1
|
Kaur H, Singh S, Kathott Prakash S, Rode S, Lonare S, Kumar R, Kumar P, Kumar Sharma A, Ramamurthy PC, Singh J, Khan NA. Identification and biophysical characterization of potential phytochemical inhibitors of carboxyl/choline esterase from Helicoverpa armigera for advancing integrated pest management strategies. Sci Rep 2024; 14:21596. [PMID: 39285183 PMCID: PMC11405510 DOI: 10.1038/s41598-024-69497-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 08/05/2024] [Indexed: 09/22/2024] Open
Abstract
In the realm of disease vectors and agricultural pest management, insecticides play a crucial role in preserving global health and ensuring food security. The pervasive use, particularly of organophosphates (OPs), has given rise to a substantial challenge in the form of insecticide resistance. Carboxylesterases emerge as key contributors to OP resistance, owing to their ability to sequester or hydrolyze these chemicals. Consequently, carboxylesterase enzymes become attractive targets for the development of novel insecticides. Inhibiting these enzymes holds the potential to restore the efficacy of OPs against which resistance has developed. This study aimed to screen the FooDB library to identify potent inhibitory compounds targeting carboxylesterase, Ha006a from the agricultural pest Helicoverpa armigera. The ultimate objective is to develop effective interventions for pest control. The compounds with the highest scores underwent evaluation through docking studies and pharmacophore analysis. Among them, four phytochemicals-donepezil, protopine, 3',4',5,7-tetramethoxyflavone, and piperine-demonstrated favorable binding affinity. The Ha006a-ligand complexes were subsequently validated through molecular dynamics simulations. Biochemical analysis, encompassing determination of IC50 values, complemented by analysis of thermostability through Differential Scanning Calorimetry and interaction kinetics through Isothermal Titration Calorimetry was conducted. This study comprehensively characterizes Ha006a-ligand complexes through bioinformatics, biochemical, and biophysical methods. This investigation highlights 3',4',5,7-tetramethoxyflavone as the most effective inhibitor, suggesting its potential for synergistic testing with OPs. Consequently, these inhibitors offer a promising solution to OP resistance and address environmental concerns associated with excessive insecticide usage, enabling a significant reduction in their overuse.
Collapse
Affiliation(s)
- Harry Kaur
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - Simranjeet Singh
- Interdisciplinary Centre for Water Research (ICWaR) Indian Institute of Science, Bengaluru, 560012, Karnataka, India
| | - Sandra Kathott Prakash
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - Surabhi Rode
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - Sapna Lonare
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - Rakesh Kumar
- Division of Crop Improvement, ICAR-Central Institute for Cotton Research (ICAR-CICR), Nagpur, 440010, Maharashtra, India
| | - Pravindra Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - Ashwani Kumar Sharma
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, India.
| | - Praveen C Ramamurthy
- Interdisciplinary Centre for Water Research (ICWaR) Indian Institute of Science, Bengaluru, 560012, Karnataka, India
| | - Joginder Singh
- Department of Botany, Nagaland University, Lumami, Nagaland, India
| | - Nadeem A Khan
- Interdisciplinary Research Center for Membranes and Water Security, King Fahd University of Petroleum and Minerals, 31261, Dhahran, Saudi Arabia
| |
Collapse
|
2
|
Patel DK, Rawat R, Sharma S, Shah K, Borsadiya N, Dave G. Linker-assisted engineering of chimeric xylanase-phytase for improved thermal tolerance of feed enzymes. J Biomol Struct Dyn 2024; 42:8114-8124. [PMID: 37545145 DOI: 10.1080/07391102.2023.2243338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 07/27/2023] [Indexed: 08/08/2023]
Abstract
Biological enzymes are multifunctional macromolecules that can perform hundreds of reactions simultaneously. An enzyme must possess specific characteristics to meet industrial needs, such as stability over a wide pH and temperature range and high specific activity. A phytase and xylanase mixture is generally added to poultry feed to improve the bird's health and productivity. Despite this, animal farmers have noticed no difference in productivity, and a leading cause is the high temperature at which feed is pulverized, which inactivates enzymes. A thermo-stable enzyme system can overcome these hitches. Commonly, coatings and immobilization reduce losses caused by physical-chemical factors in feed processing and digestion. To this end, we engineered the multifunctional xylanase-phytase domains on a single polypeptide fused by a helical linker. First, the ideal linker sequence was chosen by computing each selected linker's root mean square deviation (RMSD). The selected helical linker provides sufficient structural flexibility for substrate binding and product release evaluated by molecular docking and molecular dynamic simulation studies. Furthermore, a domain-domain interaction has stabilized the bridging partners, attaining the thermal optima for xylanase and phytase at 90 °C. Even at the above-optimal temperature (100 °C), the recombinant PLX was relatively stable and retained 64.2% and 59.2% activity for xylanase and phytase, respectively, when surveyed for ten hours. So far, to this date, this is the highest degree of thermostability achieved by any recombinant phytase or xylanase.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Dharti K Patel
- PD Patel Institute of Applied Sciences, CHARUSAT, Changa, Anand Gujarat, India
| | - Ravi Rawat
- School of Health Sciences & Technology, UPES University, Dehradun, India
| | - Shilpa Sharma
- Department of Biotechnology, Bennett University, Greater Nioda, India
| | - Kruti Shah
- PD Patel Institute of Applied Sciences, CHARUSAT, Changa, Anand Gujarat, India
| | - Nayan Borsadiya
- PD Patel Institute of Applied Sciences, CHARUSAT, Changa, Anand Gujarat, India
| | - Gayatri Dave
- PD Patel Institute of Applied Sciences, CHARUSAT, Changa, Anand Gujarat, India
| |
Collapse
|
3
|
Rodriguez-Aponte SA, Naranjo CA, Johnston RS, Dalvie NC, Crowell LE, Bajoria S, Kumru OS, Joshi SB, Volkin DB, Love JC. Minimal purification method enables developability assessment of recombinant proteins. Biotechnol Bioeng 2024; 121:2423-2434. [PMID: 36929469 DOI: 10.1002/bit.28385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/10/2023] [Accepted: 03/14/2023] [Indexed: 03/18/2023]
Abstract
Analytical characterization of proteins is a critical task for developing therapeutics and subunit vaccine candidates. Assessing candidates with a battery of biophysical assays can inform the selection of one that exhibits properties consistent with a given target product profile (TPP). Such assessments, however, require several milligrams of purified protein, and ideal assessments of the physicochemical attributes of the proteins should not include unnatural modifications like peptide tags for purification. Here, we describe a fast two-stage minimal purification process for recombinant proteins secreted by the yeast host Komagataella phaffii from a 20 mL culture supernatant. This method comprises a buffer exchange and filtration with a Q-membrane filter and we demonstrate sufficient removal of key supernatant impurities including host-cell proteins (HCPs) and DNA with yields of 1-2 mg and >60% purity. This degree of purity enables characterizing the resulting proteins using affinity binding, mass spectrometry, and differential scanning calorimetry. We first evaluated this method to purify an engineered SARS-CoV-2 subunit protein antigen and compared the purified protein to a conventional two-step chromatographic process. We then applied this method to compare several SARS-CoV-2 RBD sequences. Finally, we show this simple process can be applied to a range of other proteins, including a single-domain antibody, a rotavirus protein subunit, and a human growth hormone. This simple and fast developability methodology obviates the need for genetic tagging or full chromatographic development when assessing and comparing early-stage protein therapeutics and vaccine candidates produced in K. phaffii.
Collapse
Affiliation(s)
- Sergio A Rodriguez-Aponte
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Christopher A Naranjo
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Ryan S Johnston
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Neil C Dalvie
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Laura E Crowell
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Sakshi Bajoria
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, Kansas, USA
| | - Ozan S Kumru
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, Kansas, USA
| | - Sangeeta B Joshi
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, Kansas, USA
| | - David B Volkin
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, Kansas, USA
| | - J Christopher Love
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
| |
Collapse
|
4
|
Agustinisari I, Mulia K, Harimurti N, Nasikin M, Rienoviar, Herawati H, Manalu LP. The Potency of Maillard Conjugates Containing Whey Protein as Natural Emulsifier. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2024; 2024:3254132. [PMID: 38962097 PMCID: PMC11222009 DOI: 10.1155/2024/3254132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 04/09/2024] [Accepted: 04/26/2024] [Indexed: 07/05/2024]
Abstract
There is a continued need for the advancement of natural emulsifiers to replace synthetic emulsifiers, driven by human health concerns. This study is aimed at producing protein-polysaccharide conjugates through the Maillard reaction and at evaluating its ability as an emulsifier based on its emulsifying properties. The proteins used in this study were bovine milk whey protein and soy protein isolates, while the polysaccharides were maltodextrin and pectin. The protein-polysaccharide conjugation used a Maillard reaction under dry heating conditions. The protein and polysaccharide mass ratios were 1 : 2 and 1 : 3. The results showed that the types of proteins and polysaccharides and their mass affect the surface tension of the conjugate products. Whey protein-pectin conjugates with a mass ratio of 1 : 2 and a concentration of 1% had the lowest surface tension at 43.77 dyne/cm2. This conjugate sample also showed the highest emulsifying index at 27.20 m2/g. The conjugate powder containing pectin as a polysaccharide showed better emulsifying activity than that of those containing maltodextrin. However, the smallest droplet size of the emulsion (256.5 nm) resulted from the emulsification process using whey protein-maltodextrin conjugates as an emulsifier. The FTIR and gel electrophoresis (SDS-PAGE) analysis confirmed the conjugation formation. In general, protein-polysaccharide conjugates containing whey protein could potentially act as a natural emulsifier for food.
Collapse
Affiliation(s)
- Iceu Agustinisari
- Research Center for AgroindustryNational Research and Innovation AgencyKST Soekarno Cibinong, Jl. Raya Jakarta-Bogor KM 46, Cibinong 16911, Indonesia
| | - Kamarza Mulia
- Department of Chemical EngineeringUniversitas Indonesia, Depok 16424, Indonesia
| | - Niken Harimurti
- Research Center for AgroindustryNational Research and Innovation AgencyKST Soekarno Cibinong, Jl. Raya Jakarta-Bogor KM 46, Cibinong 16911, Indonesia
| | - Mohammad Nasikin
- Department of Chemical EngineeringUniversitas Indonesia, Depok 16424, Indonesia
| | - Rienoviar
- Research Center for AgroindustryNational Research and Innovation AgencyKST Soekarno Cibinong, Jl. Raya Jakarta-Bogor KM 46, Cibinong 16911, Indonesia
| | - Heny Herawati
- Research Center for AgroindustryNational Research and Innovation AgencyKST Soekarno Cibinong, Jl. Raya Jakarta-Bogor KM 46, Cibinong 16911, Indonesia
| | - Lamhot Parulian Manalu
- Research Center for AgroindustryNational Research and Innovation AgencyKST Soekarno Cibinong, Jl. Raya Jakarta-Bogor KM 46, Cibinong 16911, Indonesia
| |
Collapse
|
5
|
Bharti, Nair MS. Molecular cloning, biophysical and in silico studies of Human papillomavirus 33 E2 DNA binding domain. J Biomol Struct Dyn 2024:1-20. [PMID: 38385450 DOI: 10.1080/07391102.2024.2317996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 02/07/2024] [Indexed: 02/23/2024]
Abstract
Human papillomavirus 33, a high-risk HPV strain, is mainly responsible for HPV infection and cervical cancer in Asian countries. The E2 protein of HPV 33 is a DNA-binding protein that plays a crucial role in viral replication and transcription. We have cloned, overexpressed, and purified the DNA binding domain of the E2 protein. Size exclusion chromatography results suggested that the protein exists in a homodimeric state in the native form. Circular dichroism data showed that the protein has a higher content of β-sheet. The melting temperature obtained from differential scanning calorimetry is 52.59 °C, and the protein is stable at pH 8 and is in a dimeric form at basic pH. The protein is monomeric or unfolded at a very low pH. Chemical denaturation studies suggested that the protein denatured and dissociated simultaneously. The DNA binding activity of the protein was also confirmed and it showed binding affinity in the order of 106 M-1. The protein structure was modeled using homology modeling and other bioinformatic tools. The virtual screening and molecular dynamic simulation studies were performed to find compounds that can act as potent inhibitors against E2 DBD. This study expands the understanding of the conserved structural and binding properties of HPV33 E2 DBD and provides the first report on the characterization of the viral protein.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Bharti
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Haridwar Uttarakhand, India
| | - Maya S Nair
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Haridwar Uttarakhand, India
| |
Collapse
|
6
|
Das D, Sen V, Chakraborty G, Pillai V, Tambade R, Jonnalagadda PN, Rao AVSSN, Chittela RK. Quinaldine Red as a fluorescent probe for determining the melting temperature ( Tm) of proteins: a simple, rapid and high-throughput assay. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:950-956. [PMID: 38291911 DOI: 10.1039/d3ay01941a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Proteins play an important role in biological systems and several proteins are used in diagnosis, therapy, food industry etc. Thus, knowledge about the physical properties of the proteins is of utmost importance, which will aid in understanding their function and subsequent applications. The melting temperature (Tm) of a protein is one of the essential parameters which gives information about the stability of a protein under different conditions. In the present study, we have demonstrated a method for determining the Tm of proteins using the supramolecular interaction between Quinaldine Red (QR) and proteins. Using this method, we have determined the Tm of 5 proteins and compared our results with established protocols. Our results showed good agreement with the other methods and published values. The method developed in this study is inexpensive, quick, and devoid of complex instruments and pre/post-treatment of the samples. In addition, this method can be adopted for high throughput in multi-plate mode. Thus, this study projects a new methodology for Tm determination of various proteins with user friendly operation.
Collapse
Affiliation(s)
- Dhruv Das
- Applied Genomics Section, Bhabha Atomic Research Centre, Mumbai-400085, India.
- Homi Bhabha National Institute, Anushaktinagar, Mumbai-400094, India
| | - Vikram Sen
- UM-DAE Centre for Excellence in Basic Sciences, Vidyanagari, Mumbai-400098, India
| | - Goutam Chakraborty
- Laser and Plasma Technology Division, Bhabha Atomic Research Centre, Homi Bhabha National Institute, Mumbai-400085, India
| | - Vinayaki Pillai
- Applied Genomics Section, Bhabha Atomic Research Centre, Mumbai-400085, India.
- Homi Bhabha National Institute, Anushaktinagar, Mumbai-400094, India
| | - Rahul Tambade
- Applied Genomics Section, Bhabha Atomic Research Centre, Mumbai-400085, India.
- Homi Bhabha National Institute, Anushaktinagar, Mumbai-400094, India
| | - Padma Nilaya Jonnalagadda
- Homi Bhabha National Institute, Anushaktinagar, Mumbai-400094, India
- Laser and Plasma Technology Division, Bhabha Atomic Research Centre, Homi Bhabha National Institute, Mumbai-400085, India
| | | | - Rajani Kant Chittela
- Applied Genomics Section, Bhabha Atomic Research Centre, Mumbai-400085, India.
- Homi Bhabha National Institute, Anushaktinagar, Mumbai-400094, India
| |
Collapse
|
7
|
Donnelly RB, Pingali SV, Heroux L, Brinson RG, Wagner NJ, Liu Y. Hydrogen-Deuterium Exchange Dynamics of NISTmAb Measured by Small Angle Neutron Scattering. Mol Pharm 2023; 20:6358-6367. [PMID: 37961914 DOI: 10.1021/acs.molpharmaceut.3c00751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Understanding protein dynamics and conformational stability holds great significance in biopharmaceutical research. Hydrogen-deuterium exchange (HDX) is a quantitative methodology used to examine these fundamental properties of proteins. HDX involves measuring the exchange of solvent-accessible hydrogens with deuterium, which yields valuable insights into conformational fluctuations and conformational stability. While mass spectrometry is commonly used to measure HDX on the peptide level, we explore a different approach using small-angle neutron scattering (SANS). In this work, SANS is demonstrated as a complementary and noninvasive HDX method (HDX-SANS). By assessing subtle changes in the tertiary and quaternary structure during the exchange process in deuterated buffer, along with the influence of added electrolytes on protein stability, SANS is validated as a complementary HDX technique. The HDX of a model therapeutic antibody, NISTmAb, an IgG1κ, is monitored by HDX-SANS over many hours using several different formulations, including salts from the Hofmeister series of anions, such as sodium perchlorate, sodium thiocyanate, and sodium sulfate. The impact of these formulation conditions on the thermal stability of NISTmAb is probed by differential scanning calorimetry. The more destabilizing salts led to heightened conformational dynamics in mAb solutions even at temperatures significantly below the denaturation point. HDX-SANS is demonstrated as a sensitive and noninvasive technique for quantifying HDX kinetics directly in mAb solution, providing novel information about mAb conformational fluctuations. Therefore, HDX-SANS holds promise as a potential tool for assessing protein stability in formulation.
Collapse
Affiliation(s)
- Róisín B Donnelly
- Department of Biomedical Engineering, College of Engineering, University of Delaware, Newark, Delaware 19711, United States
- Center for Neutron Science, Department of Chemical and Biomolecular Engineering, College of Engineering, University of Delaware, Newark, Delaware 19711, United States
| | - Sai Venkatesh Pingali
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Luke Heroux
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Robert G Brinson
- Institute for Bioscience and Biotechnology Research, National Institute of Standards and Technology and the University of Maryland, Rockville, Maryland 20850, United States
| | - Norman J Wagner
- Department of Biomedical Engineering, College of Engineering, University of Delaware, Newark, Delaware 19711, United States
- Center for Neutron Science, Department of Chemical and Biomolecular Engineering, College of Engineering, University of Delaware, Newark, Delaware 19711, United States
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Yun Liu
- Center for Neutron Science, Department of Chemical and Biomolecular Engineering, College of Engineering, University of Delaware, Newark, Delaware 19711, United States
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| |
Collapse
|
8
|
Schiavon A, Saba L, Catucci G, Petiti J, Puglisi S, Borin C, Reimondo G, Gilardi G, Giachino C, Terzolo M, Lo Iacono M. Albumin/Mitotane Interaction Affects Drug Activity in Adrenocortical Carcinoma Cells: Smoke and Mirrors on Mitotane Effect with Possible Implications for Patients' Management. Int J Mol Sci 2023; 24:16701. [PMID: 38069023 PMCID: PMC10706292 DOI: 10.3390/ijms242316701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/22/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Mitotane is the only drug approved for the treatment of adrenocortical carcinoma (ACC). Although it has been used for many years, its mechanism of action remains elusive. H295R cells are, in ACC, an essential tool to evaluate drug mechanisms, although they often lead to conflicting results. METHODS Using different in vitro biomolecular technologies and biochemical/biophysical experiments, we evaluated how the presence of "confounding factors" in culture media and patient sera could reduce the pharmacological effect of mitotane and its metabolites. RESULTS We discovered that albumin, the most abundant protein in the blood, was able to bind mitotane. This interaction altered the effect of the drug by blocking its biological activity. This blocking effect was independent of the albumin source or methodology used and altered the assessment of drug sensitivity of the cell lines. CONCLUSIONS In conclusion, we have for the first time demonstrated that albumin does not only act as an inert drug carrier when mitotane or its metabolites are present. Indeed, our experiments clearly indicated that both albumin and human serum were able to suppress the pharmacological effect of mitotane in vitro. These experiments could represent a first step towards the individualization of mitotane treatment in this rare tumor.
Collapse
Affiliation(s)
- Aurora Schiavon
- Department of Clinical and Biological Sciences, University of Turin, 10043 Turin, Italy; (A.S.); (L.S.); (S.P.); (C.B.); (G.R.); (C.G.); (M.T.)
| | - Laura Saba
- Department of Clinical and Biological Sciences, University of Turin, 10043 Turin, Italy; (A.S.); (L.S.); (S.P.); (C.B.); (G.R.); (C.G.); (M.T.)
| | - Gianluca Catucci
- Department of Life Sciences and Systems Biology, University of Turin, 10123 Turin, Italy; (G.C.); (G.G.)
| | - Jessica Petiti
- Division of Advanced Materials Metrology and Life Sciences, Istituto Nazionale di Ricerca Metrologica (INRiM), 10135 Turin, Italy;
| | - Soraya Puglisi
- Department of Clinical and Biological Sciences, University of Turin, 10043 Turin, Italy; (A.S.); (L.S.); (S.P.); (C.B.); (G.R.); (C.G.); (M.T.)
| | - Chiara Borin
- Department of Clinical and Biological Sciences, University of Turin, 10043 Turin, Italy; (A.S.); (L.S.); (S.P.); (C.B.); (G.R.); (C.G.); (M.T.)
| | - Giuseppe Reimondo
- Department of Clinical and Biological Sciences, University of Turin, 10043 Turin, Italy; (A.S.); (L.S.); (S.P.); (C.B.); (G.R.); (C.G.); (M.T.)
| | - Gianfranco Gilardi
- Department of Life Sciences and Systems Biology, University of Turin, 10123 Turin, Italy; (G.C.); (G.G.)
| | - Claudia Giachino
- Department of Clinical and Biological Sciences, University of Turin, 10043 Turin, Italy; (A.S.); (L.S.); (S.P.); (C.B.); (G.R.); (C.G.); (M.T.)
| | - Massimo Terzolo
- Department of Clinical and Biological Sciences, University of Turin, 10043 Turin, Italy; (A.S.); (L.S.); (S.P.); (C.B.); (G.R.); (C.G.); (M.T.)
| | - Marco Lo Iacono
- Department of Clinical and Biological Sciences, University of Turin, 10043 Turin, Italy; (A.S.); (L.S.); (S.P.); (C.B.); (G.R.); (C.G.); (M.T.)
| |
Collapse
|
9
|
Bhattacharya S, Junghare V, Hazra M, Pandey NK, Mukherjee A, Dhankhar K, Das N, Roy P, Dubey RC, Hazra S. Characterization of a Class A β-Lactamase from Francisella tularensis (Ftu-1) Belonging to a Unique Subclass toward Understanding AMR. ACS BIO & MED CHEM AU 2023; 3:174-188. [PMID: 37101813 PMCID: PMC10125328 DOI: 10.1021/acsbiomedchemau.2c00044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 01/21/2023] [Accepted: 01/25/2023] [Indexed: 04/28/2023]
Abstract
β-lactamase production with vast catalytic divergence in the pathogenic strain limits the antibiotic spectrum in the clinical environment. Class A carbapenemase shares significant sequence similarities, structural features, and common catalytic mechanisms although their resistance spectrum differs from class A β-lactamase in carbapenem and monobactam hydrolysis. In other words, it limited the antibiotic treatment option against infection, causing carbapenemase-producing superbugs. Ftu-1 is a class A β-lactamase expressed by the Francisella tularensis strain, a potent causative organism of tularemia. The chromosomally encoded class A β-lactamase shares two conserved cysteine residues, a common characteristic of a carbapenemase, and a distinctive class in the phylogenetic tree. Complete biochemical and biophysical characterization of the enzyme was performed to understand the overall stability and environmental requirements to perform optimally. To comprehend the enzyme-drug interaction and its profile toward various chemistries of β-lactam and β-lactamase inhibitors, comprehensive kinetic and thermodynamic analyses were conducted using various β-lactam drugs. The dynamic property of Ftu-1 β-lactamase was also predicted using molecular dynamics (MD) simulation to compare its loop flexibility and ligand binding with other related class A β-lactamases. Overall, this study fosters a comprehensive understanding of Ftu-1, proposed to be an intermediate class by characterizing its kinetic profiling, stability by biochemical and biophysical methodologies, and susceptibility profiling. This understanding would be beneficial for the design of new-generation therapeutics.
Collapse
Affiliation(s)
- Sourya Bhattacharya
- Department
of Bioscience and Bioengineering, Indian
Institute of Technology Roorkee, Roorkee 247667, India
| | - Vivek Junghare
- Department
of Bioscience and Bioengineering, Indian
Institute of Technology Roorkee, Roorkee 247667, India
| | - Mousumi Hazra
- Department
of Botany and Microbiology, Gurukula Kangri
(Deemed to be University), Haridwar 249404, Uttarakhand, India
| | - Niteesh Kumar Pandey
- Department
of Bioscience and Bioengineering, Indian
Institute of Technology Roorkee, Roorkee 247667, India
| | - Abirlal Mukherjee
- Department
of Bioscience and Bioengineering, Indian
Institute of Technology Roorkee, Roorkee 247667, India
| | - Kunal Dhankhar
- Department
of Bioscience and Bioengineering, Indian
Institute of Technology Roorkee, Roorkee 247667, India
| | - Neeladrisingha Das
- Department
of Bioscience and Bioengineering, Indian
Institute of Technology Roorkee, Roorkee 247667, India
| | - Partha Roy
- Department
of Bioscience and Bioengineering, Indian
Institute of Technology Roorkee, Roorkee 247667, India
| | - Ramesh Chandra Dubey
- Department
of Botany and Microbiology, Gurukula Kangri
(Deemed to be University), Haridwar 249404, Uttarakhand, India
| | - Saugata Hazra
- Department
of Bioscience and Bioengineering, Indian
Institute of Technology Roorkee, Roorkee 247667, India
- Centre
of Nanotechnology, Indian Institute of Technology
Roorkee, Roorkee 247667, India
- ,
| |
Collapse
|
10
|
Seelig J, Seelig A. Protein Stability─Analysis of Heat and Cold Denaturation without and with Unfolding Models. J Phys Chem B 2023; 127:3352-3363. [PMID: 37040567 PMCID: PMC10123674 DOI: 10.1021/acs.jpcb.3c00882] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
Protein stability is important in many areas of life sciences. Thermal protein unfolding is investigated extensively with various spectroscopic techniques. The extraction of thermodynamic properties from these measurements requires the application of models. Differential scanning calorimetry (DSC) is less common, but is unique as it measures directly a thermodynamic property, that is, the heat capacity Cp(T). The analysis of Cp(T) is usually performed with the chemical equilibrium two-state model. This is not necessary and leads to incorrect thermodynamic consequences. Here we demonstrate a straightforward model-independent evaluation of heat capacity experiments in terms of protein unfolding enthalpy ΔH(T), entropy ΔS(T), and free energy ΔG(T)). This now allows the comparison of the experimental thermodynamic data with the predictions of different models. We critically examined the standard chemical equilibrium two-state model, which predicts a positive free energy for the native protein, and diverges distinctly from the experimental temperature profiles. We propose two new models which are equally applicable to spectroscopy and calorimetry. The ΘU(T)-weighted chemical equilibrium model and the statistical-mechanical two-state model provide excellent fits of the experimental data. They predict sigmoidal temperature profiles for enthalpy and entropy, and a trapezoidal temperature profile for the free energy. This is illustrated with experimental examples for heat and cold denaturation of lysozyme and β-lactoglobulin. We then show that the free energy is not a good criterion to judge protein stability. More useful parameters are discussed, including protein cooperativity. The new parameters are embedded in a well-defined thermodynamic context and are amenable to molecular dynamics calculations.
Collapse
Affiliation(s)
- Joachim Seelig
- Biozentrum, University of Basel, Spitalstrasse 41, CH-4056 Basel, Switzerland
| | - Anna Seelig
- Biozentrum, University of Basel, Spitalstrasse 41, CH-4056 Basel, Switzerland
| |
Collapse
|
11
|
Iwasaki YW, Tharakaraman K, Subramanian V, Khongmanee A, Hatas A, Fleischer E, Rurak TT, Ngok-ngam P, Tit-oon P, Ruchirawat M, Satayavivad J, Fuangthong M, Sasisekharan R. Generation of bispecific antibodies by structure-guided redesign of IgG constant regions. Front Immunol 2023; 13:1063002. [PMID: 36703993 PMCID: PMC9871890 DOI: 10.3389/fimmu.2022.1063002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 12/13/2022] [Indexed: 01/12/2023] Open
Abstract
Bispecific antibodies (BsAbs) form an exciting class of bio-therapeutics owing to their multispecificity. Although numerous formats have been developed, generation of hetero-tetrameric IgG1-like BsAbs having acceptable safety and pharmacokinetics profiles from a single cell culture system remains challenging due to the heterogeneous pairing between the four chains. Herein, we employed a structure-guided approach to engineer mutations in the constant domain interfaces (CH1-CL and CH3-CH3) of heavy and κ light chains to prevent heavy-light mispairing in the antigen binding fragment (Fab) region and heavy-heavy homodimerization in the Fc region. Transient co-transfection of mammalian cells with heavy and light chains of pre-existing antibodies carrying the engineered constant domains generates BsAbs with percentage purity ranging from 78% to 85%. The engineered BsAbs demonstrate simultaneous binding of both antigens, while retaining the thermal stability, Fc-mediated effector properties and FcRn binding properties of the parental antibodies. Importantly, since the variable domains were not modified, the mutations may enable BsAb formation from antibodies belonging to different germline origins and isotypes. The rationally designed mutations reported in this work could serve as a starting point for generating optimized solutions required for large scale production.
Collapse
Affiliation(s)
- Yordkhwan W. Iwasaki
- Program in Environmental Toxicology, Chulabhorn Graduate Institute, Bangkok, Thailand
| | - Kannan Tharakaraman
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Vidya Subramanian
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Amnart Khongmanee
- Translational Research Unit, Chulabhorn Research Institute, Bangkok, Thailand
| | - Andrew Hatas
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Eduardo Fleischer
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Troy T. Rurak
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Patchara Ngok-ngam
- Translational Research Unit, Chulabhorn Research Institute, Bangkok, Thailand
| | - Phanthakarn Tit-oon
- Translational Research Unit, Chulabhorn Research Institute, Bangkok, Thailand
| | - Mathuros Ruchirawat
- Translational Research Unit, Chulabhorn Research Institute, Bangkok, Thailand,Center of Excellence on Environmental Health and Toxicology (EHT), Office of the Permanent Secretary (OPS), Ministry of Higher Education, Science, Research and Innovation (MHESI), Bangkok, Thailand
| | - Jutamaad Satayavivad
- Program in Environmental Toxicology, Chulabhorn Graduate Institute, Bangkok, Thailand,Center of Excellence on Environmental Health and Toxicology (EHT), Office of the Permanent Secretary (OPS), Ministry of Higher Education, Science, Research and Innovation (MHESI), Bangkok, Thailand,Laboratory of Pharmacology, Chulabhorn Research Institute, Bangkok, Thailand
| | - Mayuree Fuangthong
- Translational Research Unit, Chulabhorn Research Institute, Bangkok, Thailand,Center of Excellence on Environmental Health and Toxicology (EHT), Office of the Permanent Secretary (OPS), Ministry of Higher Education, Science, Research and Innovation (MHESI), Bangkok, Thailand,Program in Applied Biological Sciences, Chulabhorn Graduate Institute, Bangkok, Thailand,*Correspondence: Mayuree Fuangthong, ; Ram Sasisekharan,
| | - Ram Sasisekharan
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States,*Correspondence: Mayuree Fuangthong, ; Ram Sasisekharan,
| |
Collapse
|
12
|
Di Matteo P, Luziatelli F, Bortolami M, Mele ML, Ruzzi M, Russo P. Differential scanning calorimetry (DSC) as a tool for studying thermal properties of a crude cellulase cocktail. CHEMICAL PAPERS 2023. [DOI: 10.1007/s11696-022-02658-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Abstract
Differential scanning calorimetry (DSC) was used as an efficient and rapid tool in studying the conformational transitions between the folded and unfolded structures of cellulolytic enzymes. The thermal properties of two crude hydrolytic enzyme cocktails containing extracellular cellulases from Trichoderma longibrachiatum DIBAF-10 were analyzed and compared with three commercial cellulase preparations. Differences in the thermal behavior of fungal cellulases in the liquid phase, freeze-dried state, liquid formulations in sodium citrate buffer (pH 4.8), and contact with cellulose, carboxymethyl cellulose, and cellobiose were evaluated. DSC profiles of cellulases from the DIBAF-10 strain provided important thermodynamic information about the thermal stability of the included proteins. Crude enzyme cocktails underwent a reproducible and irreversible exothermic aggregation phenomenon at 52.45 ± 0.90 °C like commercial β-glucosidase. Freeze-dried and resuspended in a sodium citrate buffer, cellulases from T. longibrachiatum showed an endothermic peak dependent on buffer and enzyme concentration. In the enzyme-substrates systems, a shift of the same peak was recorded for all substrates tested. The thermal analysis of freeze-dried cellulase samples in the range of 20–150 °C gave information on the denaturation process. In conclusion, we demonstrated that DSC is a cost-effective tool for obtaining "conformational fingerprinting" of crude fungal cellulase preparations.
Graphical abstract
Collapse
|
13
|
Liu YD, Cadang L, Bol K, Pan X, Tschudi K, Jazayri M, Camperi J, Michels D, Stults J, Harris RJ, Yang F. Challenges and Strategies for a Thorough Characterization of Antibody Acidic Charge Variants. Bioengineering (Basel) 2022; 9:641. [PMID: 36354552 PMCID: PMC9687119 DOI: 10.3390/bioengineering9110641] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/24/2022] [Accepted: 10/29/2022] [Indexed: 09/02/2023] Open
Abstract
Heterogeneity of therapeutic Monoclonal antibody (mAb) drugs are due to protein variants generated during the manufacturing process. These protein variants can be critical quality attributes (CQAs) depending on their potential impact on drug safety and/or efficacy. To identify CQAs and ensure the drug product qualities, a thorough characterization is required but challenging due to the complex structure of biotherapeutics. Past characterization studies for basic and acidic variants revealed that full characterizations were limited to the basic charge variants, while the quantitative measurements of acidic variants left gaps. Consequently, the characterization and quantitation of acidic variants are more challenging. A case study of a therapeutic mAb1 accounted for two-thirds of the enriched acidic variants in the initial characterization study. This led to additional investigations, closing the quantification gaps of mAb1 acidic variants. This work demonstrates that a well-designed study with the right choices of analytical methods can play a key role in characterization studies. Thus, the updated strategies for more complete antibody charge variant characterization are recommended.
Collapse
Affiliation(s)
- Y. Diana Liu
- Pharma Technical Development, Genentech/Roche, South San Francisco, CA 94080, USA
| | | | | | | | | | | | | | | | | | | | - Feng Yang
- Pharma Technical Development, Genentech/Roche, South San Francisco, CA 94080, USA
| |
Collapse
|
14
|
A Novel Hyperthermostable Recombinant Protein Nanocage. IRANIAN BIOMEDICAL JOURNAL 2022; 26:426-39. [PMID: 36437775 PMCID: PMC9841219 DOI: 10.52547/ibj.3839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background Background: Ferritin has an important role in iron storage in the cells, and due to its nanocage structure and self-assembly properties, it has wide application prospects in nanobiotechnology. Methods Methods: The maize (Zea mays) ferritin gene ZmFer1 was cloned and expressed in Escherichia coli BL21 (DE3) for the first time. Change in macromolecular structure of ZmFer1 ferritin due to heat treatment was investigated using native PAGE electrophoresis, dynamic light scattering (DLS), and transmission electron microscopy (TEM). Change in the secondary structures of the protein was evaluated using circular dichroism spectroscopy. Moreover, alteration in the conformation of the protein was evaluated using UV-absorption spectra and intrinsic fluorescence spectra. The melting temperature (Tm) of ZmFer1 was obtained using differential scanning calorimetry (DSC). Finally, the effect of heat on the function of ZmFer1 was assessed by iron loading ability. Results Results: The purified ZmFer1 protein showed a homopolymer nanocage structure. The results of native PAGE electrophoresis, DLS, and TEM techniques showed that ZmFer1 protein nanocage is stable to heat treatment up to 90 °C, and some of the protein nanocages retain their macromolecular structures even at 100 °C in liquid aqueous solution. Based on the DSC results, ZmFer1 protein nanocage had a Tm of 81.9 °C. After treatment at 100 °C, stable ZmFer1 protein nanocages were able to store iron atoms. Conclusion Conclusion: Recombinant ZmFer1 ferritin with a Tm > 80°C is a hyperthermostable protein nanocage. The results of this study are beneficial for the development of protein nanocages that are stable under extreme temperature conditions, as well as application of ZmFer1 in nanobiotechnology, biomaterials, and biomedical fields.
Collapse
|
15
|
Wang W, Yang P, Rao L, Zhao L, Wu X, Wang Y, Liao X. Effect of high hydrostatic pressure processing on the structure, functionality, and nutritional properties of food proteins: A review. Compr Rev Food Sci Food Saf 2022; 21:4640-4682. [PMID: 36124402 DOI: 10.1111/1541-4337.13033] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 07/19/2022] [Accepted: 08/05/2022] [Indexed: 01/28/2023]
Abstract
Proteins are important food ingredients that possess both functional and nutritional properties. High hydrostatic pressure (HHP) is an emerging nonthermal food processing technology that has been subject to great advancements in the last two decades. It is well established that pressure can induce changes in protein folding and oligomerization, and consequently, HHP has the potential to modify the desired protein properties. In this review article, the research progress over the last 15 years regarding the effect of HHP on protein structures, as well as the applications of HHP in modifying protein functionalities (i.e., solubility, water/oil holding capacity, emulsification, foaming and gelation) and nutritional properties (i.e., digestibility and bioactivity) are systematically discussed. Protein unfolding generally occurs during HHP treatment, which can result in increased conformational flexibility and the exposure of interior residues. Through the optimization of HHP and environmental conditions, a balance in protein hydrophobicity and hydrophilicity may be obtained, and therefore, the desired protein functionality can be improved. Moreover, after HHP treatment, there might be greater accessibility of the interior residues to digestive enzymes or the altered conformation of specific active sites, which may lead to modified nutritional properties. However, the practical applications of HHP in developing functional protein ingredients are underutilized and require more research concerning the impact of other food components or additives during HHP treatment. Furthermore, possible negative impacts on nutritional properties of proteins and other compounds must be also considered.
Collapse
Affiliation(s)
- Wenxin Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Peiqing Yang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Lei Rao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Beijing Key laboratory for Food Non-Thermal Processing, Beijing, China
| | - Liang Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,National Engineering Research Center for Fruit & Vegetable Processing, Beijing, China.,Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Xiaomeng Wu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Beijing Key laboratory for Food Non-Thermal Processing, Beijing, China
| | - Yongtao Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,National Engineering Research Center for Fruit & Vegetable Processing, Beijing, China.,Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Xiaojun Liao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Beijing Key laboratory for Food Non-Thermal Processing, Beijing, China.,National Engineering Research Center for Fruit & Vegetable Processing, Beijing, China.,Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| |
Collapse
|
16
|
Conformational stability of ageritin, a metal binding ribotoxin-like protein of fungal origin. Int J Biol Macromol 2022; 221:1012-1021. [PMID: 36113585 DOI: 10.1016/j.ijbiomac.2022.09.103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/31/2022] [Accepted: 09/11/2022] [Indexed: 11/24/2022]
Abstract
Ageritin is a ribotoxin-like protein of biotechnological interest, belonging to a family of ribonucleases from edible mushrooms. Its enzymatic activity is explicated through the hydrolysis of a single phosphodiester bond, located in the sarcin/ricin loop of ribosomes. Unlike other ribotoxins, ageritin activity requires divalent cations (Zn2+). Here we investigated the conformational stability of ageritin in the pH range 4.0-7.4, using calorimetric and spectroscopic techniques. We observed a high protein thermal stability at all pHs with a denaturation temperature of 78 °C. At pH 5.0 we calculated a value of 36 kJ mol-1 for the unfolding Gibbs energy at 25 °C. We also analysed the thermodynamic and catalytic behaviour of S-pyridylethylated form, obtained by alkylating the single Cys18 residue, which is predicted to bind Zn2+. We show that this form possesses the same activity and structure of ageritin, but lower stability. In fact, the corresponding values of 52 °C and 14 kJ mol-1 were found. Conservation of activity is consistent with the location of alkylation site on the opposite site of the catalytic site cleft. Inasmuch as Cys18 is part of a structurally stabilizing zinc-binding site, disrupted by cysteine alkylation, our results point to an important role of metal ions in ageritin stability.
Collapse
|
17
|
Kloczewiak M, Banks JM, Jin L, Brader ML. A Biopharmaceutical Perspective on Higher-Order Structure and Thermal Stability of mRNA Vaccines. Mol Pharm 2022; 19:2022-2031. [PMID: 35715255 PMCID: PMC9257798 DOI: 10.1021/acs.molpharmaceut.2c00092] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 12/27/2022]
Abstract
Preservation of the integrity of macromolecular higher-order structure is a tenet central to achieving biologic drug and vaccine product stability toward manufacturing, distribution, storage, handling, and administration. Given that mRNA lipid nanoparticles (mRNA-LNPs) are held together by an intricate ensemble of weak forces, there are some intriguing parallels to biologic drugs, at least at first glance. However, mRNA vaccines are not without unique formulation and stabilization challenges derived from the instability of unmodified mRNA and its limited history as a drug or vaccine. Since certain learning gained from biologic drug development may be applicable for the improvement of mRNA vaccines, we present a perspective on parallels and contrasts between the emerging role of higher-order structure pertaining to mRNA-LNPs compared to pharmaceutical proteins. In a recent publication, the location of mRNA encapsulated within lipid nanoparticles was identified, revealing new insights into the LNP structure, nanoheterogeneity, and microenvironment of the encapsulated mRNA molecules [Brader et al. Biophys. J. 2021, 120, 2766]. We extend those findings by considering the effect of encapsulation on mRNA thermal unfolding with the observation that encapsulation in LNPs increases mRNA unfolding temperatures.
Collapse
Affiliation(s)
- Marek Kloczewiak
- Moderna, Inc., 200 Technology Square, Cambridge, Massachusetts 02139, United States
| | - Jessica M. Banks
- Moderna, Inc., 200 Technology Square, Cambridge, Massachusetts 02139, United States
| | - Lin Jin
- Moderna, Inc., 200 Technology Square, Cambridge, Massachusetts 02139, United States
| | - Mark L. Brader
- Moderna, Inc., 200 Technology Square, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
18
|
Qu Y, Davey K, Sun Y, Middelberg A, Bi J. Engineered Design of the E-Helix Structure on Ferritin Nanoparticles. ACS APPLIED BIO MATERIALS 2022; 5:3167-3179. [PMID: 35770389 DOI: 10.1021/acsabm.2c00154] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Insertion of an immunogenic epitope at the C-terminus of ferritin has shown the potential to produce a stable and efficacious vaccine. There is however limited understanding of how C-terminus insertion affects ferritin protein stability. The E-helix at the C-terminus has attracted interest because there are contradictory reports as to whether it has a role in protein stabilization. Here, we report, for the first time, combining molecular dynamics simulation (MDS) with experiment to engineer the design of the E-helix at the C-terminus of engineered human ferritin heavy chain (F1) inserted with Epstein-Barr nuclear antigen 1 (EBNA1, E1) and flexible linker (L3) residues (to afford F1L3E1). Hot spots on the E-helix of the C-terminus were predicted by MDS at aa 167 (Glu) and aa 171 (Asp). Five (5) variants of F1L3E1 were constructed by considering hot spots and alteration of electrostatic or hydrophobic interfaces, namely, (1) C1, hot spots substituted with noncharged residue Gln; (2) C2, hot spots substituted with positively charged residue Arg; (3) C3, hydrophobic residues substituted with the most hydrophobic residues Val and Ile; (4) C4, hydrophobic residues substituted with the most hydrophilic residues Gln and Asn; and (5) C5, a heptad repeat structure in the E-helix disrupted by substituting "a" and "d" heptad residues with noncharged polar residue Gln. It was found that the E-helix is essential to maintain integrated protein stability and that changing the hydrophobic interface (C3 and C4) had more significant effects on protein folding and stability than changing the electrostatic interface (C1 and C2). It was confirmed by both MDS and experiment that variants C1, C2, and C5 were able to fold to form stable conformational structures with protein surface hydrophobicity similar to that of F1L3E1. However, they are less thermally stable than F1L3E1. Significant changes in hydrophobicity drove significant protein aggregation for variants C3 and C4. It is concluded that the molecular design of the C-terminus in engineered ferritin, especially the E-helix, is important to ensure the epitope-based chimeric vaccine is safe (aggregate free) and efficacious.
Collapse
Affiliation(s)
- Yiran Qu
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Kenneth Davey
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Yan Sun
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Anton Middelberg
- Division of Research and Innovation, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Jingxiu Bi
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
19
|
Guerrini G, Magrì D, Gioria S, Medaglini D, Calzolai L. Characterization of nanoparticles-based vaccines for COVID-19. NATURE NANOTECHNOLOGY 2022; 17:570-576. [PMID: 35710950 DOI: 10.1038/s41565-022-01129-w] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 03/23/2022] [Indexed: 06/15/2023]
Abstract
Several vaccines against COVID-19 use nanoparticles to protect the antigen cargo (either proteins or nucleic acids), increase the immunogenicity and ultimately the efficacy. The characterization of these nanomedicines is challenging due to their intrinsic complexity and requires the use of multidisciplinary techniques and competencies. The accurate characterization of nanovaccines can be conceptualized as a combination of physicochemical, immunological and toxicological assays. This will help to address key challenges in the preclinical characterization, will guide the rapid development of safe and effective vaccines for current and future health crises, and will streamline the regulatory process.
Collapse
Affiliation(s)
| | - Davide Magrì
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Sabrina Gioria
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Donata Medaglini
- Laboratory of Molecular Microbiology and Biotechnology, Department of Medical Biotechnologies, University of Siena, Siena, Italy.
| | - Luigi Calzolai
- European Commission, Joint Research Centre (JRC), Ispra, Italy.
| |
Collapse
|
20
|
Mills R, Vogler RJ, Bernard M, Concolino J, Hersh LB, Wei Y, Hastings JT, Dziubla T, Baldridge KC, Bhattacharyya D. Aerosol capture and coronavirus spike protein deactivation by enzyme functionalized antiviral membranes. COMMUNICATIONS MATERIALS 2022; 3:34. [PMID: 36406238 PMCID: PMC9674191 DOI: 10.1038/s43246-022-00256-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 05/02/2022] [Indexed: 06/16/2023]
Abstract
The airborne nature of coronavirus transmission makes it critical to develop new barrier technologies that can simultaneously reduce aerosol and viral spread. Here, we report nanostructured membranes with tunable thickness and porosity for filtering coronavirus-sized aerosols, combined with antiviral enzyme functionalization that can denature spike glycoproteins of the SARS-CoV-2 virus in low-hydration environments. Thin, asymmetric membranes with subtilisin enzyme and methacrylic functionalization show more than 98.90% filtration efficiency for 100-nm unfunctionalized and protein-functionalized polystyrene latex aerosol particles. Unfunctionalized membranes provided a protection factor of 540 ± 380 for coronavirus-sized particle, above the Occupational Safety and Health Administration's standard of 10 for N95 masks. SARS-CoV-2 spike glycoprotein on the surface of coronavirus-sized particles was denatured in 30 s by subtilisin enzyme-functionalized membranes with 0.02-0.2% water content on the membrane surface.
Collapse
Affiliation(s)
- Rollie Mills
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506, USA
| | - Ronald J. Vogler
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506, USA
- These authors contributed equally: Ronald J. Vogler, Matthew Bernard
| | - Matthew Bernard
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506, USA
- These authors contributed equally: Ronald J. Vogler, Matthew Bernard
| | - Jacob Concolino
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506, USA
| | - Louis B. Hersh
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40506, USA
| | - Yinan Wei
- Department of Chemistry, University of Kentucky, Lexington, KY 40506, USA
| | - Jeffrey Todd Hastings
- Department of Electrical and Computer Engineering, University of Kentucky, Lexington, KY 40506, USA
| | - Thomas Dziubla
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506, USA
| | - Kevin C. Baldridge
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506, USA
| | - Dibakar Bhattacharyya
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506, USA
| |
Collapse
|
21
|
Seelig J, Seelig A. Molecular understanding of calorimetric protein unfolding experiments. BIOPHYSICAL REPORTS 2022; 2:100037. [PMID: 36425081 PMCID: PMC9680786 DOI: 10.1016/j.bpr.2021.100037] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 12/02/2021] [Indexed: 06/16/2023]
Abstract
Testing and predicting protein stability gained importance because proteins, including antibodies, became pharmacologically relevant in viral and cancer therapies. Isothermal scanning calorimetry is the principle method to study protein stability. Here, we use the excellent experimental heat capacity Cp(T) data from the literature for a critical inspection of protein unfolding as well as for the test of a new cooperative model. In the relevant literature, experimental temperature profiles of enthalpy, Hcal(T), entropy, Scal(T), and free energy, Gcal(T) are missing. First, we therefore calculate the experimental Hcal(T), Scal(T), and Gcal(T) from published Cp(T) thermograms. Considering only the unfolding transition proper, the heat capacity and all thermodynamic functions are zero in the region of the native protein. In particular, the free energy of the folded proteins is also zero and Gcal(T) displays a trapezoidal temperature profile when cold denaturation is included. Second, we simulate the DSC-measured thermodynamic properties with a new molecular model based on statistical-mechanical thermodynamics. The model quantifies the protein cooperativity and predicts the aggregate thermodynamic variables of the system with molecular parameters only. The new model provides a perfect simulation of all thermodynamic properties, including the observed trapezoidal Gcal(T) temperature profile. Importantly, the new cooperative model can be applied to a broad range of protein sizes, including antibodies. It predicts not only heat and cold denaturation but also provides estimates of the unfolding kinetics and allows a comparison with molecular dynamics calculations and quasielastic neutron scattering experiments.
Collapse
Affiliation(s)
| | - Anna Seelig
- Biozentrum, University of Basel, Basel, Switzerland
| |
Collapse
|
22
|
Ovung A, Mavani A, Ghosh A, Chatterjee S, Das A, Suresh Kumar G, Ray D, Aswal VK, Bhattacharyya J. Heme Protein Binding of Sulfonamide Compounds: A Correlation Study by Spectroscopic, Calorimetric, and Computational Methods. ACS OMEGA 2022; 7:4932-4944. [PMID: 35187312 PMCID: PMC8851458 DOI: 10.1021/acsomega.1c05554] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 01/24/2022] [Indexed: 05/16/2023]
Abstract
Protein-ligand interaction studies are useful to determine the molecular mechanism of the binding phenomenon, leading to the establishment of the structure-function relationship. Here, we report the binding of well-known antibiotic sulfonamide drugs (sulfamethazine, SMZ; and sulfadiazine, SDZ) with heme protein myoglobin (Mb) using spectroscopic, calorimetric, ζ potential, and computational methods. Formation of a 1:1 complex between the ligand and Mb through well-defined equilibrium was observed. The binding constants obtained between Mb and SMZ/SDZ drugs were on the order of 104 M-1. SMZ with two additional methyl (-CH3) substitutions has higher affinity than SDZ. Upon drug binding, a notable loss in the helicity (via circular dichroism) and perturbation of the three-dimensional (3D) protein structure (via infrared and synchronous fluorescence experiments) were observed. The binding also indicated the dominance of non-polyelectrolytic forces between the amino acid residues of the protein and the drugs. The ligand-protein binding distance signified high probability of energy transfer between them. Destabilization of the protein structure upon binding was evident from differential scanning calorimetry results and ζ potential analyses. Molecular docking presented the best probable binding sites of the drugs inside protein pockets. Thus, the present study explores the potential binding characteristics of two sulfonamide drugs (with different substitutions) with myoglobin, correlating the structural and energetic aspects.
Collapse
Affiliation(s)
- Aben Ovung
- Department
of Chemistry, National Institute of Technology
Nagaland, Chumukedima, Dimapur 797103, India
| | - A. Mavani
- Department
of Chemistry, National Institute of Technology
Nagaland, Chumukedima, Dimapur 797103, India
| | - Ambarnil Ghosh
- UCD
Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Sabyasachi Chatterjee
- Biophysical
Chemistry Laboratory, CSIR—Indian
Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700032, India
| | - Abhi Das
- Biophysical
Chemistry Laboratory, CSIR—Indian
Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700032, India
| | - Gopinatha Suresh Kumar
- Biophysical
Chemistry Laboratory, CSIR—Indian
Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700032, India
| | - Debes Ray
- Solid
State Physics Division, Bhabha Atomic Research
Centre, Mumbai 400085, India
| | - Vinod K. Aswal
- Solid
State Physics Division, Bhabha Atomic Research
Centre, Mumbai 400085, India
| | - Jhimli Bhattacharyya
- Department
of Chemistry, National Institute of Technology
Nagaland, Chumukedima, Dimapur 797103, India
| |
Collapse
|
23
|
Zhang F, Richter G, Bourgeois B, Spreitzer E, Moser A, Keilbach A, Kotnik P, Madl T. A General Small-Angle X-ray Scattering-Based Screening Protocol for Studying Physical Stability of Protein Formulations. Pharmaceutics 2021; 14:69. [PMID: 35056965 PMCID: PMC8778066 DOI: 10.3390/pharmaceutics14010069] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 11/16/2022] Open
Abstract
A fundamental step in developing a protein drug is the selection of a stable storage formulation that ensures efficacy of the drug and inhibits physiochemical degradation or aggregation. Here, we designed and evaluated a general workflow for screening of protein formulations based on small-angle X-ray scattering (SAXS). Our SAXS pipeline combines automated sample handling, temperature control, and fast data analysis and provides protein particle interaction information. SAXS, together with different methods including turbidity analysis, dynamic light scattering (DLS), and SDS-PAGE measurements, were used to obtain different parameters to provide high throughput screenings. Using a set of model proteins and biopharmaceuticals, we show that SAXS is complementary to dynamic light scattering (DLS), which is widely used in biopharmaceutical research and industry. We found that, compared to DLS, SAXS can provide a more sensitive measure for protein particle interactions, such as protein aggregation and repulsion. Moreover, we show that SAXS is compatible with a broader range of buffers, excipients, and protein concentrations and that in situ SAXS provides a sensitive measure for long-term protein stability. This workflow can enable future high-throughput analysis of proteins and biopharmaceuticals and can be integrated with well-established complementary physicochemical analysis pipelines in (biopharmaceutical) research and industry.
Collapse
Affiliation(s)
- Fangrong Zhang
- Key Laboratory of Gastrointestinal Cancer, Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China;
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria; (G.R.); (B.B.); (E.S.)
| | - Gesa Richter
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria; (G.R.); (B.B.); (E.S.)
| | - Benjamin Bourgeois
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria; (G.R.); (B.B.); (E.S.)
| | - Emil Spreitzer
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria; (G.R.); (B.B.); (E.S.)
| | - Armin Moser
- Anton Paar GmbH, 8054 Graz, Austria; (A.M.); (A.K.); (P.K.)
| | | | - Petra Kotnik
- Anton Paar GmbH, 8054 Graz, Austria; (A.M.); (A.K.); (P.K.)
| | - Tobias Madl
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria; (G.R.); (B.B.); (E.S.)
- BioTechMed-Graz, 8010 Graz, Austria
| |
Collapse
|
24
|
Gad S, Ayakar S. Protein scaffolds: A tool for multi-enzyme assembly. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2021; 32:e00670. [PMID: 34824995 PMCID: PMC8605239 DOI: 10.1016/j.btre.2021.e00670] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/13/2021] [Accepted: 09/03/2021] [Indexed: 12/31/2022]
Abstract
The synthesis of complex molecules using multiple enzymes simultaneously in one reaction vessel has rapidly emerged as a new frontier in the field of bioprocess technology. However, operating different enzymes together in a single vessel limits their operational performance which needs to be addressed. With this respect, scaffolding proteins play an immense role in bringing different enzymes together in a specific manner. The scaffolding improves the catalytic performance, enzyme stability and provides an optimal micro-environment for biochemical reactions. This review describes the components of protein scaffolds, different ways of constructing a protein scaffold-based multi-enzyme complex, and their effects on enzyme kinetics. Moreover, different conjugation strategies viz; dockerin-cohesin interaction, SpyTag-SpyCatcher system, peptide linker-based ligation, affibody, and sortase-mediated ligation are discussed in detail. Various analytical and characterization tools that have enabled the development of these scaffolding strategies are also reviewed. Such mega-enzyme complexes promise wider applications in the field of biotechnology and bioengineering.
Collapse
Affiliation(s)
- Shubhada Gad
- Department of Biotechnology, Institute of Chemical Technology - IndianOil Odisha Campus Bhubaneswar, Odisha 751013, India
| | - Sonal Ayakar
- Department of Biotechnology, Institute of Chemical Technology - IndianOil Odisha Campus Bhubaneswar, Odisha 751013, India
| |
Collapse
|
25
|
Bhattacharya S, Junghare V, Pandey NK, Baidya S, Agarwal H, Das N, Banerjee A, Ghosh D, Roy P, Patra HK, Hazra S. Variations in the SDN Loop of Class A Beta-Lactamases: A Study of the Molecular Mechanism of BlaC ( Mycobacterium tuberculosis) to Alter the Stability and Catalytic Activity Towards Antibiotic Resistance of MBIs. Front Microbiol 2021; 12:710291. [PMID: 34690953 PMCID: PMC8531524 DOI: 10.3389/fmicb.2021.710291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 08/24/2021] [Indexed: 12/05/2022] Open
Abstract
The emergence of multidrug-resistant (MDR) and extensively drug-resistant (XDR) tuberculosis calls for an immediate search for novel treatment strategies. Recently, BlaC, the principal beta-lactamase of Mycobacterium tuberculosis, was recognized as a potential therapeutic target. BlaC belongs to Ambler class A, which is generally susceptible to the beta-lactamase inhibitors currently used in clinics: tazobactam, sulbactam, and clavulanate. Alterations at Ser130 in conserved SDN loop confer resistance to mechanism-based inhibitors (MBIs) commonly observed in various clinical isolates. The absence of clinical evidence of S130G conversion in M. tuberculosis draws our attention to build laboratory mutants of S130G and S130A of BlaC. The study involving steady state, inhibition kinetics, and fluorescence microscopy shows the emergence of resistance against MBIs to the mutants expressing S130G and S130A. To understand the molecular reasoning behind the unavailability of such mutation in real life, we have used circular dichroism (CD) spectroscopy, differential scanning calorimetry (DSC), molecular dynamics (MD) simulation, and stability-based enzyme activity to compare the stability and dynamic behaviors of native and S130G/A mutant form of BlaC. A significant decrease in melting temperature (BlaC TM 60°C, S130A TM 50°C, and S130G TM 45°C), kinetic instability at higher temperature, and comparative dynamic instability correlate the fact that resistance to beta-lactam/beta-lactamase inhibitor combinations will likely not arise from the structural alteration of BlaC, therefore establishing confidence that this therapeutic modality can be potentially applied as a part of a successful treatment regimen against M. tuberculosis.
Collapse
Affiliation(s)
- Sourya Bhattacharya
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Vivek Junghare
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Niteesh Kumar Pandey
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Subhecchha Baidya
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Harsha Agarwal
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Neeladrisingha Das
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Ayan Banerjee
- Biochemistry and BIotechnology Area, Material Resource Efficiency Division, CSIR-Indian Institute of Petroleum, Dehradun, India.,Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Debashish Ghosh
- Biochemistry and BIotechnology Area, Material Resource Efficiency Division, CSIR-Indian Institute of Petroleum, Dehradun, India.,Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Partha Roy
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Hirak K Patra
- Department of Surgical Biotechnology, University College London, London, United Kingdom
| | - Saugata Hazra
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India.,Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, India
| |
Collapse
|
26
|
Abstract
One essential prerequisite of any experiment involving a purified protein, such as interaction studies or structural and biophysical characterization, is to work with a "good-quality" sample in order to ensure reproducibility and reliability of the data. Here, we define a "good-quality" sample as a protein preparation that fulfills three criteria: (1) the preparation contains a protein that is pure and soluble and exhibits structural and functional integrity, (2) the protein must be structurally homogeneous, and (3) the preparation must be reproducible. To ensure effective quality control (QC) of all these parameters, we suggest to follow a simple workflow involving the use of gel electrophoresis, light scattering, and spectroscopic experiments. We describe the techniques used in every step of this workflow and provide easy-to-use standard protocols for each step.
Collapse
|
27
|
Ahmad MI, Kumar P, Singh S, Kumar N. Method Development and Characterization of Liposomal Formulation of Isotretinoin. BORNEO JOURNAL OF PHARMACY 2021. [DOI: 10.33084/bjop.v4i2.1915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
This study aims to develop a liposomal drug delivery system of isotretinoin, an acne drug-using spray drying, as a cost-effective and time-effective technique. The liposomal formulation was prepared by using spray drying; three different strategies were adopted: suspension spray drying (SSD), thin-film hydration and spray drying (TFHSD), and emulsion spray drying (ESD). Isotretinoin was 99% bound with lipid, so lipids hydrogenated soy phosphatidylcholine (HSPC), distearoyl phosphatidylglycerol (DSPG), and cholesterol were selected for the formulation development. The HSPC, DSPG, cholesterol, and isotretinoin were taken in the ratio 4 : 1 : 0.16 : 3.1 mmol. In vitro drug release studies, microscopy, drug content, and related substance characterizations were done to formulate each strategy of spray drying prepared dry liposomes of isotretinoin. Results were compared with the USP monograph of isotretinoin. It was revealed that isotretinoin's liposomal formulation using ESD was having drug release according to the USP limits. Drug content was also according to the USP requirement; no free drug crystals were found in microscopy, multivesicular vesicles were found in shape, a particle size of up 60 µ was found. The ESD technique was a successful, time-effective, and cost-effective technique for preparing a liposomal drug delivery system for isotretinoin.
Collapse
|
28
|
Kianfar E. Protein nanoparticles in drug delivery: animal protein, plant proteins and protein cages, albumin nanoparticles. J Nanobiotechnology 2021; 19:159. [PMID: 34051806 PMCID: PMC8164776 DOI: 10.1186/s12951-021-00896-3] [Citation(s) in RCA: 152] [Impact Index Per Article: 50.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 05/12/2021] [Indexed: 12/19/2022] Open
Abstract
In this article, we will describe the properties of albumin and its biological functions, types of sources that can be used to produce albumin nanoparticles, methods of producing albumin nanoparticles, its therapeutic applications and the importance of albumin nanoparticles in the production of pharmaceutical formulations. In view of the increasing use of Abraxane and its approval for use in the treatment of several types of cancer and during the final stages of clinical trials for other cancers, to evaluate it and compare its effectiveness with conventional non formulations of chemotherapy Paclitaxel is paid. In this article, we will examine the role and importance of animal proteins in Nano medicine and the various benefits of these biomolecules for the preparation of drug delivery carriers and the characteristics of plant protein Nano carriers and protein Nano cages and their potentials in diagnosis and treatment. Finally, the advantages and disadvantages of protein nanoparticles are mentioned, as well as the methods of production of albumin nanoparticles, its therapeutic applications and the importance of albumin nanoparticles in the production of pharmaceutical formulations.
Collapse
Affiliation(s)
- Ehsan Kianfar
- ERNAM-Erciyes University Nanotechnology Application and Research Center, Kayseri, 38039, Turkey.
- Department of Analytical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri, 38039, Turkey.
| |
Collapse
|
29
|
Shahid M, Sanxaridou G, Ottoboni S, Lue L, Price C. Exploring the Role of Anti-solvent Effects during Washing on Active Pharmaceutical Ingredient Purity. Org Process Res Dev 2021; 25:969-981. [PMID: 33897252 PMCID: PMC8057229 DOI: 10.1021/acs.oprd.1c00005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Indexed: 11/29/2022]
Abstract
![]()
Washing is a key
step in pharmaceutical isolation to remove the
unwanted crystallization solvent (mother liquor) from the active pharmaceutical
ingredient (API) filter cake. This study looks at strategies for optimal
wash solvent selection, which minimizes the dissolution of API product
crystals while preventing the precipitation of product or impurities.
Selection of wash solvents to avoid both these phenomena can be challenging
but is essential to maintain the yield, purity, and particle characteristics
throughout the isolation process. An anti-solvent screening methodology
has been developed to quantitatively evaluate the propensity for precipitation
of APIs and their impurities of synthesis during washing. This is
illustrated using paracetamol (PCM) and two typical impurities of
synthesis during the washing process. The solubility of PCM in different
binary wash solutions was measured to provide a basis for wash solvent
selection. A map of wash solution composition boundaries for precipitation
for the systems investigated was developed to depict where anti-solvent
phenomena will take place. For some crystallization and wash solvent
combinations investigated, as much as 90% of the dissolved PCM and
over 10% of impurities present in the PCM saturated mother liquor
were found to precipitate out. Such levels of uncontrolled crystallization
during washing in a pharmaceutical isolation process can have a drastic
effect on the final product purity. Precipitation of both the product
and impurities from the mother liquor can be avoided by using a solvent
in which the API has a solubility similar to that in the mother liquor;
for example, the use of acetonitrile as a wash solvent does not result
in precipitation of either the PCM API or its impurities. However,
the high solubility of PCM in acetonitrile would result in noticeable
dissolution of API during washing and would lead to agglomeration
during the subsequent drying step. Contrarily, the use of n-heptane as a wash solvent for a PCM crystal slurry resulted
in the highest amount of precipitation among the solvent pairs evaluated.
This can be mitigated by designing a multi-stage washing strategy
where wash solutions of differing wash solvent concentrations are
used to minimize step changes in solubility when the mother liquor
and the wash solvent come into contact.
Collapse
Affiliation(s)
- Muhid Shahid
- EPSRC Continuous Manufacturing & Advanced Crystallisation (CMAC) Future Manufacturing Research Hub, University of Strathclyde, Glasgow G1 1RD, U.K
| | - Georgia Sanxaridou
- EPSRC Continuous Manufacturing & Advanced Crystallisation (CMAC) Future Manufacturing Research Hub, University of Strathclyde, Glasgow G1 1RD, U.K
| | - Sara Ottoboni
- EPSRC Continuous Manufacturing & Advanced Crystallisation (CMAC) Future Manufacturing Research Hub, University of Strathclyde, Glasgow G1 1RD, U.K
| | - Leo Lue
- Department of Chemical and Process Engineering, University of Strathclyde, Glasgow G1 1XJ, U.K
| | - Chris Price
- EPSRC Continuous Manufacturing & Advanced Crystallisation (CMAC) Future Manufacturing Research Hub, University of Strathclyde, Glasgow G1 1RD, U.K.,Department of Chemical and Process Engineering, University of Strathclyde, Glasgow G1 1XJ, U.K
| |
Collapse
|
30
|
Crossen J, Diamond SL. Thermal shift assay to probe melting of thrombin, fibrinogen, fibrin monomer, and fibrin: Gly-Pro-Arg-Pro induces a fibrin monomer-like state in fibrinogen. Biochim Biophys Acta Gen Subj 2021; 1865:129805. [PMID: 33276061 PMCID: PMC7752828 DOI: 10.1016/j.bbagen.2020.129805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/30/2020] [Accepted: 11/24/2020] [Indexed: 11/24/2022]
Abstract
BACKGROUND Thrombin activates fibrinogen and binds the fibrin E-domain (Kd ~ 2.8 μM) and the splice variant γ'-domain (Kd ~ 0.1 μM). We investigated if the loading of D-Phe-Pro-Arg-chloromethylketone inhibited thrombin (PPACK-thrombin) onto fibrin could enhance fibrin stability. METHODS A 384-well plate thermal shift assay (TSA) with SYPRO-orange provided melting temperatures (Tm) of thrombin, PPACK-thrombin, fibrinogen, fibrin monomer, and fibrin. RESULTS Large increases in Tm indicated that calcium led to protein stabilization (0 vs. 2 mM Ca2+) for fibrinogen (54.0 vs. 62.3 °C) and fibrin (62.3 vs. 72.2 °C). Additionally, active site inhibition with PPACK dramatically increased the Tm of thrombin (58.3 vs. 78.3 °C). Treatment of fibrinogen with fibrin polymerization inhibitor GPRP increased fibrinogen stability by ΔTm = 9.3 °C, similar to the ΔTm when fibrinogen was converted to fibrin monomer (ΔTm = 8.8 °C) or to fibrin (ΔTm = 10.4 °C). Addition of PPACK-thrombin at high 5:1 M ratio to fibrin(ogen) had little effect on fibrin(ogen) Tm values, indicating that thrombin binding does not detectably stabilize fibrin via a putative bivalent E-domain to γ'-domain interaction. CONCLUSIONS TSA was a sensitive assay of protein stability and detected: (1) the effects of calcium-stabilization, (2) thrombin active site labeling, (3) fibrinogen conversion to fibrin, and (4) GPRP induced changes in fibrinogen stability being essentially equivalent to that of fibrin monomer or polymerized fibrin. SIGNIFICANCE The low volume, high throughput assay has potential for use in understanding interactions with rare or mutant fibrin(ogen) variants.
Collapse
Affiliation(s)
- J Crossen
- Department of Chemical and Biomolecular Engineering, Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA 19104, United States..
| | - S L Diamond
- Department of Chemical and Biomolecular Engineering, Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA 19104, United States..
| |
Collapse
|
31
|
McClements DJ, Weiss J, Kinchla AJ, Nolden AA, Grossmann L. Methods for Testing the Quality Attributes of Plant-Based Foods: Meat- and Processed-Meat Analogs. Foods 2021; 10:260. [PMID: 33513814 PMCID: PMC7911933 DOI: 10.3390/foods10020260] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/21/2021] [Accepted: 01/23/2021] [Indexed: 02/06/2023] Open
Abstract
The modern food system is seeing a change in consumption patterns provoked by several drivers-including ethical, health, and environmental concerns-that are increasing the sales of meat analog foods. This change is accompanied by increased research and development activities in the area of plant-based meats. The aim of the present review is to describe methods that are being employed by scientists to analyze and characterize the properties of meat alternatives and to propose standardized methods that could be utilized in the future. In particular, methods to determine the proximate composition, microstructure, appearance, textural properties, water-holding properties, cooking resilience, and sensory attributes, of plant-based meat are given. The principles behind these methods are presented, their utility is critically assessed, and practical examples will be discussed. This article will help to guide further studies and to choose appropriate methods to assess raw materials, processes, products, and consumption behavior of meat analogs.
Collapse
Affiliation(s)
- David Julian McClements
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA; (D.J.M.); (A.J.K.); (A.A.N.)
| | - Jochen Weiss
- Department of Food Material Science, University of Hohenheim, Garbenstrasse 21/25, 70599 Stuttgart, Germany
| | - Amanda J. Kinchla
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA; (D.J.M.); (A.J.K.); (A.A.N.)
| | - Alissa A. Nolden
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA; (D.J.M.); (A.J.K.); (A.A.N.)
| | - Lutz Grossmann
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA; (D.J.M.); (A.J.K.); (A.A.N.)
| |
Collapse
|
32
|
Duprez J, Kalbfleisch K, Deshmukh S, Payne J, Haer M, Williams W, Durowoju I, Kirkitadze M. Structure and compositional analysis of aluminum oxyhydroxide adsorbed pertussis vaccine. Comput Struct Biotechnol J 2020; 19:439-447. [PMID: 33489011 PMCID: PMC7804342 DOI: 10.1016/j.csbj.2020.12.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 01/11/2023] Open
Abstract
PURPOSE The goal of this study was to characterize an acellular pertussis vaccine (Tdap) containing genetically modified pertussis toxin (gdPT) and TLR agonist adsorbed to AlOOH adjuvant. METHODS Several analytical tools including nanoDSF, FTIR, and LD were used to examine the conformation of novel gdPT and the composition of AlOOH adjuvant formulations adsorbed to pertussis vaccine. RESULTS DLS particle size results were 9.3 nm and 320 nm for gdPT. For pertussis toxoid (PT), the DLS particle size results were larger at ~440 nm. After adsorption to AlOOH, which was driven by the protein antigen, the size distribution ranged from 3.5 to 22 µm. Two thermal transitions were observed by DSC for gdPT at 70 °C and 102 °C. The main thermal transition was confirmed to be at 72 °C by nanoDSF. All three vaccine formulations showed one thermal transition: Tdap-AlOOH had a thermal transition of 74.6 °C, Tdap-E6020-AlOOH had a thermal transition at 74.2 °C, and Tdap-CpG-AlOOH had a thermal transition at 77.0 °C. Analysis of pertussis toxin (PTx) and gdPT was also performed by FTIR spectroscopy for the purpose of comparison. The second derivative of the FTIR spectra showed an additional feature for PTx at 1685 cm-1 compared to gdPT. The antigen's amide I and II regions were largely unchanged after adsorption to AlOOH adjuvant as shown by FTIR, suggesting that there were no significant changes in the secondary structure. CONCLUSION gdPT conformation was successfully characterized using an array of analytical methods. All three Tdap formulations have similar thermal stability as shown by nanoDSF, similar size distribution as shown by LD, and similar overall secondary structure as shown by FTIR. In-line particle sizing and IR can be used as in-process characterization tools to monitor consistency of adsorbed vaccine and to confirm product identity.
Collapse
Affiliation(s)
- Jessica Duprez
- Analytical Sciences, Sanofi Pasteur Canada, 1755 Steeles Avenue West, Toronto, Ontario, Canada
- Department of Biology, York University, 4700 Keele Street, Toronto, Ontario, Canada
| | - Kristen Kalbfleisch
- Department of Physiology & Pharmacology, and Paediatrics, University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada
| | - Sasmit Deshmukh
- SGS Canada, Biopharmaceutical Services, 6490 Vipond Drive, Mississauga, Ontario, Canada
| | - Jessie Payne
- Analytical Sciences, Sanofi Pasteur Canada, 1755 Steeles Avenue West, Toronto, Ontario, Canada
| | - Manjit Haer
- Analytical Sciences, Sanofi Pasteur Canada, 1755 Steeles Avenue West, Toronto, Ontario, Canada
| | - Wayne Williams
- Analytical Sciences, Sanofi Pasteur Canada, 1755 Steeles Avenue West, Toronto, Ontario, Canada
| | - Ibrahim Durowoju
- Analytical Sciences, Sanofi Pasteur Canada, 1755 Steeles Avenue West, Toronto, Ontario, Canada
| | - Marina Kirkitadze
- Analytical Sciences, Sanofi Pasteur Canada, 1755 Steeles Avenue West, Toronto, Ontario, Canada
| |
Collapse
|
33
|
Valtonen S, Vuorinen E, Kariniemi T, Eskonen V, Le Quesne J, Bushell M, Härmä H, Kopra K. Nanomolar Protein-Protein Interaction Monitoring with a Label-Free Protein-Probe Technique. Anal Chem 2020; 92:15781-15788. [PMID: 33237744 PMCID: PMC7745204 DOI: 10.1021/acs.analchem.0c02823] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 11/17/2020] [Indexed: 01/17/2023]
Abstract
Protein-protein interactions (PPIs) are an essential part of correct cellular functionality, making them increasingly interesting drug targets. While Förster resonance energy transfer-based methods have traditionally been widely used for PPI studies, label-free techniques have recently drawn significant attention. These methods are ideal for studying PPIs, most importantly as there is no need for labeling of either interaction partner, reducing potential interferences and overall costs. Already, several different label-free methods are available, such as differential scanning calorimetry and surface plasmon resonance, but these biophysical methods suffer from low to medium throughput, which reduces suitability for high-throughput screening (HTS) of PPI inhibitors. Differential scanning fluorimetry, utilizing external fluorescent probes, is an HTS compatible technique, but high protein concentration is needed for experiments. To improve the current concepts, we have developed a method based on time-resolved luminescence, enabling PPI monitoring even at low nanomolar protein concentrations. This method, called the protein probe technique, is based on a peptide conjugated with Eu3+ chelate, and it has already been applied to monitor protein structural changes and small molecule interactions at elevated temperatures. Here, the applicability of the protein probe technique was demonstrated by monitoring single-protein pairing and multiprotein complexes at room and elevated temperatures. The concept functionality was proven by using both artificial and multiple natural protein pairs, such as KRAS and eIF4A together with their binding partners, and C-reactive protein in a complex with its antibody.
Collapse
Affiliation(s)
- Salla Valtonen
- Department
of Chemistry, Chemistry of Drug Development, University of Turku, Vatselankatu 2, 20500 Turku, Finland
| | - Emmiliisa Vuorinen
- Department
of Chemistry, Chemistry of Drug Development, University of Turku, Vatselankatu 2, 20500 Turku, Finland
| | - Taru Kariniemi
- Department
of Chemistry, Chemistry of Drug Development, University of Turku, Vatselankatu 2, 20500 Turku, Finland
| | - Ville Eskonen
- Department
of Chemistry, Chemistry of Drug Development, University of Turku, Vatselankatu 2, 20500 Turku, Finland
| | - John Le Quesne
- University
of Cambridge, MRC Toxicology Unit, Hodgkin Building, Lancaster Road, Leicester LE1 7HB, U.K.
| | - Martin Bushell
- Cancer
Research U.K. Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, U.K.
- Institute
of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow G61 1QH, U.K.
| | - Harri Härmä
- Department
of Chemistry, Chemistry of Drug Development, University of Turku, Vatselankatu 2, 20500 Turku, Finland
| | - Kari Kopra
- Department
of Chemistry, Chemistry of Drug Development, University of Turku, Vatselankatu 2, 20500 Turku, Finland
| |
Collapse
|
34
|
Mazaheri S, Talebkhan Y, Mahboudi F, Nematollahi L, Cohan RA, Mirabzadeh Ardakani E, Bayat E, Sabzalinejad M, Sardari S, Torkashvand F. Improvement of Certolizumab Fab' properties by PASylation technology. Sci Rep 2020; 10:18464. [PMID: 33116155 PMCID: PMC7595094 DOI: 10.1038/s41598-020-74549-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 06/17/2020] [Indexed: 12/13/2022] Open
Abstract
Certolizumab pegol is a Fab' antibody fragment for treatment of rheumatoid arthritis and Crohn's disease which is conjugated to a 40 kDa PEG molecule in order to increase the protein half-life. PEGylation may have disadvantages including immunogenicity, hypersensitivity, vacuolation, decreased binding affinity and biological activity of the protein. To overcome these problems, PASylation has been developed as a new approach. The nucleotide sequence encoding 400 amino acid PAS residues was genetically fused to the corresponding nucleotide sequences of both chains of certolizumab. Then, the bioactivity as well as physicochemical and pharmacokinetic properties of the recombinant PASylated expressed protein was assayed. Circular dichroism spectroscopy demonstrated that the random coil structure of PAS sequences did not change the secondary structure of the PASylated Fab' molecule. It was observed that PASylation influenced the properties of the Fab' molecule by which the hydrodynamic radius and neutralization activity were increased. Also, the antigen binding and binding kinetic parameters improved in comparison to the PEGylated Fab' antibody. Pharmacokinetic studies also showed prolonged terminal half-life and improved pharmacokinetic parameters in PASylated recombinant protein in comparison to the PEGylated and Fab' control molecules. The results reconfirmed the efficiency of PASylation approach as a potential alternative method in increasing the half-life of pharmaceutical proteins.
Collapse
Affiliation(s)
- Somayeh Mazaheri
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Yeganeh Talebkhan
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| | | | - Leila Nematollahi
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| | - Reza Ahangari Cohan
- Department of Nanobiotechnology, Advanced Technology Group, Pasteur Institute of Iran, Tehran, Iran
| | | | - Elham Bayat
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | | | - Soroush Sardari
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | | |
Collapse
|
35
|
Prakash V, Ranbhor R, Ramakrishnan V. De Novo Designed Heterochiral Blue Fluorescent Protein. ACS OMEGA 2020; 5:26382-26388. [PMID: 33110966 PMCID: PMC7581079 DOI: 10.1021/acsomega.0c02574] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 09/24/2020] [Indexed: 05/08/2023]
Abstract
Diversification of chain stereochemistry offers a tremendous increase in protein design space. We have designed a minimal fluorescent protein, pregnant with β-(1-azulenyl)-l-alanine in the hydrophobic core of a heterotactic protein scaffold, employing automated design tools such as automated repetitive simulated annealing molecular dynamics and IDeAS. The de novo designed heterochiral protein can be selectively excited at 342 nm, quite distant from the intrinsic fluorophore, and emits in the blue region. The structure and stability of the designed proteins were evaluated by established spectroscopic and calorimetric methods.
Collapse
Affiliation(s)
- Vivek Prakash
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Guwahati, Guwahati 781039, India
| | - Ranjit Ranbhor
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Bombay, Mumbai 400076, India
| | - Vibin Ramakrishnan
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Guwahati, Guwahati 781039, India
- . Phone: +91-361-258-2227
| |
Collapse
|
36
|
Li MJ, Atkins WM, McClary WD. Preparation of Lipid Nanodiscs with Lipid Mixtures. ACTA ACUST UNITED AC 2020; 98:e100. [PMID: 31746556 DOI: 10.1002/cpps.100] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Lipid nanodiscs provide a native-like lipid environment for membrane proteins, and they have become a valuable platform for the study of membrane biophysics. A range of biophysical and biochemical analyses are enabled when membrane proteins are captured in lipid nanodiscs. Two parameters that can be controlled when capturing membrane proteins in lipid nanodiscs are the radius, and hence the surface area of the lipid surface, and the composition of the lipid bilayer. Despite their emergence as a versatile tool, most studies with lipid nanodiscs in the literature have focused on nanodiscs of a single radius with a single lipid. In light of the complexity of biological membranes, it is likely that nanodiscs with multiple membrane components would be more sophisticated models for membrane research. It is possible to prepare nanodiscs with more complex lipid mixtures to probe the effects of lipid composition on several aspects of membrane biochemistry. Detailed protocols are described here for the preparation of nanodiscs with mixtures of phospholipids, incorporation of cholesterol, and incorporation of a spectroscopic lipid probe. These protocols provide starting points for the construction of nanodiscs with more physiological membrane compositions or with useful biophysical probes. © 2019 by John Wiley & Sons, Inc. Basic Protocol 1: Assembly of mixed lipid nanodiscs Basic Protocol 2: Assembly of nanodiscs with cholesterol Basic Protocol 3: Incorporation of laurdan into nanodiscs for membrane fluidity measurements.
Collapse
Affiliation(s)
- Mavis Jiarong Li
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington
| | - William M Atkins
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington
| | - Wynton D McClary
- Department of Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
37
|
Han C, Liu Y, Liu M, Wang S, Wang Q. Improving the thermostability of a thermostable endoglucanase from Chaetomium thermophilum by engineering the conserved noncatalytic residue and N-glycosylation site. Int J Biol Macromol 2020; 164:3361-3368. [PMID: 32888988 DOI: 10.1016/j.ijbiomac.2020.08.225] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 08/15/2020] [Accepted: 08/29/2020] [Indexed: 12/16/2022]
Abstract
Endoglucanases provide an attractive avenue for the bioconversion of lignocellulosic materials into fermentable sugars to supply cellulosic feedstock for biofuels and other value-added chemicals. Thermostable endoglucanases with high catalytic activity are preferred in practical processes. To improve the thermostability and activity of the thermostable β-1,4-endoglucanase CTendo45 isolated from the thermophilic fungus Chaetomium thermophilum, structure-based rational design was performed by using site-directed mutagenesis. When inactivated mutation of the unique N-glycosylation sequon (N88-E89-T90) was implemented and the conserved Y173 residue was substituted with phenylalanine, a double mutant T90A/Y173F demonstrated enzymatic activity that dramatically increased 2.12- and 1.82-fold towards CMC-Na and β-D-glucan, respectively. Additionally, T90A/Y173F exhibited extraordinary heat endurance after 300 min of incubation at elevated temperatures. This study provides a valid approach to the improvement of enzyme redesign protocols and the properties of this endoglucanase mutant distinguish it as an excellent candidate enzyme for industrial biomass conversion.
Collapse
Affiliation(s)
- Chao Han
- Shandong Key Laboratory for Agricultural Microbiology, Shandong Agricultural University, Tai'an, Shandong 271018, China.
| | - Yifan Liu
- Shandong Key Laboratory for Agricultural Microbiology, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Mengyu Liu
- Shandong Key Laboratory for Agricultural Microbiology, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Siqi Wang
- Shandong Key Laboratory for Agricultural Microbiology, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Qunqing Wang
- Shandong Key Laboratory for Agricultural Microbiology, Shandong Agricultural University, Tai'an, Shandong 271018, China.
| |
Collapse
|
38
|
The contribution of specific subsites to catalytic activities in active site architecture of a GH11 xylanase. Appl Microbiol Biotechnol 2020; 104:8735-8745. [DOI: 10.1007/s00253-020-10865-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/11/2020] [Accepted: 08/26/2020] [Indexed: 12/14/2022]
|
39
|
Chua JPS, Go MK, Osothprarop T, Mcdonald S, Karabadzhak AG, Yew WS, Peisajovich S, Nirantar S. Evolving a Thermostable Terminal Deoxynucleotidyl Transferase. ACS Synth Biol 2020; 9:1725-1735. [PMID: 32497424 DOI: 10.1021/acssynbio.0c00078] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Terminal deoxynucleotidyl transferase (TdT) catalyzes template free incorporation of arbitrary nucleotides onto single-stranded DNA. Due to this unique feature, TdT is widely used in biotechnology and clinical applications. One particularly tantalizing use is the synthesis of long de novo DNA molecules by TdT-mediated iterative incorporation of a 3' reversibly blocked nucleotide, followed by deblocking. However, wild-type (WT) TdT is not optimized for the incorporation of 3' modified nucleotides, and TdT engineering is hampered by the fact that TdT is marginally stable and only present in mesophilic organisms. We sought to first evolve a thermostable TdT variant to serve as backbone for subsequent evolution to enable efficient incorporation of 3'-modified nucleotides. A thermostable variant would be a good starting point for such an effort, as evolution to incorporate bulky modified nucleotides generally results in lowered stability. In addition, a thermostable TdT would also be useful when blunt dsDNA is a substrate as higher temperature could be used to melt dsDNA. Here, we developed an assay to identify thermostable TdT variants. After screening about 10 000 TdT mutants, we identified a variant, named TdT3-2, that is 10 °C more thermostable than WT TdT, while preserving the catalytic properties of the WT enzyme.
Collapse
Affiliation(s)
- Jasmine Puay Suan Chua
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore 117597
- NUS Synthetic Biology for Clinical and Technological Innovation, 14 Medical Drive, Singapore 117599
- Illumina Singapore Pte, Ltd., 29 Woodlands Industrial Park E1, North Tech Building, Singapore 757716
| | - Maybelle Kho Go
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore 117597
- NUS Synthetic Biology for Clinical and Technological Innovation, 14 Medical Drive, Singapore 117599
| | - Trina Osothprarop
- Illumina Inc., 5200 Illumina Way, San Diego, California 92122, United States
| | - Seth Mcdonald
- Illumina Inc., 5200 Illumina Way, San Diego, California 92122, United States
| | | | - Wen Shan Yew
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore 117597
- NUS Synthetic Biology for Clinical and Technological Innovation, 14 Medical Drive, Singapore 117599
| | - Sergio Peisajovich
- Illumina Inc., 5200 Illumina Way, San Diego, California 92122, United States
| | - Saurabh Nirantar
- Illumina Singapore Pte, Ltd., 29 Woodlands Industrial Park E1, North Tech Building, Singapore 757716
| |
Collapse
|
40
|
Waste to Energy: Solid Fuel Production from Biogas Plant Digestate and Sewage Sludge by Torrefaction-Process Kinetics, Fuel Properties, and Energy Balance. ENERGIES 2020. [DOI: 10.3390/en13123161] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Sustainable solutions are needed to manage increased energy demand and waste generation. Renewable energy production from abundant sewage sludge (SS) and digestate (D) from biogas is feasible. Concerns about feedstock contamination (heavy metals, pharmaceuticals, antibiotics, and antibiotic-resistant bacteria) in SS and D limits the use (e.g., agricultural) of these carbon-rich resources. Low temperature thermal conversion that results in carbonized solid fuel (CSF) has been proposed as sustainable waste utilization. The aim of the research was to investigate the feasibility of CSF production from SS and D via torrefaction. The CSF was produced at 200~300 °C (interval of 20 °C) for 20~60 min (interval 20 min). The torrefaction kinetics and CSF fuel properties were determined. Next, the differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) of SS and D torrefaction were used to build models of energy demand for torrefaction. Finally, the evaluation of the energy balance of CSF production from SS and D was completed. The results showed that torrefaction improved the D-derived CSF’s higher heating value (HHV) up to 11% (p < 0.05), whereas no significant HHV changes for SS were observed. The torrefied D had the highest HHV of 20 MJ∙kg−1 under 300 °C and 30 min, (the curve fitted value from the measured time periods) compared to HHV = 18 MJ∙kg−1 for unprocessed D. The torrefied SS had the highest HHV = 14.8 MJ∙kg−1 under 200 °C and 20 min, compared to HHV 14.6 MJ∙kg−1 for raw SS. An unwanted result of the torrefaction was an increase in ash content in CSF, up to 40% and 22% for SS and D, respectively. The developed model showed that the torrefaction of dry SS and D could be energetically self-sufficient. Generating CSF with the highest HHV requires raw feedstock containing ~15.4 and 45.9 MJ∙kg−1 for SS and D, respectively (assuming that part of feedstock is a source of energy for the process). The results suggest that there is a potential to convert biogas D to CSF to provide renewable fuel for, e.g., plants currently fed/co-fed with municipal solid waste.
Collapse
|
41
|
Han Y, Guan F, Sun J, Wu N, Tian J. Identification of a chitosanase from the marine metagenome and its molecular improvement based on evolution data. Appl Microbiol Biotechnol 2020; 104:6647-6657. [PMID: 32548690 DOI: 10.1007/s00253-020-10715-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 05/13/2020] [Accepted: 06/01/2020] [Indexed: 12/22/2022]
Abstract
Chitooligosaccharides have important application value in the fields of food and agriculture. Chitosanase can degrade chitosan to obtain chitooligosaccharides. The marine metagenome contains many genes related to the degradation of chitosan. However, it is difficult to mine valuable genes from large gene resources. This study proposes a method to screen chitosanases directly from the marine metagenome. Chitosanase gene chis1754 was identified from the metagenome and heterologously expressed in Escherichia coli. The optimal temperature and pH of CHIS1754 were 55 °C and 5.5, respectively. A mutant, CHIS1754T, with 15 single point mutations designed based on molecular evolution data was also expressed in E. coli. The results indicated that the thermal stability of CHIS1754T was significantly improved, as the Tm showed an increase of ~ 7.63 °C. Additionally, the kcat/Km of CHIS1754T was 4.8-fold higher than that of the wild type. This research provides new theories and foundations for the excavation, modification, and industrial application of chitosanases. KEY POINTS: A chitosanase gene, chis1754, was firstly identified from marine metagenome. A multi-site mutant was designed to improve enzyme stability and activity. The kcat/Kmof the designed mutant was 4.8-fold higher than that of the wild type.
Collapse
Affiliation(s)
- Yanshuo Han
- College of Food Science and Technology, Hebei Agricultural University, Baoding, 071000, Hebei, China.,Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Feifei Guan
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jilu Sun
- College of Food Science and Technology, Hebei Agricultural University, Baoding, 071000, Hebei, China
| | - Ningfeng Wu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Jian Tian
- College of Food Science and Technology, Hebei Agricultural University, Baoding, 071000, Hebei, China. .,Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
42
|
Wu X, Zhang Q, Zhang L, Liu S, Chen G, Zhang H, Wang L. Insights Into the Role of Exposed Surface Charged Residues in the Alkali-Tolerance of GH11 Xylanase. Front Microbiol 2020; 11:872. [PMID: 32457729 PMCID: PMC7225583 DOI: 10.3389/fmicb.2020.00872] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 04/14/2020] [Indexed: 11/29/2022] Open
Abstract
Thermostable and alkaline- or acid-stable xylanases are more advantageous in agricultural and industrial fields. In this study, a rational structure-based design was conducted based on a thermostable GH11 xylanase TlXynA from Thermomyces lanuginosus to improved pH-tolerance. Four mutant enzymes (P1, P2, P3, and P4) and five variants (N1, N2, N3, N4, and N5) were constructed by substituting surface charged residue combinations using site-directed mutagenesis. Compared to the native enzyme, two mutants P1 and P2 showed higher acid tolerance, especially at pH 3.0, presented 50 and 40% of their maximum activity, respectively. In addition, four mutants N1, N2, N3 and N4 had higher tolerance than the native enzyme to alkaline environments (pH 7.0-9.0). At pH 9.0, the residual activities of N1, N2, N3, and N4 were 86, 78, 77, and 66%, respectively. In summary, an improved pH-tolerance design principle is being reported.
Collapse
Affiliation(s)
- Xiuyun Wu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Qun Zhang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Lanzeng Zhang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Shijia Liu
- Taishan College, Shandong University, Jinan, China
| | - Guanjun Chen
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Huaiqiang Zhang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Lushan Wang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| |
Collapse
|
43
|
Structural and conformational behavior of MurE ligase from Salmonella enterica serovar Typhi at different temperature and pH conditions. Int J Biol Macromol 2020; 150:389-399. [DOI: 10.1016/j.ijbiomac.2020.01.306] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 01/30/2020] [Accepted: 01/31/2020] [Indexed: 11/20/2022]
|
44
|
Garidel P, Eiperle A, Blech M, Seelig J. Thermal and Chemical Unfolding of a Monoclonal IgG1 Antibody: Application of the Multistate Zimm-Bragg Theory. Biophys J 2020; 118:1067-1075. [PMID: 32049058 PMCID: PMC7063443 DOI: 10.1016/j.bpj.2019.12.037] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 12/20/2019] [Accepted: 12/30/2019] [Indexed: 11/25/2022] Open
Abstract
The thermal unfolding of a recombinant monoclonal antibody IgG1 (mAb) was measured with differential scanning calorimetry (DSC). The DSC thermograms reveal a pretransition at 72°C with an unfolding enthalpy of ΔHcal ∼200-300 kcal/mol and a main transition at 85°C with an enthalpy of ∼900-1000 kcal/mol. In contrast to small single-domain proteins, mAb unfolding is a complex reaction that is analyzed with the multistate Zimm-Bragg theory. For the investigated mAb, unfolding is characterized by a cooperativity parameter σ ∼6 × 10-5 and a Gibbs free energy of unfolding of gnu ∼100 cal/mol per amino acid. The enthalpy of unfolding provides the number of amino acid residues ν participating in the unfolding reaction. On average, ν∼220 ± 50 amino acids are involved in the pretransition and ν∼850 ± 30 in the main transition, accounting for ∼90% of all amino acids. Thermal unfolding was further studied in the presence of guanidineHCl. The chemical denaturant reduces the unfolding enthalpy ΔHcal and lowers the midpoint temperature Tm. Both parameters depend linearly on the concentration of denaturant. The guanidineHCl concentrations needed to unfold mAb at 25°C are predicted to be 2-3 M for the pretransition and 5-7 M for the main transition, varying with pH. GuanidineHCl binds to mAb with an exothermic binding enthalpy, which partially compensates the endothermic mAb unfolding enthalpy. The number of guanidineHCl molecules bound upon unfolding is deduced from the DSC thermograms. The bound guanidineHCl-to-unfolded amino acid ratio is 0.79 for the pretransition and 0.55 for the main transition. The pretransition binds more denaturant molecules and is more sensitive to unfolding than the main transition. The current study shows the strength of the Zimm-Bragg theory for the quantitative description of unfolding events of large, therapeutic proteins, such as a monoclonal antibody.
Collapse
Affiliation(s)
- Patrick Garidel
- Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, PDB, Biberach an der Riss, Germany.
| | - Andrea Eiperle
- Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, PDB, Biberach an der Riss, Germany
| | - Michaela Blech
- Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, PDB, Biberach an der Riss, Germany
| | - Joachim Seelig
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, Basel, Switzerland.
| |
Collapse
|
45
|
Barinova KV, Serebryakova MV, Eldarov MA, Kulikova AA, Mitkevich VA, Muronetz VI, Schmalhausen EV. S-glutathionylation of human glyceraldehyde-3-phosphate dehydrogenase and possible role of Cys152-Cys156 disulfide bridge in the active site of the protein. Biochim Biophys Acta Gen Subj 2020; 1864:129560. [PMID: 32061786 DOI: 10.1016/j.bbagen.2020.129560] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 01/13/2020] [Accepted: 02/12/2020] [Indexed: 11/28/2022]
Abstract
BACKGROUND We previously showed that glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is S-glutathionylated in the presence of H2O2 and GSH. S-glutathionylation was shown to result in the formation of a disulfide bridge in the active site of the protein. In the present work, the possible biological significance of the disulfide bridge was investigated. METHODS Human recombinant GAPDH with the mutation C156S (hGAPDH_C156S) was obtained to prevent the formation of the disulfide bridge. Properties of S-glutathionylated hGAPDH_C156S were studied in comparison with those of the wild-type protein hGAPDH. RESULTS S-glutathionylation of hGAPDH and hGAPDH_C156S results in the reversible inactivation of the proteins. In both cases, the modification results in corresponding mixed disulfides between the catalytic Cys152 and GSH. In the case of hGAPDH, the mixed disulfide breaks down yielding Cys152-Cys156 disulfide bridge in the active site. In hGAPDH_C156S, the mixed disulfide is stable. Differential scanning calorimetry method showed that S-glutathionylation leads to destabilization of hGAPDH molecule, but does not affect significantly hGAPDH_C156S. Reactivation of S-glutathionylated hGAPDH in the presence of GSH and glutaredoxin 1 is approximately two-fold more efficient compared to that of hGAPDH_C156S. CONCLUSIONS S-glutathionylation induces the formation of Cys152-Cys156 disulfide bond in the active site of hGAPDH, which results in structural changes of the protein molecule. Cys156 is important for reactivation of S-glutathionylated GAPDH by glutaredoxin 1. GENERAL SIGNIFICANCE The described mechanism may be important for interaction between GAPDH and other proteins and ligands, involved in cell signaling.
Collapse
Affiliation(s)
- K V Barinova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia
| | - M V Serebryakova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia
| | - M A Eldarov
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky prosp. 33-2, Moscow 119071, Russia
| | - A A Kulikova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova 32, Moscow 119991, Russia
| | - V A Mitkevich
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova 32, Moscow 119991, Russia
| | - V I Muronetz
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia; Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow 119234, Russia
| | - E V Schmalhausen
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia.
| |
Collapse
|
46
|
Tiffany AS, Dewey MJ, Harley BAC. Sequential sequestrations increase the incorporation and retention of multiple growth factors in mineralized collagen scaffolds. RSC Adv 2020; 10:26982-26996. [PMID: 33767853 PMCID: PMC7990239 DOI: 10.1039/d0ra03872e] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Trauma induced injuries of the mouth, jaw, face, and related structures present unique clinical challenges due to their large size and complex geometry. Growth factor signaling coordinates the behavior of multiple cell types following an injury, and effective coordination of growth factor availability within a biomaterial can be critical for accelerating bone healing. Mineralized collagen scaffolds are a class of degradable biomaterial whose biophysical and compositional parameters can be adjusted to facilitate cell invasion and tissue remodeling. Here we describe the use of modified simulated body fluid treatments to enable sequential sequestration of bone morphogenic protein 2 and vascular endothelial growth factor into mineralized collagen scaffolds for bone repair. We report the capability of these scaffolds to sequester 60–90% of growth factor from solution without additional crosslinking treatments and show high levels of retention for individual (>94%) and multiple growth factors (>88%) that can be layered into the material via sequential sequestration steps. Sequentially sequestering growth factors allows prolonged release of growth factors in vitro (>94%) and suggests the potential to improve healing of large-scale bone injury models in vivo. Future work will utilize this sequestration method to induce cellular activities critical to bone healing such as vessel formation and cell migration. Trauma induced injuries of the mouth, jaw, face, and related structures present unique clinical challenges due to their large size and complex geometry.![]()
Collapse
Affiliation(s)
- Aleczandria S Tiffany
- Dept. Chemical and Biomolecular Engineering, Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 110 Roger Adams Laboratory, 600 S. Mathews Ave., Urbana, IL 61801, USA
| | - Marley J Dewey
- Dept. Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Brendan A C Harley
- Dept. Chemical and Biomolecular Engineering, Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 110 Roger Adams Laboratory, 600 S. Mathews Ave., Urbana, IL 61801, USA.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
47
|
Laurent CV, Sun P, Scheiblbrandner S, Csarman F, Cannazza P, Frommhagen M, van Berkel WJ, Oostenbrink C, Kabel MA, Ludwig R. Influence of Lytic Polysaccharide Monooxygenase Active Site Segments on Activity and Affinity. Int J Mol Sci 2019; 20:E6219. [PMID: 31835532 PMCID: PMC6940765 DOI: 10.3390/ijms20246219] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 11/28/2019] [Accepted: 12/07/2019] [Indexed: 12/29/2022] Open
Abstract
In past years, new lytic polysaccharide monooxygenases (LPMOs) have been discovered as distinct in their substrate specificity. Their unconventional, surface-exposed catalytic sites determine their enzymatic activities, while binding sites govern substrate recognition and regioselectivity. An additional factor influencing activity is the presence or absence of a family 1 carbohydrate binding module (CBM1) connected via a linker to the C-terminus of the LPMO. This study investigates the changes in activity induced by shortening the second active site segment (Seg2) or removing the CBM1 from Neurospora crassa LPMO9C. NcLPMO9C and generated variants have been tested on regenerated amorphous cellulose (RAC), carboxymethyl cellulose (CMC) and xyloglucan (XG) using activity assays, conversion experiments and surface plasmon resonance spectroscopy. The absence of CBM1 reduced the binding affinity and activity of NcLPMO9C, but did not affect its regioselectivity. The linker was found important for the thermal stability of NcLPMO9C and the CBM1 is necessary for efficient binding to RAC. Wild-type NcLPMO9C exhibited the highest activity and strongest substrate binding. Shortening of Seg2 greatly reduced the activity on RAC and CMC and completely abolished the activity on XG. This demonstrates that Seg2 is indispensable for substrate recognition and the formation of productive enzyme-substrate complexes.
Collapse
Affiliation(s)
- Christophe V.F.P. Laurent
- Biocatalysis and Biosensing Laboratory, Department of Food Science and Technology, BOKU—University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190 Vienna, Austria; (C.V.F.P.L.); (S.S.); (F.C.); (P.C.)
- Institute of Molecular Modeling and Simulation, Department of Material Sciences and Process Engineering BOKU—University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190 Vienna, Austria
| | - Peicheng Sun
- Laboratory of Food Chemistry, Wageningen University & Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands; (P.S.); (M.F.); (W.J.H.v.B.); (M.A.K.)
| | - Stefan Scheiblbrandner
- Biocatalysis and Biosensing Laboratory, Department of Food Science and Technology, BOKU—University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190 Vienna, Austria; (C.V.F.P.L.); (S.S.); (F.C.); (P.C.)
| | - Florian Csarman
- Biocatalysis and Biosensing Laboratory, Department of Food Science and Technology, BOKU—University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190 Vienna, Austria; (C.V.F.P.L.); (S.S.); (F.C.); (P.C.)
| | - Pietro Cannazza
- Biocatalysis and Biosensing Laboratory, Department of Food Science and Technology, BOKU—University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190 Vienna, Austria; (C.V.F.P.L.); (S.S.); (F.C.); (P.C.)
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, Via Mangiagalli 25, 20133 Milano, Italy
| | - Matthias Frommhagen
- Laboratory of Food Chemistry, Wageningen University & Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands; (P.S.); (M.F.); (W.J.H.v.B.); (M.A.K.)
| | - Willem J.H. van Berkel
- Laboratory of Food Chemistry, Wageningen University & Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands; (P.S.); (M.F.); (W.J.H.v.B.); (M.A.K.)
| | - Chris Oostenbrink
- Institute of Molecular Modeling and Simulation, Department of Material Sciences and Process Engineering BOKU—University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190 Vienna, Austria
| | - Mirjam A. Kabel
- Laboratory of Food Chemistry, Wageningen University & Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands; (P.S.); (M.F.); (W.J.H.v.B.); (M.A.K.)
| | - Roland Ludwig
- Biocatalysis and Biosensing Laboratory, Department of Food Science and Technology, BOKU—University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190 Vienna, Austria; (C.V.F.P.L.); (S.S.); (F.C.); (P.C.)
| |
Collapse
|
48
|
Gottlieb L, Marmorstein R. Biochemical and structural analysis of N-terminal acetyltransferases. Methods Enzymol 2019; 626:271-299. [PMID: 31606079 DOI: 10.1016/bs.mie.2019.07.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
N-terminal acetylation is a co- and post-translational modification catalyzed by the conserved N-terminal acetyltransferase (NAT) family of enzymes. A majority of the human proteome is modified by the human NATs (NatA-F and H), which are minimally composed of a catalytic subunit and as many as two auxiliary subunits. Together, NATs specifically regulate many cellular functions by influencing protein activities such as their degradation, membrane targeting, and protein-protein interactions. This chapter will describe methods developed for their preparation, and their biochemical and structural characterization. This will include methodologies for expression and purification of recombinant NAT protein, kinetic assays, biochemical and biophysical assays, and strategies for structural studies.
Collapse
Affiliation(s)
- Leah Gottlieb
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, United States; Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Ronen Marmorstein
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, United States; Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.
| |
Collapse
|
49
|
Bazilevsky GA, Affronti HC, Wei X, Campbell SL, Wellen KE, Marmorstein R. ATP-citrate lyase multimerization is required for coenzyme-A substrate binding and catalysis. J Biol Chem 2019; 294:7259-7268. [PMID: 30877197 PMCID: PMC6509486 DOI: 10.1074/jbc.ra118.006685] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 03/05/2019] [Indexed: 12/16/2022] Open
Abstract
ATP-citrate lyase (ACLY) is a major source of nucleocytosolic acetyl-CoA, a fundamental building block of carbon metabolism in eukaryotes. ACLY is aberrantly regulated in many cancers, cardiovascular disease, and metabolic disorders. However, the molecular mechanisms determining ACLY activity and function are unclear. To this end, we investigated the role of the uncharacterized ACLY C-terminal citrate synthase homology domain in the mechanism of acetyl-CoA formation. Using recombinant, purified ACLY and a suite of biochemical and biophysical approaches, including analytical ultracentrifugation, dynamic light scattering, and thermal stability assays, we demonstrated that the C terminus maintains ACLY tetramerization, a conserved and essential quaternary structure in vitro and likely also in vivo Furthermore, we show that the C terminus, only in the context of the full-length enzyme, is necessary for full ACLY binding to CoA. Together, we demonstrate that ACLY forms a homotetramer through the C terminus to facilitate CoA binding and acetyl-CoA production. Our findings highlight a novel and unique role of the C-terminal citrate synthase homology domain in ACLY function and catalysis, adding to the understanding of the molecular basis for acetyl-CoA synthesis by ACLY. This newly discovered means of ACLY regulation has implications for the development of novel ACLY modulators to target acetyl-CoA-dependent cellular processes for potential therapeutic use.
Collapse
Affiliation(s)
- Gleb A Bazilevsky
- From the Graduate Group in Cell and Molecular Biology
- the Abramson Family Cancer Research Institute, and
| | - Hayley C Affronti
- the Abramson Family Cancer Research Institute, and
- Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Xuepeng Wei
- the Abramson Family Cancer Research Institute, and
- the Departments of Biochemistry and Biophysics and
| | - Sydney L Campbell
- From the Graduate Group in Cell and Molecular Biology
- the Abramson Family Cancer Research Institute, and
- Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Kathryn E Wellen
- From the Graduate Group in Cell and Molecular Biology
- the Abramson Family Cancer Research Institute, and
- Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Ronen Marmorstein
- From the Graduate Group in Cell and Molecular Biology,
- the Abramson Family Cancer Research Institute, and
- the Departments of Biochemistry and Biophysics and
| |
Collapse
|
50
|
The use of fast photochemical oxidation of proteins coupled with mass spectrometry in protein therapeutics discovery and development. Drug Discov Today 2019; 24:829-834. [DOI: 10.1016/j.drudis.2018.12.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 11/27/2018] [Accepted: 12/18/2018] [Indexed: 01/05/2023]
|