1
|
Wass SV, Perapoch Amadó M, Northrop T, Marriott Haresign I, Phillips EAM. Foraging and inertia: Understanding the developmental dynamics of overt visual attention. Neurosci Biobehav Rev 2024; 169:105991. [PMID: 39722410 DOI: 10.1016/j.neubiorev.2024.105991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/05/2024] [Accepted: 12/19/2024] [Indexed: 12/28/2024]
Abstract
During early life, we develop the ability to choose what we focus on and what we ignore, allowing us to regulate perception and action in complex environments. But how does this change influence how we spontaneously allocate attention to real-world objects during free behaviour? Here, in this narrative review, we examine this question by considering the time dynamics of spontaneous overt visual attention, and how these develop through early life. Even in early childhood, visual attention shifts occur both periodically and aperiodically. These reorientations become more internally controlled as development progresses. Increasingly with age, attention states also develop self-sustaining attractor dynamics, known as attention inertia, in which the longer an attention episode lasts, the more the likelihood increases of its continuing. These self-sustaining dynamics are driven by amplificatory interactions between engagement, comprehension, and distractibility. We consider why experimental measures show decline in sustained attention over time, while real-world visual attention often demonstrates the opposite pattern. Finally, we discuss multi-stable attention states, where both hypo-arousal (mind-wandering) and hyper-arousal (fragmentary attention) may also show self-sustaining attractor dynamics driven by moment-by-moment amplificatory child-environment interactions; and we consider possible applications of this work, and future directions.
Collapse
Affiliation(s)
- S V Wass
- BabyDevLab, School of Psychology, University of East London, Water Lane, London E15 4LZ, UK.
| | - M Perapoch Amadó
- BabyDevLab, School of Psychology, University of East London, Water Lane, London E15 4LZ, UK
| | - T Northrop
- BabyDevLab, School of Psychology, University of East London, Water Lane, London E15 4LZ, UK
| | - I Marriott Haresign
- BabyDevLab, School of Psychology, University of East London, Water Lane, London E15 4LZ, UK
| | - E A M Phillips
- BabyDevLab, School of Psychology, University of East London, Water Lane, London E15 4LZ, UK
| |
Collapse
|
2
|
Kim AJ, Grégoire L, Anderson BA. Reliably measuring learning-dependent distractor suppression with eye tracking. Behav Res Methods 2024; 57:18. [PMID: 39695027 DOI: 10.3758/s13428-024-02552-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2024] [Indexed: 12/20/2024]
Abstract
In the field of psychological science, behavioral performance in computer-based cognitive tasks often exhibits poor reliability. The absence of reliable measures of cognitive processes contributes to non-reproducibility in the field and impedes the investigation of individual differences. Specifically in visual search paradigms, response time-based measures have shown poor test-retest reliability and internal consistency across attention capture and distractor suppression, but one study has demonstrated the potential for oculomotor measures to exhibit superior reliability. Therefore, in this study, we investigated three datasets to compare the reliability of learning-dependent distractor suppression measured via distractor fixations (oculomotor capture) and latency to fixate the target (fixation times). Our findings reveal superior split-half reliability of oculomotor capture compared to that of fixation times regardless of the critical distractor comparison, with the reliability of oculomotor capture in most cases falling within the range that is acceptable for the investigation of individual differences. We additionally find that older adults have superior oculomotor reliability compared with young adults, potentially addressing a significant limitation in the aging literature of high variability in response time measures due to slower responses. Our findings highlight the utility of measuring eye movements in the pursuit of reliable indicators of distractor processing and the need to further test and develop additional measures in other sensory domains to maximize statistical power, reliability, and reproducibility.
Collapse
Affiliation(s)
- Andy J Kim
- School of Gerontology, University of Southern California, 3715 McClintock Ave, Los Angeles, CA, 90089, USA.
| | - Laurent Grégoire
- Department of Psychological & Brain Sciences, Texas A&M University, College Station, TX, USA
| | - Brian A Anderson
- Department of Psychological & Brain Sciences, Texas A&M University, College Station, TX, USA
| |
Collapse
|
3
|
Unsworth N, Miller AL, Strayer DL. Individual differences in attention control: A meta-analysis and re-analysis of latent variable studies. Psychon Bull Rev 2024; 31:2487-2533. [PMID: 38769271 DOI: 10.3758/s13423-024-02516-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2024] [Indexed: 05/22/2024]
Abstract
A meta-analysis and re-analysis of prior latent variable studies was conducted in order to assess whether there is evidence for individual differences in broad attention control abilities. Data from 90 independent samples and over 23,000 participants suggested that most (84.4%) prior studies find evidence for a coherent attention control factor with average factor loadings of .51. This latent attention control factor was related to other cognitive ability factors including working memory, shifting, fluid intelligence, long-term memory, reading comprehension, and processing speed, as well as to self-reports of task-unrelated thoughts and task specific motivation. Further re-analyses and meta-analyses suggest that the results remained largely unchanged when considering various possible measurement issues. Examining the factor structure of attention control suggested evidence for sub-components of attention control (restraining, constraining and sustaining attention) which could be accounted for a by a higher-order factor. Additional re-analyses suggested that attention control represents a broad ability within models of cognitive abilities. Overall, these results provide evidence for attention control abilities as an important individual differences construct.
Collapse
Affiliation(s)
- Nash Unsworth
- Department of Psychology, University of Oregon, Eugene, OR, 97403, USA.
| | - Ashley L Miller
- Department of Psychology, University of California, Los Angeles, CA, USA
| | - Deanna L Strayer
- Department of Psychology, University of Oregon, Eugene, OR, 97403, USA
| |
Collapse
|
4
|
Yamashita J, Terashima H, Yoneya M, Maruya K, Oishi H, Kumada T. Pupil Trend Reflects Suboptimal Alertness Maintenance over 10 s in Vigilance and Working Memory Performance: An Exploratory Study. eNeuro 2024; 11:ENEURO.0250-24.2024. [PMID: 39557569 DOI: 10.1523/eneuro.0250-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 10/21/2024] [Accepted: 11/10/2024] [Indexed: 11/20/2024] Open
Abstract
Maintaining concentration on demanding cognitive tasks, such as vigilance (VG) and working memory (WM) tasks, is crucial for successful task completion. Previous research suggests that internal concentration maintenance fluctuates, potentially declining to suboptimal states, which can influence trial-by-trial performance in these tasks. However, the timescale of such alertness maintenance, as indicated by slow changes in pupil diameter, has not been thoroughly investigated. This study explored whether "pupil trends"-which selectively signal suboptimal tonic alertness maintenance at various timescales-negatively correlate with trial-by-trial performance in VG and WM tasks. Using the psychomotor vigilance task (VG) and the visual-spatial two-back task (WM), we found that human pupil trends lasting over 10 s were significantly higher in trials with longer reaction times, indicating poorer performance, compared with shorter reaction time trials, which indicated better performance. The attention network test further validated that these slow trends reflect suboptimal states related to (tonic) alertness maintenance rather than suboptimal performance specific to VG and WM tasks, which is more associated with (phasic) responses to instantaneous interference. These findings highlight the potential role of detecting and compensating for nonoptimal states in VG and WM performance, significantly beyond the 10 s timescale. Additionally, the findings suggest the possibility of estimating human concentration during various visual tasks, even when rapid pupil changes occur due to luminance fluctuations.
Collapse
Affiliation(s)
- Jumpei Yamashita
- NTT Access Network Service Systems Laboratories, Nippon Telegraph and Telephone Corporation, Tokyo 180-8585, Japan
| | - Hiroki Terashima
- NTT Communication Science Laboratories, Nippon Telegraph and Telephone Corporation, Kanagawa 243-0198, Japan
| | - Makoto Yoneya
- NTT Communication Science Laboratories, Nippon Telegraph and Telephone Corporation, Kanagawa 243-0198, Japan
| | - Kazushi Maruya
- NTT Communication Science Laboratories, Nippon Telegraph and Telephone Corporation, Kanagawa 243-0198, Japan
| | - Haruo Oishi
- NTT Access Network Service Systems Laboratories, Nippon Telegraph and Telephone Corporation, Tokyo 180-8585, Japan
| | - Takatsune Kumada
- Graduate School of Informatics, Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
5
|
Zhou J, Lin M, Xu W. Individual differences in baseline eye movement indices: Examining the relationships between baseline pupil size, inhibitory control, and fixation stability. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2024; 24:1084-1095. [PMID: 39198300 DOI: 10.3758/s13415-024-01213-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/31/2024] [Indexed: 09/01/2024]
Abstract
The relationship among baseline pupil size, fixation stability, and inhibitory control were examined in this study. Participants performed a baseline eye measure in which they were instructed to stare at a fixation dot on screen for 2 min. Following the baseline eye measure, participants completed an antisaccade task to measure inhibitory control ability. We found a correlation between baseline pupil size variability and inhibitory control, as well as between fixation stability and inhibitory control. We showed that participants with better inhibitory control exhibited larger variability in pupil size, and those with better fixation stability showed superior inhibitory control ability. Overall, our results indicate that there are significant correlations between inhibitory control and baseline pupil size, as well as between inhibitory control and fixation stability.
Collapse
Affiliation(s)
- Junyi Zhou
- School of Physical Education and Sport Science, Fujian Normal University, 1 Keji Rd., Minhou District, Fuzhou, 350117, Fujian, China
| | - Min Lin
- School of Physical Education and Sport Science, Fujian Normal University, 1 Keji Rd., Minhou District, Fuzhou, 350117, Fujian, China
- Nanxing Middle School, 18 Binxi Rd., Shuitou Town, Nan'an City, Quanzhou, 362342, Fujian, China
| | - Wenxin Xu
- School of Physical Education and Sport Science, Fujian Normal University, 1 Keji Rd., Minhou District, Fuzhou, 350117, Fujian, China.
| |
Collapse
|
6
|
Grimm C, Duss SN, Privitera M, Munn BR, Karalis N, Frässle S, Wilhelm M, Patriarchi T, Razansky D, Wenderoth N, Shine JM, Bohacek J, Zerbi V. Tonic and burst-like locus coeruleus stimulation distinctly shift network activity across the cortical hierarchy. Nat Neurosci 2024; 27:2167-2177. [PMID: 39284964 PMCID: PMC11537968 DOI: 10.1038/s41593-024-01755-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 08/07/2024] [Indexed: 11/07/2024]
Abstract
Noradrenaline (NA) release from the locus coeruleus (LC) changes activity and connectivity in neuronal networks across the brain, modulating multiple behavioral states. NA release is mediated by both tonic and burst-like LC activity. However, it is unknown whether the functional changes in target areas depend on these firing patterns. Using optogenetics, photometry, electrophysiology and functional magnetic resonance imaging in mice, we show that tonic and burst-like LC firing patterns elicit brain responses that hinge on their distinct NA release dynamics. During moderate tonic LC activation, NA release engages regions associated with associative processing, while burst-like stimulation biases the brain toward sensory processing. These activation patterns locally couple with increased astrocytic and inhibitory activity and change the brain's topological configuration in line with the hierarchical organization of the cerebral cortex. Together, these findings reveal how the LC-NA system achieves a nuanced regulation of global circuit operations.
Collapse
Affiliation(s)
- Christina Grimm
- Neural Control of Movement Lab, Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
- Neuro-X institute, School of Engineering (STI), EPFL, Lausanne, Switzerland
- CIBM Center for Biomedical Imaging, Lausanne, Switzerland
| | - Sian N Duss
- Laboratory of Molecular and Behavioral Neuroscience, Institute for Neuroscience, Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
- Neuroscience Center Zürich, ETH Zürich and University of Zürich, Zürich, Switzerland
| | - Mattia Privitera
- Laboratory of Molecular and Behavioral Neuroscience, Institute for Neuroscience, Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
- Neuroscience Center Zürich, ETH Zürich and University of Zürich, Zürich, Switzerland
| | - Brandon R Munn
- School of Physics, The University of Sydney, Sydney, New South Wales, Australia
- Brain and Mind Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Nikolaos Karalis
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute-ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Stefan Frässle
- Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zürich & ETH Zürich, Zürich, Switzerland
| | - Maria Wilhelm
- Laboratory of Molecular and Behavioral Neuroscience, Institute for Neuroscience, Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
- Neuroscience Center Zürich, ETH Zürich and University of Zürich, Zürich, Switzerland
| | - Tommaso Patriarchi
- Neuroscience Center Zürich, ETH Zürich and University of Zürich, Zürich, Switzerland
- Chemical Neuropharmacology, Institute of Pharmacology and Toxicology, University of Zürich, Zürich, Switzerland
| | - Daniel Razansky
- Neuroscience Center Zürich, ETH Zürich and University of Zürich, Zürich, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zürich, Zürich, Switzerland
- Institute of Biological and Medical Imaging (IBMI), Technical University of Munich and Helmholtz Center Munich, Munich, Germany
| | - Nicole Wenderoth
- Neural Control of Movement Lab, Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
- Neuroscience Center Zürich, ETH Zürich and University of Zürich, Zürich, Switzerland
| | - James M Shine
- Brain and Mind Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Johannes Bohacek
- Laboratory of Molecular and Behavioral Neuroscience, Institute for Neuroscience, Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland.
- Neuroscience Center Zürich, ETH Zürich and University of Zürich, Zürich, Switzerland.
| | - Valerio Zerbi
- Neural Control of Movement Lab, Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland.
- Neuro-X institute, School of Engineering (STI), EPFL, Lausanne, Switzerland.
- CIBM Center for Biomedical Imaging, Lausanne, Switzerland.
- Department of Psychiatry, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
- Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
7
|
Torres AS, Robison MK, McClure SM, Brewer GA. The influence of transcranial direct current stimulation to the trigeminal nerve on attention and arousal. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2024; 24:860-880. [PMID: 39107465 DOI: 10.3758/s13415-024-01205-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/02/2024] [Indexed: 09/13/2024]
Abstract
One mechanism by which transcranial direct current stimulation (tDCS) has been proposed to improve attention is by transcutaneous stimulation of cranial nerves, thereby activating the locus coeruleus (LC). Specifically, placement of the electrodes over the frontal bone and mastoid is thought to facilitate current flow across the face as a path of least resistance. The face is innervated by the trigeminal nerve, and the trigeminal nerve is interconnected with the LC. In this study, we tested whether stimulating the trigeminal nerve impacts indices of LC activity and performance on a sustained attention task. We replicated previous research that shows deterioration in task performance, increases in the rate of task-unrelated thoughts, and reduced pupil responses due to time on task irrespective of tDCS condition (sham, anodal, and cathodal stimulation). Importantly, tDCS did not influence pupil dynamics (pretrial or stimulus-evoked), self-reported attention state, nor task performance in active versus sham stimulation conditions. The findings reported here are consistent with theories about arousal centered on a hypothesized link between LC activity indexed by pupil size, task performance, and self-reported attention state but fail to support hypotheses that tDCS over the trigeminal nerve influences indices of LC function.
Collapse
Affiliation(s)
- Alexis S Torres
- Department of Psychology, Arizona State University, Tempe, AZ, USA
| | - Matthew K Robison
- Department of Psychology, University of Texas at Arlington, Arlington, TX, USA
| | - Samuel M McClure
- Department of Psychology, Arizona State University, Tempe, AZ, USA
| | - Gene A Brewer
- Department of Psychology, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
8
|
Wang C, Chen S, Cheng Z, Xia S, Fei CJ, Ye L, Gong L, Xi C, Wang Y. Characteristics of locus coeruleus functional connectivity network in patients with comorbid migraine and insomnia. J Headache Pain 2024; 25:159. [PMID: 39333887 PMCID: PMC11437901 DOI: 10.1186/s10194-024-01877-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 09/24/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Migraine and insomnia are prevalent conditions that often co-occur, each exacerbating the other and substantially impacting the quality of life. The locus coeruleus (LC), a brainstem region responsible for norepinephrine synthesis, participates in pain modulation, sleep/wake cycles, and emotional regulation, rendering it a potential nexus in the comorbidity of migraine and insomnia. Disruptions in the LC-noradrenergic system have been hypothesized to contribute to the comorbidities of migraine and insomnia, although neuroimaging evidence in humans remains scarce. In this study, we aimed to investigate the intrinsic functional connectivity (FC) network of the LC in patients with comorbid migraine and subjective chronic insomnia and patients with migraine with no insomnia (MnI) using resting-state functional magnetic resonance imaging (rs-fMRI) and seed-based FC analyses. METHODS In this cross-sectional study, 30 patients with comorbid migraine and chronic insomnia (MI), 30 patients with MnI, and 30 healthy controls (HCs) were enrolled. Participants underwent neuropsychological testing and rs-fMRI. The LC-FC network was constructed using seed-based voxel-wise FC analysis. To identify group differences in LC-FC networks, voxel-wise covariance analysis was conducted with sex and age as covariates. Subsequently, a partial correlation analysis was conducted to probe the clinical relevance of aberrant LC-FC in patients with MI and MnI. RESULTS Except for the insomnia score, no other significant difference was detected in demographic characteristics and behavioral performance between the MI and MnI groups. Compared with HCs, patients with MI exhibited altered LC-FC in several brain regions, including the dorsomedial prefrontal cortex (DMPFC), anterior cerebellum, dorsolateral prefrontal cortex (DLPFC), thalamus, and parahippocampal gyrus (PHG). Lower FC between the LC and DLPFC was associated with greater insomnia severity, whereas higher FC between the LC and DMPFC was linked to longer migraine attack duration in the MI group. CONCLUSION Our findings reveal the presence of aberrant LC-FC networks in patients with MI, providing neuroimaging evidence of the interplay between these conditions. The identified LC-FC alterations may serve as potential targets for therapeutic interventions and highlight the importance of considering the LC-noradrenergic system in the management of MI.
Collapse
Affiliation(s)
- Changlin Wang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- Department of Neurology, The Third Affiliated Hospital of Anhui Medical University, Heifei, 230061, Anhui, China
| | - Sishi Chen
- Department of Neurology, The Third Affiliated Hospital of Anhui Medical University, Heifei, 230061, Anhui, China
| | - Zihan Cheng
- Department of Neurology, The Third Affiliated Hospital of Anhui Medical University, Heifei, 230061, Anhui, China
| | - Shiyong Xia
- Department of Radiology, The Third Affiliated Hospital of Anhui Medical University, Heifei, 230061, Anhui, China
| | - Chang Jun Fei
- Department of Radiology, The Third Affiliated Hospital of Anhui Medical University, Heifei, 230061, Anhui, China
| | - Li Ye
- Department of Neurology, The Third Affiliated Hospital of Anhui Medical University, Heifei, 230061, Anhui, China
| | - Liang Gong
- Department of Neurology, Chengdu Second People's Hospital, The Affiliated Hospital of Chengdu Medical College, Chengdu, 610017, Sichuan, China.
| | - Chunhua Xi
- Department of Neurology, The Third Affiliated Hospital of Anhui Medical University, Heifei, 230061, Anhui, China.
| | - Yu Wang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.
| |
Collapse
|
9
|
Walcher S, Korda Ž, Körner C, Benedek M. How workload and availability of spatial reference shape eye movement coupling in visuospatial working memory. Cognition 2024; 249:105815. [PMID: 38761645 DOI: 10.1016/j.cognition.2024.105815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/27/2024] [Accepted: 05/13/2024] [Indexed: 05/20/2024]
Abstract
Eyes are active in memory recall and visual imagination, yet our grasp of the underlying qualities and factors of these internally coupled eye movements is limited. To explore this, we studied 50 participants, examining how workload, spatial reference availability, and imagined movement direction influence internal coupling of eye movements. We designed a visuospatial working memory task in which participants mentally moved a black patch along a path within a matrix and each trial involved one step along this path (presented via speakers: up, down, left, or right). We varied workload by adjusting matrix size (3 × 3 vs. 5 × 5), manipulated availability of a spatial frame of reference by presenting either a blank screen (requiring participants to rely solely on their mental representation of the matrix) or spatial reference in the form of an empty matrix, and contrasted active task performance to two control conditions involving only active or passive listening. Our findings show that eye movements consistently matched the imagined movement of the patch in the matrix, not driven solely by auditory or semantic cues. While workload influenced pupil diameter, perceived demand, and performance, it had no observable impact on internal coupling. The availability of spatial reference enhanced coupling of eye movements, leading more frequent, precise, and resilient saccades against noise and bias. The absence of workload effects on coupled saccades in our study, in combination with the relatively high degree of coupling observed even in the invisible matrix condition, indicates that eye movements align with shifts in attention across both visually and internally represented information. This suggests that coupled eye movements are not merely strategic efforts to reduce workload, but rather a natural response to where attention is directed.
Collapse
Affiliation(s)
- Sonja Walcher
- Creative Cognition Lab, Institute of Psychology, University of Graz, Graz, Austria.
| | - Živa Korda
- Creative Cognition Lab, Institute of Psychology, University of Graz, Graz, Austria.
| | - Christof Körner
- Cognitive Psychology & Neuroscience, Institute of Psychology, University of Graz, Graz, Austria.
| | - Mathias Benedek
- Creative Cognition Lab, Institute of Psychology, University of Graz, Graz, Austria.
| |
Collapse
|
10
|
Welhaf MS. Individual differences in working memory capacity and temporal preparation: A secondary reanalysis. Atten Percept Psychophys 2024; 86:2013-2028. [PMID: 39256260 DOI: 10.3758/s13414-024-02951-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/13/2024] [Indexed: 09/12/2024]
Abstract
The ability to prepare and maintain an optimal level of preparedness for action, across some unknown duration, is critical for human behavior. Temporal preparation has historically been analyzed in the context of reaction time (RT) experiments where the interval varies between the start of the trial, or foreperiod (FP), and the required response. Two main findings have come out of such paradigms: the variable FP effect (longer RTs to shorter vs. longer FPs) and the sequential FP effect (longer RTs when shorter FPs follow longer FPs). Several theoretical views of these FP effects have been proposed with some suggesting a dissociation while others argue for an implicit process driven by memory traces. One possible method to test these views of FP effects is to examine how individual differences in working memory capacity (WMC) moderate such effects. To this end, I reanalyzed data from three studies in which participants completed measures of WMC and a simple RT task with a variable FP. Results suggest that individual differences in WMC were related to the magnitude of the variable FP and the sequential FP effect in two of three individual studies. A "mega-analysis" provided supportive evidence for a relationship between WMC and both forms of FP effects. The present combined experimental-individual differences study provides a novel approach to better understand how and why individuals vary in temporal preparation ability. Through leveraging several large-scale databases unseen in FP research, I provide a new way of understanding FP effects and response timing more generally.
Collapse
Affiliation(s)
- Matthew S Welhaf
- Department of Psychological and Brain Sciences, Washington University in St. Louis, CB 1125 One Brookings Drive, St. Louis, St. Louis, MO, 63130-4899, USA.
| |
Collapse
|
11
|
Bennett IJ, Langley J, Sun A, Solis K, Seitz AR, Hu XP. Locus coeruleus contrast and diffusivity metrics differentially relate to age and memory performance. Sci Rep 2024; 14:15372. [PMID: 38965363 PMCID: PMC11224383 DOI: 10.1038/s41598-024-66238-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 06/28/2024] [Indexed: 07/06/2024] Open
Abstract
Neurocognitive aging researchers are increasingly focused on the locus coeruleus, a neuromodulatory brainstem structure that degrades with age. With this rapid growth, the field will benefit from consensus regarding which magnetic resonance imaging (MRI) metrics of locus coeruleus structure are most sensitive to age and cognition. To address this need, the current study acquired magnetization transfer- and diffusion-weighted MRI images in younger and older adults who also completed a free recall memory task. Results revealed significantly larger differences between younger and older adults for maximum than average magnetization transfer-weighted contrast (MTC), axial than mean or radial single-tensor diffusivity (DTI), and free than restricted multi-compartment diffusion (NODDI) metrics in the locus coeruleus; with maximum MTC being the best predictor of age group. Age effects for all imaging modalities interacted with sex, with larger age group differences in males than females for MTC and NODDI metrics. Age group differences also varied across locus coeruleus subdivision for DTI and NODDI metrics, and across locus coeruleus hemispheres for MTC. Within older adults, however, there were no significant effects of age on MTC or DTI metrics, only an interaction between age and sex for free diffusion. Finally, independent of age and sex, higher restricted diffusion in the locus coeruleus was significantly related to better (lower) recall variability, but not mean recall. Whereas MTC has been widely used in the literature, our comparison between the average and maximum MTC metrics, inclusion of DTI and NODDI metrics, and breakdowns by locus coeruleus subdivision and hemisphere make important and novel contributions to our understanding of the aging of locus coeruleus structure.
Collapse
Affiliation(s)
- Ilana J Bennett
- Department of Psychology, University of California, 900 University Avenue, 2127 Psychology Building, Riverside, CA, 92521-0426, USA.
| | - Jason Langley
- Center for Advanced Neuroimaging, University of California Riverside, Riverside, CA, USA
| | - Andrew Sun
- Department of Psychology, Northeastern University, Boston, MA, USA
| | - Kitzia Solis
- Department of Psychology, University of California, 900 University Avenue, 2127 Psychology Building, Riverside, CA, 92521-0426, USA
| | - Aaron R Seitz
- Department of Psychology, University of California, 900 University Avenue, 2127 Psychology Building, Riverside, CA, 92521-0426, USA
- Department of Psychology, Northeastern University, Boston, MA, USA
| | - Xiaoping P Hu
- Center for Advanced Neuroimaging, University of California Riverside, Riverside, CA, USA
- Department of Bioengineering, University of California Riverside, Riverside, CA, USA
| |
Collapse
|
12
|
Kiss L, Szikora B, Linnell KJ. Music in the eye of the beholder: a pupillometric study on preferred background music, attentional state, and arousal. PSYCHOLOGICAL RESEARCH 2024; 88:1616-1628. [PMID: 38652303 PMCID: PMC11281972 DOI: 10.1007/s00426-024-01963-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 03/25/2024] [Indexed: 04/25/2024]
Abstract
Although background music listening during attention-demanding tasks is common, there is little research on how it affects fluctuations in attentional state and how these fluctuations are linked to physiological arousal. The present study built on Kiss and Linnell (2021) - showing a decrease in mind-wandering and increase in task-focus states with background music - to explore the link between attentional state and arousal with and without background music. 39 students between the ages of 19-32 completed a variation of the Psychomotor Vigilance Task in silence and with their self-selected background music (music they would normally listen to during attention-demanding tasks). Objective arousal measures (pretrial pupil diameter and task-evoked pupillary responses) and subjective attentional state measures (mind-wandering, task-focus, and external-distraction states) were collected throughout the task. Results showed a link between attentional state and arousal and indicated that background music increased arousal. Importantly, arousal mediated the effect of music to decrease mind-wandering and increase task-focus attentional states, suggesting that the arousal increase induced by music was behind the changes in attentional states. These findings show, for the first time in the context of background music listening, that there is a link between arousal and attentional state.
Collapse
Affiliation(s)
- Luca Kiss
- Department of Psychology, Goldsmiths University of London, 8 Lewisham Way New Cross, London, SE14 6NW, UK.
| | | | - Karina J Linnell
- Department of Psychology, Goldsmiths University of London, 8 Lewisham Way New Cross, London, SE14 6NW, UK
| |
Collapse
|
13
|
Cao J, Luo J, Zhou J, Jiang Y. Attention switching through text dissimilarity: a cognition research on fragmented reading behavior. Front Hum Neurosci 2024; 18:1402746. [PMID: 38983754 PMCID: PMC11231079 DOI: 10.3389/fnhum.2024.1402746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 06/03/2024] [Indexed: 07/11/2024] Open
Abstract
People tend to obtain information through fragmented reading. However, this behavior itself might lead to distraction and affect cognitive ability. To address it, it is necessary to understand how fragmented reading behavior influences readers' attention switching. In this study, the researchers first collected online news that had 6 theme words and 60 sentences to compose the experimental material, then defined the degree of text dissimilarity, used to measure the degree of attention switching based on the differences in text content, and conducted an EEG experiment based on P200. The results showed that even after reading the fragmented text content with the same overall content, people in subsequent cognitive tasks had more working memory capacity, lower working memory load, and less negative impact on cognitive ability with the text content with lower text dissimilarity. Additionally, attention switching caused by differences in concept or working memory representation of text content might be the key factor affecting cognitive ability in fragmented reading behavior. The findings disclosed the relation between cognitive ability and fragmented reading and attention switching, opening a new perspective on the method of text dissimilarity. This study provides some references on how to reduce the negative impact of fragmented reading on cognitive ability on new media platforms.
Collapse
Affiliation(s)
- Jingjing Cao
- School of Management Science and Real Estate, Chongqing University, Chongqing, China
| | - Jingtao Luo
- College of Mechanical and Vehicle Engineering, Chongqing University, Chongqing, China
| | - Jia Zhou
- School of Management Science and Real Estate, Chongqing University, Chongqing, China
| | - Yunshan Jiang
- School of Management Science and Real Estate, Chongqing University, Chongqing, China
| |
Collapse
|
14
|
Elbasheir A, Katrinli S, Kearney BE, Lanius RA, Harnett NG, Carter SE, Ely TD, Bradley B, Gillespie CF, Stevens JS, Lori A, van Rooij SJH, Powers A, Jovanovic T, Smith AK, Fani N. Racial Discrimination, Neural Connectivity, and Epigenetic Aging Among Black Women. JAMA Netw Open 2024; 7:e2416588. [PMID: 38869898 PMCID: PMC11177169 DOI: 10.1001/jamanetworkopen.2024.16588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 04/10/2024] [Indexed: 06/14/2024] Open
Abstract
Importance Racial discrimination increases the risk of adverse brain health outcomes, potentially via neuroplastic changes in emotion processing networks. The involvement of deep brain regions (brainstem and midbrain) in these responses is unknown. Potential associations of racial discrimination with alterations in deep brain functional connectivity and accelerated epigenetic aging, a process that substantially increases vulnerability to health problems, are also unknown. Objective To examine associations of racial discrimination with brainstem and midbrain resting-state functional connectivity (RSFC) and DNA methylation age acceleration (DMAA) among Black women in the US. Design, Setting, and Participants This cohort study was conducted between January 1, 2012, and February 28, 2015, and included a community-based sample of Black women (aged ≥18 years) recruited as part of the Grady Trauma Project. Self-reported racial discrimination was examined in association with seed-to-voxel brain connectivity, including the locus coeruleus (LC), periaqueductal gray (PAG), and superior colliculus (SC); an index of DMAA (Horvath clock) was also evaluated. Posttraumatic stress disorder (PTSD), trauma exposure, and age were used as covariates in statistical models to isolate racial discrimination-related variance. Data analysis was conducted between January 10 and October 30, 2023. Exposure Varying levels of racial discrimination exposure, other trauma exposure, and posttraumatic stress disorder (PTSD). Main Outcomes and Measures Racial discrimination frequency was assessed with the Experiences of Discrimination Scale, other trauma exposure was evaluated with the Traumatic Events Inventory, and current PTSD was evaluated with the PTSD Symptom Scale. Seed-to-voxel functional connectivity analyses were conducted with LC, PAG, and SC seeds. To assess DMAA, the Methylation EPIC BeadChip assay (Illumina) was conducted with whole-blood samples from a subset of 49 participants. Results This study included 90 Black women, with a mean (SD) age of 38.5 (11.3) years. Greater racial discrimination was associated with greater left LC RSFC to the bilateral precuneus (a region within the default mode network implicated in rumination and reliving of past events; cluster size k = 228; t85 = 4.78; P < .001, false discovery rate-corrected). Significant indirect effects were observed for the left LC-precuneus RSFC on the association between racial discrimination and DMAA (β [SE] = 0.45 [0.16]; 95% CI, 0.12-0.77). Conclusions and Relevance In this study, more frequent racial discrimination was associated with proportionately greater RSFC of the LC to the precuneus, and these connectivity alterations were associated with DMAA. These findings suggest that racial discrimination contributes to accelerated biological aging via altered connectivity between the LC and default mode network, increasing vulnerability for brain health problems.
Collapse
Affiliation(s)
- Aziz Elbasheir
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
| | - Seyma Katrinli
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
| | - Breanne E. Kearney
- Department of Neuroscience, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
- Department of Psychiatry, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Ruth A. Lanius
- Department of Neuroscience, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Nathaniel G. Harnett
- Division of Depression and Anxiety, McLean Hospital, Belmont, Massachusetts
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
| | | | - Timothy D. Ely
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
| | - Bekh Bradley
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
- Atlanta Veterans Affairs Medical Center, Atlanta, Georgia
| | - Charles F. Gillespie
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
| | - Jennifer S. Stevens
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
| | - Adriana Lori
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
| | - Sanne J. H. van Rooij
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
| | - Abigail Powers
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
| | - Tanja Jovanovic
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University, Detroit, Michigan
| | - Alicia K. Smith
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
- Department of Gynecology and Obstetrics, Emory University School of Medicine, Atlanta, Georgia
| | - Negar Fani
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
15
|
Scharinger C. Task-irrelevant decorative pictures increase cognitive load during text processing but have no effects on learning or working memory performance: an EEG and eye-tracking study. PSYCHOLOGICAL RESEARCH 2024; 88:1362-1388. [PMID: 38502229 PMCID: PMC11142986 DOI: 10.1007/s00426-024-01939-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 02/08/2024] [Indexed: 03/21/2024]
Abstract
Decorative pictures (DP) are often used in multimedia task materials and are commonly considered so-called seductive details as they are commonly not task-relevant. Typically, DP result in mixed effects on behavioral performance measures. The current study focused on the effects of DP on the cognitive load during text reading and working memory task performance. The theta and alpha frequency band power of the electroencephalogram (EEG) and pupil dilation served as proxies of cognitive load. The number of fixations, mean fixation durations, and the number of transitions served as proxies of the attentional focus. For both, text reading and n-back working memory tasks, the presence and congruency of DP were manipulated in four task conditions. DP did neither affect behavioral performance nor subjective ratings of emotional-motivational factors. However, in both tasks, DP increased the cognitive load as revealed by the EEG alpha frequency band power and (at least to some extent) by subjective effort ratings. Notably, the EEG alpha frequency band power was a quite reliable and sensitive proxy of cognitive load. Analyzing the EEG data stimulus-locked and fixation-related, the EEG alpha frequency band power revealed a difference in global and local cognitive load. In sum, the current study underlines the feasibility and use of EEG for multimedia research, especially when combined with eye-tracking.
Collapse
Affiliation(s)
- Christian Scharinger
- Leibniz-Institut für Wissensmedien Tübingen, Schleichstr. 6, 72076, Tübingen, Germany.
| |
Collapse
|
16
|
Robison MK, Garner LD. Pupillary correlates of individual differences in n-back task performance. Atten Percept Psychophys 2024; 86:799-807. [PMID: 38326632 DOI: 10.3758/s13414-024-02853-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2024] [Indexed: 02/09/2024]
Abstract
We used pupillometry during a 2-back task to examine individual differences in the intensity and consistency of attention and their relative role in a working memory task. We used sensitivity, or the ability to distinguish targets (2-back matches) and nontargets, as the measure of task performance; task-evoked pupillary responses (TEPRs) as the measure of attentional intensity; and intraindividual pretrial pupil variability as the measure of attentional consistency. TEPRs were greater on target trials compared with nontarget trials, although there was no difference in TEPR magnitude when participants answered correctly or incorrectly to targets. Importantly, this effect interacted with performance: high performers showed a greater separation in their TEPRs between targets and nontargets, whereas there was little difference for low performers. Further, in regression analysis, larger TEPRs on target trials predicted better performance, whereas larger TEPRs on nontarget trials predicted worse performance. Sensitivity positively correlated with average pretrial pupil diameter and negatively correlated with intraindividual variability in pretrial pupil diameter. Overall, we found evidence that both attentional intensity (TEPRs) and consistency (pretrial pupil variation) predict performance on an n-back working memory task.
Collapse
Affiliation(s)
- Matthew K Robison
- Department of Psychology, The University of Texas at Arlington, Arlington, TX, USA.
| | - Lauren D Garner
- Department of Psychology, The University of Texas at Arlington, Arlington, TX, USA
| |
Collapse
|
17
|
Koevoet D, Strauch C, Van der Stigchel S, Mathôt S, Naber M. Revealing visual working memory operations with pupillometry: Encoding, maintenance, and prioritization. WILEY INTERDISCIPLINARY REVIEWS. COGNITIVE SCIENCE 2024; 15:e1668. [PMID: 37933423 DOI: 10.1002/wcs.1668] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 11/08/2023]
Abstract
Pupillary dynamics reflect effects of distinct and important operations of visual working memory: encoding, maintenance, and prioritization. Here, we review how pupil size predicts memory performance and how it provides novel insights into the mechanisms of each operation. Visual information must first be encoded into working memory with sufficient precision. The depth of this encoding process couples to arousal-linked baseline pupil size as well as a pupil constriction response before and after stimulus onset, respectively. Subsequently, the encoded information is maintained over time to ensure it is not lost. Pupil dilation reflects the effortful maintenance of information, wherein storing more items is accompanied by larger dilations. Lastly, the most task-relevant information is prioritized to guide upcoming behavior, which is reflected in yet another dilatory component. Moreover, activated content in memory can be pupillometrically probed directly by tagging visual information with distinct luminance levels. Through this luminance-tagging mechanism, pupil light responses reveal whether dark or bright items receive more attention during encoding and prioritization. Together, conceptualizing pupil responses as a sum of distinct components over time reveals insights into operations of visual working memory. From this viewpoint, pupillometry is a promising avenue to study the most vital operations through which visual working memory works. This article is categorized under: Psychology > Attention Psychology > Memory Psychology > Theory and Methods.
Collapse
Affiliation(s)
- Damian Koevoet
- Experimental Psychology, Helmholtz Institute, Utrecht University, Utrecht, The Netherlands
| | - Christoph Strauch
- Experimental Psychology, Helmholtz Institute, Utrecht University, Utrecht, The Netherlands
| | | | - Sebastiaan Mathôt
- Department of Psychology, University of Groningen, Groningen, The Netherlands
| | - Marnix Naber
- Experimental Psychology, Helmholtz Institute, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
18
|
Kim AJ, Grégoire L, Anderson BA. Reliably Measuring Learning-Dependent Distractor Suppression with Eye Tracking. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.23.581757. [PMID: 38464286 PMCID: PMC10925086 DOI: 10.1101/2024.02.23.581757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
In the field of psychological science, behavioral performance in computer-based cognitive tasks often exhibits poor reliability. The absence of reliable measures of cognitive processes contributes to non-reproducibility in the field and impedes investigation of individual differences. Specifically in visual search paradigms, response time-based measures have shown poor test-retest reliability and internal consistency across attention capture and distractor suppression, but one study has demonstrated the potential for oculomotor measures to exhibit superior reliability. Therefore, in this study, we investigated three datasets to compare the reliability of learning-dependent distractor suppression measured via distractor fixations (oculomotor capture) and latency to fixate the target (fixation times). Our findings reveal superior split-half reliability of oculomotor capture compared to that of fixation times regardless of the critical distractor comparison, with the reliability of oculomotor capture in most cases falling within the range that is acceptable for the investigation of individual differences. We additionally find that older adults have superior oculomotor reliability compared with young adults, potentially addressing a significant limitation in the aging literature of high variability in response time measures due to slower responses. Our findings highlight the utility of measuring eye movements in the pursuit of reliable indicators of distractor processing and the need to further test and develop additional measures in other sensory domains to maximize statistical power, reliability, and reproducibility.
Collapse
Affiliation(s)
- Andy J Kim
- University of Southern California, School of Gerontology
| | - Laurent Grégoire
- Texas A&M University, Department of Psychological & Brain Sciences
| | - Brian A Anderson
- Texas A&M University, Department of Psychological & Brain Sciences
| |
Collapse
|
19
|
Seeburger DT, Xu N, Ma M, Larson S, Godwin C, Keilholz SD, Schumacher EH. Time-varying functional connectivity predicts fluctuations in sustained attention in a serial tapping task. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2024; 24:111-125. [PMID: 38253775 PMCID: PMC10979291 DOI: 10.3758/s13415-024-01156-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/08/2024] [Indexed: 01/24/2024]
Abstract
The mechanisms for how large-scale brain networks contribute to sustained attention are unknown. Attention fluctuates from moment to moment, and this continuous change is consistent with dynamic changes in functional connectivity between brain networks involved in the internal and external allocation of attention. In this study, we investigated how brain network activity varied across different levels of attentional focus (i.e., "zones"). Participants performed a finger-tapping task, and guided by previous research, in-the-zone performance or state was identified by low reaction time variability and out-of-the-zone as the inverse. In-the-zone sessions tended to occur earlier in the session than out-of-the-zone blocks. This is unsurprising given the way attention fluctuates over time. Employing a novel method of time-varying functional connectivity, called the quasi-periodic pattern analysis (i.e., reliable, network-level low-frequency fluctuations), we found that the activity between the default mode network (DMN) and task positive network (TPN) is significantly more anti-correlated during in-the-zone states versus out-of-the-zone states. Furthermore, it is the frontoparietal control network (FPCN) switch that differentiates the two zone states. Activity in the dorsal attention network (DAN) and DMN were desynchronized across both zone states. During out-of-the-zone periods, FPCN synchronized with DMN, while during in-the-zone periods, FPCN switched to synchronized with DAN. In contrast, the ventral attention network (VAN) synchronized more closely with DMN during in-the-zone periods compared with out-of-the-zone periods. These findings demonstrate that time-varying functional connectivity of low frequency fluctuations across different brain networks varies with fluctuations in sustained attention or other processes that change over time.
Collapse
Affiliation(s)
- Dolly T Seeburger
- School of Psychology, Georgia Institute of Technology, Atlanta, GA, USA.
| | - Nan Xu
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Marcus Ma
- College of Computing, Georgia Institute of Technology, Atlanta, GA, USA
| | - Sam Larson
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Christine Godwin
- School of Psychology, Georgia Institute of Technology, Atlanta, GA, USA
| | - Shella D Keilholz
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Eric H Schumacher
- School of Psychology, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
20
|
Jaiswal S, Purpura SR, Manchanda JK, Nan J, Azeez N, Ramanathan D, Mishra J. Design and Implementation of a Brief Digital Mindfulness and Compassion Training App for Health Care Professionals: Cluster Randomized Controlled Trial. JMIR Ment Health 2024; 11:e49467. [PMID: 38252479 PMCID: PMC10845023 DOI: 10.2196/49467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 11/09/2023] [Accepted: 12/01/2023] [Indexed: 01/23/2024] Open
Abstract
BACKGROUND Several studies show that intense work schedules make health care professionals particularly vulnerable to emotional exhaustion and burnout. OBJECTIVE In this scenario, promoting self-compassion and mindfulness may be beneficial for well-being. Notably, scalable, digital app-based methods may have the potential to enhance self-compassion and mindfulness in health care professionals. METHODS In this study, we designed and implemented a scalable, digital app-based, brief mindfulness and compassion training program called "WellMind" for health care professionals. A total of 22 adult participants completed up to 60 sessions of WellMind training, 5-10 minutes in duration each, over 3 months. Participants completed behavioral assessments measuring self-compassion and mindfulness at baseline (preintervention), 3 months (postintervention), and 6 months (follow-up). In order to control for practice effects on the repeat assessments and calculate effect sizes, we also studied a no-contact control group of 21 health care professionals who only completed the repeated assessments but were not provided any training. Additionally, we evaluated pre- and postintervention neural activity in core brain networks using electroencephalography source imaging as an objective neurophysiological training outcome. RESULTS Findings showed a post- versus preintervention increase in self-compassion (Cohen d=0.57; P=.007) and state-mindfulness (d=0.52; P=.02) only in the WellMind training group, with improvements in self-compassion sustained at follow-up (d=0.8; P=.01). Additionally, WellMind training durations correlated with the magnitude of improvement in self-compassion across human participants (ρ=0.52; P=.01). Training-related neurophysiological results revealed plasticity specific to the default mode network (DMN) that is implicated in mind-wandering and rumination, with DMN network suppression selectively observed at the postintervention time point in the WellMind group (d=-0.87; P=.03). We also found that improvement in self-compassion was directly related to the extent of DMN suppression (ρ=-0.368; P=.04). CONCLUSIONS Overall, promising behavioral and neurophysiological findings from this first study demonstrate the benefits of brief digital mindfulness and compassion training for health care professionals and compel the scale-up of the digital intervention. TRIAL REGISTRATION Trial Registration: International Standard Randomized Controlled Trial Number Registry ISRCTN94766568, https://www.isrctn.com/ISRCTN94766568.
Collapse
Affiliation(s)
- Satish Jaiswal
- Department of Psychiatry, University of California San Diego, San Diego, CA, United States
| | - Suzanna R Purpura
- Department of Psychiatry, University of California San Diego, San Diego, CA, United States
| | - James K Manchanda
- Department of Psychiatry, University of California San Diego, San Diego, CA, United States
| | - Jason Nan
- Department of Psychiatry, University of California San Diego, San Diego, CA, United States
| | - Nihal Azeez
- Department of Psychiatry, University of California San Diego, San Diego, CA, United States
| | - Dhakshin Ramanathan
- Department of Mental Health, Veterans Affairs San Diego Medical Center, San Diego, CA, United States
| | - Jyoti Mishra
- Department of Psychiatry, University of California San Diego, San Diego, CA, United States
| |
Collapse
|
21
|
Pelegrino A, Guimaraes AL, Sena W, Emele N, Scoriels L, Panizzutti R. Dysregulated noradrenergic response is associated with symptom severity in individuals with schizophrenia. Front Psychiatry 2023; 14:1190329. [PMID: 38025452 PMCID: PMC10661901 DOI: 10.3389/fpsyt.2023.1190329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction The locus coeruleus-noradrenaline (LC-NA) system is involved in a wide range of cognitive functions and may be altered in schizophrenia. A non-invasive method to indirectly measure LC activity is task-evoked pupillary response. Individuals with schizophrenia present reduced pupil dilation compared to healthy subjects, particularly when task demand increases. However, the extent to which alteration in LC activity contributes to schizophrenia symptomatology remains largely unexplored. We aimed to investigate the association between symptomatology, cognition, and noradrenergic response in individuals with schizophrenia. Methods We assessed task-evoked pupil dilation during a pro- and antisaccade task in 23 individuals with schizophrenia and 28 healthy subjects. Results Both groups showed similar preparatory pupil dilation during prosaccade trials, but individuals with schizophrenia showed significantly lower pupil dilation compared to healthy subjects in antisaccade trials. Importantly, reduced preparatory pupil dilation for antisaccade trials was associated with worse general symptomatology in individuals with schizophrenia. Discussion Our findings suggest that changes in LC-NA activity - measured by task-evoked pupil dilation - when task demand increases is associated with schizophrenia symptoms. Interventions targeting the modulation of noradrenergic responses may be suitable candidates to reduce schizophrenia symptomatology.
Collapse
Affiliation(s)
- Ana Pelegrino
- Instituto de Psiquiatria, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Anna Luiza Guimaraes
- Instituto de Psiquiatria, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Walter Sena
- Instituto de Psiquiatria, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Nwabunwanne Emele
- Instituto de Psiquiatria, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Linda Scoriels
- Instituto de Psiquiatria, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Université Paris Cité, Institut de Psychiatrie et Neurosciences de Paris, Inserm, Paris, France
| | - Rogerio Panizzutti
- Instituto de Psiquiatria, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
22
|
Unsworth N, Miller AL. Pupillary correlates of preparatory control in the Stroop task. Atten Percept Psychophys 2023; 85:2277-2295. [PMID: 37407798 DOI: 10.3758/s13414-023-02751-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2023] [Indexed: 07/07/2023]
Abstract
In three experiments, individual differences in preparatory control in the Stroop task were examined. Participants performed variants of the Stroop task while pupillary responses were examined during the preparatory interval. Variation in working memory capacity was also examined. High Stroop performers tended to demonstrate larger preparatory pupillary responses than low Stroop performers. In Experiment 2, when participants were given pre-cues indicating the congruency of the upcoming trial (MATCHING vs. CONFLICTING), high Stroop performers had larger preparatory pupillary responses for incongruent trials compared to congruent trials, whereas low Stroop performers demonstrated similar preparatory pupillary responses on both incongruent and congruent trials. These results suggest that variation in Stroop performance is partially due to individual differences in the ability to ramp up and regulate the intensity of attention allocated to preparatory control processes. Additionally, there was limited evidence that preparatory control processes partially account for the relation between working memory capacity and performance on the Stroop. Overall, these results provide evidence that individual differences in Stroop performance are partialy due to variation in preparatory control.
Collapse
Affiliation(s)
- Nash Unsworth
- Department of Psychology, University of Oregon, Eugene, OR, 97403, USA.
| | - Ashley L Miller
- Department of Psychology, University of California, Los Angeles, CA, USA
| |
Collapse
|
23
|
Robison MK, Campbell S. Baseline pupil diameter does not correlate with fluid intelligence. Psychon Bull Rev 2023; 30:1988-2001. [PMID: 37012578 DOI: 10.3758/s13423-023-02273-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2023] [Indexed: 04/05/2023]
Abstract
There has been debate regarding the correlation between baseline/resting state measures of pupil diameter and cognitive abilities such as working memory capacity and fluid intelligence. A positive correlation between baseline pupil diameter and cognitive ability has been cited as evidence for a role of the locus coeruleus-norepinephrine (LC-NE) and its functional connection with cortical networks as a reason for individual differences in fluid intelligence (Tsukahara & Engle, Proceedings of the National Academy of Sciences, 118(46), e2110630118, 2021a). Several recent attempts to replicate this correlation have failed. The current studies make another attempt and find substantial evidence against a positive correlation between pupil diameter and intelligence. Given the data from the current studies in combination with other recent failures to replicate, we conclude that individual differences in baseline pupil diameter should not be used as evidence for a role of the LC-NE system in goal-directed cognitive activity.
Collapse
Affiliation(s)
- Matthew K Robison
- Department of Psychology, University of Texas at Arlington, Arlington, TX, USA.
| | - Stephen Campbell
- Department of Psychology, University of Texas at Arlington, Arlington, TX, USA
| |
Collapse
|
24
|
Neal J, Song I, Katz B, Lee TH. Association of Intrinsic Functional Connectivity between the Locus Coeruleus and Salience Network with Attentional Ability. J Cogn Neurosci 2023; 35:1557-1569. [PMID: 37584586 PMCID: PMC11311826 DOI: 10.1162/jocn_a_02036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
The locus coeruleus (LC) is a brainstem region associated with broad neural arousal because of norepinephrine production, but it has increasingly been associated with specific cognitive processes. These include sustained attention, with deficits associated with various neuropsychological disorders. Neural models of attention deficits have focused on interrupted dynamics between the salience network (SAL) with the frontoparietal network, which has been associated with task-switching and processing of external stimuli, respectively. Conflicting findings for these regions suggest the possibility of upstream signaling leading to attention dysfunction, and recent research suggests LC involvement. In this study, resting-state functional connectivity and behavioral performance on an attention task was examined within 584 individuals. Analysis revealed significant clusters connected to LC activity in the SAL. Given previous findings that attention deficits may be caused by SAL network switching dysfunctions, findings here further suggest that dysfunction in LC-SAL connectivity may impair attention.
Collapse
Affiliation(s)
| | - Inuk Song
- Department of Psychology, Virginia Tech
| | - Benjamin Katz
- School of Neuroscience, Virginia Tech
- Department of Human Development and Family Science, Virginia Tech
| | - Tae-Ho Lee
- Department of Psychology, Virginia Tech
- School of Neuroscience, Virginia Tech
| |
Collapse
|
25
|
Kondo HM, Terashima H, Kihara K, Kochiyama T, Shimada Y, Kawahara JI. Prefrontal GABA and glutamate-glutamine levels affect sustained attention. Cereb Cortex 2023; 33:10441-10452. [PMID: 37562851 PMCID: PMC10545440 DOI: 10.1093/cercor/bhad294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 07/22/2023] [Accepted: 07/23/2023] [Indexed: 08/12/2023] Open
Abstract
Attention levels fluctuate during the course of daily activities. However, factors underlying sustained attention are still unknown. We investigated mechanisms of sustained attention using psychological, neuroimaging, and neurochemical approaches. Participants were scanned with functional magnetic resonance imaging (fMRI) while performing gradual-onset, continuous performance tasks (gradCPTs). In gradCPTs, narrations or visual scenes gradually changed from one to the next. Participants pressed a button for frequent Go trials as quickly as possible and withheld responses to infrequent No-go trials. Performance was better for the visual gradCPT than for the auditory gradCPT, but the 2 were correlated. The dorsal attention network was activated during intermittent responses, regardless of sensory modality. Reaction-time variability of gradCPTs was correlated with signal changes (SCs) in the left fronto-parietal regions. We also used magnetic resonance spectroscopy (MRS) to measure levels of glutamate-glutamine (Glx) and γ-aminobutyric acid (GABA) in the left prefrontal cortex (PFC). Glx levels were associated with performance under undemanding situations, whereas GABA levels were related to performance under demanding situations. Combined fMRI-MRS results demonstrated that SCs of the left PFC were positively correlated with neurometabolite levels. These findings suggest that a neural balance between excitation and inhibition is involved in attentional fluctuations and brain dynamics.
Collapse
Affiliation(s)
- Hirohito M Kondo
- Department of Psychology, School of Psychology, Chukyo University, Nagoya, Aichi 466-8666, Japan
| | - Hiroki Terashima
- Human Information Science Laboratory, NTT Communication Science Laboratories, NTT Corporation, Atsugi, Kanagawa 243-0198, Japan
| | - Ken Kihara
- Department of Information Technology and Human Factors, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8566, Japan
| | - Takanori Kochiyama
- Brain Activity Imaging Center, ATR-Promotions, Seika-cho, Kyoto 619-0288, Japan
| | - Yasuhiro Shimada
- Brain Activity Imaging Center, ATR-Promotions, Seika-cho, Kyoto 619-0288, Japan
| | - Jun I Kawahara
- Department of Psychology, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| |
Collapse
|
26
|
Krohn F, Lancini E, Ludwig M, Leiman M, Guruprasath G, Haag L, Panczyszyn J, Düzel E, Hämmerer D, Betts M. Noradrenergic neuromodulation in ageing and disease. Neurosci Biobehav Rev 2023; 152:105311. [PMID: 37437752 DOI: 10.1016/j.neubiorev.2023.105311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/29/2023] [Accepted: 07/07/2023] [Indexed: 07/14/2023]
Abstract
The locus coeruleus (LC) is a small brainstem structure located in the lower pons and is the main source of noradrenaline (NA) in the brain. Via its phasic and tonic firing, it modulates cognition and autonomic functions and is involved in the brain's immune response. The extent of degeneration to the LC in healthy ageing remains unclear, however, noradrenergic dysfunction may contribute to the pathogenesis of Alzheimer's (AD) and Parkinson's disease (PD). Despite their differences in progression at later disease stages, the early involvement of the LC may lead to comparable behavioural symptoms such as preclinical sleep problems and neuropsychiatric symptoms as a result of AD and PD pathology. In this review, we draw attention to the mechanisms that underlie LC degeneration in ageing, AD and PD. We aim to motivate future research to investigate how early degeneration of the noradrenergic system may play a pivotal role in the pathogenesis of AD and PD which may also be relevant to other neurodegenerative diseases.
Collapse
Affiliation(s)
- F Krohn
- German Center for Neurodegenerative Diseases (DZNE), Otto-von-Guericke University Magdeburg, Magdeburg, Germany; Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - E Lancini
- German Center for Neurodegenerative Diseases (DZNE), Otto-von-Guericke University Magdeburg, Magdeburg, Germany; Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University Magdeburg, Magdeburg, Germany.
| | - M Ludwig
- Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University Magdeburg, Magdeburg, Germany; CBBS Center for Behavioral Brain Sciences, University of Magdeburg, Magdeburg, Germany
| | - M Leiman
- German Center for Neurodegenerative Diseases (DZNE), Otto-von-Guericke University Magdeburg, Magdeburg, Germany; Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - G Guruprasath
- German Center for Neurodegenerative Diseases (DZNE), Otto-von-Guericke University Magdeburg, Magdeburg, Germany; Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - L Haag
- Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - J Panczyszyn
- Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - E Düzel
- German Center for Neurodegenerative Diseases (DZNE), Otto-von-Guericke University Magdeburg, Magdeburg, Germany; Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University Magdeburg, Magdeburg, Germany; Institute of Cognitive Neuroscience, University College London, London UK-WC1E 6BT, UK; CBBS Center for Behavioral Brain Sciences, University of Magdeburg, Magdeburg, Germany
| | - D Hämmerer
- German Center for Neurodegenerative Diseases (DZNE), Otto-von-Guericke University Magdeburg, Magdeburg, Germany; Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University Magdeburg, Magdeburg, Germany; Institute of Cognitive Neuroscience, University College London, London UK-WC1E 6BT, UK; CBBS Center for Behavioral Brain Sciences, University of Magdeburg, Magdeburg, Germany; Department of Psychology, University of Innsbruck, A-6020 Innsbruck, Austria
| | - M Betts
- German Center for Neurodegenerative Diseases (DZNE), Otto-von-Guericke University Magdeburg, Magdeburg, Germany; Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University Magdeburg, Magdeburg, Germany; CBBS Center for Behavioral Brain Sciences, University of Magdeburg, Magdeburg, Germany
| |
Collapse
|
27
|
Walcher S, Korda Ž, Körner C, Benedek M. The effects of type and workload of internal tasks on voluntary saccades in a target-distractor saccade task. PLoS One 2023; 18:e0290322. [PMID: 37616320 PMCID: PMC10449167 DOI: 10.1371/journal.pone.0290322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 08/07/2023] [Indexed: 08/26/2023] Open
Abstract
When we engage in internally directed cognition, like doing mental arithmetic or mind wandering, fewer cognitive resources are assigned for other activities like reacting to perceptual input-an effect termed perceptual decoupling. However, the exact conditions under which perceptual decoupling occurs and its underlying cognitive mechanisms are still unclear. Hence, the present study systematically manipulated the task type (arithmetic, visuospatial) and workload (control, low, high) of the internal task in a within-subject design and tested its effects on voluntary saccades in a target-distractor saccade task. As expected, engagement in internal tasks delayed saccades to the target. This effect was moderated by time, task, and workload: The delay was largest right after internal task onset and then decreased, potentially reflecting the intensity of internal task demands. Saccades were also more delayed for the high compared to the low workload condition in the arithmetic task, whereas workload conditions had similarly high effects in the visuospatial task. Findings suggests that perceptual decoupling of eye behavior gradually increases with internal demands on general resources and that perceptual decoupling is specifically sensitive to internal demands on visuospatial resources. The latter may be mediated by interference due to eye behavior elicited by the internal task itself. Internal tasks did not affect the saccade latency-deviation trade-off, indicating that while the internal tasks delayed the execution of the saccade, the perception of the saccade stimuli and spatial planning of the saccade continued unaffected in parallel to the internal tasks. Together, these findings shed further light on the specific mechanisms underlying perceptual decoupling by suggesting that perceptual decoupling of eye behavior increases as internal demands on cognitive resources overlap more strongly with demands of the external task.
Collapse
Affiliation(s)
- Sonja Walcher
- Creative Cognition Lab, Institute of Psychology, University of Graz, Graz, Austria
| | - Živa Korda
- Creative Cognition Lab, Institute of Psychology, University of Graz, Graz, Austria
| | - Christof Körner
- Cognitive Psychology & Neuroscience, Institute of Psychology, University of Graz, Graz, Austria
| | - Mathias Benedek
- Creative Cognition Lab, Institute of Psychology, University of Graz, Graz, Austria
| |
Collapse
|
28
|
Trifilio E, Shortell D, Olshan S, O’Neal A, Coyne J, Lamb D, Porges E, Williamson J. Impact of transcutaneous vagus nerve stimulation on healthy cognitive and brain aging. Front Neurosci 2023; 17:1184051. [PMID: 37575296 PMCID: PMC10416636 DOI: 10.3389/fnins.2023.1184051] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/02/2023] [Indexed: 08/15/2023] Open
Abstract
Evidence for clinically meaningful benefits of transcutaneous vagus nerve stimulation (VNS) has been rapidly accumulating over the past 15 years. This relatively novel non-invasive brain stimulation technique has been applied to a wide range of neuropsychiatric disorders including schizophrenia, obsessive compulsive disorder, panic disorder, post-traumatic stress disorder, bipolar disorder, and Alzheimer's disease. More recently, non-invasive forms of VNS have allowed for investigations within healthy aging populations. These results offer insight into protocol considerations specific to older adults and how to translate those results into effective clinical trials and, ultimately, effective clinical care. In this review, we characterize the possible mechanisms by which non-invasive VNS may promote healthy aging (e.g., neurotransmitter effects, inflammation regulation, functional connectivity changes), special considerations for applying non-invasive VNS in an older adult population (e.g., vagus nerve changes with age), and how non-invasive VNS may be used in conjunction with existing behavioral interventions (e.g., cognitive behavioral therapy, cognitive training) to promote healthy emotional and cognitive aging.
Collapse
Affiliation(s)
- Erin Trifilio
- Center for OCD and Anxiety Related Disorders, Department of Psychiatry, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, United States
- Brain Rehabilitation and Research Center, Malcom Randall VAMC, Gainesville, FL, United States
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, United States
| | - Destin Shortell
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, United States
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Sarah Olshan
- Brain Rehabilitation and Research Center, Malcom Randall VAMC, Gainesville, FL, United States
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Alexandria O’Neal
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Jozee Coyne
- Center for OCD and Anxiety Related Disorders, Department of Psychiatry, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, United States
- Brain Rehabilitation and Research Center, Malcom Randall VAMC, Gainesville, FL, United States
| | - Damon Lamb
- Center for OCD and Anxiety Related Disorders, Department of Psychiatry, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, United States
- Brain Rehabilitation and Research Center, Malcom Randall VAMC, Gainesville, FL, United States
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Eric Porges
- Brain Rehabilitation and Research Center, Malcom Randall VAMC, Gainesville, FL, United States
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, United States
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - John Williamson
- Center for OCD and Anxiety Related Disorders, Department of Psychiatry, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, United States
- Brain Rehabilitation and Research Center, Malcom Randall VAMC, Gainesville, FL, United States
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, United States
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| |
Collapse
|
29
|
Fietz J, Pöhlchen D, Brückl TM, Brem AK, Padberg F, Czisch M, Sämann PG, Spoormaker VI. Data-Driven Pupil Response Profiles as Transdiagnostic Readouts for the Detection of Neurocognitive Functioning in Affective and Anxiety Disorders. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2023:S2451-9022(23)00149-0. [PMID: 37348604 DOI: 10.1016/j.bpsc.2023.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 05/22/2023] [Accepted: 06/12/2023] [Indexed: 06/24/2023]
Abstract
BACKGROUND Neurocognitive functioning is a relevant transdiagnostic dimension in psychiatry. As pupil size dynamics track cognitive load during a working memory task, we aimed to explore if this parameter allows identification of psychophysiological subtypes in healthy participants and patients with affective and anxiety disorders. METHODS Our sample consisted of 226 participants who completed the n-back task during simultaneous functional magnetic resonance imaging and pupillometry measurements. We used latent class growth modeling to identify clusters based on pupil size in response to cognitive load. In a second step, these clusters were compared on affective and anxiety symptom levels, performance in neurocognitive tests, and functional magnetic resonance imaging activity. RESULTS The clustering analysis resulted in two distinct pupil response profiles: one with a stepwise increasing pupil size with increasing cognitive load (reactive group) and one with a constant pupil size across conditions (nonreactive group). A larger increase in pupil size was significantly associated with better performance in neurocognitive tests in executive functioning and sustained attention. Statistical maps of parametric modulation of pupil size during the n-back task showed the frontoparietal network in the positive contrast and the default mode network in the negative contrast. The pupil response profile of the reactive group was associated with more thalamic activity, likely reflecting better arousal upregulation and less deactivation of the limbic system. CONCLUSIONS Pupil measurements have the potential to serve as a highly sensitive psychophysiological readout for detection of neurocognitive deficits in the core domain of executive functioning, adding to the development of valid transdiagnostic constructs in psychiatry.
Collapse
Affiliation(s)
- Julia Fietz
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany; International Max Planck Research School for Translational Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Dorothee Pöhlchen
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany; International Max Planck Research School for Translational Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Tanja M Brückl
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Anna-Katharine Brem
- University Hospital of Old Age Psychiatry, University of Bern, Bern, Switzerland; Department of Old Age Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Frank Padberg
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | | | | | - Victor I Spoormaker
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany.
| |
Collapse
|
30
|
Ma HT, Zhang HC, Zuo ZF, Liu YX. Heterogeneous organization of Locus coeruleus: An intrinsic mechanism for functional complexity. Physiol Behav 2023; 268:114231. [PMID: 37172640 DOI: 10.1016/j.physbeh.2023.114231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/06/2023] [Accepted: 05/09/2023] [Indexed: 05/15/2023]
Abstract
Locus coeruleus (LC) is a small nucleus located deep in the brainstem that contains the majority of central noradrenergic neurons, which provide the primary source of noradrenaline (NA) throughout the entire central nervous system (CNS).The release of neurotransmitter NA is considered to modulate arousal, sensory processing, attention, aversive and adaptive stress responses as well as high-order cognitive function and memory, with the highly ramified axonal arborizations of LC-NA neurons sending wide projections to the targeted brain areas. For over 30 years, LC was thought to be a homogeneous nucleus in structure and function due to the widespread uniform release of NA by LC-NA neurons and simultaneous action in several CNS regions, such as the prefrontal cortex, hippocampus, cerebellum, and spinal cord. However, recent advances in neuroscience tools have revealed that LC is probably not so homogeneous as we previous thought and exhibits heterogeneity in various aspects. Accumulating studies have shown that the functional complexity of LC may be attributed to its heterogeneity in developmental origin, projection patterns, topography distribution, morphology and molecular organization, electrophysiological properties and sex differences. This review will highlight the heterogeneity of LC and its critical role in modulating diverse behavioral outcomes.
Collapse
Affiliation(s)
- Hai-Tao Ma
- Department of Neurobiology, School of Basic Medicine, Jinzhou Medical University, Jinzhou, Liaoning, 121000, China; Department of Neurobiology, School of Basic Medicine, Capital Medical University, Beijing, 100069, China.
| | - Hao-Chen Zhang
- Department of Neurobiology, School of Basic Medicine, Capital Medical University, Beijing, 100069, China
| | - Zhong-Fu Zuo
- Department of Human Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, 121000, China
| | - Ying-Xue Liu
- Department of Human Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, 121000, China.
| |
Collapse
|
31
|
Robison MK, Ralph KJ, Gondoli DM, Torres A, Campbell S, Brewer GA, Gibson BS. Testing locus coeruleus-norepinephrine accounts of working memory, attention control, and fluid intelligence. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2023:10.3758/s13415-023-01096-2. [PMID: 37081225 PMCID: PMC10118234 DOI: 10.3758/s13415-023-01096-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/27/2023] [Indexed: 04/22/2023]
Abstract
The current set of studies examined the relationship among working memory capacity, attention control, fluid intelligence, and pupillary correlates of tonic arousal regulation and phasic responsiveness in a combined sample of more than 1,000 participants in two different age ranges (young adults and adolescents). Each study was designed to test predictions made by two recent theories regarding the role of the locus coeruleus-norepinephrine (LC-NE) system in determining individual differences in cognitive ability. The first theory, proposed by Unsworth and Robison (2017a), posits two important individual differences: the moment-to-moment regulation of tonic arousal, and the phasic responsiveness of the system to goal-relevant stimuli. The second theory, proposed by Tsukahara and Engle (2021a), argues that people with higher cognitive abilities have greater functional connectivity between the LC-NE system and cortical networks at rest. These two theories are not mutually exclusive, but they make different predictions. Overall, we found no evidence consistent with a resting-state theory. However, phasic responsiveness was consistently correlated with working memory capacity, attention control, and fluid intelligence, supporting a prediction made by Unsworth and Robison (2017a). Tonic arousal regulation was not correlated with working memory or fluid intelligence and was inconsistently correlated with attention control, which offers only partial support for Unsworth and Robison's (2017a) second prediction.
Collapse
Affiliation(s)
- Matthew K Robison
- Department of Psychology, University of Texas at Arlington, Arlington, TX, USA.
| | - Kathryn J Ralph
- Department of Psychology, University of Notre Dame, Notre Dame, IN, USA
| | - Dawn M Gondoli
- Department of Psychology, University of Notre Dame, Notre Dame, IN, USA
| | - Alexis Torres
- Department of Psychology, Arizona State University, Phoenix, AZ, USA
| | - Stephen Campbell
- Department of Psychology, University of Texas at Arlington, Arlington, TX, USA
| | - Gene A Brewer
- Department of Psychology, Arizona State University, Phoenix, AZ, USA
| | - Bradley S Gibson
- Department of Psychology, University of Notre Dame, Notre Dame, IN, USA
| |
Collapse
|
32
|
Bond IG, Machida K, Johnson KA. Daily arousal variation has little effect on sustained attention performance. CURRENT PSYCHOLOGY 2023:1-14. [PMID: 37359667 PMCID: PMC10022567 DOI: 10.1007/s12144-023-04473-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2023] [Indexed: 03/28/2023]
Abstract
Sustaining attention is an important cognitive process for everyday functioning and arousal is thought to underpin its performance. Primate studies depict an inverted-u relation between sustained attention and arousal, in which sustained attention performance is most affected at the extreme levels of arousal and peak performance aligns with moderate arousal. Human research findings are, however, inconsistent. This study aimed to investigate the effects of arousal on sustained attention performance in humans using two approaches-a small-N study with an inbuilt replication to test within-participant variation, and a larger sample assessing between-participant variation. The Sustained Attention to Response Task (SART) was used to measure sustained attention performance and the Karolinska Sleepiness Scale (KSS) was used to measure arousal. In the small-N study five participants completed the SART and KSS once an hour between 7 a.m. and 7 p.m., repeated two weeks later. Significant, curvilinear variation in KSS across time-of-day was found. A linear association between SART response time variability (sigma) and KSS was noted, however no other consistent associations between the SART and KSS were found. In the large-N study, 161 participants completed the SART and KSS once, at a time of day of their choosing. There were no significant relations between SART measures and the KSS, indicating that subjective sleepiness was not related to sustained attention performance. Overall, the hypothesized inverted-u relation between arousal and sustained attention performance was not found. The results suggested that diurnal arousal variation does not modify sustained attention performance in adults.
Collapse
Affiliation(s)
- Isobel G. Bond
- Melbourne School of Psychological Sciences, University of Melbourne, Parkville, Victoria 3010 Australia
| | - Keitaro Machida
- Melbourne School of Psychological Sciences, University of Melbourne, Parkville, Victoria 3010 Australia
| | - Katherine A. Johnson
- Melbourne School of Psychological Sciences, University of Melbourne, Parkville, Victoria 3010 Australia
| |
Collapse
|
33
|
Acute Hypobaric Hypoxia Exposure Causes Neurobehavioral Impairments in Rats: Role of Brain Catecholamines and Tetrahydrobiopterin Alterations. Neurochem Res 2023; 48:471-486. [PMID: 36205808 DOI: 10.1007/s11064-022-03767-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/12/2022] [Accepted: 09/22/2022] [Indexed: 02/07/2023]
Abstract
Hypoxia is a state in which the body or a specific part of the body is deprived of adequate oxygen supply at the tissue level. Sojourners involved in different activities at high altitudes (> 2500 m) face hypobaric hypoxia (HH) due to low oxygen in the atmosphere. HH is an example of generalized hypoxia, where the homeostasis of the entire body of an organism is affected and results in neurochemical changes. It is known that lower O2 levels affect catecholamines (CA), severely impairing cognitive and locomotor behavior. However, there is less evidence on the effect of HH-mediated alteration in brain Tetrahydrobiopterin (BH4) levels and its role in neurobehavioral impairments. Hence, this study aimed to shed light on the effect of acute HH on CA and BH4 levels with its neurobehavioral impact on Wistar rat models. After HH exposure, significant alteration of the CA levels in the discrete brain regions, viz., frontal cortex, hippocampus, midbrain, and cerebellum was observed. HH exposure significantly reduced spontaneous motor activity, motor coordination, and spatial memory. The present study suggests that the HH-induced behavioral changes might be related to the alteration of the expression pattern of CA and BH4-related genes and proteins in different rat brain regions. Overall, this study provides novel insights into the role of BH4 and CA in HH-induced neurobehavioral impairments.
Collapse
|
34
|
Cubillo A, Hermes H, Berger E, Winkel K, Schunk D, Fehr E, Hare TA. Intra-individual variability in task performance after cognitive training is associated with long-term outcomes in children. Dev Sci 2023; 26:e13252. [PMID: 35184350 PMCID: PMC10078259 DOI: 10.1111/desc.13252] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 11/22/2021] [Accepted: 02/04/2022] [Indexed: 12/15/2022]
Abstract
The potential benefits and mechanistic effects of working memory training (WMT) in children are the subject of much research and debate. We show that after five weeks of school-based, adaptive WMT 6-9 year-old primary school children had greater activity in prefrontal and striatal brain regions, higher task accuracy, and reduced intra-individual variability in response times compared to controls. Using a sequential sampling decision model, we demonstrate that this reduction in intra-individual variability can be explained by changes to the evidence accumulation rates and thresholds. Critically, intra-individual variability is useful in quantifying the immediate impact of cognitive training interventions, being a better predictor of academic skills and well-being 6-12 months after the end of training than task accuracy. Taken together, our results suggest that attention control is the initial mechanism that leads to the long-run benefits from adaptive WMT. Selective and sustained attention abilities may serve as a scaffold for subsequent changes in higher cognitive processes, academic skills, and general well-being. Furthermore, these results highlight that the selection of outcome measures and the timing of the assessments play a crucial role in detecting training efficacy. Thus, evaluating intra-individual variability, during or directly after training could allow for the early tailoring of training interventions in terms of duration or content to maximise their impact.
Collapse
Affiliation(s)
- Ana Cubillo
- Zurich Center for Neuroeconomics, Department of Economics, University of Zurich, Zurich, Switzerland.,Department of Child and Adolescent Psychiatry, University Psychiatric Clinics Basel, Basel, Switzerland
| | - Henning Hermes
- DICE, Heinrich Heine University of Dusseldorf, Dusseldorf, Germany
| | - Eva Berger
- Chair of Public and Behavioral Economics, Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Kirsten Winkel
- Chair of Statistics and Econometrics, Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Daniel Schunk
- Chair of Public and Behavioral Economics, Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Ernst Fehr
- Zurich Center for Neuroeconomics, Department of Economics, University of Zurich, Zurich, Switzerland
| | - Todd A Hare
- Zurich Center for Neuroeconomics, Department of Economics, University of Zurich, Zurich, Switzerland
| |
Collapse
|
35
|
Scott EE, Crabtree KW, McDonnell AS, LoTemplio SB, McNay GD, Strayer DL. Measuring affect and complex working memory in natural and urban environments. Front Psychol 2023; 14:1039334. [PMID: 36949906 PMCID: PMC10026564 DOI: 10.3389/fpsyg.2023.1039334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 01/25/2023] [Indexed: 03/08/2023] Open
Abstract
Introduction Research suggests that spending time in natural environments is associated with cognitive and affective benefits, while increased use of technology and time spent in urban environments are associated with depletion of cognitive resources and an increasing prevalence of mental illness. Attention Restoration Theory suggests that exposure to natural environments can restore depleted attentional resources and thereby improve cognitive functioning and mood. Specifically, recent meta-analyses have revealed that the most improved cognitive abilities after nature exposure include selective attention, working memory, and cognitive flexibility. Methods While existing studies examined these cognitive abilities, few have examined the Operation Span (OSPAN), a complex measure of working memory capacity. Therefore, the current study (N = 100) compared performance on the OSPAN and self-reported mood using the Positive and Negative Affect Schedule before and after a 30-min walk in a natural or urban environment. Results Results from the study showed that both groups exhibited an increase in positive affect and a decrease in negative affect, suggesting that going outside for a walk can boost mood regardless of environment type. Inconsistent with past work, there were no significant changes in OSPAN scores before and after the walk for either environment type. Discussion Future studies should analyze how the length of time spent in the environment, certain characteristics of the environment, and individual differences in connectedness to nature may impact attention restoration to gain insight on nature's ability to improve our affect and cognition.
Collapse
Affiliation(s)
- Emily E. Scott
- Department of Psychological Science, Vermont State University, Johnson, VT, United States
- *Correspondence: Emily E. Scott,
| | - Kaedyn W. Crabtree
- Department of Psychology, The University of Utah, Salt Lake City, UT, United States
| | - Amy S. McDonnell
- Department of Psychology, The University of Utah, Salt Lake City, UT, United States
| | - Sara B. LoTemplio
- Human Dimensions of Natural Resources, Colorado State University, Fort Collins, CO, United States
| | - Glen D. McNay
- Department of Psychology, The University of Utah, Salt Lake City, UT, United States
| | - David L. Strayer
- Department of Psychology, The University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
36
|
Kim Y, Kadlaskar G, Keehn RM, Keehn B. Measures of tonic and phasic activity of the locus coeruleus-norepinephrine system in children with autism spectrum disorder: An event-related potential and pupillometry study. Autism Res 2022; 15:2250-2264. [PMID: 36164264 PMCID: PMC9722557 DOI: 10.1002/aur.2820] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 09/07/2022] [Indexed: 12/15/2022]
Abstract
A growing body of research suggests that locus coeruleus-norepinephrine (LC-NE) system may function differently in individuals with autism spectrum disorder (ASD). Understanding the dynamics of both tonic (resting pupil diameter) and phasic (pupil dilation response [PDR] and event-related potential [ERP]) indices may provide meaningful insights about the nature of LC-NE function in ASD. Twenty-four children with ASD and 27 age- and nonverbal-IQ matched typically developing (TD) children completed two experiments: (1) a resting eye-tracking task to measure tonic pupil diameter, and (2) a three-stimulus oddball paradigm to measure phasic responsivity using PDR and ERP. Consistent with prior reports, our results indicate that children with ASD exhibit increased tonic (resting pupil diameter) and reduced phasic (PDR and ERP) activity of the LC-NE system compared to their TD peers. For both groups, decreased phasic responsivity was associated with increased resting pupil diameter. Lastly, tonic and phasic LC-NE indices were primarily related to measures of attention-deficit/hyperactivity disorder (ADHD), and not ASD, symptomatology. These findings expand our understanding of neurophysiological differences present in ASD and demonstrate that aberrant LC-NE activation may be associated with atypical arousal and decreased responsivity to behaviorally-relevant information in ASD.
Collapse
Affiliation(s)
- Yesol Kim
- Department of Speech, Language, and Hearing Sciences,
Purdue University, West Lafayette, IN
| | - Girija Kadlaskar
- Department of Speech, Language, and Hearing Sciences,
Purdue University, West Lafayette, IN
| | | | - Brandon Keehn
- Department of Speech, Language, and Hearing Sciences,
Purdue University, West Lafayette, IN,Department of Psychological Sciences, Purdue University,
West Lafayette, IN
| |
Collapse
|
37
|
Parent JH, Ciampa CJ, Harrison TM, Adams JN, Zhuang K, Betts MJ, Maass A, Winer JR, Jagust WJ, Berry AS. Locus coeruleus catecholamines link neuroticism and vulnerability to tau pathology in aging. Neuroimage 2022; 263:119658. [PMID: 36191755 PMCID: PMC10060440 DOI: 10.1016/j.neuroimage.2022.119658] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 09/19/2022] [Accepted: 09/29/2022] [Indexed: 11/19/2022] Open
Abstract
Higher neuroticism is a risk factor for Alzheimer's disease (AD), and is implicated in disordered stress responses. The locus coeruleus (LC)-catecholamine system is activated during perceived threat and is a centerpiece of developing models of the pathophysiology of AD, as it is the first brain region to develop abnormal tau. We examined relationships among the "Big 5" personality traits, LC catecholamine synthesis capacity measured with [18F]Fluoro-m-tyrosine PET, and tau burden measured with [18F]Flortaucipir PET in cognitively normal older adults (n = 47). β-amyloid (Aβ) status was determined using [11C]Pittsburgh compound B PET (n = 14 Aβ positive). Lower LC catecholamine synthesis capacity was associated with higher neuroticism, more depressive symptoms as measured by the Geriatric Depression Scale, and higher amygdala tau-PET binding. Exploratory analyses with other personality traits revealed that low trait conscientiousness was also related to both lower LC catecholamine synthesis capacity, and more depressive symptoms. A significant indirect path linked both high neuroticism and low conscientiousness to greater amygdala tau burden via their mutual association with low LC catecholamine synthesis capacity. Together, these findings reveal LC catecholamine synthesis capacity to be a promising marker of affective health and pathology burden in aging, and identifies candidate neurobiological mechanisms for the effect of personality on increased vulnerability to dementia.
Collapse
Affiliation(s)
- Jourdan H. Parent
- Department of Psychology, Brandeis University, Waltham, MA, 02453, USA
| | - Claire J. Ciampa
- Department of Psychology, Brandeis University, Waltham, MA, 02453, USA
| | - Theresa M. Harrison
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Jenna N. Adams
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Kailin Zhuang
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Matthew J. Betts
- Institute of Cognitive Neurology and Dementia Research, Otto von Guericke University, Magdeburg, 39106, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen, Magdeburg 39120, Germany
- Center for Behavioral Brain Sciences, University of Magdeburg, Magdeburg, Germany
| | - Anne Maass
- Deutsches Zentrum für Neurodegenerative Erkrankungen, Magdeburg 39120, Germany
| | - Joseph R. Winer
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - William J. Jagust
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, 94720, USA
- Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Anne S. Berry
- Department of Psychology, Brandeis University, Waltham, MA, 02453, USA
- Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| |
Collapse
|
38
|
Dolphin H, Dukelow T, Finucane C, Commins S, McElwaine P, Kennelly SP. “The Wandering Nerve Linking Heart and Mind” – The Complementary Role of Transcutaneous Vagus Nerve Stimulation in Modulating Neuro-Cardiovascular and Cognitive Performance. Front Neurosci 2022; 16:897303. [PMID: 35784842 PMCID: PMC9245542 DOI: 10.3389/fnins.2022.897303] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
The vagus nerve is the longest nerve in the human body, providing afferent information about visceral sensation, integrity and somatic sensations to the CNS via brainstem nuclei to subcortical and cortical structures. Its efferent arm influences GI motility and secretion, cardiac ionotropy, chonotropy and heart rate variability, blood pressure responses, bronchoconstriction and modulates gag and cough responses via palatine and pharyngeal innervation. Vagus nerve stimulation has been utilized as a successful treatment for intractable epilepsy and treatment-resistant depression, and new non-invasive transcutaneous (t-VNS) devices offer equivalent therapeutic potential as invasive devices without the surgical risks. t-VNS offers exciting potential as a therapeutic intervention in cognitive decline and aging populations, classically affected by reduced cerebral perfusion by modulating both limbic and frontal cortical structures, regulating cerebral perfusion and improving parasympathetic modulation of the cardiovascular system. In this narrative review we summarize the research to date investigating the cognitive effects of VNS therapy, and its effects on neurocardiovascular stability.
Collapse
Affiliation(s)
- Helena Dolphin
- Department of Age-Related Healthcare, Tallaght University Hospital, Dublin, Ireland
- Department of Medical Gerontology, School of Medicine, Trinity College Dublin, Dublin, Ireland
- *Correspondence: Helena Dolphin,
| | - Tim Dukelow
- Department of Age-Related Healthcare, Tallaght University Hospital, Dublin, Ireland
| | - Ciaran Finucane
- Department of Medical Physics, St James’s Hospital, Dublin, Ireland
| | - Sean Commins
- Department of Psychology, Maynooth University, Maynooth, Ireland
| | - Paul McElwaine
- Department of Age-Related Healthcare, Tallaght University Hospital, Dublin, Ireland
- Department of Medical Gerontology, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Sean P. Kennelly
- Department of Age-Related Healthcare, Tallaght University Hospital, Dublin, Ireland
- Department of Medical Gerontology, School of Medicine, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
39
|
Slattery EJ, O'Callaghan E, Ryan P, Fortune DG, McAvinue LP. Popular interventions to enhance sustained attention in children and adolescents: A critical systematic review. Neurosci Biobehav Rev 2022; 137:104633. [PMID: 35337900 DOI: 10.1016/j.neubiorev.2022.104633] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 03/15/2022] [Accepted: 03/17/2022] [Indexed: 12/14/2022]
Abstract
There are a myriad of interventions promoting activities designed to help enhance sustained attention in children and adolescents. In this systematic review, we critically evaluate the evidence behind three popular sustained attention training approaches - cognitive attention training, meditation, and physical activity. Seven databases were searched in addition to secondary searches. Cognitive attention training, meditation training or physical activity intervention studies aimed at improving sustained attention (randomised-controlled or non-randomised-controlled designs) in samples of children and adolescents (3-18 years) were included. We screened 3437 unique articles. Thirty-seven studies satisfied inclusion criteria. In general, cognitive attention training (n = 14) did not reliably improve sustained attention. Physical activity (n = 15) and meditation interventions (n = 8) demonstrated somewhat more potential in enhancing sustained attention, but these effects should be considered preliminary and need to be replicated with greater methodological rigour. Cognitive attention training demonstrated very limited transfer to other aspects of attention. Notably, mindfulness training had rather consistent positive effects on selective attention. Across all three intervention types, there was very weak evidence for transfer to other aspects of cognition, behaviour, and academic achievement. The paper concludes with methodological recommendations for future studies to strengthen the evidence base.
Collapse
Affiliation(s)
- Eadaoin J Slattery
- Centre for Assessment Research, Policy and Practice in Education, Institute of Education, Dublin City University, Ireland; Dept. of Psychology, University of Limerick, Ireland.
| | | | - Patrick Ryan
- Dept. of Psychology, University of Limerick, Ireland
| | | | | |
Collapse
|
40
|
Unsworth N, Miller AL, Robison MK. The influence of working memory capacity and lapses of attention for variation in error monitoring. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2022; 22:450-466. [PMID: 35426070 DOI: 10.3758/s13415-022-01003-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
In two experiments, individual differences in working memory capacity (WMC), lapses of attention, and error monitoring were examined. Participants completed multiple WMC tasks along with a version of the Stroop task. During the Stroop, pupil diameter was continuously monitored. In both experiments, error phasic pupillary responses were larger than phasic pupillary responses associated with correct incongruent and correct congruent trials. WMC and indicators of lapses of attention were correlated with error pupillary response, suggesting that high WMC and low lapse individuals had enhanced error monitoring abilities compared with low WMC and high lapse individuals. Furthermore, in Experiment 2 error awareness abilities were associated with WMC, lapses of attention, and the error phasic pupillary responses. Importantly, individual differences in the susceptibility to lapses of attention largely accounted for the relationship between WMC and error monitoring in both experiments. Collectively, these results suggest that WMC is related to error monitoring abilities, but this association is largely due to individual differences in the ability to consistently maintain task engagement and avoid lapses of attention.
Collapse
Affiliation(s)
- Nash Unsworth
- Department of Psychology, University of Oregon, Eugene, OR, 97403, USA.
| | - Ashley L Miller
- Department of Psychology, University of Oregon, Eugene, OR, 97403, USA
| | - Matthew K Robison
- Department of Psychology, University of Texas at Arlington, Arlington, TX, USA
| |
Collapse
|
41
|
Patience is a virtue: Individual differences in cue-evoked pupil responses under temporal certainty. Atten Percept Psychophys 2022; 84:1286-1303. [PMID: 35396616 DOI: 10.3758/s13414-022-02482-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/20/2022] [Indexed: 11/08/2022]
Abstract
Attention control is often examined behaviorally by measuring task performance and self-reported mind wandering. However, recent studies have also used pupillometry to measure task engagement versus task disengagement/mind wandering. In the current study, we investigated participants' ability to engage versus relax attention control in anticipation of hard (antisaccade) versus easy (prosaccade) trials within a saccade task, creating a "Cue-Evoked" Pupillary Response (CEPR). Participants completed the Automated OSPAN as a measure of working memory capacity (WMC) followed by a saccade task with a constant 5,000 ms delay between cue and stimulus. Occasional thought probes were included to gauge on- versus off-task attentional state. Consistent with recent findings (Hutchison et al., 2020, Journal of Experimental Psychology: Learning, Memory, and Cognition, 46, 280-295; Wang et al., 2015, European Journal of Neuroscience, 41, 1102-1110), we found better performance and more Task-Unrelated Thoughts (TUTs) on prosaccade trials, larger pupil diameters when preparing for antisaccade trials, and larger pupil diameters when on-task. Further, lower WMC individuals showed pupil dilation throughout the fixation delay for both types of trials, whereas higher WMC individuals only showed dilation immediately before stimulus onset when expecting an antisaccade trial. Saccade accuracy was predicted by WMC, smaller early CEPR, larger late CEPR, and less CEPR variability, but not self-reported TUTs. These findings demonstrate that, under temporal certainty, higher WMC individuals may be more efficient in their exertion of attention control. Further, they indicate that physiological measures can not only validate self-report measures, but also help identify situations in which self-report may be inaccurate.
Collapse
|
42
|
Pupillary correlates of individual differences in long-term memory. Psychon Bull Rev 2022; 29:1355-1366. [PMID: 35355225 DOI: 10.3758/s13423-022-02081-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2022] [Indexed: 11/08/2022]
Abstract
The present study is the first to examine individual differences in long-term memory, arousal dysregulation, and intensity of attention within the same experiment. Participants (N = 106) completed 28 lists of an immediate free-recall task while their pupil diameter was recorded via an eye-tracker during the encoding period. Two main pupillary measures were extracted: intraindividual variability in pre-list pupil diameter and evoked pupillary responses during item encoding. Variability in pre-list pupil diameter served as a measure of arousal dysregulation, and evoked pupillary responses served as a measure of intensity of attention. Based on prior work, we hypothesized that there would be a positive association between intensity of attention and recall ability, and that there would be a negative association between arousal dysregulation and recall ability. Collectively these two measures accounted for 19% of interindividual variance in recall, with 5% attributable uniquely to intensity of attention and 12% attributable uniquely to arousal regulation. The findings demonstrate that there are sources of individual differences in long-term memory that can be revealed via pupillometry, notably the amount of effort deployed during item encoding and the degree to which people exhibit dysregulated arousal. Both findings are consistent with recent theorizing regarding the role of the locus coeruleus (LC)-norepinephrine (NE) system's role in goal-directed cognition. Specifically, the LC governs both moment-to-moment arousal and NE release to cortical regions subserving cognitive processing. Among people for whom this system operates most optimally, long-term memory retention is superior.
Collapse
|
43
|
Functional Coupling of the Locus Coeruleus Is Linked to Successful Cognitive Control. Brain Sci 2022; 12:brainsci12030305. [PMID: 35326262 PMCID: PMC8946131 DOI: 10.3390/brainsci12030305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 02/13/2022] [Accepted: 02/17/2022] [Indexed: 11/20/2022] Open
Abstract
The locus coeruleus (LC) is a brainstem structure that sends widespread efferent projections throughout the mammalian brain. The LC constitutes the major source of noradrenaline (NE), a modulatory neurotransmitter that is crucial for fundamental brain functions such as arousal, attention, and cognitive control. This role of the LC-NE is traditionally not believed to reflect functional influences on the frontoparietal network or the striatum, but recent advances in chemogenetic manipulations of the rodent brain have challenged this notion. However, demonstrations of LC-NE functional connectivity with these areas in the human brain are surprisingly sparse. Here, we close this gap. Using an established emotional stroop task, we directly compared trials requiring response conflict control with trials that did not require this, but were matched for visual stimulus properties, response modality, and controlled for pupil dilation differences across both trial types. We found that LC-NE functional coupling with the parietal cortex and regions of the striatum is substantially enhanced during trials requiring response conflict control. Crucially, the strength of this functional coupling was directly related to individual reaction time differences incurred by conflict resolution. Our data concur with recent rodent findings and highlight the importance of converging evidence between human and nonhuman neurophysiology to further understand the neural systems supporting adaptive and maladaptive behavior in health and disease.
Collapse
|
44
|
Effort Mobilization and Lapses of Sustained Attention. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2022; 22:42-56. [PMID: 34410617 DOI: 10.3758/s13415-021-00941-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/04/2021] [Indexed: 11/08/2022]
Abstract
The current study examined whether effort mobilization would enhance sustained attention and reduce lapses of attention. Participants performed a sustained attention task and were randomly assigned to either an effort condition where they were instructed to "Try Hard" on a subset of trials or were assigned to a control condition with no "Try Hard" instructions. Pupillary responses were continuously recorded, and periodically during the task participants were presented with thought probes to determine whether they were on or off task. The results suggested within the effort condition there were no behavioral differences between Try Hard and "Standard" trials. Preparatory pupil responses were increased in Try Hard trials, but there were no differences for phasic pupillary responses to stimulus onset. In contrast, examining differences between the effort and control conditions suggested that participants who received the Try Hard instructions demonstrated faster overall performance, a reduction in very long reaction times, and reported fewer off-task thoughts compared with participants in the control condition. Participants in the effort condition also demonstrated a larger ramp-up in pupillary responses during the preparatory interval and a larger phasic response to stimulus onset compared with participants in the control condition. These results are consistent with attention allocation models suggesting that participants in the effort condition mobilized more attentional effort than participants in the control condition, resulting in enhanced sustained attention and a reduction in lapses of attention. These results also are consistent with recent theories, which suggest that the locus coeruleus norepinephrine system is associated with effort mobilization.
Collapse
|
45
|
Abstract
The human brain exhibits the remarkable ability to categorize speech sounds into distinct, meaningful percepts, even in challenging tasks like learning non-native speech categories in adulthood and hearing speech in noisy listening conditions. In these scenarios, there is substantial variability in perception and behavior, both across individual listeners and individual trials. While there has been extensive work characterizing stimulus-related and contextual factors that contribute to variability, recent advances in neuroscience are beginning to shed light on another potential source of variability that has not been explored in speech processing. Specifically, there are task-independent, moment-to-moment variations in neural activity in broadly-distributed cortical and subcortical networks that affect how a stimulus is perceived on a trial-by-trial basis. In this review, we discuss factors that affect speech sound learning and moment-to-moment variability in perception, particularly arousal states—neurotransmitter-dependent modulations of cortical activity. We propose that a more complete model of speech perception and learning should incorporate subcortically-mediated arousal states that alter behavior in ways that are distinct from, yet complementary to, top-down cognitive modulations. Finally, we discuss a novel neuromodulation technique, transcutaneous auricular vagus nerve stimulation (taVNS), which is particularly well-suited to investigating causal relationships between arousal mechanisms and performance in a variety of perceptual tasks. Together, these approaches provide novel testable hypotheses for explaining variability in classically challenging tasks, including non-native speech sound learning.
Collapse
|
46
|
Ferencová N, Višňovcová Z, Bona Olexová L, Tonhajzerová I. Eye pupil – a window into central autonomic regulation via emotional/cognitive processing. Physiol Res 2021. [DOI: 10.33549//physiolres.934749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
If the eyes are windows into the soul, then the pupils represent at least the gateway to the brain and can provide a unique insight into the human mind from several aspects. The changes in the pupil size primarily mediated by different lighting conditions are controlled by the autonomic nervous system regulated predominantly at the subcortical level. Specifically, parasympathetically-linked pupillary constriction is under the Edinger-Westphal nucleus control and sympathetically-mediated pupillary dilation is regulated from the posterior hypothalamic nuclei. However, the changes in the pupil size can be observed at resting state even under constant lighting, these pupillary changes are mediated by global arousal level as well as by various cognitive factors. In this context, autonomic pathways modulating changes in the pupil size in response to the different light levels can be influenced by multiple central descending inputs driving pupillary changes under steady lighting conditions. Moreover, as the pupillary response is involved in emotional (task-evoked pupillary dilation as an index of emotional arousal) and cognitive (task-evoked pupillary dilation as an index of cognitive workload) stimulation, it can be used to detect the impact of mutual subcortical and cortical structures (i.e. overlapping brain structures included in autonomic, emotional and cognitive regulation) on the pupillary innervation system. Thus, complex understanding of the baseline pupil size´ and pupillary dynamics´ mechanisms may provide an important insight into the central nervous system functioning pointing to the pupillometry as a promising tool in the clinical application.
Collapse
Affiliation(s)
| | | | | | - I Tonhajzerová
- Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovak Republic.
| |
Collapse
|
47
|
Ferencová N, Višňovcová Z, Bona Olexová L, Tonhajzerová I. Eye pupil - a window into central autonomic regulation via emotional/cognitive processing. Physiol Res 2021; 70:S669-S682. [PMID: 35199551 DOI: 10.33549/physiolres.934749] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
If the eyes are windows into the soul, then the pupils represent at least the gateway to the brain and can provide a unique insight into the human mind from several aspects. The changes in the pupil size primarily mediated by different lighting conditions are controlled by the autonomic nervous system regulated predominantly at the subcortical level. Specifically, parasympathetically-linked pupillary constriction is under the Edinger-Westphal nucleus control and sympathetically-mediated pupillary dilation is regulated from the posterior hypothalamic nuclei. However, the changes in the pupil size can be observed at resting state even under constant lighting, these pupillary changes are mediated by global arousal level as well as by various cognitive factors. In this context, autonomic pathways modulating changes in the pupil size in response to the different light levels can be influenced by multiple central descending inputs driving pupillary changes under steady lighting conditions. Moreover, as the pupillary response is involved in emotional (task-evoked pupillary dilation as an index of emotional arousal) and cognitive (task-evoked pupillary dilation as an index of cognitive workload) stimulation, it can be used to detect the impact of mutual subcortical and cortical structures (i.e. overlapping brain structures included in autonomic, emotional and cognitive regulation) on the pupillary innervation system. Thus, complex understanding of the baseline pupil size´ and pupillary dynamics´ mechanisms may provide an important insight into the central nervous system functioning pointing to the pupillometry as a promising tool in the clinical application.
Collapse
Affiliation(s)
- N Ferencová
- Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovak Republic.
| | | | | | | |
Collapse
|
48
|
Bahnfleth CL, Strupp BJ, Caudill MA, Canfield RL. Prenatal choline supplementation improves child sustained attention: A 7-year follow-up of a randomized controlled feeding trial. FASEB J 2021; 36:e22054. [PMID: 34962672 PMCID: PMC9303951 DOI: 10.1096/fj.202101217r] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/22/2021] [Accepted: 11/08/2021] [Indexed: 01/23/2023]
Abstract
Numerous rodent studies demonstrate developmental programming of offspring cognition by maternal choline intake, with prenatal choline deprivation causing lasting adverse effects and supplemental choline producing lasting benefits. Few human studies have evaluated the effect of maternal choline supplementation on offspring cognition, with none following children to school age. Here, we report results from a controlled feeding study in which pregnant women were randomized to consume 480 mg choline/d (approximately the Adequate Intake [AI]) or 930 mg choline/d during the 3rd trimester. Sustained attention was assessed in the offspring at age 7 years (n = 20) using a signal detection task that showed benefits of maternal choline supplementation in a murine model. Children in the 930 mg/d group showed superior performance (vs. 480 mg/d group) on the primary endpoint (SAT score, p = .02) and a superior ability to maintain correct signal detections (hits) across the 12‐min session (p = .02), indicative of improved sustained attention. This group difference in vigilance decrement varied by signal duration (p = .04). For the briefest (17 ms) signals, the 480 mg/d group showed a 22.9% decline in hits across the session compared to a 1.5% increase in hits for the 930 mg/d group (p = .04). The groups did not differ in vigilance decrement for 29 or 50 ms signals. This pattern suggests an enhanced ability to sustain perceptual amplification of a brief low‐contrast visual signal by children in the 930 mg/d group. This inference of improved sustained attention by the 930 mg/d group is strengthened by the absence of group differences for false alarms, omissions, and off‐task behaviors. This pattern of results indicates that maternal 3rd trimester consumption of the choline AI for pregnancy (vs. double the AI) produces offspring with a poorer ability to sustain attention—reinforcing concerns that, on average, choline consumption by pregnant women is approximately 70% of the AI.
Collapse
Affiliation(s)
| | - Barbara J Strupp
- Division of Nutritional Sciences, Cornell University, Ithaca, New York, USA.,Department of Psychology, Cornell University, Ithaca, New York, USA
| | - Marie A Caudill
- Division of Nutritional Sciences, Cornell University, Ithaca, New York, USA
| | - Richard L Canfield
- Division of Nutritional Sciences, Cornell University, Ithaca, New York, USA
| |
Collapse
|
49
|
Chapman LR, Hallowell B. The Unfolding of Cognitive Effort During Sentence Processing: Pupillometric Evidence From People With and Without Aphasia. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2021; 64:4900-4917. [PMID: 34763522 PMCID: PMC9150667 DOI: 10.1044/2021_jslhr-21-00129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/18/2021] [Accepted: 08/05/2021] [Indexed: 06/13/2023]
Abstract
PURPOSE Arousal and cognitive effort are relevant yet often overlooked components of attention during language processing. Pupillometry can be used to provide a psychophysiological index of arousal and cognitive effort. Given that much is unknown regarding the relationship between cognition and language deficits seen in people with aphasia (PWA), pupillometry may be uniquely suited to explore those relationships. The purpose of this study was to examine arousal and the time course of the allocation of cognitive effort related to sentence processing in people with and without aphasia. METHOD Nineteen PWA and age- and education-matched control participants listened to relatively easy (subject-relative) and relatively difficult (object-relative) sentences and were required to answer occasional comprehension questions. Tonic and phasic pupillary responses were used to index arousal and the unfolding of cognitive effort, respectively, while sentences were processed. Group differences in tonic and phasic responses were examined. RESULTS Group differences were observed for both tonic and phasic responses. PWA exhibited greater overall arousal throughout the task compared with controls, as evidenced by larger tonic pupil responses. Controls exhibited more effort (greater phasic responses) for difficult compared with easy sentences; PWA did not. Group differences in phasic responses were apparent during end-of-sentence and postsentence time windows. CONCLUSIONS Results indicate that the attentional state of PWA in this study was not consistently supportive of adequate task engagement. PWA in our sample may have relatively limited attentional capacity or may have challenges with allocating existing capacity in ways that support adequate task engagement and performance. This work adds to the body of evidence supporting the validity of pupillometric tasks for the study of aphasia and contributes to a better understanding of the nature of language deficits in aphasia. Supplemental Material https://doi.org/10.23641/asha.16959376.
Collapse
Affiliation(s)
- Laura Roche Chapman
- Department of Communication Sciences and Disorders, Appalachian State University, Boone, NC
| | | |
Collapse
|
50
|
Hansen N, Rediske AI. The Locus Coeruleus Noradrenaline System in Delirium. Front Aging Neurosci 2021; 13:784356. [PMID: 34955815 PMCID: PMC8692941 DOI: 10.3389/fnagi.2021.784356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/08/2021] [Indexed: 12/18/2022] Open
Abstract
Delirium is a brain state involving severe brain dysfunction affecting cognitive and attentional capacities. Our opinion statement review aims to elucidate the relationship between abnormal arousal and locus coeruleus (LC) activity in cognitive dysfunction and inattention in delirium states. We propose (1) that enhanced noradrenaline release caused by altered arousal in hyperactive delirium states leads to increased noradrenergic transmission within the LC and subcortical and cortical brain regions including the prefrontal cortex and hippocampus, thus affecting how attention and cognition function. In hypoactive delirium states, however, we are presuming (2) that less arousal will cause the release of noradrenaline to diminish in the LC, followed by reduced noradrenergic transmission in cortical and subcortical brain areas concentrated within the prefrontal cortex and hippocampus, leading to deficient attention and cognitive processing. Studies addressing the measurement of noradrenaline and its derivatives in biomaterial probes regarding delirium are also covered in this article. In conclusion, the LC-NA system plays a crucial role in generating delirium. Yet there have been no large-scale studies investigating biomarkers of noradrenaline to help us draw conclusions for improving delirium's diagnosis, treatment, and prognosis, and to better understand its pathogenesis.
Collapse
Affiliation(s)
- Niels Hansen
- Department of Psychiatry and Psychotherapy, University Medical Center of Göttingen, Göttingen, Germany
| | | |
Collapse
|