synthesized and labeled with indocyanine green (ICG) and bovine serum albumin (BSA) to achieve strong optical absorption ability and high biocompatibility. The adjuvant nanomaterials (BSA@ICG@AlOOH, BIA) were delivered as an aerosol into the airways of mice, its distribution was monitored using photoacoustic imaging (PAI) in vivo. PAI results illustrated the gradual cross-layer transmission process of BIA in the tracheal layer, traversing approximately 250 µm from the inner layer of the trachea to the outer layer. The results were consistent with pathology. While the intensity of the BIA reduced by approximately 46.8% throughout the transport process. The ability of PAI for quantitatively characterized the dynamic transport process of adjuvant within the tracheal layer may be widely used in new vaccine development.
Collapse
Affiliation(s)
- Chaohao Liang
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou 511436, Guangdong, China
| | - Fan Meng
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou 511436, Guangdong, China
| | - Yiqing Zhang
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou 511436, Guangdong, China
| | - Yuxiang Chen
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou 511436, Guangdong, China
| | - Li Luo
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou 511436, Guangdong, China
| | - Hongyan Li
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou 511436, Guangdong, China
| | - Xinbo Tu
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou 511436, Guangdong, China
| | - Fengbing He
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou 511436, Guangdong, China
| | - Zhijia Luo
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou 511436, Guangdong, China
| | - Qian Wang
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou 511436, Guangdong, China
- State Key Laboratory of Respiratory Diseases, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510120, Guangdong, China
| | - Jian Zhang
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou 511436, Guangdong, China
- State Key Laboratory of Respiratory Diseases, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510120, Guangdong, China
| |
Collapse
|
10
|
Dangerfield EM, Ishizuka S, Kodar K, Yamasaki S, Timmer MSM, Stocker BL. Chimeric NOD2 Mincle Agonists as Vaccine Adjuvants. J Med Chem 2024; 67:5373-5390. [PMID: 38507580 DOI: 10.1021/acs.jmedchem.3c01840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
There is a need for improved vaccine adjuvants to augment vaccine efficacy. One way to address this is by targeting multiple immune cell pathogen recognition receptors (PRRs) using chimeric pathogen-associated molecular patterns (PAMPs). Conjugation of the PAMPs will ensure codelivery of the immunostimulatory molecules to the same cell, enhancing adjuvant activity. The macrophage inducible C-type lectin (Mincle) is a promising PRR for adjuvant development; however, no effective chimeric Mincle adjuvants have been prepared. We addressed this by synthesizing Mincle adjuvant conjugates, MDP-C18Brar and MDP-C18Brar-dilipid, which contain PAMPs recognized by Mincle and the nucleotide-binding oligomerization domain 2 (NOD2). The two PAMPs are joined by a pH-sensitive oxyamine linker which, upon acidification at lysosomal pH, hydrolyzed to release the NOD2 ligands. The conjugates elicited the production of Th1 and Th17 promoting cytokines in vitro, and when using OVA as a model antigen, exhibited enhanced T-cell-mediated immune responses and reduced toxicity in vivo, compared to the coadministration of the adjuvants.
Collapse
Affiliation(s)
- Emma M Dangerfield
- School of Chemical and Physical Sciences, Victoria University of Wellington, PO Box 600, Wellington 6140, New Zealand
- Centre for Biodiscovery, Victoria University of Wellington, PO Box 600, Wellington 6140, New Zealand
| | - Shigenari Ishizuka
- Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
- Laboratory of Molecular Immunology, Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - Kristel Kodar
- School of Chemical and Physical Sciences, Victoria University of Wellington, PO Box 600, Wellington 6140, New Zealand
- Centre for Biodiscovery, Victoria University of Wellington, PO Box 600, Wellington 6140, New Zealand
| | - Sho Yamasaki
- Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
- Laboratory of Molecular Immunology, Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
- Division of Molecular Immunology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Fukuoka 812-8582, Japan
- Division of Molecular Immunology, Medical Mycology Research Center, Chiba University, Chiba, 260-8673, Japan
| | - Mattie S M Timmer
- School of Chemical and Physical Sciences, Victoria University of Wellington, PO Box 600, Wellington 6140, New Zealand
- Centre for Biodiscovery, Victoria University of Wellington, PO Box 600, Wellington 6140, New Zealand
| | - Bridget L Stocker
- School of Chemical and Physical Sciences, Victoria University of Wellington, PO Box 600, Wellington 6140, New Zealand
- Centre for Biodiscovery, Victoria University of Wellington, PO Box 600, Wellington 6140, New Zealand
| |
Collapse
|
11
|
Slezak A, Chang K, Hossainy S, Mansurov A, Rowan SJ, Hubbell JA, Guler MO. Therapeutic synthetic and natural materials for immunoengineering. Chem Soc Rev 2024; 53:1789-1822. [PMID: 38170619 PMCID: PMC11557218 DOI: 10.1039/d3cs00805c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Immunoengineering is a rapidly evolving field that has been driving innovations in manipulating immune system for new treatment tools and methods. The need for materials for immunoengineering applications has gained significant attention in recent years due to the growing demand for effective therapies that can target and regulate the immune system. Biologics and biomaterials are emerging as promising tools for controlling immune responses, and a wide variety of materials, including proteins, polymers, nanoparticles, and hydrogels, are being developed for this purpose. In this review article, we explore the different types of materials used in immunoengineering applications, their properties and design principles, and highlight the latest therapeutic materials advancements. Recent works in adjuvants, vaccines, immune tolerance, immunotherapy, and tissue models for immunoengineering studies are discussed.
Collapse
Affiliation(s)
- Anna Slezak
- The Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, 60637, USA.
| | - Kevin Chang
- The Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, 60637, USA.
| | - Samir Hossainy
- The Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, 60637, USA.
| | - Aslan Mansurov
- The Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, 60637, USA.
| | - Stuart J Rowan
- The Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, 60637, USA.
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
| | - Jeffrey A Hubbell
- The Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, 60637, USA.
| | - Mustafa O Guler
- The Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
12
|
Kim HW, Ko MK, Park SH, Shin S, Kim GS, Kwak DY, Park JH, Kim SM, Lee JS, Lee MJ. D-galacto-D-mannan-mediated Dectin-2 activation orchestrates potent cellular and humoral immunity as a viral vaccine adjuvant. Front Immunol 2024; 15:1330677. [PMID: 38433834 PMCID: PMC10904532 DOI: 10.3389/fimmu.2024.1330677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/30/2024] [Indexed: 03/05/2024] Open
Abstract
Introduction Conventional foot-and-mouth disease (FMD) vaccines have been developed to enhance their effectiveness; however, several drawbacks remain, such as slow induction of antibody titers, short-lived immune response, and local side effects at the vaccination site. Therefore, we created a novel FMD vaccine that simultaneously induces cellular and humoral immune responses using the Dectin-2 agonist, D-galacto-D-mannan, as an adjuvant. Methods We evaluated the innate and adaptive (cellular and humoral) immune responses elicited by the novel FMD vaccine and elucidated the signaling pathway involved both in vitro and in vivo using mice and pigs, as well as immune cells derived from these animals. Results D-galacto-D-mannan elicited early, mid-, and long-term immunity via simultaneous induction of cellular and humoral immune responses by promoting the expression of immunoregulatory molecules. D-galacto-D-mannan also enhanced the immune response and coordinated vaccine-mediated immune response by suppressing genes associated with excessive inflammatory responses, such as nuclear factor kappa B, via Sirtuin 1 expression. Conclusion Our findings elucidated the immunological mechanisms induced by D-galacto-D-mannan, suggesting a background for the robust cellular and humoral immune responses induced by FMD vaccines containing D-galacto-D-mannan. Our study will help to facilitate the improvement of conventional FMD vaccines and the design of next-generation FMD vaccines.
Collapse
Affiliation(s)
- Hyeong Won Kim
- Center for Foot-and-Mouth Disease Vaccine Research, Animal and Plant Quarantine Agency, Gimcheon, Gyeongsangbuk-do, Republic of Korea
| | - Mi-Kyeong Ko
- Center for Foot-and-Mouth Disease Vaccine Research, Animal and Plant Quarantine Agency, Gimcheon, Gyeongsangbuk-do, Republic of Korea
| | - So Hui Park
- Center for Foot-and-Mouth Disease Vaccine Research, Animal and Plant Quarantine Agency, Gimcheon, Gyeongsangbuk-do, Republic of Korea
| | - Seokwon Shin
- Center for Foot-and-Mouth Disease Vaccine Research, Animal and Plant Quarantine Agency, Gimcheon, Gyeongsangbuk-do, Republic of Korea
| | - Gang Sik Kim
- Center for Foot-and-Mouth Disease Vaccine Research, Animal and Plant Quarantine Agency, Gimcheon, Gyeongsangbuk-do, Republic of Korea
| | - Dong Yun Kwak
- Center for Foot-and-Mouth Disease Vaccine Research, Animal and Plant Quarantine Agency, Gimcheon, Gyeongsangbuk-do, Republic of Korea
| | - Jong-Hyeon Park
- Center for Foot-and-Mouth Disease Vaccine Research, Animal and Plant Quarantine Agency, Gimcheon, Gyeongsangbuk-do, Republic of Korea
| | - Su-Mi Kim
- Center for Foot-and-Mouth Disease Vaccine Research, Animal and Plant Quarantine Agency, Gimcheon, Gyeongsangbuk-do, Republic of Korea
| | - Jong-Soo Lee
- College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Min Ja Lee
- Center for Foot-and-Mouth Disease Vaccine Research, Animal and Plant Quarantine Agency, Gimcheon, Gyeongsangbuk-do, Republic of Korea
| |
Collapse
|
13
|
van Strien J, Makurat M, Zeng Y, Olsthoorn R, Schneider GF, Slütter B, MacKay JA, Jiskoot W, Kros A. Noncovalent Conjugation of OVA323 to ELP Micelles Increases Immune Response. Biomacromolecules 2024; 25:1027-1037. [PMID: 38166400 PMCID: PMC10865353 DOI: 10.1021/acs.biomac.3c01091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/21/2023] [Accepted: 12/21/2023] [Indexed: 01/04/2024]
Abstract
Subunit vaccines would benefit from a safe particle-based adjuvant. Elastin-like polypeptide (ELP)-based micelles are interesting candidate adjuvants due to their well-defined size and easy modification with protein-based cargo. Coiled coils can facilitate noncovalent modifications, while potentially enhancing antigen delivery through interaction with cell membranes. ELP micelles comprise ELP diblock copolymers that self-assemble above a critical micelle temperature. In this study, an amphiphilic ELP was conjugated to peptide "K", which forms a heterodimeric coiled-coil complex with peptide "E". Self-assembled "covalent" micelles containing ELP-OVA323 (i.e., model antigen OVA323 conjugated to ELP), "coiled-coil" micelles containing ELP-K/E-OVA323 and "hybrid" micelles containing ELP-K and ELP-OVA323 were shown to be monodisperse and spherical. Dendritic cells (DCs) were exposed to all micelle compositions, and T-cell proliferation was investigated. The presence of ELP-K enhanced micelle uptake and subsequent DC maturation, resulting in enhanced CD4+ T-cell proliferation, which makes ELPs with coiled coil-associated antigens a promising vaccine platform.
Collapse
Affiliation(s)
- Jolinde van Strien
- Department
of Supramolecular and Biomaterials Chemistry, Leiden Institute of
Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Max Makurat
- Department
of Supramolecular and Biomaterials Chemistry, Leiden Institute of
Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Ye Zeng
- Department
of Supramolecular and Biomaterials Chemistry, Leiden Institute of
Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - René Olsthoorn
- Department
of Supramolecular and Biomaterials Chemistry, Leiden Institute of
Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Gregory F. Schneider
- Department
of Supramolecular and Biomaterials Chemistry, Leiden Institute of
Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Bram Slütter
- Department
of BioTherapeutics, LACDR, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - J. Andrew MacKay
- Department
of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School
of Pharmacy and Pharmaceutical Sciences, University of Southern California, 1985 Zonal Avenue, Los Angeles, California 90089-9121, United States
| | - Wim Jiskoot
- Department
of BioTherapeutics, LACDR, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Alexander Kros
- Department
of Supramolecular and Biomaterials Chemistry, Leiden Institute of
Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| |
Collapse
|
14
|
Hemmati S, Saeidikia Z, Seradj H, Mohagheghzadeh A. Immunomodulatory Peptides as Vaccine Adjuvants and Antimicrobial Agents. Pharmaceuticals (Basel) 2024; 17:201. [PMID: 38399416 PMCID: PMC10892805 DOI: 10.3390/ph17020201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 01/26/2024] [Accepted: 01/28/2024] [Indexed: 02/25/2024] Open
Abstract
The underdevelopment of adjuvant discovery and diversity, compared to core vaccine technology, is evident. On the other hand, antibiotic resistance is on the list of the top ten threats to global health. Immunomodulatory peptides that target a pathogen and modulate the immune system simultaneously are promising for the development of preventive and therapeutic molecules. Since investigating innate immunity in insects has led to prominent achievements in human immunology, such as toll-like receptor (TLR) discovery, we used the capacity of the immunomodulatory peptides of arthropods with concomitant antimicrobial or antitumor activity. An SVM-based machine learning classifier identified short immunomodulatory sequences encrypted in 643 antimicrobial peptides from 55 foe-to-friend arthropods. The critical features involved in efficacy and safety were calculated. Finally, 76 safe immunomodulators were identified. Then, molecular docking and simulation studies defined the target of the most optimal peptide ligands among all human cell-surface TLRs. SPalf2-453 from a crab is a cell-penetrating immunoadjuvant with antiviral properties. The peptide interacts with the TLR1/2 heterodimer. SBsib-711 from a blackfly is a TLR4/MD2 ligand used as a cancer vaccine immunoadjuvant. In addition, SBsib-711 binds CD47 and PD-L1 on tumor cells, which is applicable in cancer immunotherapy as a checkpoint inhibitor. MRh4-679 from a shrimp is a broad-spectrum or universal immunoadjuvant with a putative Th1/Th2-balanced response. We also implemented a pathway enrichment analysis to define fingerprints or immunological signatures for further in vitro and in vivo immunogenicity and reactogenicity measurements. Conclusively, combinatorial machine learning, molecular docking, and simulation studies, as well as systems biology, open a new opportunity for the discovery and development of multifunctional prophylactic and therapeutic lead peptides.
Collapse
Affiliation(s)
- Shiva Hemmati
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 71345-1583, Iran
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz 71345-1583, Iran
- Department of Pharmaceutical Biology, Faculty of Pharmaceutical Sciences, UCSI University, Cheras, Kuala Lumpur 56000, Malaysia
| | - Zahra Saeidikia
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz 71345-1583, Iran;
| | - Hassan Seradj
- Department of Medicinal Chemistry, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 71345-1583, Iran;
| | - Abdolali Mohagheghzadeh
- Department of Phytopharmaceuticals, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 71345-1583, Iran;
| |
Collapse
|
15
|
Reyes C, Patarroyo MA. Self-assembling peptides: Perspectives regarding biotechnological applications and vaccine development. Int J Biol Macromol 2024; 259:128944. [PMID: 38145690 DOI: 10.1016/j.ijbiomac.2023.128944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 12/05/2023] [Accepted: 12/19/2023] [Indexed: 12/27/2023]
Abstract
Self-assembly involves a set of molecules spontaneously interacting in a highly coordinated and dynamic manner to form a specific supramolecular structure having new and clearly defined properties. Many examples of this occur in nature and many more came from research laboratories, with their number increasing every day via ongoing research concerning complex biomolecules and the possibility of harnessing it when developing new applications. As a phenomenon, self-assembly has been described on very different types of molecules (biomolecules including), so this review focuses on what is known about peptide self-assembly, its origins, the forces behind it, how the properties of the resulting material can be tuned in relation to experimental considerations, some biotechnological applications (in which the main protagonists are peptide sequences capable of self-assembly) and what is yet to be tuned regarding their research and development.
Collapse
Affiliation(s)
- César Reyes
- PhD Biotechnology Programme, Faculty of Sciences, Universidad Nacional de Colombia, Carrera 45#26-85, Bogotá DC 111321, Colombia; Structure Analysis Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50#26-20, Bogotá DC 111321, Colombia; Animal Science Faculty, Universidad de Ciencias Aplicadas y Ambientales (U.D.C.A.), Calle 222#55-37, Bogotá DC 111166, Colombia
| | - Manuel A Patarroyo
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50#26-20, Bogotá DC 111321, Colombia; Microbiology Department, Faculty of Medicine, Universidad Nacional de Colombia, Carrera 45#26-85, Bogotá DC 111321, Colombia.
| |
Collapse
|
16
|
Criado M, Reyes LE, Marín JFG, Gutiérrez-Expósito D, Zapico D, Espinosa J, Pérez V. Adjuvants influence the immune cell populations present at the injection site granuloma induced by whole-cell inactivated paratuberculosis vaccines in sheep. Front Vet Sci 2024; 11:1284902. [PMID: 38352038 PMCID: PMC10861745 DOI: 10.3389/fvets.2024.1284902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 01/04/2024] [Indexed: 02/16/2024] Open
Abstract
Vaccination is the most effective tool for paratuberculosis control. Currently, available vaccines prevent the progression of clinical disease in most animals but do not fully protect them against infection and induce the formation of an injection site granuloma. The precise mechanisms that operate in response to vaccination and granuloma development, as well as the effect that adjuvants could trigger, have not been fully investigated. Therefore, this study aimed to investigate the injection site granulomas induced by two inactivated paratuberculosis vaccines, which differ in the adjuvant employed. Two groups of 45-day-old lambs were immunized with two commercially available vaccines-one (n = 4) with Gudair® and the other (n = 4) with Silirum®. A third group (n = 4) was not vaccinated and served as control. The peripheral humoral response was assessed throughout the study by a commercial anti-Mycobacterium avium subspecies paratuberculosis (Map) antibody indirect ELISA, and the cellular immune response was assessed similarly by the IFN-γ release and comparative intradermal tests. The injection site granulomas were measured during the experiment and sampled at 75 days post-vaccination (dpv) when the animals were euthanized. The tissue damage, antigen and adjuvant distribution, and the presence and amount of immune cells were then determined and assessed by immunohistochemical methods. Antibodies against Map antigens; a general macrophage marker (Iba1), M1 (iNOS), and M2 (CD204) macrophages; T (CD3), B (CD20), and γδ T lymphocytes, proteins MHC-II and NRAMP1, and cytokines IL-4, IL-10, TNF, and IFN-γ were employed. Silirum® elicited a stronger peripheral cellular immune response than Gudair®, while the latter induced larger granulomas and more tissue damage at the site of injection. Additionally, adjuvant and Map antigen distribution throughout the granulomatous inflammatory infiltrate, as well as the NRAMP1 cell expression, which is linked to antigen phagocytosis, were highly irregular. In Silirum® induced granulomas, a higher number of MHC-II and TNF-expressing cells and a lower number of M2 macrophages suggested an improved antigen presentation, which could be due to the better antigen distribution and reduced tissue damage induced by this vaccine.
Collapse
Affiliation(s)
- Miguel Criado
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, León, Spain
- Instituto de Ganadería de Montaña (CSIC-ULE), Finca Marzanas-Grulleros, León, Spain
| | - Luis E. Reyes
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, León, Spain
| | - Juan F. García Marín
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, León, Spain
- Instituto de Ganadería de Montaña (CSIC-ULE), Finca Marzanas-Grulleros, León, Spain
| | - Daniel Gutiérrez-Expósito
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, León, Spain
- Instituto de Ganadería de Montaña (CSIC-ULE), Finca Marzanas-Grulleros, León, Spain
| | - David Zapico
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, León, Spain
- Instituto de Ganadería de Montaña (CSIC-ULE), Finca Marzanas-Grulleros, León, Spain
| | - José Espinosa
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, León, Spain
- Instituto de Ganadería de Montaña (CSIC-ULE), Finca Marzanas-Grulleros, León, Spain
| | - Valentín Pérez
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, León, Spain
- Instituto de Ganadería de Montaña (CSIC-ULE), Finca Marzanas-Grulleros, León, Spain
| |
Collapse
|
17
|
Miranda MCR, Nunes CM, Santos LF, da Silva LB, de Jesus VR, Filho NA, Pedro JAF, Lopes JLS, Oliveira CLP, Fantini MCA, Cardoso JS, Trezena AG, Ribeiro OG, Sant'Anna OA, Tino-De-Franco M, Martins TS. Ordered mesoporous silicas for potential applications in solid vaccine formulations. Vaccine 2024; 42:689-700. [PMID: 38145911 DOI: 10.1016/j.vaccine.2023.12.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 12/06/2023] [Accepted: 12/08/2023] [Indexed: 12/27/2023]
Abstract
In an effort to develop efficient vaccine formulations, the use of ordered mesoporous silica (SBA-15) as an antigen carrier has been investigated. SBA-15 has required properties such as high surface area and pore volume, including narrow pore size distribution to protect antigens inside its matrix. This study aimed to examine the impact of solvent removal methods, specifically freeze-drying and evaporation on the intrinsic properties of an immunogenic complex. The immunogenic complexes, synthesized and incorporated with BSA, were characterized by various physicochemical techniques. Small Angle X-ray Scattering measurements revealed the characteristic reflections associated to pure SBA-15, indicating the preservation of the silica mesostructured following BSA incorporation and the formation of BSA aggregates within the macropore region. Nitrogen Adsorption Isotherm measurements demonstrated a decrease in surface area and pore volume for all samples, indicating that the BSA was incorporated into the SBA-15 matrix. Fluorescence spectroscopy evidenced that the tryptophan residues in BSA inside SBA-15 or in solution displayed similar spectra, showing the preservation of the aromatic residues' environment. The Circular Dichroism spectra of BSA in both conditions suggest the preservation of its native secondary structure after the encapsulation process. The immunogenic analysis with the detection of anti-BSA IgG did not give any significant difference between the non-dried, freeze-dried or evaporated groups. However, all groups containing BSA and SBA-15 showed results almost three times higher than the groups with pure BSA (control group). These facts indicate that none of the BSA incorporation methods interfered with the immunogenicity of the complex. In particular, the freeze-dried process is regularly used in the pharmaceutical industry, therefore its adequacy to produce immunogenic complexes was proved Furthermore, the results showed that SBA-15 increased the immunogenic activity of BSA.
Collapse
Affiliation(s)
- Matheus C R Miranda
- Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Diadema, SP, Brazil
| | - Carmen M Nunes
- Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Diadema, SP, Brazil
| | - Luana F Santos
- Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Diadema, SP, Brazil
| | - Leonardo B da Silva
- Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Diadema, SP, Brazil
| | - Vinicius R de Jesus
- Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Diadema, SP, Brazil
| | - Newton Andréo Filho
- Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Diadema, SP, Brazil
| | - Jéssica A F Pedro
- Instituto de Física, Universidade de São Paulo, São Paulo, SP, Brazil
| | - José L S Lopes
- Departamento de Física, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | | | | | | | | | | | | | | | - Tereza S Martins
- Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Diadema, SP, Brazil.
| |
Collapse
|
18
|
Gholap AD, Gupta J, Kamandar P, Bhowmik DD, Rojekar S, Faiyazuddin M, Hatvate NT, Mohanto S, Ahmed MG, Subramaniyan V, Kumarasamy V. Harnessing Nanovaccines for Effective Immunization─A Special Concern on COVID-19: Facts, Fidelity, and Future Prospective. ACS Biomater Sci Eng 2024; 10:271-297. [PMID: 38096426 DOI: 10.1021/acsbiomaterials.3c01247] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Nanotechnology has emerged as a transformative pathway in vaccine research and delivery. Nanovaccines, encompassing lipid and nonlipid formulations, exhibit considerable advantages over traditional vaccine techniques, including enhanced antigen stability, heightened immunogenicity, targeted distribution, and the potential for codelivery with adjuvants or immune modulators. This review provides a comprehensive overview of the latest advancements and applications of lipid and non-lipid-based nanovaccines in current vaccination strategies for immunization. The review commences by outlining the fundamental concepts underlying lipid and nonlipid nanovaccine design before delving into the diverse components and production processes employed in their development. Subsequently, a comparative analysis of various nanocarriers is presented, elucidating their distinct physicochemical characteristics and impact on the immune response, along with preclinical and clinical studies. The discussion also highlights how nanotechnology enables the possibility of personalized and combined vaccination techniques, facilitating the creation of tailored nanovaccines to meet the individual patient needs. The ethical aspects concerning the use of nanovaccines, as well as potential safety concerns and public perception, are also addressed. The study underscores the gaps and challenges that must be overcome before adopting nanovaccines in clinical practice. This comprehensive analysis offers vital new insights into lipid and nonlipid nanovaccine status. It emphasizes the significance of continuous research, collaboration among interdisciplinary experts, and regulatory measures to fully unlock the potential of nanotechnology in enhancing immunization and ensuring a healthier, more resilient society.
Collapse
Affiliation(s)
- Amol D Gholap
- Department of Pharmaceutics, St. John Institute of Pharmacy and Research, Palghar 401404, Maharashtra, India
| | - Juhi Gupta
- Institute of Chemical Technology Mumbai, Marathwada Campus, Jalna 431213, Maharashtra, India
| | - Pallavi Kamandar
- Institute of Chemical Technology Mumbai, Marathwada Campus, Jalna 431213, Maharashtra, India
| | - Deblina D Bhowmik
- Institute of Chemical Technology Mumbai, Marathwada Campus, Jalna 431213, Maharashtra, India
| | - Satish Rojekar
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Md Faiyazuddin
- Department of Pharmaceutics, School of Pharmacy, Al-Karim University, Katihar 854106, Bihar, India
| | - Navnath T Hatvate
- Institute of Chemical Technology Mumbai, Marathwada Campus, Jalna 431213, Maharashtra, India
| | - Sourav Mohanto
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangaluru 575018, Karnataka, India
| | - Mohammed Gulzar Ahmed
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangaluru 575018, Karnataka, India
| | - Vetriselvan Subramaniyan
- Pharmacology Unit, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Selangor Darul Ehsan, Malaysia
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, Tamil Nadu, India
| | - Vinoth Kumarasamy
- Department of Parasitology and Medical Entomology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras 56000, Kuala Lumpur, Malaysia
| |
Collapse
|
19
|
Kayesh MEH, Kohara M, Tsukiyama-Kohara K. TLR agonists as vaccine adjuvants in the prevention of viral infections: an overview. Front Microbiol 2023; 14:1249718. [PMID: 38179453 PMCID: PMC10764465 DOI: 10.3389/fmicb.2023.1249718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 12/01/2023] [Indexed: 01/06/2024] Open
Abstract
Tol-like receptor (TLR) agonists, as potent adjuvants, have gained attention in vaccine research for their ability to enhance immune responses. This study focuses on their application in improving vaccine efficacy against key viral infections, including hepatitis B virus (HBV), hepatitis C virus (HCV), human immunodeficiency virus (HIV), SARS-CoV-2, influenza virus, and flaviviruses, including West Nile virus, dengue virus, and chikungunya virus. Vaccines are crucial in preventing microbial infections, including viruses, and adjuvants play a vital role in modulating immune responses. However, there are still many diseases for which effective vaccines are lacking or have limited immune response, posing significant threats to human health. The use of TLR agonists as adjuvants in viral vaccine formulations holds promise in improving vaccine effectiveness. By tailoring adjuvants to specific pathogens, such as HBV, HCV, HIV, SARS-CoV-2, influenza virus, and flavivirus, protective immunity against chronic and emerging infectious disease can be elicited.
Collapse
Affiliation(s)
- Mohammad Enamul Hoque Kayesh
- Department of Microbiology and Public Health, Faculty of Animal Science and Veterinary Medicine, Patuakhali Science and Technology University, Barishal, Bangladesh
| | - Michinori Kohara
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Kyoko Tsukiyama-Kohara
- Transboundary Animal Diseases Centre, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
20
|
Vakili B, Karami-Darehnaranji M, Mirzaei E, Hosseini F, Nezafat N. Graphene oxide as novel vaccine adjuvant. Int Immunopharmacol 2023; 125:111062. [PMID: 37866317 DOI: 10.1016/j.intimp.2023.111062] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/30/2023] [Accepted: 10/10/2023] [Indexed: 10/24/2023]
Abstract
To improve antigen immunogenicity and promote long-lasting immunity, vaccine formulations have been appropriately supplemented with adjuvants. Graphene has been found to enhance the presentation of antigens to CD8+ T cells, as well as stimulating innate immune responses and inflammatory factors. Its properties, such as large surface area, water stability, and high aspect ratio, make it a suitable candidate for delivering biological substances. Graphene-based nanomaterials have recently attracted significant attention as a new type of vaccine adjuvants due to their potential role in the activation of immune responses. Due to the limited functionality of some approved human adjuvants for use, the development of new all-purpose adjuvants is urgently required. Research on the immunological and biomedical use of graphene oxide (GO) indicates that these nanocarriers possess excellent physicochemical properties, acceptable biocompatibility, and a high capacity for drug loading. Graphene-based nanocarriers also could improve the function of some immune cells such as dendritic cells and macrophages through specific signaling pathways. However, GO injection can lead to significant oxidative stress and inflammation. Various surface functionalization protocols have been employed to reduce possible adverse effects of GO, such as aggregation of GO in biological liquids and induce cell death. Furthermore, these modifications enhance the properties of functionalized-GO's qualities, making it an excellent carrier and adjuvant. Shedding light on different physicochemical and structural properties of GO and its derivatives has led to their application in various therapeutic and drug delivery fields. In this review, we have endeavored to elaborate on different aspects of GO.
Collapse
Affiliation(s)
- Bahareh Vakili
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahboubeh Karami-Darehnaranji
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Esmaeil Mirzaei
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farnaz Hosseini
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Navid Nezafat
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Computational Vaccine and Drug Design Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
21
|
Moni SS, Abdelwahab SI, Jabeen A, Elmobark ME, Aqaili D, Ghoal G, Oraibi B, Farasani AM, Jerah AA, Alnajai MMA, Mohammad Alowayni AMH. Advancements in Vaccine Adjuvants: The Journey from Alum to Nano Formulations. Vaccines (Basel) 2023; 11:1704. [PMID: 38006036 PMCID: PMC10674458 DOI: 10.3390/vaccines11111704] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/05/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
Vaccination is a groundbreaking approach in preventing and controlling infectious diseases. However, the effectiveness of vaccines can be greatly enhanced by the inclusion of adjuvants, which are substances that potentiate and modulate the immune response. This review is based on extensive searches in reputable databases such as Web of Science, PubMed, EMBASE, Scopus, and Google Scholar. The goal of this review is to provide a thorough analysis of the advances in the field of adjuvant research, to trace the evolution, and to understand the effects of the various adjuvants. Historically, alum was the pioneer in the field of adjuvants because it was the first to be approved for use in humans. It served as the foundation for subsequent research and innovation in the field. As science progressed, research shifted to identifying and exploiting the potential of newer adjuvants. One important area of interest is nano formulations. These advanced adjuvants have special properties that can be tailored to enhance the immune response to vaccines. The transition from traditional alum-based adjuvants to nano formulations is indicative of the dynamism and potential of vaccine research. Innovations in adjuvant research, particularly the development of nano formulations, are a promising step toward improving vaccine efficacy and safety. These advances have the potential to redefine the boundaries of vaccination and potentially expand the range of diseases that can be addressed with this approach. There is an optimistic view of the future in which improved vaccine formulations will contribute significantly to improving global health outcomes.
Collapse
Affiliation(s)
- Sivakumar S. Moni
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia; (A.J.)
| | | | - Aamena Jabeen
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia; (A.J.)
| | - Mohamed Eltaib Elmobark
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia; (A.J.)
| | - Duaa Aqaili
- Physiology Department, Faculty of Medicine, Jazan University, Jazan 45142, Saudi Arabia
| | - Gassem Ghoal
- Department of Pediatrics, Faculty of Medicine, Jazan University, Jazan 45142, Saudi Arabia
| | - Bassem Oraibi
- Medical Research Centre, Jazan University, Jazan 45142, Saudi Arabia (B.O.)
| | | | - Ahmed Ali Jerah
- College of Applied Medical Sciences, Jazan University, Jazan 45142, Saudi Arabia
| | - Mahdi Mohammed A. Alnajai
- General Directorate of Health Services and University Hospital, Jazan University, Jazan 45142, Saudi Arabia;
| | | |
Collapse
|
22
|
Mabrouk MT, Zidan AA, Aly N, Mohammed MT, Ghantous F, Seaman MS, Lovell JF, Nasr ML. Circularized Nanodiscs for Multivalent Mosaic Display of SARS-CoV-2 Spike Protein Antigens. Vaccines (Basel) 2023; 11:1655. [PMID: 38005987 PMCID: PMC10675430 DOI: 10.3390/vaccines11111655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 11/26/2023] Open
Abstract
The emergence of vaccine-evading SARS-CoV-2 variants urges the need for vaccines that elicit broadly neutralizing antibodies (bnAbs). Here, we assess covalently circularized nanodiscs decorated with recombinant SARS-CoV-2 spike glycoproteins from several variants for eliciting bnAbs with vaccination. Cobalt porphyrin-phospholipid (CoPoP) was incorporated into the nanodisc to allow for anchoring and functional orientation of spike trimers on the nanodisc surface through their His-tag. Monophosphoryl-lipid (MPLA) and QS-21 were incorporated as immunostimulatory adjuvants to enhance vaccine responses. Following optimization of nanodisc assembly, spike proteins were effectively displayed on the surface of the nanodiscs and maintained their conformational capacity for binding with human angiotensin-converting enzyme 2 (hACE2) as verified using electron microscopy and slot blot assay, respectively. Six different formulations were prepared where they contained mono antigens; four from the year 2020 (WT, Beta, Lambda, and Delta) and two from the year 2021 (Omicron BA.1 and BA.2). Additionally, we prepared a mosaic nanodisc displaying the four spike proteins from year 2020. Intramuscular vaccination of CD-1 female mice with the mosaic nanodisc induced antibody responses that not only neutralized matched pseudo-typed viruses, but also neutralized mismatched pseudo-typed viruses corresponding to later variants from year 2021 (Omicron BA.1 and BA.2). Interestingly, sera from mosaic-immunized mice did not effectively inhibit Omicron spike binding to human ACE-2, suggesting that some of the elicited antibodies were directed towards conserved neutralizing epitopes outside the receptor binding domain. Our results show that mosaic nanodisc vaccine displaying spike proteins from 2020 can elicit broadly neutralizing antibodies that can neutralize mismatched viruses from a following year, thus decreasing immune evasion of new emerging variants and enhancing healthcare preparedness.
Collapse
Affiliation(s)
- Moustafa T. Mabrouk
- Division of Engineering in Medicine and Division of Renal Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (M.T.M.)
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY 14260, USA;
| | - Asmaa A. Zidan
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
| | - Nihal Aly
- Division of Engineering in Medicine and Division of Renal Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (M.T.M.)
- Botany and Microbiology Department, Faculty of Science, Alexandria University, Alexandria 21526, Egypt
| | - Mostafa T. Mohammed
- Division of Engineering in Medicine and Division of Renal Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (M.T.M.)
- Clinical Pathology Department, Minia University, Minia 61519, Egypt
| | - Fadi Ghantous
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
| | - Michael S. Seaman
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
| | - Jonathan F. Lovell
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY 14260, USA;
| | - Mahmoud L. Nasr
- Division of Engineering in Medicine and Division of Renal Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (M.T.M.)
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| |
Collapse
|
23
|
Abbasi K, Tahamtan Y, Moazamian E, Hosseini MH. Formalin and ferric chloride inactivated Pasteurella multocida type a adjuvanted with bacterial DNA and alum as a new vaccine candidate in sheep pasteurellosis. Microb Pathog 2023; 183:106282. [PMID: 37591320 DOI: 10.1016/j.micpath.2023.106282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/19/2023]
Abstract
The aim of the present study was to investigate humoral and cellular immune responses in sheep inoculated with inactivated P. multocida antigen with alum and bacterial DNA adjuvant by identifying IgG and cytokines from serum and cell culture. Sheep were immunized with iron and formalin-inactivated antigens at an interval of 2 weeks. These immunogens were mixed with alum adjuvant and P. multocida type A DNA (AbDNA). After injection and blood sampling, the serum antibody titer and cellular immune responses (IL-4, IFN-γ, and TNF-α) on serum samples and lymphocyte cell were tested by ELISA. The ELISA results showed a higher antibody titer in the bDNA adjuvant group compared to the alum adjuvant group and the control group. In general, the level of IgG in the serum of immunized animals was significantly increased compared to the control group. The peak antibody titer (1.794) was observed on the 28th day of injection in the IIV-AbDNA group. After immunization, inactivation with iron and bDNA adjuvant increased cytokine production compared to other experimental and control groups. High levels of lymphocyte and serum titers of IL-4, IFN-γ, and TNF-α were also obtained in the IIV-AbDNA group. The findings showed that killed P. multocida type A antigens formulated with bacterial DNA as an adjuvant are candidates for new immunogens against P. multocida infections in sheep. The inactivation of bacteria with iron also enhanced proper immune responses.
Collapse
Affiliation(s)
- Keivandokht Abbasi
- Department of Microbiology, College of Science, Agriculture and Modern Technology, Shiraz Branch, Islamic Azad University, Shiraz, Iran
| | - Yahya Tahamtan
- Department of Microbiology, Shiraz Branch, Razi Vaccine and Serum Research Institute, Agriculture Research, Education and Extension Organization, Shiraz, Iran.
| | - Elham Moazamian
- Department of Microbiology, College of Science, Agriculture and Modern Technology, Shiraz Branch, Islamic Azad University, Shiraz, Iran
| | - Mohammad Hossein Hosseini
- Department of Microbiology, Shiraz Branch, Razi Vaccine and Serum Research Institute, Agriculture Research, Education and Extension Organization, Shiraz, Iran
| |
Collapse
|
24
|
Maye J, Cabezas-Cruz A. Alternative and Complementary Approaches to Consider for Effective Babesia Vaccine Development. Pathogens 2023; 12:1166. [PMID: 37764974 PMCID: PMC10537028 DOI: 10.3390/pathogens12091166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
The Babesia genus encompasses several species of apicomplexan hemoprotozoan parasites [...].
Collapse
Affiliation(s)
- Jennifer Maye
- SEPPIC Paris La Défense, 92250 La Garenne Colombes, France
| | - Alejandro Cabezas-Cruz
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, 94700 Maisons-Alfort, France
| |
Collapse
|
25
|
Desai DN, Mahal A, Varshney R, Obaidullah AJ, Gupta B, Mohanty P, Pattnaik P, Mohapatra NC, Mishra S, Kandi V, Rabaan AA, Mohapatra RK. Nanoadjuvants: Promising Bioinspired and Biomimetic Approaches in Vaccine Innovation. ACS OMEGA 2023; 8:27953-27968. [PMID: 37576639 PMCID: PMC10413842 DOI: 10.1021/acsomega.3c02030] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 07/13/2023] [Indexed: 08/15/2023]
Abstract
Adjuvants are the important part of vaccine manufacturing as they elicit the vaccination effect and enhance the durability of the immune response through controlled release. In light of this, nanoadjuvants have shown unique broad spectrum advantages. As nanoparticles (NPs) based vaccines are fast-acting and better in terms of safety and usability parameters as compared to traditional vaccines, they have attracted the attention of researchers. A vaccine nanocarrier is another interesting and promising area for the development of next-generation vaccines for prophylaxis. This review looks at the various nanoadjuvants and their structure-function relationships. It compiles the state-of-art literature on numerous nanoadjuvants to help domain researchers orient their understanding and extend their endeavors in vaccines research and development.
Collapse
Affiliation(s)
- Dhruv N. Desai
- Department
of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Ahmed Mahal
- Department
of Medical Biochemical Analysis, College of Health Technology, Cihan University−Erbil, Erbil, Kurdistan Region, Iraq
| | - Rajat Varshney
- Department
of Veterinary Microbiology, FVAS, Banaras
Hindu University, Mirzapur 231001, India
| | - Ahmad J. Obaidullah
- Department
of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Bhawna Gupta
- School
of Biotechnology, KIIT Deemed-to-be University, Bhubaneswar 751024, Odisha, India
| | - Pratikhya Mohanty
- Bioenergy
Lab, BDTC, School of Biotechnology, KIIT
Deemed-to-be University, Bhubaneswar 751024, Odisha, India
| | | | | | - Snehasish Mishra
- Bioenergy
Lab, BDTC, School of Biotechnology, KIIT
Deemed-to-be University, Bhubaneswar 751024, Odisha, India
| | - Venkataramana Kandi
- Department
of Microbiology, Prathima Institute of Medical
Sciences, Karimnagar 505 417, Telangana, India
| | - Ali A. Rabaan
- Molecular
Diagnostic Laboratory, Johns Hopkins Aramco
Healthcare, Dhahran 31311, Saudi Arabia
- College
of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
- Department
of Public Health and Nutrition, The University
of Haripur, Haripur 22610, Pakistan
| | - Ranjan K. Mohapatra
- Department
of Chemistry, Government College of Engineering, Keonjhar 758002, Odisha, India
| |
Collapse
|
26
|
Govea-Alonso DO, García-Soto MJ, Mendoza-Pérez ES, Farfán-Castro S, Fuente D, González-Ortega O, Rosales-Mendoza S. Assessing the Adjuvant Effect of Layered Double Hydroxides (LDH) on BALB/c Mice. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5467. [PMID: 37570172 PMCID: PMC10419364 DOI: 10.3390/ma16155467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/23/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023]
Abstract
The discovery and validation of new adjuvants are critical areas for vaccinology. Mineral materials (e.g., alum microparticles) have been used for a long time as adjuvants in human vaccine formulations. Nonetheless, the use of nanosized materials is a promising approach to diversify the properties of adjuvants. Nanoclays are potential adjuvants proposed by some research groups. However, their adjuvant mechanisms and safety have not been fully elucidated. Herein, we aimed at expanding the knowledge on the potential adjuvanticity of layered double hydroxide (LDH) nanoparticles by reporting a detailed method for the synthesis and characterization of LDHs and the adsorption of a model antigen (bovine serum albumin, BSA). LDHs varying in diameter (from 56 to 88 nm) were obtained, and an in vitro evaluation revealed that the LDHs are not inherently toxic. BSA was passively adsorbed onto the LDHs, and the immunogenicity in mice of the conjugates obtained was compared to that of free BSA and BSA co-administered with alum (Alum-BSA). The LDH-BSA conjugates induced a higher humoral response that lasted for a longer period compared with that of free BSA and Alum-BSA, confirming that LDH exerts adjuvant effects. The 56 nm LDH particles were deemed as the more efficient carrier since they induced a higher and more balanced Th1/Th2 response than the 88 nm particles. This study is a contribution toward expanding the characterization and use of nanoclays in vaccinology and justifies further studies with pathogen-specific antigens.
Collapse
Affiliation(s)
- Dania O. Govea-Alonso
- Departamento de Biotecnológicas y Ambientales, Universidad Autónoma de Guadalajara, Zapopan 45129, Mexico;
| | - Mariano J. García-Soto
- Sección de Biotecnología, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, Av. Sierra Leona 550, Lomas 2ª. Sección, San Luis Potosí 78210, Mexico; (M.J.G.-S.); (E.S.M.-P.); (S.F.-C.)
| | - Emilio Sebastián Mendoza-Pérez
- Sección de Biotecnología, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, Av. Sierra Leona 550, Lomas 2ª. Sección, San Luis Potosí 78210, Mexico; (M.J.G.-S.); (E.S.M.-P.); (S.F.-C.)
| | - Susan Farfán-Castro
- Sección de Biotecnología, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, Av. Sierra Leona 550, Lomas 2ª. Sección, San Luis Potosí 78210, Mexico; (M.J.G.-S.); (E.S.M.-P.); (S.F.-C.)
| | - Diana Fuente
- Sección de Biotecnología, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, Av. Sierra Leona 550, Lomas 2ª. Sección, San Luis Potosí 78210, Mexico; (M.J.G.-S.); (E.S.M.-P.); (S.F.-C.)
| | - Omar González-Ortega
- Sección de Biotecnología, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, Av. Sierra Leona 550, Lomas 2ª. Sección, San Luis Potosí 78210, Mexico; (M.J.G.-S.); (E.S.M.-P.); (S.F.-C.)
| | - Sergio Rosales-Mendoza
- Sección de Biotecnología, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, Av. Sierra Leona 550, Lomas 2ª. Sección, San Luis Potosí 78210, Mexico; (M.J.G.-S.); (E.S.M.-P.); (S.F.-C.)
| |
Collapse
|
27
|
Zhang T, Zhang M, Xu Z, He Y, Zhao X, Cheng H, Chen X, Xu J, Ding Z. The Screening of the Protective Antigens of Aeromonas hydrophila Using the Reverse Vaccinology Approach: Potential Candidates for Subunit Vaccine Development. Vaccines (Basel) 2023; 11:1266. [PMID: 37515081 PMCID: PMC10383140 DOI: 10.3390/vaccines11071266] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/14/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
The threat of bacterial septicemia caused by Aeromonas hydrophila infection to aquaculture growth can be prevented through vaccination, but differences among A. hydrophila strains may affect the effectiveness of non-conserved subunit vaccines or non-inactivated A. hydrophila vaccines, making the identification and development of conserved antigens crucial. In this study, a bioinformatics analysis of 4268 protein sequences encoded by the A. hydrophila J-1 strain whole genome was performed based on reverse vaccinology. The specific analysis included signal peptide prediction, transmembrane helical structure prediction, subcellular localization prediction, and antigenicity and adhesion evaluation, as well as interspecific and intraspecific homology comparison, thereby screening the 39 conserved proteins as candidate antigens for A. hydrophila vaccine. The 9 isolated A. hydrophila strains from diseased fish were categorized into 6 different molecular subtypes via enterobacterial repetitive intergenic consensus (ERIC)-PCR technology, and the coding regions of 39 identified candidate proteins were amplified via PCR and sequenced to verify their conservation in different subtypes of A. hydrophila and other Aeromonas species. In this way, conserved proteins were screened out according to the comparison results. Briefly, 16 proteins were highly conserved in different A. hydrophila subtypes, of which 2 proteins were highly conserved in Aeromonas species, which could be selected as candidate antigens for vaccines development, including type IV pilus secretin PilQ (AJE35401.1) and TolC family outer membrane protein (AJE35877.1). The present study screened the conserved antigens of A. hydrophila by using reverse vaccinology, which provided basic foundations for developing broad-spectrum protective vaccines of A. hydrophila.
Collapse
Affiliation(s)
- Ting Zhang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- Jiangsu Key Laboratory of Marine Biotechnology, School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang 222005, China
| | - Minying Zhang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- Jiangsu Key Laboratory of Marine Biotechnology, School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang 222005, China
| | - Zehua Xu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- Jiangsu Key Laboratory of Marine Biotechnology, School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yang He
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang Normal University, Neijiang 641000, China
| | - Xiaoheng Zhao
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- Jiangsu Key Laboratory of Marine Biotechnology, School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang 222005, China
| | - Hanliang Cheng
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- Jiangsu Key Laboratory of Marine Biotechnology, School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xiangning Chen
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- Jiangsu Key Laboratory of Marine Biotechnology, School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang 222005, China
| | - Jianhe Xu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- Jiangsu Key Laboratory of Marine Biotechnology, School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang 222005, China
| | - Zhujin Ding
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- Jiangsu Key Laboratory of Marine Biotechnology, School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang 222005, China
- Jiangsu Institute of Marine Resources Development, Lianyungang 222005, China
| |
Collapse
|
28
|
Kalanaky S, Fakharzadeh S, Karimi P, Hafizi M, Jamaati H, Hassanzadeh SM, Khorasani A, Mahdavi M, Nazaran MH. Nanoadjuvants Produced by Advanced Nanochelating Technology in the Inactivated-Severe Acute Respiratory Syndrome Coronavirus-2 Vaccine Formulation: Preliminary Results on Cytokines and IgG Responses. Viral Immunol 2023; 36:409-423. [PMID: 37506342 DOI: 10.1089/vim.2023.0001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2023] Open
Abstract
Despite the great success of vaccines in various infectious diseases, most current vaccines are not effective enough, and on the contrary, clinically approved alum adjuvants cannot induce sufficient immune responses, including a potent cellular immune response to confer protection. In this study, we used Nanochelating Technology to develop novel nanoadjuvants to boost the potency of the alum-adjuvanted inactivated severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) vaccine. BALB/c mice were immunized twice over 2 weeks with different doses of adjuvanted-vaccine formulations and immune responses were assessed. The analysis results of IFN-γ and IL-17 cytokines demonstrated the effectiveness of the nanoadjuvants produced by the Nanochelating Technology in shifting the alum-based vaccine toward a stronger Th1 pattern. In addition, these nanoadjuvants improved IL-2 cytokine response, which shows the efficacy of these novel formulations in inducing specific T lymphocyte proliferation. Using these nanoadjuvants increased IL-10 cytokine secretion that may be representative of a better immunoregulatory impact and may also potentially prevent immunopathology responses. Moreover, specific IgG titer analysis revealed the potency of these nanoadjuvants in improving humoral immune responses. The enzyme-linked immunosorbent assay of receptor-binding domain (RBD)-specific IgG response showed that the developed novel formulations induced strong IgG responses against this protein. This study shows that the nanostructures produced by the Advanced Nanochelating Technology have potent adjuvant effects on alum-based SARS-CoV-2 vaccines to not only compensate for alum weakness in inducing the cellular immune responses by smart regulation of the immune system but also significantly improve the humoral and cellular immune responses simultaneously.
Collapse
Affiliation(s)
- Somayeh Kalanaky
- Department of Research and Development, Sodour Ahrar Shargh Company, Tehran, Iran
| | - Saideh Fakharzadeh
- Department of Research and Development, Sodour Ahrar Shargh Company, Tehran, Iran
| | - Pegah Karimi
- Department of Research and Development, Sodour Ahrar Shargh Company, Tehran, Iran
| | - Maryam Hafizi
- Department of Research and Development, Sodour Ahrar Shargh Company, Tehran, Iran
| | - Hamidreza Jamaati
- Chronic Respiratory Diseases Research Center, NRITLD, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Mehdi Hassanzadeh
- Department of BCG Vaccine Production, Production and Research Complex, Pasteur Institute of Iran, Karaj, Iran
| | - Akbar Khorasani
- Department of FMD Vaccine Production, Razi Vaccine and Serum Research Institute, Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
| | - Mehdi Mahdavi
- Advanced Therapy Medicinal Product (ATMP) Department, Breast Cancer Research Center, Motamed Cancer Institute, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
- Recombinant Vaccine Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Immunotherapy Group, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
- Medical Division, Department of Research and Development, Sodour Ahrar Shargh Company, Tehran, Iran
| | - Mohammad Hassan Nazaran
- Department of Research and Development, Sodour Ahrar Shargh Company, Tehran, Iran
- Owner of Nanochelating Technology and Executive Manager and Chairman of Management Board of Sodour Ahrar Shargh Company, Tehran, Iran
| |
Collapse
|
29
|
Bai S, Gao H, Tan LTQ, Yao L, Meng X, Zhang Y. A synthetic Tn-BSA conjugate vaccine bearing chitotriose as built-in adjuvant. Carbohydr Res 2023; 530:108875. [PMID: 37348181 DOI: 10.1016/j.carres.2023.108875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 06/24/2023]
Abstract
Chitotriose (CTS), the hydrolysate of chitosan, is readily soluble in water because of the shorter chain lengths of the oligomers and the free amino groups in the d-glucosamine units. In the current study, we report the synthesis of novel conjugate vaccine Tn-BSA-CTS with chitotriose as built-in adjuvant, along with an evaluation of the effect of adjuvant chitotriose (CTS). Immunological evaluations of the resultant conjugate vaccine revealed that Tn-BSA-CTS could provoke the highest titers of IgG antibodies (102,400). The Tn-BSA-CTS conjugate remarkably enhanced both humoral and cellular immunity. The obtained results demonstrate the potential of CTS as a novel vaccine adjuvant in the development of antitumor vaccine and the covalent linkage of tumor vaccine to CTS might be available strategy to increase the efficacy against cancer.
Collapse
Affiliation(s)
- Song Bai
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, 300072, PR China
| | - Hang Gao
- Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Tianjin, 300457, PR China
| | - Lin-Tong-Qing Tan
- Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Tianjin, 300457, PR China
| | - Lulu Yao
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, 300072, PR China
| | - Xin Meng
- Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Tianjin, 300457, PR China.
| | - Yongzhong Zhang
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, 300072, PR China.
| |
Collapse
|
30
|
Brai A, Poggialini F, Pasqualini C, Trivisani CI, Vagaggini C, Dreassi E. Progress towards Adjuvant Development: Focus on Antiviral Therapy. Int J Mol Sci 2023; 24:9225. [PMID: 37298177 PMCID: PMC10253057 DOI: 10.3390/ijms24119225] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/12/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
In recent decades, vaccines have been extraordinary resources to prevent pathogen diffusion and cancer. Even if they can be formed by a single antigen, the addition of one or more adjuvants represents the key to enhance the response of the immune signal to the antigen, thus accelerating and increasing the duration and the potency of the protective effect. Their use is of particular importance for vulnerable populations, such as the elderly or immunocompromised people. Despite their importance, only in the last forty years has the search for novel adjuvants increased, with the discovery of novel classes of immune potentiators and immunomodulators. Due to the complexity of the cascades involved in immune signal activation, their mechanism of action remains poorly understood, even if significant discovery has been recently made thanks to recombinant technology and metabolomics. This review focuses on the classes of adjuvants under research, recent mechanism of action studies, as well as nanodelivery systems and novel classes of adjuvants that can be chemically manipulated to create novel small molecule adjuvants.
Collapse
Affiliation(s)
- Annalaura Brai
- Department of Biotechnologies, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, I-53100 Siena, Italy; (A.B.); (F.P.); (C.P.); (C.V.)
| | - Federica Poggialini
- Department of Biotechnologies, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, I-53100 Siena, Italy; (A.B.); (F.P.); (C.P.); (C.V.)
| | - Claudia Pasqualini
- Department of Biotechnologies, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, I-53100 Siena, Italy; (A.B.); (F.P.); (C.P.); (C.V.)
| | - Claudia Immacolata Trivisani
- Department of Biotechnologies, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, I-53100 Siena, Italy; (A.B.); (F.P.); (C.P.); (C.V.)
- Department of Pharmaceutical Sciences, University of Vienna, 1090 Vienna, Austria
| | - Chiara Vagaggini
- Department of Biotechnologies, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, I-53100 Siena, Italy; (A.B.); (F.P.); (C.P.); (C.V.)
| | - Elena Dreassi
- Department of Biotechnologies, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, I-53100 Siena, Italy; (A.B.); (F.P.); (C.P.); (C.V.)
| |
Collapse
|
31
|
Okumoto A, Nomura Y, Maki K, Ogawa T, Onodera H, Shikano M, Okabe N. Addressing practical issues in the smooth implementation of revised guidelines for non-clinical studies of vaccines for infectious disease prevention. Regul Toxicol Pharmacol 2023:105413. [PMID: 37230176 DOI: 10.1016/j.yrtph.2023.105413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 05/15/2023] [Accepted: 05/22/2023] [Indexed: 05/27/2023]
Abstract
Herein, we investigated possible practical issues for the smooth implementation of the revised Japanese Guidelines for Non-clinical Studies of Vaccines for the Prevention of Infectious Diseases, which were raised in response to public comments on the proposed guideline revision and a gap analysis of the World Health Organization and European Medicines Agency guidelines. We identified main issues such as the non-clinical safety studies of adjuvants and evaluation of local cumulative tolerance in toxicity studies. The revised Japanese Pharmaceuticals and Medical Devices Agency (PMDA)/Ministry of Health, Labour and Welfare (MHLW) guidelines require non-clinical safety studies for vaccines containing new adjuvants, but additional safety pharmacology studies or safety studies in two animal species may be required if non-clinical safety studies raise any concerns (i.e., systemic distribution). Adjuvant biodistribution studies may aid in understanding vaccine characteristics. The evaluation of local cumulative tolerance in non-clinical studies, which was the focus of the Japanese review, can be omitted by including a warning in the package insert to avoid injection to the same site. The study's findings will be reflected in a Q&A to be released by the Japanese MHLW. We hope that this study will contribute to the global and harmonized development of vaccines.
Collapse
Affiliation(s)
- Atsuko Okumoto
- Graduate School of Pharmaceutical Sciences, Tokyo University of Science, 162-8601, Tokyo, Japan; Pharmaceuticals and Medical Devices Agency, 100-0013, Tokyo, Japan.
| | - Yumiko Nomura
- Graduate School of Pharmaceutical Sciences, Tokyo University of Science, 162-8601, Tokyo, Japan; Ministry of Health, Labor, and Welfare, 100-8916, Tokyo, Japan
| | - Kazushige Maki
- Pharmaceuticals and Medical Devices Agency, 100-0013, Tokyo, Japan
| | - Takashi Ogawa
- Pharmaceuticals and Medical Devices Agency, 100-0013, Tokyo, Japan
| | - Hiroshi Onodera
- National Institute of Health Sciences, 210-9501, Kanagawa, Japan
| | - Mayumi Shikano
- Graduate School of Pharmaceutical Sciences, Tokyo University of Science, 162-8601, Tokyo, Japan; Faculty of Pharmaceutical Sciences, Tokyo University of Science, 162-8601, Tokyo, Japan
| | - Nobuhiko Okabe
- Kawasaki City Institute for Public Health, 210-0821, Kanagawa, Japan
| |
Collapse
|
32
|
Bian Y, Walter DL, Zhang C. Efficiency of Interferon-γ in Activating Dendritic Cells and Its Potential Synergy with Toll-like Receptor Agonists. Viruses 2023; 15:v15051198. [PMID: 37243284 DOI: 10.3390/v15051198] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/14/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
Interferon-γ (IFN-γ) is a cytokine that plays an important role in immune regulation, especially in the activation and differentiation of immune cells. Toll-like receptors (TLRs) are a family of pattern-recognition receptors that sense structural motifs related to pathogens and alert immune cells to the invasion. Both IFN-γ and TLR agonists have been used as immunoadjuvants to augment the efficacy of cancer immunotherapies and vaccines against infectious diseases or psychoactive compounds. In this study, we aimed to explore the potential of IFN-γ and TLR agonists being applied simultaneously to boost dendritic cell activation and the subsequent antigen presentation. In brief, murine dendritic cells were treated with IFN-γ and/or the TLR agonists, polyinosinic-polycytidylic acid (poly I:C), or resiquimod (R848). Next, the dendritic cells were stained for an activation marker, a cluster of differentiation 86 (CD86), and the percentage of CD86-positive cells was measured by flow cytometry. From the cytometric analysis, IFN-γ efficiently stimulated a considerable number of the dendritic cells, while the TLR agonists by themselves could merely activate a few compared to the control. The combination of IFN-γ with poly I:C or R848 triggered a higher amount of dendritic cell activation than IFN-γ alone. For instance, 10 ng/mL IFN-γ with 100 µg/mL poly I:C achieved 59.1% cell activation, which was significantly higher than the 33.4% CD86-positive cells obtained by 10 ng/mL IFN-γ. These results suggested that IFN-γ and TLR agonists could be applied as complementary systems to promote dendritic cell activation and antigen presentation. There might be a synergy between the two classes of molecules, but further investigation is warranted to ascertain the interaction of their promotive activities.
Collapse
Affiliation(s)
- Yuanzhi Bian
- Department of Biological Systems Engineering, College of Agriculture and Life Sciences & College of Engineering, Virginia Tech, Blacksburg, VA 24061, USA
| | - Debra L Walter
- Department of Biological Systems Engineering, College of Agriculture and Life Sciences & College of Engineering, Virginia Tech, Blacksburg, VA 24061, USA
| | - Chenming Zhang
- Department of Biological Systems Engineering, College of Agriculture and Life Sciences & College of Engineering, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
33
|
Bauer DL, Bachnak L, Limbert VM, Horowitz RM, Baudier RL, D'Souza SJ, Immethun VE, Kurtz JR, Grant SB, McLachlan JB. The Adjuvant Combination of dmLT and Monophosphoryl Lipid A Activates the Canonical, Nonpyroptotic NLRP3 Inflammasome in Dendritic Cells and Significantly Interacts to Expand Antigen-Specific CD4 T Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:1519-1530. [PMID: 37023458 PMCID: PMC10159919 DOI: 10.4049/jimmunol.2200221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 03/08/2023] [Indexed: 04/08/2023]
Abstract
Adjuvants are often essential additions to vaccines that enhance the activation of innate immune cells, leading to more potent and protective T and B cell responses. Only a few vaccine adjuvants are currently used in approved vaccine formulations in the United States. Combinations of one or more adjuvants have the potential to increase the efficacy of existing and next-generation vaccines. In this study, we investigated how the nontoxic double mutant Escherichia coli heat-labile toxin R192G/L211A (dmLT), when combined with the TLR4 agonist monophosphoryl lipid A (MPL-A), impacted innate and adaptive immune responses to vaccination in mice. We found that the combination of dmLT and MPL-A induced an expansion of Ag-specific, multifaceted Th1/2/17 CD4 T cells higher than that explained by adding responses to either adjuvant alone. Furthermore, we observed more robust activation of primary mouse bone marrow-derived dendritic cells in the combination adjuvant-treated group via engagement of the canonical NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome complex. This was marked by a multiplicative increase in the secretion of active IL-1β that was independent of classical gasdermin D-mediated pyroptosis. Moreover, the combination adjuvant increased the production of the secondary messengers cAMP and PGE2 in dendritic cells. These results demonstrate how certain adjuvant combinations could be used to potentiate better vaccine responses to combat a variety of pathogens.
Collapse
Affiliation(s)
- David L Bauer
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA
| | - Louay Bachnak
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA
| | - Vanessa M Limbert
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA
| | - Rebecca M Horowitz
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA
| | - Robin L Baudier
- Department of Epidemiology, Tulane School of Public Health and Tropical Medicine, New Orleans, LA
| | - Shaina J D'Souza
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA
| | - Victoria E Immethun
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA
| | - Jonathan R Kurtz
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA
| | - Samuel B Grant
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA
| | - James B McLachlan
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA
| |
Collapse
|
34
|
Montero DA, Vidal RM, Velasco J, George S, Lucero Y, Gómez LA, Carreño LJ, García-Betancourt R, O’Ryan M. Vibrio cholerae, classification, pathogenesis, immune response, and trends in vaccine development. Front Med (Lausanne) 2023; 10:1155751. [PMID: 37215733 PMCID: PMC10196187 DOI: 10.3389/fmed.2023.1155751] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/14/2023] [Indexed: 05/24/2023] Open
Abstract
Vibrio cholerae is the causative agent of cholera, a highly contagious diarrheal disease affecting millions worldwide each year. Cholera is a major public health problem, primarily in countries with poor sanitary conditions and regions affected by natural disasters, where access to safe drinking water is limited. In this narrative review, we aim to summarize the current understanding of the evolution of virulence and pathogenesis of V. cholerae as well as provide an overview of the immune response against this pathogen. We highlight that V. cholerae has a remarkable ability to adapt and evolve, which is a global concern because it increases the risk of cholera outbreaks and the spread of the disease to new regions, making its control even more challenging. Furthermore, we show that this pathogen expresses several virulence factors enabling it to efficiently colonize the human intestine and cause cholera. A cumulative body of work also shows that V. cholerae infection triggers an inflammatory response that influences the development of immune memory against cholera. Lastly, we reviewed the status of licensed cholera vaccines, those undergoing clinical evaluation, and recent progress in developing next-generation vaccines. This review offers a comprehensive view of V. cholerae and identifies knowledge gaps that must be addressed to develop more effective cholera vaccines.
Collapse
Affiliation(s)
- David A. Montero
- Departamento de Microbiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Roberto M. Vidal
- Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Instituto Milenio de Inmunología e Inmunoterapia, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Juliana Velasco
- Unidad de Paciente Crítico, Clínica Hospital del Profesor, Santiago, Chile
- Programa de Formación de Especialista en Medicina de Urgencia, Universidad Andrés Bello, Santiago, Chile
| | - Sergio George
- Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Yalda Lucero
- Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Departamento de Pediatría y Cirugía Infantil, Hospital Dr. Roberto del Rio, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Leonardo A. Gómez
- Departamento de Microbiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Leandro J. Carreño
- Instituto Milenio de Inmunología e Inmunoterapia, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Richard García-Betancourt
- Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Miguel O’Ryan
- Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| |
Collapse
|
35
|
Naletova I, Tomasello B, Attanasio F, Pleshkan VV. Prospects for the Use of Metal-Based Nanoparticles as Adjuvants for Local Cancer Immunotherapy. Pharmaceutics 2023; 15:1346. [PMID: 37242588 PMCID: PMC10222518 DOI: 10.3390/pharmaceutics15051346] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/22/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
Immunotherapy is among the most effective approaches for treating cancer. One of the key aspects for successful immunotherapy is to achieve a strong and stable antitumor immune response. Modern immune checkpoint therapy demonstrates that cancer can be defeated. However, it also points out the weaknesses of immunotherapy, as not all tumors respond to therapy and the co-administration of different immunomodulators may be severely limited due to their systemic toxicity. Nevertheless, there is an established way through which to increase the immunogenicity of immunotherapy-by the use of adjuvants. These enhance the immune response without inducing such severe adverse effects. One of the most well-known and studied adjuvant strategies to improve immunotherapy efficacy is the use of metal-based compounds, in more modern implementation-metal-based nanoparticles (MNPs), which are exogenous agents that act as danger signals. Adding innate immune activation to the main action of an immunomodulator makes it capable of eliciting a robust anti-cancer immune response. The use of an adjuvant has the peculiarity of a local administration of the drug, which positively affects its safety. In this review, we will consider the use of MNPs as low-toxicity adjuvants for cancer immunotherapy, which could provide an abscopal effect when administered locally.
Collapse
Affiliation(s)
- Irina Naletova
- Institute of Crystallography, National Council of Research, CNR, S.S. Catania, Via P. Gaifami 18, 95126 Catania, Italy
| | - Barbara Tomasello
- Department of Drug and Health Sciences, University of Catania, V.le Andrea Doria 6, 95125 Catania, Italy
| | - Francesco Attanasio
- Institute of Crystallography, National Council of Research, CNR, S.S. Catania, Via P. Gaifami 18, 95126 Catania, Italy
| | - Victor V. Pleshkan
- Gene Immunooncotherapy Group, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia
| |
Collapse
|
36
|
Rando HM, Lordan R, Kolla L, Sell E, Lee AJ, Wellhausen N, Naik A, Kamil JP, Gitter A, Greene CS. The Coming of Age of Nucleic Acid Vaccines during COVID-19. mSystems 2023; 8:e0092822. [PMID: 36861992 PMCID: PMC10134841 DOI: 10.1128/msystems.00928-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
In the 21st century, several emergent viruses have posed a global threat. Each pathogen has emphasized the value of rapid and scalable vaccine development programs. The ongoing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has made the importance of such efforts especially clear. New biotechnological advances in vaccinology allow for recent advances that provide only the nucleic acid building blocks of an antigen, eliminating many safety concerns. During the COVID-19 pandemic, these DNA and RNA vaccines have facilitated the development and deployment of vaccines at an unprecedented pace. This success was attributable at least in part to broader shifts in scientific research relative to prior epidemics: the genome of SARS-CoV-2 was available as early as January 2020, facilitating global efforts in the development of DNA and RNA vaccines within 2 weeks of the international community becoming aware of the new viral threat. Additionally, these technologies that were previously only theoretical are not only safe but also highly efficacious. Although historically a slow process, the rapid development of vaccines during the COVID-19 crisis reveals a major shift in vaccine technologies. Here, we provide historical context for the emergence of these paradigm-shifting vaccines. We describe several DNA and RNA vaccines in terms of their efficacy, safety, and approval status. We also discuss patterns in worldwide distribution. The advances made since early 2020 provide an exceptional illustration of how rapidly vaccine development technology has advanced in the last 2 decades in particular and suggest a new era in vaccines against emerging pathogens. IMPORTANCE The SARS-CoV-2 pandemic has caused untold damage globally, presenting unusual demands on but also unique opportunities for vaccine development. The development, production, and distribution of vaccines are imperative to saving lives, preventing severe illness, and reducing the economic and social burdens caused by the COVID-19 pandemic. Although vaccine technologies that provide the DNA or RNA sequence of an antigen had never previously been approved for use in humans, they have played a major role in the management of SARS-CoV-2. In this review, we discuss the history of these vaccines and how they have been applied to SARS-CoV-2. Additionally, given that the evolution of new SARS-CoV-2 variants continues to present a significant challenge in 2022, these vaccines remain an important and evolving tool in the biomedical response to the pandemic.
Collapse
Affiliation(s)
- Halie M. Rando
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz School of Medicine, Aurora, Colorado, USA
- Center for Health AI, University of Colorado Anschutz School of Medicine, Aurora, Colorado, USA
- Department of Biomedical Informatics, University of Colorado Anschutz School of Medicine, Aurora, Colorado, USA
| | - Ronan Lordan
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Likhitha Kolla
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Elizabeth Sell
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Alexandra J. Lee
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Nils Wellhausen
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Amruta Naik
- Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Jeremy P. Kamil
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center Shreveport, Shreveport, Louisiana, USA
| | - COVID-19 Review Consortium
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz School of Medicine, Aurora, Colorado, USA
- Center for Health AI, University of Colorado Anschutz School of Medicine, Aurora, Colorado, USA
- Department of Biomedical Informatics, University of Colorado Anschutz School of Medicine, Aurora, Colorado, USA
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center Shreveport, Shreveport, Louisiana, USA
- Department of Biostatistics and Medical Informatics, University of Wisconsin—Madison, Madison, Wisconsin, USA
- Morgridge Institute for Research, Madison, Wisconsin, USA
- Childhood Cancer Data Lab, Alex’s Lemonade Stand Foundation, Philadelphia, Pennsylvania, USA
| | - Anthony Gitter
- Department of Biostatistics and Medical Informatics, University of Wisconsin—Madison, Madison, Wisconsin, USA
- Morgridge Institute for Research, Madison, Wisconsin, USA
| | - Casey S. Greene
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz School of Medicine, Aurora, Colorado, USA
- Center for Health AI, University of Colorado Anschutz School of Medicine, Aurora, Colorado, USA
- Department of Biomedical Informatics, University of Colorado Anschutz School of Medicine, Aurora, Colorado, USA
- Childhood Cancer Data Lab, Alex’s Lemonade Stand Foundation, Philadelphia, Pennsylvania, USA
| |
Collapse
|
37
|
Reyes C, Patarroyo MA. Adjuvants approved for human use: What do we know and what do we need to know for designing good adjuvants? Eur J Pharmacol 2023; 945:175632. [PMID: 36863555 DOI: 10.1016/j.ejphar.2023.175632] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/21/2023] [Accepted: 02/28/2023] [Indexed: 03/04/2023]
Abstract
Adjuvants represent one of the most significant biotechnological solutions regarding vaccine development, thereby broadening the amount of candidates which can now be used and tested in vaccine formulations targeting various pathogens, as antigens which were previously discarded due to their low or null immunogenicity can now be included. Adjuvant development research has grown side-by-side with an increasing body of knowledge regarding immune systems and their recognition of foreign microorganisms. Alum-derived adjuvants were used in human vaccines for many years, even though complete understanding of their vaccination-related mechanism of action was lacking. The amount of adjuvants approved for human use has increased recently in line with attempts to interact with and stimulate the immune system. This review is aimed at summarising what is known about adjuvants, focusing on those approved for use in humans, their mechanism of action and why they are so necessary for vaccine candidate formulations; it also discusses what the future may hold in this growing research field.
Collapse
Affiliation(s)
- César Reyes
- PhD Programme in Biotechnology, Faculty of Sciences, Universidad Nacional de Colombia, Carrera 45#26-85, Bogotá, DC 111321, Colombia; Three-dimensional Structures Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50#26-20, Bogotá, DC 111321, Colombia; Animal Science Faculty, Universidad de Ciencias Aplicadas y Ambientales (U.D.C.A), Calle 222#55-37, Bogotá, DC 111166, Colombia.
| | - Manuel A Patarroyo
- Microbiology Department, Faculty of Medicine, Universidad Nacional de Colombia, Carrera 45#26-85, Bogotá, DC 111321, Colombia; Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50#26-20, Bogotá, DC 111321, Colombia.
| |
Collapse
|
38
|
Liu J, Guo S, Jin Z, Zhao K. Adjuvanted quaternized chitosan composite aluminum nanoparticles-based vaccine formulation promotes immune responses in chickens. Vaccine 2023; 41:2982-2989. [PMID: 37032226 DOI: 10.1016/j.vaccine.2023.03.067] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 04/11/2023]
Abstract
Aluminum adjuvant is a typical adjuvant that can promote humoral immune response, but it lacks the ability to effectively induce cellular immune response. The water-soluble N-2-Hydroxypropyl trimethyl ammonium chloride chitosan nanoparticles (N-2-HACC NPs) can enhance humoral and cellular immune responses of vaccines. To enable aluminum adjuvant to induce cellular immunity, the composite nano adjuvant N-2-HACC-Al NPs were synthesized by the N-2-HACC and aluminum sulfate (Al2(SO4)3). The particle size and zeta potential of the N-2-HACC-Al NPs were 300.70 ± 24.90 nm and 32.28 ± 0.52 mV, respectively. The N-2-HACC-Al NPs have good thermal stability and biodegradability and lower cytotoxicity. In addition, to investigate the immunogenicity of the composite nano adjuvant, the combined inactivated vaccine against Newcastle disease (ND) and H9N2 avian influenza (AI) was prepared with the N-2-HACC-Al NPs as a vaccine adjuvant. The immune effect of the vaccine (N-2-HACC-Al/NDV-AIV) was evaluated by chicken in vivo immunization. The vaccine induced higher levels of serum IgG, IL-4, and IFN-γ than those of the commercial combined inactivated vaccine against ND and H9N2 AI. The levels of IFN-γ were more than twice those of the commercial vaccine at 7 days post the immunization. The N-2-HACC-Al NPs could be used as an efficient nano adjuvant to enhance the effectiveness of vaccine and have immense application potential.
Collapse
Affiliation(s)
- Jiali Liu
- College of Chemistry and Material Sciences, School of Life Sciences, Heilongjiang University, Harbin, Heilongjiang 150080, China
| | - Sihan Guo
- College of Chemistry and Material Sciences, School of Life Sciences, Heilongjiang University, Harbin, Heilongjiang 150080, China
| | - Zheng Jin
- College of Chemistry and Material Sciences, School of Life Sciences, Heilongjiang University, Harbin, Heilongjiang 150080, China; Institute of Nanobiomaterials and Immunology, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, School of Life Sciences, Taizhou University, Taizhou 318000, China.
| | - Kai Zhao
- College of Chemistry and Material Sciences, School of Life Sciences, Heilongjiang University, Harbin, Heilongjiang 150080, China; Institute of Nanobiomaterials and Immunology, Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, School of Life Sciences, Taizhou University, Taizhou 318000, China.
| |
Collapse
|
39
|
Gao Y, Guo Y. Research progress in the development of natural-product-based mucosal vaccine adjuvants. Front Immunol 2023; 14:1152855. [PMID: 37090704 PMCID: PMC10113501 DOI: 10.3389/fimmu.2023.1152855] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 03/27/2023] [Indexed: 04/08/2023] Open
Abstract
Mucosal vaccines have great potential and advantages in preventing infection caused by multiple pathogens. In developing mucosal vaccines, the biggest challenge comes from finding safe and effective adjuvants and drug delivery systems. Great progress has been made in the generation of mucosal adjuvants using detoxified bacterial toxin derivatives, pathogen-related molecules, cytokines, and various vaccine delivery systems. However, many problems, relating to the safety and efficacy of mucosal vaccine adjuvants, remain. Certain natural substances can boost the immune response and thus could be used as adjuvants in vaccination. These natural-product-based immune adjuvants have certain advantages over conventional adjuvants, such as low toxicity, high stability, and low cost of production. In this review, we summarize the latest natural-product-based immune adjuvants, and discuss their properties and clinical applications.
Collapse
|
40
|
Yihunie W, Kebede B, Tegegne BA, Getachew M, Abebe D, Aschale Y, Belew H, Bahiru B. Systematic Review of Safety of RTS,S with AS01 and AS02 Adjuvant Systems Using Data from Randomized Controlled Trials in Infants, Children, and Adults. Clin Pharmacol 2023; 15:21-32. [PMID: 36941908 PMCID: PMC10024506 DOI: 10.2147/cpaa.s400155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/07/2023] [Indexed: 03/16/2023] Open
Abstract
Background Emergence of antimalarial drugs and insecticides resistance alarms scientists to develop a safe and effective malaria vaccine. A pre-erythrocytic malaria vaccine called RTS,S has made great strides. Aim The review was aimed to assess the safety of the candidate malaria vaccine RTS,S with AS01 and AS02 adjuvants using data from Phase I-III randomized controlled clinical trials (RCTs). Methods This systematic review was conducted based on PRISMA 2020. Regardless of time of publication year, all articles related with safety of RTS,S, RCTs published in the English language were included in the study. The last search of databases, and registry was conducted on 30 May, 2022. Pubmed, Google Scholar, Cochrane Library, Wiley Online Library, and Clinical trials.gov were thoroughly searched for accessible RCTs on the safety of RTS,S malaria vaccine. The studies were screened in three steps: duplicate removal, title and abstract screening, and full-text review. The included studies' bias risk was assessed using the Cochrane risk of bias tool for RCTs. This systematic review is registered at Prospero (registration number: CRD42021285888). The qualitative descriptive findings from the included published studies were reported stratified by clinical trial phases. Findings A total of thirty-five eligible safety studies were identified. Injection site pain and swelling, febrile convulsion, fever, headache, meningitis, fatigue, gastroenteritis, myalgia, pneumonia, reactogenicity, and anemia were the most commonly reported adverse events. Despite few clinical trials reported serious adverse events, none of them were related to vaccination. Conclusion Most of the adverse events observed from RTS,S/AS01 and RTS,S/AS02 malaria vaccines were reported in the control group and shared by other vaccines. Hence, the authors concluded that both RTS,S/AS01 and RTS,S/AS02 malaria vaccines are safe.
Collapse
Affiliation(s)
- Wubetu Yihunie
- Department of Pharmacy, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Bekalu Kebede
- Department of Pharmacy, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Bantayehu Addis Tegegne
- Department of Pharmacy, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Melese Getachew
- Department of Pharmacy, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Dehnnet Abebe
- Department of Pharmacy, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Yibeltal Aschale
- Department of Medical Laboratory Science, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Habtamu Belew
- Department of Medical Laboratory Science, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Bereket Bahiru
- Department of Pharmacy, College of Medicine and health sciences, Bahir Dar University, Bahir Dar, Ethiopia
| |
Collapse
|
41
|
Chen H, Li Y, Li L, Yang Z, Wen Z, Liu L, Liu H, Chen Y. Carrier-free subunit nanovaccine amplifies immune responses against tumors and viral infections. Acta Biomater 2023; 158:525-534. [PMID: 36572250 DOI: 10.1016/j.actbio.2022.12.042] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 12/09/2022] [Accepted: 12/19/2022] [Indexed: 12/25/2022]
Abstract
Codelivering subunit antigens and Toll-like receptor (TLR) molecular adjuvants via nanocarriers can stimulate potent innate and specific immune responses. Simple and effective nanovaccines fabrication is crucial for application. However, most nanovaccines were fabricated by introducing additional delivery materials, increasing safety risk, cost and processing complexity. Herein, a carrier-free nanovaccine was facilely prepared using a TLR1/TLR2 adjuvant, Diprovocim, rich in benzene rings that could interact with aromatic residues in subunit antigens through π-π stacking without additional materials. The carrier-free nanovaccines with a narrow size distribution could target lymph nodes (LNs) after intravenous injection to mice. The carrier-free nanovaccines based on ovalbumin (OVA) can stimulate strong antibody titers and CD4+ and CD8+ T cell immune responses in mice, and it synergized with anti-PD1 showing a potent tumor suppression in B16F10-OVA tumor model of mice. Furthermore, the carrier-free nanovaccine with glycoprotein E (gE), a glycoprotein of the varicella-zoster virus (VZV), also showed potent humoral and cellular immune responses. Therefore, using subunit proteins to support Diprovocim by π-π stacking provides a new approach for the preparation and application of novel vaccines for tumor therapy and prevention of infectious diseases. STATEMENT OF SIGNIFICANCE: Codelivering subunit antigens and adjuvants via nanocarriers stimulate potent innate and specific immune responses. However, existing delivery materials for fabricating nanovaccines will inevitably increase the cost of preparation, controllability, process complexity and safety assessment. Therefore, this study easily prepared carrier-free nanovaccines using the benzene ring-rich TLR1/TLR2 adjuvant Diprovocim, which can interact with aromatic residues in subunit antigens via π-π stacking without additional materials. The carrier-free nanovaccines of OVA demonstrated a potent tumor inhibition in treating melanoma in combination with anti-PD1. And the nanovaccines of gE stimulated a strong antibody titer and cellular immune response for herpes zoster. Thus, the present study provides a new approach for the preparation of subunit vaccines to combat various cancers and virus infections.
Collapse
Affiliation(s)
- Haolin Chen
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yuhui Li
- Department of Pathology, Sun Yat-sen Memorial Hospital, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen University, Guangzhou, 510275, China
| | - Liyan Li
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou, 510275, China
| | - Zeyu Yang
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou, 510275, China
| | - Zhenfu Wen
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou, 510275, China
| | - Lixin Liu
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou, 510275, China;; State Key Laboratory of Oncology in Southern China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| | - Hong Liu
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou, 510275, China;.
| | - Yongming Chen
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou, 510275, China;; State Key Laboratory of Oncology in Southern China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China; Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China.
| |
Collapse
|
42
|
Hashemi Goradel N, Nemati M, Bakhshandeh A, Arashkia A, Negahdari B. Nanovaccines for cancer immunotherapy: Focusing on complex formation between adjuvant and antigen. Int Immunopharmacol 2023; 117:109887. [PMID: 36841155 DOI: 10.1016/j.intimp.2023.109887] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/29/2023] [Accepted: 02/10/2023] [Indexed: 02/27/2023]
Abstract
As an interesting cancer immunotherapy approach, cancer vaccines have been developed to deliver tumor antigens and adjuvants to antigen-presenting cells (APCs). Although the safety and easy production shifted the vaccine designing platforms toward the subunit vaccines, their efficacy is limited due to inefficient vaccine delivery. Nanotechnology-based vaccines, called nanovaccines, address the delivery limitations through co-delivery of antigens and adjuvants into lymphoid organs and APCs and their intracellular release, leading to cross-presentation of antigens and induction of potent anti-tumor immune responses. Although the nanovaccines, either as encapsulating agents or biomimetic nanoparticles, exert the desired anti-tumor activities, there is evidence that the mixing formulation to form nanocomplexes between antigens and adjuvants based on the electrostatic interactions provokes high levels of immune responses owing to Ags' availability and faster release. Here, we summarized the various platforms for developing cancer vaccines and the advantages of using delivery systems. The cancer nanovaccines, including nanoparticle-based and biomimetic-based nanovaccines, are discussed in detail. Finally, we focused on the nanocomplexes formation between antigens and adjuvants as promising cancer nanovaccine platforms.
Collapse
Affiliation(s)
- Nasser Hashemi Goradel
- Department of Medical Biotechnology, Maragheh University of Medical Sciences, Maragheh, Iran.
| | - Mahnaz Nemati
- Amir Oncology Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Azam Bakhshandeh
- Department of Industrial Engineering and Management Systems, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Arash Arashkia
- Department of Molecular Virology, Pasteur Institute of Iran, Tehran, Iran
| | - Babak Negahdari
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
43
|
DEC-205 receptor targeted poly(lactic-co-glycolic acid) nanoparticles containing Eucommia ulmoides polysaccharide enhances the immune response of foot-and-mouth disease vaccine in mice. Int J Biol Macromol 2023; 227:576-589. [PMID: 36549613 DOI: 10.1016/j.ijbiomac.2022.12.158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 11/24/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
Nanoparticles targeting the DEC-205 receptor were found to induce antigen-specific protective immune response. When the delivery system carries both antigens and immunomodulators, it can maximize the expected therapeutic effect of the drug and induce effective humoral and cellular immune responses to antigens.In this study, we encapsulated the Eucommia ulmoides Oliv. polysaccharides (EUPS) into PLGA nanoparticles (NPs) and conjugated it with anti-CD205 monoclonal Ab (MAb) to produce a DEC-205 receptor targeted PLGA nanoparticles (anti-DEC-205-EUPS-PLGA NPs). The physicochemical characteristics and adjuvant activity of the above NPs were evaluated in vitro and in vivo. In the in vitro setting, 200 μg·mL-1 anti-DEC-205-EUPS-PLGA could improve the proliferation of DCs and promote their antigen up-take activity. In the in vivo setting, anti-DEC-205-EUPS-PLGA NPs remarkably controlled the release of drug and antigen to induce sustained immune responses and up-regulated the levels of FMDV-specific IgG antibodies, promoted the cytotoxic activity of CTLs and NK cells, and improved the proliferation of splenocytes. Moreover, the anti-DEC-205-EUPS-PLGA NPs facilitated the maturation of DCs. The above data indicated that anti-DEC-205-EUPS-PLGA NPs employed as an targeted adjuvant induced the humoral and cellular immune activity by promoting the maturation of DCs. These findings may provide a new insight onto the development of vaccine adjuvants.
Collapse
|
44
|
Rando HM, Lordan R, Kolla L, Sell E, Lee AJ, Wellhausen N, Naik A, Kamil JP. The Coming of Age of Nucleic Acid Vaccines during COVID-19. ARXIV 2023:arXiv:2210.07247v2. [PMID: 36263086 PMCID: PMC9580386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
In the 21st century, several emergent viruses have posed a global threat. Each pathogen has emphasized the value of rapid and scalable vaccine development programs. The ongoing SARS-CoV-2 pandemic has made the importance of such efforts especially clear. New biotechnological advances in vaccinology allow for recent advances that provide only the nucleic acid building blocks of an antigen, eliminating many safety concerns. During the COVID-19 pandemic, these DNA and RNA vaccines have facilitated the development and deployment of vaccines at an unprecedented pace. This success was attributable at least in part to broader shifts in scientific research relative to prior epidemics; the genome of SARS-CoV-2 was available as early as January 2020, facilitating global efforts in the development of DNA and RNA vaccines within two weeks of the international community becoming aware of the new viral threat. Additionally, these technologies that were previously only theoretical are not only safe but also highly efficacious. Although historically a slow process, the rapid development of vaccines during the COVID-19 crisis reveals a major shift in vaccine technologies. Here, we provide historical context for the emergence of these paradigm-shifting vaccines. We describe several DNA and RNA vaccines and in terms of their efficacy, safety, and approval status. We also discuss patterns in worldwide distribution. The advances made since early 2020 provide an exceptional illustration of how rapidly vaccine development technology has advanced in the last two decades in particular and suggest a new era in vaccines against emerging pathogens.
Collapse
Affiliation(s)
- Halie M Rando
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America; Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz School of Medicine, Aurora, Colorado, United States of America; Center for Health AI, University of Colorado Anschutz School of Medicine, Aurora, Colorado, United States of America; Department of Biomedical Informatics, University of Colorado Anschutz School of Medicine, Aurora, Colorado, United States of America
| | - Ronan Lordan
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-5158, USA; Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA 19104, USA
| | - Likhitha Kolla
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Elizabeth Sell
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Alexandra J Lee
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Nils Wellhausen
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Amruta Naik
- Children's Hospital of Philadelphia, Philadelphia, PA, United States of America
| | - Jeremy P Kamil
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center Shreveport, Shreveport, Louisiana, USA
| |
Collapse
|
45
|
Chung YH, Volckaert BA, Steinmetz NF. Development of a Modular NTA:His Tag Viral Vaccine for Co-delivery of Antigen and Adjuvant. Bioconjug Chem 2023; 34:269-278. [PMID: 36608270 PMCID: PMC10545220 DOI: 10.1021/acs.bioconjchem.2c00601] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The SARS-CoV-2 pandemic has highlighted the need for vaccines that are effective, but quickly produced. Of note, vaccines with plug-and-play capabilities that co-deliver antigen and adjuvant to the same cell have shown remarkable success. Our approach of utilizing a nitrilotriacetic acid (NTA) histidine (His)-tag chemistry with viral adjuvants incorporates both of these characteristics: plug-and-play and co-delivery. We specifically utilize the cowpea mosaic virus (CPMV) and the virus-like particles from bacteriophage Qβ as adjuvants and bind the model antigen ovalbumin (OVA). Successful binding of the antigen to the adjuvant/carrier was verified by SDS-PAGE, western blot, and ELISA. Immunization in C57BL/6J mice demonstrates that with Qβ - but not CPMV - there is an improved antibody response against the target antigen using the Qβ-NiNTA:His-OVA versus a simple admixture of antigen and adjuvant. Antibody isotyping also shows that formulation of the vaccines can alter T helper biases; while the Qβ-NiNTA:His-OVA particle produces a balanced Th1/Th2 bias the admixture was strongly Th2. In a mouse model of B16F10-OVA, we further demonstrate improved survival and slower tumor growth in the vaccine groups compared to controls. The NiNTA:His chemistry demonstrates potential for rapid development of future generation vaccines enabling plug-and-play capabilities with effectiveness boosted by co-delivery to the same cell.
Collapse
Affiliation(s)
- Young Hun Chung
- Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, United States
- Moores Cancer Center, University of California, San Diego, La Jolla, California 92093, United States
| | - Britney A Volckaert
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Nicole F Steinmetz
- Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, United States
- Moores Cancer Center, University of California, San Diego, La Jolla, California 92093, United States
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093, United States
- Department of Radiology, University of California, San Diego, La Jolla, California 92093, United States
- Institute for Materials Discovery and Design, University of California, San Diego, La Jolla, California 92093, United States
- Center for Nano-ImmunoEngineering, University of California, San Diego, La Jolla, California 92093, United States
- Center for Engineering in Cancer, Institute for Engineering in Medicine, University of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
46
|
Ng TW, Porcelli SA. Designing Anti-Viral Vaccines that Harness Intrastructural Help from Prior BCG Vaccination. JOURNAL OF CELLULAR IMMUNOLOGY 2023; 5:97-102. [PMID: 37946751 PMCID: PMC10635577 DOI: 10.33696/immunology.5.174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Vaccines are among the most effective tools for combatting the impact and spread of infectious diseases. However, the effectiveness of a vaccine can be diminished by vaccine inequality, particularly during severe outbreaks of infectious diseases in resource-poor areas. As seen in many developing countries that lack adequate healthcare infrastructure and economic resources, the acquisition and distribution of potentially life-saving vaccines may be limited, leading to prolonged suffering and increased deaths. To improve vaccine equity, vaccine design must take into consideration the logistics needed to implement a successful vaccination drive, particularly among the most vulnerable populations. In the manuscript titled "Exploiting Pre-Existing CD4+ T Cell Help from Bacille Calmette-Guérin Vaccination to Improve Antiviral Antibody Responses" published in the Journal of Immunology, the authors designed a recombinant subunit vaccine against the Ebola virus (EBOV) glycoprotein that can harness the pre-existing T helper cells from prior BCG vaccination. As a recombinant subunit vaccine adjuvanted with alum, this approach has many features that make it well suited for the design of vaccines for developing nations, such as relative ease of production, scalability, and distribution. In addition, the high prevalence of BCG immunization and natural immunity to mycobacteria in many regions of the world endow such vaccines with features that should increase potency and efficacy among populations residing in such regions. As a result of using the helper activity of pre-existing BCG-specific Th cells to drive antibody responses, a lower vaccine dose is needed, which is a major advantage for vaccine manufacture. Furthermore, the BCG-specific Th cells also stimulate immunoglobulin class switching to IgG isotypes that have strong affinities for activating Fc-gamma receptors (FcγRs). Taken together, we propose that the design of subunit vaccines with intrastructural help from BCG-specific Th cells can improve protection against viral infection and represents a vaccine design that can be generally adapted to other emerging viral pathogens for the control and prevention of infection in many developing countries.
Collapse
Affiliation(s)
- Tony W. Ng
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY10461, USA
| | - Steven A. Porcelli
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY10461, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
47
|
Gatt Z, Gunes U, Raponi A, da Rosa LC, Brewer JM. Review: Unravelling the Role of DNA Sensing in Alum Adjuvant Activity. DISCOVERY IMMUNOLOGY 2022; 2:kyac012. [PMID: 38567066 PMCID: PMC10917177 DOI: 10.1093/discim/kyac012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/11/2022] [Accepted: 12/28/2022] [Indexed: 04/04/2024]
Abstract
Public interest in vaccines is at an all-time high following the SARS-CoV-2 global pandemic. Currently, over 6 billion doses of various vaccines are administered globally each year. Most of these vaccines contain Aluminium-based adjuvants (alum), which have been known and used for almost 100 years to enhance vaccine immunogenicity. However, despite the historical use and importance of alum, we still do not have a complete understanding of how alum works to drive vaccine immunogenicity. In this article, we critically review studies investigating the mechanisms of action of alum adjuvants, highlighting some of the misconceptions and controversies within the area. Although we have emerged with a clearer understanding of how this ubiquitous adjuvant works, we have also highlighted some of the outstanding questions in the field. While these may seem mainly of academic interest, developing a more complete understanding of these mechanisms has the potential to rationally modify and improve the immune response generated by alum-adjuvanted vaccines.
Collapse
Affiliation(s)
- Zara Gatt
- School of Infection & Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Scotland
| | - Utku Gunes
- School of Infection & Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Scotland
| | - Arianna Raponi
- School of Infection & Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Scotland
| | - Larissa Camargo da Rosa
- School of Infection & Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Scotland
| | - James M Brewer
- School of Infection & Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Scotland
| |
Collapse
|
48
|
Zagorski K, Pandey K, Rajaiah R, Olwenyi OA, Bade AN, Acharya A, Johnston M, Filliaux S, Lyubchenko YL, Byrareddy SN. Modular nanoarray vaccine for SARS-CoV-2. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2022; 46:102604. [PMID: 36113829 PMCID: PMC9468299 DOI: 10.1016/j.nano.2022.102604] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 11/19/2022]
Abstract
The current vaccine development strategies for the COVID-19 pandemic utilize whole inactive or attenuated viruses, virus-like particles, recombinant proteins, and antigen-coding DNA and mRNA with various delivery strategies. While highly effective, these vaccine development strategies are time-consuming and often do not provide reliable protection for immunocompromised individuals, young children, and pregnant women. Here, we propose a novel modular vaccine platform to address these shortcomings using chemically synthesized peptides identified based on the validated bioinformatic data about the target. The vaccine is based on the rational design of an immunogen containing two defined B-cell epitopes from the spike glycoprotein of SARS-CoV-2 and the universal T-helper epitope PADRE. The epitopes were conjugated to short DNA probes and combined with a complementary scaffold strand, resulting in sequence-specific self-assembly. The immunogens were then formulated by conjugation to gold nanoparticles by three methods or by co-crystallization with epsilon inulin. BALB/C mice were immunized with each formulation, and the IgG immune responses and virus neutralizing titers were compared. The results demonstrate that this assembly is immunogenic and generates neutralizing antibodies against wildtype SARS-CoV-2 and the Delta variant.
Collapse
Affiliation(s)
- Karen Zagorski
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198-6025, United States.
| | - Kabita Pandey
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States; Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, United States.
| | - Rajesh Rajaiah
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States.
| | - Omalla A Olwenyi
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States; Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, United States.
| | - Aditya N Bade
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States.
| | - Arpan Acharya
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States.
| | - Morgan Johnston
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States.
| | - Shaun Filliaux
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198-6025, United States.
| | - Yuri L Lyubchenko
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198-6025, United States.
| | - Siddappa N Byrareddy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States; Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, United States; Department of Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center, Omaha, NE, United States; Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, United States; Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden.
| |
Collapse
|
49
|
Role of Nanomaterials in COVID-19 Prevention, Diagnostics, Therapeutics, and Vaccine Development. JOURNAL OF NANOTHERANOSTICS 2022. [DOI: 10.3390/jnt3040011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Facing the deadly pandemic caused by the SARS-CoV-2 virus all over the globe, it is crucial to devote efforts to fighting and preventing this infectious virus. Nanomaterials have gained much attention after the approval of lipid nanoparticle-based COVID-19 vaccines by the United States Food and Drug Administration (USFDA). In light of increasing demands for utilizing nanomaterials in the management of COVID-19, this comprehensive review focuses on the role of nanomaterials in the prevention, diagnostics, therapeutics, and vaccine development of COVID-19. First, we highlight the variety of nanomaterials usage in the prevention of COVID-19. We discuss the advantages of nanomaterials as well as their uses in the production of diagnostic tools and treatment methods. Finally, we review the role of nanomaterials in COVID-19 vaccine development. This review offers direction for creating products based on nanomaterials to combat COVID-19.
Collapse
|
50
|
Nazeam JA, Singab ANB. Immunostimulant plant proteins: Potential candidates as vaccine adjuvants. Phytother Res 2022; 36:4345-4360. [PMID: 36128599 PMCID: PMC9538006 DOI: 10.1002/ptr.7624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 08/20/2022] [Accepted: 09/03/2022] [Indexed: 12/13/2022]
Abstract
The COVID-19 pandemic is shaking up global scientific structures toward addressing antibiotic resistance threats and indicates an urgent need to develop more cost-effective vaccines. Vaccine adjuvants play a crucial role in boosting immunogenicity and improving vaccine efficacy. The toxicity and adversity of most adjuvant formulations are the major human immunization problems, especially in routine pediatric and immunocompromised patients. The present review focused on preclinical studies of immunoadjuvant plant proteins in use with antiparasitic, antifungal, and antiviral vaccines. Moreover, this report outlines the current perspective of immunostimulant plant protein candidates that can be used by researchers in developing new generations of vaccine-adjuvants. Future clinical studies are required to substantiate the plant proteins' safety and applicability as a vaccine adjuvant in pharmaceutical manufacturing.
Collapse
Affiliation(s)
- Jilan A. Nazeam
- Pharmacognosy Department, Faculty of PharmacyOctober 6 UniversityGizaEgypt
| | | |
Collapse
|