1
|
Minaiyan P, Varshosaz J, Minaiyan M. Colon delivery of agomelatine nanoparticles in the treatment of TNBS induced ulcerative colitis. Drug Deliv Transl Res 2025:10.1007/s13346-025-01794-z. [PMID: 39856440 DOI: 10.1007/s13346-025-01794-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2025] [Indexed: 01/27/2025]
Abstract
Agomelatine is an atypical antidepressant with a long half-life and the mechanism of action similar to melatonin. Agomelatine is a strong antioxidant and its anti-inflammatory effect has been reported in many studies. The current study aimed to evaluate the anti-inflammatory effect of agomelatine loaded in targeted nanoparticles (NPs) in an experimental colitis model induced by trinitrobenzene sulfonic acid (TNBS). Poly(1-vinylpyrrolidone)-graft-(1-triacontene) (PVP-TA) and Eudragit®-FS30D polymers were used alone and in combination as time, pH and time/pH dependent formulations respectively. The optimal formula was selected according to their physicochemical properties such as particle size, morphology, and drug release pattern. Six separate groups of rats were induced with 0.5 ml of TNBS. The designed groups were: normal, untreated, agomelatine (25 mg/kg/d), agomelatine/ Eudragit®-FS30D NPs, agomelatine/ Eudragit-FS30D/PVP-TA NPs, and dexamethasone (Dex., 1 mg/kg/d). Twenty-four hours after the last administration, colonic tissue was analyzed for macroscopic and histopathological evaluations, along with quantification of malondialdehyde (MDA) and myeloperoxidase (MPO) levels. The results showed that the PVP-TA NPs alone was not suitable regarding to release profile and particle size distribution. However, Eudragit-FS30D NPs alone and Eudragit-FS30D + PVP-TA NPs passed physicochemical evaluations and were both effective in reducing the symptoms and indices of experimental colitis. Taken together, targeted NPs of agomelatine are potentially effective in treatment of ulcerative colitis.
Collapse
Affiliation(s)
- Parinaz Minaiyan
- Department of Pharmaceutics, Faculty of Pharmacy and Novel Drug Delivery Systems Research Centre, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Jaleh Varshosaz
- Department of Pharmaceutics, Faculty of Pharmacy and Novel Drug Delivery Systems Research Centre, Isfahan University of Medical Sciences, Isfahan, Iran.
- Novel Drug Delivery Systems Research Center, Department of Pharmaceutics, Faculty of Pharmacy, Isfahan University of Medical Sciences, PO Box 81745-359, Isfahan, Iran.
| | - Mohsen Minaiyan
- Department of Pharmacology and Toxicology, Faculty of Pharmacy and Pharmaceutical Sciences Research Centre, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
2
|
Wang R, Gan C, Mao R, Chen Y, Yan R, Li G, Xiong T, Guo J. Rat models of postintracerebral hemorrhage pneumonia induced by nasal inoculation with Klebsiella pneumoniae or intratracheal inoculation with LPS. Front Immunol 2025; 15:1477902. [PMID: 39845950 PMCID: PMC11750689 DOI: 10.3389/fimmu.2024.1477902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 12/16/2024] [Indexed: 01/24/2025] Open
Abstract
Background A stable and reproducible experimental bacterial pneumonia model postintracerebral hemorrhage (ICH) is necessary to help investigating the pathogenesis and novel treatments of Stroke-associated pneumonia (SAP). Aim To establish a Gram-negative bacterial pneumonia-complicating ICH rat model and an acute lung injury (ALI)-complicating ICH rat model. Methods We established two standardized models of post-ICH pneumonia by nasal inoculation with Klebsiella pneumoniae (Kp) or intratracheal inoculation with lipopolysaccharide (LPS). Survival and neurological scores were monitored. Magnetic resonance imaging was performed to evaluate hematoma volume. Abdominal aortic blood was collected for leukocyte counting, serum was isolated to determine concentrations of S100β and proinflammatory cytokines using ELISAs. Histopathological changes of brain, lung and gut were assessed using hematoxylin-eosin staining. Lung was isolated for immunofluorescence staining for myeloperoxidase (MPO). Bronchoalveolar lavage fluid was collected for leukocyte counting, and supernatant was prepared to measure MPO activity. Ileum was isolated for immunofluorescence staining for tight junction proteins ZO-1 and γδ TCRs/IL-17A and for Alcian blue-nuclear fast red staining of acidic mucins. Feces were collected, 16S rRNA sequencing, untargeted metabolomics and Spearman's correlation analyses were performed to explore changes of gut microbiota, metabolites and their interactions. Results In Kp-induced bacterial pneumonia-complicating ICH rats, we demonstrated that Kp challenge caused more severe neurological deficits, brain damage, neuroinflammation, and aggravated pneumonia and lung injury. Disruptions of the intestinal structure and gut barrier and the reductions of the protective intestinal IL-17A-producing γδT cells were also observed. Kp challenge exacerbated the gut microbiota dysbiosis and fecal metabolic profile disorders, which were characterized by abnormal sphingolipid metabolism especially elevated ceramide levels; increased levels of neurotoxic quinolinic acid and an upregulation of tryptophan (Trp)-serotonin-melatonin pathway. Spearman's correlation analyses further revealed that the reduction or depletion of some beneficial bacteria, such as Allobaculum and Faecalitalea, and the blooming of some opportunistic pathogens, such as Turicibacter, Dietzia, Corynebacterium and Clostridium_sensu_stricto_1 in Kp-induced SAP rats were associated with the disordered sphingolipid and Trp metabolism. Using an LPS-induced ALI complicating ICH model, we also characterized SAP-induced brain, lung and gut histopathology injuries; peripheral immune disorders and intense pulmonary inflammatory responses. Conclusions These two models may be highly useful for investigating the pathogenesis and screening and optimizing potential treatments for SAP. Moreover, the differential genera and sphingolipid or Trp metabolites identified above seem to be promising therapeutic targets.
Collapse
Affiliation(s)
- Ruihua Wang
- Research Team of Prevention and Treatment of Cerebral Hemorrhage Applying Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Changlian Gan
- School of Traditional Dai Medicine, West Yunnan University of Applied Science, Xishuangbanna, China
| | - Rui Mao
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yang Chen
- Department of Bioinformatics, State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ru Yan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, Macao SAR, China
| | - Geng Li
- Laboratory Animal Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Tianqin Xiong
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jianwen Guo
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Department of Neurology, Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
3
|
Sadeghpour S, Ghasemnejad-Berenji M, Maleki F, Behroozi-Lak T, Bahadori R, Ghasemnejad-Berenji H. The effects of melatonin on follicular oxidative stress and art outcomes in women with diminished ovarian reserve: a randomized controlled trial. J Ovarian Res 2025; 18:5. [PMID: 39780224 PMCID: PMC11707845 DOI: 10.1186/s13048-024-01584-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 12/23/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND To investigate the impact of Melatonin on follicular oxidative stress and assisted reproductive technology (ART) outcomes in women with diminished ovarian reserve (DOR). METHOD We put 68 women with DOR who were going through ART into a randomized controlled trial. Starting on the fifth day of their menstrual cycle, we gave them either 3 mg of Melatonin or a placebo every day before stimulating their ovaries. We obtained follicular fluid during oocyte retrieval, assessed it for oxidative stress indicators, and documented ART outcomes. RESULTS Melatonin administration markedly enhanced the quantity of oocytes retrieved, fertilization rates, and embryo quality. In addition, Melatonin changed markers of oxidative stress, specifically the levels of reduced glutathione (rGSH) and total antioxidant capacity (TAC). The Melatonin group exhibited significantly elevated biochemical pregnancy rates. CONCLUSION Melatonin may improve the quality of oocytes and help with reproductive technology in women with low ovarian reserves, possibly by lowering oxidative stress in the follicles.
Collapse
Affiliation(s)
- Sonia Sadeghpour
- Reproductive Health Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran
- Department of Obstetrics and Gynecology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Morteza Ghasemnejad-Berenji
- Department of Pharmacology and Toxicology, School of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| | - Farzad Maleki
- Department of Epidemiology, School of Public Health & Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tahereh Behroozi-Lak
- Reproductive Health Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran
- Department of Obstetrics and Gynecology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Robabeh Bahadori
- Reproductive Health Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Hojat Ghasemnejad-Berenji
- Reproductive Health Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
4
|
Elgenidy A, Atef Abdelsattar Ibrahim H, Elmozugi T, Abdelhalim NN, Al-Kurdi MA, Wassef PG, Zakaria CG, Elsalamony YA, Nasr M, Abodaif A, Hussein A, Hassan AEM, Ahmad AR, Elhoufey A, Fageeh M, Alruwaili TAM, Dailah HG, Temsah MH, Saad K. Efficacy of melatonin for treatment and prevention of neonatal necrotizing enterocolitis: a systematic review. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03681-9. [PMID: 39708100 DOI: 10.1007/s00210-024-03681-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 11/25/2024] [Indexed: 12/23/2024]
Abstract
The purpose of this study was to systematically review the available literature evaluating the use of melatonin for preventing and treating neonatal necrotizing enterocolitis (NEC). A systematic review of studies examining the effect of melatonin on neonatal NEC was conducted. The databases of Medline, Scopus, WOS, Embase, and Cochrane Central Register of Controlled Trials were searched for relevant studies. For risk of bias and applicability, The ROB2 tool was used for randomized controlled trials, and the ROBINS-I tool was used for non-randomized controlled trials. Three studies, comprising 106 preterm neonates, were included in the review, whose mean gestational ages ranged from 31.8 to 33.53 weeks. Melatonin doses varied among the studies. A randomized, double-blind, placebo-controlled study revealed that early administration of melatonin in preterm newborns resulted in a decrease in lipid peroxidation during the initial days of life. Two studies evaluated the role of melatonin in NEC. Both reported significant clinical and laboratory improvements in the melatonin groups, including reduced abdominal distension, metabolic acidosis, thrombocytopenia, hyponatremia, and lower mortality rates compared to control groups. This systematic review suggests that melatonin may be a potential therapeutic approach for NEC in preterm infants. However, further RCTS are needed to establish its therapeutic or preventive role.
Collapse
Affiliation(s)
| | | | - Taher Elmozugi
- Faculty of Medicine, Benghazi University, Bengazi, Libya
| | | | | | | | | | | | - Mohamed Nasr
- Faculty of Medicine, Al-Azhar University, New Damietta, Egypt
| | - Asmaa Abodaif
- Faculty of Medicine, Al-Azhar University, Assiut, Egypt
| | | | - Abd-El-Monem Hassan
- Departments of Pediatrics, Faculty of medicine, Al-Azhar university, Assiut, Egypt
| | - Ahmad Roshdy Ahmad
- Departments of Pediatrics , College of Medicine, Jouf University, 72388, Sakaka, Saudi Arabia
| | - Amira Elhoufey
- Department of Community Health Nursing, Faculty of Nursing, Assiut University, Assiut, Egypt
- Department of Community Health Nursing, Alddrab University College, Jazan University, Jazan, Saudi Arabia
| | - Mohsen Fageeh
- Director of forensic toxicology services, FMSC, Jazan, Saudi Arabia
| | - Thamer A M Alruwaili
- Departments of Pediatrics , College of Medicine, Jouf University, 72388, Sakaka, Saudi Arabia
| | - Hamad Ghaleb Dailah
- Research and Scientific Studies Unit, College of Nursing, Jazan University, Jazan, Saudi Arabia
| | | | - Khaled Saad
- Departments of Pediatrics, Faculty of Medicine, Assiut University, Assiut, 71516, Egypt.
| |
Collapse
|
5
|
Xie Y, Zhang L, Chen S, Xie C, Tong J, Shen Y. The potential role of amino acids in myopia: inspiration from metabolomics. Metabolomics 2024; 21:6. [PMID: 39676079 DOI: 10.1007/s11306-024-02207-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 12/01/2024] [Indexed: 12/17/2024]
Abstract
BACKGROUND Due to the high prevalence of myopia, there is a growing need for the identification of myopia intervention mechanisms and targets. Metabolomics has been gradually used to investigate changes in myopia tissue metabolites over the last few years, but the potential physiological and pathological roles of amino acids and their downstream metabolites discovered by metabolomics in myopia are not fully understood. AIM OF REVIEW Aim to explore the possible relationship between amino acid metabolism and the occurrence and development of myopia, we collected a total of 21 experimental studies related to myopia metabolomics. Perform pathway analysis using MetaboAnalyst online software. We have identified over 20 amino acids that may be associated with the development of myopia. Among them, 19 types of amino acids are common amino acids. We discussed their possible mechanisms affecting myopia and proposed future prospects for treating myopia. KEY SCIENTIFIC CONCEPTS OF REVIEW Our analysis results show that metabolomics research on myopia involves many important amino acids. We have collected literature and found that research on amino acid metabolism in myopia mainly focuses on downstream small molecule substances. Amino acids and their downstream metabolites affect the development of myopia by participating in important biochemical processes such as oxidative stress, glucose metabolism, and lipid metabolism. Enzymes, receptors, and cytokines that regulate amino acid metabolism may become potential targets for myopia treatment.
Collapse
Affiliation(s)
- Ying Xie
- The Department of Ophthalmology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Liyue Zhang
- The Department of Ophthalmology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Siyi Chen
- The Alfred, 55 Commercial Rd, Melbourne, VIC, Australia
| | - Chen Xie
- The Department of Ophthalmology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Jianping Tong
- The Department of Ophthalmology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.
| | - Ye Shen
- The Department of Ophthalmology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.
| |
Collapse
|
6
|
Iida T, Ito Y, Murayama S, Yoshimaru Y, Tatsumi A. Relationship Between Psychological Stress Scores and Urinary 5-HT Levels Over Time Under Psychological Stress. Int J Tryptophan Res 2024; 17:11786469241297911. [PMID: 39640272 PMCID: PMC11618928 DOI: 10.1177/11786469241297911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 10/19/2024] [Indexed: 12/07/2024] Open
Abstract
Background Biomarkers for psychological stress have been examined and the "gut-microbiota-brain axis" is currently attracting attention. An intervention study reported improvements in both the intestinal environment and psychological stress. However, the relationship between psychological stress scores and urinary 5-hydroxytryptamine (u-5-HT), produced by enterochromaffin cells in the intestinal tract, has not yet been investigated over time in healthy subjects under psychological stress. Therefore, the present study examined the relationship between subjective psychological stress (depression and anxiety) scores and u-5-HT levels over time in healthy women. Methods The effects of the objective structured clinical examination (OSCE), considered to be a uniform source of psychological stress, on u-5-HT levels were assessed in 16 third-year female medical university students (21.3 ± 2.1 years old) in Japan with a normal menstrual cycle. A self-administered questionnaire consisting of Zung's Self-rating Depression Scale (SDS) and State-Trait Anxiety Inventory (STAI) was used to evaluate subjective stress 1 month, 1 week, and 1 day before and 1 week after the OSCE. Pearson's product-momentum correlation coefficient was used to calculate the correlation coefficient between u-5-HT levels, STAI, and SDS for each examined period. Result On the day before the OSCE, u-5-HT levels correlated with SDS and STAI (SDS: r = .524, P = .037, State-Anxiety: r = -.718, P = .002). Conclusion A correlation was observed between subjective psychological stress scores and u-5-HT levels in healthy women under psychological stress.
Collapse
Affiliation(s)
- Tadayuki Iida
- Department of Physical Therapy, Faculty of Health and Welfare, Prefectural University of Hiroshima, Japan
| | - Yasuhiro Ito
- Department of Medical Technology, Yokkaichi Nursing and Medical Care University, Mie, Japan
| | - Susumu Murayama
- Department of Physical Therapy, Hospital of Shiromachi, Mihara, Hiroshima, Japan
| | | | - Asami Tatsumi
- Department of Public Health, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| |
Collapse
|
7
|
Sheibani M, Hosseinzadeh A, Fatemi I, Naeini AJ, Mehrzadi S. Practical application of melatonin for pancreas disorders: protective roles against inflammation, malignancy, and dysfunctions. Pharmacol Rep 2024:10.1007/s43440-024-00683-5. [PMID: 39604705 DOI: 10.1007/s43440-024-00683-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 11/29/2024]
Abstract
Melatonin, a hormone primarily produced by the pineal gland, exhibits a range of physiological functions that extend beyond its well-known role in regulating circadian rhythms. This hormone influences energy metabolism, modulates insulin sensitivity, and plays a significant role in controlling sleep patterns and food intake. Notably, melatonin is also synthesized in various peripheral organs, including the gastrointestinal system and pancreas, suggesting its function as a local hormone. The presence of melatonin receptors in the pancreas underscores its relevance in pancreatic physiology. Pancreatic disorders, such as diabetes mellitus (DM), pancreatitis, and pancreatic cancer, often stem from inflammatory processes. The majority of these conditions are characterized by dysregulated immune responses and oxidative stress. Melatonin's anti-inflammatory properties are mediated through the inhibition of pro-inflammatory cytokines and the activation of antioxidant enzymes, which help to mitigate cellular damage. Furthermore, melatonin has demonstrated pro-apoptotic effects on cancer cells, promoting cell death in malignant tissues while preserving healthy cells. Thus, melatonin emerges as a multifaceted agent with significant therapeutic potential for pancreatic disorders. Its ability to reduce inflammation and oxidative stress positions it as a promising adjunct therapy for conditions such as diabetes mellitus, pancreatitis, and pancreatic cancer. By modulating immune responses and enhancing cellular resilience through antioxidant mechanisms, melatonin not only addresses the symptoms but also targets the underlying pathophysiological processes associated with these disorders. This review aims to categorize and summarize the impacts of melatonin on pancreatic functions and disorders, emphasizing its potential as a therapeutic agent for managing pancreatic dysfunctions. Future research should focus on elucidating the precise mechanisms by which melatonin exerts its protective effects on pancreatic tissues and exploring optimal dosing strategies for clinical applications. The integration of melatonin into treatment regimens may enhance existing therapies and offer new hope for individuals suffering from pancreatic dysfunctions.
Collapse
Affiliation(s)
- Mohammad Sheibani
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Azam Hosseinzadeh
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Iman Fatemi
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Islamic Republic of Iran
| | - Ali Jamshidi Naeini
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Saeed Mehrzadi
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Chen X, Zhang Z, Huang H, Deng Y, Xu Z, Chen S, Zhou R, Song J. The involvement of endogenous melatonin in LPS-induced M1-like macrophages and its underlying synthesis mechanism regulated by IRF3. Exp Cell Res 2024; 443:114314. [PMID: 39481795 DOI: 10.1016/j.yexcr.2024.114314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/27/2024] [Accepted: 10/28/2024] [Indexed: 11/02/2024]
Abstract
Melatonin (MLT) has been shown to induce polarization of macrophages towards M2-like phenotype and inhibit polarization of macrophages towards M1-like phenotype through exogenous administration, which affects the development of many macrophage polarization-related diseases, such as infectious diseases, cardiovascular diseases, bone diseases, and tumors. However, whether endogenous melatonin has similar influences on macrophage polarization as exogenous melatonin is still under investigation. This study revealed that the process of lipopolysaccharide (LPS) inducing macrophages to polarize towards M1-like phenotype was accompanied by an increase in endogenous MLT secretion. To explore the role of increased endogenous MLT in the polarization process of macrophages, whether similar to the function of exogenous MLT in inhibiting polarization of macrophages towards M1-like phenotype, we established LPS-induced MLT deficiency models in vitro to investigate the effects of endogenous MLT on the secretion of cytokines, co-stimulatory molecules, ROS, and phagocytic function in LPS-induced M1-like macrophages. Additionally, we aimed to elucidate the mechanism by which LPS affects the secretion of endogenous MLT by macrophages. Our results confirm that LPS induces transcription of Aanat through the TLR4/TRIF pathway, consequently facilitating the secretion of MLT by macrophages. In this way, IRF3 is the main transcription factor that regulates Aanat transcription. Endogenous MLT plays a role in inhibiting the polarization of macrophages towards M1 phenotype and delaying cell apoptosis during LPS-induced polarization towards M1 phenotype. This phenomenon may be a form of self-protection that occurs when macrophages engulf pathogens while avoiding oxidative stress and apoptosis caused by LPS. This conclusion clarifies the role of endogenous MLT in the clearance of pathogens by macrophages, providing a theoretical basis for understanding its role in innate immunity.
Collapse
Affiliation(s)
- Xuzheng Chen
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China; Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China
| | - Zhiguang Zhang
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China; Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China
| | - Haobo Huang
- Department of Blood Transfusion, Fujian Medical University Union Hospital, Fuzhou, China
| | - Yujie Deng
- Department of Medical Oncology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Zhenguo Xu
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China; Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China
| | - Siyan Chen
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China; Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China
| | - Ruixiang Zhou
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China; Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China.
| | - Jun Song
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China; Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China.
| |
Collapse
|
9
|
Ma Y, Su Q, Zhao L, Zhu J, Zhao H, Song R, Zou H, Liu Z. Melatonin prevents cadmium-induced osteoporosis by affecting the osteoblast and osteoclast differentiation and pyroptosis in duck. Poult Sci 2024; 103:103934. [PMID: 38981361 PMCID: PMC11294718 DOI: 10.1016/j.psj.2024.103934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/20/2024] [Accepted: 05/29/2024] [Indexed: 07/11/2024] Open
Abstract
Cadmium (Cd), is a highly toxic environmental pollutant, which seriously threatens the health of poultry and humans. The occurrence of osteoporosis is the main manifestation of cadmium toxicity. Pyroptosis plays an important role in the development of osteoporosis. Melatonin has been shown to affect preserving bone health. However, the underlying mechanism has not been elucidated. In the present study, these functions of melatonin have been investigated in duck bone tissue and osteoblast during cadmium exposure. In vivo, the studies suggest that melatonin protects against cadmium-induced duck osteoporosis by improving the osteogenesis function, inhibiting bone resorption, and suppressing the occurrence of pyroptosis. In vitro, the findings demonstrated that melatonin alleviated the inhibition effect of cadmium on duck bone marrow-derived mesenchymal stem cells (BMSC) osteogenic differentiation, and suppressed the cadmium-induced osteoclast differentiation. In addition, we also found that melatonin prevents cytokines release of lactate dehydrogenase (LDH), interleukin-18 (IL-18), and interleukin-1β (IL-1β) by cadmium-induced, and reduces the expression of n-terminal Gasdermin D (N-GSDMD), alleviates the osteoblast death rate. In short, melatonin as a potential therapeutic agent has bright prospects in cadmium-induced bone toxicity.
Collapse
Affiliation(s)
- Yonggang Ma
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Qunchao Su
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Li Zhao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Jiaqiao Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Hongyan Zhao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Ruilong Song
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Hui Zou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, PR China.
| |
Collapse
|
10
|
Zhen L, Huang Y, Bi X, Gao A, Peng L, Chen Y. Melatonin feeding changed the microbial diversity and metabolism of the broiler cecum. Front Microbiol 2024; 15:1422272. [PMID: 39224220 PMCID: PMC11367786 DOI: 10.3389/fmicb.2024.1422272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024] Open
Abstract
To study the effect of melatonin supplementation on the gut microbes of broilers, 160 healthy 3-week-old Ross 308 broilers with similar body weights were selected and randomly divided into four groups (M0, M20, M40, and M80) supplemented with 0, 20, 40, or 80 mg/kg melatonin. The results showed that the abundance-based coverage estimator (ACE) index of cecum microorganisms was significantly lower in the M80 group. The dominant phyla of intestinal contents in the M0, M20, M40, and M80 groups were Bacteroidetes and Firmicutes. The M40 group showed an increase in the relative abundance of Bacteroidetes spp. in the intestine, while the relative abundance of Ruminococcus spp. in the intestine of the M20, M40, and M80 groups was significantly greater than that of the M0 group. Kyoto Encyclopedia of Genes and Genomes (KEGG) functional analyses revealed that the supplementation of melatonin increases the expression of genes related to cellular processes (cell motility, cell growth and death, and cellular community-eukaryotes), environmental information processing (membrane transport and signal transduction), and genetic information processing (transport and transcription), and Cluster of Orthologous Groups (COG) of proteins functional analyses revealed that the supplementation of melatonin resulted in a significant increase in cellular processes and signaling (cell motility, signal transduction mechanisms, intracellular trafficking, secretion, and vesicular transport), information storage and processing (RNA processing and modification, chromatin structure and dynamics, translation, ribosomal structure, and biogenesis), metabolism (energy production and conversion, lipid transportation and metabolism, inorganic ion transport and metabolism, secondary metabolite biosynthesis, transport, and catabolism), and poorly characterized (general function prediction only). In summary, supplementation of feed with melatonin can increase the diversity of intestinal microorganisms and the relative abundance of Bacteroides and Firmicutes in the cecum, improve digestive ability and nutrient absorption ability, and positively regulate the metabolic ability of broilers.
Collapse
Affiliation(s)
- Li Zhen
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, Daqing, China
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, Daqing, China
| | - Yi Huang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Xuewen Bi
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Anyu Gao
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Linlin Peng
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Yong Chen
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| |
Collapse
|
11
|
Özer Simsek Z, Aras S, Cikrikcioglu M, Baydili KN, Cortuk M. Melatonin as a radioprotective agent against flattening filter and flattening filter-free beam in radiotherapy-induced lung tissue damage. Int J Radiat Biol 2024; 101:28-34. [PMID: 39074356 DOI: 10.1080/09553002.2024.2381492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 03/09/2024] [Accepted: 07/11/2024] [Indexed: 07/31/2024]
Abstract
BACKGROUND Radiotherapy is a widely used treatment method in oncology, applied by delivering high-energy particles or waves to the tumor tissue. Although tumor cells are targeted with radiotherapy, it can cause acute or long-term damage to healthy tissues. Therefore, the preservation of healthy tissues has been an important subject of various scientific researches. Melatonin has been shown to have a radioprotective effect on many tissues and organs such as liver, parotid gland, brain, and testicles. This study aimed to evaluate the protective effect of melatonin against the radiation at various doses and rates administered to the lung tissue of healthy mice. METHODS This study was a randomized case-control study conducted with 80 rats comprising 10 groups with eight animals per group. Of the 10 groups, first is the control group, which is not given any melatonin, and second is the group that does not receive RT, which is given only melatonin, and the other eight groups are RT groups, four with melatonin and four without melatonin. RESULTS There was no statistical difference in terms of histopathological findings in the lung tissue between the second group, which did not receive radiotherapy and received only melatonin, and the control group. Lung damage due to radiotherapy was statistically significantly higher in the groups that did not receive melatonin compared to the groups that received melatonin. CONCLUSIONS This study revealed that melatonin has a protective effect against the cytotoxic damage of RT in rats receiving RT.
Collapse
Affiliation(s)
- Zuhal Özer Simsek
- Department of Chest Intensive Care Unit, Kayseri City Hospitals, Kayseri, Turkey
| | - Serhat Aras
- Department of Radiation Oncology, Haydarpasa Numune Training and Research Hospital, University of Health Sciences Turkey, Istanbul, Turkey
| | - Makbule Cikrikcioglu
- Department of Pathology, Haydarpasa Numune Training and Research Hospital, University of Health Sciences Turkey, Istanbul, Turkey
| | - Kursad Nuri Baydili
- Department of Biostatistics, University of Health Sciences Turkey, Istanbul, Turkey
| | - Mustafa Cortuk
- Department of Chest Diseases, Health Science University Yedikule Chest Diseases and Thoracic Surgery Hospital, İstanbul, Turkey
| |
Collapse
|
12
|
Semenova N, Garashchenko N, Kolesnikov S, Darenskaya M, Kolesnikova L. Gut Microbiome Interactions with Oxidative Stress: Mechanisms and Consequences for Health. PATHOPHYSIOLOGY 2024; 31:309-330. [PMID: 39051221 PMCID: PMC11270257 DOI: 10.3390/pathophysiology31030023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/17/2024] [Accepted: 06/20/2024] [Indexed: 07/27/2024] Open
Abstract
Understanding how gut flora interacts with oxidative stress has been the subject of significant research in recent years. There is much evidence demonstrating the existence of the microbiome-oxidative stress interaction. However, the biochemical basis of this interaction is still unclear. In this narrative review, possible pathways of the gut microbiota and oxidative stress interaction are presented, among which genetic underpinnings play an important role. Trimethylamine-N-oxide, mitochondria, short-chain fatty acids, and melatonin also appear to play roles. Moreover, the relationship between oxidative stress and the gut microbiome in obesity, metabolic syndrome, chronic ethanol consumption, dietary supplements, and medications is considered. An investigation of the correlation between bacterial community features and OS parameter changes under normal and pathological conditions might provide information for the determination of new research methods. Furthermore, such research could contribute to establishing a foundation for determining the linkers in the microbiome-OS association.
Collapse
Affiliation(s)
- Natalya Semenova
- Scientific Centre for Family Health and Human Reproduction Problems, 664003 Irkutsk, Russia; (N.G.); (S.K.); (M.D.); (L.K.)
| | | | | | | | | |
Collapse
|
13
|
Zhao X, Pang J, Zhang W, Peng X, Yang Z, Bai G, Xia Y. Tryptophan metabolism and piglet diarrhea: Where we stand and the challenges ahead. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 17:123-133. [PMID: 38766516 PMCID: PMC11101943 DOI: 10.1016/j.aninu.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 02/13/2024] [Accepted: 03/20/2024] [Indexed: 05/22/2024]
Abstract
The intestinal architecture of piglets is vulnerable to disruption during weaning transition and leads to diarrhea, frequently accompanied by inflammation and metabolic disturbances (including amino acid metabolism). Tryptophan (Trp) plays an essential role in orchestrating intestinal immune tolerance through its metabolism via the kynurenine, 5-hydroxytryptamine, or indole pathways, which could be dictated by the gut microbiota either directly or indirectly. Emerging evidence suggests a strong association between piglet diarrhea and Trp metabolism. Here we aim to summarize the intricate balance of microbiota-host crosstalk by analyzing alterations in both the host and microbial pathways of Trp and discuss how Trp metabolism may affect piglet diarrhea. Overall, this review could provide valuable insights to explore effective strategies for managing piglet diarrhea and the related challenges.
Collapse
Affiliation(s)
- Xuan Zhao
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Jiaman Pang
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Wanghong Zhang
- Yunnan Vocational College of Agriculture, Kunming 650211, China
| | - Xie Peng
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Zhenguo Yang
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Guangdong Bai
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Yaoyao Xia
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| |
Collapse
|
14
|
Hosseinzadeh A, Jamshidi Naeini A, Sheibani M, Gholamine B, Reiter RJ, Mehrzadi S. Melatonin and oral diseases: possible therapeutic roles based on cellular mechanisms. Pharmacol Rep 2024; 76:487-503. [PMID: 38607587 DOI: 10.1007/s43440-024-00593-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/29/2024] [Accepted: 04/02/2024] [Indexed: 04/13/2024]
Abstract
Oral diseases, including periodontal disorders, oral cancer, periodontitis, and mucositis are the major challenges for both patients and healthcare providers. These conditions often involve inflammation, oxidative stress, and impaired cellular processes, leading to symptoms ranging from discomfort to severe debilitation. Conventional treatments for such oral diseases exhibit constraints, prompting the investigation of innovative therapeutic approaches. Considering the anti-inflammatory, anti-oxidant, and anti-cancer effects of melatonin, this study was carried out to investigate the potential protective effects of melatonin in mitigating the severity of oral diseases. Studies indicate that melatonin influences the differentiation of periodontal stem cells, inhibits oral cancer progression, reduces inflammation associated with periodontitis, and alleviates the severity of oral mucositis. Melatonin has demonstrated potential efficacy in both preclinical and clinical investigations; however, findings are frequently heterogeneous and contingent upon contextual factors. This review provides a comprehensiveoverview of current state of knowledge in this domain, elucidating the multifaceted role that melatonin may assume in combatingoral diseases. Further research should be directed toward determining the most effective dosing, timing, and administration methods for melatonin-based therapies for oral diseases.
Collapse
Affiliation(s)
- Azam Hosseinzadeh
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Jamshidi Naeini
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Sheibani
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Babak Gholamine
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX, USA
| | - Saeed Mehrzadi
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
15
|
Ahmadi S, Taghizadieh M, Mehdizadehfar E, Hasani A, Khalili Fard J, Feizi H, Hamishehkar H, Ansarin M, Yekani M, Memar MY. Gut microbiota in neurological diseases: Melatonin plays an important regulatory role. Biomed Pharmacother 2024; 174:116487. [PMID: 38518598 DOI: 10.1016/j.biopha.2024.116487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 03/14/2024] [Accepted: 03/19/2024] [Indexed: 03/24/2024] Open
Abstract
Melatonin is a highly conserved molecule produced in the human pineal gland as a hormone. It is known for its essential biological effects, such as antioxidant activity, circadian rhythm regulator, and immunomodulatory effects. The gut is one of the primary known sources of melatonin. The gut microbiota helps produce melatonin from tryptophan, and melatonin has been shown to have a beneficial effect on gut barrier function and microbial population. Dysbiosis of the intestinal microbiota is associated with bacterial imbalance and decreased beneficial microbial metabolites, including melatonin. In this way, low melatonin levels may be related to several human diseases. Melatonin has shown both preventive and therapeutic effects against various conditions, including neurological diseases such as Alzheimer's disease, Parkinson's disease, and multiple sclerosis. This review was aimed to discuss the role of melatonin in the body, and to describe the possible relationship between gut microbiota and melatonin production, as well as the potential therapeutic effects of melatonin on neurological diseases.
Collapse
Affiliation(s)
- Somayeh Ahmadi
- Students Research Committee, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Taghizadieh
- Department of Pathology, School of Medicine, Center for Women's Health Research Zahra, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elham Mehdizadehfar
- Department of Neurosciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alka Hasani
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Clinical Research Development Unit, Sina Educational, Research and Treatment Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javad Khalili Fard
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hadi Feizi
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Medical Microbiology, Aalinasab Hospital, Social Security Organization, Tabriz, Iran
| | - Hammed Hamishehkar
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Masood Ansarin
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mina Yekani
- Department of Microbiology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran.
| | - Mohammad Yousef Memar
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
16
|
Jurjus A, El Masri J, Ghazi M, El Ayoubi LM, Soueid L, Gerges Geagea A, Jurjus R. Mechanism of Action of Melatonin as a Potential Adjuvant Therapy in Inflammatory Bowel Disease and Colorectal Cancer. Nutrients 2024; 16:1236. [PMID: 38674926 PMCID: PMC11054672 DOI: 10.3390/nu16081236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024] Open
Abstract
Inflammatory bowel disease (IBD), a continuum of chronic inflammatory diseases, is tightly associated with immune system dysregulation and dysbiosis, leading to inflammation in the gastrointestinal tract (GIT) and multiple extraintestinal manifestations. The pathogenesis of IBD is not completely elucidated. However, it is associated with an increased risk of colorectal cancer (CRC), which is one of the most common gastrointestinal malignancies. In both IBD and CRC, a complex interplay occurs between the immune system and gut microbiota (GM), leading to the alteration in GM composition. Melatonin, a neuroendocrine hormone, was found to be involved with this interplay, especially since it is present in high amounts in the gut, leading to some protective effects. Actually, melatonin enhances the integrity of the intestinal mucosal barrier, regulates the immune response, alleviates inflammation, and attenuates oxidative stress. Thereby, the authors summarize the multifactorial interaction of melatonin with IBD and with CRC, focusing on new findings related to the mechanisms of action of this hormone, in addition to its documented positive outcomes on the treatment of these two pathologies and possible future perspectives to use melatonin as an adjuvant therapy.
Collapse
Affiliation(s)
- Abdo Jurjus
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107, Lebanon; (J.E.M.); (M.G.); (L.S.); (A.G.G.); (R.J.)
| | - Jad El Masri
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107, Lebanon; (J.E.M.); (M.G.); (L.S.); (A.G.G.); (R.J.)
- Faculty of Medical Sciences, Lebanese University, Beirut 6573, Lebanon;
| | - Maya Ghazi
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107, Lebanon; (J.E.M.); (M.G.); (L.S.); (A.G.G.); (R.J.)
- Faculty of Medical Sciences, Lebanese University, Beirut 6573, Lebanon;
| | | | - Lara Soueid
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107, Lebanon; (J.E.M.); (M.G.); (L.S.); (A.G.G.); (R.J.)
| | - Alice Gerges Geagea
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107, Lebanon; (J.E.M.); (M.G.); (L.S.); (A.G.G.); (R.J.)
| | - Rosalyn Jurjus
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107, Lebanon; (J.E.M.); (M.G.); (L.S.); (A.G.G.); (R.J.)
| |
Collapse
|
17
|
Zheng J, Zhou Y, Zhang D, Ma K, Gong Y, Luo X, Liu J, Cui S. Intestinal melatonin levels and gut microbiota homeostasis are independent of the pineal gland in pigs. Front Microbiol 2024; 15:1352586. [PMID: 38596375 PMCID: PMC11003461 DOI: 10.3389/fmicb.2024.1352586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/28/2024] [Indexed: 04/11/2024] Open
Abstract
Introduction Melatonin (MEL) is a crucial neuroendocrine hormone primarily produced by the pineal gland. Pinealectomy (PINX) has been performed on an endogenous MEL deficiency model to investigate the functions of pineal MEL and its relationship with various diseases. However, the effect of PINX on the gastrointestinal tract (GIT) MEL levels and gut microbiome in pigs has not been previously reported. Methods By using a newly established pig PINX model, we detected the levels of MEL in the GIT by liquid chromatography-tandem mass spectrometry. In addition, we examined the effects of PINX on the expression of MEL synthesis enzymes, intestinal histomorphology, and the intestinal barrier. Furthermore, 16S rRNA sequencing was performed to analyze the colonic microbiome. Results PINX reduced serum MEL levels but did not affect GIT MEL levels. Conversely, MEL supplementation increased MEL levels in the GIT and intestinal contents. Neither PINX nor MEL supplementation had any effect on weight gain, organ coefficient, serum biochemical indexes, or MEL synthetase arylalkylamine N-acetyltransferase (AANAT) expression in the duodenum, ileum, and colon. Furthermore, no significant differences were observed in the intestinal morphology or intestinal mucosal barrier function due to the treatments. Additionally, 16S rRNA sequencing revealed that PINX had no significant impact on the composition of the intestinal microbiota. Nevertheless, MEL supplementation decreased the abundance of Fibrobacterota and increased the abundance of Actinobacteriota, Desulfobacterota, and Chloroflexi. Conclusion We demonstrated that synthesis of MEL in the GIT is independent of the pineal gland. PINX had no influence on intestinal MEL level and microbiota composition in pigs, while exogenous MEL alters the structure of the gut microbiota.
Collapse
Affiliation(s)
- Jiaming Zheng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Yewen Zhou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Di Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Kezhe Ma
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Yuneng Gong
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Xuan Luo
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jiali Liu
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Sheng Cui
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Institute of Reproduction and Metabolism, Yangzhou University, Yangzhou, China
| |
Collapse
|
18
|
Lai J, Li F, Li H, Huang R, Ma F, Gu X, Cai Y, Huang D, Li S, Xiao S, Hao H. Melatonin alleviates necrotizing enterocolitis by reducing bile acid levels through the SIRT1/FXR signalling axis. Int Immunopharmacol 2024; 128:111360. [PMID: 38176339 DOI: 10.1016/j.intimp.2023.111360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/30/2023] [Accepted: 12/07/2023] [Indexed: 01/06/2024]
Abstract
Bile acids (BAs) have increasingly been implicated in the onset and progression of necrotizing enterocolitis (NEC); multiple findings have demonstrated their ability to induce damage to the intestinal epithelium, thereby exacerbating disease severity. Although we previously showed that melatonin was able to treat NEC by correcting the Treg/Th17 imbalance, the modulatory effect of melatonin on BAs remains unclear. In this study, we conducted transcriptome analysis on intestinal tissues from patients with NEC and validated these findings. Subsequently, we treated mice with melatonin alone or in combination with an agonist/inhibitor of Sirtuin 1 (SIRT1) to assess faecal and serum BA levels, the expression levels of BA transporters and regulators, and the extent of intestinal injury. Our transcriptome results indicated dysregulation of BA metabolism and abnormal expression of BA transporters in patients with NEC, which were also observed in our NEC mouse model. Furthermore, exogenous BAs were found to aggravate NEC severity in mice. Notably, melatonin effectively restored the aberrant expression of BA transporters, such as apical membrane sodium-dependent bile acid transporters (ASBT), ileal bile acid-binding protein (IBABP), and organic solute transporter-alpha (OST-α), by upregulating SIRT1 expression while reducing farnesoid X receptor (FXR) acetylation, consequently leading to decreased serum and faecal BA levels and mitigated NEC severity. Thus, we propose a potential mechanism through which melatonin reduces BA levels via the SIRT1/FXR signalling axis in an NEC mouse model. Collectively, these results highlight that melatonin holds promise for reducing BA levels and represents a promising therapeutic strategy for treating NEC.
Collapse
Affiliation(s)
- Jiahao Lai
- Department of Pediatrics, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, China
| | - Fei Li
- Department of Pediatrics, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Inborn Errors of Metabolism Laboratory, The Sixth Affiliated Hospital, Sun Yat sen University, Guangzhou, China
| | - Hongfu Li
- Department of Pediatrics, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Rong Huang
- Department of neonatal surgery, Guangdong Women and Children Hospital, Guangzhou, China
| | - Fei Ma
- Maternal & Child Health Research Institute, Zhuhai Women and Children's Hospital, Zhuhai 519001, China
| | - Xia Gu
- Department of Pediatrics, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Inborn Errors of Metabolism Laboratory, The Sixth Affiliated Hospital, Sun Yat sen University, Guangzhou, China
| | - Yao Cai
- Department of Pediatrics, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Inborn Errors of Metabolism Laboratory, The Sixth Affiliated Hospital, Sun Yat sen University, Guangzhou, China
| | - Dabin Huang
- Department of Pediatrics, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Sitao Li
- Department of Pediatrics, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Inborn Errors of Metabolism Laboratory, The Sixth Affiliated Hospital, Sun Yat sen University, Guangzhou, China.
| | - Shangjie Xiao
- Department of neonatal surgery, Guangdong Women and Children Hospital, Guangzhou, China.
| | - Hu Hao
- Department of Pediatrics, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Inborn Errors of Metabolism Laboratory, The Sixth Affiliated Hospital, Sun Yat sen University, Guangzhou, China.
| |
Collapse
|
19
|
Ameen M, Zafar A, Mahmood A, Zia MA, Kamran K, Javaid MM, Yasin M, Khan BA. Melatonin as a master regulatory hormone for genetic responses to biotic and abiotic stresses in model plant Arabidopsis thaliana: a comprehensive review. FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:FP23248. [PMID: 38310885 DOI: 10.1071/fp23248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/09/2024] [Indexed: 02/06/2024]
Abstract
Melatonin is a naturally occurring biologically active amine produced by plants, animals and microbes. This review explores the biosynthesis of melatonin in plants, with a particular focus on its diverse roles in Arabidopsis thaliana , a model species. Melatonin affects abiotic and biotic stress resistance in A. thaliana . Exogenous and endogenous melatonin is addressed in association with various conditions, including cold stress, high light stress, intense heat and infection with Botrytis cinerea or Pseudomonas , as well as in seed germination and lateral root formation. Furthermore, melatonin confers stress resistance in Arabidopsis by initiating the antioxidant system, remedying photosynthesis suppression, regulating transcription factors involved with stress resistance (CBF, DREB, ZAT, CAMTA, WRKY33, MYC2, TGA) and other stress-related hormones (abscisic acid, auxin, ethylene, jasmonic acid and salicylic acid). This article additionally addresses other precursors, metabolic components, expression of genes (COR , CBF , SNAT , ASMT , PIN , PR1 , PDF1.2 and HSFA ) and proteins (JAZ, NPR1) associated with melatonin and reducing both biological and environmental stressors. Furthermore, the future perspective of melatonin rich agri-crops is explored to enhance plant tolerance to abiotic and biotic stresses, maximise crop productivity and enhance nutritional worth, which may help improve food security.
Collapse
Affiliation(s)
- Muaz Ameen
- Department of Botany, University of Agriculture Faisalabad, Faisalabad, 38000, Pakistan
| | - Asma Zafar
- Department of Botany, University of Agriculture Faisalabad, Faisalabad, 38000, Pakistan
| | - Athar Mahmood
- Department of Agronomy, University of Agriculture Faisalabad, Faisalabad, 38000, Pakistan
| | - Muhammad Anjum Zia
- Department of Biochemistry, University of Agriculture Faisalabad, Faisalabad, 38000, Pakistan
| | - Kashif Kamran
- Department of Physics, University of Agriculture Faisalabad, Faisalabad, 38000, Pakistan
| | - Muhammad Mansoor Javaid
- Department of Agronomy, College of Agriculture, University of Sargodha, Sargodha 40100, Pakistan
| | - Muhammad Yasin
- Department of Agronomy, College of Agriculture, University of Sargodha, Sargodha 40100, Pakistan
| | - Bilal Ahmad Khan
- Department of Agronomy, College of Agriculture, University of Sargodha, Sargodha 40100, Pakistan
| |
Collapse
|
20
|
Ritwiset A, Maensiri S, Krongsuk S. Insight into molecular structures and dynamical properties of niosome bilayers containing melatonin molecules: a molecular dynamics simulation approach. RSC Adv 2024; 14:1697-1709. [PMID: 38187447 PMCID: PMC10768803 DOI: 10.1039/d3ra07564h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/26/2023] [Indexed: 01/09/2024] Open
Abstract
Niosomes represent vesicular carriers capable of encapsulating both hydrophobic and hydrophilic drugs within their inner core or bilayer shell. They are typically composed of non-ionic synthetic surfactants such as sorbitan monostearate (Span60) with the addition of cholesterol (Chol). The physical properties and stability of niosomal vesicles strongly depend on the composition of their bilayers, which plays a significant role in determining the efficiency of drug encapsulation and release in drug delivery systems. In this study, we have explored the interactions between melatonin (Mel) molecules and the niosome bilayer, as well as their resulting physical properties. Molecular dynamics simulations were employed to investigate melatonin-inserted niosome bilayers, both with and without the inclusion of cholesterol. The simulation results revealed that cholesterol notably influences the location of melatonin molecules within the niosome bilayers. In the absence of cholesterol, melatonin tends to occupy the region around the Span60 tail groups. However, in the presence of cholesterol, melatonin is found in the vicinity of the Span60 head groups. Melatonin molecules in niosome bilayers without cholesterol exhibit a more ordered orientation when compared to those in bilayers containing 50 mol% cholesterol. The bilayer structure of the Span60/Mel and Span60/Chol/Mel systems exhibited a liquid-disordered phase (Ld). In contrast, the Span60/Chol bilayer system displays a liquid-ordered phase (Lo) with less fluidity. This study reveals that melatonin induces a disorderly bilayer structure and greater lateral expansion, whereas cholesterol induces an orderly bilayer structure and a more condensed effect. Cholesterol plays a crucial role in condensing the bilayer structure with stronger interactions between Span60 and cholesterol. The addition of 50 mol% cholesterol in the Span60 bilayers not only enhances the stability and rigidity of niosomes but also facilitates the easier release of melatonin from the bilayer membranes. This finding is particularly valuable in the context of preparing niosomes for drug delivery systems.
Collapse
Affiliation(s)
- Aksornnarong Ritwiset
- School of Physics, Institute of Science, Suranaree University of Technology Nakhon Ratchasima 30000 Thailand
| | - Santi Maensiri
- School of Physics, Institute of Science, Suranaree University of Technology Nakhon Ratchasima 30000 Thailand
- Center of Excellence on Advanced Functional Nanomaterials, Suranaree University of Technology Nakhon Ratchasima 30000 Thailand
| | - Sriprajak Krongsuk
- Department of Physics, Faculty of Science, Khon Kaen University Khon Kaen 40002 Thailand
- Institute of Nanomaterials Research and Innovation for Energy (IN-RIE), Khon Kaen University Khon Kaen 40002 Thailand
| |
Collapse
|
21
|
Uluışık D, Keskin E, Özaydın T, Öznurlu Y. Ameliorative effects of the melatonin on some cytokine levels, NF-κB immunoreactivity, and apoptosis in rats with cerulein-induced acute pancreatitis. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2024; 27:279-285. [PMID: 38333760 PMCID: PMC10849197 DOI: 10.22038/ijbms.2023.69019.15045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 10/17/2023] [Indexed: 02/10/2024]
Abstract
Objectives Investigating the ameliorative effects of melatonin on cytokine levels, apoptosis, and NF-κB immunoreactivity in rats with cerulein-induced acute pancreatitis. Materials and Methods Thirthy-two Wistar Albino rats were divided into four groups: Control group which didn't undergo acute pancreatitis induction and was left without treatment, pancreatitis group in which the acute pancreatitis was induced by 2 successive intraperitoneal doses of cerulein at a 2-hour interval (50 µg/kg and then 25 µg/kg), melatonin-treated pancreatitis group which was intraperitoneally administrated with 50 mg/kg of melatonin, 30 min before each cerulein injection, and melatonin group which was intraperitoneally administrated with 2 successive doses of melatonin (50 mg/kg each) at a 2-hour interval. Pancreatic tissue and blood samples were taken from animals of all groups. IL-1β, TNF-α, and IL-10 levels were determined in blood samples. Apoptosis was determined by the TUNEL assay and the NF-κB was detected immunohistochemically in acinar cells of the exocrine pancreatic portion. Results IL-1β, TNF-α, and IL-10 levels in the acute pancreatitis group were significantly increased when compared to the control negative group. IL-1β and TNF-α levels in the melatonin-treated pancreatitis group were significantly lower than those of the acute pancreatitis group. While number of apoptotic cells and percentage of NF-κB immunopositive cells in the acute pancreatitis group were significantly increased compared to other groups and it was observed that these parameters were significantly reduced in the melatonin-treated pancreatitis group compared to the acute pancreatitis group. Conclusion These findings suggest that melatonin administration can significantly reduce the severity of acute pancreatitis in rats.
Collapse
Affiliation(s)
- Deniz Uluışık
- University of Selçuk, Faculty of Veterinary Medicine, Department of Physiology, Turkey
| | - Ercan Keskin
- University of Selçuk, Faculty of Veterinary Medicine, Department of Physiology, Turkey
| | - Tuğba Özaydın
- University of Selçuk, Faculty of Veterinary Medicine, Department of Histology and Embryology, Turkey
| | - Yasemin Öznurlu
- University of Selçuk, Faculty of Veterinary Medicine, Department of Histology and Embryology, Turkey
| |
Collapse
|
22
|
LeFort KR, Rungratanawanich W, Song BJ. Melatonin Prevents Alcohol- and Metabolic Dysfunction- Associated Steatotic Liver Disease by Mitigating Gut Dysbiosis, Intestinal Barrier Dysfunction, and Endotoxemia. Antioxidants (Basel) 2023; 13:43. [PMID: 38247468 PMCID: PMC10812487 DOI: 10.3390/antiox13010043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 01/23/2024] Open
Abstract
Melatonin (MT) has often been used to support good sleep quality, especially during the COVID-19 pandemic, as many have suffered from stress-related disrupted sleep patterns. It is less known that MT is an antioxidant, anti-inflammatory compound, and modulator of gut barrier dysfunction, which plays a significant role in many disease states. Furthermore, MT is produced at 400-500 times greater concentrations in intestinal enterochromaffin cells, supporting the role of MT in maintaining the functions of the intestines and gut-organ axes. Given this information, the focus of this article is to review the functions of MT and the molecular mechanisms by which it prevents alcohol-associated liver disease (ALD) and metabolic dysfunction-associated steatotic liver disease (MASLD), including its metabolism and interactions with mitochondria to exert its antioxidant and anti-inflammatory activities in the gut-liver axis. We detail various mechanisms by which MT acts as an antioxidant, anti-inflammatory compound, and modulator of intestinal barrier function to prevent the progression of ALD and MASLD via the gut-liver axis, with a focus on how these conditions are modeled in animal studies. Using the mechanisms of MT prevention and animal studies described, we suggest behavioral modifications and several exogenous sources of MT, including food and supplements. Further clinical research should be performed to develop the field of MT in preventing the progression of liver diseases via the gut-liver axis, so we mention a few considerations regarding MT supplementation in the context of clinical trials in order to advance this field of research.
Collapse
Affiliation(s)
- Karli R. LeFort
- Section of Molecular Pharmacology and Toxicology, National Institute on Alcohol Abuse and Alcoholism, 9000 Rockville Pike, Bethesda, MD 20892, USA;
| | | | - Byoung-Joon Song
- Section of Molecular Pharmacology and Toxicology, National Institute on Alcohol Abuse and Alcoholism, 9000 Rockville Pike, Bethesda, MD 20892, USA;
| |
Collapse
|
23
|
Ku H, Kim Y, Kim AL, Lee G, Choi Y, Kim B. Protective Effects of Melatonin in High-Fat Diet-Induced Hepatic Steatosis via Decreased Intestinal Lipid Absorption and Hepatic Cholesterol Synthesis. Endocrinol Metab (Seoul) 2023; 38:557-567. [PMID: 37652870 PMCID: PMC10613779 DOI: 10.3803/enm.2023.1672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 06/11/2023] [Accepted: 07/27/2023] [Indexed: 09/02/2023] Open
Abstract
BACKGRUOUND The preventative effect of melatonin on the development of obesity and the progression of fatty liver under a high-fat diet (HFD) has been well elucidated through previous studies. We investigated the mechanism behind this effect regarding cholesterol biosynthesis and regulation of cholesterol levels. METHODS Mice were divided into three groups: normal chow diet (NCD); HFD; and HFD and melatonin administration group (HFD+M). We assessed the serum lipid profile, mRNA expression levels of proteins involved in cholesterol synthesis and reabsorption in the liver and nutrient transporters in the intestines, and cytokine levels. Additionally, an in vitro experiment using HepG2 cells was performed. RESULTS Expression of hepatic sterol regulatory element-binding protein 2 (SREBP-2), 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR), and low-density lipoprotein receptor (LDLR) demonstrated that melatonin administration significantly reduces hepatic cholesterol synthesis in mice fed an HFD. Expression of intestinal sodium-glucose transporter 1 (SGLT1), glucose transporter 2 (GLUT2), GLUT5, and Niemann-pick C1-like 1 (NPC1L1) demonstrated that melatonin administration significantly reduces intestinal carbohydrate and lipid absorption in mice fed an HFD. There were no differences in local and circulatory inflammatory cytokine levels among the NCD, HFD, and HFD+M group. HepG2 cells stimulated with palmitate showed reduced levels of SREBP, LDLR, and HMGCR indicating these results are due to the direct mechanistic effect of melatonin on hepatocytes. CONCLUSION Collectively, these data indicate the mechanism behind the protective effects of melatonin from weight gain and liver steatosis under HFD is through a reduction in intestinal caloric absorption and hepatic cholesterol synthesis highlighting its potential in the treatment of obesity and fatty liver disease.
Collapse
Affiliation(s)
- Hyungjune Ku
- Department of Internal Medicine, Kosin University College of Medicine, Busan, Korea
| | - Yeonji Kim
- Department of Internal Medicine, Kosin University College of Medicine, Busan, Korea
| | - Alvin Lyle Kim
- Department of Surgery, Kosin University College of Medicine, Busan, Korea
| | - Garam Lee
- Department of Food Science and Nutrition, Pusan National University, Busan, Korea
| | - Youngsik Choi
- Department of Internal Medicine, Kosin University College of Medicine, Busan, Korea
| | - Bukyung Kim
- Department of Internal Medicine, Kosin University College of Medicine, Busan, Korea
| |
Collapse
|
24
|
Xue C, Li G, Zheng Q, Gu X, Shi Q, Su Y, Chu Q, Yuan X, Bao Z, Lu J, Li L. Tryptophan metabolism in health and disease. Cell Metab 2023; 35:1304-1326. [PMID: 37352864 DOI: 10.1016/j.cmet.2023.06.004] [Citation(s) in RCA: 198] [Impact Index Per Article: 99.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/10/2023] [Accepted: 06/05/2023] [Indexed: 06/25/2023]
Abstract
Tryptophan (Trp) metabolism primarily involves the kynurenine, 5-hydroxytryptamine, and indole pathways. A variety of bioactive compounds produced via Trp metabolism can regulate various physiological functions, including inflammation, metabolism, immune responses, and neurological function. Emerging evidence supports an intimate relationship between Trp metabolism disorder and diseases. The levels or ratios of Trp metabolites are significantly associated with many clinical features. Additionally, studies have shown that disease progression can be controlled by modulating Trp metabolism. Indoleamine-2,3-dioxygenase, Trp-2,3-dioxygenase, kynurenine-3-monooxygenase, and Trp hydroxylase are the rate-limiting enzymes that are critical for Trp metabolism. These key regulatory enzymes can be targeted for treating several diseases, including tumors. These findings provide novel insights into the treatment of diseases. In this review, we have summarized the recent research progress on the role of Trp metabolites in health and disease along with their clinical applications.
Collapse
Affiliation(s)
- Chen Xue
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Ganglei Li
- Department of Neurosurgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Qiuxian Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Xinyu Gu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Qingmiao Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Yuanshuai Su
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Qingfei Chu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Xin Yuan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Zhengyi Bao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Juan Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| |
Collapse
|
25
|
Zhu X, Zhang Y, Liu H, Yang G, Li L. Microbiome-metabolomics analysis reveals abatement effects of itaconic acid on odorous compound production in Arbor Acre broilers. BMC Microbiol 2023; 23:183. [PMID: 37438695 DOI: 10.1186/s12866-023-02914-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/27/2023] [Indexed: 07/14/2023] Open
Abstract
BACKGROUND Public complaints concerning odor emissions from intensive livestock and poultry farms continue to grow, as nauseous odorous compounds have adverse impacts on the environment and human health. Itaconic acid is a metabolite from the citric acid cycle of the host and shows volatile odor-reducing effects during animal production operations. However, the specific role of itaconic acid in decreasing intestinal odorous compound production remains unclear. A total of 360 one-day-old chicks were randomly divided into 6 treatment groups: control group (basal diet) and itaconic acid groups (basal diet + 2, 4, 6, 8 and 10 g/kg itaconic acid). The feeding experiment lasted for 42 d. RESULTS Dietary itaconic acid supplementation linearly and quadratically decreased (P < 0.05) the cecal concentrations of indole and skatole but did not affect (P > 0.05) those of lactic, acetic, propionic and butyric acids. The cecal microbial shift was significant in response to 6 g/kg itaconic acid supplementation, in that the abundances of Firmicutes, Ruminococcus and Clostridium were increased (P < 0.05), while those of Bacteroidetes, Escherichia-Shigella and Bacteroides were decreased (P < 0.05), indicative of increased microbial richness and diversity. Furthermore, a total of 35 significantly (P < 0.05) modified metabolites were obtained by metabolomic analysis. Itaconic acid decreased (P < 0.05) the levels of nicotinic acid, nicotinamide, glucose-6-phosphate, fumatic acid and malic acid and increased (P < 0.05) 5-methoxytroptomine, dodecanoic acid and stearic acid, which are connected with the glycolytic pathway, citrate acid cycle and tryptophan metabolism. Correlation analysis indicated significant correlations between the altered cecal microbiota and metabolites; Firmicutes, Ruminococcus and Clostridium were shown to be negatively correlated with indole and skatole production, while Bacteroidetes, Escherichia-Shigella and Bacteroides were positively correlated with indole and skatole production. CONCLUSIONS Itaconic acid decreased cecal indole and skatole levels and altered the microbiome and metabolome in favor of odorous compound reduction. These findings provide new insight into the role of itaconic acid and expand its application potential in broilers.
Collapse
Affiliation(s)
- Xin Zhu
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Yinhang Zhang
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Haiying Liu
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Guiqin Yang
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China.
| | - Lin Li
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China.
| |
Collapse
|
26
|
Jacobs S, Payne C, Shaboodien S, Kgatla T, Pretorius A, Jumaar C, Sanni O, Butrous G, Maarman G. Gut microbiota crosstalk mechanisms are key in pulmonary hypertension: The involvement of melatonin is instrumental too. Pulm Circ 2023; 13:e12277. [PMID: 37583483 PMCID: PMC10423855 DOI: 10.1002/pul2.12277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 08/02/2023] [Accepted: 08/02/2023] [Indexed: 08/17/2023] Open
Abstract
The microbiota refers to a plethora of microorganisms with a gene pool of approximately three million, which inhabits the human gastrointestinal tract or gut. The latter, not only promotes the transport of nutrients, ions, and fluids from the lumen to the internal environment but is linked with the development of diseases including coronary artery disease, heart failure, and lung diseases. The exact mechanism of how the microbiota achieves crosstalk between itself and distant organs/tissues is not clear, but factors released to other organs may play a role, like inflammatory and genetic factors, and now we highlight melatonin as a novel mediator of the gut-lung crosstalk. Melatonin is present in high concentrations in the gut and the lung and has recently been linked to the pathogenesis of pulmonary hypertension (PH). In this comprehensive review of the literature, we suggest that melatonin is an important link between the gut microbiota and the development of PH (where suppressed melatonin-crosstalk between the gut and lungs could promote the development of PH). More studies are needed to investigate the link between the gut microbiota, melatonin and PH. Studies could also investigate whether microbiota genes play a role in the epigenetic aspects of PH. This is relevant because, for example, dysbiosis (caused by epigenetic factors) could reduce melatonin signaling between the gut and lungs, reduce subcellular melatonin concentrations in the gut/lungs, or reduce melatonin serum levels secondary to epigenetic factors. This area of research is largely unexplored and further studies are warranted.
Collapse
Affiliation(s)
- Steve Jacobs
- CARMA: Centre for Cardio‐Metabolic Research in Africa, Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine & Health SciencesStellenbosch UniversityCape TownSouth Africa
| | - Carmen Payne
- CARMA: Centre for Cardio‐Metabolic Research in Africa, Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine & Health SciencesStellenbosch UniversityCape TownSouth Africa
| | - Sara Shaboodien
- CARMA: Centre for Cardio‐Metabolic Research in Africa, Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine & Health SciencesStellenbosch UniversityCape TownSouth Africa
| | - Thato Kgatla
- CARMA: Centre for Cardio‐Metabolic Research in Africa, Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine & Health SciencesStellenbosch UniversityCape TownSouth Africa
| | - Amy Pretorius
- CARMA: Centre for Cardio‐Metabolic Research in Africa, Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine & Health SciencesStellenbosch UniversityCape TownSouth Africa
| | - Chrisstoffel Jumaar
- CARMA: Centre for Cardio‐Metabolic Research in Africa, Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine & Health SciencesStellenbosch UniversityCape TownSouth Africa
| | - Olakunle Sanni
- CARMA: Centre for Cardio‐Metabolic Research in Africa, Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine & Health SciencesStellenbosch UniversityCape TownSouth Africa
| | - Ghazwan Butrous
- School of Pharmacy, Imperial College of LondonUniversity of KentCanterburyUK
| | - Gerald Maarman
- CARMA: Centre for Cardio‐Metabolic Research in Africa, Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine & Health SciencesStellenbosch UniversityCape TownSouth Africa
| |
Collapse
|
27
|
Lian Z, Xu Y, Wang C, Chen Y, Yuan L, Liu Z, Liu Y, He P, Cai Z, Zhao J. Gut microbiota-derived melatonin from Puerariae Lobatae Radix-resistant starch supplementation attenuates ischemic stroke injury via a positive microbial co-occurrence pattern. Pharmacol Res 2023; 190:106714. [PMID: 36863429 DOI: 10.1016/j.phrs.2023.106714] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/17/2023] [Accepted: 02/27/2023] [Indexed: 03/04/2023]
Abstract
Ischemic stroke is closely associated with gut microbiota dysbiosis and intestinal barrier dysfunction. Prebiotic intervention could modulate the intestinal microbiota, thus considered a practical strategy for neurological disorders. Puerariae Lobatae Radix-resistant starch (PLR-RS) is a potential novel prebiotic; however, its role in ischemic stroke remains unknown. This study aimed to clarify the effects and underlying mechanisms of PLR-RS in ischemic stroke. Middle cerebral artery occlusion surgery was performed to establish a model of ischemic stroke in rats. After gavage for 14 days, PLR-RS attenuated ischemic stroke-induced brain impairment and gut barrier dysfunction. Moreover, PLR-RS rescued gut microbiota dysbiosis and enriched Akkermansia and Bifidobacterium. We transplanted the fecal microbiota from PLR-RS-treated rats into rats with ischemic stroke and found that the brain and colon damage were also ameliorated. Notably, we found that PLR-RS promoted the gut microbiota to produce a higher level of melatonin. Intriguingly, exogenous gavage of melatonin attenuated ischemic stroke injury. In particular, melatonin attenuated brain impairment via a positive co-occurrence pattern in the intestinal microecology. Specific beneficial bacteria served as leaders or keystone species to promoted gut homeostasis, such as Enterobacter, Bacteroidales_S24-7_group, Prevotella_9, Ruminococcaceae and Lachnospiraceae. Thus, this new underlying mechanism could explain that the therapeutic efficacy of PLR-RS on ischemic stroke at least partly attributed to gut microbiota-derived melatonin. In summary, improving intestinal microecology by prebiotic intervention and melatonin supplementation in the gut were found to be effective therapies for ischemic stroke.
Collapse
Affiliation(s)
- Zhuoshi Lian
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Ying Xu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Chan Wang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Ye Chen
- Department of Gastroenterology, Integrative Clinical Microecology Center, Shenzhen Hospital, Southern Medical University, Shenzhen 518100, China
| | - Li Yuan
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Zhongyu Liu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yarui Liu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Peishi He
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Zheng Cai
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510315, China.
| | - Jie Zhao
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510315, China; Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
| |
Collapse
|
28
|
da Silva JL, Barbosa LV, Pinzan CF, Nardini V, Brigo IS, Sebastião CA, Elias-Oliveira J, Brazão V, Júnior JCDP, Carlos D, Cardoso CRDB. The Microbiota-Dependent Worsening Effects of Melatonin on Gut Inflammation. Microorganisms 2023; 11:microorganisms11020460. [PMID: 36838425 PMCID: PMC9962441 DOI: 10.3390/microorganisms11020460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/31/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023] Open
Abstract
Dysbiosis and disturbances in gut homeostasis may result in dysregulated responses, which are common in inflammatory bowel diseases (IBD). These conditions may be refractory to the usual treatments and novel therapies are still necessary to reach a more successful regulation of intestinal immunity. The hormone melatonin (MLT) has been raised as a therapeutic alternative because of its known interactions with immune responses and gut microbiota. Hence, we evaluated the effects of MLT in experimental colitis that evolves with intestinal dysbiosis, inflammation and bacterial translocation. C57BL/6 mice were exposed to dextran sulfate sodium and treated with MLT. In acute colitis, the hormone led to increased clinical, systemic and intestinal inflammatory parameters. During remission, continued MLT administration delayed recovery, increased TNF, memory effector lymphocytes and diminished spleen regulatory cells. MLT treatment reduced Bacteroidetes and augmented Actinobacteria and Verrucomicrobia phyla in mice feces. Microbiota depletion resulted in a remarkable reversion of the colitis phenotype after MLT administration, including a counter-regulatory immune response, reduction in TNF and colon macrophages. There was a decrease in Actinobacteria, Firmicutes and, most strikingly, Verrucomicrobia phylum in recovering mice. Finally, these results pointed to a gut-microbiota-dependent effect of MLT in the potentiation of intestinal inflammation.
Collapse
Affiliation(s)
- Jefferson Luiz da Silva
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, s/n, Ribeirão Preto 14040-903, SP, Brazil
| | - Lia Vezenfard Barbosa
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, s/n, Ribeirão Preto 14040-903, SP, Brazil
| | - Camila Figueiredo Pinzan
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, s/n, Ribeirão Preto 14040-903, SP, Brazil
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14040-903, SP, Brazil
| | - Viviani Nardini
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, s/n, Ribeirão Preto 14040-903, SP, Brazil
| | - Irislene Simões Brigo
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, s/n, Ribeirão Preto 14040-903, SP, Brazil
| | - Cássia Aparecida Sebastião
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, s/n, Ribeirão Preto 14040-903, SP, Brazil
| | - Jefferson Elias-Oliveira
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14040-903, SP, Brazil
| | - Vânia Brazão
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, s/n, Ribeirão Preto 14040-903, SP, Brazil
| | - José Clóvis do Prado Júnior
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, s/n, Ribeirão Preto 14040-903, SP, Brazil
| | - Daniela Carlos
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14040-903, SP, Brazil
| | - Cristina Ribeiro de Barros Cardoso
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, s/n, Ribeirão Preto 14040-903, SP, Brazil
- Correspondence: ; Tel.:+55-(16)-3315-0257; Fax: +55-(16)-3315-4725
| |
Collapse
|
29
|
Liu Y, Wang D, Li T, Xu L, Li Z, Bai X, Tang M, Wang Y. Melatonin: A potential adjuvant therapy for septic myopathy. Biomed Pharmacother 2023; 158:114209. [PMID: 36916434 DOI: 10.1016/j.biopha.2022.114209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/24/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023] Open
Abstract
Septic myopathy, also known as ICU acquired weakness (ICU-AW), is a characteristic clinical symptom of patients with sepsis, mainly manifested as skeletal muscle weakness and muscular atrophy, which affects the respiratory and motor systems of patients, reduces the quality of life, and even threatens the survival of patients. Melatonin is one of the hormones secreted by the pineal gland. Previous studies have found that melatonin has anti-inflammatory, free radical scavenging, antioxidant stress, autophagic lysosome regulation, mitochondrial protection, and other multiple biological functions and plays a protective role in sepsis-related multiple organ dysfunction. Given the results of previous studies, we believe that melatonin may play an excellent regulatory role in the repair and regeneration of skeletal muscle atrophy in septic myopathy. Melatonin, as an over-the-counter drug, has the potential to be an early, complementary treatment for clinical trials. Based on previous research results, this article aims to critically discuss and review the effects of melatonin on sepsis and skeletal muscle depletion.
Collapse
Affiliation(s)
- Yukun Liu
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Dongfang Wang
- Trauma Center/Department of Emergency and Traumatic Surgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Tianyu Li
- Trauma Center/Department of Emergency and Traumatic Surgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Ligang Xu
- Trauma Center/Department of Emergency and Traumatic Surgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Zhanfei Li
- Trauma Center/Department of Emergency and Traumatic Surgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Xiangjun Bai
- Trauma Center/Department of Emergency and Traumatic Surgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Manli Tang
- Trauma Center/Department of Emergency and Traumatic Surgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China.
| | - Yuchang Wang
- Trauma Center/Department of Emergency and Traumatic Surgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China.
| |
Collapse
|
30
|
Grao-Cruces E, Calvo JR, Maldonado-Aibar MD, Millan-Linares MDC, Montserrat-de la Paz S. Mediterranean Diet and Melatonin: A Systematic Review. Antioxidants (Basel) 2023; 12:264. [PMID: 36829823 PMCID: PMC9951922 DOI: 10.3390/antiox12020264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
The Mediterranean diet (MD) has beneficial effects on human health, which is evidenced by the observation of lower incidence rates of chronic diseases in Mediterranean countries. The MD dietary pattern is rich in antioxidants, such as melatonin, which is a hormone produced mainly by the pineal gland and controls several circadian rhythms. Additionally, melatonin is found in foods, such as fruit and vegetables. The purpose of this systematic review was to assess the melatonin content in Mediterranean foods and to evaluate the influence of the MD on melatonin levels in both humans and model organisms. A comprehensive search was conducted in four databases (PubMed, Scopus, Cochrane Library and Web of Science) and data were extracted. A total of 31 records were chosen. MD-related foods, such as tomatoes, olive oil, red wine, beer, nuts, and vegetables, showed high melatonin contents. The consumption of specific MD foods increases melatonin levels and improves the antioxidant status in plasma.
Collapse
Affiliation(s)
| | | | | | | | - Sergio Montserrat-de la Paz
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, University of Seville, Avenida Sanchez Pizjuan s/n, 41009 Seville, Spain
| |
Collapse
|
31
|
Cruz-Chamorro I, Santos-Sánchez G, Álvarez-Sánchez N, Martín-Prada L, Cerrillo I, Ortega MÁ, Escudero-López B, Martín F, Isabel Álvarez-Ríos A, Carrillo-Vico A, Fernández-Pachón MS. Alcoholic fermentation with Pichia kluyveri could improve the melatonin bioavailability of orange juice. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
32
|
Xie S, Zhang R, Li Z, Liu C, Xiang W, Lu Q, Chen Y, Yu Q. Indispensable role of melatonin, a scavenger of reactive oxygen species (ROS), in the protective effect of Akkermansia muciniphila in cadmium-induced intestinal mucosal damage. Free Radic Biol Med 2022; 193:447-458. [PMID: 36328351 DOI: 10.1016/j.freeradbiomed.2022.10.316] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 10/15/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022]
Abstract
The gastrointestinal tract is the main target of cadmium toxicity. However, whether Akkermansia muciniphila (A. muciniphila), which has been reported to be the next generation of promising probiotics, can alleviate cadmium-induced intestinal damage has not been investigated. In this study, we found that compared to the cadmium exposure group, mice gavaged with A. muciniphila showed less severe intestinal mucosal damage, with improved bodyweight, colon length, a decline in inflammation, and significantly increased glutathione and goblet cell numbers. Meanwhile, melatonin was interestingly found to be strikingly increased after A. muciniphila treatment. We then demonstrated that melatonin also could ameliorate the intestinal mucosal damage caused by cadmium through scavenging reactive oxygen species (ROS) and increasing the number of goblet cells. Furthermore, mice treated with inhibitors had a low level of melatonin and could not reproduce the beneficial effects of the A. muciniphila. Our results implied that the regulation of melatonin production by A. muciniphila is associated with an increase in enterochromaffin cells number, which determine melatonin secretion. This study indicated that the A. muciniphila-melatonin axis reduces cadmium-induced damage by increasing the goblet cells and scavenging the ROS, which may guide the prevention of the toxic effects of heavy metals.
Collapse
Affiliation(s)
- Shuang Xie
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Weigang 1, Nanjing, Jiangsu, 210095, PR China
| | - Rui Zhang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Weigang 1, Nanjing, Jiangsu, 210095, PR China
| | - Zhaoyan Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Weigang 1, Nanjing, Jiangsu, 210095, PR China
| | - Chunru Liu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Weigang 1, Nanjing, Jiangsu, 210095, PR China
| | - Weiwei Xiang
- Laboratory of Microbiology, Immunology and Metabolism, Diprobio (Shanghai) Co, Limited, Shanghai, 200335, PR China
| | - Qianqian Lu
- Laboratory of Microbiology, Immunology and Metabolism, Diprobio (Shanghai) Co, Limited, Shanghai, 200335, PR China
| | - Yanyu Chen
- Laboratory of Microbiology, Immunology and Metabolism, Diprobio (Shanghai) Co, Limited, Shanghai, 200335, PR China
| | - Qinghua Yu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Weigang 1, Nanjing, Jiangsu, 210095, PR China; Laboratory of Microbiology, Immunology and Metabolism, Diprobio (Shanghai) Co, Limited, Shanghai, 200335, PR China.
| |
Collapse
|
33
|
Iesanu MI, Zahiu CDM, Dogaru IA, Chitimus DM, Pircalabioru GG, Voiculescu SE, Isac S, Galos F, Pavel B, O’Mahony SM, Zagrean AM. Melatonin-Microbiome Two-Sided Interaction in Dysbiosis-Associated Conditions. Antioxidants (Basel) 2022; 11:2244. [PMID: 36421432 PMCID: PMC9686962 DOI: 10.3390/antiox11112244] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/07/2022] [Accepted: 11/09/2022] [Indexed: 08/27/2023] Open
Abstract
Melatonin is a pineal indolamine, allegedly known as a circadian rhythm regulator, and an antioxidative and immunomodulatory molecule. In both experimental and clinical trials, melatonin has been shown to have positive effects in various pathologies, as a modulator of important biochemical pathways including inflammation, oxidative stress, cell injury, apoptosis, and energy metabolism. The gut represents one of melatonin's most abundant extra pineal sources, with a 400-times-higher concentration than the pineal gland. The importance of the gut microbial community-namely, the gut microbiota, in multiple critical functions of the organism- has been extensively studied throughout time, and its imbalance has been associated with a variety of human pathologies. Recent studies highlight a possible gut microbiota-modulating role of melatonin, with possible implications for the treatment of these pathologies. Consequently, melatonin might prove to be a valuable and versatile therapeutic agent, as it is well known to elicit positive functions on the microbiota in many dysbiosis-associated conditions, such as inflammatory bowel disease, chronodisruption-induced dysbiosis, obesity, and neuropsychiatric disorders. This review intends to lay the basis for a deeper comprehension of melatonin, gut microbiota, and host-health subtle interactions.
Collapse
Affiliation(s)
- Mara Ioana Iesanu
- Department of Functional Sciences, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Department of Pediatrics, Marie Curie Emergency Children’s Hospital, 041451 Bucharest, Romania
| | - Carmen Denise Mihaela Zahiu
- Department of Functional Sciences, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Ioana-Alexandra Dogaru
- Department of Functional Sciences, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Diana Maria Chitimus
- Department of Functional Sciences, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Gratiela Gradisteanu Pircalabioru
- Section Earth, Environmental and Life Sciences, Research Institute of the University of Bucharest, 050663 Bucharest, Romania
- Academy of Romanian Scientists, 54 Splaiul Independentei Street, District 5, 050094 Bucharest, Romania
| | - Suzana Elena Voiculescu
- Department of Functional Sciences, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Sebastian Isac
- Department of Functional Sciences, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Department of Anesthesiology and Intensive Care I, ‘Fundeni’ Clinical Institute, 022328 Bucharest, Romania
| | - Felicia Galos
- Department of Pediatrics, Marie Curie Emergency Children’s Hospital, 041451 Bucharest, Romania
- Department of Pediatrics, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Bogdan Pavel
- Department of Functional Sciences, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Siobhain M. O’Mahony
- Department of Anatomy and Neuroscience, University College Cork, T12 XF62 Cork, Ireland
- APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland
| | - Ana-Maria Zagrean
- Department of Functional Sciences, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
| |
Collapse
|
34
|
Sutton SS, Magagnoli J, Cummings TH, Hardin JW. Melatonin as an Antimicrobial Adjuvant and Anti-Inflammatory for the Management of Recurrent Clostridioides difficile Infection. Antibiotics (Basel) 2022; 11:1472. [PMID: 36358127 PMCID: PMC9687053 DOI: 10.3390/antibiotics11111472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 09/06/2024] Open
Abstract
Background:Clostridioides difficile (C. difficile) infection (CDI) is strongly associated with inflammation and has the potential to cause recurrent infections. Pre-clinical data suggest that melatonin has beneficial effects in the gastrointestinal tract due to its anti-inflammatory and antibacterial properties. This analysis examines the association between melatonin and the risk of recurrent CDI. Methods: A retrospective cohort study was conducted among patients with an inpatient diagnosis of CDI along with a positive C. difficile polymerase chain reaction (PCR) or enzyme immunoassay (EIA) test result. Patients were followed until the first study end point (death) or the first instance of recurrent infection. Propensity-score weighting was utilized accounting for confounding factors and weighted Cox models were estimated. Results: A total of 24,782 patients met the inclusion criteria, consisting of 3457 patients exposed to melatonin and 21,325 patients with no melatonin exposure. The results demonstrate that those exposed to melatonin were associated with a 21.6% lower risk of recurrent CDI compared to patients without melatonin exposure (HR = 0.784; 95% CI = 0.674-0.912). Conclusion: Our results demonstrate a decreased rate of recurrent CDI in patients exposed to melatonin. Further research on melatonin as an antimicrobial adjuvant and anti-inflammatory is warranted for the management of recurrent CDI.
Collapse
Affiliation(s)
- S. Scott Sutton
- Dorn Research Institute, Columbia Veterans Affairs Health Care System, Columbia, SC 29209, USA
- Department of Clinical Pharmacy and Outcomes Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| | - Joseph Magagnoli
- Dorn Research Institute, Columbia Veterans Affairs Health Care System, Columbia, SC 29209, USA
- Department of Clinical Pharmacy and Outcomes Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| | - Tammy H. Cummings
- Dorn Research Institute, Columbia Veterans Affairs Health Care System, Columbia, SC 29209, USA
- Department of Clinical Pharmacy and Outcomes Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| | - James W. Hardin
- Dorn Research Institute, Columbia Veterans Affairs Health Care System, Columbia, SC 29209, USA
- Department of Epidemiology & Biostatistics, University of South Carolina, Columbia, SC 29208, USA
| |
Collapse
|
35
|
Minich DM, Henning M, Darley C, Fahoum M, Schuler CB, Frame J. Is Melatonin the "Next Vitamin D"?: A Review of Emerging Science, Clinical Uses, Safety, and Dietary Supplements. Nutrients 2022; 14:3934. [PMID: 36235587 PMCID: PMC9571539 DOI: 10.3390/nu14193934] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 11/17/2022] Open
Abstract
Melatonin has become a popular dietary supplement, most known as a chronobiotic, and for establishing healthy sleep. Research over the last decade into cancer, Alzheimer's disease, multiple sclerosis, fertility, PCOS, and many other conditions, combined with the COVID-19 pandemic, has led to greater awareness of melatonin because of its ability to act as a potent antioxidant, immune-active agent, and mitochondrial regulator. There are distinct similarities between melatonin and vitamin D in the depth and breadth of their impact on health. Both act as hormones, affect multiple systems through their immune-modulating, anti-inflammatory functions, are found in the skin, and are responsive to sunlight and darkness. In fact, there may be similarities between the widespread concern about vitamin D deficiency as a "sunlight deficiency" and reduced melatonin secretion as a result of "darkness deficiency" from overexposure to artificial blue light. The trend toward greater use of melatonin supplements has resulted in concern about its safety, especially higher doses, long-term use, and application in certain populations (e.g., children). This review aims to evaluate the recent data on melatonin's mechanisms, its clinical uses beyond sleep, safety concerns, and a thorough summary of therapeutic considerations concerning dietary supplementation, including the different formats available (animal, synthetic, and phytomelatonin), dosing, timing, contraindications, and nutrient combinations.
Collapse
Affiliation(s)
- Deanna M. Minich
- Department of Human Nutrition and Functional Medicine, University of Western States, Portland, OR 97213, USA
| | - Melanie Henning
- Department of Sports and Performance Psychology, University of the Rockies, Denver, CO 80202, USA
| | - Catherine Darley
- College of Naturopathic Medicine, National University of Natural Medicine, Portland, OR 97201, USA
| | - Mona Fahoum
- School of Naturopathic Medicine, Bastyr University, Kenmore, WA 98028, USA
| | - Corey B. Schuler
- School of Nutrition, Sonoran University of Health Sciences, Tempe, AZ 85282, USA
- Department of Online Education, Northeast College of Health Sciences, Seneca Falls, NY 13148, USA
| | - James Frame
- Natural Health International Pty., Ltd., Sydney, NSW 2000, Australia
- Symphony Natural Health, Inc., West Valley City, UT 84119, USA
| |
Collapse
|
36
|
The Pathogenetic Role of Melatonin in Migraine and Its Theoretic Implications for Pharmacotherapy: A Brief Overview of the Research. Nutrients 2022; 14:nu14163335. [PMID: 36014841 PMCID: PMC9415653 DOI: 10.3390/nu14163335] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/10/2022] [Accepted: 08/12/2022] [Indexed: 11/24/2022] Open
Abstract
Migraine is a chronic disease of global concern, regardless of socio-economic and cultural background. It most often and intensely affects young adults, especially women. Numerous mechanisms of a migraine attack have been identified (disturbances in the reaction of vessels, functions of neurotransmitters, cortical neurons, ion channels, receptors, the process of neurogenic inflammation), and many of its symptoms can be explained by activation of the hypothalamus and disturbances in its communication with other brain regions (including the brainstem). Numerous neuropeptides and neurochemical systems also play a role in migraine. One of them is melatonin, a hormone that allows the body to adapt to cyclically changing environmental and food conditions. In this article, we present the pathophysiological basis of melatonin release from the pineal gland and other tissues (including the intestines) under the influence of various stimuli (including light and food), and its role in stimulating the brain structures responsible for triggering a migraine attack. We analyze publications concerning research on the role of melatonin in various headaches, in various stages of migraine, and in various phases of the menstrual cycle in women with migraine, and its impact on the occurrence and severity of migraine attacks. Melatonin as an internally secreted substance, but also present naturally in many foods. It is possible to supplement melatonin in the form of pharmaceutical preparations, and it seems, to be a good complementary therapy (due to the lack of significant side effects and pharmacological interactions) in the treatment of migraine, especially: in women of childbearing age, in people taking multiple medications for other diseases, as well as those sensitive to pharmacotherapy.
Collapse
|
37
|
Hamilton AM, Sampson TR. Traumatic spinal cord injury and the contributions of the post-injury microbiome. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2022; 167:251-290. [PMID: 36427958 DOI: 10.1016/bs.irn.2022.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Spinal cord injuries are an enormous burden on injured individuals and their caregivers. The pathophysiological effects of injury are not limited to the spine and limb function, but affect numerous body systems. Growing observations in human studies and experimental models suggest that the gut microbiome is altered following spinal cord injury. Given the importance of signals derived from the gut microbiome for host physiology, it is possible that injury-triggered dysbiosis subsequently affects aspects of recovery. Here, we review emerging literature on the role of the microbiome following spinal cord injury. Specifically, we highlight findings from both human and experimental studies that correlate taxonomic changes to aspects of injury recovery. Examination of both observational and emerging interventional studies supports the notion that future therapeutic avenues for spinal cord injury pathologies may lie at the interface of the host and indigenous microbes.
Collapse
Affiliation(s)
- Adam M Hamilton
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States
| | - Timothy R Sampson
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States.
| |
Collapse
|
38
|
Lassmann Ł, Pollis M, Żółtowska A, Manfredini D. Gut Bless Your Pain—Roles of the Gut Microbiota, Sleep, and Melatonin in Chronic Orofacial Pain and Depression. Biomedicines 2022; 10:biomedicines10071528. [PMID: 35884835 PMCID: PMC9313154 DOI: 10.3390/biomedicines10071528] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 11/18/2022] Open
Abstract
Background. Increased attention has been paid to the gut–brain axis recently, but little is known so far regarding how this translates into pain susceptibility. Aim. The aim of this review is to determine whether gastroenterological disorders and sleep disorders (directly or indirectly) contribute to an increased susceptibility to depression and chronic orofacial pain. Method. A search was performed in the U.S. National Library of Medicine (PubMed) database in order to find studies published before 19 December 2021. We used the following terms: gut microbiome, OR sleep quality, OR melatonin, OR GERD, OR IBS, AND: depression OR chronic pain, in different configurations. Only papers in English were selected. Given the large number of papers retrieved in the search, their findings were described and organized narratively. Results. A link exists between sleep disorders and gastroenterological disorders, which, by adversely affecting the psyche and increasing inflammation, disturb the metabolism of tryptophan and cause excessive microglial activation, leading to increased susceptibility to pain sensation and depression. Conclusions. Pain therapists should pay close attention to sleep and gastrointestinal disorders in patients with chronic pain and depression.
Collapse
Affiliation(s)
- Łukasz Lassmann
- Dental Sense Medicover, 80-283 Gdańsk, Poland
- Correspondence:
| | - Matteo Pollis
- Department of Medical Biotechnology, School of Dentistry, University of Siena, 53100 Siena, Italy; (M.P.); (D.M.)
| | - Agata Żółtowska
- Department of Conservative Dentistry, Faculty of Medicine, Medical University of Gdańsk, 80-210 Gdańsk, Poland;
| | - Daniele Manfredini
- Department of Medical Biotechnology, School of Dentistry, University of Siena, 53100 Siena, Italy; (M.P.); (D.M.)
| |
Collapse
|
39
|
Tripathi AM, Khan S, Chaudhury NK. Radiomitigation by Melatonin in C57BL/6 Mice: Possible Implications as Adjuvant in Radiotherapy and Chemotherapy. In Vivo 2022; 36:1203-1221. [PMID: 35478105 DOI: 10.21873/invivo.12820] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/28/2022] [Accepted: 03/03/2022] [Indexed: 12/11/2022]
Abstract
BACKGROUND/AIM Melatonin (N-acetyl-5-methoxytryptamine), a chief secretory molecule of the pineal gland, has multiple properties, and numerous clinical investigations regarding its actions are in progress. This study investigated the radiomitigative role of melatonin in C57BL/6 mice. MATERIALS AND METHODS Melatonin (100 mg/kg) was orally administered once daily starting at 1 h on day 1 and subsequently every 24 h until day 7 after whole-body irradiation (WBI) and survival was monitored for 30 days. The bone marrow, spleen, and intestine were studied to evaluate the mitigative potential of melatonin after radiation-induced damage. RESULTS Melatonin significantly improved the survival upto 60% and 90% after 9 Gy (lethal) and 7.5 Gy (sub-lethal) WBI, respectively. Melatonin alleviated WBI-induced myelosuppression and pancytopenia, and increased white blood cell, red blood cell, platelet, and lymphocyte (CD4+ and CD8+) counts in peripheral blood. Bone marrow and spleen cellularity were restored through enhanced haematopoiesis. Melatonin ameliorated the damage in the small intestine, and promoted recovery of villi length, crypts number, and goblet cell count. CONCLUSION Melatonin mitigates the radiation-induced injury in the gastrointestinal and haematopoietic systems. The observed radiomitigative properties of melatonin can also be useful in the context of adjuvant therapy for cancer and radiotherapy.
Collapse
Affiliation(s)
- Akanchha Mani Tripathi
- Division of Radiation Biodosimetry, Institute of Nuclear Medicine and Allied Science, Defence Research & Development Organization, Delhi, India
| | - Shahanshah Khan
- Division of Radiation Biodosimetry, Institute of Nuclear Medicine and Allied Science, Defence Research & Development Organization, Delhi, India
| | - Nabo Kumar Chaudhury
- Division of Radiation Biodosimetry, Institute of Nuclear Medicine and Allied Science, Defence Research & Development Organization, Delhi, India
| |
Collapse
|
40
|
Akhzari M, Barazesh M, Jalili S. Melatonin as an antioxidant agent in disease prevention: A biochemical focus. LETT ORG CHEM 2022. [DOI: 10.2174/1570178619666220325124451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
Abstract
Abstract:
In the recent years, free radicals and oxidative stress have been found to be associated with aging, cancer, atherosclerosis, neurodegenerative disorders, diabetes, and inflammatory diseases. Confirming the role of oxidants in numerous pathological situations including cancer, developing antioxidants as therapeutic platforms is needed. It has been well established that melatonin and its derived metabolites function as endogenous free-radical scavengers and broad spectrum antioxidants. To achieve this function, melatonin can directly detoxify reactive oxygen and reactive nitrogen species and indirectly overexpress antioxidant enzymes while suppressing the activity of pro-oxidant enzymes. Many investigations have also confirmed the role of melatonin and its derivatives in different physiological processes and therapeutic functions such as controlling the circadian rhythm and immune functions. This review aimed to focus on melatonin as a beneficial agent for the stimulation of antioxidant enzymes and inhibition of lipid peroxidation and to evaluate its contribution to protection against oxidative damages. In addition, the clinical application of melatonin in several diseases is discussed. Finally, the safety and efficacy of melatonin in clinical backgrounds is also reviewed.
Collapse
Affiliation(s)
- Morteza Akhzari
- School of Paramedical, Gerash University of Medical Sciences, Gerash, Iran
| | - Mahdi Barazesh
- School of Paramedical, Gerash University of Medical Sciences, Gerash, Iran
| | - Sajad Jalili
- Department of Orthopedics, Faculty of Medicine, Ahvaz, Jundishapour University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
41
|
The Role of Aeromonas-Goblet Cell Interactions in Melatonin-Mediated Improvements in Sleep Deprivation-Induced Colitis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8133310. [PMID: 35355860 PMCID: PMC8958064 DOI: 10.1155/2022/8133310] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 01/26/2022] [Accepted: 02/17/2022] [Indexed: 11/18/2022]
Abstract
Background. Our previous studies demonstrated that melatonin could effectively ameliorate sleep deprivation- (SD-) caused oxidative stress-mediated gut microbiota disorder and colitis. The research further clarified the mechanism of melatonin in improving colitis from the perspective of the interaction between Aeromonas and goblet cells. Methods. A seventy-two hours SD mouse model with or without melatonin intervention and fecal microbiota transplantation (FMT) to explore the vital position of Aeromonas-goblet cell interactions in melatonin improving SD-induced colitis. Moreover, Aeromonas or LPS-supplied mice were assessed, and the influence of melatonin on Aeromonas-goblet cell interactions-mediated oxidative stress caused colitis. Furthermore, in vitro experiment investigated the regulation mechanism of melatonin.Results. Our study showed that SD induced colitis, with upregulation of Aeromonas and LPS levels and reductions in goblet cells number and MUC2 protein. Similarly, FMT from SD mice, Aeromonas veronii colonization, and LPS treatment restored the SD-like goblet cells number and MUC2 protein decrease and colitis. Moreover, LPS treatment downregulated the colonic antioxidant capacity. Yet, melatonin intervention reversed all consequence in SD, A.veronii colonization, and LPS-treated mice. In vitro, melatonin reversed A. veronii- or LPS-induced MUC2 depletion in mucus-secreting human HT-29 cells via increasing the expression level of Villin, Tff3, p-GSK-3β, β-catenin, and melatonin receptor 2 (MT2) and decreasing the level of p-IκB, p-P65, ROS, TLR4, and MyD88 proteins, while the improvement effect was blocked with pretreatment with a MT2 antagonist but were mimicked by TLR4 and GSK-3β antagonists and ROS scavengers. Conclusions. Our results demonstrated that melatonin-mediated MT2 inhibits Aeromonas-goblet cell interactions to restore the level of MUC2 production via LPS/TLR4/MyD88/GSK-3β/ROS/NF-κB loop, further improving colitis in SD mice.
Collapse
|
42
|
Cui YM, Wang J, Zhang HJ, Qi GH, Qiao HZ, Gan LP, Wu SG. Effect of Changes in Photoperiods on Melatonin Expression and Gut Health Parameters in Laying Ducks. Front Microbiol 2022; 13:819427. [PMID: 35359713 PMCID: PMC8961281 DOI: 10.3389/fmicb.2022.819427] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 01/28/2022] [Indexed: 12/03/2022] Open
Abstract
We investigated the effect of photoperiod on ileal morphology, barrier function, short-chain fatty acid (SCFA) contents, microbial flora, melatonin expression, and synthesis in laying ducks. After adaption, a total of 180 Jinding laying ducks (252 days old) were randomly divided into three treatments, receiving 12L (hours of light):12D (hours of darkness), 16L:8D, or 20L:4D. Each treatment had six replicates with 10 birds each. The formal experiment lasted 58 days. Compared with 12L:12D, the significantly higher values of villus height and goblet cell percentage (GCP) were observed in 16L:8D treatment, accompanied with the higher mRNA relative expression of zonula occludens-1, zonula occludens-2, zonula occludens-3, claudin-1, occludin, and mucin 2 (P < 0.05). Besides, significantly higher values of acetate and propionate, butyrate and total SCFA concentrations were simultaneously observed in ileal chyme of 16L:8D treatment (P < 0.05). For the ileal microbial community, the results of principal coordinate analysis (PCoA) visually presented that three photoperiod groups were mainly scattered into three clusters, indicating that the microbiota composition in different photoperiod treatments were quite dissimilar. Lower values of Shannon indicators were observed in the 20L:4D treatment (P < 0.05), meaning that the microbiota α-diversity decreased in the 20-h photoperiod. The relative abundance of Actinobacteria, Fusobacteria, and Proteobacteria at phylum level and Fusobacterium, Clostridium_sensu_stricto_1, and Pectobacterium at genus level kept an appropriate balance in the 16L:8D photoperiod. Melatonin level in serum decreased with the increasing photoperiods at 6:00 and 12:00, which was consistent with melatonin receptor expressions in the hypothalamus and ileal tissue. Meanwhile, the adenosine 3′,5′-cyclic phosphate (cAMP) contents were significantly downregulated in the pineal gland (P < 0.05), in response to the increase in photoperiod. In conclusion, an appropriate photoperiod could improve ileal morphology, barrier function, SCFA profile, and microbial flora, which may be attributed to the appropriate regulation of the circadian rhythm through melatonin as well as its receptor expression, and 16 h could be an adequate photoperiod for laying ducks.
Collapse
Affiliation(s)
- Yao-ming Cui
- Laboratory of Quality and Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Biological Engineering, Henan University of Technology, Zhengzhou, China
| | - Jing Wang
- Laboratory of Quality and Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hai-jun Zhang
- Laboratory of Quality and Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Guang-hai Qi
- Laboratory of Quality and Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Han-zhen Qiao
- College of Biological Engineering, Henan University of Technology, Zhengzhou, China
| | - Li-ping Gan
- College of Biological Engineering, Henan University of Technology, Zhengzhou, China
| | - Shu-geng Wu
- Laboratory of Quality and Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Shu-geng Wu,
| |
Collapse
|
43
|
Fabrication and characterization of pore-selective silver-functionalized honeycomb-patterned porous film and its application for antibacterial activity. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124646] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
44
|
Yapislar H, Haciosmanoglu E, Sarioglu T, Ekmekcioglu C. The melatonin MT 2 receptor is involved in the anti-apoptotic effects of melatonin in rats with type 2 diabetes mellitus. Tissue Cell 2022; 76:101763. [PMID: 35247789 DOI: 10.1016/j.tice.2022.101763] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 02/10/2022] [Accepted: 02/18/2022] [Indexed: 01/14/2023]
Abstract
Type 2 diabetes mellitus (T2DM) is a widely prevalent chronic disease and risk factor for several other diseases, such as cardiovascular diseases, neuropathy, nephropathy, and retinopathy. Apoptosis is a homeostatic mechanism to maintain cell numbers at a certain level in tissues. Chronic high blood glucose levels might lead to mitochondrial dysfunction and trigger undesirable apoptosis in T2DM. The pineal hormone melatonin has been shown to regulate apoptosis. The aim of this study was to investigate the impact of the melatonin MT2 receptor in the role of melatonin to prevent undesirable apotosis in different tissues of diabetic rats. Male Sprague Dawley rats were randomly divided into 4 groups; 1. Control group (only vehicle), 2. Diabetic group (streptozotozin/nicotinamide treated), 3. Diabetic group treated with melatonin (500μg/kg/day), and 4. Diabetic group treated with melatonin (500 μg/kg/day for 6 weeks) and the selective MT2 receptor antagonist luzindole (0.25 g/kg/day for 6 weeks). Various tissue samples (kidney, liver, adipose tissue, pancreas) were removed after 6 weeks for immunohistochemistry and western blot analysis. Our results demonstrated an increased rate of apoptosis in different tissues of diabetic rats compared to controls with melatonin reducing the apoptotic rate in the tissues of rats with T2DM. Furthermore, the anti-apoptotic effects of melatonin were partly mediated by the melatonin MT2 receptor.
Collapse
Affiliation(s)
- Hande Yapislar
- Acibadem University, School of Medicine, Department of Physiology, 34684, Istanbul, Turkey.
| | - Ebru Haciosmanoglu
- Faculty of Medicine, Department of Biophysics, Bezmialem Vakif University, Istanbul, Turkey
| | - Turkan Sarioglu
- Department of Histology and Embryology, Fundamental Sciences, Faculty of Dentistry, Istanbul Kent University Istanbul, Turkey
| | - Cem Ekmekcioglu
- Department of Environmental Health, Center for Public Health, Medical University of Vienna, 1090, Vienna, Austria
| |
Collapse
|
45
|
Kvetnoy I, Ivanov D, Mironova E, Evsyukova I, Nasyrov R, Kvetnaia T, Polyakova V. Melatonin as the Cornerstone of Neuroimmunoendocrinology. Int J Mol Sci 2022; 23:ijms23031835. [PMID: 35163757 PMCID: PMC8836571 DOI: 10.3390/ijms23031835] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/03/2022] [Accepted: 02/04/2022] [Indexed: 11/23/2022] Open
Abstract
Much attention has been recently drawn to studying melatonin – a hormone whose synthesis was first found in the epiphysis (pineal gland). This interest can be due to discovering the role of melatonin in numerous physiological processes. It was the discovery of melatonin synthesis in endocrine organs (pineal gland), neural structures (Purkinje cells in the cerebellum, retinal photoreceptors), and immunocompetent cells (T lymphocytes, NK cells, mast cells) that triggered the evolution of new approaches to the unifield signal regulation of homeostasis, which, at the turn of the 21st century, lead to the creation of a new integral biomedical discipline — neuroimmunoendocrinology. While numerous hormones have been verified over the last decade outside the “classical” locations of their formation, melatonin occupies an exclusive position with regard to the diversity of locations where it is synthesized and secreted. This review provides an overview and discussion of the major data regarding the role of melatonin in various physiological and pathological processes, which affords grounds for considering melatonin as the “cornerstone” on which neuroimmunoendocrinology has been built as an integral concept of homeostasis regulation.
Collapse
Affiliation(s)
- Igor Kvetnoy
- Center of Molecular Biomedicine, Saint-Petersburg Research Institute of Phthisiopulmonology, 191036 Saint-Petersburg, Russia;
- Department of Physiology and Department of Pathology, Saint-Petersburg State University, 199034 Saint-Petersburg, Russia
| | - Dmitry Ivanov
- Department of Pathology, Saint-Petersburg State Pediatric Medical University, 194100 Saint-Petersburg, Russia; (D.I.); (R.N.); (V.P.)
| | - Ekaterina Mironova
- Center of Molecular Biomedicine, Saint-Petersburg Research Institute of Phthisiopulmonology, 191036 Saint-Petersburg, Russia;
- Department of Biogerontology, Saint Petersburg Institute of Bioregulation and Gerontology, 197110 Saint-Petersburg, Russia;
- Correspondence:
| | - Inna Evsyukova
- Department of Perinatal Pathology, Ott Research Institute of Obstetrics, Gynecology and Reproductology, 199034 Saint-Petersburg, Russia;
| | - Ruslan Nasyrov
- Department of Pathology, Saint-Petersburg State Pediatric Medical University, 194100 Saint-Petersburg, Russia; (D.I.); (R.N.); (V.P.)
| | - Tatiana Kvetnaia
- Department of Biogerontology, Saint Petersburg Institute of Bioregulation and Gerontology, 197110 Saint-Petersburg, Russia;
| | - Victoria Polyakova
- Department of Pathology, Saint-Petersburg State Pediatric Medical University, 194100 Saint-Petersburg, Russia; (D.I.); (R.N.); (V.P.)
| |
Collapse
|
46
|
Bagci S, Katzer D, Altuntas Ö, Alsat EA, Berg C, Rebeggiani L, Bartmann P, Müller A. The fetal gastrointestinal tract is exposed to melatonin and superoxide dismutase rich amniotic fluid throughout prenatal development. J Clin Biochem Nutr 2022; 71:64-68. [PMID: 35903605 PMCID: PMC9309090 DOI: 10.3164/jcbn.21-130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 11/10/2021] [Indexed: 11/22/2022] Open
Abstract
Amniotic fluid (AF) is the first fluid to enter the gastrointestinal tract. Preterm birth is leading to a sudden interruption of AF swallowing. Understanding the composition of amniotic fluid is crucial to implement strategies preventing intestinal injury in preterm infants. We hypothesized that the fetal gastrointestinal tract (GIT) is exposed to melatonin and antioxidant enzymes via amniotic fluid throughout prenatal development. Amniotic fluid samples from 76 pregnant women with a median (range) gestational age of 38.0 (14.3–40.1) weeks have been collected. Immediately after birth blood samples were collected from the umbilical vein (n = 53). Median (Interquartile range) melatonin concentration was 30.5 pg/ml (12.7–118.3) and superoxide dismutase 1 (SOD1) concentration was 84 ng/ml (59–123). Extracellular glutathione peroxidase concentration was either not detectable or exceptionally low. We found a positive correlation between melatonin concentration in amniotic fluid and gestational age (Spearman’s correlation coefficient, r = 0.570, p<0.001), while SOD1 concentration in amniotic fluid was inversely correlated with gestational age (r = −0.246, p = 0.032). Compared to serum samples, melatonin concentration was statistically significantly higher in amniotic fluid (p<0.001). Our results indicate that the fetal gastrointestinal system is continuously exposed to melatonin and SOD1 via the amniotic fluid throughout prenatal development.
Collapse
Affiliation(s)
- Soyhan Bagci
- Neonatology and Pediatric Intensive Care, Children’s Hospital, University of Bonn, Venusberg-Campus-1
| | - David Katzer
- Department of Pediatric Gastroenterology, Children’s Hospital, University of Bonn, Venusberg-Campus-1
| | - Özlem Altuntas
- Neonatology and Pediatric Intensive Care, Children’s Hospital, University of Bonn, Venusberg-Campus-1
| | - Ebru A. Alsat
- Neonatology and Pediatric Intensive Care, Children’s Hospital, University of Bonn, Venusberg-Campus-1
| | - Christoph Berg
- Department of Obstetrics and Prenatal Medicine, University of Bonn, Venusberg-Campus-1
| | | | - Peter Bartmann
- Neonatology and Pediatric Intensive Care, Children’s Hospital, University of Bonn, Venusberg-Campus-1
| | - Andreas Müller
- Neonatology and Pediatric Intensive Care, Children’s Hospital, University of Bonn, Venusberg-Campus-1
| |
Collapse
|
47
|
Ribeiro AEAS, Ferreira EF, Leal JDS, Barberino RDS, Oliveira HPD, Palheta Junior RC. Involvement of MT2 receptors in protective effects of melatonin against cisplatin-induced gastrointestinal damage in mice. BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-97902022e20476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
|
48
|
Bendarska-Czerwińska A, Zmarzły N, Morawiec E, Panfil A, Bryś K, Czarniecka J, Ostenda A, Dziobek K, Sagan D, Boroń D, Michalski P, Pallazo-Michalska V, Grabarek BO. Endocrine disorders and fertility and pregnancy: An update. Front Endocrinol (Lausanne) 2022; 13:970439. [PMID: 36733805 PMCID: PMC9887196 DOI: 10.3389/fendo.2022.970439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 12/28/2022] [Indexed: 01/18/2023] Open
Abstract
It is estimated that more and more couples suffer from fertility and pregnancy maintenance disorders. It is associated with impaired androgen secretion, which is influenced by many factors, ranging from genetic to environmental. It is also important to remember that fertility disorders can also result from abnormal anatomy of the reproductive male and female organ (congenital uterine anomalies - septate, unicornuate, bicornuate uterus; acquired defects of the uterus structure - fibroids, polyps, hypertrophy), disturbed hormonal cycle and obstruction of the fallopian tubes resulting from the presence of adhesions due to inflammation, endometriosis, and surgery, abnormal rhythm of menstrual bleeding, the abnormal concentration of hormones. There are many relationships between the endocrine organs, leading to a chain reaction when one of them fails to function properly. Conditions in which the immune system is involved, including infections and autoimmune diseases, also affect fertility. The form of treatment depends on infertility duration and the patient's age. It includes ovulation stimulation with clomiphene citrate or gonadotropins, metformin use, and weight loss interventions. Since so many different factors affect fertility, it is important to correctly diagnose what is causing the problem and to modify the treatment regimen if necessary. This review describes disturbances in the hormone secretion of individual endocrine organs in the context of fertility and the maintenance of pregnancy.
Collapse
Affiliation(s)
- Anna Bendarska-Czerwińska
- Department of Molecular, Biology Gyncentrum Fertility Clinic, Katowice, Poland
- Faculty of Medicine, Academy of Silesia, Zabrze, Poland
- American Medical Clinic, Katowice, Poland
- *Correspondence: Anna Bendarska-Czerwińska, ; Nikola Zmarzły, ; Beniamin Oskar Grabarek,
| | - Nikola Zmarzły
- Department of Histology, Cytophysiology and Embryology, Faculty of Medicine, University of Technology, Academy of Silesia in Katowice, Zabrze, Poland
- *Correspondence: Anna Bendarska-Czerwińska, ; Nikola Zmarzły, ; Beniamin Oskar Grabarek,
| | - Emilia Morawiec
- Department of Molecular, Biology Gyncentrum Fertility Clinic, Katowice, Poland
- Department of Histology, Cytophysiology and Embryology, Faculty of Medicine, University of Technology, Academy of Silesia in Katowice, Zabrze, Poland
- Department of Microbiology, Faculty of Medicine, University of Technology, Academy of Silesia in Katowice, Zabrze, Poland
| | - Agata Panfil
- Department of Histology, Cytophysiology and Embryology, Faculty of Medicine, University of Technology, Academy of Silesia in Katowice, Zabrze, Poland
| | - Kamil Bryś
- Department of Histology, Cytophysiology and Embryology, Faculty of Medicine, University of Technology, Academy of Silesia in Katowice, Zabrze, Poland
| | - Justyna Czarniecka
- Department of Histology, Cytophysiology and Embryology, Faculty of Medicine, University of Technology, Academy of Silesia in Katowice, Zabrze, Poland
| | | | | | - Dorota Sagan
- Medical Center Dormed Medical SPA, Busko-Zdroj, Poland
| | - Dariusz Boroń
- Department of Histology, Cytophysiology and Embryology, Faculty of Medicine, University of Technology, Academy of Silesia in Katowice, Zabrze, Poland
- Department of Gynaecology and Obstetrics, Faculty of Medicine, Academy of Silesia, Zabrze, Poland
- Department of Gynecology and Obstetrics with Gynecologic Oncology, Ludwik Rydygier Memorial Specialized Hospital, Kraków, Poland
- Department of Gynecology and Obstetrics, TOMMED Specjalisci od Zdrowia, Katowice, Poland
| | | | | | - Beniamin Oskar Grabarek
- Department of Molecular, Biology Gyncentrum Fertility Clinic, Katowice, Poland
- Department of Histology, Cytophysiology and Embryology, Faculty of Medicine, University of Technology, Academy of Silesia in Katowice, Zabrze, Poland
- Department of Gynaecology and Obstetrics, Faculty of Medicine, Academy of Silesia, Zabrze, Poland
- Department of Gynecology and Obstetrics with Gynecologic Oncology, Ludwik Rydygier Memorial Specialized Hospital, Kraków, Poland
- Department of Gynecology and Obstetrics, TOMMED Specjalisci od Zdrowia, Katowice, Poland
- *Correspondence: Anna Bendarska-Czerwińska, ; Nikola Zmarzły, ; Beniamin Oskar Grabarek,
| |
Collapse
|
49
|
Therapeutic potential of melatonin in colorectal cancer: Focus on lipid metabolism and gut microbiota. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166281. [PMID: 34610472 DOI: 10.1016/j.bbadis.2021.166281] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 08/24/2021] [Accepted: 09/26/2021] [Indexed: 12/24/2022]
Abstract
Colorectal cancer (CRC) is one of the most common gastrointestinal malignancies. The occurrence and development of CRC are complicated processes. Obesity and dysbacteriosis have been increasingly regarded as the main risk factors for CRC. Understanding the etiology of CRC from multiple perspectives is conducive to screening for some potential drugs or new treatment strategies to limit the serious side effects of conventional treatment and prolong the survival of CRC patients. Melatonin, a natural indoleamine, is mainly produced by the pineal gland, but it is also abundant in other tissues, including the gastrointestinal tract, retina, testes, lymphocytes, and Harder's glands. Melatonin could participate in lipid metabolism by regulating adipogenesis and lipolysis. Additionally, many studies have focused on the potential beneficial effects of melatonin in CRC, such as promotion of apoptosis; inhibition of cell proliferation, migration, and invasion; antioxidant activity; and immune regulation. Meaningfully, gut microbiota is the main determinant of all aspects of health and disease (including obesity and tumorigenesis). The gut microbiota is of great significance for understanding the relationship between obesity and increased risk of CRC. Although the current understanding of how the melatonin-mediated gut microbiota coordinates a variety of physiological and pathological activities is fairly comprehensive, there are still many unknown topics to be explored in the face of a complex nutritional status and a changeable microbiota. This review summarizes the potential links among melatonin, lipid metabolism, gut microbiota, and CRC to promote the development of melatonin as a preventive and therapeutic agent for CRC.
Collapse
|
50
|
Rodrigues AC, de M. Camargo LT, Francisco Lopes Y, Sallum LO, Napolitano HB, Camargo AJ. Aqueous solvation study of melatonin using ab initio molecular dynamics. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|