1
|
Li Q, Jiang Y, Zheng M, Sun X, Hui L, Zhang Y, Yue H, Qi Y, Li S, Ke J, Li Q, Ma B, Jia X, Wang F, Mi L, Zhang S, Miao F, Wang S, Zhang F, Chen T, Hu R. Newcastle Disease Virus-Vectored African Swine Fever Virus Antigen Cocktail Delays the Onset of ASFV-SY18 but Is Not Protective. Microorganisms 2024; 12:2590. [PMID: 39770792 PMCID: PMC11679766 DOI: 10.3390/microorganisms12122590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/02/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
African Swine Fever (ASF) is a highly contagious viral disease threatening the global pig industry. Currently, only two gene-deleted live attenuated vaccines are approved, exclusively in Vietnam, and their long-term effectiveness and safety are unproven, prompting the need for safer alternatives. This study assessed a cocktail of African Swine Fever Virus (ASFV) antigens delivered via a recombinant Newcastle Disease Virus (rNDV) vector against the genotype II ASFV-SY18. Antigens pB602L, pEP84R, and p22 (pKP177R) were selected based on virus neutralization and lymphocyte proliferation assays in mice and combined with capsid protein p72 (pB646L) for vaccination and challenge in pigs. The antigen cocktail delayed ASF symptoms by 3-4 days but did not prevent the lethal ASFV-SY18 infection. Significant ASFV-specific gamma interferon (IFN-γ) positive responses and NDV antibodies were detected post-inoculation, showing an induced immune response, though ASFV-specific p72 antibodies were absent. The cocktail did not cause cytokine imbalance, indicating the vector's safety in pigs. Despite some delay in disease progression, the protection against genotype II ASFV was inadequate, underscoring the need to select more effective antigens and enhance immune responses for virus-vectored vaccines.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Teng Chen
- Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (Q.L.); (Y.J.); (M.Z.); (X.S.); (L.H.); (Y.Z.); (H.Y.); (Y.Q.); (S.L.); (J.K.); (Q.L.); (B.M.); (X.J.); (F.W.); (L.M.); (S.Z.); (F.M.); (S.W.); (F.Z.)
| | - Rongliang Hu
- Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (Q.L.); (Y.J.); (M.Z.); (X.S.); (L.H.); (Y.Z.); (H.Y.); (Y.Q.); (S.L.); (J.K.); (Q.L.); (B.M.); (X.J.); (F.W.); (L.M.); (S.Z.); (F.M.); (S.W.); (F.Z.)
| |
Collapse
|
2
|
Song X, Li Y, Wu H, Qiu H, Sun Y. T-Cell Epitope-Based Vaccines: A Promising Strategy for Prevention of Infectious Diseases. Vaccines (Basel) 2024; 12:1181. [PMID: 39460347 PMCID: PMC11511246 DOI: 10.3390/vaccines12101181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/06/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024] Open
Abstract
With the development of novel vaccine strategies, T-cell epitope-based vaccines have become promising prophylactic and therapeutic tools against infectious diseases that cannot be controlled via traditional vaccines. T-cell epitope-based vaccines leverage specific immunogenic peptides to elicit protective T-cell responses against infectious pathogens. Compared to traditional vaccines, they provide superior efficacy and safety, minimizing the risk of adverse side effects. In this review, we summarized and compared the prediction and identification methods of T-cell epitopes. By integrating bioinformatic prediction and experimental validation, efficient and precise screening of T-cell epitopes can be achieved. Importantly, we delved into the development approaches to diverse T-cell epitope-based vaccines, comparing their merits and demerits, as well as discussing the prevalent challenges and perspectives in their applications. This review offers fresh perspectives for the formulation of safe and efficacious epitope-based vaccines for the devastating diseases against which no vaccines are currently available.
Collapse
Affiliation(s)
| | | | | | - Huaji Qiu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (X.S.); (Y.L.); (H.W.)
| | - Yuan Sun
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (X.S.); (Y.L.); (H.W.)
| |
Collapse
|
3
|
Yuan F, Cui J, Wang T, Qin J, Jeon JH, Ding H, Whittaker CA, Xu R, Cao H, Chen J. Selection, Design and Immunogenicity Studies of ASFV Antigens for Subunit mRNA Cocktail Vaccines with Specific Immune Response Profiles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.08.617156. [PMID: 39416081 PMCID: PMC11482780 DOI: 10.1101/2024.10.08.617156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Development of safe and effective subunit vaccines for controlling African Swine Fever Virus (ASFV) infection has been hampered by a lack of protective viral antigens, complex virion structures, and multiple mechanisms of infection. Here, we selected ASFV antigens based on their localization on the virion, known functions, and homologies to the subunits of the protective vaccinia virus vaccine. We also engineered viral capsid proteins for inducing optimal antibody responses and designed T cell-directed antigen for inducing broad and robust cellular immunity. The selected antigens in lipid nanoparticle-mRNA formulations were evaluated for immunogenicity in both mice and pigs with concordant results. Different antigens induced divergent immune response profiles, including the levels of IgG and T cell responses and effector functions of anti-sera. We further developed a computational approach to combine antigens into cocktails for inducing specific immune response profiles and validated candidate cocktail vaccines in mice. Our results provide a basis for further evaluating candidate subunit mRNA vaccines in challenge studies.
Collapse
Affiliation(s)
- Fangfeng Yuan
- Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Junru Cui
- Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Tianlei Wang
- Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jane Qin
- ARV Technologies, Inc., North Bethesda, MD, USA
| | | | - Huiming Ding
- Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Charles A. Whittaker
- Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Renhuan Xu
- ARV Technologies, Inc., North Bethesda, MD, USA
| | - Helen Cao
- InnovHope, Inc., Framingham, MA, USA
| | - Jianzhu Chen
- Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
4
|
Breitfelder AK, Schrödl W, Baums CG, Alber G, Müller U. The immunoglobulin M-degrading enzyme of Streptococcus suis (Ide Ssuis) leads to long-lasting inhibition of the activation of porcine IgM-secreting B cells. Vet Res 2024; 55:114. [PMID: 39313819 PMCID: PMC11421183 DOI: 10.1186/s13567-024-01363-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 07/12/2024] [Indexed: 09/25/2024] Open
Abstract
Streptococcus suis (S. suis) is one of the most important porcine pathogens, causing severe pathologies such as meningitis or polyarthritis. It is also a very successful colonizer of mucosal surfaces. The IgM-degrading enzyme of S. suis (IdeSsuis) specifically cleaves porcine IgM, which results in complement evasion. On the basis of our previous finding that IdeSsuis also cleaves the IgM B cell receptor in vitro, we verified IgM B cell receptor cleavage ex vivo in whole regional lymph nodes and investigated the working hypothesis that this IgM B cell receptor cleavage results in a long-lasting impaired B cell function. The number of IgM-secreting cells was determined via ELISpot analysis after porcine peripheral blood mononuclear cells had initially been treated with different recombinant S. suis proteins and subsequently stimulated with interleukin-2 and the toll-like receptor 7/8 ligand R848. Compared with treatment with medium or recombinant muramidase-released protein, treatment with rIdeSsuis but also with a cleavage-deficient variant led to a reduction in the number of IgM-secreting cells as well as the level of secreted IgM. Flow cytometry analysis confirmed that the IgM B cell receptor was cleaved only by rIdeSsuis, and the receptor recovered to pretreatment levels on day 2 after treatment. Flow cytometry analysis of B and T cells incubated with fluorescein-labelled recombinant proteins revealed that different rIdeSsuis variants bind specifically to B cells, most prominently the cleavage-deficient variant. Our results indicate that in vitro interference of rIdeSsuis with the IgM B cell receptor results in long-lasting impaired IgM secretion by B cells after toll-like receptor activation. Further studies are warranted to prove that the modulation of B cell function by IdeSsuis could play a role in vivo.
Collapse
Affiliation(s)
- Annika Katharina Breitfelder
- Institute of Bacteriology and Mycology, Centre for Infectious Diseases, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany.
| | - Wieland Schrödl
- Institute of Bacteriology and Mycology, Centre for Infectious Diseases, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | - Christoph Georg Baums
- Institute of Bacteriology and Mycology, Centre for Infectious Diseases, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | - Gottfried Alber
- Institute of Immunology, Centre for Infectious Diseases, Faculty of Veterinary Medicine, BBZ, University of Leipzig, Leipzig, Germany
| | - Uwe Müller
- Institute of Immunology, Centre for Infectious Diseases, Faculty of Veterinary Medicine, BBZ, University of Leipzig, Leipzig, Germany
| |
Collapse
|
5
|
Chen TY, Ho YJ, Ko FY, Wu PY, Chang CJ, Ho SY. Multi-epitope vaccine design of African swine fever virus considering T cell and B cell immunogenicity. AMB Express 2024; 14:95. [PMID: 39215890 PMCID: PMC11365882 DOI: 10.1186/s13568-024-01749-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 08/13/2024] [Indexed: 09/04/2024] Open
Abstract
T and B cell activation are equally important in triggering and orchestrating adaptive host responses to design multi-epitope African swine fever virus (ASFV) vaccines. However, few design methods have considered the trade-off between T and B cell immunogenicity when identifying promising ASFV epitopes. This work proposed a novel Pareto front-based ASFV screening method PFAS to identify promising epitopes for designing multi-epitope vaccines utilizing five ASFV Georgia 2007/1 sequences. To accurately predict T cell immunogenicity, four scoring methods were used to estimate the T cell activation in the four stages, including proteasomal cleavage probability, transporter associated with antigen processing transport efficiency, class I binding affinity of the major histocompatibility complex, and CD8 + cytotoxic T cell immunogenicity. PFAS ranked promising epitopes using a Pareto front method considering T and B cell immunogenicity. The coefficient of determination between the Pareto ranks of multi-epitope vaccines and survival days of swine vaccinations was R2 = 0.95. Consequently, PFAS scored complete epitope profiles and identified 72 promising top-ranked epitopes, including 46 CD2v epitopes, two p30 epitopes, 10 p72 epitopes, and 14 pp220 epitopes. PFAS is the first method of using the Pareto front approach to identify promising epitopes that considers the objectives of maximizing both T and B cell immunogenicity. The top-ranked promising epitopes can be cost-effectively validated in vitro. The Pareto front approach can be adaptively applied to various epitope predictors for bacterial, viral and cancer vaccine developments. The MATLAB code of the Pareto front method was available at https://github.com/NYCU-ICLAB/PFAS .
Collapse
Affiliation(s)
- Ting-Yu Chen
- Institute of Molecular Medicine and Bioengineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Yann-Jen Ho
- Department of Life Science, National Chung Hsing University, Taichung, Taiwan
- Department of Life Science, Genome and Systems Biology Degree Program, National Taiwan University, Taipei, Taiwan
| | - Fang-Yu Ko
- Department of Life Science, National Chung Hsing University, Taichung, Taiwan
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Pei-Yin Wu
- Reber Genetics Co., Ltd. 13F, No. 160, Sec. 6, Minquan E. Rd., Neihu Dist, Taipei, 114, Taiwan
| | - Chia-Jung Chang
- Reber Genetics Co., Ltd. 13F, No. 160, Sec. 6, Minquan E. Rd., Neihu Dist, Taipei, 114, Taiwan.
| | - Shinn-Ying Ho
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan.
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan.
- Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu, Taiwan.
- College of Health Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
6
|
Justiz-Vaillant A, Gopaul D, Soodeen S, Unakal C, Thompson R, Pooransingh S, Arozarena-Fundora R, Asin-Milan O, Akpaka PE. Advancements in Immunology and Microbiology Research: A Comprehensive Exploration of Key Areas. Microorganisms 2024; 12:1672. [PMID: 39203514 PMCID: PMC11357253 DOI: 10.3390/microorganisms12081672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 09/03/2024] Open
Abstract
Immunology and microbiology research has witnessed remarkable growth and innovation globally, playing a pivotal role in advancing our understanding of immune mechanisms, disease pathogenesis, and therapeutic interventions. This manuscript presents a comprehensive exploration of the key areas in immunology research, spanning from the utilisation of bacterial proteins as antibody reagents to the intricate realms of clinical immunology and disease management. The utilisation of bacterial immunoglobulin-binding proteins (IBPs), including protein A (SpA), protein G (SpG), and protein L (SpL), has revolutionised serological diagnostics, showing promise in early disease detection and precision medicine. Microbiological studies have shed light on antimicrobial resistance patterns, particularly the emergence of extended-spectrum beta-lactamases (ESBLs), guiding antimicrobial stewardship programmes and informing therapeutic strategies. Clinical immunology research has elucidated the molecular pathways underlying immune-mediated disorders, resulting in tailored management strategies for conditions such as severe combined immunodeficiency (SCID), neuropsychiatric systemic lupus erythematosus (NPSLE), etc. Additionally, significant efforts in vaccine development against tuberculosis and HIV are highlighted, underscoring the ongoing global pursuit of effective preventive measures against these infectious diseases. In summary, immunology and microbiology research have provided significant contributions to global healthcare, fostering collaboration, innovation, and improved patient outcomes.
Collapse
Affiliation(s)
- Angel Justiz-Vaillant
- Department of Para-Clinical Sciences, University of the West Indies, St. Augustine Campus, St. Augustine 00000, Trinidad and Tobago; (S.S.); (C.U.); (R.T.); (S.P.); (P.E.A.)
| | - Darren Gopaul
- Port of Spain General Hospital, University of the West Indies, St. Augustine Campus, St. Augustine 00000, Trinidad and Tobago;
| | - Sachin Soodeen
- Department of Para-Clinical Sciences, University of the West Indies, St. Augustine Campus, St. Augustine 00000, Trinidad and Tobago; (S.S.); (C.U.); (R.T.); (S.P.); (P.E.A.)
| | - Chandrashekhar Unakal
- Department of Para-Clinical Sciences, University of the West Indies, St. Augustine Campus, St. Augustine 00000, Trinidad and Tobago; (S.S.); (C.U.); (R.T.); (S.P.); (P.E.A.)
| | - Reinand Thompson
- Department of Para-Clinical Sciences, University of the West Indies, St. Augustine Campus, St. Augustine 00000, Trinidad and Tobago; (S.S.); (C.U.); (R.T.); (S.P.); (P.E.A.)
| | - Shalini Pooransingh
- Department of Para-Clinical Sciences, University of the West Indies, St. Augustine Campus, St. Augustine 00000, Trinidad and Tobago; (S.S.); (C.U.); (R.T.); (S.P.); (P.E.A.)
| | - Rodolfo Arozarena-Fundora
- Eric Williams Medical Sciences Complex, North Central Regional Health Authority, Champs Fleurs 00000, Trinidad and Tobago;
- Department of Clinical and Surgical Sciences, Faculty of Medical Sciences, University of the West Indies, St. Augustine 00000, Trinidad and Tobago
| | | | - Patrick Eberechi Akpaka
- Department of Para-Clinical Sciences, University of the West Indies, St. Augustine Campus, St. Augustine 00000, Trinidad and Tobago; (S.S.); (C.U.); (R.T.); (S.P.); (P.E.A.)
- Eric Williams Medical Sciences Complex, North Central Regional Health Authority, Champs Fleurs 00000, Trinidad and Tobago;
| |
Collapse
|
7
|
Zhai W, Huang Y, He Y, Chu Y, Tao C, Pang Z, Wang Z, Zhu H, Jia H. Immunogenicity Analysis and Identification of Potential T-Cell Epitopes in C129R Protein of African Swine Fever Virus. Microorganisms 2024; 12:1056. [PMID: 38930438 PMCID: PMC11205686 DOI: 10.3390/microorganisms12061056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/17/2024] [Accepted: 05/22/2024] [Indexed: 06/28/2024] Open
Abstract
The highly conserved C129R protein of AFSV was utilized in the development of an ASFV recombinant adenovirus vaccine, demonstrating strong immunogenicity. In this study, we immunized 6-week-old female C57BL/6J mice via subcutaneous injection with 10 μg of purified C129R protein. Humoral and cellular immune effects were assessed using ELISA, flow cytometry, and ELISpot assays. Additionally, 19 peptides of the C129R protein were synthesized and screened for the use of bioinformatics. Positive T-cell epitopes were screened using ELISpot. The results indicated a higher proportion of CD4+ and CD8+ T lymphocytes in immunized mice compared to control mice. ELISA analysis revealed a serum titer of approximately 1:1, 638, 400 in the experimental group of mice. Additionally, peptides C11(53-61aa), C14(81-89aa), C16(97-105aa), and C18(116-124aa) from the C129R protein were able to activate mice spleen lymphocytes to produce IFN-γ. These findings suggest that the C129R protein significantly enhances both humoral and cellular immunity in immunized mice. Moreover, peptides C11, C14, C16, and C18 may serve as potential T-cell epitopes for the C129R protein. These results lay the groundwork for the further exploration of ASFV C129R protein and the identification of novel ASF vaccine antigens.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Hong Jia
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100080, China; (W.Z.); (Y.H.); (Y.H.); (Y.C.); (C.T.); (Z.P.); (Z.W.); (H.Z.)
| |
Collapse
|
8
|
Huang Y, Zhai W, Wang Z, He Y, Tao C, Chu Y, Pang Z, Zhu H, Jia H. Analysis of the Immunogenicity of African Swine Fever F317L Protein and Screening of T Cell Epitopes. Animals (Basel) 2024; 14:1331. [PMID: 38731330 PMCID: PMC11083013 DOI: 10.3390/ani14091331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/15/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
The African swine fever virus (ASFV) encodes numerous proteins characterized by complex immune escape mechanisms. At present, the structure and function of these proteins, including the F317L protein, have yet to be fully elucidated. In this study, we examined the immunogenicity of the F317L protein. Mice were subcutaneously immunized with the F317L protein using initial and subsequent booster doses, and, at the 28th day post-treatment, we assessed the humoral and cellular immune responses of mice. The F317L protein stimulated production of specific antibodies and activated humoral immune responses. In addition, F317L stimulated the production of large amounts of IFN-γ by splenic lymphocytes, thereby activating cellular immune responses. Using informatics technology, we predicted and synthesized 29 F317L protein T cell epitopes, which were screened using IFN-γ ELISpot. Among these, the F25 (246SRRSLVNPWT255) peptide was identified as having a stronger stimulatory effect than the full-length protein. Collectively, our findings revealed that the ASFV F317L protein can stimulate both strong humoral and cellular immunity in mice, and that the F25 (246SRRSLVNPWT255) peptide may be a potential active T cell epitope. These findings will provide a reference for further in-depth studies of the F317L protein and screening of antigenic epitopes.
Collapse
Affiliation(s)
- Ying Huang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.H.); (W.Z.); (Z.W.); (Y.H.); (C.T.); (Y.C.); (Z.P.); (H.Z.)
| | - Wenzhu Zhai
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.H.); (W.Z.); (Z.W.); (Y.H.); (C.T.); (Y.C.); (Z.P.); (H.Z.)
| | - Zhen Wang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.H.); (W.Z.); (Z.W.); (Y.H.); (C.T.); (Y.C.); (Z.P.); (H.Z.)
| | - Yuheng He
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.H.); (W.Z.); (Z.W.); (Y.H.); (C.T.); (Y.C.); (Z.P.); (H.Z.)
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 100193, China
| | - Chunhao Tao
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.H.); (W.Z.); (Z.W.); (Y.H.); (C.T.); (Y.C.); (Z.P.); (H.Z.)
| | - Yuanyuan Chu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.H.); (W.Z.); (Z.W.); (Y.H.); (C.T.); (Y.C.); (Z.P.); (H.Z.)
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 100193, China
| | - Zhongbao Pang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.H.); (W.Z.); (Z.W.); (Y.H.); (C.T.); (Y.C.); (Z.P.); (H.Z.)
| | - Hongfei Zhu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.H.); (W.Z.); (Z.W.); (Y.H.); (C.T.); (Y.C.); (Z.P.); (H.Z.)
| | - Hong Jia
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.H.); (W.Z.); (Z.W.); (Y.H.); (C.T.); (Y.C.); (Z.P.); (H.Z.)
| |
Collapse
|
9
|
Pakotiprapha D, Kuhaudomlarp S, Tinikul R, Chanarat S. Bridging the Gap: Can COVID-19 Research Help Combat African Swine Fever? Viruses 2023; 15:1925. [PMID: 37766331 PMCID: PMC10536364 DOI: 10.3390/v15091925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/12/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
African swine fever (ASF) is a highly contagious and economically devastating disease affecting domestic pigs and wild boar, caused by African swine fever virus (ASFV). Despite being harmless to humans, ASF poses significant challenges to the swine industry, due to sudden losses and trade restrictions. The ongoing COVID-19 pandemic has spurred an unparalleled global research effort, yielding remarkable advancements across scientific disciplines. In this review, we explore the potential technological spillover from COVID-19 research into ASF. Specifically, we assess the applicability of the diagnostic tools, vaccine development strategies, and biosecurity measures developed for COVID-19 for combating ASF. Additionally, we discuss the lessons learned from the pandemic in terms of surveillance systems and their implications for managing ASF. By bridging the gap between COVID-19 and ASF research, we highlight the potential for interdisciplinary collaboration and technological spillovers in the battle against ASF.
Collapse
Affiliation(s)
| | | | | | - Sittinan Chanarat
- Department of Biochemistry and Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
10
|
Pujols J, Blázquez E, Segalés J, Rodríguez F, Chang CY, Argilaguet J, Bosch-Camós L, Rosell R, Pailler-García L, Gavrilov B, Campbell J, Polo J. Feeding Spray-Dried Porcine Plasma to Pigs Improves the Protection Afforded by the African Swine Fever Virus (ASFV) BA71∆CD2 Vaccine Prototype against Experimental Challenge with the Pandemic ASFV-Study 2. Vaccines (Basel) 2023; 11:vaccines11040825. [PMID: 37112737 PMCID: PMC10146001 DOI: 10.3390/vaccines11040825] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/06/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
This study aimed to evaluate the effects of feeding spray-dried porcine plasma (SDPP) on the protection afforded by the BA71∆CD2 African swine fever virus (ASFV) vaccine prototype. Two groups of pigs acclimated to diets without or with 8% SDPP were intranasally inoculated with 105 plaque-forming units (PFU) of live attenuated ASFV strain BA71∆CD2 and, three weeks later, left in direct contact with pigs infected with the pandemic Georgia 2007/01 ASFV strain. During the post-exposure (pe) period, 2/6 from the conventional diet group showed a transient peak rectal temperature >40.5 °C before day 20 pe, and some tissue samples collected at 20 d pe from 5/6 were PCR+ for ASFV, albeit showing Ct values much higher than Trojan pigs. Interestingly, the SDPP group did not show fever, neither PCR+ in blood nor rectal swab at any time pe, and none of the postmortem collected tissue samples were PCR+ for ASFV. Differential serum cytokine profiles among groups at vaccination, and a higher number of ASFV-specific IFNϒ-secreting T cells in pigs fed with SDPP soon after the Georgia 2007/01 encounter, confirmed the relevance of Th1-like responses in ASF protection. We believe that our result shows that nutritional interventions might contribute to improving future ASF vaccination strategies.
Collapse
Affiliation(s)
- Joan Pujols
- IRTA, Centre de Recerca en Sanitat Animal (CReSA), 08193 Barcelona, Spain
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain
- WOAH Collaborating Centre for Emerging and Re-Emerging Pig Diseases in Europe, IRTA-CReSA, 08193 Barcelona, Spain
| | - Elena Blázquez
- IRTA, Centre de Recerca en Sanitat Animal (CReSA), 08193 Barcelona, Spain
- APC Europe, S.L., 08403 Granollers, Spain
| | - Joaquim Segalés
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain
- WOAH Collaborating Centre for Emerging and Re-Emerging Pig Diseases in Europe, IRTA-CReSA, 08193 Barcelona, Spain
- Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain
| | - Fernando Rodríguez
- IRTA, Centre de Recerca en Sanitat Animal (CReSA), 08193 Barcelona, Spain
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain
- WOAH Collaborating Centre for Emerging and Re-Emerging Pig Diseases in Europe, IRTA-CReSA, 08193 Barcelona, Spain
| | - Chia-Yu Chang
- IRTA, Centre de Recerca en Sanitat Animal (CReSA), 08193 Barcelona, Spain
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain
- WOAH Collaborating Centre for Emerging and Re-Emerging Pig Diseases in Europe, IRTA-CReSA, 08193 Barcelona, Spain
| | - Jordi Argilaguet
- IRTA, Centre de Recerca en Sanitat Animal (CReSA), 08193 Barcelona, Spain
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain
- WOAH Collaborating Centre for Emerging and Re-Emerging Pig Diseases in Europe, IRTA-CReSA, 08193 Barcelona, Spain
| | - Laia Bosch-Camós
- IRTA, Centre de Recerca en Sanitat Animal (CReSA), 08193 Barcelona, Spain
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain
- WOAH Collaborating Centre for Emerging and Re-Emerging Pig Diseases in Europe, IRTA-CReSA, 08193 Barcelona, Spain
| | - Rosa Rosell
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain
- Departament d'Acció Climàtica, Alimentació i Agenda Rural, Generalitat de Catalunya, 08007 Barcelona, Spain
| | - Lola Pailler-García
- IRTA, Centre de Recerca en Sanitat Animal (CReSA), 08193 Barcelona, Spain
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain
- WOAH Collaborating Centre for Emerging and Re-Emerging Pig Diseases in Europe, IRTA-CReSA, 08193 Barcelona, Spain
| | - Boris Gavrilov
- Biologics Development, Huvepharma, 3A Nikolay Haytov Street, 1113 Sofia, Bulgaria
| | | | - Javier Polo
- APC Europe, S.L., 08403 Granollers, Spain
- APC, LLC, Ankeny, IA 50021, USA
| |
Collapse
|
11
|
Bohorquez JA, Lanka S, Rosell R, Pérez-Simó M, Alberch M, Rodriguez F, Ganges L, Maddox CW. Efficient detection of African Swine Fever Virus using minimal equipment through a LAMP PCR method. Front Cell Infect Microbiol 2023; 13:1114772. [PMID: 36779186 PMCID: PMC9911463 DOI: 10.3389/fcimb.2023.1114772] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 01/09/2023] [Indexed: 01/28/2023] Open
Abstract
African swine fever virus (ASFV) currently represents the biggest threat to the porcine industry worldwide, with high economic impact and severe animal health and welfare concerns. Outbreaks have occurred in Europe and Asia since ASFV was reintroduced into the continent in 2007 and, in 2021, ASFV was detected in the Caribbean, raising alarm about the reemergence of the virus in the Americas. Given the lack of vaccines against ASFV, control of the virus relies on molecular surveillance, which can be delayed due to the need for sample shipment to specialized laboratories. Isothermal PCR techniques, such as LAMP, have become increasingly attractive as point-of-care diagnostic tools given the minimal material expense, equipment, and training required. The present study aimed to develop a LAMP assay for the detection of ASFV. Four LAMP primer sets were designed, based on a consensus sequence for the ASFV p72 gene, and were tested using a synthetic plasmid containing the cloned ASFV p72 target gene as a positive control. Two primer sets, were selected for further validation, given their very short time for amplification. Both primer sets showed thermal stability, amplifying the ASFV DNA at temperatures between 60-70°C and proved to have an analytical limit of detection as low as one ASFV-plasmid DNA copy/µL, using both fluorometric and colorimetric methods. The selected primers did not yield false positive or cross reactive results with other common swine pathogens, showing high specificity. Testing of DNA-spiked samples showed that LAMP amplification was not affected by the nature of the matrices, including oral fluids, tonsils, blood, or rectal swabs. The primer sets were able to detect the two more prevalent ASFV genotypes in the field. Taken together, the results show that ASFV-LAMP-BG2 and ASFV-LAMP-BG3 would be a useful tool for rapid, highly sensitive on-site diagnostic testing.
Collapse
Affiliation(s)
- Jose Alejandro Bohorquez
- Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Saraswathi Lanka
- Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Rosa Rosell
- WOAH Reference Laboratory for Classical Swine Fever, IRTA-CReSA, Barcelona, Spain
- Unitat mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Bellaterra, Barcelona, Spain
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Bellaterra, Barcelona, Spain
- Departament d’Acció Climàtica, Alimentació i Agenda Rural, Generalitat de Catalunya, Barcelona, Spain
| | - Marta Pérez-Simó
- WOAH Reference Laboratory for Classical Swine Fever, IRTA-CReSA, Barcelona, Spain
- Unitat mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Bellaterra, Barcelona, Spain
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Bellaterra, Barcelona, Spain
| | - Mònica Alberch
- WOAH Reference Laboratory for Classical Swine Fever, IRTA-CReSA, Barcelona, Spain
- Unitat mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Bellaterra, Barcelona, Spain
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Bellaterra, Barcelona, Spain
| | - Fernando Rodriguez
- Unitat mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Bellaterra, Barcelona, Spain
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Bellaterra, Barcelona, Spain
| | - Llilianne Ganges
- WOAH Reference Laboratory for Classical Swine Fever, IRTA-CReSA, Barcelona, Spain
- Unitat mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Bellaterra, Barcelona, Spain
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Bellaterra, Barcelona, Spain
| | - Carol W. Maddox
- Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- *Correspondence: Carol W. Maddox,
| |
Collapse
|
12
|
Connelley T, Nicastri A, Sheldrake T, Vrettou C, Fisch A, Reynisson B, Buus S, Hill A, Morrison I, Nielsen M, Ternette N. Immunopeptidomic Analysis of BoLA-I and BoLA-DR Presented Peptides from Theileria parva Infected Cells. Vaccines (Basel) 2022; 10:vaccines10111907. [PMID: 36423003 PMCID: PMC9699068 DOI: 10.3390/vaccines10111907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 11/16/2022] Open
Abstract
The apicomplexan parasite Theileria parva is the causative agent of East Coast fever, usually a fatal disease for cattle, which is prevalent in large areas of eastern, central, and southern Africa. Protective immunity against T. parva is mediated by CD8+ T cells, with CD4+ T-cells thought to be important in facilitating the full maturation and development of the CD8+ T-cell response. T. parva has a large proteome, with >4000 protein-coding genes, making T-cell antigen identification using conventional screening approaches laborious and expensive. To date, only a limited number of T-cell antigens have been described. Novel approaches for identifying candidate antigens for T. parva are required to replace and/or complement those currently employed. In this study, we report on the use of immunopeptidomics to study the repertoire of T. parva peptides presented by both BoLA-I and BoLA-DR molecules on infected cells. The study reports on peptides identified from the analysis of 13 BoLA-I and 6 BoLA-DR datasets covering a range of different BoLA genotypes. This represents the most comprehensive immunopeptidomic dataset available for any eukaryotic pathogen to date. Examination of the immunopeptidome data suggested the presence of a large number of coprecipitated and non-MHC-binding peptides. As part of the work, a pipeline to curate the datasets to remove these peptides was developed and used to generate a final list of 74 BoLA-I and 15 BoLA-DR-presented peptides. Together, the data demonstrated the utility of immunopeptidomics as a method to identify novel T-cell antigens for T. parva and the importance of careful curation and the application of high-quality immunoinformatics to parse the data generated.
Collapse
Affiliation(s)
- Timothy Connelley
- The Roslin Institute, The Royal (Dick) School of Veterinary Science, The University of Edinburgh, Edinburgh EH25 9RG, UK
- Correspondence:
| | - Annalisa Nicastri
- The Jenner Institute, Nuffield Department of Medicine, The University of Oxford, Oxford OX3 7BN, UK
| | - Tara Sheldrake
- The Roslin Institute, The Royal (Dick) School of Veterinary Science, The University of Edinburgh, Edinburgh EH25 9RG, UK
| | - Christina Vrettou
- The Roslin Institute, The Royal (Dick) School of Veterinary Science, The University of Edinburgh, Edinburgh EH25 9RG, UK
| | - Andressa Fisch
- Ribeirão Preto College of Nursing, University of São Paulo, Av Bandeirantes, Ribeirão Preto 3900, Brazil
| | - Birkir Reynisson
- Department of Health Technology, Technical University of Denmark, DK-2800 Copenhagen, Denmark
| | - Soren Buus
- Laboratory of Experimental Immunology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Adrian Hill
- The Jenner Institute, Nuffield Department of Medicine, The University of Oxford, Oxford OX3 7BN, UK
| | - Ivan Morrison
- The Roslin Institute, The Royal (Dick) School of Veterinary Science, The University of Edinburgh, Edinburgh EH25 9RG, UK
| | - Morten Nielsen
- Department of Health Technology, Technical University of Denmark, DK-2800 Copenhagen, Denmark
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín, San Martín CP1650, Argentina
| | - Nicola Ternette
- The Jenner Institute, Nuffield Department of Medicine, The University of Oxford, Oxford OX3 7BN, UK
| |
Collapse
|
13
|
Machuka EM, Juma J, Muigai AWT, Amimo JO, Pelle R, Abworo EO. Transcriptome profile of spleen tissues from locally-adapted Kenyan pigs (Sus scrofa) experimentally infected with three varying doses of a highly virulent African swine fever virus genotype IX isolate: Ken12/busia.1 (ken-1033). BMC Genomics 2022; 23:522. [PMID: 35854219 PMCID: PMC9294756 DOI: 10.1186/s12864-022-08754-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 07/08/2022] [Indexed: 11/10/2022] Open
Abstract
Background African swine fever (ASF) is a lethal hemorrhagic disease affecting domestic pigs resulting in up to 100% mortality rates caused by the ASF virus (ASFV). The locally-adapted pigs in South-western Kenya have been reported to be resilient to disease and harsh climatic conditions and tolerate ASF; however, the mechanisms by which this tolerance is sustained remain largely unknown. We evaluated the gene expression patterns in spleen tissues of these locally-adapted pigs in response to varying infective doses of ASFV to elucidate the virus-host interaction dynamics. Methods Locally adapted pigs (n = 14) were experimentally infected with a high dose (1x106HAD50), medium dose (1x104HAD50), and low dose (1x102HAD50) of the highly virulent genotype IX ASFV Ken12/busia.1 (Ken-1033) isolate diluted in PBS and followed through the course of infection for 29 days. The in vivo pig host and ASFV pathogen gene expression in spleen tissues from 10 pigs (including three from each infective group and one uninfected control) were analyzed in a dual-RNASeq fashion. We compared gene expression between three varying doses in the host and pathogen by contrasting experiment groups against the naïve control. Results A total of 4954 differentially expressed genes (DEGs) were detected after ASFV Ken12/1 infection, including 3055, 1771, and 128 DEGs in the high, medium, and low doses, respectively. Gene ontology and KEGG pathway analysis showed that the DEGs were enriched for genes involved in the innate immune response, inflammatory response, autophagy, and apoptosis in lethal dose groups. The surviving low dose group suppressed genes in pathways of physiopathological importance. We found a strong association between severe ASF pathogenesis in the high and medium dose groups with upregulation of proinflammatory cytokines and immunomodulation of cytokine expression possibly induced by overproduction of prostaglandin E synthase (4-fold; p < 0.05) or through downregulation of expression of M1-activating receptors, signal transductors, and transcription factors. The host-pathogen interaction resulted in induction of expression of immune-suppressive cytokines (IL-27), inactivation of autophagy and apoptosis through up-regulation of NUPR1 [5.7-fold (high dose) and 5.1-fold (medium dose) [p < 0.05] and IL7R expression. We detected repression of genes involved in MHC class II antigen processing and presentation, such as cathepsins, SLA-DQB1, SLA-DOB, SLA-DMB, SLA-DRA, and SLA-DQA in the medium and high dose groups. Additionally, the host-pathogen interaction activated the CD8+ cytotoxicity and neutrophil machinery by increasing the expression of neutrophils/CD8+ T effector cell-recruiting chemokines (CCL2, CXCL2, CXCL10, CCL23, CCL4, CXCL8, and CXCL13) in the lethal high and medium dose groups. The recovered pigs infected with ASFV at a low dose significantly repressed the expression of CXCL10, averting induction of T lymphocyte apoptosis and FUNDC1 that suppressed neutrophilia. Conclusions We provide the first in vivo gene expression profile data from locally-adapted pigs from south-western Kenya following experimental infection with a highly virulent ASFV genotype IX isolate at varying doses that mimic acute and mild disease. Our study showed that the locally-adapted pigs induced the expression of genes associated with tolerance to infection and repression of genes involved in inflammation at varying levels depending upon the ASFV dose administered. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08754-8.
Collapse
Affiliation(s)
- Eunice Magoma Machuka
- Animal and Human Health Program, International Livestock Research Institute (ILRI), P.O. Box 30709-00100, Nairobi, Kenya. .,Pan African University Institute for Basic Sciences Technology and Innovation (PAUSTI), P.O Box 62000-00200, Nairobi, Kenya.
| | - John Juma
- Animal and Human Health Program, International Livestock Research Institute (ILRI), P.O. Box 30709-00100, Nairobi, Kenya
| | | | - Joshua Oluoch Amimo
- Center for Food Animal Health, Department of Animal Sciences, The Ohio State University, 1680 Madison Avenue, Wooster, OH, 44691, USA
| | - Roger Pelle
- Biosciences eastern and central Africa, International Livestock Research Institute (BecA-ILRI) Hub, P.O. Box 30709-00100, Nairobi, Kenya.
| | - Edward Okoth Abworo
- Animal and Human Health Program, International Livestock Research Institute (ILRI), P.O. Box 30709-00100, Nairobi, Kenya
| |
Collapse
|
14
|
Zajac MD, Sangewar N, Lokhandwala S, Bray J, Sang H, McCall J, Bishop RP, Waghela SD, Kumar R, Kim T, Mwangi W. Adenovirus-Vectored African Swine Fever Virus pp220 Induces Robust Antibody, IFN-γ, and CTL Responses in Pigs. Front Vet Sci 2022; 9:921481. [PMID: 35711803 PMCID: PMC9195138 DOI: 10.3389/fvets.2022.921481] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 05/02/2022] [Indexed: 11/13/2022] Open
Abstract
African Swine Fever Virus (ASFV) poses a serious threat to the pork industry worldwide; however, there is no safe vaccine or treatment available. The development of an efficacious subunit vaccine will require the identification of protective antigens. The ASFV pp220 polyprotein is essential for virus structural integrity. This polyprotein is processed to generate p5, p34, p14, p37, and p150 individual proteins. Immunization of pigs with a cocktail of adenoviruses expressing the proteins induced significant IgG, IFN-γ-secreting cells, and cytotoxic T lymphocyte responses. Four predicted SLA-I binding nonamer peptides, namely p34161−169, p37859−867, p1501363−1371, and p1501463−1471, recalled strong IFN-γ+ PBMC and splenocyte responses. Notably, peptide p34161−169 was recognized by PBMCs isolated from 7/10 pigs and by splenocytes isolated from 8/10 pigs. Peptides p37859−867 and p1501363−1371 stimulated recall IFN-γ+ responses in PBMCs and splenocytes isolated from 8/10 pigs, whereas peptide p1501463−1471 recalled responses in PBMCs and splenocytes isolated from 7/10 to 9/10 pigs, respectively. The results demonstrate that the pp220 polyprotein contains multiple epitopes that induce robust immune responses in pigs. Importantly, these epitopes are 100% conserved among different ASFV genotypes and were predicted to bind multiple SLA-I alleles. The outcomes suggest that pp220 is a promising candidate for inclusion in a prototype subunit vaccine.
Collapse
Affiliation(s)
- Michelle D. Zajac
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, United States
- *Correspondence: Michelle D. Zajac
| | - Neha Sangewar
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, United States
| | - Shehnaz Lokhandwala
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, United States
| | - Jocelyne Bray
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, United States
| | - Huldah Sang
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, United States
| | - Jayden McCall
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, United States
| | - Richard P. Bishop
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, United States
| | - Suryakant D. Waghela
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, United States
| | - Rakshith Kumar
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, United States
| | - Tae Kim
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, United States
| | - Waithaka Mwangi
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, United States
- Waithaka Mwangi
| |
Collapse
|
15
|
Synergistic Inactivation of African Swine Fever Virus by a Highly Complexed Iodine Combined with Compound Organic Acids. Appl Environ Microbiol 2022; 88:e0045222. [PMID: 35588273 DOI: 10.1128/aem.00452-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
African swine fever (ASF) is a highly contagious disease of domestic pigs and wild boar with high morbidity and mortality caused by African swine fever virus (ASFV). Due to the lack of commercial vaccines and treatments for ASF, cleaning and disinfection remain one of the most effective biosecurity measures to control ASF. Our previous studies have shown that ASFV can be inactivated by 0.25 to 5% highly complexed iodine (HPCI) in 5 to 30 min. This study evaluated the synergistic inactivation effects of HPCI combined with compound organic acids (COAs) against ASFV. The results showed that the inactivation rates of HPCI, COAs, and HPCI+COAs on the reporter ASFV expressing the green fluorescent protein increased in dose- and time-dependent manners. The best inactivation effects were obtained when the compatibility ratio of HPCI and COAs was 5:1, and the ideal temperature was 25°C. Furthermore, there were no significant differences when comparing the efficacy of HPCI combined with COAs (HPCI+COAs) in inactivating wild-type ASFV and the reporter ASFV (P > 0.05). ASFV of 104.0 50% tissue culture infective dose (TCID50)/mL was completely inactivated by 0.13% HPCI (0.0065% effective iodine), 0.06% COAs, or 0.13% HPCI+COAs (approximately 0.0054% effective iodine), respectively, while 106.0 TCID50/mL ASFV was completely inactivated by 1.00% HPCI (0.05% effective iodine), 0.50% COAs, or 1.00% HPCI+COAs (0.042% effective iodine), respectively. It was found that the combination index (CI) of HPCI and COAs was less than 1 under different conditions. This study demonstrated that HPCI+COAs could synergistically inactivate ASFV and represent an effective compound disinfectant for the control of ASF. IMPORTANCE African swine fever (ASF) is a highly contagious disease of swine with high morbidity and mortality caused by African swine fever virus (ASFV). Due to the lack of commercial vaccines and treatment available for ASF, effective disinfectants and the proper use of them are essential to inactivate ASFV. The significance of this research is in searching for an ideal disinfectant that has the advantages of low toxicity and nonpollution and can inactivate ASFV efficiently. In this study, we demonstrated that HPCI+COAs had synergistic effects on inactivating ASFV. Thus, HPCI+COAs could be used as an effective disinfectant for the control of ASF.
Collapse
|
16
|
I226R Protein of African Swine Fever Virus Is a Suppressor of Innate Antiviral Responses. Viruses 2022; 14:v14030575. [PMID: 35336982 PMCID: PMC8951476 DOI: 10.3390/v14030575] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 12/14/2022] Open
Abstract
African swine fever is one of the most devastating swine diseases caused by African swine fever virus (ASFV). Although ASFV encodes more than 160 viral proteins, the implication of a majority of ASFV proteins in regulating host immunity is yet to be explored, and the mechanisms of immune evasion by ASFV proteins are largely unknown. Here, we report that the I226R protein of ASFV significantly suppressed innate immune responses. The ectopic expression of ASFV I226R in 293T cells significantly inhibited the activation of interferon-stimulated response element promoters triggered by Sendai virus (SeV), poly(I:C), or cyclic GMP-AMP synthase (cGAS)/STING. The I226R protein caused a significant decrease in the expression of interferons and interferon-stimulating genes in cells infected with SeV. Similar results were obtained from experiments using I226R-overexpressed PK15 and 3D4/21 cells stimulated with vesicular stomatitis virus. We observed that I226R inhibited the activation of both nuclear factor-kappa B (NF-κB) and interferon regulatory factor 3 (IRF3). Furthermore, it was shown that overexpression of I226R suppressed IRF3 activation and caused the degradation of NF-κB essential modulator (NEMO) protein. The I226R-induced NEMO degradation could be prevented by treatment with MG132, a proteasome inhibitor. Together, these results reveal that the ASFV I226R protein impairs antiviral responses, likely through multiple mechanisms including the suppression of NF-κB and IRF3 activation, to counteract innate immune responses during the viral infection.
Collapse
|
17
|
Wang Z, Ai Q, Huang S, Ou Y, Gao Y, Tong T, Fan H. Immune Escape Mechanism and Vaccine Research Progress of African Swine Fever Virus. Vaccines (Basel) 2022; 10:vaccines10030344. [PMID: 35334976 PMCID: PMC8949402 DOI: 10.3390/vaccines10030344] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 02/04/2023] Open
Abstract
African swine fever virus (ASFV) is the causative agent of the epidemic of African swine fever (ASF), with virulent strains having a mortality rate of up to 100% and presenting devastating impacts on animal farming. Since ASF was first reported in China in 2018, ASFV still exists and poses a potential threat to the current pig industry. Low-virulence and genotype I strains of ASFV have been reported in China, and the prevention and control of ASF is more complicated. Insufficient understanding of the interaction of ASFV with the host immune system hinders vaccine development. Physical barriers, nonspecific immune response and acquired immunity are the three barriers of the host against infection. To escape the innate immune response, ASFV invades monocytes/macrophages and dendritic cells, thereby inhibiting IFN expression, regulating cytokine expression and the body’s inflammatory response process. Meanwhile, in order to evade the adaptive immune response, ASFV inhibits antigen presentation, induces the production of non-neutralizing antibodies, and inhibits apoptosis. Recently, significant advances have been achieved in vaccine development around the world. Live attenuated vaccines (LAVs) based on artificially deleting specific virulence genes can achieve 100% homologous protection and partial heterologous protection. The key of subunit vaccines is identifying the combination of antigens that can effectively provide protection and selecting carriers that can effectively deliver the antigens. In this review, we introduce the epidemic trend of ASF and the impact on the pig industry, analyze the interaction mechanism between ASFV and the body’s immune system, and compare the current status of potential vaccines in order to provide a reference for the development of effective ASF vaccines.
Collapse
Affiliation(s)
- Zhaoyang Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Z.W.); (Q.A.); (S.H.); (Y.O.); (Y.G.)
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou 510642, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Qiangyun Ai
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Z.W.); (Q.A.); (S.H.); (Y.O.); (Y.G.)
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou 510642, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Shenglin Huang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Z.W.); (Q.A.); (S.H.); (Y.O.); (Y.G.)
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou 510642, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Yating Ou
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Z.W.); (Q.A.); (S.H.); (Y.O.); (Y.G.)
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou 510642, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Yinze Gao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Z.W.); (Q.A.); (S.H.); (Y.O.); (Y.G.)
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou 510642, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Tiezhu Tong
- Guangzhou Customs Technology Center, Guangzhou 510623, China
- Correspondence: (T.T.); (H.F.); Fax: +86-020-38295730 (T.T.); +86-20-8528-3309 (H.F.)
| | - Huiying Fan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Z.W.); (Q.A.); (S.H.); (Y.O.); (Y.G.)
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou 510642, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
- Correspondence: (T.T.); (H.F.); Fax: +86-020-38295730 (T.T.); +86-20-8528-3309 (H.F.)
| |
Collapse
|
18
|
Schäfer A, Franzoni G, Netherton CL, Hartmann L, Blome S, Blohm U. Adaptive Cellular Immunity against African Swine Fever Virus Infections. Pathogens 2022; 11:pathogens11020274. [PMID: 35215216 PMCID: PMC8878497 DOI: 10.3390/pathogens11020274] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/14/2022] [Accepted: 02/17/2022] [Indexed: 11/16/2022] Open
Abstract
African swine fever virus (ASFV) remains a threat to global pig populations. Infections with ASFV lead to a hemorrhagic disease with up to 100% lethality in Eurasian domestic and wild pigs. Although myeloid cells are the main target cells for ASFV, T cell responses are impacted by the infection as well. The complex responses remain not well understood, and, consequently, there is no commercially available vaccine. Here, we review the current knowledge about the induction of antiviral T cell responses by cells of the myeloid lineage, as well as T cell responses in infected animals, recent efforts in vaccine research, and T cell epitopes present in ASFV.
Collapse
Affiliation(s)
- Alexander Schäfer
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald-Insel Riems, Germany; (A.S.); (L.H.); (S.B.)
| | - Giulia Franzoni
- Department of Animal Health, Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy;
| | | | - Luise Hartmann
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald-Insel Riems, Germany; (A.S.); (L.H.); (S.B.)
| | - Sandra Blome
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald-Insel Riems, Germany; (A.S.); (L.H.); (S.B.)
| | - Ulrike Blohm
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald-Insel Riems, Germany; (A.S.); (L.H.); (S.B.)
- Correspondence: ; Tel.: +49-38351-7-1543; +49-38351-7-1236
| |
Collapse
|
19
|
Le T, Sun C, Chang J, Zhang G, Yin X. mRNA Vaccine Development for Emerging Animal and Zoonotic Diseases. Viruses 2022; 14:401. [PMID: 35215994 PMCID: PMC8877136 DOI: 10.3390/v14020401] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 02/12/2022] [Accepted: 02/14/2022] [Indexed: 02/04/2023] Open
Abstract
In the prevention and treatment of infectious diseases, mRNA vaccines hold great promise because of their low risk of insertional mutagenesis, high potency, accelerated development cycles, and potential for low-cost manufacture. In past years, several mRNA vaccines have entered clinical trials and have shown promise for offering solutions to combat emerging and re-emerging infectious diseases such as rabies, Zika, and influenza. Recently, the successful application of mRNA vaccines against COVID-19 has further validated the platform and opened the floodgates to mRNA vaccine's potential in infectious disease prevention, especially in the veterinary field. In this review, we describe our current understanding of the mRNA vaccines and the technologies used for mRNA vaccine development. We also provide an overview of mRNA vaccines developed for animal infectious diseases and discuss directions and challenges for the future applications of this promising vaccine platform in the veterinary field.
Collapse
Affiliation(s)
- Ting Le
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, China; (T.L.); (C.S.)
| | - Chao Sun
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, China; (T.L.); (C.S.)
| | - Jitao Chang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, China; (T.L.); (C.S.)
| | - Guijie Zhang
- Departments of Animal Science, School of Agriculture, Ningxia University, Yinchuan 750021, China
| | - Xin Yin
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, China; (T.L.); (C.S.)
| |
Collapse
|
20
|
Le QVC, Youk S, Choi M, Jeon H, Kim WI, Ho CS, Park C. Development of an Immortalized Porcine Fibroblast Cell Panel With Different Swine Leukocyte Antigen Genotypes. Front Genet 2022; 13:815328. [PMID: 35198008 PMCID: PMC8859410 DOI: 10.3389/fgene.2022.815328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/14/2022] [Indexed: 11/13/2022] Open
Abstract
Immortalized cell lines are valuable resources to expand the molecular characterization of major histocompatibility complex genes and their presented antigens. We generated a panel of immortalized cell lines by transfecting human telomerase reverse transcriptase (hTERT) into primary fibroblast cells prepared from ear, fetal, and lung tissues of 10 pigs from five breeds and successfully cultured them for 30-45 passages. The cell growth characteristic of the immortalized fibroblasts was similar to that of primary fibroblast, which was unable to form colonies on soft agar. The genotypes of major swine leukocyte antigen (SLA) genes, including three classical class I (SLA-1, -2, and -3) and three class II genes (DQB1, DRB1, and DQA), were determined using high-resolution typing. A total of 58 alleles, including a novel allele for SLA-2, were identified. Each cell line was unique. A cell line derived from a National Institutes of Health miniature pig was homozygous across the six major SLA genes. The expression levels of SLA classical class I genes varied among the cell lines and were slightly upregulated in the immortalized compared to the primary cells based on semiquantitative reverse transcription polymerase chain reaction. The immortalized porcine fibroblast cell lines with diverse SLA haplotypes that were developed in this study have potential to be applied in studies regarding the molecular characteristics and genetic structure of SLA genes and epitope-major histocompatibility complex interactions in pigs.
Collapse
Affiliation(s)
- Quy Van Chanh Le
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, South Korea
| | - SeungYeon Youk
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, South Korea
| | - Munjeong Choi
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, South Korea
| | - Hyoim Jeon
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, South Korea
| | - Won-Il Kim
- College of Veterinary Medicine, Chonbuk National University, Iksan, South Korea
| | - Chak-Sum Ho
- Gift of Hope Organ & Tissue Donor Network, Itasca, IL, United States
| | - Chankyu Park
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, South Korea
| |
Collapse
|
21
|
Accensi F, Bosch-Camós L, Monteagudo PL, Rodríguez F. DNA Vaccines in Pigs: From Immunization to Antigen Identification. Methods Mol Biol 2022; 2465:109-124. [PMID: 35118618 DOI: 10.1007/978-1-0716-2168-4_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
DNA vaccination is one of the most fascinating vaccine strategies currently in development. Two of the main advantages of DNA immunization rely on its simplicity and flexibility, being ideal to dissect both the immune mechanisms and the antigens involved in protection against a given pathogen. Here we describe several strategies used to enhance the immune responses induced and the protection afforded by experimental DNA vaccines tested in swine and provide very basic protocols describing the generation and in vivo application of a prototypic DNA vaccine. The future will say the last word regarding the definitive implementation of DNA vaccination in the field.
Collapse
Affiliation(s)
- Francesc Accensi
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA), Bellaterra, Barcelona, Spain.
- Departament de Sanitat i d'Anatomia Animals, Universitat Autònoma de Barcelona (UAB), Bellaterra, Barcelona, Spain.
| | - Laia Bosch-Camós
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA), Bellaterra, Barcelona, Spain
| | - Paula L Monteagudo
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA), Bellaterra, Barcelona, Spain
| | - Fernando Rodríguez
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA), Bellaterra, Barcelona, Spain
| |
Collapse
|
22
|
Mooring stone-like Arg 114 pulls diverse bulged peptides: first insight into African swine fever virus-derived T cell epitopes presented by swine MHC class I. J Virol 2021; 96:e0137821. [PMID: 34851145 DOI: 10.1128/jvi.01378-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
African swine fever virus (ASFV) is the causative agent of African swine fever (ASF), which is a devastating pig disease threatening the global pork industry. However, currently no commercial vaccines are available. During the immune response, major histocompatibility complex (MHC) class I molecules select viral peptide epitopes and present them to host cytotoxic T lymphocytes, thereby playing critical roles in eliminating viral infections. Here we screened peptides derived from ASFV and determined the molecular basis of ASFV-derived peptides presented by the swine leukocyte antigen (SLA)-1*0101. We found that peptide binding in SLA-1*0101 differs from the traditional mammalian binding patterns. Unlike the typical B and F pockets used by the common MHC-I molecule, SLA-1*0101 uses the D and F pockets as major peptide anchor pockets. Furthermore, the conformationally stable Arg114 residue located in the peptide-binding groove (PBG) was highly selective for the peptides. Arg114 draws negatively charged residues at positions P5 to P7 of the peptides, which led to multiple bulged conformations of different peptides binding to SLA-1*0101 and creating diversity for T cells receptor docking. Thus, the solid Arg114 residue acts as a "mooring stone" and pulls the peptides into the PBG of SLA-1*0101. Notably, the T cells recognition and activation of p72-derived peptides were verified by SLA-1*0101 tetramer-based flow cytometry in peripheral blood mononuclear cells (PBMCs) of the donor pigs. These results refresh our understanding of MHC I molecular anchor peptides, and provide new insights into vaccine development for the prevention and control of ASF. IMPORTANCE The spread of African swine fever virus (ASFV) has caused enormous losses to the pork industry worldwide. Here, a series of ASFV-derived peptides were identified, which could bind to swine leukocyte antigen SLA-1*0101, a prevalent SLA allele among Yorkshire pigs. The crystal structure of four ASFV-derived peptides and one foot-and-mouth disease virus (FMDV)-derived peptide complexed with SLA-1*0101 revealed an unusual peptide anchoring mode of SLA-1*0101 with D and F pockets as anchoring pockets. Negatively-charged residues are preferred within the middle portion of SLA-1*0101-binding peptides. Notably, we determined an unexpected role of Arg114 of SLA-1*0101 as a "mooring stone" which pulls the peptide anchoring into the PBG in diverse "M" or "n" shaped conformation. Furthermore, T cells from donor pigs could activate through the recognition of ASFV-derived peptides. Our study sheds light on the uncommon presentation of ASFV peptides by swine MHC I and benefits the development of ASF vaccines.
Collapse
|
23
|
M448R and MGF505-7R: Two African Swine Fever Virus Antigens Commonly Recognized by ASFV-Specific T-Cells and with Protective Potential. Vaccines (Basel) 2021; 9:vaccines9050508. [PMID: 34069239 PMCID: PMC8156282 DOI: 10.3390/vaccines9050508] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/30/2021] [Accepted: 05/12/2021] [Indexed: 11/16/2022] Open
Abstract
African swine fever (ASF) is today′s number one threat for the global swine industry. Neither commercial vaccine nor treatment is available against ASF and, thus far, only live attenuated viruses (LAV) have provided robust protection against lethal ASF virus (ASFV) challenge infections. Identification of ASFV proteins inducing protective immune responses is one of the major challenges to develop safer and efficient subunit vaccines. Immunopeptidomic studies recently performed in our laboratory allowed identifying ASFV antigens recognized by ASFV-specific CD8+ T-cells. Here, we used data from the SLAI-peptide repertoire presented by a single set of ASFV-infected porcine alveolar macrophages to generate a complex DNA vaccine composed by 15 plasmids encoding the individual peptide-bearing ORFs. DNA vaccine priming improved the protection afforded by a suboptimal dose of the BA71ΔCD2 LAV given as booster vaccination, against Georgia2007/1 lethal challenge. Interestingly, M448R was the only protein promiscuously recognized by the induced ASFV-specific T-cells. Furthermore, priming pigs with DNA plasmids encoding M488R and MGF505-7R, a CD8+ T-cell antigen previously described, confirmed these two proteins as T-cell antigens with protective potential. These studies might be useful to pave the road for designing safe and more efficient vaccine formulations in the future.
Collapse
|