1
|
Jiang Z, Person R, Lundh T, Pineda D, Engfeldt M, Krais AM, Hagberg J, Ricklund N, Vogel U, Saber AT, Tondel M, Albin M, Broberg K. Circulating lung-cancer-related non-coding RNAs are associated with occupational exposure to hexavalent chromium - A cross-sectional study within the SafeChrom project. ENVIRONMENT INTERNATIONAL 2024; 190:108874. [PMID: 38972113 DOI: 10.1016/j.envint.2024.108874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/19/2024] [Accepted: 07/02/2024] [Indexed: 07/09/2024]
Abstract
BACKGROUND Hexavalent chromium (Cr(Ⅵ)) is classified as a group 1 human carcinogen and increases the risk of lung cancer. Non-coding RNAs (ncRNAs) have key regulatory roles in lung cancer, but less is known about their relation to Cr(Ⅵ) exposure. OBJECTIVES We aimed to 1) measure the expression of lung cancer-related circulating ncRNAs in exposed workers and controls; 2) assess associations between ncRNAs expression and Cr concentrations in red blood cells (RBC) and urine; and 3) evaluate correlations between the ncRNAs. METHODS The study included 111 Cr(VI) exposed workers and 72 controls recruited from the SafeChrom project. Cr concentrations were measured in RBC (biomarker of long-term exposure) and urine (biomarker of short-term exposure) samples. Long ncRNA (lncRNA) and microRNA (miRNA) were extracted from plasma followed by deoxyribonuclease treatment, complementary DNA synthesis, and quantitative real-time polymerase chain reaction using target-specific assays for three lncRNAs (H19, MALAT1, NORAD), and four miRNAs (miR-142-3p, miR-15b-5p, miR-3940-5p, miR-451a). RESULTS Expression levels of lncRNAs MALAT1 and NORAD, and all four miRNAs, were significantly lower in Cr(VI) exposed workers compared with controls, and correlated significantly with RBC-Cr concentrations (rS = -0.16 to -0.38). H19 was non-significantly increased in exposed workers but significantly correlated with miR-142-3p (rS = -0.33) and miR-15b-5p (rS = -0.30), and NORAD was significantly positively correlated with all four miRNAs (rS = 0.17 to 0.46). In multivariate regression models adjusting for confounders, expressions of lncRNAs MALAT1 and NORAD and all miRNAs were still significantly lower in the exposed group compared with controls, and the expression decreased with increasing RBC-Cr concentrations. CONCLUSIONS Cr(VI) exposure was inversely and in a dose-response manner associated with the expression of circulating non-coding RNA, which suggests ncRNAs as potential biomarkers for Cr(VI)-induced toxicity. Correlations between miRNAs and lncRNAs suggest that they participate in the same lncRNA-miRNA-messenger RNA regulatory axes, which may play important roles in Cr(VI) carcinogenesis.
Collapse
Affiliation(s)
- Zheshun Jiang
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Romane Person
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden; INSERM UMR-S 1124 and UMR-S 1139, Université Paris Cité, Paris, France
| | - Thomas Lundh
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Daniela Pineda
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Malin Engfeldt
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden; Occupational and Environmental Medicine, Region Skåne, Lund, Sweden
| | - Annette M Krais
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Jessika Hagberg
- Department of Occupational and Environmental Health, Faculty of Business, Science and Engineering, Örebro University, Örebro, Sweden
| | - Niklas Ricklund
- Department of Occupational and Environmental Health, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Ulla Vogel
- National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Anne T Saber
- National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Martin Tondel
- Occupational and Environmental Medicine, Department of Medical Sciences, Uppsala University, Uppsala, Sweden; Occupational and Environmental Medicine, Uppsala University Hospital, Uppsala, Sweden
| | - Maria Albin
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden; Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Karin Broberg
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden; National Research Centre for the Working Environment, Copenhagen, Denmark; Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
2
|
Furci F, Allegra A, Tonacci A, Isola S, Senna G, Pioggia G, Gangemi S. Air Pollution and microRNAs: The Role of Association in Airway Inflammation. Life (Basel) 2023; 13:1375. [PMID: 37374157 DOI: 10.3390/life13061375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/29/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Air pollution exposure plays a key role in the alteration of gene expression profiles, which can be regulated by microRNAs, inducing the development of various diseases. Moreover, there is also evidence of sensitivity of miRNAs to environmental factors, including tobacco smoke. Various diseases are related to specific microRNA signatures, suggesting their potential role in pathophysiological processes; considering their association with environmental pollutants, they could become novel biomarkers of exposure. Therefore, the aim of the present work is to analyse data reported in the literature on the role of environmental stressors on microRNA alterations and, in particular, to identify specific alterations that might be related to the development of airway diseases so as to propose future preventive, diagnostic, and therapeutic strategies.
Collapse
Affiliation(s)
- Fabiana Furci
- Allergy Unit and Asthma Center, Verona University Hospital, 37134 Verona, Italy
| | - Alessandro Allegra
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi", University of Messina, 98124 Messina, Italy
| | - Alessandro Tonacci
- Clinical Physiology Institute, National Research Council of Italy (IFC-CNR), 56124 Pisa, Italy
| | - Stefania Isola
- School and Operative Unit of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, 98124 Messina, Italy
| | - Gianenrico Senna
- Allergy Unit and Asthma Center, Verona University Hospital, 37134 Verona, Italy
- Department of Medicine, Verona University Hospital, 37134 Verona, Italy
| | - Giovanni Pioggia
- Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy (CNR), 98164 Messina, Italy
| | - Sebastiano Gangemi
- School and Operative Unit of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, 98124 Messina, Italy
| |
Collapse
|
3
|
Cao D, Cao X, Jiang Y, Xu J, Zheng Y, Kang D, Xu C. Circulating exosomal microRNAs as diagnostic and prognostic biomarkers in patients with diffuse large B-cell lymphoma. Hematol Oncol 2021; 40:172-180. [PMID: 34874565 PMCID: PMC9299807 DOI: 10.1002/hon.2956] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 10/31/2021] [Accepted: 11/30/2021] [Indexed: 02/05/2023]
Abstract
Exosomal microRNAs (miRNAs) are potential biomarkers for a variety of tumors, but have not yet been studied in diffuse large B-cell lymphoma (DLBCL). Here, we investigated the use of exosomal miRNAs in DLBCL diagnosis and prognosis. A total of 256 individuals, including 133 DLBCL patients, 94 healthy controls (HCs), and 29 non-DLBCL concurrent controls (CCs), were enrolled. Exosomal miRNAs were profiled in the screening stage using microarray analysis, and miRNA candidates were confirmed in training, testing, and external testing stages using qRT-PCR. Follow-up information on the DLBCL patients was collected, and miRNAs were used to develop diagnostic and prognostic models for these patients. Five exosomal miRNAs (miR-379-5p, miR-135a-3p, miR-4476, miR-483-3p, and miR-451a) were differentially expressed between DLBCL patients and HCs with areas under the receiver operating characteristic curve (AUC) of 0.86, 0.90, and 0.86 for the training, testing, and external testing stages, respectively. Four exosomal miRNAs (miR-379-5p, miR-135a-3p, miR-4476, and miR-451a) were differentially expressed between patients with DLBCL and CCs, with an AUC of 0.78. One miRNA (miR-451a) was significantly associated with both progression-free survival (PFS) and overall survival (OS) of DLBCL patients, R analysis indicated the combination of miR-451a with international prognostic index was a better predictor of PFS and OS for these patients. Our study suggests that subsets of circulating exosomal miRNAs can be useful noninvasive biomarkers for the diagnosis of DLBCL and that the use of circulating exosomal miRNAs improves the identification of patients with newly diagnosed DLBCL with poor outcomes.
Collapse
Affiliation(s)
- Di Cao
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, China
| | - Xia Cao
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, China
| | - Yu Jiang
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, China.,Department of Hematology, The Affiliated Hospital of Yunnan University, Kunming, China
| | - Juan Xu
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, China
| | - Yuhuan Zheng
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, China
| | - Deying Kang
- Department of Evidence-Based Medicine and Clinical Epidemiology, Sichuan University, Chengdu, China
| | - Caigang Xu
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
4
|
Sajjadi-Dokht M, Merza Mohamad TA, Rahman HS, Maashi MS, Danshina S, Shomali N, Solali S, Marofi F, Zeinalzadeh E, Akbari M, Adili A, Aslaminabad R, Hagh MF, Jarahian M. MicroRNAs and JAK/STAT3 signaling: A new promising therapeutic axis in blood cancers. Genes Dis 2021; 9:849-867. [PMID: 35685482 PMCID: PMC9170603 DOI: 10.1016/j.gendis.2021.10.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 09/16/2021] [Accepted: 10/22/2021] [Indexed: 11/27/2022] Open
Abstract
Blood disorders include a wide spectrum of blood-associated malignancies resulting from inherited or acquired defects. The ineffectiveness of existing therapies against blood disorders arises from different reasons, one of which is drug resistance, so different types of leukemia may show different responses to treatment. Leukemia occurs for a variety of genetic and acquired reasons, leading to uncontrolled proliferation in one or more cell lines. Regarding the genetic defects, oncogene signal transducer and activator of transcription (STAT) family transcription factor, especially STAT3, play an essential role in hematological disorders onset and progress upon mutations, dysfunction, or hyperactivity. Besides, microRNAs, as biological molecules, has been shown to play a dual role in either tumorigenesis and tumor suppression in various cancers. Besides, a strong association between STAT3 and miRNA has been reported. For example, miRNAs can regulate STAT3 via targeting its upstream mediators such as IL6, IL9, and JAKs or directly binding to the STAT3 gene. On the other hand, STAT3 can regulate miRNAs. In this review study, we aimed to determine the role of either microRNAs and STAT3 along with their effect on one another's activity and function in hematological malignancies.
Collapse
|
5
|
Ghobadi MZ, Emamzadeh R, Mozhgani SH. Deciphering microRNA-mRNA regulatory network in adult T-cell leukemia/lymphoma; the battle between oncogenes and anti-oncogenes. PLoS One 2021; 16:e0247713. [PMID: 33630973 PMCID: PMC7906381 DOI: 10.1371/journal.pone.0247713] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 02/11/2021] [Indexed: 12/11/2022] Open
Abstract
Adult T-cell leukemia/lymphoma (ATLL) is virus-caused cancer that originates from the infection by human T-cell leukemia virus type 1. ATLL dysregulates various biological pathways related to the viral infection and cancer progression through the dysexpression of miRNAs and mRNAs. In this study, the potential regulatory subnetworks were constructed aiming to shed light on the pathogenesis mechanism of ATLL. For this purpose, two mRNA and one miRNA expression datasets were firstly downloaded from the GEO database. Next, the differentially expressed genes and miRNAs (DEGs and DE-miRNAs, respectively), as well as differentially co-expressed gene pairs (DCGs), were determined. Afterward, common DEGs and DCGs targeted by experimentally validated DE-miRNAs were explored. The oncogenic and anti-oncogenic miRNA-mRNA regulatory subnetworks were then generated. The expression levels of four genes and two miRNAs were examined in the blood samples by qRT-PCR. The members of three oncogenic/anti-oncogenic subnetworks were generally enriched in immune, virus, and cancer-related pathways. Among them, FZD6, THBS4, SIRT1, CPNE3, miR-142-3p, and miR-451a were further validated by real-time PCR. The significant up-regulation of FZD6, THBS4, and miR-451a as well as down-regulation of CPNE3, SIRT1, and miR-142-3p were found in ATLL samples than normal samples. The identified oncogenic/anti-oncogenic subnetworks are pieces of the pathogenesis puzzle of ATLL. The ultimate winner is probably an oncogenic network that determines the final fate of the disease. The identified genes and miRNAs are proposed as novel prognostic biomarkers for ATLL.
Collapse
Affiliation(s)
- Mohadeseh Zarei Ghobadi
- Faculty of Biological Science and Technology, Department of Cell and Molecular Biology and Microbiology, University of Isfahan, Isfahan, Iran
| | - Rahman Emamzadeh
- Faculty of Biological Science and Technology, Department of Cell and Molecular Biology and Microbiology, University of Isfahan, Isfahan, Iran
| | - Sayed-Hamidreza Mozhgani
- Department of Microbiology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| |
Collapse
|
6
|
Sima M, Rossnerova A, Simova Z, Rossner P. The Impact of Air Pollution Exposure on the MicroRNA Machinery and Lung Cancer Development. J Pers Med 2021; 11:60. [PMID: 33477935 PMCID: PMC7833364 DOI: 10.3390/jpm11010060] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 12/14/2022] Open
Abstract
Small non-coding RNA molecules (miRNAs) play an important role in the epigenetic regulation of gene expression. As these molecules have been repeatedly implicated in human cancers, they have been suggested as biomarkers of the disease. Additionally, miRNA levels have been shown to be affected by environmental pollutants, including airborne contaminants. In this review, we searched the current literature for miRNAs involved in lung cancer, as well as miRNAs deregulated as a result of exposure to air pollutants. We then performed a synthesis of the data and identified those molecules commonly deregulated under both conditions. We detected a total of 25 miRNAs meeting the criteria, among them, miR-222, miR-21, miR-126-3p, miR-155 and miR-425 being the most prominent. We propose these miRNAs as biomarkers of choice for the identification of human populations exposed to air pollution with a significant risk of developing lung cancer.
Collapse
Affiliation(s)
- Michal Sima
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine CAS, Videnska 1083, 142 20 Prague, Czech Republic; (M.S.); (Z.S.)
| | - Andrea Rossnerova
- Department of Genetic Toxicology and Epigenetics, Institute of Experimental Medicine CAS, Videnska 1083, 142 20 Prague, Czech Republic;
| | - Zuzana Simova
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine CAS, Videnska 1083, 142 20 Prague, Czech Republic; (M.S.); (Z.S.)
| | - Pavel Rossner
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine CAS, Videnska 1083, 142 20 Prague, Czech Republic; (M.S.); (Z.S.)
| |
Collapse
|
7
|
Chen Q, Chen S, Zhao J, Zhou Y, Xu L. MicroRNA-126: A new and promising player in lung cancer. Oncol Lett 2020; 21:35. [PMID: 33262827 PMCID: PMC7693477 DOI: 10.3892/ol.2020.12296] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 10/19/2020] [Indexed: 12/12/2022] Open
Abstract
Lung cancer is one of the most common malignant tumors associated with cancer death; however, the mechanisms involved in lung tumor development have not been completely elucidated, which impedes the advancement of clinical diagnosis and therapy. MicroRNA-126 (miR-126) is an important member of the microRNA family and is encoded by intron 7 of epidermal growth factor-like domain-containing gene 7. Increasing evidence has demonstrated that miR-126, as a distinct endothelial-enriched miRNA and new tumor suppressor gene, serves a promising role in the occurrence, development and metastasis of various types of cancer, including liver cancer, colorectal cancer, melanoma and lung cancer. In the present review, the current knowledge of the role of miR-126 in lung cancer growth, metastasis, diagnosis and prognosis as well as therapy was summarized, which may provide new insights on the biological roles of miRNAsin lung cancer and facilitate the ultimate development of miRNA-based therapies in clinical patients with non-small cell lung cancer.
Collapse
Affiliation(s)
- Qijun Chen
- Department of Immunology, Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Shuanghua Chen
- Department of General Medicine, The Third Hospital Affiliated to Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Juanjuan Zhao
- Department of Immunology, Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Ya Zhou
- Department of Medical Physics, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Lin Xu
- Department of Immunology, Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| |
Collapse
|
8
|
Singh KP, Maremanda KP, Li D, Rahman I. Exosomal microRNAs are novel circulating biomarkers in cigarette, waterpipe smokers, E-cigarette users and dual smokers. BMC Med Genomics 2020; 13:128. [PMID: 32912198 PMCID: PMC7488025 DOI: 10.1186/s12920-020-00748-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 06/25/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Electronic cigarettes (e-cigs) vaping, cigarette smoke, and waterpipe tobacco smoking are associated with various cardiopulmonary diseases. microRNAs are present in higher concentration in exosomes that play an important role in various physiological and pathological functions. We hypothesized that the non-coding RNAs transcript may serve as susceptibility to disease biomarkers by smoking and vaping. METHODS Plasma exosomes/EVs from cigarette smokers, waterpipe smokers and dual smokers (cigarette and waterpipe) were characterized for their size, morphology and TEM, Nanosight and immunoblot analysis. Exosomal RNA was used for small RNA library preparation and the library was quantified using the High Sensitivity DNA Analysis on the Agilent 2100 Bioanalyzer system and sequenced using the Illumina NextSeq 500 and were converted to fastq format for mapping genes. RESULTS Enrichment of various non-coding RNAs that include microRNAs, tRNAs, piRNAs, snoRNAs, snRNAs, Mt-tRNAs, and other biotypes are shown in exosomes. A comprehensive differential expression analysis of miRNAs, tRNAs and piRNAs showed significant changes across different pairwise comparisons. The seven microRNAs that were common and differentially expressed of when all the smoking and vaping groups were compared with non-smokers (NS) are hsa-let-7a-5p, hsa-miR-21-5p, hsa-miR-29b-3p, hsa-let-7f-5p, hsa-miR-143-3p, hsa-miR-30a-5p and hsa-let-7i-5p. The e-cig vs. NS group has differentially expressed 5 microRNAs (hsa-miR-224-5p, hsa-miR-193b-3p, hsa-miR-30e-5p, hsa-miR-423-3p, hsa-miR-365a-3p, and hsa-miR-365b-3p), which are not expressed in other three groups. Gene set enrichment analysis of microRNAs showed significant changes in the top six enriched functions that consisted of biological pathway, biological process, molecular function, cellular component, site of expression and transcription factor in all the groups. Further, the pairwise comparison of tRNAs and piRNA in all these groups revealed significant changes in their expressions. CONCLUSIONS Plasma exosomes of cigarette smokers, waterpipe smokers, e-cig users and dual smokers have common differential expression of microRNAs which may serve to distinguish smoking and vaping subjects from NS. Among them has-let-7a-5p has high sensitivity and specificity to distinguish NS with the rest of the users, using ROC curve analysis. These findings will pave the way for the utilizing the potential of exosomes/miRNAs as a novel theranostic agents in lung injury and disease caused by tobacco smoking and vaping.
Collapse
Affiliation(s)
- Kameshwar P Singh
- Department of Environmental Medicine, University of Rochester Medical Center, Box 850, 601 Elmwood Avenue, Rochester, NY, 14642, USA
| | - Krishna P Maremanda
- Department of Environmental Medicine, University of Rochester Medical Center, Box 850, 601 Elmwood Avenue, Rochester, NY, 14642, USA
| | - Dongmei Li
- Department of Clinical & Translational Research, University of Rochester Medical Center, Rochester, NY, USA
| | - Irfan Rahman
- Department of Environmental Medicine, University of Rochester Medical Center, Box 850, 601 Elmwood Avenue, Rochester, NY, 14642, USA.
| |
Collapse
|
9
|
Wang W, Chen D, Chen W, Xin Z, Huang Z, Zhang X, Xi K, Wang G, Zhang R, Zhao D, Liu L, Zhang L. Early Detection of Non-Small Cell Lung Cancer by Using a 12-microRNA Panel and a Nomogram for Assistant Diagnosis. Front Oncol 2020; 10:855. [PMID: 32596148 PMCID: PMC7301755 DOI: 10.3389/fonc.2020.00855] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 04/30/2020] [Indexed: 12/19/2022] Open
Abstract
Background: We previously identified a 12-microRNA (miRNA) panel (miRNA-17, miRNA-146a, miRNA-200b, miRNA-182, miRNA-155, miRNA-221, miRNA-205, miRNA-126, miRNA-7, miRNA-21, miRNA-145, and miRNA-210) that aided in the early diagnosis of non-small cell lung cancer (NSCLC). We validated the diagnostic value of this miRNA panel and compared it with that of traditional tumor markers and radiological diagnosis. We constructed a nomogram based on the miRNA panel's results to predict the risk of NSCLC. Methods: Eighty-two participants with pulmonary nodules on a CT scan and who underwent a pathological examination and surgical treatment were enrolled in our study. Patients were randomly divided into a training group or a validation group. The miRNA concentrations were quantified by RT-PCR and log-transformed for analysis. The cutoff value was determined in the training group and then applied in the validation group. A comparison between the miRNAs and traditional tumor markers [CEA, NSE, and cytokeratin 19 fragment 21-1 (Cyfra21-1)] and radiological diagnosis was performed. A nomogram based on the miRNA panel's results to predict the risk of NSCLC was constructed. Results: The expression level of these 12 miRNAs was significantly higher in NSCLC patients than in benign patients. In the validation group, the specificity and positive predictive value were 96.4 and 95.8%, respectively, which were significantly higher than those using traditional tumor markers or radiological diagnosis. The sensitivity was 42.6%, which was also higher than that using tumor markers. Moreover, the sensitivity increased to 63.6% when the nodule diameters were larger than 2 cm. The miRNAs and seven clinical factors were integrated into the nomogram, and the calibration curves showed optimal agreement between the predicted and actual probabilities. Conclusions: Our miRNA panel has clinical value for the early detection of NSCLC. A nomogram was constructed and internally validated, and the results indicate that it can assist clinicians in making treatment recommendations in the clinic.
Collapse
Affiliation(s)
- Weidong Wang
- Department of Thoracic Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Thoracic Surgery, School of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Dongni Chen
- Department of Thoracic Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Weiwei Chen
- Department of Thoracic Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Ziya Xin
- Department of Thoracic Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Zirui Huang
- Department of Thoracic Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Xuewen Zhang
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Anesthesiology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Kexing Xi
- Department of Colorectal Surgery, Peking Union Medical College, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Gongming Wang
- Department of Thoracic Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Rusi Zhang
- Department of Thoracic Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Dechang Zhao
- Department of Thoracic Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Li Liu
- Department of Thoracic Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Lanjun Zhang
- Department of Thoracic Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| |
Collapse
|
10
|
Chen L, Cao P, Huang C, Wu Q, Chen S, Chen F. Serum exosomal miR-7977 as a novel biomarker for lung adenocarcinoma. J Cell Biochem 2020; 121:3382-3391. [PMID: 31898829 DOI: 10.1002/jcb.29612] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Accepted: 12/09/2019] [Indexed: 12/20/2022]
Abstract
Exosomal microRNAs (miRNAs) have great potentials as a novel biomarker to predict lung cancer. We applied a miRNA microarray to identify aberrantly expressed serum exosomal miRNAs as candidate biomarkers for patients with lung adenocarcinoma (LUAD). Compared with the normal control, 31 exosomal miRNAs were found to be upregulated and 29 exosomal miRNAs were downregulated in the serum of LUAD respectively. Then, 10 dysregulated exosomal miRNAs expression levels in serum were further validated via qRT-polymerase chain reaction. Notably, exosomal miR-7977 was highest expressed and miR-98-3p was lowest expressed in the patients with LUAD, and exosomal miR-7977 showed significant correlation with the N stage and TNM stage with patients with LUAD (P < .05). Receiver operating characteristic curve showed that the abundant level of exosomal miR-7977 may predict LUAD with an area of under the curve (AUC) of 0.787. In comparison with exosomal miR-7977, exosomal miR-98-3p had a smaller area (0.719). The combination of exosomal miR-7977 and miR-98-3p improved the AUC to 0.816. Furthermore, in vitro experiments revealed that inhibition of miR-7977 enhanced the proliferation, invasion, and inhibited apoptosis in A549 cells, the opposite results were performed by miR-7977 mimics. In conclusion, exosomal miR-7977 was identified as a novel biomarker for patients with LUAD and may play as a tumor suppressor in lung cancer.
Collapse
Affiliation(s)
- Liangyuan Chen
- Department of Clinical Laboratory, Fujian Provincial Hospital, Fuzhou, China.,Department of Clinical Laboratory, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Pengju Cao
- Department of Clinical Laboratory, Fujian Provincial Hospital, Fuzhou, China.,Department of Clinical Laboratory, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Chunli Huang
- Department of Clinical Laboratory, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Qiumei Wu
- Department of Clinical Laboratory, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Shaoting Chen
- Department of Clinical Laboratory, Fujian Provincial Hospital, Fuzhou, China.,Department of Clinical Laboratory, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Falin Chen
- Department of Clinical Laboratory, Fujian Provincial Hospital, Fuzhou, China.,Department of Clinical Laboratory, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| |
Collapse
|
11
|
Lu XD, Han WX, Liu YX. Suppression of miR-451a accelerates osteogenic differentiation and inhibits bone loss via Bmp6 signaling during osteoporosis. Biomed Pharmacother 2019; 120:109378. [PMID: 31541885 DOI: 10.1016/j.biopha.2019.109378] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 08/16/2019] [Accepted: 08/22/2019] [Indexed: 11/15/2022] Open
Abstract
Bone homeostasis is known as a dynamic balance, including bone formation through osteoblasts and bone resorption by osteoclasts. MicroRNAs (miRs) play a critical role in regulating bone formation and homeostasis. In the study, the effects of miR-451a on bone homeostasis were investigated. The results indicated that the primary osteoblasts and mesenchymal stem cells (MSCs), as the main source of osteoblasts, isolated from miR-451a-knockout (KO) mice showed promoted osteogenesis. in vivo, an ovariectomized (OVX) animal model was used to further explore the effect of miR-451a on osteoporosis. Micro-computed tomography (μCT) indicated a promoted bone volume in miR-451a-KO mice compared to wild-type (WT) mice after OVX operation, demonstrating a redundant bone formation after the knockout of miR-451a. Importantly, we for the first time found that bone morphogenetic protein 6 (Bmp6) was a direct target of miR-451a, elevating bone formation through regulating SMAD1/5/8 expression. In conclusion, reducing miR-451a expression levels could enhance bone formation during the progression of osteoporosis, which might be at least partly via the meditation of Bmp6 expression.
Collapse
Affiliation(s)
- Xiang-Dong Lu
- Department of Orthopedics, The Second Hospital of Shan Xi Medical University, Taiyuan City, Shanxi Province, 030001, China
| | - Wen-Xing Han
- Department of Orthopedics Dept. Unit 6, The Seventh Medical Center of PLA General Hospital, Beijing, 100700, China
| | - Yan-Xiong Liu
- Departmentof Spinal Surgery, Affiliated Hospital of Yan'anUniversity, Yan'anCity, Shaanxi Province, 716000, China.
| |
Collapse
|
12
|
Bagheri A, Khorshid HRK, Tavallaie M, Mowla SJ, Sherafatian M, Rashidi M, Zargari M, Boroujeni ME, Hosseini SM. A panel of noncoding RNAs in non-small-cell lung cancer. J Cell Biochem 2019; 120:8280-8290. [PMID: 30485511 DOI: 10.1002/jcb.28111] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 10/29/2018] [Indexed: 01/24/2023]
Abstract
Non-small-lung cancer (NSCLC) is the leading cause of cancer death. Early detection of NSCLC could pave the way for effective therapies. Analysis of molecular genetic biomarkers in biological fluids has been proposed as a useful tool for cancer diagnosis. Here, we aimed to develop a panel of noncoding RNAs (ncRNAs) in sputum for NSCLC early detection. Expression of 11 ncRNAs were analyzed by real-time polymerase chain reaction in sputum samples of 30 NSCLC patients and 30 sex- and age-matched cancer-free controls. Stability of endogenous microRNAs (miRNAs) in sputum was evaluated after 3 and 6 days at 4°C, 6 months, and 1 year at -80°C. Nine ncRNAs showed significant differences of their expression in sputum between NSCLC patients and controls. A logistic regression model with the best prediction was built based on miR-145, miR-126, and miR-7. The composite of the three miRNAs produced 90% sensitivity and specificity in distinguishing NSCLC patients from the controls. Results indicate that miRNAs could be useful biomarkers based on their stability under various storage conditions and maintain differential changes between cancer and control groups. Moreover, measurement of miRNAs in sputum could be a noninvasive approach for detection of lung cancer.
Collapse
Affiliation(s)
- Abouzar Bagheri
- Department of Clinical Biochemistry-Biophysics and Genetics, Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | | | - Mahmood Tavallaie
- Human Genetic Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Seyed Javad Mowla
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Masih Sherafatian
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohsen Rashidi
- Department of Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mehryar Zargari
- Department of Clinical Biochemistry-Biophysics and Genetics, Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mahdi Eskandarian Boroujeni
- Department Of Stem Cells and Regenerative Medicine, Faculty of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Sayed Mostafa Hosseini
- Human Genetic Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Yan C, Wang J, Ni P, Lan W, Wu FX, Pan Y. DNRLMF-MDA:Predicting microRNA-Disease Associations Based on Similarities of microRNAs and Diseases. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2019; 16:233-243. [PMID: 29990253 DOI: 10.1109/tcbb.2017.2776101] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
MicroRNAs (miRNAs) are a class of non-coding RNAs about ∼ 22nt nucleotides. Studies have proven that miRNAs play key roles in many human complex diseases. Therefore, discovering miRNA-disease associations is beneficial to understanding disease mechanisms, developing drugs, and treating complex diseases. It is well known that it is a time-consuming and expensive process to discover the miRNA-disease associations via biological experiments. Alternatively, computational models could provide a low-cost and high-efficiency way for predicting miRNA-disease associations. In this study, we propose a method (called DNRLMF-MDA) to predict miRNA-disease associations based on dynamic neighborhood regularized logistic matrix factorization. DNRLMF-MDA integrates known miRNA-disease associations, functional similarity and Gaussian Interaction Profile (GIP) kernel similarity of miRNAs, and functional similarity and GIP kernel similarity of diseases. Especially, positive observations (known miRNA-disease associations) are assigned higher importance levels than negative observations (unknown miRNA-disease associations).DNRLMF-MDA computes the probability that a miRNA would interact with a disease by a logistic matrix factorization method, where latent vectors of miRNAs and diseases represent the properties of miRNAs and diseases, respectively, and further improve prediction performance via dynamic neighborhood regularized. The 5-fold cross validation is adopted to assess the performance of our DNRLMF-MDA, as well as other competing methods for comparison. The computational experiments show that DNRLMF-MDA outperforms the state-of-art method PBMDA. The AUC values of DNRLMF-MDA on three datasets are 0.9357, 0.9411, and 0.9416, respectively, which are superior to the PBMDA's results of 0.9218, 0.9187, and 0.9262. The average computation times per 5-fold cross validation of DNRLMF-MDA on three datasets are 38, 46, and 50 seconds, which are shorter than the PBMDA's average computation times of 10869, 916, and 8448 seconds, respectively. DNRLMF-MDA also can predict potential diseases for new miRNAs. Furthermore, case studies illustrate that DNRLMF-MDA is an effective method to predict miRNA-disease associations.
Collapse
|
14
|
Chen P, Gu YY, Ma FC, He RQ, Li ZY, Zhai GQ, Lin X, Hu XH, Pan LJ, Chen G. Expression levels and co‑targets of miRNA‑126‑3p and miRNA‑126‑5p in lung adenocarcinoma tissues: Αn exploration with RT‑qPCR, microarray and bioinformatic analyses. Oncol Rep 2018; 41:939-953. [PMID: 30535503 PMCID: PMC6313014 DOI: 10.3892/or.2018.6901] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 11/28/2018] [Indexed: 12/12/2022] Open
Abstract
Lung adenocarcinoma (LUAD) is the most common histological subtype of lung cancer. Previous studies have found that many microRNAs (miRNAs), including miRNA-126-3p, may play a critical role in the development of LUAD. However, no study of LUAD has researched the synergistic effects and co-targets of both miRNA-126-3p and miRNA-126-5p. The present study used real-time quantitative polymerase chain reaction (RT-qPCR) to explore the expression values of miRNA-126-3p and miRNA-126-5p in 101 LUAD and 101 normal lung tissues. Ten relevant microarray datasets were screened to further validate the expression levels of miRNA-126-3p and −5p in LUAD. Twelve prediction tools were employed to obtain potential targets of miRNA-126-3p and miRNA-126-5p. The results showed that both miRNA-126-3p and −5p were expressed significantly lower in LUAD. A significant positive correlation was also present between miRNA-126-3p and −5p expression in LUAD. In addition, lower expression of miRNA-126-3p and −5p was indicative of vascular invasion, lymph node metastasis (LNM), and a later tumor/node/metastasis (TNM) stage of LUAD. The authors obtained 167 targets of miRNA-126-3p and 212 targets of miRNA-126-5p; 44 targets were co-targets of both. Eight co-target genes (IGF2BP1, TRPM8, DUSP4, SOX11, PLOD2, LIN28A, LIN28B and SLC7A11) were initially identified as key genes in LUAD. The results of the present study indicated that the co-regulation of miRNA-126-3p and miRNA-126-5p plays a key role in the development of LUAD, which also suggests a fail-proof mode between miRNA-3p and miRNA-126-5p.
Collapse
Affiliation(s)
- Peng Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Yong-Yao Gu
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Fu-Chao Ma
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Rong-Quan He
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Zu-Yun Li
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Gao-Qiang Zhai
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Xia Lin
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Xiao-Hua Hu
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Lin-Jiang Pan
- Department of Radiotherapy, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Gang Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| |
Collapse
|
15
|
Santarelli L, Gaetani S, Monaco F, Bracci M, Valentino M, Amati M, Rubini C, Sabbatini A, Pasquini E, Zanotta N, Comar M, Neuzil J, Tomasetti M, Bovenzi M. Four-miRNA Signature to Identify Asbestos-Related Lung Malignancies. Cancer Epidemiol Biomarkers Prev 2018; 28:119-126. [PMID: 30257964 DOI: 10.1158/1055-9965.epi-18-0453] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 06/29/2018] [Accepted: 09/17/2018] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Altered miRNA expression is an early event upon exposure to occupational/environmental carcinogens; thus, identification of a novel asbestos-related profile of miRNAs able to distinguish asbestos-induced cancer from cancer with different etiology can be useful for diagnosis. We therefore performed a study to identify miRNAs associated with asbestos-induced malignancies. METHODS Four groups of patients were included in the study, including patients with asbestos-related (NSCLCAsb) and asbestos-unrelated non-small cell lung cancer (NSCLC) or with malignant pleural mesothelioma (MPM), and disease-free subjects (CTRL). The selected miRNAs were evaluated in asbestos-exposed population. RESULTS Four serum miRNAs, that is miR-126, miR-205, miR-222, and miR-520g, were found to be implicated in asbestos-related malignant diseases. Notably, increased expression of miR-126 and miR-222 were found in asbestos-exposed subjects, and both miRNAs are involved in major pathways linked to cancer development. Epigenetic changes and cancer-stroma cross-talk could induce repression of miR-126 to facilitate tumor formation, angiogenesis, and invasion. CONCLUSIONS This study indicates that miRNAs are potentially involved in asbestos-related malignancies, and their expression outlines mechanism(s) whereby miRNAs may be involved in an asbestos-induced pathogenesis. IMPACT The discovery of a miRNA panel for asbestos-related malignancies would impact on occupational compensation and may be utilized for screening asbestos-exposed populations.
Collapse
Affiliation(s)
- Lory Santarelli
- Department of Clinical and Molecular Sciences, Section of Occupational Medicine, Polytechnic University of Marche, Ancona, Italy.
| | - Simona Gaetani
- Department of Clinical and Molecular Sciences, Section of Occupational Medicine, Polytechnic University of Marche, Ancona, Italy
| | - Federica Monaco
- Department of Clinical and Molecular Sciences, Section of Occupational Medicine, Polytechnic University of Marche, Ancona, Italy
| | - Massimo Bracci
- Department of Clinical and Molecular Sciences, Section of Occupational Medicine, Polytechnic University of Marche, Ancona, Italy
| | - Matteo Valentino
- Department of Clinical and Molecular Sciences, Section of Occupational Medicine, Polytechnic University of Marche, Ancona, Italy
| | - Monica Amati
- Department of Clinical and Molecular Sciences, Section of Occupational Medicine, Polytechnic University of Marche, Ancona, Italy
| | - Corrado Rubini
- Department of Biomedical Sciences and Public Health, Section of Anatomical Pathology, Polytechnic University of Marche, Ancona, Italy
| | | | - Ernesto Pasquini
- ENT Metropolitan Unit, Bellaria Hospital, AUSL Bologna, Bologna, Italy
| | - Nunzia Zanotta
- Institute for Maternal and Child Health-IRCCS "Burlo Garofolo," Trieste, Italy
| | - Manola Comar
- Institute for Maternal and Child Health-IRCCS "Burlo Garofolo," Trieste, Italy.,Department of Medical Sciences, University of Trieste, Trieste, Italy
| | - Jiri Neuzil
- Mitochondria, Apoptosis and Cancer Research Group, School of Medical Science, Griffith University, Southport, Australia.,Institute of Biotechnology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Marco Tomasetti
- Department of Clinical and Molecular Sciences, Section of Occupational Medicine, Polytechnic University of Marche, Ancona, Italy. .,International Society of Doctors for the Environment (ISDE), Arezzo, Italy
| | - Massimo Bovenzi
- Department of Medical Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
16
|
Decmann A, Perge P, Nyíro G, Darvasi O, Likó I, Borka K, Micsik T, Tóth Z, Bancos I, Pezzani R, Iacobone M, Patócs A, Igaz P. MicroRNA Expression Profiling in Adrenal Myelolipoma. J Clin Endocrinol Metab 2018; 103:3522-3530. [PMID: 29982598 DOI: 10.1210/jc.2018-00817] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 06/15/2018] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Adrenal myelolipoma (AML) is the second most common and invariably benign primary adrenal neoplasm. Due to the variable proportion of fat and hematopoietic elements and its often large size, it can cause differential diagnostic problems. Several reports confirmed the utility of miRNAs in the diagnosis of tumors, but miRNA expression in AML has not yet been investigated. MATERIALS AND METHODS Next-generation sequencing (NGS) was performed on 30 formalin-fixed, paraffin-embedded (FFPE) archived tissue samples [10 each of AML, adrenocortical adenoma (ACA), and adrenocortical carcinoma (ACC)]. Validation was performed by real-time quantitative reverse transcription polymerase chain reaction on a cohort containing 41 further FFPE samples (15 AML, 14 ACA, and 12 ACC samples). Circulating miRNA counterparts of significantly differentially expressed tissue miRNAs were studied in 33 plasma samples (11 each of ACA, ACC, and AML). RESULTS By NGS, 256 significantly differentially expressed miRNAs were discovered, and 8 of these were chosen for validation. Significant overexpression of hsa-miR-451a, hsa-miR-486-5p, hsa-miR-363-3p, and hsa-miR-150-5p was confirmed in AML relative to ACA and ACC. hsa-miR-184, hsa-miR-483-5p, and hsa-miR-183-5p were significantly overexpressed in ACC relative to ACA but not to AML. Circulating hsa-miR-451a and hsa-miR-363-3p were significantly overexpressed in AML, whereas circulating hsa-miR-483-5p and hsa-miR-483-3p were only significantly overexpressed in ACC vs ACA. CONCLUSIONS We have found significantly differentially expressed miRNAs in AML and adrenocortical tumors. Circulating hsa-miR-451a might be a promising minimally invasive biomarker of AML. The lack of significantly different expression of hsa-miR-483-3p and hsa-miR-483-5p between AML and ACC might limit their applicability as diagnostic miRNA markers for ACC.
Collapse
Affiliation(s)
- Abel Decmann
- Second Department of Medicine, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Pál Perge
- Second Department of Medicine, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Gábor Nyíro
- MTA-SE Molecular Medicine Research Group, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - Ottó Darvasi
- Hereditary Endocrine Tumors Research Group, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - István Likó
- Hereditary Endocrine Tumors Research Group, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - Katalin Borka
- Second Department of Pathology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Tamás Micsik
- First Department of Pathology and Experimental Cancer Research, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Zsuzsanna Tóth
- Second Department of Medicine, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Irina Bancos
- Division of Endocrinology, Diabetes, Metabolism and Nutrition, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota
| | - Raffaele Pezzani
- Endocrinology Unit, Department of Medicine, University of Padua, Padova, Italy
| | - Maurizio Iacobone
- Minimally Invasive Endocrine Surgery Unit, Department of Surgery, Oncology and Gastroenterology (DISCOG), University of Padova, Padova, Italy
| | - Attila Patócs
- Hereditary Endocrine Tumors Research Group, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - Peter Igaz
- Second Department of Medicine, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- MTA-SE Molecular Medicine Research Group, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| |
Collapse
|
17
|
Circulating or tissue microRNAs and extracellular vesicles as potential lung cancer biomarkers: a systematic review. Int J Biol Markers 2018; 33:3-9. [PMID: 29076520 DOI: 10.5301/ijbm.5000307] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
For both lung cancer patients and clinical physicians, tumor biomarkers for more efficient early diagnosis and prediction of prognosis are always wanted. Biomarkers in circulating serum, including microRNAs (miRNAs) and extracellular vesicles, hold the greatest possibilities to partially substitute for tissue biopsy. In this systematic review, studies on circulating or tissue miRNAs and extracellular vesicles as potential biomarkers for lung cancer patients were reviewed and are discussed. Furthermore, the target genes of the miRNAs indicated were identified through the miRTarBase, while the relevant biological processes and pathways of miRNAs in lung cancer were analyzed through MiRNA Enrichment Analysis and Annotation (MiEAA). In conclusion, circulating or tissue miRNAs and extracellular vesicles provide us with a window to explore strategies for diagnosing and assessing prognosis and treatment in lung cancer patients.
Collapse
|
18
|
Liang L, Wei DM, Li JJ, Luo DZ, Chen G, Dang YW, Cai XY. Prognostic microRNAs and their potential molecular mechanism in pancreatic cancer: A study based on The Cancer Genome Atlas and bioinformatics investigation. Mol Med Rep 2017; 17:939-951. [PMID: 29115476 PMCID: PMC5780175 DOI: 10.3892/mmr.2017.7945] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 10/02/2017] [Indexed: 01/17/2023] Open
Abstract
Although certain biomarkers that are directly associated with the overall survival (OS) of patients with pancreatic adenocarcinoma (PAAD) have been identified, the efficacy of a single factor is limited to predicting the prognosis. The aim of the present study was to identify a combination micro (mi)RNA signature that enhanced the prognostic prediction for PAAD. Following analysis of the data available from The Cancer Genome Atlas (TCGA), 175 PAAD samples were selected for the present study, and the associations between 494 miRNAs and OS were investigated. The prognostic value of all miRNAs was analyzed by multivariate Cox regression, and the miRNAs were ranked according to the hazard ratio (HR) and P-values. The top 5 miRNAs (miR-1301, miR-125a, miR-376c, miR-328 and miR-376b) were significantly associated with OS (HR=0.139; 95% confidence interval, 0.043–0.443; P<0.001), thus demonstrating that this panel was able to serve as an independent prognostic factor for PAAD. In addition, the present study also predicted the target genes of the top 10 miRNAs with the highest prognostic values using 12 different prediction software, and enrichment signaling pathway analyses elucidated that several pathways may be markedly associated with these miRNAs, including ‘Pathways in cancer’, ‘Chronic myeloid leukemia’, ‘Glioma’ and ‘MicroRNAs in cancer’. Lastly, ubiquitin C, epidermal growth factor receptor, estrogen receptor 1, mitogen-activated protein kinase 1, mothers against decapentaplegic homolog 4 and androgen receptor may be the hub genes revealed by STRING analysis. The present study identified several miRNAs, particularly a five-miRNA-pool, that may be reliable, independent factors for predicting survival in patients with PAAD. However, the underlying molecular mechanisms require further investigation in the future.
Collapse
Affiliation(s)
- Liang Liang
- Department of General Surgery, Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Dan-Ming Wei
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Jian-Jun Li
- Department of General Surgery, Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Dian-Zhong Luo
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Gang Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Yi-Wu Dang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Xiao-Yong Cai
- Department of General Surgery, Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| |
Collapse
|
19
|
Ito S, Kamoto Y, Sakai A, Sasai K, Hayashi T, Toyooka S, Katayama H. Unique circulating microRNAs in relation to EGFR mutation status in Japanese smoker male with lung adenocarcinoma. Oncotarget 2017; 8:114685-114697. [PMID: 29383112 PMCID: PMC5777724 DOI: 10.18632/oncotarget.21425] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Accepted: 09/11/2017] [Indexed: 02/06/2023] Open
Abstract
The incidence of lung adenocarcinoma has been increasing recently in smokers. The molecular target therapy has been developed for lung adenocarcinoma patients harboring EGFR gene mutation. However, the treatment modalities for patients without mutation are currently limited. Thus, analysis of EGFR gene mutation status at early stage is important strategy to classify the patients for improving treatments and prognosis efficiently. This study aimed to identify microRNA (miRNA) signature in relation to mutation status in EGFR gene in early stage of lung adenocarcinoma male patients with smoking history. MiRNA profiles were assessed by microarray in paired plasma and tissue pooled from 10 EGFR wild type (EGFR-wt) and 10 EGFR mutated (EGFR-mut) patients. Expressions of selected miRNAs were verified further by real-time qRT-PCR in 83 plasma samples consisting of 55 EGFR-wt patients and 28 EGFR-mut patients and their correlation with clinicopathological parameters and EGFR gene mutation status were evaluated. We found that seven miRNAs (miR-16-5p, miR-23a-3p, miR-103a-3p, miR122-5p, miR-223-3p, miR-346 and miR-451a) were differentially expressed in stage I and stage I+II. Especially, miR-23a-3p was only miRNA shown higher expression in EGFR-wt patients than EGFR-mut patients. Thus, our findings could be useful non-invasive biomarkers to differentiate mutation status in EGFR gene in smoker lung adenocarcinoma male patients.
Collapse
Affiliation(s)
- Sachio Ito
- Department of Molecular Oncology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Yoshihiro Kamoto
- Department of Molecular Oncology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Akiko Sakai
- Department of Molecular Oncology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Kaori Sasai
- Department of Molecular Oncology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Tatsuro Hayashi
- Division of Thoracic Surgery, National Hospital Organization, Yamaguchi-Ube Medical Center, Yamaguchi, Japan
| | - Shinichi Toyooka
- Department of Thoracic, Breast and Endocrinological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan.,Department of Clinical Genomic Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Hiroshi Katayama
- Department of Molecular Oncology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| |
Collapse
|
20
|
Sui J, Yang RS, Xu SY, Zhang YQ, Li CY, Yang S, Yin LH, Pu YP, Liang GY. Comprehensive analysis of aberrantly expressed microRNA profiles reveals potential biomarkers of human lung adenocarcinoma progression. Oncol Rep 2017; 38:2453-2463. [PMID: 28791371 DOI: 10.3892/or.2017.5880] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 07/26/2017] [Indexed: 11/06/2022] Open
Abstract
Lung adenocarcinoma (LUAD) is a complex disease that poses challenges for diagnosis and treatment. The aim of the present study is to investigate LUAD-specific key microRNAs (miRNAs) from large-scale samples in The Cancer Genome Atlas (TCGA) database. We used an integrative computational method to identify LUAD-specific key miRNAs related to TNM stage and lymphatic metastasis from the TCGA database. Twenty-five LUAD-specific key miRNAs (fold change >2, p<0.05) from the TCGA database were investigated, and 15 were found to be aberrantly expressed with respect to clinical features. Three miRNAs were correlated with overall survival (log-rank p<0.05). Then, 5 miRNAs were randomly selected for verification of expression in 53 LUAD patient tissues using qRT-PCR. Diagnostic value of these above 5 miRNAs was determined by areas under receiver operating characteristic curves (ROC). Finally, the LUAD-related miRNA miR-30a-3p was selected for verification of biologic function in A549 cells. The results of tests for cell proliferation, apoptosis, and target genes suggested that miR-30a-3p decreases cell proliferation and promotes apoptosis through targeting AKT3. Therefore, miR-30a-3p may be a promising biomarker for the early screening of high-risk populations and early diagnosis of LUAD. Our studies provide insights into identifying novel potential biomarkers for diagnosis and prognosis of LUAD.
Collapse
Affiliation(s)
- Jing Sui
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Ru-Song Yang
- Department of Thoracic Surgery, Nanjing Chest Hospital, Nanjing, Jiangsu 210029, P.R. China
| | - Si-Yi Xu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Yan-Qiu Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Cheng-Yun Li
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Sheng Yang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Li-Hong Yin
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Yue-Pu Pu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Ge-Yu Liang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| |
Collapse
|
21
|
Zheng W, Zhou Y, Lu J, Xu H, Lei L, Chen C, Zhao J, Xu L. The prognostic value of miR-126 expression in non-small-cell lung cancer: a meta-analysis. Cancer Cell Int 2017; 17:71. [PMID: 28725162 PMCID: PMC5513344 DOI: 10.1186/s12935-017-0440-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 07/06/2017] [Indexed: 01/10/2023] Open
Abstract
OBJECTIVE Non-small cell lung cancer (NSCLC) is a leading cause of cancer-related death. Growing evidence from recent studies have shown indicated that microRNA-126 (miR-126) played an important role in the progression of NSCLC. However, the potential value of miR-126 expression in prognosis of NSCLC remains to be fully elucidated. Here, we carried out a meta-analysis to assess the potential prognostic value of miR-126 for NSCLC. METHODS PubMed, Embase, the Cochrane library, Web of Science, CNKI and WanFang database, as well as the reference of included studies, were searched to recognize pertinent studies until April 30, 2017. New castle-Ottawa scale was used to evaluate the quality of studies. Pooled hazard ratio (HR) with 95% confidence interval (CI) for overall survival (OS) was extracted by using a fixed-effects or a random-effects model on the basis of heterogeneity. Publication bias was evaluated by using Begg's tests. RESULTS We identified four eligible trials involving 666 non-small-cell lung cancer patients in this meta-analysis. The results indicated that a high level of miR-126 played a favorable role in the overall survival (HR 0.73, 95% CI 0.61-0.86, fixed-effects model). There was no bias existed in this study. CONCLUSIONS Our study showed that high expression level of miR-126 was a promising positive factor for OS for non-small cell lung cancer patients, and miR-126 might be a potential target for non-small-cell lung cancer therapy in the future.
Collapse
Affiliation(s)
- Wen Zheng
- Department of Immunology, Zunyi Medical College, Guizhou, 563000 People’s Republic of China
| | - Ya Zhou
- Department of Medical Physics, Zunyi Medical College, Guizhou, 563000 China
| | - Jia Lu
- Department of Immunology, Zunyi Medical College, Guizhou, 563000 People’s Republic of China
| | - Hualin Xu
- Department of Immunology, Zunyi Medical College, Guizhou, 563000 People’s Republic of China
| | - Liangyu Lei
- Department of Immunology, Zunyi Medical College, Guizhou, 563000 People’s Republic of China
| | - Chao Chen
- Department of Immunology, Zunyi Medical College, Guizhou, 563000 People’s Republic of China
| | - Juanjuan Zhao
- Department of Immunology, Zunyi Medical College, Guizhou, 563000 People’s Republic of China
| | - Lin Xu
- Department of Immunology, Zunyi Medical College, Guizhou, 563000 People’s Republic of China
| |
Collapse
|
22
|
Diagnostic MicroRNA Biomarker Discovery for Non-Small-Cell Lung Cancer Adenocarcinoma by Integrative Bioinformatics Analysis. BIOMED RESEARCH INTERNATIONAL 2017; 2017:2563085. [PMID: 28698868 PMCID: PMC5494096 DOI: 10.1155/2017/2563085] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 04/10/2017] [Indexed: 12/12/2022]
Abstract
Lung cancer is the leading cause of cancer death and its incidence is ranked high in men and women worldwide. Non-small-cell lung cancer (NSCLC) adenocarcinoma is one of the most frequent histological subtypes of lung cancer. The aberration profile and the molecular mechanism driving its progression are the key for precision therapy of lung cancer, while the screening of biomarkers is essential to the precision early diagnosis and treatment of the cancer. In this work, we applied a bioinformatics method to analyze the dysregulated interaction network of microRNA-mRNA in NSCLC, based on both the gene expression data and the microRNA-gene regulation network. Considering the properties of the substructure and their biological functions, we identified the putative diagnostic biomarker microRNAs, some of which have been reported on the PubMed citations while the rest, that is, miR-204-5p, miR-567, miR-454-3p, miR-338-3p, and miR-139-5p, were predicted as the putative novel microRNA biomarker for the diagnosis of NSCLC adenocarcinoma. They were further validated by functional enrichment analysis of their target genes. These findings deserve further experimental validations for future clinical application.
Collapse
|
23
|
miRNA-451a Targets IFN Regulatory Factor 8 for the Progression of Systemic Lupus Erythematosus. Inflammation 2017; 40:676-687. [PMID: 28120198 DOI: 10.1007/s10753-017-0514-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Increasing evidence has shown that miRNA-451a (miR-451a) is associated with the development of systemic lupus erythematosus (SLE); however, the mechanism of this association is not fully known. The present study found an increased expression of miR-451a in the spleen and thymus of an SLE mice model. A decrease in miR-451a expression partly relieved the enlargement of the spleen and decreased the proteinuria content and immune complex deposits. The deficiency in miR-451a also decreased numbers of CD4+CD69+ and CD4+/CD8+ T cells and the levels of the serum cytokines IL-17a and IL-4. The IFN regulatory factor (IRF) 8 was highly expressed in the immune organs of wild-type mice but was suppressed in SLE-like mice. A dual-luciferase reporter assay was carried out in combination with gene silencing and overexpression to verify that IRF8 was a target of miR-451a in vitro and in vivo. The data indicate the function and a target of miR-451a in SLE, providing a new target for SLE therapy.
Collapse
|