1
|
Hall JC, Hall AK, Lozko Y, Hui C, Baniel CC, Jackson S, Vitzthum LK, Chang DT, Rahimy E, Pollom EL. Safety of Pelvic and Abdominal Radiation Therapy for Patients With Inflammatory Bowel Disease: A Dosimetric Analysis of Acute Bowel Toxicity. Int J Radiat Oncol Biol Phys 2025; 121:442-451. [PMID: 39270827 DOI: 10.1016/j.ijrobp.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 07/15/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024]
Abstract
PURPOSE Inflammatory bowel disease (IBD) has been considered a relative contraindication to radiation therapy (RT) because of the potential greater risk of RT-induced toxicities. This study aimed to assess acute toxicity outcomes in patients with IBD treated with abdominal/pelvic RT. METHODS AND MATERIALS After institutional review board approval, patients with IBD who received RT to the abdomen/pelvis were identified from an institutional research repository, and their electronic medical records were reviewed. The IBD cohort was matched 1:1 with controls according to all of the following: RT, gender, disease site, age, and year of RT. Acute toxicity was defined as toxicity occurring within 3 months of RT. Primary outcomes were assessed via univariable logistic regression models and the predicted probability of acute toxicity and acute gastrointestinal (GI) toxicity were plotted for the most significant covariates. IBD and control cohorts were compared on demographic and toxicity variables using χ2/Fisher exact tests and Kruskal-Wallis tests where appropriate. RESULTS We identified 62 patients with a median age of 64 years (IQR, 54-70 years) who received RT from 2006 to 2022. Patients were treated with intensity modulated RT (38; 61.3%), 3-dimensional conformal RT (12; 19.4%), and stereotactic body RT/brachytherapy (12; 19.4%). After RT, 28 (45.2%) and 23 (37.1%) patients experienced grade ≥2 acute (any) and acute GI toxicity, respectively. Higher overall RT dose and RT dose to small bowel were found to be significantly associated with increased risk of grade ≥2 acute toxicities (OR, 1.041 per unit Gy; 95% CI, 1.005-1.084; P = .034 and OR, 1.046; 95% CI, 1.018-1.082; P = .003, respectively). Between IBD and control cohorts, there were no significant differences in grade ≥2 acute (any) and acute GI toxicities (P = .710 and P = .704, respectively). CONCLUSIONS In patients with IBD treated with abdominal/pelvic RT for malignancy, RT was effective and well-tolerated. RT treatment planning should carefully consider the location(s) of IBD inflammation and dose to bowel structures, in particular, dose to the small bowel.
Collapse
Affiliation(s)
- Jennifer C Hall
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Abbie K Hall
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Yuliia Lozko
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Caressa Hui
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Claire C Baniel
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Scott Jackson
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Lucas K Vitzthum
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Daniel T Chang
- Department of Radiation Oncology, Michigan University School of Medicine, Ann Arbor, Michigan
| | - Elham Rahimy
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Erqi L Pollom
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California.
| |
Collapse
|
2
|
Acharya M, Venkidesh BS, Mumbrekar KD. Bacterial supplementation in mitigation of radiation-induced gastrointestinal damage. Life Sci 2024; 353:122921. [PMID: 39032692 DOI: 10.1016/j.lfs.2024.122921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/08/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
Pelvic irradiation, a crucial treatment for pelvic malignancies, is associated with the risk of gastrointestinal (GI) damage due to the high proliferation rate of epithelial cells. The radiosensitive gastrointestinal tract acts as a dose-limiting organ. High doses of ionizing radiation can cause inflammation and rupture of mucosal barriers and can also lead to intestinal fibrosis. Intestinal damage can cause acute to chronic complications, reducing patients' quality of life. The gut microbiota plays a vital role in maintaining gut health, and any changes in the gut microbial composition can worsen damage, emphasizing the importance of therapies that target and sustain the gut microbiota during radiotherapy. One potential strategy to prevent radiation-induced GI damage is to use bacterial supplements. Research suggests that probiotic supplementation may alleviate radiation-induced gastrointestinal damage, maintaining intestinal morphology and decreasing epithelial injury in cancer patients. The observed protective effects occur through various mechanisms, including antioxidant activities, modulation of the immune response, and preservation of gut barrier function. To optimize probiotic therapies, it is imperative to elucidate these mechanisms. The efficiency of probiotics as radioprotectors is highly dependent on the time and dose of administration, and their interaction with the host immune system is a key facet of their therapeutic potential. This review explores the potential benefits of bacterial supplementation in mitigating radiation-induced GI damage and the underlying mechanism. This highlights the need for further research to establish standardized protocols and refine probiotic supplementation strategies, underscoring the potential for enhancing therapeutic outcomes in patients undergoing pelvic radiotherapy.
Collapse
Affiliation(s)
- Meghana Acharya
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, India
| | - Babu Santhi Venkidesh
- Department of Radiation Biology & Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, India
| | - Kamalesh Dattaram Mumbrekar
- Department of Radiation Biology & Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, India.
| |
Collapse
|
3
|
Shang Y, Cui P, Chen Y, Zhang Z, Li S, Chen Z, Ma A, Jia Y. Study on the mechanism of mitigating radiation damage by improving the hematopoietic system and intestinal barrier with Tenebrio molitor peptides. Food Funct 2024; 15:8116-8127. [PMID: 39011610 DOI: 10.1039/d4fo01141d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Research on plant and animal peptides has garnered significant attention, but there is a lack of studies on the functional properties of Tenebrio molitor peptides, particularly in relation to their potential mitigating effect on radiation damage and the underlying mechanisms. This study aims to explore the protective effects of Tenebrio molitor peptides against radiation-induced damage. Mice were divided into five groups: normal, radiation model, and low-, medium-, and high-dose Tenebrio molitor peptide (TMP) groups (0.15 g per kg BW, 0.30 g per kg BW, and 0.60 g per kg BW). Various parameters such as blood cell counts, bone marrow DNA content, immune organ indices, serum levels of D-lactic acid, diamine oxidase (DAO), endotoxin (LPS), and inflammatory factors were assessed at 3 and 15 days post gamma irradiation. Additionally, the intestinal tissue morphology was examined through H&E staining, RT-qPCR experiments were conducted to analyze the expression of inflammatory factors in the intestine, and immunohistochemistry was utilized to evaluate the expression of tight junction proteins ZO-1 and Occludin in the intestine. The findings revealed that high-dose TMP significantly enhanced the hematopoietic system function in mice post radiation exposure, leading to increased spleen index, thymus index, blood cell counts, and bone marrow DNA production (p < 0.05). Moreover, TMP improved the intestinal barrier integrity and reduced the intestinal permeability. Mechanistic insights suggested that these peptides may safeguard intestinal barrier function by downregulating the gene expression of inflammatory factors TNF-α, IL-1β, and IL-6, while upregulating the expression of tight junction proteins ZO-1 and Occludin (p < 0.05). Overall, supplementation with TMP mitigates radiation-induced intestinal damage by enhancing the hematopoietic system and the intestinal barrier, offering valuable insights for further investigations into the mechanisms underlying the protective effects of these peptides against ionizing radiation.
Collapse
Affiliation(s)
- Yuting Shang
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, PR China.
| | - Pengfei Cui
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, PR China.
| | - Yachun Chen
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, PR China.
| | - Ziqi Zhang
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, PR China.
| | - Siting Li
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, PR China.
| | - Zhou Chen
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, PR China.
| | - Aijin Ma
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, PR China.
| | - Yingmin Jia
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, PR China.
| |
Collapse
|
4
|
Ge Z, Chen C, Chen J, Jiang Z, Chen L, Wei Y, Chen H, He L, Zou Y, Long X, Zhan H, Wang H, Wang H, Lu Y. Gut Microbiota-Derived 3-Hydroxybutyrate Blocks GPR43-Mediated IL6 Signaling to Ameliorate Radiation Proctopathy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306217. [PMID: 38742466 PMCID: PMC11267371 DOI: 10.1002/advs.202306217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 04/23/2024] [Indexed: 05/16/2024]
Abstract
Radiation proctopathy (RP) is a common complication of radiotherapy for pelvic malignancies with high incidence. RP accompanies by microbial dysbiosis. However, how the gut microbiota affects the disease remains unclear. Here, metabolomics reveals that the fecal and serous concentrations of microbiota-derived 3-hydroxybutyrate (3HB) are significantly reduced in RP mice and radiotherapeutic patients. Moreover, the concentration of 3HB is negatively associated with the expression of proinflammatory IL6 that is increased along with the severity of radiation damage. 3HB treatment significantly downregulates IL6 expression and alleviates IL6-mediated radiation damage. Irradiated cell-fecal microbiota co-culture experiments and in vivo assays show that such a radioprotection of 3HB is mediated by GPR43. Microbiome analysis reveals that radiation leads to a distinct bacterial community compared to untreated controls, in which Akkermansia muciniphila is significantly reduced in RP mice and radiotherapeutic patients and is associated with lower 3HB concentration. Gavage of A. muciniphila significantly increases 3HB concentration, downregulates GPR43 and IL6 expression, and ameliorates radiation damage. Collectively, these results demonstrate that the gut microbiota, including A. muciniphila, induce higher concentrations of 3HB to block GPR43-mediated IL6 signaling, thereby conferring radioprotection. The findings reveal a novel implication of the gut-immune axis in radiation pathophysiology, with potential therapeutic applications.
Collapse
Affiliation(s)
- Zhenhuang Ge
- Run Ze Laboratory for Gastrointestinal Microbiome Study, School of Life SciencesSun Yat‐sen UniversityGuangzhou510275China
| | - Chun Chen
- Department of Colorectal Surgery, The Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhou510655China
- Shanghai General Hospital, School of MedicineShanghai Jiao Tong UniversityShanghai201620China
| | - Junyi Chen
- Run Ze Laboratory for Gastrointestinal Microbiome Study, School of Life SciencesSun Yat‐sen UniversityGuangzhou510275China
| | - Zhou Jiang
- Run Ze Laboratory for Gastrointestinal Microbiome Study, School of Life SciencesSun Yat‐sen UniversityGuangzhou510275China
| | - Lingming Chen
- School of Medical TechnologyGuangdong Medical UniversityDongguan523808China
| | - Yingqi Wei
- Department of Colorectal Surgery, The Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhou510655China
| | - Haiyang Chen
- Department of Radiation Oncology, The Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhou510655China
| | - Lei He
- Affiliated Cancer Hospital & Institute of Guangzhou Medical UniversityGuangzhou510095China
- Key Laboratory for Cell HomeostasisCancer Research of Guangdong Higher Education InstitutesGuangzhou510095China
| | - Yi Zou
- Run Ze Laboratory for Gastrointestinal Microbiome Study, School of Life SciencesSun Yat‐sen UniversityGuangzhou510275China
| | - Xiaoxuan Long
- Run Ze Laboratory for Gastrointestinal Microbiome Study, School of Life SciencesSun Yat‐sen UniversityGuangzhou510275China
| | - Hongyu Zhan
- Run Ze Laboratory for Gastrointestinal Microbiome Study, School of Life SciencesSun Yat‐sen UniversityGuangzhou510275China
| | - Huaiming Wang
- Department of Colorectal Surgery, The Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhou510655China
- Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseasesSupported by National Key Clinical DisciplineGuangzhou510655China
| | - Hui Wang
- Department of Colorectal Surgery, The Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhou510655China
- Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseasesSupported by National Key Clinical DisciplineGuangzhou510655China
| | - Yongjun Lu
- Run Ze Laboratory for Gastrointestinal Microbiome Study, School of Life SciencesSun Yat‐sen UniversityGuangzhou510275China
| |
Collapse
|
5
|
Weinberg BA, Sackstein PE, Yu J, Kim RD, Sommovilla J, Amarnath SR, Krishnamurthi SS. Evolving Standards of Care in the Management of Localized Colorectal Cancer. Am Soc Clin Oncol Educ Book 2024; 44:e432034. [PMID: 38768426 DOI: 10.1200/edbk_432034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
The treatment of patients with localized rectal cancer is complex and requires input from a multidisciplinary team. Baseline local staging and mismatch repair protein testing are vital to develop individualized treatment plans. There are multiple options in terms of treatment modalities and sequencing, including transanal excision, short-course radiation, long-course chemoradiation, chemotherapy doublet or triplet, nonoperative management, and immune checkpoint blockade for patients with mismatch repair deficient tumors. While localized colon cancer is typically treated with surgical resection and consideration of adjuvant chemotherapy, emerging data suggest that neoadjuvant chemotherapy may be beneficial in patients with higher-risk disease. Quality-of-life considerations are imperative to prevent potential chronic effects on psychosocial health, neuropathy, fertility, and bowel, bladder, and sexual function. The omission of radiation or surgery can mitigate these toxicities without diminishing oncologic outcomes. The optimal treatment plan and sequence is not a one-size-fits-all approach but rather should be personalized to the patient's disease burden, tumor location, comorbidities, and preferences.
Collapse
Affiliation(s)
- Benjamin A Weinberg
- Ruesch Center for Cure of Gastrointestinal Cancers, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC
| | - Paul E Sackstein
- Ruesch Center for Cure of Gastrointestinal Cancers, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC
| | - James Yu
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL
| | - Richard D Kim
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL
| | - Joshua Sommovilla
- Department of Colorectal Surgery, Cleveland Clinic Taussig Cancer Institute, Cleveland, OH
| | - Sudha R Amarnath
- Department of Radiation Oncology, Cleveland Clinic Taussig Cancer Institute, Cleveland, OH
| | | |
Collapse
|
6
|
Tu Y, Luo L, Zhou Q, Ni J, Tang Q. Fecal Microbiota Transplantation Repairs Radiation Enteritis Through Modulating the Gut Microbiota-Mediated Tryptophan Metabolism. Radiat Res 2024; 201:572-585. [PMID: 38555945 DOI: 10.1667/rade-23-00189.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 02/22/2024] [Indexed: 04/02/2024]
Abstract
Radiation enteritis is a common complication of abdominal and pelvic radiotherapy. Several previous studies showed that fecal microbiota transplantation (FMT) could alleviate radiation enteritis. In this study, we investigated the efficacy of FMT in alleviating radiation enteritis and explored the mechanisms by multi-omics approaches. Briefly, C57BL/6J mice were subjected to 9 Gy irradiation to the localized abdominal field, and randomized received FMT from healthy donor mice or saline. H&E staining of harvested small intestine showed FMT decreased epithelial injury. Radiation-induced microbiota dysbiosis, characterized by a decrease in beneficial bacteria Lactobacillaceae and Lachnospiraceae, while these bacteria were restored by FMT. Fecal metabolomics analysis revealed that FMT modulated metabolic dysregulation. Two tryptophan pathway metabolites, indole-3-acetaldehyde and N-Acetyl-5-hydroxytryptamine were decreased after irradiation, whereas these metabolites showed a pronounced recovery in mice receiving FMT. Proteomics analysis of small intestine indicated that radiation enteritis triggered immune-inflammatory responses, which were potentially mitigated by FMT. In 21 patients receiving pelvic radiotherapy for cervical cancer, those who developed enteritis (n = 15) had higher abundance in Lachnospiraceae. Moreover, Indole-3-acetaldehyde was reduced after irradiation. These findings provide insights into the therapeutic effects of FMT in radiation enteritis and highlight Lachnospiraceae and the tryptophan metabolite, Indole-3-acetaldehyde may protect against radiation enteritis.
Collapse
Affiliation(s)
- Yeqiang Tu
- Department of Radiation Oncology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, P.R. China
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, 310006, Zhejiang, China
| | - Lumeng Luo
- Department of Radiation Oncology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, P.R. China
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, 310006, Zhejiang, China
| | - Qiong Zhou
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Juan Ni
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Qiu Tang
- Department of Radiation Oncology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, P.R. China
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, 310006, Zhejiang, China
| |
Collapse
|
7
|
Wu L, Chen L, Li H, Wang Y, Xu K, Chen W, Zhang A, Wang Y, Shi C. Nocardia rubra cell-wall skeleton mitigates whole abdominal irradiation-induced intestinal injury via regulating macrophage function. BURNS & TRAUMA 2024; 12:tkad045. [PMID: 38444637 PMCID: PMC10914217 DOI: 10.1093/burnst/tkad045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 04/13/2023] [Accepted: 08/16/2023] [Indexed: 03/07/2024]
Abstract
Background Ionizing radiation (IR)-induced intestinal injury is a major side effect and dose-limiting toxicity in patients receiving radiotherapy. There is an urgent need to identify an effective and safe radioprotectant to reduce radiation-induced intestinal injury. Immunoregulation is considered an effective strategy against IR-induced injury. The purpose of this article was to investigate the protective effect of Nocardia rubra cell wall skeleton (Nr-CWS), an immunomodulator, on radiation-induced intestinal damage and to explore its potential mechanism. Methods C57BL/6 J male mice exposed to 12 Gy whole abdominal irradiation (WAI) were examined for survival rate, morphology and function of the intestine and spleen, as well as the gut microbiota, to comprehensively evaluate the therapeutic effects of Nr-CWS on radiation-induced intestinal and splenetic injury. To further elucidate the underlying mechanisms of Nr-CWS-mediated intestinal protection, macrophages were depleted by clodronate liposomes to determine whether Nr-CWS-induced radioprotection is macrophage dependent, and the function of peritoneal macrophages stimulated by Nr-CWS was detected in vitro. Results Our data showed that Nr-CWS promoted the recovery of intestinal barrier function, enhanced leucine-rich repeat-containing G protein-coupled receptor 5+ intestinal stem cell survival and the regeneration of intestinal epithelial cells, maintained intestinal flora homeostasis, protected spleen morphology and function, and improved the outcome of mice exposed to 12 Gy WAI. Mechanistic studies indicated that Nr-CWS recruited macrophages to reduce WAI-induced intestinal damage. Moreover, macrophage depletion by clodronate liposomes blocked Nr-CWS-induced radioprotection. In vitro, we found that Nr-CWS activated the nuclear factor kappa-B signaling pathway and promoted the phagocytosis and migration ability of peritoneal macrophages. Conclusions Our study suggests the therapeutic effect of Nr-CWS on radiation-induced intestinal injury, and provides possible therapeutic strategy and potential preventive and therapeutic drugs to alleviate it.
Collapse
Affiliation(s)
- Lingling Wu
- Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, 550025, China
- State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), 400038, Chongqing, China
| | - Long Chen
- State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), 400038, Chongqing, China
| | - Huijuan Li
- State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), 400038, Chongqing, China
| | - Yawei Wang
- State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), 400038, Chongqing, China
| | - Kexin Xu
- State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), 400038, Chongqing, China
- College of Biological Engineering, Chongqing University 400044, Chongqing, China
| | - Wanchao Chen
- State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), 400038, Chongqing, China
| | - Aihua Zhang
- Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, 550025, China
| | - Yu Wang
- State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), 400038, Chongqing, China
| | - Chunmeng Shi
- Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, 550025, China
- State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), 400038, Chongqing, China
| |
Collapse
|
8
|
Lojek NM, Williams VA, Rogers AM, Sajo E, Black BJ, Ghezzi CE. A 3D In Vitro Cortical Tissue Model Based on Dense Collagen to Study the Effects of Gamma Radiation on Neuronal Function. Adv Healthc Mater 2024; 13:e2301123. [PMID: 37921265 PMCID: PMC11468710 DOI: 10.1002/adhm.202301123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 10/14/2023] [Indexed: 11/04/2023]
Abstract
Studies on gamma radiation-induced injury have long been focused on hematopoietic, gastrointestinal, and cardiovascular systems, yet little is known about the effects of gamma radiation on the function of human cortical tissue. The challenge in studying radiation-induced cortical injury is, in part, due to a lack of human tissue models and physiologically relevant readouts. Here, a physiologically relevant 3D collagen-based cortical tissue model (CTM) is developed for studying the functional response of human iPSC-derived neurons and astrocytes to a sub-lethal radiation exposure (5 Gy). Cytotoxicity, DNA damage, morphology, and extracellular electrophysiology are quantified. It is reported that 5 Gy exposure significantly increases cytotoxicity, DNA damage, and astrocyte reactivity while significantly decreasing neurite length and neuronal network activity. Additionally, it is found that clinically deployed radioprotectant amifostine ameliorates the DNA damage, cytotoxicity, and astrocyte reactivity. The CTM provides a critical experimental platform to understand cell-level mechanisms by which gamma radiation (GR) affects human cortical tissue and to screen prospective radioprotectant compounds.
Collapse
Affiliation(s)
- Neal M. Lojek
- Department of Biomedical EngineeringUniversity of Massachusetts LowellLowellMA01854USA
| | - Victoria A. Williams
- Department of Biomedical EngineeringUniversity of Massachusetts LowellLowellMA01854USA
| | - Andrew M. Rogers
- Department of Physics and Applied PhysicsUniversity of Massachusetts LowellLowellMA01854USA
| | - Erno Sajo
- Department of Physics and Applied PhysicsUniversity of Massachusetts LowellLowellMA01854USA
| | - Bryan J. Black
- Department of Biomedical EngineeringUniversity of Massachusetts LowellLowellMA01854USA
| | - Chiara E. Ghezzi
- Department of Biomedical EngineeringUniversity of Massachusetts LowellLowellMA01854USA
| |
Collapse
|
9
|
Fukuya H, Iboshi Y, Wada M, Sumida Y, Harada N, Nakamuta M, Fujii H, Ihara E. Gastric cancer presenting with ramucirumab-related gastrocolic fistula successfully managed by colonic stenting: a case report. Clin Endosc 2023; 56:812-816. [PMID: 37165771 PMCID: PMC10665618 DOI: 10.5946/ce.2022.117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/30/2022] [Accepted: 10/17/2022] [Indexed: 05/12/2023] Open
Abstract
We report a rare case of gastric cancer presenting with a gastrocolic fistula during ramucirumab and paclitaxel combination therapy that was successfully managed with colonic stenting. A 75-year-old man was admitted to our hospital with the chief complaint of melena. Esophagogastroduodenoscopy revealed a large ulcerated tumor in the lower stomach, judged by laparoscopy as unresectable (sT4bN1M0). After four cycles of first-line chemotherapy with S-1 plus oxaliplatin, the patient showed disease progression, and second-line therapy with ramucirumab and paclitaxel was started. At the end of the third cycle, the patient had gastric antral stenosis, which necessitated the placement of a gastroduodenal stent. When the patient complained of diarrhea 10 days later, esophagogastroduodenoscopy revealed a fistula between the greater curvature of the stomach and the transverse colon. The fistula was covered by double colonic stenting, with a covered metal stent placed within an uncovered metal stent, after which leakage from the stomach to the colon stopped.
Collapse
Affiliation(s)
- Hiroki Fukuya
- Department of Gastroenterology, National Hospital Organization Kyushu Medical Center, Fukuoka, Japan
| | - Yoichiro Iboshi
- Department of Gastroenterology, National Hospital Organization Kyushu Medical Center, Fukuoka, Japan
| | - Masafumi Wada
- Department of Gastroenterology, National Hospital Organization Kyushu Medical Center, Fukuoka, Japan
| | - Yorinobu Sumida
- Department of Gastroenterology, National Hospital Organization Kyushu Medical Center, Fukuoka, Japan
| | - Naohiko Harada
- Department of Gastroenterology, National Hospital Organization Kyushu Medical Center, Fukuoka, Japan
| | - Makoto Nakamuta
- Department of Gastroenterology, National Hospital Organization Kyushu Medical Center, Fukuoka, Japan
- Institute of Research Center, National Hospital Organization Kyushu Medical Center, Fukuoka, Japan
| | - Hiroyuki Fujii
- Department of Gastroenterology and Hepatology, National Hospital Organization Fukuoka Higashi Medical Center, Fukuoka, Japan
| | - Eikichi Ihara
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
10
|
Park HY, Yu JH. X-ray radiation-induced intestinal barrier dysfunction in human epithelial Caco-2 cell monolayers. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 264:115404. [PMID: 37625335 DOI: 10.1016/j.ecoenv.2023.115404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 08/18/2023] [Accepted: 08/21/2023] [Indexed: 08/27/2023]
Abstract
Radiation therapy and unwanted radiological or nuclear exposure, such as nuclear plant accidents, terrorist attacks, and military conflicts, pose serious health issues to humans. Dysfunction of the intestinal epithelial barrier and the leakage of luminal antigens and bacteria across the barrier have been linked to various human diseases. Intestinal permeability is regulated by intercellular structures, termed tight junctions (TJs), which are disrupted after radiation exposure. In this study, we investigated radiation-induced alterations in TJ-related proteins in an intestinal epithelial cell model. Caco-2 cells were irradiated with 2, 5, and 10 Gy and harvested 1 and 24 h after X-ray exposure. The trypan blue assay revealed that cell viability was reduced in a dose-dependent manner 24 h after X-ray exposure compared to that of non-irradiated cells. However, the WST-8 assay revealed that cell proliferation was significantly reduced only 24 h after radiation exposure to 10 Gy compared to that of non-irradiated cells. In addition, a decreased growth rate and increased doubling time were observed in cells irradiated with X-rays. Intestinal permeability was significantly increased, and transepithelial electrical resistance values were remarkably reduced in Caco-2 cell monolayers irradiated with X-rays compared to non-irradiated cells. X-ray irradiation significantly decreased the mRNA and protein levels of ZO-1, occludin, claudin-3, and claudin-4, with ZO-1 and claudin-3 protein levels decreasing in a dose-dependent manner. Overall, the present study reveals that exposure to X-ray induces dysfunction of the human epithelial intestinal barrier and integrity via the downregulation of TJ-related genes, which may be a key factor contributing to intestinal barrier damage and increased intestinal permeability.
Collapse
Affiliation(s)
- Ha-Young Park
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea.
| | - Jin-Hee Yu
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea
| |
Collapse
|
11
|
Kenchegowda D, Bolduc DL, Kurada L, Blakely WF. Severity scoring systems for radiation-induced GI injury - Prioritization for use of GI-ARS medical countermeasures. Int J Radiat Biol 2023:1-9. [PMID: 37172305 DOI: 10.1080/09553002.2023.2210669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
PURPOSE Severity scoring systems for ionizing radiation-induced gastrointestinal injury have been used in animal radiation models, human studies involving the use of radiation therapy, and radiation accidents. Various radiation exposure scenarios (i.e., total body irradiation, total abdominal irradiation, etc.) have been used to investigate ionizing radiation-induced gastrointestinal injury. These radiation-induced GI severity scoring systems are based on clinical signs and symptoms and gastrointestinal-specific biomarkers (i.e., citrulline, etc.). In addition, the time course for radiation-induced changes in blood citrulline levels were compared across various animal (i.e., mice, minipigs, Rhesus Macaque, etc.) and human model systems. CONCLUSIONS A worksheet tool was developed to prioritize individuals with severe life-threatening gastrointestinal acute radiation syndrome, based on the design of the Exposure and Symptom Tool addressing hematopoietic acute radiation syndrome, to rescue individuals from potential gastrointestinal acute radiation syndrome injury. This tool provides a triage diagnostic approach to assist first-responders to assess individuals suspected of showing gastrointestinal acute radiation syndrome severity to guide medical management, hence enhancing medical readiness for managing radiological casualties.
Collapse
Affiliation(s)
- Doreswamy Kenchegowda
- Biodosimetry Program, Scientific Research Department, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - David L Bolduc
- Biodosimetry Program, Scientific Research Department, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Lalitha Kurada
- Biodosimetry Program, Scientific Research Department, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Henry M Jackson Foundation, 6720A Rockledge Drive, Bethesda, MD USA
| | - William F Blakely
- Biodosimetry Program, Scientific Research Department, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| |
Collapse
|
12
|
Omer DM, Thompson HM, Verheij FS, Yuval JB, Rosen R, Beets NRA, Luthra A, Romesser PB, Paty PB, Garcia-Aguilar J, Sanchez-Vega F. Rectal Cancer after Prostate Radiation: A Complex and Controversial Disease. Cancers (Basel) 2023; 15:cancers15082214. [PMID: 37190143 DOI: 10.3390/cancers15082214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 05/17/2023] Open
Abstract
A small proportion of rectal adenocarcinomas develop in patients many years after the treatment of a previous cancer using pelvic radiation, and the incidence of these rectal cancers depends on the length of follow-up from the end of radiotherapy. The risk of radiation-associated rectal cancer (RARC) is higher in patients treated with prostate external beam radiotherapy than it is in patients treated with brachytherapy. The molecular features of RARC have not been fully investigated, and survival is lower compared to non-irradiated rectal cancer patients. Ultimately, it is unclear whether the worse outcomes are related to differences in patient characteristics, treatment-related factors, or tumor biology. Radiation is widely used in the management of rectal adenocarcinoma; however, pelvic re-irradiation of RARC is challenging and carries a higher risk of treatment complications. Although RARC can develop in patients treated for a variety of malignancies, it is most common in patients treated for prostate cancer. This study will review the incidence, molecular characteristics, clinical course, and treatment outcomes of rectal adenocarcinoma in patients previously treated with radiation for prostate cancer. For clarity, we will distinguish between rectal cancer not associated with prostate cancer (RCNAPC), rectal cancer in non-irradiated prostate cancer patients (RCNRPC), and rectal cancer in irradiated prostate cancer patients (RCRPC). RARC represents a unique but understudied subset of rectal cancer, and thus requires a more comprehensive investigation in order to improve its treatment and prognosis.
Collapse
Affiliation(s)
- Dana M Omer
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Hannah M Thompson
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Floris S Verheij
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Jonathan B Yuval
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Roni Rosen
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Nathalie R A Beets
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Anisha Luthra
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Paul B Romesser
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Philip B Paty
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Julio Garcia-Aguilar
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Francisco Sanchez-Vega
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
13
|
Wang Z, Kou Z, Yalikun D, Tan A, Liang R. Efficacy and Safety of Modified Pelvic Peritoneum Reconstruction with Unidirectional Barbed Suture in Laparoscopic Extralevator Abdominoperineal Excision. J Laparoendosc Adv Surg Tech A 2023; 33:253-256. [PMID: 36126305 DOI: 10.1089/lap.2022.0387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background: Extralevator abdominoperineal excision (ELAPE) procedure leaves a large pelvic floor defect, and can result in a high rate of perineal hernia. Pelvic peritoneum reconstruction (PPR) could reduce the rate of perineal hernia. In this article, the authors reconstructed pelvic peritoneum by retracing running sutures with unidirectional barbed thread after laparoscopic ELAPE. The aim of the study is to evaluate the efficacy and safety of PPR by retracing running sutures with unidirectional barbed thread in laparoscopic ELAPE. Materials and Methods: Intact clinical data were collected retrospectively from 27 distal rectal cancer patients who underwent laparoscopic ELAPE. All the patients underwent PPR by retracing running sutures with unidirectional barbed thread in the operation. Pooled data of perineal-related complications were analyzed. Results: After retracing running sutures, the tension of pelvic peritoneum was enhanced. Of the 27 patients included, 2 patients had perineal dehiscence and 1 patient developed bowel obstruction. There were no instances of perineal hernia and pelvic peritoneal internal hernia. Conclusions: PPR by retracing running sutures with unidirectional barbed thread in laparoscopic can reduce the risk of perineal hernia.
Collapse
Affiliation(s)
- Zhiqiang Wang
- Department of Anorectal Surgery, the Second Hospital of Tianjin Medical University, Tianjin, China
| | - Zhiyong Kou
- Department of Oncology, the First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Dilimulati Yalikun
- Department of Anorectal Surgery, the Second Hospital of Tianjin Medical University, Tianjin, China
| | - Ailin Tan
- Department of Anorectal Surgery, the Second Hospital of Tianjin Medical University, Tianjin, China
| | - Rui Liang
- Department of Pathology, the Second Hospital of Tianjin Medical University, Tianjin, China
| |
Collapse
|
14
|
Wang Y, Su P, Zhuo Z, Jin Y, Zeng R, Wu H, Huang H, Chen H, Li Z, Sha W. Ginsenoside Rk1 attenuates radiation-induced intestinal injury through the PI3K/AKT/mTOR pathway. Biochem Biophys Res Commun 2023; 643:111-120. [PMID: 36592584 DOI: 10.1016/j.bbrc.2022.12.072] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 11/30/2022] [Accepted: 12/23/2022] [Indexed: 12/26/2022]
Abstract
Radiation-induced intestinal injury (RIII) frequently occurs during radiotherapy; however, methods for treating RIII are limited. Ginsenoside Rk1 (RK1) is a substance that is derived from ginseng, and it has several biological activities, such as antiapoptotic, antioxidant and anticancer activities. The present study was designed to investigate the potential protective effect of Rk1 on RIII and the potential mechanisms. The results showed that RK1 treatment significantly improved the survival rate of the irradiated rats and markedly ameliorated the structural injury of the intestinal mucosa observed by histology. Treatment with RK1 significantly alleviated radiation-induced intestinal epithelial cell oxidative stress apoptosis. Moreover, RNA-Seq identified 388 differentially expressed genes (DEGs) and showed that the PI3K-AKT pathway might be a key signaling pathway by which RK1 exerts its therapeutic effects on RIII. The western blotting results showed that the p-PI3K, p-AKT and p-mTOR expression levels, which were increased by radiation, were markedly inhibited by Rk1, and these effects were reversed by IGF-1. The present study demonstrates that Rk1 can alleviate RIII and that the mechanism underlying the antiapoptotic effects of RK1 may involve the suppression of the PI3K/Akt/mTOR pathway. This study provides a promising therapeutic agent for RIII.
Collapse
Affiliation(s)
- Yilin Wang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China; Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China; Department of Gastroenterology, The First People's Hospital of Foshan, Foshan, China
| | - Peizhu Su
- Department of Gastroenterology, The First People's Hospital of Foshan, Foshan, China
| | - Zewei Zhuo
- Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yabin Jin
- Department of Clinical Research Institute, The First People's Hospital of Foshan, Foshan, China
| | - Ruijie Zeng
- Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Huihuan Wu
- Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Huiwen Huang
- Department of Gastroenterology, The First People's Hospital of Foshan, Foshan, China
| | - Hao Chen
- Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.
| | - Zhaotao Li
- Department of Gastroenterology, The First People's Hospital of Foshan, Foshan, China.
| | - Weihong Sha
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China; Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.
| |
Collapse
|
15
|
Shakyawar SK, Mishra NK, Vellichirammal NN, Cary L, Helikar T, Powers R, Oberley-Deegan RE, Berkowitz DB, Bayles KW, Singh VK, Guda C. A Review of Radiation-Induced Alterations of Multi-Omic Profiles, Radiation Injury Biomarkers, and Countermeasures. Radiat Res 2023; 199:89-111. [PMID: 36368026 PMCID: PMC10279411 DOI: 10.1667/rade-21-00187.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 10/24/2022] [Indexed: 11/13/2022]
Abstract
Increasing utilization of nuclear power enhances the risks associated with industrial accidents, occupational hazards, and the threat of nuclear terrorism. Exposure to ionizing radiation interferes with genomic stability and gene expression resulting in the disruption of normal metabolic processes in cells and organs by inducing complex biological responses. Exposure to high-dose radiation causes acute radiation syndrome, which leads to hematopoietic, gastrointestinal, cerebrovascular, and many other organ-specific injuries. Altered genomic variations, gene expression, metabolite concentrations, and microbiota profiles in blood plasma or tissue samples reflect the whole-body radiation injuries. Hence, multi-omic profiles obtained from high-resolution omics platforms offer a holistic approach for identifying reliable biomarkers to predict the radiation injury of organs and tissues resulting from radiation exposures. In this review, we performed a literature search to systematically catalog the radiation-induced alterations from multi-omic studies and radiation countermeasures. We covered radiation-induced changes in the genomic, transcriptomic, proteomic, metabolomic, lipidomic, and microbiome profiles. Furthermore, we have covered promising multi-omic biomarkers, FDA-approved countermeasure drugs, and other radiation countermeasures that include radioprotectors and radiomitigators. This review presents an overview of radiation-induced alterations of multi-omics profiles and biomarkers, and associated radiation countermeasures.
Collapse
Affiliation(s)
- Sushil K Shakyawar
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Nitish K Mishra
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Neetha N Vellichirammal
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Lynnette Cary
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Tomáš Helikar
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln NE 65888, USA
| | - Robert Powers
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln NE 65888, USA
- Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln NE 68588, USA
| | - Rebecca E Oberley-Deegan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - David B Berkowitz
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln NE 65888, USA
| | - Kenneth W Bayles
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Vijay K Singh
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Chittibabu Guda
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Center for Biomedical Informatics Research and Innovation, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
16
|
Abstract
The benefit of radiation is immense in the field of gastroenterology. Radiation is used daily in different gastrointestinal imaging and diagnostic and therapeutic interventional procedures. Radiotherapy is one of the primary modalities of treatment of gastrointestinal malignancies. There are various modalities of radiotherapy. Radiotherapy can injure malignant cells by directly damaging DNA, RNA, proteins, and lipids and indirectly by forming free radicals. External beam radiation, internal beam radiation and radio-isotope therapy are the major ways of delivering radiation to the malignant tissue. Radiation can also cause inflammation, fibrosis, organ dysfunction, and malignancy. Patients with repeated exposure to radiation for diagnostic imaging and therapeutic procedures are at slightly increased risk of malignancy. Gastrointestinal endoscopists performing fluoroscopy-guided procedures are also at increased risk of malignancy and cataract formation. The radiological protection society recommends certain preventive and protective measures to avoid side effects of radiation. Gastrointestinal complications related to radiation therapy for oncologic processes, and exposure risks for patients and health care providers involved in diagnostic or therapeutic imaging will be discussed in this review.
Collapse
Affiliation(s)
- Monjur Ahmed
- Division of Gastroenterology and Hepatology, Thomas Jefferson University, Philadelphia, PA 19107, USA,Corresponding Author: Monjur Ahmed, Division of Gastroenterology and Hepatology, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| | - Razin Ahmed
- California Cancer Associates for Research and Excellence, Fresno, CA, USA
| |
Collapse
|
17
|
Liu HX, Zhao H, Xi C, Li S, Ma LP, Lu X, Yan J, Tian XL, Gao L, Tian M, Liu QJ. CPT1 Mediated Ionizing Radiation-Induced Intestinal Injury Proliferation via Shifting FAO Metabolism Pathway and Activating the ERK1/2 and JNK Pathway. Radiat Res 2022; 198:488-507. [PMID: 36351324 DOI: 10.1667/rade-21-00174.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 07/07/2022] [Indexed: 06/16/2023]
Abstract
The intestinal compensatory proliferative potential is a key influencing factor for susceptibility to radiation-induced intestinal injury. Studies indicated that the carnitine palmitoyltransferase 1 (CPT1) mediated fatty acid β-oxidation (FAO) plays a crucial role in promoting the survival and proliferation of tumor cells. Here, we aimed to explore the effect of 60Co gamma rays on CPT1 mediated FAO in the radiation-induced intestinal injury models, and investigate the role of CPT1 mediated FAO in the survival and proliferation of intestinal cells after irradiation. We detected the changed of FAO in the plasma and small intestine of Sprague Dawley (SD) rats at 24 h after 60Co gamma irradiation (0, 5 and 10 Gy), using target metabolomics, qRT-PCR, immunohistochemistry (IHC), western blot (WB) and related enzymatic activity kits. We then analyzed the FAO changes in radiation-induced intestinal injury models regardless of ex vivo (mice enteroids), or in vitro (normal human intestinal epithelial cell lines, HIEC-6). HIEC-6 cells were transduced with lentivirus vector GV392 and treated with puromycin for obtaining CPT1 stable knockout cell lines, named CPT1 KO. CPT1 enzymatic activities of HIEC-6 cells and mice enteroids were also inhibited by pharmaceutical inhibitor ST1326 and Etomoxir (ETO), to study the function of CPT1 in the survival and proliferation of HIEC-6 cells after 60Co gamma irradiation. We found that CPT1 mediated FAO was altered in the small intestine of the SD rats after irradiation, especially, the expression level and enzymatic activity of CPT1 were significantly increased. Similarly, the expression levels of CPT1 were also remarkably enhanced in mice enteroids and HIEC-6 cells after irradiation. CPT1 inhibition decreased the proliferation of the HIEC-6 cells and mice enteroids after irradiation partially by reducing the extracellular signal-regulated kinase (ERK1/2) and c-Jun N-terminal kinase (JNK) pathways activation, CPT1 inhibition also reduced the proliferation of mice enteroids after irradiation partially by down-regulating the Wnt/β-catenin signaling activity. In conclusion, our study indicated that CPT1 plays a crucial role in promoting intestinal epithelial cell proliferation after irradiation.
Collapse
Affiliation(s)
- Hai-Xiang Liu
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Hua Zhao
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Cong Xi
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Shuang Li
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Li-Ping Ma
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Xue Lu
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Juan Yan
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Xue-Lei Tian
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Ling Gao
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Mei Tian
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Qing-Jie Liu
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| |
Collapse
|
18
|
Chen D, Zhao K, Guo Y, Dong M, Cai J, Zhou Y, Wen W, Shen H. Global trends of researches on radioactive enteritis: A bibliometric and visualization study. Medicine (Baltimore) 2022; 101:e30714. [PMID: 36123866 PMCID: PMC9478246 DOI: 10.1097/md.0000000000030714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Radiation enteritis (RE) caused by radiation therapy, can seriously affect human health. Recently, studies on RE have been growing rapidly, but there are no bibliometric studies on RE. This study aims to explore the development trends and research hotspots of RE. METHODS Academic papers on the Web of Science were retrieved on the topic of "radioactive enteritis" from the establishment of the database to December 2020. Countries, institutions, and subjects selected in this field were visualized using Citespace, HistCite, and Vosviewer. The annual trends in publications, distribution, co-authorship status, and research hotspots were analyzed. RESULTS The authors ranked first in terms of publication amount were Delaney, Francois, Milliat, and Vozenin-Brotons. The United States had the highest number of posts, followed by China, France, the United Kingdom, and Spain. CONCLUSION Future research in the field of RE will focus on double-blind clinical trials of RE, and the related mechanisms, such as oxidative stress and apoptosis.
Collapse
Affiliation(s)
- Daman Chen
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Kaibo Zhao
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yongqi Guo
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Mingxin Dong
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiaxi Cai
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yingjia Zhou
- Nanjing University of Traditional Chinese Medicine, Nanjing, China
- Integrated Traditional Chinese and Western Medicine Department, Yunnan Cancer Hospital/the Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Weibo Wen
- Academic Affairs Department, Yunnan Hospital of Traditional Chinese Medicine, Kunming, China
| | - Hongmei Shen
- Integrated Traditional Chinese and Western Medicine Department, Yunnan Cancer Hospital/the Third Affiliated Hospital of Kunming Medical University, Kunming, China
- *Correspondence: Hongmei Shen, Integrated Traditional Chinese and Western Medicine Department, Yunnan Cancer Hospital/the Third Affiliated Hospital of Kunming Medical University, No. 519, Kunzhou Road, Xishan District, Kunming 650032, China (e-mail: )
| |
Collapse
|
19
|
Jiao Y, Xu J, Song B, Wu A, Pan L, Xu Y, Geng F, Li X, Zhao C, Hong M, Meng X, Luo J, Liu P, Li M, Zhu W, Cao J, Zhang S. Interferon regulatory factor 1-triggered free ubiquitin protects the intestines against radiation-induced injury via CXCR4/FGF2 signaling. MedComm (Beijing) 2022; 3:e168. [PMID: 36051984 PMCID: PMC9416916 DOI: 10.1002/mco2.168] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 07/18/2022] [Accepted: 07/22/2022] [Indexed: 11/25/2022] Open
Abstract
Radiation-induced intestinal injury is a serious concern during abdominal and pelvic cancers radiotherapy. Ubiquitin (Ub) is a highly conserved protein found in all eukaryotic cells. This study aims to explore the role and mechanism of free Ub against radiogenic intestinal injury. We found that free Ub levels of irradiated animals and human patients receiving radiotherapy were upregulated. Radiation-induced Ub expression was associated with the activation of interferon regulatory factor 1 (IRF1). Intraperitoneal injection of free Ub significantly reduced the mortality of mice following 5-9 Gy total body irradiation (TBI) through the Akt pathway. Free Ub facilitates small intestinal regeneration induced by TBI or abdominal irradiation. At the cellular level, free Ub or its mutants significantly alleviated cell death and enhanced the survival of irradiated intestinal epithelial cells. The radioprotective role of free Ub depends on its receptor CXCR4. Mechanistically, free Ub increased fibroblast growth factor-2 (FGF2) secretion and consequently activated FGFR1 signaling following radiation in vivo and in vivo. Thus, free Ub confers protection against radiation-induced intestinal injury through CXCR4/Akt/FGF2 axis, which provides a novel therapeutic option.
Collapse
Affiliation(s)
- Yang Jiao
- School of Radiation Medicine and ProtectionMedical College of Soochow UniversitySuzhouChina
- State Key Laboratory of Radiation Medicine and Protection and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education InstitutionsSoochow UniversitySuzhouChina
| | - Jing Xu
- School of Radiation Medicine and ProtectionMedical College of Soochow UniversitySuzhouChina
- State Key Laboratory of Radiation Medicine and Protection and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education InstitutionsSoochow UniversitySuzhouChina
| | - Bin Song
- Laboratory of Radiation MedicineWest China Second University HospitalSichuan UniversityChengduChina
| | - Ailing Wu
- Second Affiliated Hospital of Chengdu Medical CollegeChina National Nuclear Corporation 416 HospitalChengduChina
| | - Lu Pan
- School of Radiation Medicine and ProtectionMedical College of Soochow UniversitySuzhouChina
- State Key Laboratory of Radiation Medicine and Protection and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education InstitutionsSoochow UniversitySuzhouChina
| | - Ying Xu
- School of Radiation Medicine and ProtectionMedical College of Soochow UniversitySuzhouChina
- State Key Laboratory of Radiation Medicine and Protection and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education InstitutionsSoochow UniversitySuzhouChina
| | - Fenghao Geng
- Second Affiliated Hospital of Chengdu Medical CollegeChina National Nuclear Corporation 416 HospitalChengduChina
| | - Xiaoqian Li
- West China School of Basic Medical Sciences & Forensic MedicineSichuan UniversityChengduChina
| | - Congzhao Zhao
- School of Radiation Medicine and ProtectionMedical College of Soochow UniversitySuzhouChina
- State Key Laboratory of Radiation Medicine and Protection and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education InstitutionsSoochow UniversitySuzhouChina
| | - Min Hong
- School of Radiation Medicine and ProtectionMedical College of Soochow UniversitySuzhouChina
- State Key Laboratory of Radiation Medicine and Protection and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education InstitutionsSoochow UniversitySuzhouChina
| | - Xuanyu Meng
- School of Radiation Medicine and ProtectionMedical College of Soochow UniversitySuzhouChina
- State Key Laboratory of Radiation Medicine and Protection and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education InstitutionsSoochow UniversitySuzhouChina
| | - Judong Luo
- Department of OncologyThe Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical UniversityChangzhouChina
| | - Pengfei Liu
- School of Radiation Medicine and ProtectionMedical College of Soochow UniversitySuzhouChina
| | - Ming Li
- School of Radiation Medicine and ProtectionMedical College of Soochow UniversitySuzhouChina
- State Key Laboratory of Radiation Medicine and Protection and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education InstitutionsSoochow UniversitySuzhouChina
| | - Wei Zhu
- School of Radiation Medicine and ProtectionMedical College of Soochow UniversitySuzhouChina
- State Key Laboratory of Radiation Medicine and Protection and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education InstitutionsSoochow UniversitySuzhouChina
| | - Jianping Cao
- School of Radiation Medicine and ProtectionMedical College of Soochow UniversitySuzhouChina
- State Key Laboratory of Radiation Medicine and Protection and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education InstitutionsSoochow UniversitySuzhouChina
| | - Shuyu Zhang
- Laboratory of Radiation MedicineWest China Second University HospitalSichuan UniversityChengduChina
- Second Affiliated Hospital of Chengdu Medical CollegeChina National Nuclear Corporation 416 HospitalChengduChina
- West China School of Basic Medical Sciences & Forensic MedicineSichuan UniversityChengduChina
- Department of OncologyThe Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical UniversityChangzhouChina
- NHC Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central HospitalMianyangChina
| |
Collapse
|
20
|
Zhang Q, Wei Z, Weng H, Chen Y, Zhang J, Mei S, Wei J, Zhu X, Nong Y, Ruan J, Liu W, Zhou R, Wang F, Xie Y, Huang J, Zhang X, Liu F. Folic Acid Preconditioning Alleviated Radiation-Induced Ovarian Dysfunction in Female Mice. Front Nutr 2022; 9:854655. [PMID: 35836584 PMCID: PMC9274203 DOI: 10.3389/fnut.2022.854655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 06/01/2022] [Indexed: 11/17/2022] Open
Abstract
Radiological therapy/examination is the primary source of artificial radiation exposure in humans. While its application has contributed to major advances in disease diagnosis and treatment, ionizing radiation exposure is associated with ovarian damage. The use of natural products, either alone or as an adjunct, has become increasingly common for reducing the side effects of radiological therapy during disease treatment. Herein, we explored the protective effect of folic acid (FA), a widely used B vitamin, against radiation-induced ovarian injury and its mechanism of action. Female mice with normal ovarian function were randomly divided into control, FA, radiation, and radiation + FA groups. The intervention strategy included daily intragastric administration of FA (5 mg/kg) for 3 weeks prior to radiation exposure. Mice in the radiation and radiation + FA groups received a single dose of 5 Gy X-ray irradiation. Changes in the estrous cycle were then recorded, and ovarian tissues were collected. Pathophysiological changes as well as reproductive and endocrine-related indexes were determined via H&E staining, immunohistochemistry, Western blot, and ELISA. The reproductive performance and emotional symptoms of animals were also monitored. Our results indicated that FA intervention effectively alleviated ovarian damage, leading to more regular estrous cycles, lesser impairment of follicular morphology and endocrine status, as well as greater germ cell preservation. Reduced levels of oxidative stress, inflammation, and enhanced DNA repair were associated these changes. FA pre-administration improved the reproductive performance, leading to higher pregnancy rates and greater litter sizes. Further, the anxiety levels of animals were significantly reduced. Our results indicate that FA pre-administration significantly alleviates radiation-induced ovarian damage in rodents, highlighting its potential as a protective strategy against radiation exposure in the female population.
Collapse
Affiliation(s)
- Qianyu Zhang
- Department of Reproductive Health and Infertility, Guangdong Women and Children Hospital, Guangzhou, China
- Jinan University, Guangzhou, China
| | - Zhifu Wei
- Department of Gynaecology, The Affiliated Shunde Hospital of Jinan University, Foshan, China
| | - Huinan Weng
- Department of Reproductive Health and Infertility, Guangdong Women and Children Hospital, Guangzhou, China
| | - Ye Chen
- Department of Reproductive Health and Infertility, Guangdong Women and Children Hospital, Guangzhou, China
| | - Jie Zhang
- Department of Reproductive Health and Infertility, Guangdong Women and Children Hospital, Guangzhou, China
| | - Shiwei Mei
- Department of Radiation, Guangdong Women and Children Hospital, Guangzhou, China
| | - Jiahui Wei
- Department of Reproductive Health and Infertility, Guangdong Women and Children Hospital, Guangzhou, China
| | - Xiulan Zhu
- Department of Reproductive Health and Infertility, Guangdong Women and Children Hospital, Guangzhou, China
| | - Yingqi Nong
- Department of Reproductive Health and Infertility, Guangdong Women and Children Hospital, Guangzhou, China
| | - Jianxing Ruan
- Department of Reproductive Health and Infertility, Guangdong Women and Children Hospital, Guangzhou, China
| | - Wenjuan Liu
- Department of Reproductive Health and Infertility, Guangdong Women and Children Hospital, Guangzhou, China
| | - Ruiqiong Zhou
- Department of Reproductive Health and Infertility, Guangdong Women and Children Hospital, Guangzhou, China
| | - Fang Wang
- Department of Reproductive Health and Infertility, Guangdong Women and Children Hospital, Guangzhou, China
| | - Yanni Xie
- Department of Reproductive Health and Infertility, Guangdong Women and Children Hospital, Guangzhou, China
| | - Junjiu Huang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Junjiu Huang
| | - Xiqian Zhang
- Department of Reproductive Health and Infertility, Guangdong Women and Children Hospital, Guangzhou, China
- Xiqian Zhang
| | - Fenghua Liu
- Department of Reproductive Health and Infertility, Guangdong Women and Children Hospital, Guangzhou, China
- *Correspondence: Fenghua Liu
| |
Collapse
|
21
|
Feng Z, Xu Q, He X, Wang Y, Fang L, Zhao J, Cheng Y, Liu C, Du J, Cai J. FG-4592 protects the intestine from irradiation-induced injury by targeting the TLR4 signaling pathway. Stem Cell Res Ther 2022; 13:271. [PMID: 35729656 PMCID: PMC9210818 DOI: 10.1186/s13287-022-02945-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/06/2022] [Indexed: 11/11/2022] Open
Abstract
Background Severe ionizing radiation (IR)-induced intestinal injury associates with high mortality, which is a worldwide problem requiring urgent attention. In recent years, studies have found that the PHD-HIF signaling pathway may play key roles in IR-induced intestinal injury, and we found that FG-4592, the PHD inhibitor, has significant radioprotective effects on IR-induced intestinal injury. Methods In the presence or absence of FG-4592 treatment, the survival time, pathology, cell viability, cell apoptosis, and organoids of mice after irradiation were compared, and the mechanism was verified after transcriptome sequencing. The data were analyzed using SPSS ver. 19 software. Results Our results show that FG-4592 had significant radioprotective effects on the intestine. FG-4592 improved the survival of irradiated mice, inhibited the radiation damage of intestinal tissue, promoted the regeneration of intestinal crypts after IR and reduced the apoptosis of intestinal crypt cells. Through organoid experiments, it is found that FG-4592 promoted the proliferation and differentiation of intestinal stem cells (ISCs). Moreover, the results of RNA sequencing and Western blot showed that FG-4592 significantly upregulated the TLR4 signaling pathway, and FG-4592 had no radioprotection on TLR4 KO mice, suggesting that FG-4592 may play protective role against IR by targeting TLR4. Conclusion Our work proves that FG-4592 may promote the proliferation and regeneration of ISCs through the targeted regulation of the TLR4 signaling pathway and ultimately play radioprotective roles in IR-induced injury. These results enrich the molecular mechanism of FG-4592 in protecting cells from IR-induced injury and provide new methods for the radioprotection of intestine.
Collapse
Affiliation(s)
- Zhenlan Feng
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
| | - Qinshu Xu
- College of Basic Medicine, Naval Medical University, Shanghai, 200433, China
| | - Xiang He
- College of Basic Medicine, Naval Medical University, Shanghai, 200433, China
| | - Yuedong Wang
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
| | - Lan Fang
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, China
| | - Jianpeng Zhao
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, China
| | - Ying Cheng
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, China
| | - Cong Liu
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, China
| | - Jicong Du
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, China.
| | - Jianming Cai
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China. .,Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, China.
| |
Collapse
|
22
|
Gupta S, Allegretti JR. Mimics of Crohn's Disease. Gastroenterol Clin North Am 2022; 51:241-269. [PMID: 35595413 DOI: 10.1016/j.gtc.2021.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
Crohn's disease is a chronic inflammatory disease that can affect any portion of the gastrointestinal tract. Associated symptoms can vary based on the severity of disease, extent of involvement, presence of extraintestinal manifestations, and development of complications. Diagnosis is based on a constellation of findings. Many diseases can mimic Crohn's disease and lead to diagnostic conundrums. These include entities associated with the gastrointestinal luminal tract, vascular disease, autoimmune processes, various infections, malignancies and complications, drug- or treatment-induced conditions, and genetic diseases. Careful consideration of possible causes is necessary to establish the correct diagnosis.
Collapse
Affiliation(s)
- Sanchit Gupta
- Division of Gastroenterology, Hepatology, and Endoscopy, Brigham and Women's Hospital, 850 Boyslton Street, Suite 201, Chestnut Hill, MA 02467, USA; Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | - Jessica R Allegretti
- Division of Gastroenterology, Hepatology, and Endoscopy, Brigham and Women's Hospital, 850 Boyslton Street, Suite 201, Chestnut Hill, MA 02467, USA; Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA.
| |
Collapse
|
23
|
Wang L, Cao Y, Zhang X, Liu C, Yin J, Kuang L, He W, Hua D. Reactive oxygen species-responsive nanodrug of natural crocin-i with prolonged circulation for effective radioprotection. Colloids Surf B Biointerfaces 2022; 213:112441. [PMID: 35272253 DOI: 10.1016/j.colsurfb.2022.112441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/23/2022] [Accepted: 03/02/2022] [Indexed: 12/24/2022]
Abstract
With the progress of nuclear technology including radiotherapy and radiodiagnosis, radiation has been widely used in many fields as a powerful diagnostic and therapeutic tool in the medical area. Unfortunately, acute radiation disease will occur if the human body is accidentally exposed to a large dosage of ionizing radiation. However, clinical radioprotective agents are being challenged by the short half-life and several side effects. In this work, a reactive oxygen species-responsive nanodrug is developed for efficient radioprotection. The nanodrug was prepared by modifying Crocin-I with 4-pentylphenylboronic acid (PBA) and exhibited effective responsiveness and scavenging activity of reactive oxygen species. PBA-Crocin nanodrug displayed good biocompatibility and radioprotection effect compared to Crocin-I in vitro. The survival rate of cells treated with PBA-Crocin (10 μg mL-1) is comparable to that treated with amifostine (12.5 μg mL-1, the only radioprotector approved by the United States Food and Drug Administration clinically) after 6 Gy irradiation. Importantly, PBA-Crocin resulted in markedly prevention of radiation-induced damage in peripheral blood cells and a 1.6-fold longer retention time of Crocin-I in plasma in comparison with Crocin-I. The finding suggests a new design for natural medicine in effective radioprotection.
Collapse
Affiliation(s)
- Lu Wang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China.
| | - Yu Cao
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China.
| | - Xiaoyi Zhang
- Changshu No.2 People's Hospital, Changshu 215501, China.
| | - Chang Liu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China.
| | - Jia Yin
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China.
| | - Liangju Kuang
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA.
| | - Weiwei He
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China.
| | - Daoben Hua
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China.
| |
Collapse
|
24
|
Wu DM, Li J, Shen R, Li J, Yu Y, Li L, Deng SH, Liu T, Zhang T, Xu Y, Wang DG. Autophagy Induced by Micheliolide Alleviates Acute Irradiation-Induced Intestinal Injury via Inhibition of the NLRP3 Inflammasome. Front Pharmacol 2022; 12:773150. [PMID: 35115927 PMCID: PMC8804324 DOI: 10.3389/fphar.2021.773150] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 12/20/2021] [Indexed: 01/02/2023] Open
Abstract
Radiation-induced enteropathy (RIE) is one of the most common and fatal complications of abdominal radiotherapy, with no effective interventions available. Pyroptosis, a form of proinflammatory regulated cell death, was recently found to play a vital role in radiation-induced inflammation and may represent a novel therapeutic target for RIE. To investigate this, we found that micheliolide (MCL) exerted anti-radiation effects in vitro. Therefore, we investigated both the therapeutic effects of MCL in RIE and the possible mechanisms by which it may be therapeutic. We developed a mouse model of RIE by exposing C57BL/6J mice to abdominal irradiation. MCL treatment significantly ameliorated radiation-induced intestinal tissue damage, inflammatory cell infiltration, and proinflammatory cytokine release. In agreement with these observations, the beneficial effects of MCL treatment in RIE were abolished in Becn1+/− mice. Furthermore, super-resolution microscopy revealed a close association between NLR pyrin domain three and lysosome-associated membrane protein/light chain 3-positive vesicles following MCL treatment, suggesting that MCL facilitates phagocytosis of the NLR pyrin domain three inflammasome. In summary, MCL-mediated induction of autophagy can ameliorate RIE by NLR pyrin domain three inflammasome degradation and identify MCL as a novel therapy for RIE.
Collapse
Affiliation(s)
- Dong-ming Wu
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
- The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
- School of Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Jing Li
- The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
- School of Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Rong Shen
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Jin Li
- The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
- School of Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Ye Yu
- The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
- School of Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Li Li
- The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
- School of Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Shi-hua Deng
- The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
- School of Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Teng Liu
- The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
- School of Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Ting Zhang
- The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
- School of Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Ying Xu
- The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
- School of Clinical Medicine, Chengdu Medical College, Chengdu, China
- *Correspondence: Ying Xu, ; De-gui Wang,
| | - De-gui Wang
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
- *Correspondence: Ying Xu, ; De-gui Wang,
| |
Collapse
|
25
|
McKay MJ, Foster R. Pathobiology, irradiation dosimetric parameters and therapy of radiation-induced gastric damage: a narrative review. J Gastrointest Oncol 2021; 12:3115-3122. [PMID: 35070434 PMCID: PMC8748060 DOI: 10.21037/jgo-21-361] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 10/25/2021] [Indexed: 01/17/2024] Open
Abstract
OBJECTIVE To review the pathobiology, irradiation dosimetric parameters and other risk factors, and therapy of radiation-induced gastric damage (RIGD). BACKGROUND RIGD is a side-effect of upper abdominal radiotherapy. Acute toxicities are usually mild and self-limiting. Late toxicities are potentially life-threatening and include bleeding, perforation or stenosis. The data on RIGD is mainly historical and derived from neoplasms and treatments where the role of radiotherapy is contracting, such as para-aortic nodal irradiation for testis and cervical cancer and Hodgkin's Disease. On the other hand, the role of radiotherapy is expanding, especially with stereotactic body radiotherapy (SBRT) treatments evolving for both primary and secondary upper gastrointestinal neoplasms, which might be expected to increase the frequency of RIGD. Pathoclinical and radiation dosimetric data which might predict the risk of RIGD are evaluated. METHODS English language articles between 1945 and December 2020, using PubMed and Embase, searching titles for keywords including: radiation; ionizing; radiotherapy; gastritis and 65 articles were selected for review. There may have been a risk of bias in the studies evaluated, since the majority of reports were retrospective, largely descriptive and qualitative. CONCLUSIONS A common pathoclinical theme in RIGD is inflammation. Numerous factors predict for a greater likelihood of RIGD, including radiation fraction size and dose, concurrent chemotherapy and previous abdominal surgery. Therapy is pathology-dependent and comprises pharmacological, interventional and in the most severe cases, surgical approaches. It is timely to review the topic of RIGD, discuss the limitations of the data and highlight the need for future research directions.
Collapse
Affiliation(s)
- Michael J. McKay
- Northern Cancer Service, North West Cancer Centre, Burnie, Tasmania, Australia
- Rural Clinical School, The University of Tasmania, Northwest Regional Hospital, Burnie, Tasmania, Australia
- Olivia Newton John Cancer Research Institute, Heidelberg, Victoria, Australia
| | - Richard Foster
- Northern Cancer Service, North West Cancer Centre, Burnie, Tasmania, Australia
| |
Collapse
|
26
|
Mast1 mediates radiation-induced gastric injury via the P38 MAPK pathway. Exp Cell Res 2021; 409:112913. [PMID: 34774870 DOI: 10.1016/j.yexcr.2021.112913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 11/20/2022]
Abstract
Radiation-induced gastric injury is a serious adverse effect and reduces the efficacy of radiotherapy treatment. However, the mechanisms underlying radiation-induced stomach injury remain unclear. Here, mouse stomach and gastric epithelial cells were irradiated with different doses of X-ray radiation. The results showed that radiation induced gastric injury in vivo and in vitro. Differentially expressed functional mRNAs in irradiation-induced gastric tissues were screened from the Gene Expression Omnibus (GEO) database. We found that the expression of microtubule-associated serine/threonine kinase 1 (Mast1) was downregulated in mouse gastric tissues and gastric epithelial cells after irradiation. Furthermore, functional assays showed that knockdown of Mast1 inhibited growth and promoted apoptosis in gastric epithelial cells, while overexpression of Mast1 protected gastric epithelial cells from radiation damage. Mechanistically, Mast1 negatively regulated radiation-induced injury in gastric epithelial cells by inhibiting the activation of P38. The apoptosis caused by knockdown of Mast1 in gastric epithelial cells could be partially reversed by the P38 inhibitor SB203580. Moreover, data from several gastric cancer cell lines and online databases revealed that Mast1 was not involved in the development of gastric cancer. Collectively, our findings demonstrated that Mast1 is essential for radiation-induced gastric injury, providing a promising prognostic and therapeutic target.
Collapse
|
27
|
Xue J, Yu C, Tang Y, Mo W, Tang Z, Sheng W, Jiao Y, Zhu W, Cao J. NF-E2-Related Factor 2 (Nrf2) Ameliorates Radiation-Induced Skin Injury. Front Oncol 2021; 11:680058. [PMID: 34568011 PMCID: PMC8461566 DOI: 10.3389/fonc.2021.680058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 07/30/2021] [Indexed: 11/13/2022] Open
Abstract
Radiation-induced skin injury (RISI) commonly occur in cancer patients who received radiotherapy and is one of the first clinical symptoms after suffering from nuclear exposure. Oxidative damage is the major causes of RISI. Nuclear factor erythroid 2-related factor 2 (Nrf2) is considered as a key mediator of the cellular antioxidant response. However, whether Nrf2 can alleviate RISI after high-dose irradiation remains unknown. In this study, we demonstrated that Nrf2-deficient (Nrf2-/-) mice were susceptible to high-dose irradiation and adenovirus-mediated overexpression of Nrf2 (ad-Nrf2) protected against radiation in skin cells. Overexpression of Nrf2 attenuated the severity of skin injury after high-dose electron beam irradiation. To uncover the mechanisms of Nrf2 involved in RISI, mRNA sequencing technology was performed to analyze the mRNA expression profiles of Ad-Nrf2 skin cells following radiation. The results revealed that a total of 127 genes were significantly changed, 55 genes were upregulated, and 72 genes were downregulated after Nrf2 overexpression. GSEA showed that Nrf2 was associated with positive regulation of genes involved in the reactive oxygen species pathway after radiation. Taken together, this study illustrated the role of Nrf2 in RISI and provided potentially strategies for ameliorating RISI.
Collapse
Affiliation(s)
- Jiao Xue
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China.,Department of Radiation Oncology, The First Affiliated Hospital of Soochow University, Suzhou, China.,School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, China
| | - Chenxiao Yu
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China.,School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, China.,Department of Radiotherapy and Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Radiation Oncology, Soochow University, Suzhou, China
| | - Yiting Tang
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China.,School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, China
| | - Wei Mo
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China.,School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, China
| | - Zhicheng Tang
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China.,School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, China
| | - Wenjiong Sheng
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China.,School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, China
| | - Yang Jiao
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China.,School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, China
| | - Wei Zhu
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China.,School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, China
| | - Jianping Cao
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China.,School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, China
| |
Collapse
|
28
|
Livanova AA, Fedorova AA, Zavirsky AV, Bikmurzina AE, Krivoi II, Markov AG. Dose and time dependence of functional impairments in rat jejunum following ionizing radiation exposure. Physiol Rep 2021; 9:e14960. [PMID: 34337895 PMCID: PMC8326886 DOI: 10.14814/phy2.14960] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/19/2021] [Accepted: 06/19/2021] [Indexed: 12/12/2022] Open
Abstract
Ionizing radiation causes dramatic change in the transport and barrier functions of the intestine. The degree of radiation damage rate depends primarily on the absorbed dose and post-irradiation time. Variety of experimental protocols providing different time points and doses exist, with the lack of a common approach. In this study, to develop a unified convenient experimental scheme, dose and time dependence of barrier and transport properties of rat jejunum following ionizing radiation exposure were examined. Male Wistar rats were exposed to total body X-ray irradiation (2, 5, or 10 Gy). The control group was subjected to sham irradiation procedure. Samples of rat jejunum were obtained at 24, 48, or 72 h post-irradiation. Transepithelial resistance, short circuit current (Isc ), and paracellular permeability for sodium fluorescein of jejunum samples were measured in an Ussing chamber; a histological examination was also performed. These parameters were significantly disturbed only 72 h after irradiation at a dose of 10 Gy, which was accompanied by loss of crypt and villi, inflammatory infiltrations, and disintegration of enterocytes. This suggests that found experimental point (72 h after 10 Gy exposure) is the most appropriate for future study using rat jejunum as a model.
Collapse
Affiliation(s)
- Alexandra A. Livanova
- Department of General PhysiologySt. Petersburg State UniversitySt. PetersburgRussia
- Department of BiologyS.M. Kirov Military Medical AcademySt. PetersburgRussia
| | - Arina A. Fedorova
- Department of General PhysiologySt. Petersburg State UniversitySt. PetersburgRussia
| | - Alexander V. Zavirsky
- Department of Military Toxicology and Medical DefenseS.M. Kirov Military Medical AcademySt. PetersburgRussia
| | | | - Igor I. Krivoi
- Department of General PhysiologySt. Petersburg State UniversitySt. PetersburgRussia
| | - Alexander G. Markov
- Department of General PhysiologySt. Petersburg State UniversitySt. PetersburgRussia
| |
Collapse
|
29
|
Zhu X, Tian X, Yang M, Yu Y, Zhou Y, Gao Y, Zhang L, Li Z, Xiao Y, Moses RE, Li X, Zhang B. Procyanidin B2 Promotes Intestinal Injury Repair and Attenuates Colitis-Associated Tumorigenesis via Suppression of Oxidative Stress in Mice. Antioxid Redox Signal 2021; 35:75-92. [PMID: 32940048 DOI: 10.1089/ars.2019.7911] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Aims: Intact intestinal epithelium is essential to maintain normal intestinal physiological function. Irradiation-induced gastrointestinal syndrome or inflammatory bowel disease occurred when epithelial integrity was impaired. This study aims at exploring the mechanism of procyanidin B2 (PB2) administration to promote intestinal injury repair in mice. Results: PB2 treatment reduces reactive oxygen species (ROS) accumulation and protects the intestine damage from irradiation. Mechanistic studies reveal that PB2 could effectively slow down the degradation of nuclear factor-erythroid 2-related factor 2 (Nrf2) and it significantly triggers Nrf2 into the nucleus, which leads to subsequent antioxidant enzyme expression. However, knockdown of Nrf2 attenuates PB2-induced protection in the intestine. More importantly, PB2 also promotes leucine-rich repeat-containing G protein-coupled receptor 5 (Lgr5)-positive intestinal stem cells (Lgr5+ ISCs) driven regeneration via enhancing Wnt/β-catenin signaling, which depends on, at least in part, activation of the Nrf2 signal. Evidence from an injury model of intestinal organoids is similar with in vivo results. Correspondingly, results from flow cytometric analysis and luciferase reporter assay reveal that PB2 also inhibits the level of ROS and promotes Lgr5 expression in vitro. Finally, PB2 alleviates the severity of experimental colitis and colitis-associated cancer in a long-term inflammatory model via inhibiting nuclear localization of p65. Innovation: This study, for the first time, reveals a role of PB2 for intestinal regeneration and repair after radiation or dextran sulfate sodium-induced injury in mice. Conclusion: Our results indicate that PB2 can repress oxidative stress via Nrf2/ARE signaling and then promote intestinal injury repair.
Collapse
Affiliation(s)
- Xiangzhan Zhu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, People's Republic of China
| | - Xue Tian
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Minglei Yang
- Department of Orthopedic Oncology, Changzheng Hospital, the Second Military Medical University, Shanghai, People's Republic of China
| | - Ying Yu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, People's Republic of China
| | - Yongdan Zhou
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, People's Republic of China
| | - Ye Gao
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, People's Republic of China
| | - Lili Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, People's Republic of China
| | - Zhenlong Li
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, California, USA
| | - Yasong Xiao
- Department of Orthopedic Oncology, Changzheng Hospital, the Second Military Medical University, Shanghai, People's Republic of China
| | - Robb E Moses
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Xiaotao Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, People's Republic of China.,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Bianhong Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, People's Republic of China
| |
Collapse
|
30
|
Imaging of abdominal and pelvic infections in the cancer patient. Abdom Radiol (NY) 2021; 46:2920-2941. [PMID: 33386914 PMCID: PMC7778421 DOI: 10.1007/s00261-020-02896-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/27/2020] [Accepted: 12/04/2020] [Indexed: 11/01/2022]
Abstract
Infections are the most commonly encountered complications in patients with cancer. The classical signs and symptoms of infections are often not present in this patient population, which makes the diagnosis more challenging. Host factors play a major role in the development and prognosis of infections in cancer patients; these can be related to the underlying type of malignancy (solid organ versus hematological), tumor burden, anatomic obstruction, altered integrity of barriers (skin or mucosa), treatment-related factors (from chemotherapy, radiation treatment, surgery, interventional procedures, and/or medical device placement) and the degree of immunosuppression. This article reviews common, as well as less common, imaging manifestations of infections and their potential mimics in the abdomen and pelvis in cancer patients and discusses their differentiating features, with the role of imaging in various organs in the abdomen and pelvis taking into consideration relevant clinical background information and the main risk factors.
Collapse
|
31
|
Steinhauff D, Jensen M, Talbot M, Jia W, Isaacson K, Jedrzkiewicz J, Cappello J, Oottamasathien S, Ghandehari H. Silk-elastinlike copolymers enhance bioaccumulation of semisynthetic glycosaminoglycan ethers for prevention of radiation induced proctitis. J Control Release 2021; 332:503-515. [PMID: 33691185 DOI: 10.1016/j.jconrel.2021.03.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 02/17/2021] [Accepted: 03/01/2021] [Indexed: 12/22/2022]
Abstract
Radiation-induced proctitis (RIP) is a debilitating adverse event that occurs commonly during lower abdominal radiotherapy. The lack of prophylactic treatment strategies leads to diminished patient quality of life, disruption of radiotherapy schedules, and limitation of radiotherapy efficacy due to dose-limiting toxicities. Semisynthetic glycosaminoglycan ethers (SAGE) demonstrate protective effects from RIP. However, low residence time in the rectal tissue limits their utility. We investigated controlled delivery of GM-0111, a SAGE analogue with demonstrated efficacy against RIP, using a series of temperature-responsive polymers to compare how distinct phase change behaviors, mechanical properties and release kinetics influence rectal bioaccumulation. Poly(lactic acid)-co-(glycolic acid)-block-poly(ethylene glycol)-block-poly(lactic acid)-co-(glycolic acid) copolymers underwent macroscopic phase separation, expelling >50% of drug during gelation. Poloxamer compositions released GM-0111 cargo within 1 h, while silk-elastinlike copolymers (SELPs) enabled controlled release over a period of 12 h. Bioaccumulation was evaluated using fluorescence imaging and confocal microscopy. SELP-415K, a SELP analogue with 4 silk units, 15 elastin units, and one elastin unit with lysine residues in the monomer repeats, resulted in the highest rectal bioaccumulation. SELP-415K GM-0111 compositions were then used to provide localized protection from radiation induced tissue damage in a murine model of RIP. Rectal delivery of SAGE using SELP-415K significantly reduced behavioral pain responses, and reduced animal mass loss compared to irradiated controls or treatment with traditional delivery approaches. Histological scoring showed RIP injury was ameliorated for animals treated with GM-0111 delivered by SELP-415K. The enhanced bioaccumulation provided by thermoresponsive SELPs via a liquid to semisolid transition improved rectal delivery of GM-0111 to mice and radioprotection in a RIP model.
Collapse
Affiliation(s)
- D Steinhauff
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA; Utah Center for Nanomedicine, University of Utah, Salt Lake City, UT 84112, USA
| | - M Jensen
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - M Talbot
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA; Utah Center for Nanomedicine, University of Utah, Salt Lake City, UT 84112, USA
| | - W Jia
- Utah Center for Nanomedicine, University of Utah, Salt Lake City, UT 84112, USA
| | - K Isaacson
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA; Utah Center for Nanomedicine, University of Utah, Salt Lake City, UT 84112, USA
| | - J Jedrzkiewicz
- Department of Pathology, University of Utah, Salt Lake City, UT 84112, USA
| | - J Cappello
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - S Oottamasathien
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Urology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - H Ghandehari
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA; Utah Center for Nanomedicine, University of Utah, Salt Lake City, UT 84112, USA; Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
32
|
Xie J, Zhao M, Wang C, Yong Y, Gu Z, Zhao Y. Rational Design of Nanomaterials for Various Radiation-Induced Diseases Prevention and Treatment. Adv Healthc Mater 2021; 10:e2001615. [PMID: 33506624 DOI: 10.1002/adhm.202001615] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/05/2020] [Indexed: 12/17/2022]
Abstract
Radiation treatments often unfavorably damage neighboring healthy organs and cause a series of radiation sequelae, such as radiation-induced hematopoietic system diseases, radiation-induced gastrointestinal diseases, radiation-induced lung diseases, and radiation-induced skin diseases. Recently, emerging nanomaterials have exhibited good superiority for these radiation-induced disease treatments. Given this background, the rational design principle of nanomaterials, which helps to optimize the therapeutic efficiency, has been an increasing need. Consequently, it is of great significance to perform a systematic summarization of the advances in this field, which can trigger the development of new high-performance nanoradioprotectors with drug efficiency maximization. Herein, this review highlights the advances and perspectives in the rational design of nanomaterials for preventing and treating various common radiation-induced diseases. Furthermore, the sources, clinical symptoms, and pathogenesis/injury mechanisms of these radiation-induced diseases will also be introduced. Furthermore, current challenges and directions for future efforts in this field are also discussed.
Collapse
Affiliation(s)
- Jiani Xie
- School of Food and Biological Engineering Chengdu University Chengdu 610106 China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China
| | - Maoru Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China
- Center of Materials Science and Optoelectronics Engineering College of Materials Science and Optoelectronic Technology University of Chinese Academy of Sciences Beijing 100049 China
| | - Chengyan Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China
- Center of Materials Science and Optoelectronics Engineering College of Materials Science and Optoelectronic Technology University of Chinese Academy of Sciences Beijing 100049 China
| | - Yuan Yong
- College of Chemistry and Environment Protection Engineering Southwest Minzu University Chengdu 610041 China
| | - Zhanjun Gu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China
- Center of Materials Science and Optoelectronics Engineering College of Materials Science and Optoelectronic Technology University of Chinese Academy of Sciences Beijing 100049 China
- GBA Research Innovation Institute for Nanotechnology Guangdong 510700 China
| | - Yuliang Zhao
- Center of Materials Science and Optoelectronics Engineering College of Materials Science and Optoelectronic Technology University of Chinese Academy of Sciences Beijing 100049 China
- GBA Research Innovation Institute for Nanotechnology Guangdong 510700 China
- CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology of China Chinese Academy of Sciences Beijing 100190 China
| |
Collapse
|
33
|
Zhang T, Shi L, Li Y, Mu W, Zhang H, Li Y, Wang X, Zhao W, Qi Y, Liu L. Polysaccharides extracted from Rheum tanguticum ameliorate radiation-induced enteritis via activation of Nrf2/HO-1. JOURNAL OF RADIATION RESEARCH 2021; 62:46-57. [PMID: 33140083 PMCID: PMC7779360 DOI: 10.1093/jrr/rraa093] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/21/2020] [Indexed: 05/21/2023]
Abstract
Radiation-induced enteritis is a major side effect in cancer patients undergoing abdominopelvic radiotherapy. The Nrf2/HO-1 pathway is a critical endogenous antioxidant stress pathway, but its precise role in radiation-induced enteritis remains to be clarified. Polysaccharides extracted from Rheum tanguticum (RTP) can protect the intestinal cells from radiation-induced damage, but the underlying mechanism is unknown. SD rats and IEC-6 cells were exposed to 12 or 10 Gy X-ray radiation. Rat survival, and histopathological and immunohistochemical profiles were analyzed at different time points. Indicators of oxidative stress and inflammatory response were also assessed. Cell viability, apoptosis and Nrf2/HO-1 expression were evaluated at multiple time points. Significant changes were observed in the physiological and biochemical indexes of rats after radiation, accompanied by significant oxidative stress response. The mRNA and protein expression of Nrf2 peaked at 12 h after irradiation, and HO-1 expression peaked at 48 h after irradiation. RTP administration reduced radiation-induced intestinal damage, upregulated Nrf2/HO-1, improved physiological indexes, significantly decreased apoptosis and inflammatory factors, and upregulated HO-1, particularly at 48 h after irradiation. In conclusion, Nrf2 is activated in the early stage of radiation-induced intestinal injury and plays a protective role. RTP significantly ameliorates radiation-induced intestinal injury via the regulation of Nrf2 and its downstream protein HO-1.
Collapse
Affiliation(s)
- Tian Zhang
- Department of Pharmacy, The Second Affiliated Hospital of Air Force Medical University, 710038,China
| | - Lei Shi
- Department of Pharmacy, The Second Affiliated Hospital of Air Force Medical University, 710038,China
| | - Yan Li
- Xi'an beilin Pharmaceutical Co., LTD, 710038,China
| | - Wei Mu
- Department of Pharmacy, The Second Affiliated Hospital of Air Force Medical University, 710038,China
| | - HaoMeng Zhang
- Department of Thyroid & Breast, The Affiliated Hospital of Northwest University ·XI'AN NO.3 Hospital, 710038, China
| | - Yang Li
- Department of Pharmacy, The Second Affiliated Hospital of Air Force Medical University, 710038,China
| | - XiaoYan Wang
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Harbin Medical University, 150001, China
| | - WeiHe Zhao
- Department of Radiotherapy, The Second Affiliated Hospital of Air Force Medical University, 710038,China
| | - YuHong Qi
- Department of Radiotherapy, The Second Affiliated Hospital of Air Force Medical University, 710038,China
| | - Linna Liu
- Department of Pharmacy, The Second Affiliated Hospital of Air Force Medical University, 710038,China
| |
Collapse
|
34
|
Liao Y, Wang D, Gu Z. Research Progress of Nanomaterials for Radioprotection. ACTA CHIMICA SINICA 2021. [DOI: 10.6023/a21070319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
35
|
Efficacy of Compound Herbal Medicine Tong-Xie-Yao-Fang for Acute Radiation Enteritis and Its Potential Mechanisms: Evidence from Transcriptome Analysis. BIOMED RESEARCH INTERNATIONAL 2020; 2020:5481653. [PMID: 33344641 PMCID: PMC7725573 DOI: 10.1155/2020/5481653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 09/20/2020] [Accepted: 10/20/2020] [Indexed: 02/05/2023]
Abstract
Acute radiation enteritis (ARE) is a common complication with radiotherapy for pelvic and abdominal malignancy. This research is designed to investigate the efficacy of Tong-Xie-Yao-Fang (TXYF) on ARE and to explore the underlying mechanisms by microarray analysis. The ARE rat model was established by a single abdominal irradiation with a gamma-ray dose of 10 Gy. Next, the ARE rats were treated with distilled water, TXYF, and glutamine by gavage for 7 consecutive days according to the scheduled groups. For each group, the jejunal tissue was taken at 6 h after gastric lavage. The morphology of intestinal tissue was observed by hematoxylin and eosin (H&E) stain under a light microscope. The height of the villus and the thickness of the whole layer of the TXYF-treated groups were significantly ameliorative than that of the model control group. The transcriptome analysis was produced using the Agilent SurePrint G3 Rat GE V2.0 microarray. A total of 90 differentially expressed genes (DEGs), including 48 upregulated genes and 42 downregulated genes, were identified by microarray and bioinformatics analysis. Protein–protein interaction (PPI), Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) were conducted to explore the possible mechanisms of DEGs taking part in the TXYF-mediated therapeutic process for ARE. In conclusion, we reveal that TXYF has a protective effect on the intestinal tissue of rats with ARE and summarize several DEGs, suggesting the possible mechanisms of TXYF-mediated efficacy for ARE.
Collapse
|
36
|
Sharma A, Akagi K, Pattavina B, Wilson KA, Nelson C, Watson M, Maksoud E, Harata A, Ortega M, Brem RB, Kapahi P. Musashi expression in intestinal stem cells attenuates radiation-induced decline in intestinal permeability and survival in Drosophila. Sci Rep 2020; 10:19080. [PMID: 33154387 PMCID: PMC7644626 DOI: 10.1038/s41598-020-75867-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 09/17/2020] [Indexed: 11/30/2022] Open
Abstract
Exposure to genotoxic stress by environmental agents or treatments, such as radiation therapy, can diminish healthspan and accelerate aging. We have developed a Drosophila melanogaster model to study the molecular effects of radiation-induced damage and repair. Utilizing a quantitative intestinal permeability assay, we performed an unbiased GWAS screen (using 156 strains from the Drosophila Genetic Reference Panel) to search for natural genetic variants that regulate radiation-induced gut permeability in adult D. melanogaster. From this screen, we identified an RNA binding protein, Musashi (msi), as one of the possible genes associated with changes in intestinal permeability upon radiation. The overexpression of msi promoted intestinal stem cell proliferation, which increased survival after irradiation and rescued radiation-induced intestinal permeability. In summary, we have established D. melanogaster as an expedient model system to study the effects of radiation-induced damage to the intestine in adults and have identified msi as a potential therapeutic target.
Collapse
Affiliation(s)
- Amit Sharma
- SENS Research Foundation, 110 Pioneer Way, Suite J, Mountain View, CA, 94041, USA.
| | - Kazutaka Akagi
- National Center for Geriatrics and Gerontology, 7-430 Morioka-cho, Obu, Aichi, 474-8511, Japan.
| | - Blaine Pattavina
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA, 94945, USA
| | - Kenneth A Wilson
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA, 94945, USA
| | - Christopher Nelson
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA, 94945, USA
| | - Mark Watson
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA, 94945, USA
| | - Elie Maksoud
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA, 94945, USA
| | - Ayano Harata
- National Center for Geriatrics and Gerontology, 7-430 Morioka-cho, Obu, Aichi, 474-8511, Japan
| | - Mauricio Ortega
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA, 94945, USA
| | - Rachel B Brem
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA, 94945, USA
| | - Pankaj Kapahi
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA, 94945, USA.
| |
Collapse
|
37
|
Guo H, Chou WC, Lai Y, Liang K, Tam JW, Brickey WJ, Chen L, Montgomery ND, Li X, Bohannon LM, Sung AD, Chao NJ, Peled JU, Gomes ALC, van den Brink MRM, French MJ, Macintyre AN, Sempowski GD, Tan X, Sartor RB, Lu K, Ting JPY. Multi-omics analyses of radiation survivors identify radioprotective microbes and metabolites. Science 2020; 370:eaay9097. [PMID: 33122357 PMCID: PMC7898465 DOI: 10.1126/science.aay9097] [Citation(s) in RCA: 305] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 04/13/2020] [Accepted: 09/03/2020] [Indexed: 12/12/2022]
Abstract
Ionizing radiation causes acute radiation syndrome, which leads to hematopoietic, gastrointestinal, and cerebrovascular injuries. We investigated a population of mice that recovered from high-dose radiation to live normal life spans. These "elite-survivors" harbored distinct gut microbiota that developed after radiation and protected against radiation-induced damage and death in both germ-free and conventionally housed recipients. Elevated abundances of members of the bacterial taxa Lachnospiraceae and Enterococcaceae were associated with postradiation restoration of hematopoiesis and gastrointestinal repair. These bacteria were also found to be more abundant in leukemia patients undergoing radiotherapy, who also displayed milder gastrointestinal dysfunction. In our study in mice, metabolomics revealed increased fecal concentrations of microbially derived propionate and tryptophan metabolites in elite-survivors. The administration of these metabolites caused long-term radioprotection, mitigation of hematopoietic and gastrointestinal syndromes, and a reduction in proinflammatory responses.
Collapse
Affiliation(s)
- Hao Guo
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Wei-Chun Chou
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Yunjia Lai
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kaixin Liang
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jason W Tam
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - W June Brickey
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Liang Chen
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Nathan D Montgomery
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Xin Li
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Lauren M Bohannon
- Division of Hematologic Malignancies and Cellular Therapy/BMT, Department of Medicine, Duke University, Durham, NC, USA
| | - Anthony D Sung
- Division of Hematologic Malignancies and Cellular Therapy/BMT, Department of Medicine, Duke University, Durham, NC, USA
| | - Nelson J Chao
- Division of Hematologic Malignancies and Cellular Therapy/BMT, Department of Medicine, Duke University, Durham, NC, USA
| | - Jonathan U Peled
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, New York, NY, USA
| | - Antonio L C Gomes
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, New York, NY, USA
| | - Marcel R M van den Brink
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, New York, NY, USA
| | | | | | | | - Xianming Tan
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - R Balfour Sartor
- Center for Gastrointestinal Biology and Disease, Department of Medicine, Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kun Lu
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jenny P Y Ting
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
38
|
Xiao J, Li QD. Multi-slice spiral CT evaluation of chronic radiation colitis and rectitis. Exp Ther Med 2020; 20:3033-3040. [PMID: 32855670 PMCID: PMC7444353 DOI: 10.3892/etm.2020.9069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 05/22/2020] [Indexed: 12/27/2022] Open
Abstract
The aim of the present study was to retrospectively analyse the multi-slice spiral CT (MSCT) findings of radiation colitis and rectitis (RC&R). A total of 23 cases of RC&R detected by helical CT were included. The CT findings and clinical and endoscopy data of the patients were reviewed. The primary tumours included cancers of the cervix (n=17), rectum (n=4), ovaries (n=1) and bladder (n=1). The total dose of radiation per patient was 46-60 Gy (mean, 49.7 Gy) delivered over 5 weeks. The CT manifestations included different degrees of increased thickness of the intestinal wall (n=20, 87.0%), with a maximum thickness of 16.6 mm. On enhanced CT, the target sign was observed (n=16, 69.9%), with an obviously enhanced mucosa and/or serosa and the following changes observed: Oedema and increased density of the mesentery (n=15, 65.2%); increased density of the subcutaneous fat, and blurred and oedematous pelvic wall muscles (n=4, 17.4%), with the obturator internus and levator ani muscles being most commonly affected; narrowed intestinal lumen (n=3, 13.0%); and a small amount of ascitic fluid (n=2, 8.7%) located in the paracolic sulci and bladder or Douglas pouch. The 23 patients underwent colonoscopy and were diagnosed with RC&R. The major manifestations included telangiectasia and mucosal hyperaemia (n=21, 91.3%). MSCT of chronic RC&R (CRC&R) was associated with certain characteristic findings, which, combined with a medical history of radiotherapy and the clinical manifestations, may prove to be of value in the diagnosis of CRC&R.
Collapse
Affiliation(s)
- Jing Xiao
- Key Laboratory for Biorheological Science and Technology of the Ministry of Education (Chongqing University), Chongqing University Cancer Hospital, Chongqing 400044, P.R. China
| | - Qing-Dong Li
- Key Laboratory for Biorheological Science and Technology of the Ministry of Education (Chongqing University), Chongqing University Cancer Hospital, Chongqing 400044, P.R. China
| |
Collapse
|
39
|
Protective Effects of Crocetin against Radiation-Induced Injury in Intestinal Epithelial Cells. BIOMED RESEARCH INTERNATIONAL 2020; 2020:2906053. [PMID: 32964024 PMCID: PMC7499320 DOI: 10.1155/2020/2906053] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/03/2020] [Accepted: 08/13/2020] [Indexed: 02/07/2023]
Abstract
Background and Aims Treatment options for radiation-induced intestinal injury (RIII) are limited. Crocetin has been demonstrated to exert antioxidant, antiapoptotic, and anti-inflammatory effects on various diseases. Here, we investigate the effects of crocetin on RIII in vitro. Materials and Method. IEC-6 cells exposed to 10 Gy of radiation were treated with different doses of crocetin (0, 0.1, 1, 10, and 100 μM), and cell viability was assessed by CCK-8. The levels of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), malondialdehyde (MDA), myeloperoxidase (MPO), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and interferon-γ (IFN-γ) in culture supernatants were measured using colorimetric and ELISA kits, respectively. Cellular apoptosis was evaluated by Annexin V/PI double staining. Results Crocetin dose-dependently improved the survival of irradiated IEC-6 cells with the optimal dose of 10 μM, as indicated by the reduction of cellular apoptosis, decreased levels of MDA, MPO, and proinflammatory cytokines (TNF-α, IL-1β, and IFN-γ), and increased activities of antioxidative enzymes (SOD, CAT, and GPx). Conclusion Our findings demonstrated that crocetin alleviated radiation-induced injury in intestinal epithelial cells, offering a promising agent for radioprotection.
Collapse
|
40
|
Patients with radiation enteritis present regulatory T cell impairment associated with CTLA-4. Immunol Res 2020; 68:179-188. [PMID: 32621113 DOI: 10.1007/s12026-020-09142-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Radiation enteritis is one of the most common side effects of ionizing radiation in patients with pelvic cancers. Increasing amounts of evidence indicate that pro-inflammatory responses significantly contribute to the development of radiation enteritis. In this study, we investigated the association between T regulatory (Treg) cells and the risk of developing radiation enteritis in cervical cancer patients. The following observations were made. First, the frequencies of CD25hiFoxp3+ Treg cells were significantly lower in patients with radiation enteritis than in both healthy subjects and cervical cancer patients without radiation enteritis. Also, patients with the more severe grade 3 enteritis presented significantly lower Treg levels than patients with the more common grade 1 enteritis. Second, the expression of several molecules associated with Treg function, including CTLA-4, IL-10, TGF-β, and perforin, was significantly lower in patients with radiation enteritis than in healthy subjects. In patients without radiation enteritis, however, only CTLA-4, but not other Treg-associated suppressive molecules, was reduced in Treg cells. Third, Treg cells can markedly suppress CD8 T cell proliferation, but in patients with radiation enteritis, this function of Treg cells was significantly impaired, in a manner that was associated with lower CTLA-4 expression. Overall, these data suggest that the frequency and function of Treg cells is negatively associated with the risk of developing enteritis following radiation. In clinical practice, the characteristics of Treg cells may be considered to evaluate the risk of developing enteritis if the cancer patient is receiving ionizing radiation.
Collapse
|
41
|
Zhao Y, Li Y, Zhang R, Wang F, Wang T, Jiao Y. The Role of Erastin in Ferroptosis and Its Prospects in Cancer Therapy. Onco Targets Ther 2020; 13:5429-5441. [PMID: 32606760 PMCID: PMC7295539 DOI: 10.2147/ott.s254995] [Citation(s) in RCA: 262] [Impact Index Per Article: 52.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 05/14/2020] [Indexed: 01/17/2023] Open
Abstract
Erastin was initially discovered as a small molecule compound that selectively kills tumor cells expressing ST and RASV12 and was later widely investigated as an inducer of ferroptosis. Ferroptosis is a recently discovered form of cell death caused by peroxidation induced by the accumulation of intracellular lipid reactive oxygen species (L-ROS) in an iron-dependent manner. Erastin can mediate ferroptosis through a variety of molecules including the cystine-glutamate transport receptor (system XC−), the voltage-dependent anion channel (VDAC), and p53. Erastin is able to enhance the sensitivity of chemotherapy and radiotherapy, suggesting a promising future in cancer therapy. We hope that this review will help to better understand the role of erastin in ferroptosis and lay the foundation for further research and the development of erastin-based cancer therapies in the future.
Collapse
Affiliation(s)
- Yuechen Zhao
- Department of Radiation Oncology, The Second Hospital of Jilin University, Changchun, People's Republic of China
| | - Yanqing Li
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, People's Republic of China
| | - Ruifeng Zhang
- Department of Radiation Oncology, The Second Hospital of Jilin University, Changchun, People's Republic of China
| | - Feng Wang
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, People's Republic of China
| | - Tiejun Wang
- Department of Radiation Oncology, The Second Hospital of Jilin University, Changchun, People's Republic of China
| | - Yan Jiao
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun, People's Republic of China
| |
Collapse
|
42
|
Jang H, Kwak SY, Park S, Kim K, Kim YH, Na J, Kim H, Jang WS, Lee SJ, Kim MJ, Myung JK, Shim S. Pravastatin Alleviates Radiation Proctitis by Regulating Thrombomodulin in Irradiated Endothelial Cells. Int J Mol Sci 2020; 21:ijms21051897. [PMID: 32164317 PMCID: PMC7084904 DOI: 10.3390/ijms21051897] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/07/2020] [Accepted: 03/08/2020] [Indexed: 12/23/2022] Open
Abstract
Although radiotherapy plays a crucial in the management of pelvic tumors, its toxicity on surrounding healthy tissues such as the small intestine, colon, and rectum is one of the major limitations associated with its use. In particular, proctitis is a major clinical complication of pelvic radiotherapy. Recent evidence suggests that endothelial injury significantly affects the initiation of radiation-induced inflammation. The damaged endothelial cells accelerate immune cell recruitment by activating the expression of endothelial adhesive molecules, which participate in the development of tissue damage. Pravastatin, a cholesterol lowering drug, exerts persistent anti-inflammatory and anti-thrombotic effects on irradiated endothelial cells and inhibits the interaction of leukocytes and damaged endothelial cells. Here, we aimed to investigate the effects of pravastatin on radiation-induced endothelial damage in human umbilical vein endothelial cell and a murine proctitis model. Pravastatin attenuated epithelial damage and inflammatory response in irradiated colorectal lesions. In particular, pravastatin improved radiation-induced endothelial damage by regulating thrombomodulin (TM) expression. In addition, exogenous TM inhibited leukocyte adhesion to the irradiated endothelial cells. Thus, pravastatin can inhibit endothelial damage by inducing TM, thereby alleviating radiation proctitis. Therefore, we suggest that pharmacological modulation of endothelial TM may limit intestinal inflammation after irradiation.
Collapse
Affiliation(s)
- Hyosun Jang
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Korea; (H.J.); (S.-Y.K.); (S.P.); (K.K.); (Y.-h.K.); (J.N.); (H.K.); (W.-S.J.); (S.-J.L.); (M.J.K.); (J.K.M.)
| | - Seo-Young Kwak
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Korea; (H.J.); (S.-Y.K.); (S.P.); (K.K.); (Y.-h.K.); (J.N.); (H.K.); (W.-S.J.); (S.-J.L.); (M.J.K.); (J.K.M.)
| | - Sunhoo Park
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Korea; (H.J.); (S.-Y.K.); (S.P.); (K.K.); (Y.-h.K.); (J.N.); (H.K.); (W.-S.J.); (S.-J.L.); (M.J.K.); (J.K.M.)
- Department of Pathology, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Korea
| | - Kyuchang Kim
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Korea; (H.J.); (S.-Y.K.); (S.P.); (K.K.); (Y.-h.K.); (J.N.); (H.K.); (W.-S.J.); (S.-J.L.); (M.J.K.); (J.K.M.)
| | - Young-heon Kim
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Korea; (H.J.); (S.-Y.K.); (S.P.); (K.K.); (Y.-h.K.); (J.N.); (H.K.); (W.-S.J.); (S.-J.L.); (M.J.K.); (J.K.M.)
| | - Jiyoung Na
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Korea; (H.J.); (S.-Y.K.); (S.P.); (K.K.); (Y.-h.K.); (J.N.); (H.K.); (W.-S.J.); (S.-J.L.); (M.J.K.); (J.K.M.)
| | - Hyewon Kim
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Korea; (H.J.); (S.-Y.K.); (S.P.); (K.K.); (Y.-h.K.); (J.N.); (H.K.); (W.-S.J.); (S.-J.L.); (M.J.K.); (J.K.M.)
| | - Won-Suk Jang
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Korea; (H.J.); (S.-Y.K.); (S.P.); (K.K.); (Y.-h.K.); (J.N.); (H.K.); (W.-S.J.); (S.-J.L.); (M.J.K.); (J.K.M.)
| | - Sun-Joo Lee
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Korea; (H.J.); (S.-Y.K.); (S.P.); (K.K.); (Y.-h.K.); (J.N.); (H.K.); (W.-S.J.); (S.-J.L.); (M.J.K.); (J.K.M.)
| | - Min Jung Kim
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Korea; (H.J.); (S.-Y.K.); (S.P.); (K.K.); (Y.-h.K.); (J.N.); (H.K.); (W.-S.J.); (S.-J.L.); (M.J.K.); (J.K.M.)
| | - Jae Kyung Myung
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Korea; (H.J.); (S.-Y.K.); (S.P.); (K.K.); (Y.-h.K.); (J.N.); (H.K.); (W.-S.J.); (S.-J.L.); (M.J.K.); (J.K.M.)
- Department of Pathology, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Korea
| | - Sehwan Shim
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Korea; (H.J.); (S.-Y.K.); (S.P.); (K.K.); (Y.-h.K.); (J.N.); (H.K.); (W.-S.J.); (S.-J.L.); (M.J.K.); (J.K.M.)
- Correspondence: ; Tel.: +82-2-3399-5873
| |
Collapse
|
43
|
Singh VK, Seed TM. Pharmacological management of ionizing radiation injuries: current and prospective agents and targeted organ systems. Expert Opin Pharmacother 2020; 21:317-337. [PMID: 31928256 PMCID: PMC6982586 DOI: 10.1080/14656566.2019.1702968] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 12/06/2019] [Indexed: 12/20/2022]
Abstract
Introduction: There is a limited array of currently available medicinals that are useful for either the prevention, mitigation or treatment of bodily injuries arising from ionizing radiation exposure.Area covered: In this brief article, the authors review those pharmacologic agents that either are currently being used to counter the injurious effects of radiation exposure, or those that show promise and are currently under development.Expert opinion: Although significant, but limited progress has been made in the development and fielding of safe and effective pharmacotherapeutics for select types of acute radiation-associated injuries, additional effort is needed to broaden the scope of drug development so that overall health risks associated with both short- and long-term injuries in various organ systems can be reduced and effectively managed. There are several promising radiation countermeasures that may gain regulatory approval from the government in the near future for use in clinical settings and in the aftermath of nuclear/radiological exposure contingencies.
Collapse
Affiliation(s)
- Vijay K. Singh
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Thomas M Seed
- Tech Micro Services, 4417 Maple Avenue, Bethesda, MD 20814, USA
| |
Collapse
|
44
|
Murai T, Matsuo M, Tanaka H, Manabe Y, Takaoka T, Hachiya K, Yamaguchi T, Otsuka S, Shibamoto Y. Efficacy of herbal medicine TJ-14 for acute radiation-induced enteritis: a multi-institutional prospective Phase II trial. JOURNAL OF RADIATION RESEARCH 2020; 61:140-145. [PMID: 31691810 PMCID: PMC7022136 DOI: 10.1093/jrr/rrz025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 03/29/2019] [Indexed: 05/11/2023]
Abstract
The purpose of this multi-institutional Phase II trial study was to prospectively investigate the efficacy of the herbal medicine TJ-14 for acute radiation-induced enteritis (ARE). TJ-14 was administered orally as a first-line treatment for ARE. The primary end point was efficacy at 1 week. The secondary end points were: (i) the efficacy of TJ-14 at 2 and 3 weeks after its administration, (ii) the quality of life score (FACT-G) at 1, 2 and 3 weeks after its administration, and (iii) adverse events. If the efficacy of TJ-14 was observed in eight patients or fewer, its efficacy was rejected. Results: Forty patients receiving pelvic radiotherapy were enrolled. Of these, 22 developed ARE and received TJ-14. Among these, 19 had cervical cancer and 9 received chemoradiotherapy. TJ-14 efficacy was shown in 19 out of the 22 patients (86%). Stool frequency per day at 1 week significantly decreased (mean ± SD: 4.9 ± 2.1 vs 3.7 ± 1.9, P = 0.02). This effect continued at 2 (2.2 ± 1.4, P = 0.004) and 3 weeks (2.1 ± 0.9, P = 0.05). Thirteen out of the 22 patients (59%) continued TJ-14 until the end of radiotherapy. FACT-G score deterioration was not observed after the administration of TJ-14. Grade 1 hypokalemia was observed in 4 patients, and Grade 1 constipation in 3. We concluded that TJ-14 is sufficiently promising to be examined in a Phase III trial. A randomized controlled trial is currently being planned.
Collapse
Affiliation(s)
- Taro Murai
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
- Corresponding author. Department of Radiology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan. Tel: +81-52–853-8276; Fax: +81-52–852-5244;
| | - Masayuki Matsuo
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
- Department of Radiation Oncology, Gifu University Graduate School of Medical Sciences, Gifu, Japan
| | - Hidekazu Tanaka
- Department of Radiation Oncology, Gifu University Graduate School of Medical Sciences, Gifu, Japan
| | - Yoshihiko Manabe
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Taiki Takaoka
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
- Department of Radiology, Japan Community Healthcare Organization (JCHO) Chukyo Hospital, Nagoya, Japan
| | - Kae Hachiya
- Department of Radiation Oncology, Gifu University Graduate School of Medical Sciences, Gifu, Japan
| | - Takahiro Yamaguchi
- Department of Radiation Oncology, Gifu University Graduate School of Medical Sciences, Gifu, Japan
| | - Shinya Otsuka
- Department of Radiology, Okazaki City Hospital, Okazaki, Japan
| | - Yuta Shibamoto
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| |
Collapse
|
45
|
Zimmermann F. Gastrointestinal Toxicity. Radiat Oncol 2020. [DOI: 10.1007/978-3-319-52619-5_108-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
46
|
Vanillin derivative VND3207 activates DNA-PKcs conferring protection against radiation-induced intestinal epithelial cells injury in vitro and in vivo. Toxicol Appl Pharmacol 2019; 387:114855. [PMID: 31830491 DOI: 10.1016/j.taap.2019.114855] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/05/2019] [Accepted: 12/07/2019] [Indexed: 12/20/2022]
Abstract
Vanillin is a natural compound endowed with antioxidant and anti-mutagenic properties. We previously identified the vanillin derivative VND3207 with strong radio-protective and antioxidant effects and found that VND3207 confers survival benefit and protection against radiation-induced intestinal injury (RIII) in mice. We also observed that VND3207 treatment enhanced the expression level of the catalytic subunit of the DNA-dependent protein kinase (DNA-PKcs) in human lymphoblastoid cells with or without γ-irradiation. DNA-PKcs is a critical component of DNA double strand break repair pathway and also regulates mitotic progression by stabilizing spindle formation and preventing mitotic catastrophe in response to DNA damage. In the present study, we found that VND3207 protected intestinal epithelial cells in vitro against ionizing radiation by promoting cell proliferation and inhibiting cell apoptosis. In addition, VND3207 promoted DNA-PKcs activity by increasing autophosphorylation at S2056 site. Consistent with this, VND3207 significantly decreased the number of γH2AX foci and mitotic catastrophe after radiation. DNA-PKcs deficiency abolished these VND3207 radio-protective effects, indicating that DNA-PKcs activation is essential for VND3207 activity. In conclusion, VND3207 promoted intestinal repair following radiation injury by regulating the DNA-PKcs pathway.
Collapse
|
47
|
Yakan S, Aydin T, Gulmez C, Ozden O, Eren Erdogan K, Daglioglu YK, Andic F, Atakisi O, Cakir A. The protective role of jervine against radiation-induced gastrointestinal toxicity. J Enzyme Inhib Med Chem 2019; 34:789-798. [PMID: 30871382 PMCID: PMC6419660 DOI: 10.1080/14756366.2019.1586681] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 02/16/2019] [Accepted: 02/19/2019] [Indexed: 12/21/2022] Open
Abstract
In this study, we investigated whether jervine (J) could prevent gastrointestinal (GI) side effects of abdominopelvic radiotherapy (RT) in Wistar-Albino female rats. Rats were divided into five groups: control (C), J only (J), J administered at 5 mg/kg/days for 7 days, RT only (RT), J before RT (J + RT), J administered for seven days before RT, J both before and after RT (J + RT + J), and J administered for 7 days before RT and after RT for 3 days. The weights of rats were measured on the 1st, 7th, and 10th days of the study. Rats were sacrificed to obtain tissues from the liver and intestine, which was followed by taking blood samples intracardially. In addition, the tissues were stained with pyruvate dehydrogenase (PDH) immunohistochemically. In our study, J supplementation markedly reduced weight loss, and histopathological, immunohistochemical, biochemical results suggest that J had a protective effect on GI toxicity following RT.
Collapse
Affiliation(s)
- Selvinaz Yakan
- Animal Health Department, Agri Ibrahim Cecen University Eleskirt Celal Oruc School of Animal Production, Agri, Turkey
| | - Tuba Aydin
- Faculty of Pharmacy, Agri Ibrahim Cecen University, Agri, Turkey
| | - Canan Gulmez
- Department of Pharmacy Services, Tuzluca Vocational School, Igdir University, Igdir, Turkey
| | - Ozkan Ozden
- Department of Bioengineering, Faculty of Engineering and Architecture, Kafkas University, Kars, Turkey
| | | | | | - Fundagul Andic
- Department of Radiation Oncology, Faculty of Medicine, Cukurova University, Adana, Turkey
| | - Onur Atakisi
- Department of Chemistry, Faculty of Science and Letter, Kafkas University, Kars, Turkey
| | - Ahmet Cakir
- Department of Chemistry, Faculty of Science and Literature, Kilis 7 Aralık University, Kilis, Turkey
| |
Collapse
|
48
|
An N, Liu T, Zhu B, Yang Y, Yan X, Cao M, Chen Y, Liu R, Xia P, Liu C, Du J, Gao F, Yuan H, Liu H, Cai J. A bidirectional effect of Rac1 inhibition-Protects radiation-induced intestinal injury while inhibits tumor. Life Sci 2019; 240:117105. [PMID: 31786196 DOI: 10.1016/j.lfs.2019.117105] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 11/17/2019] [Accepted: 11/24/2019] [Indexed: 02/07/2023]
Abstract
AIMS To investigate whether Rac1 inhibition can alleviate radiation-induced intestinal injury (RIII), meanwhile exist no protection on tumors. MATERIALS AND METHODS Rac1 inhibition was achieved by its specific inhibitor, NSC23766. Mice were pretreated with different intraperitoneal injections, which were normal saline for NS group (N = 9), and 2.5 mg/kg and 5 mg/kg of NSC23766 for Low-Dose group (N = 9) and High-Dose group (N = 9), respectively. After total body irritation (10Gy), small intestinal tissues were collected for Hematoxylin-Eosin (H&E) staining and Terminal-deoxynucleotidyl Transferase Mediated dUTP Nick End Labeling (TUNEL). Intestinal epithelial and tumor cell lines, namely MODE-k and CT-26, were used to further study the role of Rac1 inhibition on radiation damage. Flow cytometry was used to detect changes in reactive oxygen species production, cell cycles and mitochondrial membrane potential, the latter was also checked by fluorescence microscope. Changes of protein-expression associated with apoptosis and cell cycles were detected by Western blotting to explain the possible molecular mechanism. KEY FINDINGS Height of intestine villi and depth of crypt were higher (P < 0.01) and apoptosis ratio lower (P < 0.01) in High-Dose group compared with those in NS group. After radiation, Rac1 inhibition pre-treatment improved the vitality (P < 0.01) and reduced the apoptosis (P < 0.01) in MODE-k while yielded opposite results in CT-26, and reduced ROS production of MODE-k (P < 0.01) while had little effect on that of CT-26. Rac1 inhibition differently affected the cell cycles of normal cells and that of tumor cells. SIGNIFICANCE Inhibition of Rac1 could alleviate RIII, meanwhile assist the killing effect of radiation on tumor cells.
Collapse
Affiliation(s)
- Ni An
- Department of Anesthesiology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Tingting Liu
- Department of Radiation Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China
| | - Baoliang Zhu
- Department of Radiation Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China
| | - Yajie Yang
- College of Basic Medicine, Second Military Medical University, Xiangyin Road, 200433 Shanghai, China
| | - Xiaodi Yan
- Department of Anesthesiology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Man Cao
- The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Yuanyuan Chen
- Department of Radiation Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China
| | - Ruling Liu
- Department of Radiation Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China
| | - Penglin Xia
- Department of Radiation Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China
| | - Cong Liu
- Department of Radiation Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China
| | - Jicong Du
- Department of Radiation Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China
| | - Fu Gao
- Department of Radiation Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China
| | - Hongbin Yuan
- Department of Anesthesiology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China.
| | - Hu Liu
- Department of Radiation Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China.
| | - Jianming Cai
- Department of Radiation Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China.
| |
Collapse
|
49
|
de Leve S, Wirsdörfer F, Jendrossek V. The CD73/Ado System-A New Player in RT Induced Adverse Late Effects. Cancers (Basel) 2019; 11:cancers11101578. [PMID: 31623231 PMCID: PMC6827091 DOI: 10.3390/cancers11101578] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 10/11/2019] [Accepted: 10/12/2019] [Indexed: 02/06/2023] Open
Abstract
Radiotherapy (RT) is a central component of standard treatment for many cancer patients. RT alone or in multimodal treatment strategies has a documented contribution to enhanced local control and overall survival of cancer patients, and cancer cure. Clinical RT aims at maximizing tumor control, while minimizing the risk for RT-induced adverse late effects. However, acute and late toxicities of IR in normal tissues are still important biological barriers to successful RT: While curative RT may not be tolerable, sub-optimal tolerable RT doses will lead to fatal outcomes by local recurrence or metastatic disease, even when accepting adverse normal tissue effects that decrease the quality of life of irradiated cancer patients. Technical improvements in treatment planning and the increasing use of particle therapy have allowed for a more accurate delivery of IR to the tumor volume and have thereby helped to improve the safety profile of RT for many solid tumors. With these technical and physical strategies reaching their natural limits, current research for improving the therapeutic gain of RT focuses on innovative biological concepts that either selectively limit the adverse effects of RT in normal tissues without protecting the tumor or specifically increase the radiosensitivity of the tumor tissue without enhancing the risk of normal tissue complications. The biology-based optimization of RT requires the identification of biological factors that are linked to differential radiosensitivity of normal or tumor tissues, and are amenable to therapeutic targeting. Extracellular adenosine is an endogenous mediator critical to the maintenance of homeostasis in various tissues. Adenosine is either released from stressed or injured cells or generated from extracellular adenine nucleotides by the concerted action of the ectoenzymes ectoapyrase (CD39) and 5′ ectonucleotidase (NT5E, CD73) that catabolize ATP to adenosine. Recent work revealed a role of the immunoregulatory CD73/adenosine system in radiation-induced fibrotic disease in normal tissues suggesting a potential use as novel therapeutic target for normal tissue protection. The present review summarizes relevant findings on the pathologic roles of CD73 and adenosine in radiation-induced fibrosis in different organs (lung, skin, gut, and kidney) that have been obtained in preclinical models and proposes a refined model of radiation-induced normal tissue toxicity including the disease-promoting effects of radiation-induced activation of CD73/adenosine signaling in the irradiated tissue environment. However, expression and activity of the CD73/adenosine system in the tumor environment has also been linked to increased tumor growth and tumor immune escape, at least in preclinical models. Therefore, we will discuss the use of pharmacologic inhibition of CD73/adenosine-signaling as a promising strategy for improving the therapeutic gain of RT by targeting both, malignant tumor growth and adverse late effects of RT with a focus on fibrotic disease. The consideration of the therapeutic window is particularly important in view of the increasing use of RT in combination with various molecularly targeted agents and immunotherapy to enhance the tumor radiation response, as such combinations may result in increased or novel toxicities, as well as the increasing number of cancer survivors.
Collapse
Affiliation(s)
- Simone de Leve
- Institute of Cell Biology (Cancer Research), University Hospital Essen, 45122 Essen, Germany.
| | - Florian Wirsdörfer
- Institute of Cell Biology (Cancer Research), University Hospital Essen, 45122 Essen, Germany.
| | - Verena Jendrossek
- Institute of Cell Biology (Cancer Research), University Hospital Essen, 45122 Essen, Germany.
| |
Collapse
|
50
|
C/EBPδ protects from radiation-induced intestinal injury and sepsis by suppression of inflammatory and nitrosative stress. Sci Rep 2019; 9:13953. [PMID: 31562350 PMCID: PMC6764943 DOI: 10.1038/s41598-019-49437-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 08/15/2019] [Indexed: 12/20/2022] Open
Abstract
Ionizing radiation (IR)-induced intestinal damage is characterized by a loss of intestinal crypt cells, intestinal barrier disruption and translocation of intestinal microflora resulting in sepsis-mediated lethality. We have shown that mice lacking C/EBPδ display IR-induced intestinal and hematopoietic injury and lethality. The purpose of this study was to investigate whether increased IR-induced inflammatory, oxidative and nitrosative stress promote intestinal injury and sepsis-mediated lethality in Cebpd−/− mice. We found that irradiated Cebpd−/− mice show decreased villous height, crypt depth, crypt to villi ratio and expression of the proliferation marker, proliferating cell nuclear antigen, indicative of intestinal injury. Cebpd−/− mice show increased expression of the pro-inflammatory cytokines (Il-6, Tnf-α) and chemokines (Cxcl1, Mcp-1, Mif-1α) and Nos2 in the intestinal tissues compared to Cebpd+/+ mice after exposure to TBI. Cebpd−/− mice show decreased GSH/GSSG ratio, increased S-nitrosoglutathione and 3-nitrotyrosine in the intestine indicative of basal oxidative and nitrosative stress, which was exacerbated by IR. Irradiated Cebpd-deficient mice showed upregulation of Claudin-2 that correlated with increased intestinal permeability, presence of plasma endotoxin and bacterial translocation to the liver. Overall these results uncover a novel role for C/EBPδ in protection against IR-induced intestinal injury by suppressing inflammation and nitrosative stress and underlying sepsis-induced lethality.
Collapse
|