1
|
Sinuhaji TRF, Ramadhani S, Setiawan VK, Baroroh U. Targeting diabetes with flavonoids from Indonesian medicinal plants: a review on mechanisms and drug discovery. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04139-2. [PMID: 40202673 DOI: 10.1007/s00210-025-04139-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 04/01/2025] [Indexed: 04/10/2025]
Abstract
The rich biodiversity of Indonesia provides a wide variety of plants rich in flavonoids, which show promising potential as antidiabetic agents. Flavonoids are polyphenolic compounds recognized for their broad biological activities, such as antioxidant, anti-inflammatory, and antidiabetic effects. Traditional Indonesian medicinal plants such as Syzygium cumini, Moringa oleifera, and Curcuma longa are currently being studied for their flavonoid content and potential in diabetes treatment. Studies suggest that flavonoids can influence crucial pathways in diabetes management, including enhancing insulin sensitivity, boosting insulin production, and safeguarding pancreatic β cells against damage caused by oxidative stress. For example, quercetin and kaempferol, flavonoids in many Indonesian plants, have demonstrated potential for managing glucose metabolism and lowering high blood sugar levels. Additionally, these substances have been shown to inhibit enzymes such as α-glucosidase and α-amylase, which are involved in the breakdown of carbohydrates, thus aiding in the regulation of blood sugar levels after meals. The antioxidant qualities of flavonoids play a crucial role in fighting oxidative stress and are a significant contributor to the development of diabetes and related complications. Flavonoids help neutralize free radicals and enhance the body's antioxidant protection, reducing oxidative harm and promoting metabolic wellness. Additionally, their anti-inflammatory properties aid in reducing the chronic inflammation linked to insulin resistance and β-cell dysfunction. Formulation advancements, such as nanocarrier technology, have been explored to boost the effectiveness of flavonoid-based therapies. Due to its vast plant diversity, Indonesia offers a potential reservoir for new antidiabetic drugs, meriting additional research and development with the aim of this review providing new knowledge on the potential of flavonoids that can play a role in the treatment of diabetes.
Collapse
Affiliation(s)
- Tubagus Rayyan Fitra Sinuhaji
- Department of Chemical Engineering, Faculty of Engineering, Diponegoro University, 50275, Semarang, Indonesia.
- The Indonesian Society for Bioinformatics and Biodiversity - Masyarakat Bioinformatika Dan Biodiversitas Indonesia (MABBI), 11510, Jakarta, Indonesia.
| | - Sintha Ramadhani
- The Indonesian Society for Bioinformatics and Biodiversity - Masyarakat Bioinformatika Dan Biodiversitas Indonesia (MABBI), 11510, Jakarta, Indonesia
- Department of Biology Education, Faculty of Teacher Training and Education, Universitas Muhammadiyah Prof. Dr. Hamka, 13460, Jakarta, Indonesia
| | - Volta Kellik Setiawan
- The Indonesian Society for Bioinformatics and Biodiversity - Masyarakat Bioinformatika Dan Biodiversitas Indonesia (MABBI), 11510, Jakarta, Indonesia
- Department of Biology Education, Faculty of Teacher Training and Education, Mulawarman University, 75119, Samarinda, Indonesia
| | - Umi Baroroh
- The Indonesian Society for Bioinformatics and Biodiversity - Masyarakat Bioinformatika Dan Biodiversitas Indonesia (MABBI), 11510, Jakarta, Indonesia
- Department of Biotechnology Pharmacy, Indonesian School of Pharmacy, 40266, Bandung, Indonesia
| |
Collapse
|
2
|
Pacheco-Hernández Y, Lozoya-Gloria E, Velásquez-Hernández FE, Ramírez-García SA, Varela-Caselis JL, Villa-Ruano N. Nutraceutical Properties of the Hydroalcoholic Extract and Phenolic Compounds from Yucca aloifolia Edible Flowers. Chem Biodivers 2024; 21:e202401331. [PMID: 39031675 DOI: 10.1002/cbdv.202401331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/22/2024]
Abstract
The flowers of Yucca aloifolia ("flor de izote") are considered a millenary food in the Northeastern Highlands of Puebla, Mexico. The present investigation reports on the chemical and biological activities of the hydroalcoholic extract (YAHF) obtained from this edible source. HPLC-MS profiling revealed twenty bioactive phenolic compounds with chlorogenic acid (16.5 mg g-1 DW), quercetin (9.5 mg g-1 FW), and their glycosides (rutin and quercitrin), as well as caffeic acid (8.4 mg g-1 DW) and ferulic acid (7.9 mg g-1 DW) as major compounds dissolved in YAHF. Six metabolites had potent anti-lipase (IC50<100 μg mL-1) and anti-ornithine decarboxylase activity (IC50<100 μg mL-1), whereas thirteen exerted strong anti-alpha-glucosidase properties (IC50<100 μg mL-1). The evaluation of YAHF in mice subjected to standard oral glucose tolerance tests and prolonged administration of hypercaloric/atherogenic diet (30 days), unraveled their ability to improve glucose and lipid profiles. YAHF and six phenolic compounds significantly reduced DLD-1 cell viability (IC50, 117.9 μg mL-1) and avoided polyamine accumulation linked to anti-ornithine decarboxylase activity. YAHF and its twenty constituents exerted low toxicity in probiotics (>1000 μg mL-1) and 3T3 fibroblasts (>2.5 mg-mL-1), sustaining their safeness for human consumption.
Collapse
Affiliation(s)
- Yesenia Pacheco-Hernández
- Centro de Investigación y de Estudios Avanzados del IPN, Unidad Irapuato, Km 9.6 Carretera Irapuato-León, 36824, Guanajuato, CP, Mexico
- Universidad Politécnica Metropolitana de Puebla, Popocatépetl s/n, Reserva Territorial Atlixcáyotl, Tres Cerritos, 72480, Puebla, CP, Mexico
| | - Edmundo Lozoya-Gloria
- Centro de Investigación y de Estudios Avanzados del IPN, Unidad Irapuato, Km 9.6 Carretera Irapuato-León, 36824, Guanajuato, CP, Mexico
| | - Francisco E Velásquez-Hernández
- Facultad de Ciencias Químicas, Universidad Autónoma Benito Juárez de Oaxaca, Av. Universidad S/N Col ex-hacienda 5 señores, 68120, Oaxaca, CP, Mexico
| | - Sergio A Ramírez-García
- Facultad de Ciencias Químicas, Universidad Autónoma Benito Juárez de Oaxaca, Av. Universidad S/N Col ex-hacienda 5 señores, 68120, Oaxaca, CP, Mexico
| | - Jenaro Leocadio Varela-Caselis
- Dirección de Innovación y Transferencia de Conocimiento, Benemérita Universidad Autónoma de Puebla, Prolongación de la 24 Sur y Av. San Claudio, Ciudad Universitaria, Col. San Manuel, 72570, Puebla, CP, México
| | - Nemesio Villa-Ruano
- CONAHCyT-Centro Universitario de Vinculación y Transferencia de Tecnología, Benemérita Universidad Autónoma de Puebla, 72570, Puebla, CP, Mexico
| |
Collapse
|
3
|
Bouyahya A, Balahbib A, Khalid A, Makeen HA, Alhazmi HA, Albratty M, Hermansyah A, Ming LC, Goh KW, El Omari N. Clinical applications and mechanism insights of natural flavonoids against type 2 diabetes mellitus. Heliyon 2024; 10:e29718. [PMID: 38694079 PMCID: PMC11061711 DOI: 10.1016/j.heliyon.2024.e29718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/03/2024] [Accepted: 04/14/2024] [Indexed: 05/03/2024] Open
Abstract
Diabetes is a complex disease that affects a large percentage of the world's population, and it is associated with several risk factors. Self-management poses a significant challenge, but natural sources have shown great potential in providing effective glucose reducing solutions. Flavonoids, a class of bioactive substances found in different natural sources including medicinal plants, have emerged as promising candidates in this regard. Indeed, several flavonoids, including apigenin, arbutin, catechins, and cyanidin, have demonstrated remarkable anti-diabetic properties. The clinical effectiveness of these flavonoids is linked to their potential to decrease blood glucose concentration and increase insulin concentration. Thus, the regulation of certain metabolic pathways such as glycolysis and neoglycogenesis has also been demonstrated. In vitro and in vivo investigations revealed different mechanisms of action related to flavonoid compounds at subcellular, cellular, and molecular levels. The main actions reside in the activation of glycolytic signaling pathways and the inhibition of signaling that promotes glucose synthesis and storage. In this review, we highlight the clinical efficiency of natural flavonoids as well as the molecular mechanisms underlying this effectiveness.
Collapse
Affiliation(s)
- Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, 60115 Surabaya, Indonesia
| | - Abdelaali Balahbib
- High Institute of Nursing Professions and Health Techniques of Errachidia, Errachidia, Morocco
| | - Asaad Khalid
- Substance Abuse and Toxicology Research Center, Jazan University, P.O. Box: 114, Jazan, Saudi Arabia
- Medicinal and Aromatic Plants Research Institute, National Center for Research, P.O. Box: 2424, Khartoum-11111, Sudan
| | - Hafiz A. Makeen
- Pharmacy Practice Research Unit, Clinical Pharmacy Department, Faculty of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Hassan A. Alhazmi
- Substance Abuse and Toxicology Research Center, Jazan University, P.O. Box: 114, Jazan, Saudi Arabia
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, P.O. Box 114, Postal Code 45142, Jazan, Saudi Arabia
| | - Mohammed Albratty
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, P.O. Box 114, Postal Code 45142, Jazan, Saudi Arabia
| | - Andi Hermansyah
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, 60115 Surabaya, Indonesia
| | - Long Chiau Ming
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, 60115 Surabaya, Indonesia
- School of Medical and Life Sciences, Sunway University, Sunway City 47500, Malaysia
- PAPRSB Institute of Health Sciences, Universiti Brunei Darussalam, Gadong, Brunei Darussalam
| | - Khang Wen Goh
- Faculty of Data Science and Information Technology, INTI International University, Nilai, Malaysia
| | - Nasreddine El Omari
- High Institute of Nursing Professions and Health Techniques of Tetouan, Tetouan, Morocco
| |
Collapse
|
4
|
Newairy ASAS, Hamaad FA, Wahby MM, Ghoneum M, Abdou HM. Neurotherapeutic effects of quercetin-loaded nanoparticles and Biochanin-A extracted from Trifolium alexandrinum on PI3K/Akt/GSK-3β signaling in the cerebral cortex of male diabetic rats. PLoS One 2024; 19:e0301355. [PMID: 38683825 PMCID: PMC11057738 DOI: 10.1371/journal.pone.0301355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 03/12/2024] [Indexed: 05/02/2024] Open
Abstract
Diabetes mellitus (DM) is a severe metabolic disease that can have significant consequences for cognitive health. Bioflavonoids such as Trifolium alexandrinum (TA), quercetin (Q), and Biochanin-A (BCA) are known to exert a wide range of pharmacological functions including antihyperglycemic activity. This study aimed to investigate the neurotherapeutic effects of quercetin-loaded nanoparticles (Q-LNP) and BCA extracted from TA against diabetes-induced cerebral cortical damage through modulation of PI3K/Akt/GSK-3β and AMPK signaling pathways. Adult male Wistar albino rats (N = 25) were randomly assigned to one of five groups: control, diabetics fed a high-fat diet (HFD) for 2 weeks and intraperitoneally (i.p.) injected with STZ (40 mg/kg), and diabetics treated with Q-LNP (50 mg/kg BW/day), BCA (10 mg/kg BW/day), or TA extract (200 mg/kg BW/day). Treatments were applied by oral gavage once daily for 35 days. Diabetic rats treated with Q-LNP, BCA, and TA extract showed improvement in cognitive performance, cortical oxidative metabolism, antioxidant parameters, and levels of glucose, insulin, triglyceride, and total cholesterol. In addition, these treatments improved neurochemical levels, including acetylcholine, dopamine, and serotonin levels as well acetylcholinesterase and monoamine oxidase activities. Furthermore, these treatments lowered proinflammatory cytokine production for TNF-α and NF-κB; downregulated the levels of IL-1β, iNOS, APP, and PPAR-γ; and attenuated the expressions of PSEN2, BACE, IR, PI3K, FOXO 1, AKT, AMPK, GSK-3β, and GFAP. The histopathological examinations of the cerebral cortical tissues confirmed the biochemical results. Overall, the present findings suggest the potential therapeutic effects of TA bioflavonoids in modulating diabetes-induced cerebral cortical damage.
Collapse
Affiliation(s)
| | - Fatma Ahmad Hamaad
- Faculty of Science, Department of Biochemistry, Alexandria University, Alexandria, Egypt
| | - Mayssaa Moharm Wahby
- Faculty of Science, Department of Biochemistry, Alexandria University, Alexandria, Egypt
| | - Mamdooh Ghoneum
- Department of Surgery, Charles R. Drew University of Medicine and Science, Los Angeles, California, United States of America
- Department of Surgery, University of California Los Angeles, Los Angeles, California, United States of America
| | - Heba Mohamed Abdou
- Faulty of Science, Department of Zoology, Alexandria University, Alexandria, Egypt
| |
Collapse
|
5
|
Lin QR, Jia LQ, Lei M, Gao D, Zhang N, Sha L, Liu XH, Liu YD. Natural products as pharmacological modulators of mitochondrial dysfunctions for the treatment of diabetes and its complications: An update since 2010. Pharmacol Res 2024; 200:107054. [PMID: 38181858 DOI: 10.1016/j.phrs.2023.107054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/12/2023] [Accepted: 12/31/2023] [Indexed: 01/07/2024]
Abstract
Diabetes, characterized as a well-known chronic metabolic syndrome, with its associated complications pose a substantial and escalating health and healthcare challenge on a global scale. Current strategies addressing diabetes are mainly symptomatic and there are fewer available curative pharmaceuticals for diabetic complications. Thus, there is an urgent need to identify novel pharmacological targets and agents. The impaired mitochondria have been associated with the etiology of diabetes and its complications, and the intervention of mitochondrial dysfunction represents an attractive breakthrough point for the treatments of diabetes and its complications. Natural products (NPs), with multicenter characteristics, multi-pharmacological activities and lower toxicity, have been caught attentions as the modulators of mitochondrial functions in the therapeutical filed of diabetes and its complications. This review mainly summarizes the recent progresses on the potential of 39 NPs and 2 plant-extracted mixtures to improve mitochondrial dysfunction against diabetes and its complications. It is expected that this work may be useful to accelerate the development of innovative drugs originated from NPs and improve upcoming therapeutics in diabetes and its complications.
Collapse
Affiliation(s)
- Qian-Ru Lin
- Department of Neuroendocrine Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, China
| | - Lian-Qun Jia
- Key Laboratory of Ministry of Education for TCM Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning 116600, China
| | - Ming Lei
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China
| | - Di Gao
- Department of Neuroendocrine Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, China
| | - Nan Zhang
- Department of Neuroendocrine Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, China
| | - Lei Sha
- Department of Neuroendocrine Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, China
| | - Xu-Han Liu
- Department of Endocrinology, Dalian Municipal Central Hospital, Dalian, Liaoning 116033, China.
| | - Yu-Dan Liu
- Department of Neuroendocrine Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, China.
| |
Collapse
|
6
|
Dewi NKSM, Ramona Y, Saraswati MR, Wihandani DM, Wirasuta IMAG. The Potential of the Flavonoid Content of Ipomoea batatas L. as an Alternative Analog GLP-1 for Diabetes Type 2 Treatment-Systematic Review. Metabolites 2023; 14:29. [PMID: 38248832 PMCID: PMC10819535 DOI: 10.3390/metabo14010029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 12/23/2023] [Accepted: 12/26/2023] [Indexed: 01/23/2024] Open
Abstract
Ipomoea batatas L. (IBL) has gained significant popularity as a complementary therapy or herbal medicine in the treatment of anti-diabetes. This review seeks to explore the mechanism by which flavonoid compounds derived from IBL exert their anti-diabetic effects through the activation of GLP-1. The review article refers to the PRISMA guidelines. In order to carry out the literature search, electronic databases such as Science Direct, Crossref, Scopus, and Pubmed were utilized. The search query was based on specific keywords, including Ipomoea batatas OR sweet potato AND anti-diabetic OR hypoglycemic. After searching the databases, we found 1055 articles, but only 32 met the criteria for further review. IBL contains various compounds, including phenolic acid, flavonols, flavanols, flavones, and anthocyanins, which exhibit activity against anti-diabetes. Flavonols, flavanols, and flavones belong to a group of flavonoids that possess the ability to form complexes with AlCl3 and Ca2+. The intracellular L cells effectively retain Ca2+, leading to the subsequent release of GLP-1. Flavonols, flavones, and flavone groups have been found to strongly interact with DPP-IV, which inhibits the degradation of GLP-1. The anti-diabetic activity of IBL is attributed to the mechanism that effectively increases the duration of GLP-1 in the systemic system, thereby prolonging its half-life.
Collapse
Affiliation(s)
- Ni Kadek Santi Maha Dewi
- Doctoral Study Program, Faculty of Medicine, Udayana University, Denpasar 80232, Indonesia;
- Pharmacy Department, Faculty of Mathematic and Natural Science, Udayana University, Kampus Bukit Jimbaran, Denpasar 80361, Indonesia
| | - Yan Ramona
- Biology Department, Faculty of Mathematic and Natural Science, Udayana University, Kampus Bukit Jimbaran, Denpasar 80361, Indonesia;
| | - Made Ratna Saraswati
- Department of Internal Medicine, Faculty of Medicine, Udayana University, Denpasar 80232, Indonesia;
| | - Desak Made Wihandani
- Department of Biochemistry, Faculty of Medicine, Udayana University, Denpasar 80232, Indonesia;
| | - I Made Agus Gelgel Wirasuta
- Pharmacy Department, Faculty of Mathematic and Natural Science, Udayana University, Kampus Bukit Jimbaran, Denpasar 80361, Indonesia
- Forensic Sciences Laboratory, Institute of Forensic Sciences and Criminology, Udayana University, Kampus Bukit Jimbaran, Denpasar 80361, Indonesia
| |
Collapse
|
7
|
Kang S, Kim Y, Lee Y, Kwon O. Diverse and Synergistic Actions of Phytochemicals in a Plant-Based Multivitamin/Mineral Supplement against Oxidative Stress and Inflammation in Healthy Individuals: A Systems Biology Approach Based on a Randomized Clinical Trial. Antioxidants (Basel) 2023; 13:36. [PMID: 38247460 PMCID: PMC10812391 DOI: 10.3390/antiox13010036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 12/20/2023] [Accepted: 12/20/2023] [Indexed: 01/23/2024] Open
Abstract
Traditional clinical methodologies often fall short of revealing the complex interplay of multiple components and targets within the human body. This study was designed to explore the complex and synergistic effects of phytochemicals in a plant-based multivitamin/mineral supplement (PBS) on oxidative stress and inflammation in healthy individuals. Utilizing a systems biology framework, we integrated clinical with multi-omics analyses, including UPLC-Q-TOF-MS for 33 phytochemicals, qPCR for 42 differential transcripts, and GC-TOF-MS for 17 differential metabolites. A Gene Ontology analysis facilitated the identification of 367 biological processes linked to oxidative stress and inflammation. As a result, a comprehensive network was constructed consisting of 255 nodes and 1579 edges, featuring 10 phytochemicals, 26 targets, and 218 biological processes. Quercetin was identified as having the broadest target spectrum, succeeded by ellagic acid, hesperidin, chlorogenic acid, and quercitrin. Moreover, several phytochemicals were associated with key genes such as HMOX1, TNF, NFE2L2, CXCL8, and IL6, which play roles in the Toll-like receptor, NF-kappa B, adipocytokine, and C-type lectin receptor signaling pathways. This clinical data-driven network system approach has significantly advanced our comprehension of a PBS's effects by pinpointing pivotal phytochemicals and delineating their synergistic actions, thus illuminating potential molecular mechanisms.
Collapse
Affiliation(s)
- Seunghee Kang
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Republic of Korea;
- Logme Inc., Seoul 03182, Republic of Korea
| | - Youjin Kim
- Logme Inc., Seoul 03182, Republic of Korea
| | - Yeonkyung Lee
- Innovation and Science, Amway Korea Ltd., Seoul 06414, Republic of Korea
| | - Oran Kwon
- Logme Inc., Seoul 03182, Republic of Korea
- Department of Nutritional Science and Food Management, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| |
Collapse
|
8
|
Lee SC, Ahn J, Kim J, Lee JY, Kim J, Uddin MS, Lee SW, Kim CY. The Antioxidant and Anti-Inflammatory Properties of Merremia umbellata Extract. Antioxidants (Basel) 2023; 12:2037. [PMID: 38136157 PMCID: PMC10740611 DOI: 10.3390/antiox12122037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/17/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023] Open
Abstract
Merremia umbellata Hallier f. (MU) has been used as an anti-inflammatory agent to treat burns and scales. However, the potential anti-inflammatory mechanisms of action of this plant have not been elucidated. This study aimed to assess the antioxidant and anti-inflammatory effects of the leaf and shoot of MU grown in Bangladesh. The MU extract exhibited antioxidant activities as demonstrated by DPPH and ABTS free-radical-scavenging activities and the total polyphenol and total flavonoid contents. MU extract significantly reduced the lipopolysaccharide (LPS)-stimulated nitric oxide (NO) production in RAW264.7 macrophage. Accordingly, the gene levels of inducible NO synthase and cyclooxygenase-2 were suppressed. The MU extract alleviated the LPS-induced expression of TLR4, NF-κB, and inflammatory cytokines (TNF-α, IL-6, and IL-1β). The constituents of a MU extract were tentatively identified using UHPLC-PDA-QTOF/MS techniques. The main compounds were identified as 3,4-dicaffeoylquinic acid, 3,5-dicaffeoylquinic acid, quercitrin, and 4,5-dicaffeoylquinic acid. Molecular docking analysis revealed that these compounds interact with TLR4 protein, with quercitrin showing the highest binding affinity among them. Overall, our findings demonstrate the antioxidant and in vitro anti-inflammatory activities of MU and its potential compounds to target the TLR4-NF-κB signaling pathway. These findings are potentially used to further explore promising natural food ingredients that are effective in regulating inflammation.
Collapse
Affiliation(s)
- Sunny Chung Lee
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095-1735, USA;
| | - Jongmin Ahn
- Natural Product Central Bank & Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Chungbuk, Republic of Korea;
| | - Jina Kim
- Department of Food and Nutrition, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea; (J.K.); (J.-Y.L.)
| | - Joo-Yeon Lee
- Department of Food and Nutrition, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea; (J.K.); (J.-Y.L.)
| | - Juhae Kim
- Research Institute of Human Ecology, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea;
| | - Md. Salah Uddin
- Ethnobotanical Database of Bangladesh, Tejgaon, Dhaka 1208, Bangladesh;
| | - Sang Woo Lee
- International Biological Material Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea;
| | - Choon Young Kim
- Department of Food and Nutrition, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea; (J.K.); (J.-Y.L.)
- Research Institute of Human Ecology, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea;
| |
Collapse
|
9
|
Alblihd MA, Alsharif KF, Hamad AA, Ali FAZ, Hussein MT, Alhegaili AS, Hassan MA, Al-Amer OM, Albezrah NKA, Almalki AA, Albarakati AJA, Alghamdi KS, Alzahrani KJ, Albrakati A, Alrubai EH, ElAshmouny N, Elmahallawy EK. Okra [ Abelmoschus esculentus (L.) Moench] improved blood glucose and restored histopathological alterations in splenic tissues in a rat model with streptozotocin-induced type 1 diabetes through CD8 + T cells and NF-kβ expression. Front Vet Sci 2023; 10:1268968. [PMID: 38046568 PMCID: PMC10690606 DOI: 10.3389/fvets.2023.1268968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/16/2023] [Indexed: 12/05/2023] Open
Abstract
Diabetes mellitus is a complex metabolic syndrome that involves dysfunction of spleen and other lymphoid organs. Medicinal plants, including okra (Abelmoschus esculentus (L.) Moench), were used widely for diabetes treatment. Scarce data are available about the potential anti-diabetic effects of okra, the histopathological alterations in splenic tissues and the mechanistic pathways underlying this association. The current research investigated the effects of okra pod extract on the biochemical parameters and expression of CD8+ T cells and nuclear factor kappa (NF-k) B and releasing proinflammatory cytokines in spleen in streptozotocin (STZ)-induced diabetic rat models. A total of 50 mature male Wister albino rats were divided into five isolated groups; the first served as control (untreated) animals, the second (DM group) diabetes induced by STZ (at a dose of 45 mg/kg body weight, administered intraperitoneally), the third group (DM + Insulin): diabetic rats administered insulin subcutaneously (10 units/kg bw/day) daily for 4 weeks, the fourth group was administrated 400 mg/kg okra extract daily for 4 weeks, and diabetic induced rats in the fifth group were administrated 400 mg/kg okra extract daily for 4 weeks. The 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging activity in Abelmoschus esculentus (L.) Moench was studied, and the content of phenolic compounds in okra pods was estimated using high-performance liquid chromatography. Diabetes induction led to decreased body weight, increased blood glucose levels. Capsular thickness was significantly increased, white pulp was widely dispersed, and mature lymphocytes in the periphery were also drastically decreased, with thick follicular arteries, necrosis, and depletion of lymphocytes in the germinal center. Red pulp revealed severe congestion and degenerative changes, deposition of hemosiderin granules and lymphocytic depletion. In addition, collagen fiber deposition was increased also in this group. The induction of diabetes exaggerated NF-kβ expression and mediated downregulation of the expression of CD8+ T cells in spleen tissue. Interestingly, oral administration of okra extracts post diabetes induction could mitigate and reverse such adverse effects. Altogether, our study points out the potential benefits of okra in improving blood glucose levels and restoring histopathological alterations in splenic tissues through CD8+ T cells and NF-kβ expression in a diabetic rat model.
Collapse
Affiliation(s)
- Mohamed A. Alblihd
- Department of Medical Microbiology and Immunology, College of Medicine, Taif University, Taif, Saudi Arabia
- High Altitude Research Center, Taif University, Taif, Saudi Arabia
| | - Khalaf F. Alsharif
- High Altitude Research Center, Taif University, Taif, Saudi Arabia
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Asmaa A. Hamad
- High Altitude Research Center, Taif University, Taif, Saudi Arabia
- Department of Biology, College of Science, Taif University, Taif, Saudi Arabia
| | - Fatma Abo Zakaib Ali
- Department of Pathology and Clinical Pathology, Faculty of Veterinary Medicine, Sohag University, Sohag, Egypt
| | - Manal T. Hussein
- Department of Cell and Tissues, Faculty of Veterinary Medicine, Assiut University, Asyut, Egypt
| | - Alaa S. Alhegaili
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Mohamed Ahmed Hassan
- Food Science and Technology Department, Faculty of Agriculture, Al-Azhar University – Assiut Branch, Asyut, Egypt
| | - Osama M. Al-Amer
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
- Genome and Biotechnology Unit, Faculty of Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | | | - Abdulraheem Ali Almalki
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Alaa Jameel A. Albarakati
- Surgery Department, College of Medicine, Al-Qunfudah Branch, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Khalid S. Alghamdi
- Forensic Poison Services Administration, Forensic Medical Services Center in Taif, Ministry of Health Saudi Arabia, Taif, Saudi Arabia
| | - Khalid J. Alzahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Ashraf Albrakati
- Department of Human Anatomy, College of Medicine, Taif University, Taif, Saudi Arabia
| | - Elham Hamed Alrubai
- Internal Medicine Department, Security Forces Hospital, Riyadh, Saudi Arabia
| | - Naira ElAshmouny
- Department of Histology and Cell Biology, Faculty of Medicine, Kafrelsheikh University, Kafr El Sheikh, Egypt
| | - Ehab Kotb Elmahallawy
- Departamento de Sanidad Animal, Grupo de Investigación en Sanidad Animal y Zoonosis (GISAZ), Facultad de Veterinaria, Universidad de Córdoba, Córdoba, Spain
- Department of Zoonoses, Faculty of Veterinary Medicine, Sohag University, Sohag, Egypt
| |
Collapse
|
10
|
Sayuti NH, Zulkefli N, Tan JK, Saad N, Baharum SN, Hamezah HS, Bunawan H, Ahmed QU, Parveen H, Mukhtar S, Alsharif MA, Sarian MN. Ethanolic Extract of Polygonum minus Protects Differentiated Human Neuroblastoma Cells (SH-SY5Y) against H 2O 2-Induced Oxidative Stress. Molecules 2023; 28:6726. [PMID: 37764502 PMCID: PMC10535396 DOI: 10.3390/molecules28186726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/13/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
Neuronal models are an important tool in neuroscientific research. Hydrogen peroxide (H2O2), a major risk factor of neuronal oxidative stress, initiates a cascade of neuronal cell death. Polygonum minus Huds, known as 'kesum', is widely used in traditional medicine. P. minus has been reported to exhibit a few medicinal and pharmacological properties. The current study aimed to investigate the neuroprotective effects of P. minus ethanolic extract (PMEE) on H2O2-induced neurotoxicity in SH-SY5Y cells. LC-MS/MS revealed the presence of 28 metabolites in PMEE. Our study showed that the PMEE provided neuroprotection against H2O2-induced oxidative stress by activating the Nrf2/ARE, NF-κB/IκB and MAPK signaling pathways in PMEE pre-treated differentiated SH-SY5Y cells. Meanwhile, the acetylcholine (ACH) level was increased in the oxidative stress-induced treatment group after 4 h of exposure with H2O2. Molecular docking results with acetylcholinesterase (AChE) depicted that quercitrin showed the highest docking score at -9.5 kcal/mol followed by aloe-emodin, afzelin, and citreorosein at -9.4, -9.3 and -9.0 kcal/mol, respectively, compared to the other PMEE's identified compounds, which show lower docking scores. The results indicate that PMEE has neuroprotective effects on SH-SY5Y neuroblastoma cells in vitro. In conclusion, PMEE may aid in reducing oxidative stress as a preventative therapy for neurodegenerative diseases.
Collapse
Affiliation(s)
- Nor Hafiza Sayuti
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia; (N.H.S.); (N.Z.); (S.N.B.); (H.S.H.); (H.B.)
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| | - Nabilah Zulkefli
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia; (N.H.S.); (N.Z.); (S.N.B.); (H.S.H.); (H.B.)
| | - Jen Kit Tan
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| | - Norazalina Saad
- UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Malaysia;
| | - Syarul Nataqain Baharum
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia; (N.H.S.); (N.Z.); (S.N.B.); (H.S.H.); (H.B.)
| | - Hamizah Shahirah Hamezah
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia; (N.H.S.); (N.Z.); (S.N.B.); (H.S.H.); (H.B.)
| | - Hamidun Bunawan
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia; (N.H.S.); (N.Z.); (S.N.B.); (H.S.H.); (H.B.)
| | - Qamar Uddin Ahmed
- Drug Discovery and Synthetic Chemistry Research Group, Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan 25200, Malaysia;
| | - Humaira Parveen
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia; (H.P.); (S.M.)
| | - Sayeed Mukhtar
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia; (H.P.); (S.M.)
| | - Meshari A. Alsharif
- Department of Chemistry, Faculty of Applied Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia;
| | - Murni Nazira Sarian
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia; (N.H.S.); (N.Z.); (S.N.B.); (H.S.H.); (H.B.)
| |
Collapse
|
11
|
Han M, Lu Y, Tao Y, Zhang X, Dai C, Zhang B, Xu H, Li J. Luteolin Protects Pancreatic β Cells against Apoptosis through Regulation of Autophagy and ROS Clearance. Pharmaceuticals (Basel) 2023; 16:975. [PMID: 37513887 PMCID: PMC10385282 DOI: 10.3390/ph16070975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/04/2023] [Accepted: 05/19/2023] [Indexed: 07/30/2023] Open
Abstract
Diabetes, which is mainly characterized by increased apoptosis and dysfunction of beta (β) cells, is a metabolic disease caused by impairment of pancreatic islet function. Previous studies have demonstrated that death-associated protein kinase-related apoptosis-inducing kinase-2 (Drak2) is involved in regulating β cell survival. Since natural products have multiple targets and often are multifunctional, making them promising compounds for the treatment of diabetes, we identified Drak2 inhibitors from a natural product library. Among the identified products, luteolin, a flavonoid, was found to be the most effective compound. In vitro, luteolin effectively alleviated palmitate (PA)-induced apoptosis of β cells and PA-induced impairment of primary islet function. In vivo, luteolin showed a tendency to lower blood glucose levels. It also alleviated STZ-induced apoptosis of β cells and metabolic disruption in mice. This function of luteolin partially relied on Drak2 inhibition. Furthermore, luteolin was also found to effectively relieve oxidative stress and promote autophagy in β cells, possibly improving β cell function and slowing the progression of diabetes. In conclusion, our findings show the promising effect of Drak2 inhibitors in relieving diabetes and offer a potential therapeutic target for the protection of β cells. We also reveal some of the underlying mechanisms of luteolin's cytoprotective function.
Collapse
Affiliation(s)
- Ming Han
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210046, China
- State Key Laboratory of Drug Research, The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yuting Lu
- State Key Laboratory of Drug Research, The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yunhua Tao
- State Key Laboratory of Drug Research, The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xinwen Zhang
- State Key Laboratory of Drug Research, The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Chengqiu Dai
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Bingqian Zhang
- State Key Laboratory of Drug Research, The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Honghong Xu
- State Key Laboratory of Drug Research, The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jingya Li
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210046, China
- State Key Laboratory of Drug Research, The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
12
|
Mazraesefidi M, Mahmoodi M, Hajizadeh M. Effects of silibinin on apoptosis and insulin secretion in rat RINm5F pancreatic β-cells. Biotech Histochem 2023; 98:201-209. [PMID: 36762428 DOI: 10.1080/10520295.2022.2154840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
Abstract
We investigated whether silibinin, a flavonoid, might be useful for treating diabetes mellitus by treating five groups of rat RINm5F β-insulinemia cells as follows: control streptozotocin (STZ) group administered citrate buffer and dimethyl sulfoxide; STZ group administered 20 mM STZ; silibinin group administered 50 µM silibinin; pre-silibinin group administered 50 µM silibinin 5 h before administering 20 mM STZ; simultaneous group administered 50 µM silibinin at the same time as 20 mM STZ. For all groups, MTT assay and flow cytometry were used to evaluate cell viability and necrosis, respectively. Glucose-stimulated insulin secretion (GSIS) and insulin cell content were determined using enzyme-linked immunosorbent assay. Also, expression of genes, pancreatic and duodenal homeobox 1 (pdx1), neuronal differentiation 1 (neurod1), v-maf avian musculoaponeurotic fibrosarcoma oncogene homolog A (mafa), glucose transporter 2 (glut2)) was determined using the real-time polymerase chain reaction. We found that silibinin improved the viability of RINm5F cells and increased GSIS and cellular insulin under glucotoxic conditions. Silibinin increased the expression of neurod1, mafa and glut2, but reduced pdx1 expression. Our findings suggest that silibinin might increase glucose sensitivity and insulin synthesis under glucotoxic conditions, which could be useful for diabetes treatment.
Collapse
Affiliation(s)
- Maryam Mazraesefidi
- Department of Clinical Biochemistry, Faculty of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Mehdi Mahmoodi
- Department of Clinical Biochemistry, Afzalipoor Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammadreza Hajizadeh
- Department of Clinical Biochemistry, Faculty of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.,Molecular Medicine Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| |
Collapse
|
13
|
Gutiérrez-Grijalva EP, Leyva-López N, Vazquez-Olivo G, Heredia JB. Oregano as a potential source of antidiabetic agents. J Food Biochem 2022; 46:e14388. [PMID: 36098212 DOI: 10.1111/jfbc.14388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/25/2022] [Accepted: 08/29/2022] [Indexed: 01/13/2023]
Abstract
Oregano is the name given to a great variety of herbs belonging mainly to the Lamiaceae and Verbenaceae botanical families. Oregano species are rich sources of phytochemicals such as phenolic compounds like rosmarinic acid, salvianolic acid, and luteolin, among others. A few articles have previously accessed some potential pharmacological bioactivities of oregano plants; however, none has focused on the antidiabetic studies. This review aims to summarize recent studies about the potential effect of phenolic compounds from oregano plant species. The reports were retrieved from electronic databases such as PubMed, Web of Science, National Center for Biotechnology Information (NCBI), and Scopus. In addition, articles related to the mentioned topics and published between 2004-2022 were selected. The results from this study show that the antidiabetic pharmacological reports of oregano phenolic compounds are mainly in vitro reports. Therefore, the diversity of oregano species yields a broad variety of phenolic constituents, where preclinical and clinical studies are strongly recommended.
Collapse
Affiliation(s)
| | - Nayely Leyva-López
- Centro de Investigación en Alimentación y Desarrollo, AC, Culiacán, Sinaloa, Mexico
| | | | - J Basilio Heredia
- Centro de Investigación en Alimentación y Desarrollo, AC, Culiacán, Sinaloa, Mexico
| |
Collapse
|
14
|
Lim DW, Wang JH. Gut Microbiome: The Interplay of an "Invisible Organ" with Herbal Medicine and Its Derived Compounds in Chronic Metabolic Disorders. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:13076. [PMID: 36293657 PMCID: PMC9603471 DOI: 10.3390/ijerph192013076] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/29/2022] [Accepted: 10/09/2022] [Indexed: 06/16/2023]
Abstract
Resembling a concealed "organ" in a holobiont, trillions of gut microbes play complex roles in the maintenance of homeostasis, including participating in drug metabolism. The conventional opinion is that most of any drug is metabolized by the host and that individual differences are principally due to host genetic factors. However, current evidence indicates that only about 60% of the individual differences in drug metabolism are attributable to host genetics. Although most common chemical drugs regulate the gut microbiota, the gut microbiota is also known to be involved in drug metabolism, like the host. Interestingly, many traditional herbal medicines and derived compounds are biotransformed by gut microbiota, manipulating the compounds' effects. Accordingly, the gut microbiota and its specified metabolic pathways can be deemed a promising target for promoting drug efficacy and safety. However, the evidence regarding causality and the corresponding mechanisms concerning gut microbiota and drug metabolism remains insufficient, especially regarding drugs used to treat metabolic disorders. Therefore, the present review aims to comprehensively summarize the bidirectional roles of gut microbiota in the effects of herbal medicine in metabolic diseases to provide vital clues for guiding the clinical application of precision medicine and personalized drug development.
Collapse
Affiliation(s)
- Dong-Woo Lim
- Department of Diagnostics, College of Korean Medicine, Dongguk University, Dongguk-Ro 32, Goyang 10326, Korea
| | - Jing-Hua Wang
- Institute of Bioscience & Integrative Medicine, Daejeon University, 75, Daedeok-daero 176, Seo-gu, Daejeon 35235, Korea
| |
Collapse
|
15
|
Li B, Pan LL, Pan X, Dong X, Ren Z, Zhang H, Chen W, de Vos P, Sun J. Opportunities and challenges of polyphenols and polysaccharides for type 1 diabetes intervention. Crit Rev Food Sci Nutr 2022; 64:2811-2823. [PMID: 36168918 DOI: 10.1080/10408398.2022.2126962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Type 1 diabetes (T1D) is an autoimmune disorder characterized by the destruction of insulin-producing pancreatic β cell. It contributes to high mortality, frequent diabetic complications, poor quality of life in patients and also puts a significant economic burden on health care systems. Therefore, the development of new therapeutic strategies is urgently needed. Recently, certain dietary compounds with potential applications in food industry, particularly polyphenols and polysaccharides, have gained increasing attention with their prominent anti-diabetic effects on T1D by modulating β cell function, the gut microbiota and/or the immune system. In this review, we critically discuss the recent findings of several dietary polyphenols and polysaccharides with the potential to protect against T1D and the underlying anti-diabetic mechanisms. More importantly, we highlight the current trends, major issues, and future directions of industrial production of polyphenols- and polysaccharides-based functional foods for preventing or delaying T1D.
Collapse
Affiliation(s)
- Binbin Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Li-Long Pan
- School of Medicine, Jiangnan University, Wuxi, China
| | - Xiaohua Pan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | | | - Zhengnan Ren
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Paul de Vos
- Immunoendocrinology, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jia Sun
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
16
|
Loranthus tanakae Franch. & Sav. Suppresses Inflammatory Response in Cigarette Smoke Condensate Exposed Bronchial Epithelial Cells and Mice. Antioxidants (Basel) 2022; 11:antiox11101885. [PMID: 36290608 PMCID: PMC9598098 DOI: 10.3390/antiox11101885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 09/21/2022] [Accepted: 09/21/2022] [Indexed: 11/22/2022] Open
Abstract
Loranthus tanakae Franch. & Sav. found in China, Japan, and Korea is traditionally used for managing arthritis and respiratory diseases. In this study, we analyzed the components of L. tanakae 70% ethanol extract (LTE) and investigated the therapeutic effects of LTE on pulmonary inflammation using cells exposed to cigarette smoke condensate (CSC) and lipopolysaccharide (LPS) in vitro and in vivo in mice and performed a network analysis between components and genes based on a public database. We detected quercitrin, afzelin, rhamnetin 3-rhamnoside, and rhamnocitrin 3-rhamnoside in LTE, which induced a significant reduction in inflammatory mediators including interleukin (IL)-1β, IL-6, tumor necrosis factor (TNF)-α and inflammatory cells in CSC exposed H292 cells and in mice, accompanied by a reduction in inflammatory cell infiltration into lung tissue. In addition, LTE increased translocation into the nuclei of nuclear factor erythroid-2-related factor 2 (Nrf2). By contrast, the activation of nuclear factor (NF)-κB, induced by CSC exposure, decreased after LTE application. These results were consistent with the network pharmacological analysis. In conclusion, LTE effectively attenuated pulmonary inflammation caused by CSC+LPS exposure, which was closely involved in the enhancement of Nrf2 expression and suppression of NF-κB activation. Therefore, LTE may be a potential treatment option for pulmonary inflammatory diseases including chronic obstructive pulmonary disease (COPD).
Collapse
|
17
|
Chen T, Jia F, Yu Y, Zhang W, Wang C, Zhu S, Zhang N, Liu X. Potential Role of Quercetin in Polycystic Ovary Syndrome and Its Complications: A Review. Molecules 2022; 27:molecules27144476. [PMID: 35889348 PMCID: PMC9325244 DOI: 10.3390/molecules27144476] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/08/2022] [Accepted: 07/08/2022] [Indexed: 12/18/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is a common multisystem disease with reproductive, metabolic and psychological abnormalities. It is characterized by a high prevalence rate in women of childbearing age and highly heterogeneous clinical manifestations, which seriously harm women’s physical and mental health. Quercetin (QUR) is a natural compound of flavonoids found in a variety of foods and medicinal plants. It can intervene with the pathologic process of PCOS from multiple targets and channels and has few adverse reactions. It is mentioned in this review that QUR can improve ovulation disorder, relieve Insulin resistance (IR), reduce androgen, regulate lipid metabolism, regulate gut microbiota and improve vascular endothelial function, which is of great significance in the treatment of PCOS.
Collapse
Affiliation(s)
- Tong Chen
- Department of Gynecology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; (T.C.); (F.J.); (Y.Y.); (W.Z.); (C.W.); (S.Z.); (N.Z.)
- China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Fan Jia
- Department of Gynecology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; (T.C.); (F.J.); (Y.Y.); (W.Z.); (C.W.); (S.Z.); (N.Z.)
- China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yue Yu
- Department of Gynecology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; (T.C.); (F.J.); (Y.Y.); (W.Z.); (C.W.); (S.Z.); (N.Z.)
- China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Wufan Zhang
- Department of Gynecology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; (T.C.); (F.J.); (Y.Y.); (W.Z.); (C.W.); (S.Z.); (N.Z.)
- China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Chaoying Wang
- Department of Gynecology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; (T.C.); (F.J.); (Y.Y.); (W.Z.); (C.W.); (S.Z.); (N.Z.)
- Department of Gynecology of Traditional Chinese Medicine, Graduate School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Shiqin Zhu
- Department of Gynecology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; (T.C.); (F.J.); (Y.Y.); (W.Z.); (C.W.); (S.Z.); (N.Z.)
- Department of Gynecology of Traditional Chinese Medicine, Graduate School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Nana Zhang
- Department of Gynecology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; (T.C.); (F.J.); (Y.Y.); (W.Z.); (C.W.); (S.Z.); (N.Z.)
- Department of Gynecology of Traditional Chinese Medicine, Graduate School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xinmin Liu
- Department of Gynecology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; (T.C.); (F.J.); (Y.Y.); (W.Z.); (C.W.); (S.Z.); (N.Z.)
- Correspondence:
| |
Collapse
|
18
|
Kannan P, Karthikeyan P, Subramaniam N, Mohan T, Gopinath B, Chakrapani LN, Palanivelu S, Raghunathan M, Periandavan K. Gymnemic acid protects murine pancreatic β-cells by moderating hyperglycemic stress-induced inflammation and apoptosis in type 1 diabetic rats. J Biochem Mol Toxicol 2022; 36:e23050. [PMID: 35343011 DOI: 10.1002/jbt.23050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/02/2022] [Accepted: 03/10/2022] [Indexed: 11/08/2022]
Abstract
Type 1 diabetes is a chronic immune-mediated disease caused by pancreatic β-cell dysfunction with consequent severe insulin deficiency. Exacerbated blood glucose levels can cause oxidative stress in the pancreatic β-cells, which leads to inflammation, and apoptosis resulting in islet dysfunction. Although massive studies have been carried out to elucidate the causative factors for β-cell damage in diabetes, the therapeutic approach to pancreatic β-cell damage has not been extensively studied. Hence, the present study has been designed to delineate the role of gymnemic acid (GA) in protecting pancreatic β-cells in diabetic animals, with special reference to inflammation and apoptosis. Our data revealed that the treatment with GA significantly reverted the alteration in both biochemical and histochemical observations in young diabetic rats. Moreover, treatment with the GA downregulates the expression of proinflammatory markers (nuclear factor-κB, tumor necrosis factor-α, interleukin-[IL]-6, and IL-1β), proapoptotic proteins (Bax, cytochrome c, and cleaved caspase-3), as well as upregulates the expression of antiapoptotic protein Bcl-2 in diabetic rats. These findings suggest that the anti-inflammatory and antiapoptotic nature of GA mitigates β-cell damage in hyperglycemic rats.
Collapse
Affiliation(s)
- Pugazhendhi Kannan
- Department of Medical Biochemistry, DR ALM PG IBMS, University of Madras, Taramani Campus, Taramani, Chennai, India
| | - Porkodi Karthikeyan
- Department of Medical Biochemistry, DR ALM PG IBMS, University of Madras, Taramani Campus, Taramani, Chennai, India
| | - Nirmala Subramaniam
- Department of Biochemistry, University of Madras, Guindy Campus, Guindy, Chennai, India
| | - Thangarajeswari Mohan
- Department of Medical Biochemistry, DR ALM PG IBMS, University of Madras, Taramani Campus, Taramani, Chennai, India
| | - Bhavani Gopinath
- Department of Medical Biochemistry, DR ALM PG IBMS, University of Madras, Taramani Campus, Taramani, Chennai, India
| | - Lakshmi N Chakrapani
- Department of Medical Biochemistry, DR ALM PG IBMS, University of Madras, Taramani Campus, Taramani, Chennai, India
| | - Shanthi Palanivelu
- Department of Pathology, DR ALM PG IBMS, University of Madras, Taramani Campus, Taramani, Chennai, India
| | - Malathi Raghunathan
- Department of Pathology, DR ALM PG IBMS, University of Madras, Taramani Campus, Taramani, Chennai, India
| | - Kalaiselvi Periandavan
- Department of Medical Biochemistry, DR ALM PG IBMS, University of Madras, Taramani Campus, Taramani, Chennai, India
| |
Collapse
|
19
|
Chen J, Li G, Sun C, Peng F, Yu L, Chen Y, Tan Y, Cao X, Tang Y, Xie X, Peng C. Chemistry, pharmacokinetics, pharmacological activities, and toxicity of Quercitrin. Phytother Res 2022; 36:1545-1575. [PMID: 35253930 DOI: 10.1002/ptr.7397] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 01/07/2022] [Accepted: 01/10/2022] [Indexed: 12/20/2022]
Abstract
Quercitrin is a naturally available type of flavonoid that commonly functions as the dietary ingredient and supplement. So far, a wide spectrum of bioactivities of quercitrin have been revealed, including antioxidative stress, antiinflammation, anti-microorganisms, immunomodulation, analgesia, wound healing, and vasodilation. Based on these various pharmacological activities, increasing studies have focused on the potency of quercitrin in diverse diseases in recent years, such as bone metabolic diseases, gastrointestinal diseases, cardiovascular and cerebrovascular diseases, and others. In this paper, by collecting and summarizing publications from the recent years, the natural sources, pharmacological activities and roles in various diseases, pharmacokinetics, structure-activity relationship, as well as the toxicity of quercitrin were systematically reviewed. In addition, the underlying molecular mechanisms of quercitrin in treating related diseases, the dose-effect relationships, and the novel preparations were discussed on the purpose of broadening the application prospect of quercitrin as functional food and providing reference for its clinical application. Notably, clinical studies of quercitrin are insufficient at present, further high-quality studies are needed to firmly establish the clinical efficacy of quercitrin.
Collapse
Affiliation(s)
- Junren Chen
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Gangmin Li
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chen Sun
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fu Peng
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Lei Yu
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yan Chen
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuzhu Tan
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaoyu Cao
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yunli Tang
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Department of Pharmacology, Guangxi University of Traditional Chinese Medicine, Guangxi, China
| | - Xiaofang Xie
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Peng
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
20
|
Yu D, Wang F, Ye S, Yang S, Yu N, Zhou X, Zhang N. Quercitrin protects human bronchial epithelial cells from oxidative damage. Open Med (Wars) 2022; 17:375-383. [PMID: 35799602 PMCID: PMC8864058 DOI: 10.1515/med-2022-0416] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 11/19/2021] [Accepted: 11/23/2021] [Indexed: 11/24/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is mainly caused by cigarette smoking (CS), with oxidative stress being one key component during its pathogenesis. This study aimed to investigate the effects of quercitrin (QE) on cigarette smoke extract (CSE)-induced cell apoptosis and oxidative stress in human bronchial epithelial cells (HBECs) and its underlying mechanism. HBECs were treated with 2% CSE for 24 h to establish in vitro COPD cellular models. CCK-8 assay and flow cytometry analysis were performed to evaluate cell viability and apoptosis, respectively. Western blotting was applied to examine protein levels and ELISA kits were used to examine contents of the indicated oxidant/antioxidant markers. The results demonstrated that CSE promoted apoptosis and suppressed viability of HBECs and QE reversed these effects. CSE caused increase in T-AOC, superoxide dismutase, and glutathione (GSH) peroxidase contents and decrease in MDA, reactive oxygen species , and GSH contents in HBECs, which were rescued by QE treatment. The CSE-induced Nrf2 nuclear translocation and elevation of NAD(P)H: quinone oxidoreductase 1 (NQO1) and heme oxygenase-1 (HO-1) expression were also reversed by QE in HBECs. The mitogen-activated protein kinase (MAPK) signaling was activated by CSE and further suppressed by QE in HBECs. Collectively, QE exerts a protective role in HBECs against cell apoptosis and oxidative damage via inactivation of the Nrf2/HO-1/NQO1 pathway and the MAPK/ERK pathway.
Collapse
Affiliation(s)
- Dan Yu
- Department of Hematology , Wuhan No. 1 Hospital , Wuhan 43022 , Hubei , China
| | - Fan Wang
- General Medical Department (Department of Geriatrics) , Wuhan No. 1 Hospital , Wuhan 43022 , Hubei , China
| | - Shuming Ye
- Department of Respiratory , Wuhan No. 1 Hospital , Wuhan 43022 , Hubei , China
| | - Shuo Yang
- Department of Respiratory , Wuhan No. 1 Hospital , Wuhan 43022 , Hubei , China
| | - Ning Yu
- Hubei University of Traditional Chinese Medicine , Wuhan 430061 , Hubei , China
| | - Xinyan Zhou
- Hubei University of Traditional Chinese Medicine , Wuhan 430061 , Hubei , China
| | - Nian Zhang
- Department of Traditional Chinese Medicine , Wuhan No. 1 Hospital , Wuhan 43022 , Hubei , China
| |
Collapse
|
21
|
Smoak P, Burke SJ, Collier JJ. Botanical Interventions to Improve Glucose Control and Options for Diabetes Therapy. SN COMPREHENSIVE CLINICAL MEDICINE 2021; 3:2465-2491. [PMID: 35098034 PMCID: PMC8796700 DOI: 10.1007/s42399-021-01034-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Diabetes mellitus is a major public health problem worldwide. This endocrine disease is clustered into distinct subtypes based on the route of development, with the most common forms associated with either autoimmunity (T1DM) or obesity (T2DM). A shared hallmark of both major forms of diabetes is a reduction in function (insulin secretion) or mass (cell number) of the pancreatic islet beta-cell. Diminutions in both mass and function are often present. A wide assortment of plants have been used historically to reduce the pathological features associated with diabetes. In this review, we provide an organized viewpoint focused around the phytochemicals and herbal extracts investigated using various preclinical and clinical study designs. In some cases, crude extracts were examined directly, and in others, purified compounds were explored for their possible therapeutic efficacy. A subset of these studies compared the botanical product with standard of care prescribed drugs. Finally, we note that botanical formulations are likely suspects for future drug discovery and refinement into class(es) of compounds that have either direct or adjuvant therapeutic benefit.
Collapse
Affiliation(s)
- Peter Smoak
- Laboratory of Islet Biology and Inflammation, Pennington Biomedical Research Center, Louisiana State University System, 6400 Perkins Road, Baton Rouge, LA 70808, USA
| | - Susan J. Burke
- Immunogenetics Laboratory, Pennington Biomedical Research Center, Louisiana State University System, 6400 Perkins Road, LA 70808 Baton Rouge, USA
| | - J. Jason Collier
- Laboratory of Islet Biology and Inflammation, Pennington Biomedical Research Center, Louisiana State University System, 6400 Perkins Road, Baton Rouge, LA 70808, USA
| |
Collapse
|
22
|
Zhang J, Rho Y, Kim MY, Cho JY. TAK1 in the AP-1 pathway is a critical target of Saururus chinensis (Lour.) Baill in its anti-inflammatory action. JOURNAL OF ETHNOPHARMACOLOGY 2021; 279:114400. [PMID: 34245837 DOI: 10.1016/j.jep.2021.114400] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 06/30/2021] [Accepted: 07/06/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Saururus chinensis (Lour.) Baill (Saururaceae), also known as Asian lizard's tail, is a plant commonly found in East Asia. Its leaves have been used in traditional medicine to treat many diseases such as edema, pneumonia, hypertension, leproma, jaundice, gonorrhea, and rheumatoid arthritis. AIM OF THE STUDY Based on the efficacies of S. chinensis, the anti-inflammatory effects of this plant and the molecular mechanism were evaluated using the ethanol extract of S. chinensis leaves (Sc-EE). MATERIALS AND METHODS The production of pro-inflammatory mediators and cytokines in response to Sc-EE was evaluated using Griess and semi-quantitative reverse transcription-polymerase chain reactions. Furthermore, relevant proteins including c-Jun, c-Fos, p38, JNK, ERK, MEK1/2, MKK3/6, MKK4/7, and TAK1 were detected through immunoblotting. RESULTS Sc-EE diminished production of nitric oxide (NO); decreased expression levels of cyclooxygenase (COX)-2, interleukin (IL)-6, inducible NO synthase (iNOS), and IL-1β in LPS-stimulated RAW264.7 cells; and attenuated activator protein 1 (AP-1)-mediated luciferase activities. The extract markedly downregulated the phosphorylation of TAK1, upregulated thermal stability of TAK1, and reduced TAK1/AP-1-mediated luciferase activity in LPS-treated RAW264.7 cells and TAK1-overexpressing HEK293T cells. CONCLUSIONS These results demonstrated that Sc-EE suppresses pro-inflammatory gene expression through blockade of the TAK1/AP-1 pathway in LPS-treated RAW264.7 macrophages, implying that inhibition of TAK1/AP-1 signaling by S. chinensis is a key event in its anti-inflammatory activity.
Collapse
Affiliation(s)
- Jianmei Zhang
- Department of Integrative Biotechnology, Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Yangkook Rho
- Development Center, Dadang and Bio Co., Suwon, 16679, Republic of Korea.
| | - Mi-Yeon Kim
- School of Systems Biomedical Science, Soongsil University, Seoul, 06978, Republic of Korea.
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
23
|
Moroccan antidiabetic medicinal plants: Ethnobotanical studies, phytochemical bioactive compounds, preclinical investigations, toxicological validations and clinical evidences; challenges, guidance and perspectives for future management of diabetes worldwide. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.03.032] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
24
|
Karimi A, Naeini F, Asghari Azar V, Hasanzadeh M, Ostadrahimi A, Niazkar HR, Mobasseri M, Tutunchi H. A comprehensive systematic review of the therapeutic effects and mechanisms of action of quercetin in sepsis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 86:153567. [PMID: 33940332 DOI: 10.1016/j.phymed.2021.153567] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/30/2021] [Accepted: 04/02/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Sepsis is a life-threatening condition caused by a dysregulated host response to infection. Several studies have indicated that flavonoids exhibit a wide variety of biological actions including free radical scavenging and antioxidant activities. Quercetin, one of the most extensively distributed flavonoids in the vegetables and fruits, presents various biological activities including modulation of oxidative stress, anti-infectious, anti-inflammatory, and neuroprotective activities. METHODS The present systematic review was conducted according to the guidelines of the Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) statements. We searched Web of Sciences, Google Scholar, PubMed, Scopus, and Embase databases up to February 2021 by using the relevant keywords. RESULTS Out of 672 records screened, 35 articles met the study criteria. The evidence reviewed here indicates that quercetin supplementation may exert beneficial effects on sepsis by attenuating inflammation and oxidative stress, downregulating the mRNA expression of toll-like receptors (TLRs), modulating the immune response, and alleviating sepsis-related organ dysfunctions. CONCLUSION Due to the promising therapeutic effects of quercetin on sepsis complications and the lack of clinical trials in this regard, future human randomized clinical trials are warranted.
Collapse
Affiliation(s)
- Arash Karimi
- Nutrition Research Center, Department of Clinical Nutrition, School of Nutrition & Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Naeini
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Science, Tehran, Iran
| | - Vahid Asghari Azar
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Malihe Hasanzadeh
- Department of Biology, Ardabil Branch Islamic Azad University, Ardabil, Iran
| | - Alireza Ostadrahimi
- Nutrition Research Center, Department of Clinical Nutrition, School of Nutrition & Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamid Reza Niazkar
- Student Research Committee, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Majid Mobasseri
- Endocrine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Helda Tutunchi
- Nutrition Research Center, Department of Clinical Nutrition, School of Nutrition & Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Endocrine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
25
|
Malik G, Dhatt AS, Malik AA. A Review of Genetic Understanding and Amelioration of Edible Allium Species. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2019.1709202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Geetika Malik
- Division of Vegetable Science and Floriculture, ICAR-Central Institute of Temperate Horticulture, Srinagar, J&K, India
| | - Ajmer Singh Dhatt
- Department of Vegetable Science, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Ajaz Ahmed Malik
- Division of Vegetable Science, Sher-e-Kashmir University of Agricultural Sciences and Technology, Shalimar, J&K, India
| |
Collapse
|
26
|
Chen TH, Fu YS, Chen SP, Fuh YM, Chang C, Weng CF. Garcinia linii extracts exert the mediation of anti-diabetic molecular targets on anti-hyperglycemia. Biomed Pharmacother 2021; 134:111151. [DOI: 10.1016/j.biopha.2020.111151] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 12/14/2020] [Accepted: 12/14/2020] [Indexed: 12/11/2022] Open
|
27
|
Yousef AI, Shawki HH, El-Shahawy AA, El-Twab SMA, Abdel-Moneim A, Oishi H. Polydatin mitigates pancreatic β-cell damage through its antioxidant activity. Biomed Pharmacother 2021; 133:111027. [PMID: 33249283 DOI: 10.1016/j.biopha.2020.111027] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 11/12/2020] [Accepted: 11/15/2020] [Indexed: 01/16/2023] Open
Abstract
Several reports have been shown the pivotal role of oxidative stress in the progression of diabetes mellitus and its complications. Polydatin (PD), a natural phytochemical, has wide range of pharmacological actions, however, the underlying beneficial effects in pancreas was not clarified. In the current study, using in vivo and in vitro models, we investigated the possible protective effects of PD against oxidative damage in pancreatic β-cells. Diabetic rats were examined after oral administration with PD (50 mg/kg b.wt.) for 28 days. Results revealed that PD significantly enhanced glucose tolerance and insulin secretion in the bloodstream of diabetic rats as well as lipid metabolism. Interestingly, in vivo results indicated that PD decreased the lipid peroxidation, improved the antioxidant status, and inhibited the inflammation in pancreas. Alongside, we artificially induced oxidative stress by exposing the insulin-producing RINm5F cells to hydrogen peroxide in the presence or absence of PD. The co-treatment with PD preserved cell viability, reduced ROS accumulation, as well as enhanced the anti-oxidant, anti-apoptotic, and cell function markers. To conclude, PD exhibited potential action in preserving β-cell function and inhibiting oxidative damage probably through its antioxidant properties. Thus, PD could be a possible therapeutic agent for diabetic patients.
Collapse
Affiliation(s)
- Ahmed I Yousef
- Molecular Physiology Division, Faculty of Science, Beni-Suef University, Egypt; Department of Comparative and Experimental Medicine, Nagoya City University Graduate School of Medical Sciences, Japan
| | - Hossam H Shawki
- Department of Comparative and Experimental Medicine, Nagoya City University Graduate School of Medical Sciences, Japan; Department of Animal Genetic Resources, National Gene Bank, Giza, Egypt
| | - Ahmed A El-Shahawy
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, Egypt
| | - Sanaa M Abd El-Twab
- Molecular Physiology Division, Faculty of Science, Beni-Suef University, Egypt
| | - Adel Abdel-Moneim
- Molecular Physiology Division, Faculty of Science, Beni-Suef University, Egypt.
| | - Hisashi Oishi
- Department of Comparative and Experimental Medicine, Nagoya City University Graduate School of Medical Sciences, Japan.
| |
Collapse
|
28
|
Kong M, Xie K, Lv M, Li J, Yao J, Yan K, Wu X, Xu Y, Ye D. Anti-inflammatory phytochemicals for the treatment of diabetes and its complications: Lessons learned and future promise. Biomed Pharmacother 2021; 133:110975. [PMID: 33212375 DOI: 10.1016/j.biopha.2020.110975] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/30/2020] [Accepted: 11/01/2020] [Indexed: 12/13/2022] Open
Abstract
Diabetes mellitus (type 1 and type 2) and its various complications continue to place a huge burden on global medical resources, despite the availability of numerous drugs that successfully lower blood glucose levels. The major challenging issue in diabetes management is the prevention of various complications that remain the leading cause of diabetes-related mortality. Moreover, the limited long-term durability of monotherapy and undesirable side effects of currently used anti-diabetic drugs underlie the urgent need for novel therapeutic approaches. Phytochemicals represent a rich source of plant-derived molecules that are of pivotal importance to the identification of compounds with therapeutic potential. In this review, we aim to discuss recent advances in the identification of a large array of phytochemicals with immense potential in the management of diabetes and its complications. Given that metabolic inflammation has been established as a key pathophysiological event that drives the progression of diabetes, we focus on the protective effects of representative phytochemicals in metabolic inflammation. This paper also discusses the potential of phytochemicals in the development of new drugs that target the inflammation in the management of diabetes and its complications.
Collapse
Affiliation(s)
- Mengjie Kong
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Pharmaceutical University, Guangzhou, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Kang Xie
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Pharmaceutical University, Guangzhou, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Minghui Lv
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Pharmaceutical University, Guangzhou, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jufei Li
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Pharmaceutical University, Guangzhou, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jianyu Yao
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Pharmaceutical University, Guangzhou, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Kaixuan Yan
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Pharmaceutical University, Guangzhou, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xiaoqin Wu
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Pharmaceutical University, Guangzhou, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Ying Xu
- The First Affiliated Hospital/School of Clinical Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Dewei Ye
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Pharmaceutical University, Guangzhou, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China.
| |
Collapse
|
29
|
Oh TW, Do HJ, Jeon JH, Kim K. Quercitrin inhibits platelet activation in arterial thrombosis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 80:153363. [PMID: 33070081 DOI: 10.1016/j.phymed.2020.153363] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 09/19/2020] [Accepted: 10/01/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND The ingestion of flavonoids has been reported to be associated with reduced cardiovascular disease risk. Quercitrin is a common flavonoid in nature, and it exhibits antioxidant properties. Although the process of thrombogenesis is intimately related to cardiovascular disease risk, it is unclear whether quercitrin plays a role in thrombogenesis. PURPOSE The aim of this study was to examine the antiplatelet effect of quercitrin in platelet activation. METHODS Platelet aggregation, granule secretion, calcium mobilization, and integrin activation were used to assess the antiplatelet activity of quercitrin. Antithrombotic effect was determined in mouse using ferric chloride (FeCl3)-induced arterial thrombus formation in vivo and thrombus formation on collagen-coated surfaces under arteriolar shear in vitro. Transection tail bleeding time was used to evaluate whether quercitrin inhibited primary hemostasis. RESULTS Quercitrin significantly impaired collagen-related peptide-induced platelet aggregation, granule secretion, reactive oxygen species generation, and intracellular calcium mobilization. Outside-in signaling of αIIbβ3 integrin was significantly inhibited by quercitrin in a concentration-dependent manner. The inhibitory effect of quercitrin resulted from inhibition of the glycoprotein VI-mediated platelet signal transduction during cell activation. Further, the antioxidant effect is derived from decreased phosphorylation of components of the TNF receptor-associated factor 4/p47phox/Hic5 axis signalosome. Oral administration of quercitrin efficiently blocked FeCl3-induced arterial thrombus formation in vivo and thrombus formation on collagen-coated surfaces under arteriolar shear in vitro, without prolonging bleeding time. Studies using a mouse model of ischemia/reperfusion-induced stroke indicated that treatment with quercitrin reduced the infarct volume in stroke. CONCLUSIONS Our results demonstrated that quercitrin could be an effective therapeutic agent for the treatment of thrombotic diseases.
Collapse
Affiliation(s)
- Tae Woo Oh
- Korean Medicine-Application Center, Korea Institute of Oriental Medicine, Daegu, Republic of Korea
| | - Hyun Ju Do
- Korean Medicine-Application Center, Korea Institute of Oriental Medicine, Daegu, Republic of Korea; New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, Republic of Korea
| | - Jae-Han Jeon
- Department of Internal Medicine, Kyungpook National University Chilgok Hospital, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Kyungho Kim
- Korean Medicine-Application Center, Korea Institute of Oriental Medicine, Daegu, Republic of Korea.
| |
Collapse
|
30
|
Al Duhaidahawi D, Hasan SA, Al Zubaidy HFS. Flavonoids in the Treatment of Diabetes: Clinical Outcomes and Mechanism to Ameliorate Blood Glucose Levels. Curr Diabetes Rev 2021; 17:e120720188794. [PMID: 33290200 DOI: 10.2174/1573399817666201207200346] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 09/25/2020] [Accepted: 10/08/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND For thousands of years, natural food products have been used as a medicine for treating diseases that affect the human body, including diabetes mellitus (DM). Lately, several investigations have been performed on the flavonoid derivatives of plant origin, and their biological activity has been extensively studied. METHODS Given our need to know more mechanisms for treating DM, we performed a thorough research review on treating diabetes mellitus based on flavonoids, their therapeutic potential, and biological action. RESULTS Flavonoids reduce complications in addition to their vital role as effective supplements for preventing diabetes mellitus by regulating glucose metabolism, lipid profile, liver enzyme activity, a protein kinase inhibitor, PPAR, and AMPK with NF-κB. CONCLUSION The articles that we reviewed showed the positive role of flavonoids, which in a certain way reduce diabetes, but their side effects still need to be studied further.This review is focused on describing the different types of dietary flavonoids along with their mechanisms of reducing blood glucose and enhancing insulin sensitivity, as well as their side effects.
Collapse
Affiliation(s)
- Dunya Al Duhaidahawi
- Faculty of Pharmacy, Department of Pharmacognacy, University of Kufa, AL-Najaf, Iraq
| | - Samer A Hasan
- Pharmacognacy, Pharmacy, University of Kufa, AL-Najaf, Iraq
| | | |
Collapse
|
31
|
Ali MY, Sina AAI, Khandker SS, Neesa L, Tanvir EM, Kabir A, Khalil MI, Gan SH. Nutritional Composition and Bioactive Compounds in Tomatoes and Their Impact on Human Health and Disease: A Review. Foods 2020; 10:E45. [PMID: 33375293 PMCID: PMC7823427 DOI: 10.3390/foods10010045] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/20/2020] [Accepted: 12/23/2020] [Indexed: 12/13/2022] Open
Abstract
Tomatoes are consumed worldwide as fresh vegetables because of their high contents of essential nutrients and antioxidant-rich phytochemicals. Tomatoes contain minerals, vitamins, proteins, essential amino acids (leucine, threonine, valine, histidine, lysine, arginine), monounsaturated fatty acids (linoleic and linolenic acids), carotenoids (lycopene and β-carotenoids) and phytosterols (β-sitosterol, campesterol and stigmasterol). Lycopene is the main dietary carotenoid in tomato and tomato-based food products and lycopene consumption by humans has been reported to protect against cancer, cardiovascular diseases, cognitive function and osteoporosis. Among the phenolic compounds present in tomato, quercetin, kaempferol, naringenin, caffeic acid and lutein are the most common. Many of these compounds have antioxidant activities and are effective in protecting the human body against various oxidative stress-related diseases. Dietary tomatoes increase the body's level of antioxidants, trapping reactive oxygen species and reducing oxidative damage to important biomolecules such as membrane lipids, enzymatic proteins and DNA, thereby ameliorating oxidative stress. We reviewed the nutritional and phytochemical compositions of tomatoes. In addition, the impacts of the constituents on human health, particularly in ameliorating some degenerative diseases, are also discussed.
Collapse
Affiliation(s)
- Md Yousuf Ali
- Laboratory of Preventive and Integrative Biomedicine, Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh; (M.Y.A.); (S.S.K.); (A.K.)
- Department of Biochemistry and Molecular Biology, Gono Bishwabidyalay, Savar, Dhaka 1344, Bangladesh
| | - Abu Ali Ibn Sina
- Center for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia;
| | - Shahad Saif Khandker
- Laboratory of Preventive and Integrative Biomedicine, Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh; (M.Y.A.); (S.S.K.); (A.K.)
| | - Lutfun Neesa
- Department of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Dhaka 8100, Bangladesh;
| | - E. M. Tanvir
- Veterinary Drug Residue Analysis Division, Institute of Food and Radiation Biology, Atomic Energy Research Establishment, Savar, Dhaka 1349, Bangladesh;
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Alamgir Kabir
- Laboratory of Preventive and Integrative Biomedicine, Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh; (M.Y.A.); (S.S.K.); (A.K.)
| | - Md Ibrahim Khalil
- Laboratory of Preventive and Integrative Biomedicine, Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh; (M.Y.A.); (S.S.K.); (A.K.)
- Department of Biochemistry and Molecular Biology, Gono Bishwabidyalay, Savar, Dhaka 1344, Bangladesh
| | - Siew Hua Gan
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor 47500, Malaysia
| |
Collapse
|
32
|
Therapeutic investigation of quercetin nanomedicine in a zebrafish model of diabetic retinopathy. Biomed Pharmacother 2020; 130:110573. [DOI: 10.1016/j.biopha.2020.110573] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/28/2020] [Accepted: 07/25/2020] [Indexed: 01/18/2023] Open
|
33
|
Study on Intervention Mechanism of Yiqi Huayu Jiedu Decoction on ARDS Based on Network Pharmacology. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:4782470. [PMID: 32849901 PMCID: PMC7439204 DOI: 10.1155/2020/4782470] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/17/2020] [Accepted: 07/11/2020] [Indexed: 02/05/2023]
Abstract
Background Yiqi Huayu Jiedu (YQHYJD) is a traditional Chinese medicine decoction made up of eight traditional Chinese medicines. Although YQHYJD is effectively used to prevent and treat ARDS/acute lung injury (ALI) in rats, the molecular mechanisms supporting its clinical application remain elusive. The purpose of the current study was to understand its lung protective effects at the molecular level using network pharmacology approach. Methods In an ARDS animal model, the beneficial pharmacological activities of YQHYJD were confirmed by reduced lung tissue damage levels observed on drug treated rats versus control group. We then proposed a network analysis to discover the key nodes based on drugs and disease network. Subsequently, we analyzed interaction networks and screened key targets. Using Western blot to detect the expression level of key targets, the intervention effect of changes in expression level of key targets on ARDS was evaluated. Results Pathway enrichment analysis of highly ranked genes showed that ErbB pathways were highly related to ARDS. Finally, western blot results showed decreased level of the AKT1 and KRAS/NRAS/HRAS protein in the lung after treatment which confirmed the hypothesis. Conclusion In conclusion, our results suggest that YQHYJD can exert lung tissue protective effect against the severe injury through multiple pathways, including the endothelial cells permeability improvement, inflammatory reaction inhibition, edema, and lung tissue hemorrhage reduction.
Collapse
|
34
|
Damame HH, Rooge SB, Patil RS, Arvindekar AU. In vitro model using cytokine cocktail to evaluate apoptosis in Min6 pancreatic beta cells. J Pharmacol Toxicol Methods 2020; 106:106914. [PMID: 32828949 DOI: 10.1016/j.vascn.2020.106914] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 08/08/2020] [Accepted: 08/13/2020] [Indexed: 01/23/2023]
Abstract
INTRODUCTION Development of therapy options for treatment of type 1 diabetes mellitus is hampered by non-availability of appropriate experimental models that can exactly mimic the in vivo situation. Apoptosis of beta cells by T cells and cytokine action leads to loss of beta cells. We propose a simple and elegant model using cytokine cocktail of TNF-α, IFN-γ and IL-1β, the major cytokines responsible for apoptosis in Min6 beta cell line. METHODS A cocktail of TNF-α, IFN-γ and IL-1β was used to induce apoptosis in Min6 beta cell line. Apoptosis was assessed by flow cytometry using CytoFLEX (Beckman Coulter). The destruction of beta cells is through production of nitric oxide (NO), oxidative stress and change in mitochondrial membrane permeability. NO was measured using Griess reagent. Oxidative stress was assessed using 2',7'-dichlorofluorescein diacetate, a cell-permeable fluorogenic dye and mitochondrial membrane potential was determined on the basis of retention of rhodamine 123 using flow cytometer. RESULTS AND DISCUSSION Very low concentration of the cocktail viz. TNF-α 25 ng/ml, IFN-γ 25 ng/ml and IL-1β 50 ng/ml has demonstrated effective early and late apoptosis in as short a time period as 6 h. The experimental model used demonstrated 1.5 fold higher production of NO, 1.2 fold increased oxidative stress and lower mitochondrial membrane potential as compared to the positive control used. Hence the above model can be easily used for assessment and screening of drugs that can prevent apoptosis of beta cells and stop progression of type 1 diabetes.
Collapse
Affiliation(s)
- Hemangee H Damame
- Department of Biochemistry, Shivaji University, Kolhapur 416 004, Maharashtra, India
| | - Sheetalnath B Rooge
- Department of Biochemistry, Shivaji University, Kolhapur 416 004, Maharashtra, India
| | - Rahul S Patil
- Department of Biochemistry, Shivaji University, Kolhapur 416 004, Maharashtra, India
| | - Akalpita U Arvindekar
- Department of Biochemistry, Shivaji University, Kolhapur 416 004, Maharashtra, India.
| |
Collapse
|
35
|
Rambaran TF, Nembhard N, Bowen-Forbes CS, Alexander-Lindo RL. Hypoglycemic effect of the fruit extracts of two varieties of Rubus rosifolius. J Food Biochem 2020; 44:e13365. [PMID: 32638412 DOI: 10.1111/jfbc.13365] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/08/2020] [Accepted: 06/09/2020] [Indexed: 12/14/2022]
Abstract
Oral glucose tolerance test on male Sprague-Dawley rats was done to determine the hypoglycemic effect of the n-hexane, ethyl acetate and methanol fruit extracts (50 mg/kg BW; oral administration) of two varieties of Rubus rosifolius. Metformin was used as a positive control (15 mg/kg BW; intravenous administration). The n-hexane extract was most potent and was investigated phytochemically to yield compound 1, a mixture of triacylglycerols. In its oxidized state compound 1 produced a significant hypoglycemic effect which was more effective than metformin for the first 30 min of the assay (p = .03) and not significantly different for up to 120 min. Mechanisms through which the oxidized triacylglycerol species could form were explored and presented. This is the first account of the hypoglycemic activity of R. rosifolius and it is also the first account of this activity being credited to compounds other than polyphenols and terpenes in Rubus plants. PRACTICAL APPLICATIONS: A significant percentage of the world's population is affected by diabetes and diabetes-related illnesses. One of the most popular antidiabetic drug on the market is metformin which is used to lower blood glucose concentrations. The findings of this study indicate that an oxidized mixture of triacylglycerols is more fast-acting than metformin for the first 30 min of an oral glucose tolerance test. This effect was also not significantly different from that of the popular drug up to 120 min. These results demonstrate the hypoglycemic activity of an oxidized R. rosifolius fruit extract and indicate its potential use in applications such as functional food product development and drug discovery. Therapeutic applications can also include the plant extract as a potential primary treatment or as adjunct therapy to conventional medications.
Collapse
Affiliation(s)
- Theresa F Rambaran
- Department of Chemistry, Faculty of Science and Technology, The University of the West Indies, Mona Campus, Kingston 7, Jamaica
| | - Nyron Nembhard
- Department of Basic Medical Sciences, Faculty of Medical Sciences, The University of the West Indies, Mona Campus, Kingston 7, Jamaica
| | - Camille S Bowen-Forbes
- Department of Chemistry, Faculty of Science and Technology, The University of the West Indies, Mona Campus, Kingston 7, Jamaica
| | - Ruby L Alexander-Lindo
- Department of Basic Medical Sciences, Faculty of Medical Sciences, The University of the West Indies, Mona Campus, Kingston 7, Jamaica
| |
Collapse
|
36
|
Balea ŞS, Pârvu AE, Pârvu M, Vlase L, Dehelean CA, Pop TI. Antioxidant, Anti-Inflammatory and Antiproliferative Effects of the Vitis vinifera L. var. Fetească Neagră and Pinot Noir Pomace Extracts. Front Pharmacol 2020; 11:990. [PMID: 32719600 PMCID: PMC7348048 DOI: 10.3389/fphar.2020.00990] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 06/18/2020] [Indexed: 12/24/2022] Open
Abstract
The pathophysiology of inflammation and oxidative stress generated during different types of cancers and anticancer treatments is well documented. Traditionally, grape pomace is used for animal feed, organic fertilizers, ethanol production or is disposed as waste. Because grape pomace is a rich source of antioxidant compounds, the purpose of the study was to evaluate the antioxidant, anti-inflammatory, and antiproliferative effects of fresh and fermented grape pomace extracts of two Vitis vinifera L. varieties Fetească neagră and Pinot noir cultivated in Romania. Firstly, grape pomace phytochemical analysis and in vitro antioxidant tests were performed. Secondly, the effect of a seven-day pretreatment with grape pomace extracts on the turpentine oil-induced inflammation in rats was assessed by measuring total oxidative status, total antioxidant response, oxidative stress index, malondialdehyde, total thiols, nitric oxide and 3-nitrotyrosine. Thirdly, the antiproliferative properties were evaluated on human lung carcinoma (A549), human breast adenocarcinoma (MDA-MB-231), murine melanoma (B164A5), and keratinocyte (HaCat) cell lines. Fetească neagră and Pinot noir grape pomace extracts have a rich content of polyphenols and in vitro antioxidant effect. Fermented samples had higher polyphenol content, but fresh samples had better antioxidant activity. Pretreatment with grape pomace extracts reduced inflammation-induced oxidative stress in a concentration-dependent way, fresh samples being more efficient. The malignant cells' proliferation was inhibited by all grape pomace extracts, fermented Fetească neagră extracts having the strongest effect. Conclusion: fresh and fermented pomace extracts of Vitis vinifera L. varieties Fetească neagră and Pinot noir cultivated in a Romanian wine region have antioxidant, anti-inflammatory and antiproliferative effects.
Collapse
Affiliation(s)
- Ştefania Silvia Balea
- Department of Horticulture and Landscaping, Faculty of Horticulture, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - Alina Elena Pârvu
- Department of Pathophysiology, Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Marcel Pârvu
- Department of Biology, Faculty of Biology and Geology, Babes-Bolyai University, Cluj-Napoca, Romania
| | - Laurian Vlase
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Cristina Adriana Dehelean
- Department of Toxicology and Drug Industry, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, Timișoara, Romania
| | - Tiberia Ioana Pop
- Department of Technical and Soil Sciences, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| |
Collapse
|
37
|
Rambaran TF, Bergman J, Nordström P, Nordström A. Effect of Berry Polyphenols on Glucose Metabolism: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Curr Dev Nutr 2020; 4:nzaa100. [PMID: 32666033 PMCID: PMC7326477 DOI: 10.1093/cdn/nzaa100] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/20/2020] [Accepted: 05/22/2020] [Indexed: 12/17/2022] Open
Abstract
The effect of berry polyphenols on glucose metabolism has been evaluated in several studies; however, the results are conflicting. A systematic review and meta-analysis was therefore conducted to evaluate the effect of berry polyphenol consumption on glucose metabolism in adults with impaired glucose tolerance or insulin resistance. PubMed/MEDLINE, Cochrane Central Register of Controlled Trials, CINAHL (EBSCO), and Scopus were searched for randomized controlled trials published by June 2019. Of the 3240 articles found, 21 met inclusion criteria. Study-specific effects were calculated as mean differences, which were pooled using fixed-effect, inverse-variance weighting. Overall, berry polyphenol consumption did not have a clear effect on biomarkers of glucose metabolism compared with placebo or no treatment. Although some analyses showed statistically significant effects, these effects were too small to be of clinical relevance. The review protocol was registered in the PROSPERO International Prospective Register of Systematic Reviews as CRD42019130811.
Collapse
Affiliation(s)
- Theresa F Rambaran
- Department of Public Health and Clinical Medicine, Section of Sustainable Health, Umeå University, Umeå, Sweden
| | - Jonathan Bergman
- Department of Community Medicine and Rehabilitation, Unit of Geriatric Medicine, Umeå University, Umeå, Sweden
| | - Peter Nordström
- Department of Community Medicine and Rehabilitation, Unit of Geriatric Medicine, Umeå University, Umeå, Sweden
| | - Anna Nordström
- Department of Public Health and Clinical Medicine, Section of Sustainable Health, Umeå University, Umeå, Sweden
- School of Sport Sciences, UiT Arctic University of Norway, Tromsö, Norway
| |
Collapse
|
38
|
Koia JH, Shepherd P. The Potential of Anti-Diabetic Rākau Rongoā (Māori Herbal Medicine) to Treat Type 2 Diabetes Mellitus (T2DM) Mate Huka: A Review. Front Pharmacol 2020; 11:935. [PMID: 32694996 PMCID: PMC7339977 DOI: 10.3389/fphar.2020.00935] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 06/08/2020] [Indexed: 12/02/2022] Open
Abstract
T2DM (type 2 diabetes mellitus, or Māori term “mate huka”) is a major long-term health issue in New Zealand particularly among the Māori community. Non-insulin drugs commonly used in New Zealand for the treatment of T2DM have limits to their efficacy as well as side effects, which are of concern for diabetics. As such, the potential for natural products such as traditional rākau rongoā are of interest for potentially preventing the development of T2DM or improving the treatment of the disease. In particular, anti-diabetic effects have been reported for rākau rongoā such as karamu, kūmarahou, and kawakawa. Natural products have been identified in karamu, kūmarahou, and kawakawa that have documented potential effects on glucose metabolism that could contribute to the anti-diabetic effect of these rākau rongoā. As such, this could provide scientific insight into the mātauranga (traditional knowledge) developed over generations by Māori. However, detailed laboratory based and clinical studies would be required to understand and validate these properties of karamu, kūmarahou, and kawakawa, and to understand how they can be used in T2DM treatment. Social determinants of indigenous health such as language, culture, traditional knowledge, and identity, are important in understanding the relationship Māori have with their land and the mātauranga they developed of the medicinal properties within their rākau rongoā, over many centuries. Interestingly, traditional Māori views towards scientific research using animal models to test rākau rongoā are varied but supportive. Furthermore, cultural issues surrounding Māori mana motuhake (self-determination) of traditional rongoā Māori healing practices and the inequity faced by many kairongoā (rongoā Māori practitioners) and tohunga (healers) compared to mainstream health are a current issue within the New Zealand health system. As such, a cultural holistic approach for T2DM care among Māori would be advantageous. This review will outline the available evidence supporting the anti-diabetic efficacy of karamu, kūmarahou, and kawakawa. Currently though there is a lack of molecular research to understand the mechanisms of this efficacy, as such this review will also outline Te Reo Tipu Research, a kaupapa Māori framework for molecular and genomic research on taonga flora.
Collapse
Affiliation(s)
- Jonni Hazeline Koia
- Division of Health, Engineering, Computers and Science, School of Science, University of Waikato, Hamilton, New Zealand.,Department of Māori Health and Metabolic Disease, Te Reo Tipu Research Centre, Waikato, New Zealand
| | - Peter Shepherd
- Department of Molecular Medicine, University of Auckland, Auckland, New Zealand
| |
Collapse
|
39
|
Sharma G, Parihar A, Talaiya T, Dubey K, Porwal B, Parihar MS. Cognitive impairments in type 2 diabetes, risk factors and preventive strategies. J Basic Clin Physiol Pharmacol 2020; 31:/j/jbcpp.ahead-of-print/jbcpp-2019-0105/jbcpp-2019-0105.xml. [PMID: 31967962 DOI: 10.1515/jbcpp-2019-0105] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 10/25/2019] [Indexed: 06/10/2023]
Abstract
Mild cognitive impairment (MCI) is a modifiable risk factor in progression of several diseases including dementia and type 2 diabetes. If cognitive impairments are not reversed at an early stage of appearance of symptoms, then the prolonged pathogenesis can lead to dementia and Alzheimer's disease (AD). Therefore, it is necessary to detect the risk factors and mechanism of prevention of cognitive dysfunction at an early stage of disease. Poor lifestyle, age, hyperglycemia, hypercholesterolemia, and inflammation are some of the major risk factors that contribute to cognitive and memory impairments in diabetic patients. Mild cognitive impairment was seen in those individuals of type 2 diabetes, who are on an unhealthy diet. Physical inactivity, frequent alcohol consumptions, and use of packed food products that provides an excess of cheap calories are found associated with cognitive impairment and depression in diabetic patients. Omega fatty acids (FAs) and polyphenol-rich foods, especially flavonoids, can reduce the bad effects of an unhealthy lifestyle; therefore, the consumption of omega FAs and flavonoids may be beneficial in maintaining normal cognitive function. These functional foods may improve cognitive functions by targeting many enzymes and molecules in cells chiefly through their anti-inflammatory, antioxidant, or signaling actions. Here, we provide the current concepts on the risk factors of cognitive impairments in type 2 diabetes and the mechanism of prevention, using omega FAs and bioactive compounds obtained from fruits and vegetables. The knowledge derived from such studies may assist physicians in managing the health care of patients with cognitive difficulties.
Collapse
Affiliation(s)
- Garima Sharma
- School of Studies in Zoology and Biotechnology, Vikram University, Ujjain, MP, India
| | - Arti Parihar
- Department of Science, Bellingham Technical College, Bellingham, WA, USA
| | - Tanay Talaiya
- School of Studies in Zoology and Biotechnology, Vikram University, Ujjain, MP, India
| | - Kirti Dubey
- School of Studies in Zoology and Biotechnology, Vikram University, Ujjain, MP, India
| | - Bhagyesh Porwal
- School of Studies in Zoology and Biotechnology, Vikram University, Ujjain, MP, India
| | - Mordhwaj S Parihar
- School of Studies in Zoology and Biotechnology, Vikram University, Ujjain, MP, India, Phone: +91-734-2511317
| |
Collapse
|
40
|
He S, Tang M, Zhang Z, Liu H, Luo M, Sun H. Hypoglycemic effects of phenolic compound-rich aqueous extract from water dropwort (Oenanthe javanica DC.) on streptozotocin-induced diabetic mice. NEW J CHEM 2020. [DOI: 10.1039/c9nj05533a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Phenolic compounds in water dropwort aqueous extract were identified, and the IRS-2/PI3K-AKT pathway and GLUT4 translocation were regulated for hypoglycemic action.
Collapse
Affiliation(s)
- Shudong He
- Engineering Research Center of Bio-process of Ministry of Education
- School of Food and Biological Engineering
- Hefei University of Technology
- Hefei 230009
- P. R. China
| | - Mingming Tang
- Engineering Research Center of Bio-process of Ministry of Education
- School of Food and Biological Engineering
- Hefei University of Technology
- Hefei 230009
- P. R. China
| | - Zuoyong Zhang
- Engineering Research Center of Bio-process of Ministry of Education
- School of Food and Biological Engineering
- Hefei University of Technology
- Hefei 230009
- P. R. China
| | - Haiyan Liu
- Sichuan Huamei Pharmaceutical Co., Ltd
- Chengdu Sanojon Pharmaceutical Group
- Chengdu 610045
- P. R. China
- Dairy Nutrition and Function
| | - Mingfeng Luo
- Sichuan Huamei Pharmaceutical Co., Ltd
- Chengdu Sanojon Pharmaceutical Group
- Chengdu 610045
- P. R. China
- Dairy Nutrition and Function
| | - Hanju Sun
- Engineering Research Center of Bio-process of Ministry of Education
- School of Food and Biological Engineering
- Hefei University of Technology
- Hefei 230009
- P. R. China
| |
Collapse
|
41
|
Magrone T, Magrone M, Russo MA, Jirillo E. Recent Advances on the Anti-Inflammatory and Antioxidant Properties of Red Grape Polyphenols: In Vitro and In Vivo Studies. Antioxidants (Basel) 2019; 9:E35. [PMID: 31906123 PMCID: PMC7022464 DOI: 10.3390/antiox9010035] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 12/27/2019] [Accepted: 12/28/2019] [Indexed: 12/20/2022] Open
Abstract
In this review, special emphasis will be placed on red grape polyphenols for their antioxidant and anti-inflammatory activities. Therefore, their capacity to inhibit major pathways responsible for activation of oxidative systems and expression and release of proinflammatory cytokines and chemokines will be discussed. Furthermore, regulation of immune cells by polyphenols will be illustrated with special reference to the activation of T regulatory cells which support a tolerogenic pathway at intestinal level. Additionally, the effects of red grape polyphenols will be analyzed in obesity, as a low-grade systemic inflammation. Also, possible modifications of inflammatory bowel disease biomarkers and clinical course have been studied upon polyphenol administration, either in animal models or in clinical trials. Moreover, the ability of polyphenols to cross the blood-brain barrier has been exploited to investigate their neuroprotective properties. In cancer, polyphenols seem to exert several beneficial effects, even if conflicting data are reported about their influence on T regulatory cells. Finally, the effects of polyphenols have been evaluated in experimental models of allergy and autoimmune diseases. Conclusively, red grape polyphenols are endowed with a great antioxidant and anti-inflammatory potential but some issues, such as polyphenol bioavailability, activity of metabolites, and interaction with microbiota, deserve deeper studies.
Collapse
Affiliation(s)
- Thea Magrone
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs, School of Medicine, University of Bari, 70124 Bari, Italy; (M.M.); (E.J.)
| | - Manrico Magrone
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs, School of Medicine, University of Bari, 70124 Bari, Italy; (M.M.); (E.J.)
| | - Matteo Antonio Russo
- MEBIC Consortium, San Raffaele Open University of Rome and IRCCS San Raffaele Pisana of Rome, 00166 Rome, Italy;
| | - Emilio Jirillo
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs, School of Medicine, University of Bari, 70124 Bari, Italy; (M.M.); (E.J.)
| |
Collapse
|
42
|
Al-Ishaq RK, Abotaleb M, Kubatka P, Kajo K, Büsselberg D. Flavonoids and Their Anti-Diabetic Effects: Cellular Mechanisms and Effects to Improve Blood Sugar Levels. Biomolecules 2019; 9:E430. [PMID: 31480505 PMCID: PMC6769509 DOI: 10.3390/biom9090430] [Citation(s) in RCA: 303] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/14/2019] [Accepted: 08/22/2019] [Indexed: 12/19/2022] Open
Abstract
Diabetes mellitus (DM) is a prevailing global health metabolic disorder, with an alarming incidence rate and a huge burden on health care providers. DM is characterized by the elevation of blood glucose due either to a defect in insulin synthesis, secretion, binding to receptor, or an increase of insulin resistance. The internal and external factors such as obesity, urbanizations, and genetic mutations could increase the risk of developing DM. Flavonoids are phenolic compounds existing as secondary metabolites in fruits and vegetables as well as fungi. Their structure consists of 15 carbon skeletons and two aromatic rings (A and B) connected by three carbon chains. Flavonoids are furtherly classified into 6 subclasses: flavonols, flavones, flavanones, isoflavones, flavanols, and anthocyanidins. Naturally occurring flavonoids possess anti-diabetic effects. As in vitro and animal model's studies demonstrate, they have the ability to prevent diabetes and its complications. The aim of this review is to summarize the current knowledge addressing the antidiabetic effects of dietary flavonoids and their underlying molecular mechanisms on selected pathways: Glucose transporter, hepatic enzymes, tyrosine kinase inhibitor, AMPK, PPAR, and NF-κB. Flavonoids improve the pathogenesis of diabetes and its complications through the regulation of glucose metabolism, hepatic enzymes activities, and a lipid profile. Most studies illustrate a positive role of specific dietary flavonoids on diabetes, but the mechanisms of action and the side effects need more clarification. Overall, more research is needed to provide a better understanding of the mechanisms of diabetes treatment using flavonoids.
Collapse
Affiliation(s)
- Raghad Khalid Al-Ishaq
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar
| | - Mariam Abotaleb
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar
| | - Peter Kubatka
- Department of Medical Biology and Department of Experimental Carcinogenesis, Division of Oncology, Biomedical Center Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovak Republic
| | - Karol Kajo
- Department of Pathology, St. Elizabeth Cancer Institute Hospital, 81250 Bratislava, Slovak Republic
- Biomedical Research Centre, Slovak Academy of Sciences, 81439 Bratislava, Slovak Republic
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar.
| |
Collapse
|
43
|
Ghorbani A, Rashidi R, Shafiee-Nick R. Flavonoids for preserving pancreatic beta cell survival and function: A mechanistic review. Biomed Pharmacother 2019; 111:947-957. [PMID: 30841474 DOI: 10.1016/j.biopha.2018.12.127] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 12/26/2018] [Accepted: 12/30/2018] [Indexed: 12/19/2022] Open
Abstract
Although the currently available antidiabetic medications are effective in managing hyperglycemia, vascular complications are common in diabetic patients. Cohort studies have shown preserved beta cell function has a protective role against the development of diabetic complications. Accordingly, beta cell mass and function are important pharmacological targets in the field of diabetes. Growing number of evidence supports the efficacy of flavonoids (e.g., quercetin, kaempferol, luteolin, and epicatechin) for prevention and attenuation of diabetes consequences. The focus of this paper is to give an overview regarding the effects of flavonoids on pancreatic beta cells. Experiments on insulin-releasing cell lines, isolated pancreatic islets, and diabetic animal models have shown that flavonoids strengthen the survival processes and insulin secretory capacity of beta cells. The proposed mechanisms by which flavonoids preserve beta cells survival (against cytokines, glucotoxicity, and lipotoxicity) include inhibition of NF-κB signaling, activation of PI3K/Akt pathway, inhibition of nitric oxide generation, and decrease of reactive oxygen species levels. Improving mitochondrial bioenergetic function and stimulating pathways of insulin secretion (e.g., PLC/PKC and/or cAMP/PKA signaling) are mechanisms by which flavonoids improve the secretory capacity of beta cells. These beneficial effects of flavonoids are of great importance because may protect beta cells of diabetic patients before dramatic dysfunction and degeneration.
Collapse
Affiliation(s)
- Ahmad Ghorbani
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Roghayeh Rashidi
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reza Shafiee-Nick
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
44
|
Liu M, Zhang C, Duan L, Luan Q, Li J, Yang A, Qi X, Ren Z. CsMYB60 is a key regulator of flavonols and proanthocyanidans that determine the colour of fruit spines in cucumber. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:69-84. [PMID: 30256979 PMCID: PMC6305189 DOI: 10.1093/jxb/ery336] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 09/12/2018] [Indexed: 05/08/2023]
Abstract
Spine colour is an important fruit quality trait that influences the commercial value of cucumber (Cucumis sativus). However, little is known about the metabolites and the regulatory mechanisms of their biosynthesis in black spine varieties. In this study, we determined that the pigments of black spines are flavonoids, including flavonols and proanthocyanidins (PAs). We identified CsMYB60 as the best candidate for the previously identified B (Black spine) locus. Expression levels of CsMYB60 and the key genes involved in flavonoid biosynthesis were higher in black-spine inbred lines than that in white-spine lines at different developmental stages. The insertion of a Mutator-like element (CsMULE) in the second intron of CsMYB60 decreased its expression in a white-spine line. Transient overexpression assays indicated that CsMYB60 is a key regulatory gene and Cs4CL is a key structural gene in the pigmentation of black spines. In addition, the DNA methylation level in the CsMYB60 promoter was much lower in the black-spine line compared with white-spine line. The CsMULE insert may decrease the expression level of CsMYB60, causing hindered synthesis of flavonols and PAs in cucumber fruit spines.
Collapse
Affiliation(s)
- Mengyu Liu
- State Key Laboratory of Corp Biology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huang-Huai Region, Ministry of Agriculture, College of Horticultural Science and Engineering, Shandong Agricultural University, Tai’an, Shandong, China
| | - Cunjia Zhang
- State Key Laboratory of Corp Biology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huang-Huai Region, Ministry of Agriculture, College of Horticultural Science and Engineering, Shandong Agricultural University, Tai’an, Shandong, China
| | - Lixin Duan
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Qianqian Luan
- State Key Laboratory of Corp Biology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huang-Huai Region, Ministry of Agriculture, College of Horticultural Science and Engineering, Shandong Agricultural University, Tai’an, Shandong, China
| | - Jialin Li
- State Key Laboratory of Corp Biology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huang-Huai Region, Ministry of Agriculture, College of Horticultural Science and Engineering, Shandong Agricultural University, Tai’an, Shandong, China
| | - Aigang Yang
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China
| | - Xiaoquan Qi
- The Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Nanxincun, Xiangshan, Beijing, China
| | - Zhonghai Ren
- State Key Laboratory of Corp Biology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huang-Huai Region, Ministry of Agriculture, College of Horticultural Science and Engineering, Shandong Agricultural University, Tai’an, Shandong, China
| |
Collapse
|
45
|
Kim JH, Quilantang NG, Kim HY, Lee S, Cho EJ. Attenuation of hydrogen peroxide-induced oxidative stress in SH-SY5Y cells by three flavonoids from Acer okamotoanum. CHEMICAL PAPERS 2018. [DOI: 10.1007/s11696-018-0664-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
46
|
Zhang Q, Hu XF, Xin MM, Liu HB, Sun LJ, Morris-Natschke SL, Chen Y, Lee KH. Antidiabetic potential of the ethyl acetate extract of Physalis alkekengi and chemical constituents identified by HPLC-ESI-QTOF-MS. JOURNAL OF ETHNOPHARMACOLOGY 2018; 225:202-210. [PMID: 29981847 DOI: 10.1016/j.jep.2018.07.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 06/29/2018] [Accepted: 07/04/2018] [Indexed: 06/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The edible plant Physalis alkekengi (PA) is used in traditional medicine to treat diabetes. However, the anti-diabetic effects and constituents of the fruit and aerial parts of this plant have not been studied extensively. AIM OF THE STUDY The purpose of this study was to investigate the antidiabetic potential of Physalis alkekengi and identify its chemical constituents. MATERIALS AND METHODS In the present study, the in vitro glucose uptake capacity was tested using the 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-2-deoxy-d-glucose (2-NBDG) assay in HepG2 cells. Secondly, the anti-diabetes effects of the ethyl acetate extracts of the aerial parts/fruit (EAP/EAF) of P. alkekengi were evaluated in high-fat diet-fed and streptozotocin-induced diabetic rats (seven groups, n = 7) daily at doses of 300 and 600 mg/kg for 28 days. Fasting blood glucose (FBG) was measured with a glucometer and the levels of total cholesterol (TC), triglyceride (TG), glycated serum protein (GSP), and fasting insulin (FINS) were measured by ELISA. Furthermore, insulin sensitivity index (ISI) and homeostasis model assessment-insulin resistance index (HOMA-IR) were calculated based on FBG and FINS. Changes in blood glucose concentration were assessed after an oral glucose challenge in diabetic rats treated with EAF and EAP extracts. In all assays, rosiglitazone, a current antidiabetic drug and insulin sensitizer, was also tested. Finally, the compounds in EAP were identified by HPLC-ESI-QTOF-MS analysis. RESULTS EAP increased the uptake of 2-NBDG, a measure of direct glucose uptake, in HepG2 cells. Next, in diabetic rats treated with P. alkegenki extracts for 28 days, the levels of FBG, TC, TG and GSP and were lowered effectively, while FINS was increased significantly. EAP/EAF enhanced insulin sensitivity significantly as measured by ISI and HOMA-IR along with oral glucose tolerance test analysis. The EAP generally exerted the greatest effects. Lastly, a HPLC-ESI-Q-TOF-MS analysis identified 50 compounds, including 26 physalins, 10 flavonoids, and 9 phenolic acids, with 21 compounds found for the first time in P. alkekengi. CONCLUSIONS The results support the merit of P. alkekengi as an antidiabetic herbal medicine or dietary supplement.
Collapse
Affiliation(s)
- Qiang Zhang
- National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, Hubei University, Wuhan 430062, PR China.
| | - Xiao-Fang Hu
- National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, Hubei University, Wuhan 430062, PR China.
| | - Man-Man Xin
- National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, Hubei University, Wuhan 430062, PR China.
| | - Hong-Bing Liu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan 430062, PR China.
| | - Li-Juan Sun
- National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, Hubei University, Wuhan 430062, PR China.
| | - Susan L Morris-Natschke
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599-7568, USA.
| | - Yong Chen
- National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, Hubei University, Wuhan 430062, PR China.
| | - Kuo-Hsiung Lee
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599-7568, USA; Chinese Medicine Research and Development Center, China Medical University and Hospital, Taichung 40402, Taiwan.
| |
Collapse
|
47
|
Antioxidant Potential of Herbal Preparations and Components from Galactites elegans (All.) Nyman ex Soldano. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:9294358. [PMID: 30410560 PMCID: PMC6206561 DOI: 10.1155/2018/9294358] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 09/14/2018] [Accepted: 10/02/2018] [Indexed: 11/17/2022]
Abstract
Galactites is a genus of flowering plants belonging to Asteraceae family. This genus is mainly represented by the Galactites elegans (All.) Nyman ex Soldano, the milky thistle, a plant of Mediterranean origin. Galactites elegans is consumed as a monofloral boar thistle honey. Chromatography separation of CHCl3 and n-BuOH extracts of aerial parts of G. elegans led to isolation of 18 pure compounds. Their structures were elucidated by 1D-and 2D-NMR spectroscopy and confirmed by mass spectrometry analysis. Sinapic aldehyde, abietin, chlorogenic acid, neochlorogenic acid, 8α-hydroxypinoresinol, 9α-hydroxypinoresinol, pinoresinol, 4-ketopinoresinol, nortrachelogenin, and erythro-guaiacylglycerol-β-O-4'-dihydroconiferyl alcohol were isolated from CHCl3 extract, while luteolin 4'-O-glucuronide, naringenin-7-O-neohesperidoside, kaempferol-3-O-α-L-rhamnopyranosyl-(1→6)-β-D-glucopyranoside, apigenin-7-O-α-L-rhamnopyranosyl-(1→6)-β-D-glucopyranoside, quercitrin, quercetin-3-O-α-L-rhamnopyranosyl-(1→6)-β-D-glucopyranoside, ciwujiatone, and nortrachelogenin-4,4'-di-O-β-D-glucopyranoside were obtained from n-BuOH extract. The majority of isolated compounds displayed a significant antioxidant potential in vitro test (DPPH). The ability of compounds to reduce the level of peroxides in control and BHP-treated Jurkat cells was studied. The lignan derivatives were also able to reduce at 50 μM the basal level of peroxides in Jurkat cells as well as counteract peroxide increase induced by BHP treatment. Particularly 8α-hydroxypinoresinol was the most active showing 70% of peroxide level inhibition.
Collapse
|
48
|
Abstract
A growing body of nutritional science highlights the complex mechanisms and pleiotropic pathways of cardiometabolic effects of different foods. Among these, some of the most exciting advances are occurring in the area of flavonoids, bioactive phytochemicals found in plant foods; and in the area of dairy, including milk, yogurt, and cheese. Many of the relevant ingredients and mechanistic pathways are now being clarified, shedding new light on both the ingredients and the pathways for how diet influences health and well-being. Flavonoids, for example, have effects on skeletal muscle, adipocytes, liver, and pancreas, and myocardial, renal, and immune cells, for instance, related to 5'-monophosphate-activated protein kinase phosphorylation, endothelial NO synthase activation, and suppression of NF-κB (nuclear factor-κB) and TLR4 (toll-like receptor 4). Effects of dairy are similarly complex and may be mediated by specific amino acids, medium-chain and odd-chain saturated fats, unsaturated fats, branched-chain fats, natural trans fats, probiotics, vitamin K1/K2, and calcium, as well as by processing such as fermentation and homogenization. These characteristics of dairy foods influence diverse pathways including related to mammalian target of rapamycin, silent information regulator transcript-1, angiotensin-converting enzyme, peroxisome proliferator-activated receptors, osteocalcin, matrix glutamate protein, hepatic de novo lipogenesis, hepatic and adipose fatty acid oxidation and inflammation, and gut microbiome interactions such as intestinal integrity and endotoxemia. The complexity of these emerging pathways and corresponding biological responses highlights the rapid advances in nutritional science and the continued need to generate robust empirical evidence on the mechanistic and clinical effects of specific foods.
Collapse
Affiliation(s)
- Dariush Mozaffarian
- From the Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA (D.M.); and the George Institute for Global Health, Faculty of Medicine, University of New South Wales, Sydney, Australia (J.H.Y.W.).
| | - Jason H Y Wu
- From the Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA (D.M.); and the George Institute for Global Health, Faculty of Medicine, University of New South Wales, Sydney, Australia (J.H.Y.W.)
| |
Collapse
|
49
|
Waseem M, Parvez S, Tabassum H. Mitochondria As the Target for the Modulatory Effect of Curcumin in Oxaliplatin-induced Toxicity in Isolated Rat Liver Mitochondria. Arch Med Res 2017; 48:55-63. [PMID: 28577870 DOI: 10.1016/j.arcmed.2017.01.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 01/16/2017] [Indexed: 01/01/2023]
Abstract
BACKGROUND AND AIMS To explore hepatoprotective action of curcumin (CMN, a bioflavonoid) on oxaliplatin (Oxa)-triggered mitochondrial oxidative stress and respiratory chain complexes in liver of rats. Oxa is a ubiquitously utilized platinum-based chemotherapeutic agent commonly used for the treatment of colorectal cancer. Mitochondria have recently emerged as targets for anticancer drugs in several kinds of toxicity including hepatotoxicity that can lead to neoplastic disease. There is a dearth of evidence involving the role of mitochondria in mediating Oxa-evoked hepatotoxicity and its underlying mechanism is still debatable. METHODS The study was performed in mitochondria isolated from liver of Wistar rats. Oxa (200 μg/mL) and CMN (5 μmol) were incubated under in vitro conditions. RESULTS Oxa evoked a significant increase in the membrane lipid peroxidation (LPO) levels, protein carbonyl (PC) contents, decrease in reduced glutathione (GSH) and nonprotein thiol (NP-SH) levels. Oxa also caused a marked decline in the activities of enzymatic antioxidants and respiratory chain enzymes (I, II, III and V) in liver mitochondria. CMN pre-treatment significantly prevented the activities of enzymatic antioxidants and mitochondrial respiratory chain enzymes. CMN also restored the LPO and PC contents, GSH and NP-SH levels in liver mitochondria. CONCLUSION CMN intake might be effective in regulation of Oxa-evoked mitotoxicity during chemotherapy. Moreover, it is included in the armamentarium for anticancer agent-induced oxidative stress.
Collapse
Affiliation(s)
- Mohammad Waseem
- Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), New Delhi, India
| | - Suhel Parvez
- Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), New Delhi, India
| | - Heena Tabassum
- Department of Biochemistry, Jamia Hamdard (Hamdard University), New Delhi, India.
| |
Collapse
|
50
|
Tanveer A, Akram K, Farooq U, Hayat Z, Shafi A. Management of diabetic complications through fruit flavonoids as a natural remedy. Crit Rev Food Sci Nutr 2017; 57:1411-1422. [PMID: 26065867 DOI: 10.1080/10408398.2014.1000482] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Diabetes mellitus is a global disorder, and a major issue for health care systems. The current review outlooks the use of fruit flavonoids as natural remedy in the prevention of diabetes mellitus. The onset of diabetes mainly depends upon genetics and lifestyle issues. Currently used therapeutic options for the control of diabetes, like dietary amendments, oral hypoglycemic drugs, and insulin, have their own limitations. Fruit flavonoids possess various antidiabetic, anti-inflammatory, and antioxidant potentials and act on various cellular signaling pathways in pancreas, white adipose tissue, skeletal muscle, and liver function, which in result induces antidiabetic effects. Recently, antidiabetic effect of fruit flavonoids has been studied using various animal models and clinical trials. Research studies revealed a statistically significant potential of fruit flavonoids in managing the altered glucose and oxidative metabolisms in diabetes. Unlike synthetic antidiabetic agents, fruit flavonoids manage diabetes without compromising cellular homeostasis thereby posing no side effects. Further studies are required in purification and characterization of different fruit flavonoids with respect to their beneficial effect for diabetic patients.
Collapse
Affiliation(s)
- Amna Tanveer
- a Institute of Food Science and Nutrition, University of Sargodha , Sargodha , Pakistan
| | - Kashif Akram
- a Institute of Food Science and Nutrition, University of Sargodha , Sargodha , Pakistan
| | - Umar Farooq
- a Institute of Food Science and Nutrition, University of Sargodha , Sargodha , Pakistan
| | - Zafar Hayat
- b Department of Animal Sciences , University College of Agriculture, University of Sargodha , Sargodha , Pakistan
| | - Afshan Shafi
- a Institute of Food Science and Nutrition, University of Sargodha , Sargodha , Pakistan
| |
Collapse
|