1
|
Augustin MA, Chen JY, Ye JH. Processing to improve the sustainability of chickpea as a functional food ingredient. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:8397-8413. [PMID: 38619292 DOI: 10.1002/jsfa.13532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 04/07/2024] [Accepted: 04/15/2024] [Indexed: 04/16/2024]
Abstract
Chickpea is a field crop that is playing an emerging role in the provision of healthy and sustainable plant-based value-added ingredients for the food and nutraceutical industries. This article reviews the characteristics of chickpea (composition, health properties, and techno-functionality) and chickpea grain that influence their use as whole foods or ingredients in formulated food. It covers the exploitation of traditional and emerging processes for the conversion of chickpea into value-added differentiated food ingredients. The influence of processing on the composition, health-promoting properties, and techno-functionality of chickpea is discussed. Opportunities to tailor chickpea ingredients to facilitate their incorporation in traditional food applications and in the expanding plant-based meat alternative and dairy alternative markets are highlighted. The review includes an assessment of the possible uses of by-products of chickpea processing. Recommendations are provided for future research to build a sustainable industry using chickpea as a value-added ingredient. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Mary Ann Augustin
- CSIRO Agriculture and Food, Werribee, Australia
- School of Agriculture, Food and Wine, The University of Adelaide, Urrbrae, Australia
| | - Jia-Ying Chen
- Tea Research Institute, Zhejiang University, Hangzhou, China
| | - Jian-Hui Ye
- Tea Research Institute, Zhejiang University, Hangzhou, China
| |
Collapse
|
2
|
Ferreira H, Duarte D, Carneiro TJ, Costa C, Barbosa JC, Rodrigues JE, Alves P, Vasconcelos M, Pinto E, Gomes A, Gil AM. Impact of a legumes diet on the human gut microbiome articulated with fecal and plasma metabolomes: A pilot study. Clin Nutr ESPEN 2024; 63:332-345. [PMID: 38964655 DOI: 10.1016/j.clnesp.2024.06.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/12/2024] [Accepted: 06/27/2024] [Indexed: 07/06/2024]
Abstract
BACKGROUND & AIMS Legumes intake is known to be associated with several health benefits the origins of which is still a matter of debate. This paper addresses a pilot small cohort to probe for metabolic aspects of the interplay between legumes intake, human metabolism and gut microbiota. METHODS Untargeted nuclear magnetic resonance (NMR) metabolomics of blood plasma and fecal extracts was carried out, in tandem with qPCR analysis of feces, to assess the impact of an 8-week pilot legumes diet intervention on the fecal and plasma metabolomes and gut microbiota of 19 subjects. RESULTS While the high inter-individual variability hindered the detection of statistically significant changes in the gut microbiome, increased fecal glucose and decreased threonine levels were noted. Correlation analysis between the microbiome and fecal metabolome lead to putative hypotheses regarding the metabolic activities of prevalent bacteria groups (Clostridium leptum subgroup, Roseburia spp., and Faecalibacterium prausnitzii). These included elevated fecal glucose as a preferential energy source, the involvement of valerate/isovalerate and reduced protein degradation in gut microbiota. Plasma metabolomics advanced mannose and betaine as potential markers of legume intake and unveiled a decrease in formate and ketone bodies, the latter suggesting improved energy utilization through legume carbohydrates. Amino acid metabolism was also apparently affected, as suggested by lowered urea, histidine and threonine levels. CONCLUSIONS Despite the high inter-individual gut microbiome variability characterizing the small cohort addressed, combination of microbiological measurements and untargeted metabolomics unveiled several metabolic effects putatively related to legumes intake. If confirmed in larger cohorts, our findings will support the inclusion of legumes in diets and contribute valuable new insight into the origins of associated health benefits.
Collapse
Affiliation(s)
- Helena Ferreira
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal; Department of Chemistry and CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
| | - Daniela Duarte
- Department of Chemistry and CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
| | - Tatiana J Carneiro
- Department of Chemistry and CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
| | - Célia Costa
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal
| | - Joana C Barbosa
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal
| | - João E Rodrigues
- Department of Chemistry and CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
| | - Paulo Alves
- Universidade Católica Portuguesa, CIIS - Centro de Investigação Interdisciplinar em Saúde, Escola Enfermagem (Porto), Portugal
| | - Marta Vasconcelos
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal
| | - Elisabete Pinto
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal; EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
| | - Ana Gomes
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal
| | - Ana M Gil
- Department of Chemistry and CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal.
| |
Collapse
|
3
|
Fu Z, Cheng S, Ma J, Basit RA, Du Y, Tian S, Fan G. Identification of Yeast Strain YA176 for Bio-Purification of Soy Molasses to Produce Raffinose Family Oligosaccharides and Optimization of Fermentation Conditions. Appl Biochem Biotechnol 2024:10.1007/s12010-024-05065-4. [PMID: 39340630 DOI: 10.1007/s12010-024-05065-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2024] [Indexed: 09/30/2024]
Abstract
Soybean molasses, which contains high levels of raffinose family oligosaccharides (RFOs) such as stachyose and raffinose, is subjected to a process of bio-purification to remove sucrose while maintaining the RFOs, consequently increasing its value. This study employed morphological observation, physiological and biochemical studies, and molecular biology techniques to identify YA176, a yeast strain renowned for its effective bio-purification of soy molasses. Through single-factor and orthogonal experiments, optimal bio-purification conditions were established. YA176, belonging to Wickerhamomyces anomalus, demonstrated robust growth across a wide range of temperature and pH levels, coupled with remarkable tolerance to glucose, sucrose, and NaCl up to 41.2%, 47.3%, and 10%, respectively. Under these optimized conditions, YA176 efficiently utilized sucrose while preserving 93.3% of raffinose and 78.6% of stachyose, ensuring the retention of functional RFOs. In summary, yeast strain YA176 exhibits exceptional bio-purification abilities, making it an ideal candidate for producing functional RFOs from soy molasses.
Collapse
Affiliation(s)
- Zhilei Fu
- Henan Key Laboratory of Industrial Microbial Resources and Fermentation Technology, Nanyang Institute of Technology, Nanyang, 473004, Henan, China
- School of Biology and Food Science, Hebei MinZu Normal University, Chengde, 067000, China
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, No. 11, Fucheng Road, Haidian District, Beijing, 100048, China
| | - Shuang Cheng
- Henan Key Laboratory of Industrial Microbial Resources and Fermentation Technology, Nanyang Institute of Technology, Nanyang, 473004, Henan, China
| | - Jinghao Ma
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, No. 11, Fucheng Road, Haidian District, Beijing, 100048, China
| | - Rana Abdul Basit
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, No. 11, Fucheng Road, Haidian District, Beijing, 100048, China
| | - Yihua Du
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, No. 11, Fucheng Road, Haidian District, Beijing, 100048, China
| | - Shubin Tian
- Sweet Code Nutrition and Health Institute, Zibo, 256306, China
| | - Guangsen Fan
- Henan Key Laboratory of Industrial Microbial Resources and Fermentation Technology, Nanyang Institute of Technology, Nanyang, 473004, Henan, China.
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, No. 11, Fucheng Road, Haidian District, Beijing, 100048, China.
- Sweet Code Nutrition and Health Institute, Zibo, 256306, China.
| |
Collapse
|
4
|
Ferreira H, Vasconcelos M, Gil AM, Silveira J, Alves P, Martins S, Assunção M, Guimarães JT, Pinto E. Impact of a daily legume-based meal on blood and anthropometric parameters in a group of omnivorous adults: A pilot study. NUTR BULL 2024; 49:235-246. [PMID: 38655577 DOI: 10.1111/nbu.12677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 04/05/2024] [Accepted: 04/09/2024] [Indexed: 04/26/2024]
Abstract
This pilot study aimed to assess the impact of substituting a traditional lunch for a vegetarian legume-based meal on blood and anthropometric parameters in a group of omnivorous adults. A one-group comparison, quasi-experimental dietary intervention was designed. A vegetarian legume-based meal was offered for 8 consecutive weeks (weekdays) to non-vegetarian individuals (n = 26), (28 years [P25 = 20.0, P75 = 35.5]; 21.9 kg/m2 [P25 = 21.3, P75 = 24.8]). Sociodemographic data, health status and lifestyle-related information were recorded. Three-day food records were used to collect food intake at baseline and at the end of the intervention. Anthropometric parameters were recorded and fasting blood analyses were performed following standard procedures. Wilcoxon signed-rank test was used for statistical comparisons. A p-value <0.05 was considered statistically significant. Participants showed a median intake of 79.8 g of cooked legumes per meal, meaning 13 (50.0%) subjects met the Portuguese daily legume intake recommendations during the intervention days. There were no statistically significant differences in anthropometric parameters. Transferrin concentration increased after 8 weeks (+12.5 mg/dL; p = 0.001). Total cholesterol concentration reduced after 8 weeks (-6 mg/dL; p = 0.041), as well as low-density lipoprotein (LDL) cholesterol (-7 mg/dL; p = 0.003). Triglycerides (+9 mg/dL; p = 0.046), fasting glucose (+2 mg/dL; p = 0.037) and HbA1c (+0.1 mg/dL; p = 0.010) concentration increased after the 2-month legume-based trial. Results suggest a cholesterol-lowering potential of legume-rich diets. However, unfavourable results regarding the impact on glucose metabolism-related biomarkers and triglyceride levels were observed. The study's limitations in design and sample size emphasise the importance of conducting further research with larger cohorts to attain more conclusive findings.
Collapse
Affiliation(s)
- Helena Ferreira
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal
| | - Marta Vasconcelos
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal
| | - Ana M Gil
- Department of Chemistry and CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
| | - Joana Silveira
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal
| | - Paulo Alves
- CIIS - Centro de Investigação Interdisciplinar em Saúde, Escola Enfermagem (Porto), Universidade Católica Portuguesa, Porto, Portugal
| | - Sandra Martins
- Serviço de Patologia Clínica, Centro Hospitalar Universitário de São João, Porto, Portugal
| | - Marco Assunção
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal
- Serviço de Patologia Clínica, Hospital da Senhora da Oliveira Guimarães, Guimarães, Portugal
| | - João Tiago Guimarães
- Serviço de Patologia Clínica, Centro Hospitalar Universitário de São João, Porto, Portugal
- Departamento de Biomedicina, Faculdade de Medicina, Universidade do Porto, Porto, Portugal
- EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
| | - Elisabete Pinto
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal
- EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
| |
Collapse
|
5
|
Odriozola A, González A, Odriozola I, Álvarez-Herms J, Corbi F. Microbiome-based precision nutrition: Prebiotics, probiotics and postbiotics. ADVANCES IN GENETICS 2024; 111:237-310. [PMID: 38908901 DOI: 10.1016/bs.adgen.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
Microorganisms have been used in nutrition and medicine for thousands of years worldwide, long before humanity knew of their existence. It is now known that the gut microbiota plays a key role in regulating inflammatory, metabolic, immune and neurobiological processes. This text discusses the importance of microbiota-based precision nutrition in gut permeability, as well as the main advances and current limitations of traditional probiotics, new-generation probiotics, psychobiotic probiotics with an effect on emotional health, probiotic foods, prebiotics, and postbiotics such as short-chain fatty acids, neurotransmitters and vitamins. The aim is to provide a theoretical context built on current scientific evidence for the practical application of microbiota-based precision nutrition in specific health fields and in improving health, quality of life and physiological performance.
Collapse
Affiliation(s)
- Adrián Odriozola
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Leioa, Spain.
| | - Adriana González
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Iñaki Odriozola
- Health Department of Basque Government, Donostia-San Sebastián, Spain
| | - Jesús Álvarez-Herms
- Phymo® Lab, Physiology, and Molecular Laboratory, Collado Hermoso, Segovia, Spain
| | - Francesc Corbi
- Institut Nacional d'Educació Física de Catalunya (INEFC), Centre de Lleida, Universitat de Lleida (UdL), Lleida, Spain
| |
Collapse
|
6
|
Kase BE, Liese AD, Zhang J, Murphy EA, Zhao L, Steck SE. The Development and Evaluation of a Literature-Based Dietary Index for Gut Microbiota. Nutrients 2024; 16:1045. [PMID: 38613077 PMCID: PMC11013161 DOI: 10.3390/nu16071045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/26/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024] Open
Abstract
The aim of the study was to develop and evaluate a novel dietary index for gut microbiota (DI-GM) that captures dietary composition related to gut microbiota profiles. We conducted a literature review of longitudinal studies on the association of diet with gut microbiota in adult populations and extracted those dietary components with evidence of beneficial or unfavorable effects. Dietary recall data from the National Health and Nutrition Examination Survey (NHANES, 2005-2010, n = 3812) were used to compute the DI-GM, and associations with biomarkers of gut microbiota diversity (urinary enterodiol and enterolactone) were examined using linear regression. From a review of 106 articles, 14 foods or nutrients were identified as components of the DI-GM, including fermented dairy, chickpeas, soybean, whole grains, fiber, cranberries, avocados, broccoli, coffee, and green tea as beneficial components, and red meat, processed meat, refined grains, and high-fat diet (≥40% of energy from fat) as unfavorable components. Each component was scored 0 or 1 based on sex-specific median intakes, and scores were summed to develop the overall DI-GM score. In the NHANES, DI-GM scores ranged from 0-13 with a mean of 4.8 (SE = 0.04). Positive associations between DI-GM and urinary enterodiol and enterolactone were observed. The association of the novel DI-GM with markers of gut microbiota diversity demonstrates the potential utility of this index for gut health-related studies.
Collapse
Affiliation(s)
- Bezawit E. Kase
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Discovery 1, 915 Greene Street, Columbia, SC 29208, USA; (B.E.K.)
| | - Angela D. Liese
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Discovery 1, 915 Greene Street, Columbia, SC 29208, USA; (B.E.K.)
| | - Jiajia Zhang
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Discovery 1, 915 Greene Street, Columbia, SC 29208, USA; (B.E.K.)
| | - Elizabeth Angela Murphy
- Department of Pathology, Microbiology and Immunology, School of Medicine Columbia, University of South Carolina, Columbia, SC 29208, USA
| | - Longgang Zhao
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Discovery 1, 915 Greene Street, Columbia, SC 29208, USA; (B.E.K.)
| | - Susan E. Steck
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Discovery 1, 915 Greene Street, Columbia, SC 29208, USA; (B.E.K.)
| |
Collapse
|
7
|
Song J, Liu Y, Yin X, Nan Y, Shi Y, Chen X, Liang H, Zhang J, Ma B. Isolation and structural elucidation of prebiotic oligosaccharides from Ziziphi Spinosae Semen. Carbohydr Res 2023; 534:108948. [PMID: 37783055 DOI: 10.1016/j.carres.2023.108948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/21/2023] [Accepted: 09/19/2023] [Indexed: 10/04/2023]
Abstract
Six oligosaccharides were discovered and isolated for the first time from Ziziphi Spinosae Semen. On the basis of spectroscopic analysis, their structures were determined to be verbascose (1), verbascotetraose (2), stachyose (3), manninotriose (4), raffinose (5), and melibiose (6). The prebiotic effect of the oligosaccharide fraction was assayed by eight gut bacterial growth in vitro, revealing a significant increase in cell density, up to 4-fold, for Lactobacillus acidophilus, Lactobacillus gasseri, and Lactobacillus johnsonii. The impact of six oligosaccharides with different degrees of polymerization (DPs) and structures on the growth of Lactobacillus acidophilus was evaluated. As a result, stachyose and raffinose demonstrated superior support for bacterial growth compared to the other oligosaccharides. This study explored the structure-activity relationship of raffinose family oligosaccharides (RFOs) and showed that the more the monosaccharide type, the more supportive the gut bacteria growth when oligosaccharides have the same molecular weight.
Collapse
Affiliation(s)
- Juan Song
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Yue Liu
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, 100850, China; School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510060, China
| | - Xiangchang Yin
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Yi Nan
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, 100850, China; Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yuhao Shi
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, 100850, China; Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Xiaojuan Chen
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Haizhen Liang
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Jie Zhang
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Baiping Ma
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, 100850, China; School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510060, China; Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
8
|
Inoue Y, Ueda S, Tanikawa T, Sano A, Suzuki R, Todo H, Higuchi Y, Akao K. Characterization of Carbohydrates, Amino Acids, Viscosity, and Antioxidant Capacity in Rice Wines Made in Saitama, Japan, with Different Sake Rice. Foods 2023; 12:4004. [PMID: 37959123 PMCID: PMC10647497 DOI: 10.3390/foods12214004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/18/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
We investigated the physicochemical properties of Japanese rice wines, including their functional properties and carbohydrate and amino acid content in solution and solid state. Three samples were tested. The glucose, allose, and raffinose contents in samples (A, B, C) in g/100 g were (3.47, 3.45, 7.05), (1.60, 1.63, 1.61), and (2.14, 2.75, 1.49), respectively. The total amino acid in µmol/mL was (3.1, 3.5, 4.4). Glutamic acid, alanine, and arginine varied in content across the samples. The viscosity (10 °C) and activation energy (ΔE) calculated using the Andrade equation were (2.81 ± 0.03, 2.74 ± 0.06, 2.69 ± 0.03) mPa-s and (22.3 ± 1.1, 22.0 ± 0.2, 21.3 ± 0.5) kJ/mol, respectively. Principal component analysis using FT-IR spectra confirmed the separation of the samples into principal components 2 and 3. The IC50 values from the DPPH radical scavenging test were (2364.7 ± 185.3, 3041.9 ± 355.1, 3842.7 ± 228.1) µg/mL. Thus, the three rice wines had different carbohydrate and amino acid contents, viscosities, and antioxidant capacities.
Collapse
Affiliation(s)
- Yutaka Inoue
- Laboratory of Nutri-Pharmacotherapeutics Management, Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado 3500295, Saitama, Japan
| | - Sae Ueda
- Laboratory of Nutri-Pharmacotherapeutics Management, Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado 3500295, Saitama, Japan
| | - Takashi Tanikawa
- Laboratory of Nutri-Pharmacotherapeutics Management, Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado 3500295, Saitama, Japan
| | - Aiko Sano
- Laboratory of Natural Products and Phytochemistry, Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado 3500295, Saitama, Japan (R.S.)
| | - Ryuichiro Suzuki
- Laboratory of Natural Products and Phytochemistry, Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado 3500295, Saitama, Japan (R.S.)
| | - Hiroaki Todo
- Laboratory of Pharmaceutics and Cosmeceutics, Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado 3500295, Saitama, Japan
| | - Yuji Higuchi
- Applicative Solution Lab, JASCO Corporation, 2967-5 Ishikawa-machi, Hachioji 1928537, Tokyo, Japan
| | - Kenichi Akao
- Applicative Solution Lab, JASCO Corporation, 2967-5 Ishikawa-machi, Hachioji 1928537, Tokyo, Japan
| |
Collapse
|
9
|
Yamada M, Yoshimoto J, Maeda T, Ishii S, Kishi M, Taguchi T, Morita H. Effect of short-term consumption of yellow peas as noodles on the intestinal environment: A single-armed pre-post comparative pilot study. Food Sci Nutr 2023; 11:4572-4582. [PMID: 37576055 PMCID: PMC10420782 DOI: 10.1002/fsn3.3416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 04/20/2023] [Accepted: 04/22/2023] [Indexed: 08/15/2023] Open
Abstract
Legumes contain dietary fiber and resistant starch, which are beneficial to the intestinal environment. Here, we investigated the effects of yellow pea noodle consumption on the gut microbiota and fecal metabolome of healthy individuals. This single-armed pre-post comparative pilot study evaluated eight healthy female participants who consumed yellow pea noodles for 4 weeks. The gut microbiota composition and fecal metabolomic profile of each participant were evaluated before (2 weeks), during (4 weeks), and after (4 weeks) daily yellow pea noodle consumption. 16S rRNA gene sequencing was performed on stool samples, followed by clustering of operational taxonomic units using the Cluster Database at High Identity with Tolerance and integrated QIIME pipeline to elucidate the gut microbiota composition. The fecal metabolites were analyzed using capillary electrophoresis time-of-flight mass spectrometry and liquid chromatography time-of-flight mass spectrometry. Compared to day 0, the relative abundances of five bacterial genera (Bacteroides, Bilophila, Hungatella, Parabacteroides, and Streptococcus) in the intestinal microbiota significantly decreased, wherein those of Bifidobacterium longum and Ruminococcus bromii were increased on day 29 and decreased to the basal level (day 0) on day 57. Fecal metabolomic analysis identified 11 compounds showing significant fluctuations in participants on day 29 compared to day 0. Although the average levels of short-chain fatty acids in participants did not differ significantly on day 29 compared to those on day 0, the levels tended to increase in individual participants with >8% relative abundance of R. bromii in their gut microbiota. In conclusion, incorporating yellow peas as a daily staple may confer human health benefits by favorably altering the intestinal environment.
Collapse
Affiliation(s)
- Mei Yamada
- Central Research Institute, Mizkan Holdings Co., Ltd.Handa‐ShiJapan
| | - Joto Yoshimoto
- Central Research Institute, Mizkan Holdings Co., Ltd.Handa‐ShiJapan
| | - Tetsuya Maeda
- New Business Development, Mizkan Holdings Co., Ltd.TokyoJapan
| | - Sho Ishii
- Central Research Institute, Mizkan Holdings Co., Ltd.Handa‐ShiJapan
| | - Mikiya Kishi
- Central Research Institute, Mizkan Holdings Co., Ltd.Handa‐ShiJapan
| | | | - Hidetoshi Morita
- Graduate School of Environmental and Life ScienceOkayama UniversityOkayamaJapan
| |
Collapse
|
10
|
Martín R, Rios-Covian D, Huillet E, Auger S, Khazaal S, Bermúdez-Humarán LG, Sokol H, Chatel JM, Langella P. Faecalibacterium: a bacterial genus with promising human health applications. FEMS Microbiol Rev 2023; 47:fuad039. [PMID: 37451743 PMCID: PMC10410495 DOI: 10.1093/femsre/fuad039] [Citation(s) in RCA: 69] [Impact Index Per Article: 69.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 06/08/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023] Open
Abstract
In humans, many diseases are associated with alterations in gut microbiota, namely increases or decreases in the abundance of specific bacterial groups. One example is the genus Faecalibacterium. Numerous studies have underscored that low levels of Faecalibacterium are correlated with inflammatory conditions, with inflammatory bowel disease (IBD) in the forefront. Its representation is also diminished in the case of several diseases, including colorectal cancer (CRC), dermatitis, and depression. Additionally, the relative presence of this genus is considered to reflect, at least in part, intestinal health status because Faecalibacterium is frequently present at reduced levels in individuals with gastrointestinal diseases or disorders. In this review, we first thoroughly describe updates to the taxonomy of Faecalibacterium, which has transformed a single-species taxon to a multispecies taxon over the last decade. We then explore the links discovered between Faecalibacterium abundance and various diseases since the first IBD-focused studies were published. Next, we examine current available strategies for modulating Faecalibacterium levels in the gut. Finally, we summarize the mechanisms underlying the beneficial effects that have been attributed to this genus. Together, epidemiological and experimental data strongly support the use of Faecalibacterium as a next-generation probiotic (NGP) or live biotherapeutic product (LBP).
Collapse
Affiliation(s)
- Rebeca Martín
- Paris-Saclay University, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | - David Rios-Covian
- Paris-Saclay University, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | - Eugénie Huillet
- Paris-Saclay University, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | - Sandrine Auger
- Paris-Saclay University, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | - Sarah Khazaal
- Paris-Saclay University, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | - Luis G Bermúdez-Humarán
- Paris-Saclay University, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | - Harry Sokol
- Paris-Saclay University, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Saint Antoine Hospital, Gastroenterology Department, F-75012 Paris, France
- Paris Centre for Microbiome Medicine (PaCeMM) FHU, F-75012, Paris, France
| | - Jean-Marc Chatel
- Paris-Saclay University, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | - Philippe Langella
- Paris-Saclay University, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| |
Collapse
|
11
|
Dogra SK, Dardinier A, Mainardi F, Siegwald L, Bartova S, Le Roy C, Chou CJ. Application of Computational Data Modeling to a Large-Scale Population Cohort Assists the Discovery of Inositol as a Strain-Specific Substrate for Faecalibacterium prausnitzii. Nutrients 2023; 15:nu15061311. [PMID: 36986043 PMCID: PMC10051675 DOI: 10.3390/nu15061311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/24/2023] [Accepted: 03/01/2023] [Indexed: 03/30/2023] Open
Abstract
Faecalibacterium prausnitzii (F. prausnitzii) is a bacterial taxon in the human gut with anti-inflammatory properties, and this may contribute to the beneficial effects of healthy eating habits. However, little is known about the nutrients that enhance the growth of F. prausnitzii other than simple sugars and fibers. Here, we combined dietary and microbiome data from the American Gut Project (AGP) to identify nutrients that may be linked to the relative abundance of F. prausnitzii. Using a machine learning approach in combination with univariate analyses, we identified that sugar alcohols, carbocyclic sugar, and vitamins may contribute to F. prausnitzii growth. We next explored the effects of these nutrients on the growth of two F. prausnitzii strains in vitro and observed robust and strain-dependent growth patterns on sorbitol and inositol, respectively. In the context of a complex community using in vitro fermentation, neither inositol alone nor in combinations with vitamin B exerted a significant growth-promoting effect on F. prausnitzii, partly due to high variability among the fecal microbiota community from four healthy donors. However, the fecal communities that showed an increase in F. prausnitzii on inulin also responded with at least 60% more F. prausnitzii on any of inositol containing media than control. Future nutritional studies aiming to increase the relative abundance of F. prausnitzii should explore a personalized approach accounting for strain-level genetic variations and community-level microbiome composition.
Collapse
Affiliation(s)
- Shaillay Kumar Dogra
- Department of Gastrointestinal Health, Nestlé Institute of Health Sciences, Nestlé Research, CH-1000 Lausanne, Switzerland
| | - Adrien Dardinier
- Department of Gastrointestinal Health, Nestlé Institute of Health Sciences, Nestlé Research, CH-1000 Lausanne, Switzerland
| | - Fabio Mainardi
- Department of Data Sciences and Precision Nutrition, Nestlé Institute of Health Sciences, Nestlé Research, CH-1000 Lausanne, Switzerland
| | - Léa Siegwald
- Department of Data Sciences and Precision Nutrition, Nestlé Institute of Health Sciences, Nestlé Research, CH-1000 Lausanne, Switzerland
| | - Simona Bartova
- Department of Bioanalytics, Nestlé Institute of Food Safety and Analytical Sciences, Nestlé Research, CH-1000 Lausanne, Switzerland
| | - Caroline Le Roy
- Department of Gastrointestinal Health, Nestlé Institute of Health Sciences, Nestlé Research, CH-1000 Lausanne, Switzerland
| | - Chieh Jason Chou
- Department of Gastrointestinal Health, Nestlé Institute of Health Sciences, Nestlé Research, CH-1000 Lausanne, Switzerland
| |
Collapse
|
12
|
Vasiliu O. Is fecal microbiota transplantation a useful therapeutic intervention for psychiatric disorders? A narrative review of clinical and preclinical evidence. Curr Med Res Opin 2023; 39:161-177. [PMID: 36094098 DOI: 10.1080/03007995.2022.2124071] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The therapeutic management of psychiatric disorders is currently confronted with a critical need to find new therapeutic interventions due to the high rates of non-responsivity or low responsivity in the key pathologies, e.g. schizophrenia spectrum disorders, alcohol use disorders, or major depressive disorder. The modulation of intestinal microbiota has been explored in various organic and psychiatric dysfunctions, with different degrees of success. However, this type of intervention may represent a helpful add-on at a conceptual level since it does not associate negative pharmacokinetics interactions, significant adverse events, or risk for non-adherence in the long term. Oral administration of pre-, pro-, or synbiotics, and especially the treatment with fecal microbiota transplantation (FMT), are methods still in their early research phase for patients with psychiatric disorders, therefore an exploration of data regarding the potential benefits and adverse events of FMT was considered necessary. In order to accomplish this purpose, the available results of research dedicated to each category of psychiatric disorders, starting with depressive and anxiety disorders, continuing with schizophrenia, substance use disorders, and finishing with disorders diagnosed during childhood, were presented in this paper. Seven clinical trials, 16 preclinical studies, three meta-analyses/systematic reviews, and six case reports, all of these representing ten distinct categories of psychiatric disorders or manifestations, have been reviewed. Mood disorders, anxiety disorders, and alcohol dependence have been the most extensively investigated clinical entities from the FMT efficacy and tolerability perspective, and reviewed data are generally promising. Based on the current status of research, FMT may be considered a helpful intervention in specific psychiatric pathologies. Still, this review showed that most of the information is derived from entirely preclinical studies. Therefore, clinical trials with sound methodology and more participants are needed to clarify FMT's benefits and risks in psychiatric disorders.
Collapse
Affiliation(s)
- Octavian Vasiliu
- Spitalul Universitar de Urgenţă Militar Central Dr Carol Davila Ringgold standard institution, Bucuresti, Romania
| |
Collapse
|
13
|
Puhlmann ML, de Vos WM. Intrinsic dietary fibers and the gut microbiome: Rediscovering the benefits of the plant cell matrix for human health. Front Immunol 2022; 13:954845. [PMID: 36059540 PMCID: PMC9434118 DOI: 10.3389/fimmu.2022.954845] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Dietary fibers contribute to structure and storage reserves of plant foods and fundamentally impact human health, partly by involving the intestinal microbiota, notably in the colon. Considerable attention has been given to unraveling the interaction between fiber type and gut microbiota utilization, focusing mainly on single, purified fibers. Studying these fibers in isolation might give us insights into specific fiber effects, but neglects how dietary fibers are consumed daily and impact our digestive tract: as intrinsic structures that include the cell matrix and content of plant tissues. Like our ancestors we consume fibers that are entangled in a complex network of plants cell walls that further encapsulate and shield intra-cellular fibers, such as fructans and other components from immediate breakdown. Hence, the physiological behavior and consequent microbial breakdown of these intrinsic fibers differs from that of single, purified fibers, potentially entailing unexplored health effects. In this mini-review we explain the difference between intrinsic and isolated fibers and discuss their differential impact on digestion. Subsequently, we elaborate on how food processing influences intrinsic fiber structure and summarize available human intervention studies that used intrinsic fibers to assess gut microbiota modulation and related health outcomes. Finally, we explore current research gaps and consequences of the intrinsic plant tissue structure for future research. We postulate that instead of further processing our already (extensively) processed foods to create new products, we should minimize this processing and exploit the intrinsic health benefits that are associated with the original cell matrix of plant tissues.
Collapse
Affiliation(s)
- Marie-Luise Puhlmann
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, Netherlands
- Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, Netherlands
- *Correspondence: Marie-Luise Puhlmann,
| | - Willem M. de Vos
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, Netherlands
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
14
|
Effect of Raw Chickpea in the Broiler Chicken Diet on Intestinal Histomorphology and Intestinal Microbial Populations. Animals (Basel) 2022; 12:ani12141767. [PMID: 35883313 PMCID: PMC9311778 DOI: 10.3390/ani12141767] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/08/2022] [Accepted: 07/08/2022] [Indexed: 11/17/2022] Open
Abstract
The aim of the study was to determine the effect of partial replacement of SBM protein with CPR-derived protein in the broiler rearing period from 22 to 42 days of age on the intestinal histomorphology and the composition of the intestinal microbial population. Male broiler chicks aged 1 day were assigned to two groups with different nutrition schemes (n = 100 in each, 5 cages of 20 chicks in each). The chickens were reared for 42 days. All birds were fed isonitrogenous and isoenergetic diets: starter (1 to 21 d), grower (22 to 35 d), and finisher (36 to 42 d). From rearing day 22, different diets were provided to the birds: the SBM group received feed with 100% soybean meal protein, and the diet of the CPR group the protein originated from soybean meal was replaced by 50% chickpea protein. The study results indicated a significant impact of the inclusion of CPR in the diet on the basic intestinal structures (thickness of myenteron: submucosa, jejunum and duodenum mucosa, and jejunum transversal lamina). The addition of CPR led to shortening of intestinal villi, an increase in villus thickness, and reduced intestine absorptive surface in the duodenum and jejunum. The CPR group exhibited a significantly lower villus length-to-crypt depth ratio in the jejunum (p < 0.001). The inclusion of chickpeas in the diet increased the total count of mesophilic bacteria and coliforms in the intestinal contents (p < 0.05). In summary, it has been demonstrated that the inclusion of CPR in the diet induced considerable disturbances in metabolism and intestinal structure. Although CPR is a cheap protein source, its use in poultry diet does not ensure development of the intestinal structure comparable to that in the case of an SBM-only diet.
Collapse
|
15
|
Vinelli V, Biscotti P, Martini D, Del Bo’ C, Marino M, Meroño T, Nikoloudaki O, Calabrese FM, Turroni S, Taverniti V, Unión Caballero A, Andrés-Lacueva C, Porrini M, Gobbetti M, De Angelis M, Brigidi P, Pinart M, Nimptsch K, Guglielmetti S, Riso P. Effects of Dietary Fibers on Short-Chain Fatty Acids and Gut Microbiota Composition in Healthy Adults: A Systematic Review. Nutrients 2022; 14:nu14132559. [PMID: 35807739 PMCID: PMC9268559 DOI: 10.3390/nu14132559] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/13/2022] [Accepted: 06/18/2022] [Indexed: 12/13/2022] Open
Abstract
There is an increasing interest in investigating dietary strategies able to modulate the gut microbial ecosystem which, in turn, may play a key role in human health. Dietary fibers (DFs) are widely recognized as molecules with prebiotic effects. The main objective of this systematic review was to: (i) analyze the results available on the impact of DF intervention on short chain fatty acids (SCFAs) production; (ii) evaluate the interplay between the type of DF intervention, the gut microbiota composition and its metabolic activities, and any other health associated outcome evaluated in the host. To this aim, initially, a comprehensive database of literature on human intervention studies assessing the effect of confirmed and candidate prebiotics on the microbial ecosystem was developed. Subsequently, studies performed on DFs and analyzing at least the impact on SCFA levels were extracted from the database. A total of 44 studies from 42 manuscripts were selected for the analysis. Among the different types of fiber, inulin was the DF investigated the most (n = 11). Regarding the results obtained on the ability of fiber to modulate total SCFAs, seven studies reported a significant increase, while no significant changes were reported in five studies, depending on the analytical methodology used. A total of 26 studies did not show significant differences in individual SCFAs, while the others reported significant differences for one or more SCFAs. The effect of DF interventions on the SCFA profile seemed to be strictly dependent on the dose and the type and structure of DFs. Overall, these results underline that, although affecting microbiota composition and derived metabolites, DFs do not produce univocal significant increase in SCFA levels in apparently healthy adults. In this regard, several factors (i.e., related to the study protocols and analytical methods) have been identified that could have affected the results obtained in the studies evaluated. Future studies are needed to better elucidate the relationship between DFs and gut microbiota in terms of SCFA production and impact on health-related markers.
Collapse
Affiliation(s)
- Valentina Vinelli
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università Degli Studi di Milano, 20133 Milan, Italy; (V.V.); (P.B.); (D.M.); (C.D.B.); (M.M.); (V.T.); (M.P.); (S.G.)
| | - Paola Biscotti
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università Degli Studi di Milano, 20133 Milan, Italy; (V.V.); (P.B.); (D.M.); (C.D.B.); (M.M.); (V.T.); (M.P.); (S.G.)
| | - Daniela Martini
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università Degli Studi di Milano, 20133 Milan, Italy; (V.V.); (P.B.); (D.M.); (C.D.B.); (M.M.); (V.T.); (M.P.); (S.G.)
| | - Cristian Del Bo’
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università Degli Studi di Milano, 20133 Milan, Italy; (V.V.); (P.B.); (D.M.); (C.D.B.); (M.M.); (V.T.); (M.P.); (S.G.)
| | - Mirko Marino
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università Degli Studi di Milano, 20133 Milan, Italy; (V.V.); (P.B.); (D.M.); (C.D.B.); (M.M.); (V.T.); (M.P.); (S.G.)
| | - Tomás Meroño
- Biomarkers and Nutrimetabolomics Laboratory, Department of Nutrition, Food Sciences and Gastronomy, Food Innovation Net (XIA), Nutrition and Food Safety Research Institute (INSA), Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (T.M.); (A.U.C.); (C.A.-L.)
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Olga Nikoloudaki
- Faculty of Science and Technology, Free University of Bozen, 39100 Bolzano, Italy; (O.N.); (M.G.)
| | - Francesco Maria Calabrese
- Department of Soil Plant and Food Sciences, University of Bari Aldo Moro, 70126 Bari, Italy; (F.M.C.); (M.D.A.)
| | - Silvia Turroni
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy;
| | - Valentina Taverniti
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università Degli Studi di Milano, 20133 Milan, Italy; (V.V.); (P.B.); (D.M.); (C.D.B.); (M.M.); (V.T.); (M.P.); (S.G.)
| | - Andrea Unión Caballero
- Biomarkers and Nutrimetabolomics Laboratory, Department of Nutrition, Food Sciences and Gastronomy, Food Innovation Net (XIA), Nutrition and Food Safety Research Institute (INSA), Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (T.M.); (A.U.C.); (C.A.-L.)
| | - Cristina Andrés-Lacueva
- Biomarkers and Nutrimetabolomics Laboratory, Department of Nutrition, Food Sciences and Gastronomy, Food Innovation Net (XIA), Nutrition and Food Safety Research Institute (INSA), Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (T.M.); (A.U.C.); (C.A.-L.)
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Marisa Porrini
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università Degli Studi di Milano, 20133 Milan, Italy; (V.V.); (P.B.); (D.M.); (C.D.B.); (M.M.); (V.T.); (M.P.); (S.G.)
| | - Marco Gobbetti
- Faculty of Science and Technology, Free University of Bozen, 39100 Bolzano, Italy; (O.N.); (M.G.)
| | - Maria De Angelis
- Department of Soil Plant and Food Sciences, University of Bari Aldo Moro, 70126 Bari, Italy; (F.M.C.); (M.D.A.)
| | - Patrizia Brigidi
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy;
| | - Mariona Pinart
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany; (M.P.); (K.N.)
| | - Katharina Nimptsch
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany; (M.P.); (K.N.)
| | - Simone Guglielmetti
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università Degli Studi di Milano, 20133 Milan, Italy; (V.V.); (P.B.); (D.M.); (C.D.B.); (M.M.); (V.T.); (M.P.); (S.G.)
| | - Patrizia Riso
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università Degli Studi di Milano, 20133 Milan, Italy; (V.V.); (P.B.); (D.M.); (C.D.B.); (M.M.); (V.T.); (M.P.); (S.G.)
- Correspondence:
| |
Collapse
|
16
|
Kasprowicz-Potocka M, Gulewicz P, Zaworska-Zakrzewska A. The content of raffinose oligosaccharides in legumes
and their importance for animals. JOURNAL OF ANIMAL AND FEED SCIENCES 2022. [DOI: 10.22358/jafs/149656/2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
17
|
Prebiotics as a Tool for the Prevention and Treatment of Obesity and Diabetes: Classification and Ability to Modulate the Gut Microbiota. Int J Mol Sci 2022; 23:ijms23116097. [PMID: 35682774 PMCID: PMC9181475 DOI: 10.3390/ijms23116097] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 02/06/2023] Open
Abstract
Diabetes and obesity are metabolic diseases that have become alarming conditions in recent decades. Their rate of increase is becoming a growing concern worldwide. Recent studies have established that the composition and dysfunction of the gut microbiota are associated with the development of diabetes. For this reason, strategies such as the use of prebiotics to improve intestinal microbial structure and function have become popular. Consumption of prebiotics for modulating the gut microbiota results in the production of microbial metabolites such as short-chain fatty acids that play essential roles in reducing blood glucose levels, mitigating insulin resistance, reducing inflammation, and promoting the secretion of glucagon-like peptide 1 in the host, and this accounts for the observed remission of metabolic diseases. Prebiotics can be either naturally extracted from non-digestible carbohydrate materials or synthetically produced. In this review, we discussed current findings on how the gut microbiota and microbial metabolites may influence host metabolism to promote health. We provided evidence from various studies that show the ability of prebiotic consumption to alter gut microbial profile, improve gut microbial metabolism and functions, and improve host physiology to alleviate diabetes and obesity. We conclude among other things that the application of systems biology coupled with bioinformatics could be essential in ascertaining the exact mechanisms behind the prebiotic–gut microbe–host interactions required for diabetes and obesity improvement.
Collapse
|
18
|
Parihar AK, Kumar J, Gupta DS, Lamichaney A, Naik SJ S, Singh AK, Dixit GP, Gupta S, Toklu F. Genomics Enabled Breeding Strategies for Major Biotic Stresses in Pea ( Pisum sativum L.). FRONTIERS IN PLANT SCIENCE 2022; 13:861191. [PMID: 35665148 PMCID: PMC9158573 DOI: 10.3389/fpls.2022.861191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/28/2022] [Indexed: 06/15/2023]
Abstract
Pea (Pisum sativum L.) is one of the most important and productive cool season pulse crops grown throughout the world. Biotic stresses are the crucial constraints in harnessing the potential productivity of pea and warrant dedicated research and developmental efforts to utilize omics resources and advanced breeding techniques to assist rapid and timely development of high-yielding multiple stress-tolerant-resistant varieties. Recently, the pea researcher's community has made notable achievements in conventional and molecular breeding to accelerate its genetic gain. Several quantitative trait loci (QTLs) or markers associated with genes controlling resistance for fusarium wilt, fusarium root rot, powdery mildew, ascochyta blight, rust, common root rot, broomrape, pea enation, and pea seed borne mosaic virus are available for the marker-assisted breeding. The advanced genomic tools such as the availability of comprehensive genetic maps and linked reliable DNA markers hold great promise toward the introgression of resistance genes from different sources to speed up the genetic gain in pea. This review provides a brief account of the achievements made in the recent past regarding genetic and genomic resources' development, inheritance of genes controlling various biotic stress responses and genes controlling pathogenesis in disease causing organisms, genes/QTLs mapping, and transcriptomic and proteomic advances. Moreover, the emerging new breeding approaches such as transgenics, genome editing, genomic selection, epigenetic breeding, and speed breeding hold great promise to transform pea breeding. Overall, the judicious amalgamation of conventional and modern omics-enabled breeding strategies will augment the genetic gain and could hasten the development of biotic stress-resistant cultivars to sustain pea production under changing climate. The present review encompasses at one platform the research accomplishment made so far in pea improvement with respect to major biotic stresses and the way forward to enhance pea productivity through advanced genomic tools and technologies.
Collapse
Affiliation(s)
- Ashok Kumar Parihar
- Crop Improvement Division, ICAR-Indian Institute of Pulses Research (ICAR-IIPR), Kanpur, India
| | - Jitendra Kumar
- Crop Improvement Division, ICAR-Indian Institute of Pulses Research (ICAR-IIPR), Kanpur, India
| | - Debjyoti Sen Gupta
- Crop Improvement Division, ICAR-Indian Institute of Pulses Research (ICAR-IIPR), Kanpur, India
| | - Amrit Lamichaney
- Crop Improvement Division, ICAR-Indian Institute of Pulses Research (ICAR-IIPR), Kanpur, India
| | - Satheesh Naik SJ
- Crop Improvement Division, ICAR-Indian Institute of Pulses Research (ICAR-IIPR), Kanpur, India
| | - Anil K. Singh
- Crop Improvement Division, ICAR-Indian Institute of Pulses Research (ICAR-IIPR), Kanpur, India
| | - Girish P. Dixit
- All India Coordinated Research Project on Chickpea, ICAR-IIPR, Kanpur, India
| | - Sanjeev Gupta
- Indian Council of Agricultural Research, New Delhi, India
| | - Faruk Toklu
- Department of Field Crops, Faculty of Agricultural, Cukurova University, Adana, Turkey
| |
Collapse
|
19
|
Kadyan S, Sharma A, Arjmandi BH, Singh P, Nagpal R. Prebiotic Potential of Dietary Beans and Pulses and Their Resistant Starch for Aging-Associated Gut and Metabolic Health. Nutrients 2022; 14:nu14091726. [PMID: 35565693 PMCID: PMC9100130 DOI: 10.3390/nu14091726] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 01/27/2023] Open
Abstract
Dietary pulses, including dry beans, lentils, chickpeas, and dry peas, have the highest proportion of fiber among different legume cultivars and are inexpensive, easily accessible, and have a long shelf-life. The inclusion of pulses in regular dietary patterns is an easy and effective solution for achieving recommended fiber intake and maintaining a healthier gut and overall health. Dietary pulses-derived resistant starch (RS) is a relatively less explored prebiotic ingredient. Several in vitro and preclinical studies have elucidated the crucial role of RS in fostering and shaping the gut microbiota composition towards homeostasis thereby improving host metabolic health. However, in humans and aged animal models, the effect of only the cereals and tubers derived RS has been studied. In this context, this review collates literature pertaining to the beneficial effects of dietary pulses and their RS on gut microbiome-metabolome signatures in preclinical and clinical studies while contemplating their potential and prospects for better aging-associated gut health. In a nutshell, the incorporation of dietary pulses and their RS in diet fosters the growth of beneficial gut bacteria and significantly enhances the production of short-chain fatty acids in the colon.
Collapse
|
20
|
Elango D, Rajendran K, Van der Laan L, Sebastiar S, Raigne J, Thaiparambil NA, El Haddad N, Raja B, Wang W, Ferela A, Chiteri KO, Thudi M, Varshney RK, Chopra S, Singh A, Singh AK. Raffinose Family Oligosaccharides: Friend or Foe for Human and Plant Health? FRONTIERS IN PLANT SCIENCE 2022; 13:829118. [PMID: 35251100 PMCID: PMC8891438 DOI: 10.3389/fpls.2022.829118] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 01/26/2022] [Indexed: 05/27/2023]
Abstract
Raffinose family oligosaccharides (RFOs) are widespread across the plant kingdom, and their concentrations are related to the environment, genotype, and harvest time. RFOs are known to carry out many functions in plants and humans. In this paper, we provide a comprehensive review of RFOs, including their beneficial and anti-nutritional properties. RFOs are considered anti-nutritional factors since they cause flatulence in humans and animals. Flatulence is the single most important factor that deters consumption and utilization of legumes in human and animal diets. In plants, RFOs have been reported to impart tolerance to heat, drought, cold, salinity, and disease resistance besides regulating seed germination, vigor, and longevity. In humans, RFOs have beneficial effects in the large intestine and have shown prebiotic potential by promoting the growth of beneficial bacteria reducing pathogens and putrefactive bacteria present in the colon. In addition to their prebiotic potential, RFOs have many other biological functions in humans and animals, such as anti-allergic, anti-obesity, anti-diabetic, prevention of non-alcoholic fatty liver disease, and cryoprotection. The wide-ranging applications of RFOs make them useful in food, feed, cosmetics, health, pharmaceuticals, and plant stress tolerance; therefore, we review the composition and diversity of RFOs, describe the metabolism and genetics of RFOs, evaluate their role in plant and human health, with a primary focus in grain legumes.
Collapse
Affiliation(s)
- Dinakaran Elango
- Department of Agronomy, Iowa State University, Ames, IA, United States
| | - Karthika Rajendran
- VIT School of Agricultural Innovations and Advanced Learning, Vellore Institute of Technology, Vellore, India
| | - Liza Van der Laan
- Department of Agronomy, Iowa State University, Ames, IA, United States
| | - Sheelamary Sebastiar
- Division of Crop Improvement, ICAR-Sugarcane Breeding Institute, Coimbatore, India
| | - Joscif Raigne
- Department of Agronomy, Iowa State University, Ames, IA, United States
| | | | - Noureddine El Haddad
- International Center for Agricultural Research in the Dry Areas, Rabat, Morocco
- Faculty of Sciences, Mohammed V University of Rabat, Rabat, Morocco
| | - Bharath Raja
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Wanyan Wang
- Ecosystem Science and Management, Penn State University, University Park, PA, United States
| | - Antonella Ferela
- Department of Agronomy, Iowa State University, Ames, IA, United States
| | - Kevin O. Chiteri
- Department of Agronomy, Iowa State University, Ames, IA, United States
| | - Mahendar Thudi
- Department of Agricultural Biotechnology and Molecular Biology, Dr. Rajendra Prasad Central Agricultural University, Pusa, India
- Centre for Crop Health, University of Southern Queensland, Toowoomba, QLD, Australia
| | - Rajeev K. Varshney
- International Crops Research Institute for the Semi-Arid Tropics, Patancheru, India
- State Agricultural Biotechnology Centre, Crop Research Innovation Centre, Food Futures Institute, Murdoch University, Murdoch, WA, Australia
| | - Surinder Chopra
- Department of Plant Science, Penn State University, University Park, PA, United States
| | - Arti Singh
- Department of Agronomy, Iowa State University, Ames, IA, United States
| | - Asheesh K. Singh
- Department of Agronomy, Iowa State University, Ames, IA, United States
| |
Collapse
|
21
|
Xiong W, Devkota L, Zhang B, Muir J, Dhital S. Intact cells: “Nutritional capsules” in plant foods. Compr Rev Food Sci Food Saf 2022; 21:1198-1217. [DOI: 10.1111/1541-4337.12904] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 11/23/2021] [Accepted: 12/13/2021] [Indexed: 12/12/2022]
Affiliation(s)
- Weiyan Xiong
- Department of Chemical and Biological Engineering Monash University Clayton Campus, VIC 3800 Australia
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety South China University of Technology Guangzhou Guangdong P. R. China
| | - Lavaraj Devkota
- Department of Chemical and Biological Engineering Monash University Clayton Campus, VIC 3800 Australia
| | - Bin Zhang
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety South China University of Technology Guangzhou Guangdong P. R. China
| | - Jane Muir
- Department of Gastroenterology Central Clinical School, Monash University Melbourne Victoria Australia
| | - Sushil Dhital
- Department of Chemical and Biological Engineering Monash University Clayton Campus, VIC 3800 Australia
| |
Collapse
|
22
|
Tanno H, Fujii T, Hirano K, Maeno S, Tonozuka T, Sakamoto M, Ohkuma M, Tochio T, Endo A. Characterization of fructooligosaccharide metabolism and fructooligosaccharide-degrading enzymes in human commensal butyrate producers. Gut Microbes 2022; 13:1-20. [PMID: 33439065 PMCID: PMC7833758 DOI: 10.1080/19490976.2020.1869503] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Butyrate produced by gut microbiota has multiple beneficial effects on host health, and oligosaccharides derived from host diets and glycans originating from host mucus are major sources of its production. A significant reduction of butyrate-producing bacteria has been reported in patients with inflammatory bowel diseases and colorectal cancers. Although gut butyrate levels are important for host health, oligosaccharide metabolic properties in butyrate producers are poorly characterized. We studied the metabolic properties of fructooligosaccharides (FOSs) and other prebiotic oligosaccharides (i.e. raffinose and xylooligosaccharides; XOSs) in gut butyrate producers. 1-Kestose (kestose) and nystose, FOSs with degrees of polymerization of 3 and 4, respectively, were also included. Fourteen species of butyrate producers were divided into four groups based on their oligosaccharide metabolic properties, which are group A (two species) metabolizing all oligosaccharides tested, group F (four species) metabolizing FOSs but not raffinose and XOSs, group XR (four species) metabolizing XOSs and/or raffinose but not FOSs, and group N (four species) metabolizing none of the oligosaccharides tested. Species assigned to groups A and XR are rich glycoside hydrolase (GH) holders, whereas those in groups F and N are the opposite. In total, 17 enzymes assigned to GH32 were observed in nine of the 14 butyrate producers tested, and species that metabolized FOSs had at least one active GH32 enzyme. The GH32 enzymes were divided into four clusters by phylogenetic analysis. Heterologous gene expression analysis revealed that the GH32 enzymes in each cluster had similar FOS degradation properties within clusters, which may be linked to the conservation/substitution of amino acids to bind with substrates in GH32 enzymes. This study provides important knowledge to understand the impact of FOS supplementation on the activation of gut butyrate producers. Abbreviations: SCFA, short chain fatty acid; FOS, fructooligosaccharide; XOS, xylooligosaccharide; CAZy, Carbohydrate Active Enzymes; CBM, carbohydrate-binding module; PUL, polysaccharide utilization locus; S6PH sucrose-6-phosphate hydrolase.
Collapse
Affiliation(s)
- Hiroki Tanno
- Department of Food, Aroma and Cosmetic Chemistry, Faculty of Bioindustry, Tokyo University of Agriculture, Hokkaido, Japan
| | | | | | - Shintaro Maeno
- Department of Food, Aroma and Cosmetic Chemistry, Faculty of Bioindustry, Tokyo University of Agriculture, Hokkaido, Japan
| | - Takashi Tonozuka
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Mitsuo Sakamoto
- PRIME, Japan Agency for Medical Research and Development (AMED), Ibaraki, Japan,Microbe Division/Japan Collection of Microorganisms, RIKEN BioResource Research Center, Ibaraki, Japan
| | - Moriya Ohkuma
- Microbe Division/Japan Collection of Microorganisms, RIKEN BioResource Research Center, Ibaraki, Japan
| | | | - Akihito Endo
- Department of Food, Aroma and Cosmetic Chemistry, Faculty of Bioindustry, Tokyo University of Agriculture, Hokkaido, Japan,CONTACT Akihito Endo Department of Food, Aroma and Cosmetic Chemistry, Faculty of Bioindustry, Tokyo University of Agriculture, 196 Yasaka, Abashiri, Hokkaido099-2493, Japan
| |
Collapse
|
23
|
Kumari M, Singh P, Nataraj BH, Kokkiligadda A, Naithani H, Azmal Ali S, Behare PV, Nagpal R. Fostering next-generation probiotics in human gut by targeted dietary modulation: An emerging perspective. Food Res Int 2021; 150:110716. [PMID: 34865747 DOI: 10.1016/j.foodres.2021.110716] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 08/07/2021] [Accepted: 09/15/2021] [Indexed: 12/16/2022]
Abstract
Emerging evidence and an in-depth understanding of the microbiome have helped in identifying beneficial commensals and their therapeutic potentials. Specific commensal taxa/ strains of the human gut microbiome have been positively associated with human health and recently termed as next-generation probiotics (NGPs). Of these, Akkermansia muciniphila, Ruminococcus bromii, Faecalibacterium prausnitzii, Anaerobutyricum hallii, and Roseburia intestinalis are the five most relevant gut-derived NGPs that have demonstrated therapeutic potential in managing metabolic diseases. Specific and natural dietary interventions can modulate the abundance and activity of these beneficial bacteria in the gut. Hence, the understanding of targeted stimulation of specific NGP by specific probiotic-targeted diets (PTD) is indispensable for the rational application of their combination. The supplementation of NGP with its specific PTD will help the strain(s) to compete with harmful microbes and acquire its niche. This combination would enhance the effectiveness of NGPs to be used as "live biotherapeutic products" or food nutraceuticals. Under the current milieu, we review various PTDs that influence the abundance of specific potential NGPs, and contemplates potential interactions between diet, microbes, and their effects on host health. Taking into account the study mentioned, we propose that combining NGPs will provide an alternate solution for developing the new diet in conjunction with PTD.
Collapse
Affiliation(s)
- Manorama Kumari
- Technofunctional Starters Lab, National Collection of Dairy Cultures, Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal 132001, Haryana, India
| | - Parul Singh
- Proteomics and Cell Biology Lab, Animal Biotechnology Center, National Dairy Research Institute, Karnal 132001, Haryana, India
| | - Basavaprabhu H Nataraj
- Technofunctional Starters Lab, National Collection of Dairy Cultures, Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal 132001, Haryana, India
| | - Anusha Kokkiligadda
- Technofunctional Starters Lab, National Collection of Dairy Cultures, Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal 132001, Haryana, India
| | - Harshita Naithani
- Technofunctional Starters Lab, National Collection of Dairy Cultures, Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal 132001, Haryana, India
| | - Syed Azmal Ali
- Proteomics and Cell Biology Lab, Animal Biotechnology Center, National Dairy Research Institute, Karnal 132001, Haryana, India
| | - Pradip V Behare
- Technofunctional Starters Lab, National Collection of Dairy Cultures, Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal 132001, Haryana, India.
| | - Ravinder Nagpal
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, FL 32306, USA.
| |
Collapse
|
24
|
Berding K, Vlckova K, Marx W, Schellekens H, Stanton C, Clarke G, Jacka F, Dinan TG, Cryan JF. Diet and the Microbiota-Gut-Brain Axis: Sowing the Seeds of Good Mental Health. Adv Nutr 2021; 12:1239-1285. [PMID: 33693453 PMCID: PMC8321864 DOI: 10.1093/advances/nmaa181] [Citation(s) in RCA: 129] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/18/2020] [Accepted: 12/21/2020] [Indexed: 02/06/2023] Open
Abstract
Over the past decade, the gut microbiota has emerged as a key component in regulating brain processes and behavior. Diet is one of the major factors involved in shaping the gut microbiota composition across the lifespan. However, whether and how diet can affect the brain via its effects on the microbiota is only now beginning to receive attention. Several mechanisms for gut-to-brain communication have been identified, including microbial metabolites, immune, neuronal, and metabolic pathways, some of which could be prone to dietary modulation. Animal studies investigating the potential of nutritional interventions on the microbiota-gut-brain axis have led to advancements in our understanding of the role of diet in this bidirectional communication. In this review, we summarize the current state of the literature triangulating diet, microbiota, and host behavior/brain processes and discuss potential underlying mechanisms. Additionally, determinants of the responsiveness to a dietary intervention and evidence for the microbiota as an underlying modulator of the effect of diet on brain health are outlined. In particular, we emphasize the understudied use of whole-dietary approaches in this endeavor and the need for greater evidence from clinical populations. While promising results are reported, additional data, specifically from clinical cohorts, are required to provide evidence-based recommendations for the development of microbiota-targeted, whole-dietary strategies to improve brain and mental health.
Collapse
Affiliation(s)
| | | | - Wolfgang Marx
- Deakin University, iMPACT – the Institute for Mental and Physical Health and Clinical Translation, Food & Mood Centre, School of Medicine, Barwon Health, Geelong, VIC,Australia
| | - Harriet Schellekens
- APC Microbiome Ireland, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Catherine Stanton
- APC Microbiome Ireland, Cork, Ireland
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland
| | - Gerard Clarke
- APC Microbiome Ireland, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Sciences, University College Cork, Cork, Ireland
| | - Felice Jacka
- Deakin University, iMPACT – the Institute for Mental and Physical Health and Clinical Translation, Food & Mood Centre, School of Medicine, Barwon Health, Geelong, VIC,Australia
- Centre for Adolescent Health, Murdoch Children's Research Institute, Parkville, VIC, Australia
- Black Dog Institute, Randwick, NSW, Australia
- College of Public Health, Medical & Veterinary Sciences, James Cook University, Douglas, QLD, Australia
| | - Timothy G Dinan
- APC Microbiome Ireland, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Sciences, University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| |
Collapse
|
25
|
Liu H, Xu J, Xu X, Yuan Z, Song H, Yang L, Zhu D. Structure/function relationships of bean polysaccharides: A review. Crit Rev Food Sci Nutr 2021; 63:330-344. [PMID: 34256630 DOI: 10.1080/10408398.2021.1946480] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Beans are a rich source of high quality protein and oil, and have attracted increasing interest from both nutrition researchers and health-conscious consumers. This review aims to provide a foundation for the future research and development of bean polysaccharides, by summarizing the sources, structure, and functions of bioactive bean polysaccharides. Structure/function relationships are described, for biological activities, such as immunological, antioxidant and anti-diabetes. This will provide useful guidance for further optimization of polysaccharide structure and the development of bean polysaccharides as a novel functional material.
Collapse
Affiliation(s)
- He Liu
- College of Food Science and Technology, Bohai University, Jinzhou, Liaoning, China
| | - Jiaxin Xu
- College of Food Science and Technology, Bohai University, Jinzhou, Liaoning, China
| | - Xinyue Xu
- College of Food Science and Technology, Bohai University, Jinzhou, Liaoning, China
| | - Zhiheng Yuan
- College of Food Science and Technology, Bohai University, Jinzhou, Liaoning, China
| | - Hong Song
- College of Food Science and Technology, Bohai University, Jinzhou, Liaoning, China
| | - Lina Yang
- College of Food Science and Technology, Bohai University, Jinzhou, Liaoning, China
| | - Danshi Zhu
- College of Food Science and Technology, Bohai University, Jinzhou, Liaoning, China
| |
Collapse
|
26
|
Illescas O, Rodríguez-Sosa M, Gariboldi M. Mediterranean Diet to Prevent the Development of Colon Diseases: A Meta-Analysis of Gut Microbiota Studies. Nutrients 2021; 13:nu13072234. [PMID: 34209683 PMCID: PMC8308215 DOI: 10.3390/nu13072234] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/23/2021] [Accepted: 06/25/2021] [Indexed: 02/06/2023] Open
Abstract
Gut microbiota dysbiosis is a common feature in colorectal cancer (CRC) and inflammatory bowel diseases (IBD). Adoption of the Mediterranean diet (MD) has been proposed as a therapeutic approach for the prevention of multiple diseases, and one of its mechanisms of action is the modulation of the microbiota. We aimed to determine whether MD can be used as a preventive measure against cancer and inflammation-related diseases of the gut, based on its capacity to modulate the local microbiota. A joint meta-analysis of publicly available 16S data derived from subjects following MD or other diets and from patients with CRC, IBD, or other gut-related diseases was conducted. We observed that the microbiota associated with MD was enriched in bacteria that promote an anti-inflammatory environment but low in taxa with pro-inflammatory properties capable of altering intestinal barrier functions. We found an opposite trend in patients with intestinal diseases, including cancer. Some of these differences were maintained even when MD was compared to healthy controls without a defined diet. Our findings highlight the unique effects of MD on the gut microbiota and suggest that integrating MD principles into a person’s lifestyle may serve as a preventive method against cancer and other gut-related diseases.
Collapse
Affiliation(s)
- Oscar Illescas
- Genetic Epidemiology and Pharmacogenomics Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori (INT), 20133 Milan, Italy;
| | - Miriam Rodríguez-Sosa
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México (UNAM), Tlalnepantla C.P. 54090, MEX, Mexico;
| | - Manuela Gariboldi
- Genetic Epidemiology and Pharmacogenomics Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori (INT), 20133 Milan, Italy;
- Correspondence: ; Tel.: +39-2-23902042
| |
Collapse
|
27
|
Herrera A C, Gonzalez de Mejia E. Feasibility of commercial breadmaking using chickpea as an ingredient: Functional properties and potential health benefits. J Food Sci 2021; 86:2208-2224. [PMID: 34028013 DOI: 10.1111/1750-3841.15759] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/31/2021] [Accepted: 04/06/2021] [Indexed: 01/16/2023]
Abstract
The use of pulses, such as chickpea, has become more relevant in baking as they exhibit potential health benefits such as reduction of obesity, type 2 diabetes, and prevention of colon cancer. It is also a good source of highly bioavailable protein at a low cost. This allows companies to develop new innovative products that meet the demand for nutritional value-added baked goods. Further understanding of the baking properties and rheology of chickpea flours will allow the baking industry to overcome processing and quality challenges related to the effects caused by the addition of non-gluten-forming ingredients. Therefore, the objective of this review was to summarize the rheological properties of baking formulations using chickpea as an ingredient in order to produce quality products while preserving the nutritional aspects of this legume. It also covers health benefits linked to chickpea-specific compounds.
Collapse
Affiliation(s)
- Catherin Herrera A
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Elvira Gonzalez de Mejia
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
28
|
Acquah C, Ohemeng-Boahen G, Power KA, Tosh SM. The Effect of Processing on Bioactive Compounds and Nutritional Qualities of Pulses in Meeting the Sustainable Development Goal 2. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.681662] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Diversification of plant-based food sources is necessary to improve global food and nutritional security. Pulses have enormous nutritional and health benefits in preventing malnutrition and chronic diseases while contributing positively to reducing environmental footprint. Pulses are rich in diverse nutritional and non-nutritional constituents which can be classified as bioactive compounds due to their biological effect. These bioactive compounds include but are not limited to proteins, dietary fibres, resistant starch, polyphenols, saponins, lectins, phytic acids, and enzyme inhibitors. While these compounds are of importance in ensuring food and nutritional security, some of the bioactive constituents have ambivalent properties. These properties include having antioxidant, anti-hypertensive and prebiotic effects. Others have a deleterious effect of decreasing the digestibility and/or bioavailability of essential nutrients and are therefore termed antinutritional factors/compounds. Various processing techniques exist to reduce the content of antinutritional factors found in pulses. Traditional processing of pulses comprises soaking, dehulling, milling, germination, fermentation, and boiling, while examples of emerging processing techniques include microwaving, extrusion, and micronization. These processing techniques can be tailored to purpose and pulse type to achieve desired results. Herein, the nutritional qualities and properties of bioactive compounds found in pulses in meeting the sustainable development goals are presented. It also discusses the effect of processing techniques on the nutritional and non-nutritional constituents in pulses as well as the health and environmental benefits of pulse-diet consumption. Major challenges linked to pulses that could limit their potential of being ideal crops in meeting the sustainable development goal 2 agenda are highlighted.
Collapse
|
29
|
Novel and emerging prebiotics: Advances and opportunities. ADVANCES IN FOOD AND NUTRITION RESEARCH 2021; 95:41-95. [PMID: 33745516 DOI: 10.1016/bs.afnr.2020.08.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Consumers are conscientiously changing their eating preferences toward healthier options, such as functional foods enriched with pre- and probiotics. Prebiotics are attractive bioactive compounds with multidimensional beneficial action on both human and animal health, namely on the gastrointestinal tract, cardiometabolism, bones or mental health. Conventionally, prebiotics are non-digestible carbohydrates which generally present favorable organoleptic properties, temperature and acidic stability, and are considered interesting food ingredients. However, according to the current definition of prebiotics, application categories other than food are accepted, as well as non-carbohydrate substrates and bioactivity at extra-intestinal sites. Regulatory issues are considered a major concern for prebiotics since a clear understanding and application of these compounds among the consumers, regulators, scientists, suppliers or manufacturers, health-care providers and standards or recommendation-setting organizations are of utmost importance. Prebiotics can be divided in several categories according to their development and regulatory status. Inulin, galactooligosaccharides, fructooligosaccharides and lactulose are generally classified as well established prebiotics. Xylooligosaccharides, isomaltooligosaccharides, chitooligosaccharides and lactosucrose are classified as "emerging" prebiotics, while raffinose, neoagaro-oligosaccharides and epilactose are "under development." Other substances, such as human milk oligosaccharides, polyphenols, polyunsaturated fatty acids, proteins, protein hydrolysates and peptides are considered "new candidates." This chapter will encompass actual information about the non-established prebiotics, mainly their physicochemical properties, market, legislation, biological activity and possible applications. Generally, there is a lack of clear demonstrations about the effective health benefits associated with all the non-established prebiotics. Overcoming this limitation will undoubtedly increase the demand for these compounds and their market size will follow the consumer's trend.
Collapse
|
30
|
Arora A, Behl T, Sehgal A, Singh S, Sharma N, Bhatia S, Sobarzo-Sanchez E, Bungau S. Unravelling the involvement of gut microbiota in type 2 diabetes mellitus. Life Sci 2021; 273:119311. [PMID: 33662428 DOI: 10.1016/j.lfs.2021.119311] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/23/2021] [Accepted: 02/25/2021] [Indexed: 02/07/2023]
Abstract
Type 2 diabetes mellitus is the most prevalent metabolic disorder characterized by hyperglycemia, hyperlipidemia as well as insulin resistance and is affecting the lives of a huge population across the globe. Genetic mutations, obesity and lack of physical activity constitute the possible factors that can lead to onset and progression of this disorder. However, there is another major factor that can be the root cause of type 2 diabetes mellitus and that is an imbalance in the microorganisms that inhabit the gut. The gut microbiome is a vital component that needs to be given significant attention because any "dysbiosis" in the colonic microorganisms can transform the host from a state of health to a state of disease. This transformation is quite obvious since the gut barrier integrity, host metabolism such as sensitivity to insulin and maintaining blood glucose level are carried out by the tiny organisms inhabiting our intestine. In fact, the normal functioning of the human body is accredited to the microbes, particularly the bacteria, because they generate their metabolites that communicate with host cells and maintain normal physiology. Giving importance to gut health is, therefore, necessary to prevent metabolic diseases that can be maintained by the intake of prebiotics, probiotics, synbiotics along with healthy diet. The tiny microorganisms in the gut that keep our body free of disorders such as type 2 diabetes mellitus need to be in a state of 'eubiosis', else the consequences of disturbance in gut microbes can progress to serious complications in the host.
Collapse
Affiliation(s)
- Arpita Arora
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Neelam Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Saurabh Bhatia
- Amity Institute of Pharmacy, Amity University, Haryana, India; Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - Eduardo Sobarzo-Sanchez
- Instituto de investigacion y Postgrado, Facultad de Ciencias de la Salud, Universidad Central de Chile, Santiago, Chile; Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Simona Bungau
- Department of Pharmacy, Faculty of Pharmacy, University of Oradea, Romania
| |
Collapse
|
31
|
Effects of Low and High FODMAP Diets on Human Gastrointestinal Microbiota Composition in Adults with Intestinal Diseases: A Systematic Review. Microorganisms 2020; 8:microorganisms8111638. [PMID: 33114017 PMCID: PMC7690730 DOI: 10.3390/microorganisms8111638] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 10/18/2020] [Indexed: 12/12/2022] Open
Abstract
A diet high in non-digestible carbohydrates is known to promote health, in part through its effect on the gut microbiome. While substantially proven for healthy individuals, these effects are more ambiguous in subjects with intestinal diseases. At the same time, a diet low in these fermentable carbohydrates, the low FODMAP (acronym for Fermentable Oligo-, Di-, Mono-saccharides, And Polyols) diet, is gaining popularity as a treatment option for symptom relief in irritable bowel syndrome and inflammatory bowel disease. There are, however, several indications that this diet induces effects opposite to those of prebiotic supplementation, resulting in gut microbiome changes that might be detrimental. Here, we provide a systematic review of the effects of low and high FODMAP diets on human gastrointestinal microbiota composition in adults with intestinal diseases, through literature screening using the databases PubMed, Embase, and Web of Science. We summarize study findings on dietary impact in patients, including the effect on bacterial taxa and diversity. In general, similar to healthy subjects, restricting non-digestible carbohydrate intake in patients with intestinal diseases has opposite effects compared to prebiotic supplementation, causing a reduction in bifidobacteria and an increase in bacteria associated with dysbiosis. Future studies should focus on assessing whether the induced microbial changes persist over time and have adverse effects on long-term colonic health.
Collapse
|
32
|
Effect of bean structure on microbiota utilization of plant nutrients: An in-vitro study using the simulator of the human intestinal microbial ecosystem (SHIME®). J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104087] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
33
|
Câmara AKFI, Paglarini CDS, Vidal VAS, Dos Santos M, Pollonio MAR. Meat products as prebiotic food carrier. ADVANCES IN FOOD AND NUTRITION RESEARCH 2020; 94:223-265. [PMID: 32892834 DOI: 10.1016/bs.afnr.2020.06.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | | | | | - Mirian Dos Santos
- School of Food Engineering, State University of Campinas, Campinas, Brazil
| | | |
Collapse
|
34
|
Amorim C, Silvério SC, Cardoso BB, Alves JI, Pereira MA, Rodrigues LR. In vitro fermentation of raffinose to unravel its potential as prebiotic ingredient. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109322] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
35
|
Stadnicka K, Bogucka J, Stanek M, Graczyk R, Krajewski K, Maiorano G, Bednarczyk M. Injection of Raffinose Family Oligosaccharides at 12 Days of Egg Incubation Modulates the Gut Development and Resistance to Opportunistic Pathogens in Broiler Chickens. Animals (Basel) 2020; 10:ani10040592. [PMID: 32244432 PMCID: PMC7222726 DOI: 10.3390/ani10040592] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/17/2020] [Accepted: 03/27/2020] [Indexed: 12/30/2022] Open
Abstract
Simple Summary In the face of a changing climate, antibiotic resistance and uprising outbreaks of ‘forgotten’ diseases, there is an urgent need for new, safe strategies and natural immunomodulatory products in intensive broiler production. So far, many prebiotic and synbiotic preparations have been explored to influence the gut microbiota composition and the host immune system. However, the effects of bioactive compounds are not always found to be consistent. Global analysis allows us to define at least several reasons for those discrepancies: different chemical composition and origins of the oligosaccharides, interaction with other feed ingredients, and unfavorable environmental impact, where the two latter seem to be most important. The in ovo strategy to automatically inject prebiotics at day 12 of egg incubation has been elaborated to eliminate some of those factors and provide a fully controlled modulation of the host biology. Here, the prebiotic modulatory effects were reflected in the improved gut structure and resistance to opportunistic pathogens in the final weeks of broiler rearing, showing lifelong effects. The in ovo strategy allows for the earliest possible immunomodulatory treatments with the use of naturally sourced bioactive compounds, one of them being legume raffinose oligosaccharides. Abstract The aim was to investigate the impact of an automatic in ovo injection of the raffinose family oligosaccharides (RFO) extracted from the seeds of Lupinus luteus L, on the chicken performance and resistance in a production environment. At day 12 of incubation, a total of 57,900 eggs (Ross 308) were divided into two groups: 1/ Control, injected with 0.9% NaCl and 2/ RFO group, injected with 1.9 mg/egg of the lupin seed extract, dissolved in 0.2 mL NaCl. The performance parameters, biochemical indices (lipid profile, hepatic parameters), gut histomorphology and duodenum structure, oxidative stability of the meat and microbiological counts of the major commensal microbiota species were analyzed. Mortality, body weight, and feed conversion ratio (FCR) were not affected. By day 42, several health indices were improved with RFO and were reflected in a beneficial lipid blood profile, increased villi surface and better combating opportunistic pathogens through reduction of Clostridia and decreased coccidia counts. The RFO increased meat oxidation, but only at the beginning of the storage. The RFO sourced from local legumes can be considered a promising prebiotic for broiler chickens. In ovo delivery of prebiotics and/or synbiotics should be further optimized as an important strategy for the earliest possible modulation of chicken resistance.
Collapse
Affiliation(s)
- Katarzyna Stadnicka
- Department of Animal Biotechnology and Genetics, Faculty of Animal Breeding and Biology, UTP University of Science and Technology, 28 Mazowiecka, 85-022 Bydgoszcz, Poland;
- Correspondence: ; Tel.: +48-52-374-97-83
| | - Joanna Bogucka
- Department of Animal Physiology, Physiotherapy and Nutrition, Faculty of Animal Breeding and Biology, UTP University of Science and Technology, 28 Mazowiecka, 85-022 Bydgoszcz, Poland; (J.B.); (M.S.)
| | - Magdalena Stanek
- Department of Animal Physiology, Physiotherapy and Nutrition, Faculty of Animal Breeding and Biology, UTP University of Science and Technology, 28 Mazowiecka, 85-022 Bydgoszcz, Poland; (J.B.); (M.S.)
| | - Radomir Graczyk
- Department of Biology and Animal Environment, Faculty of Animal Breeding and Biology, UTP University of Science and Technology, 28 Mazowiecka, 85-022 Bydgoszcz, Poland;
| | - Krzysztof Krajewski
- Vetdiagnostica, Accredited Veterinary Diagnostic Laboratory Unit, Otorowo 30, 86-050 Solec Kujawski, Poland;
| | - Giuseppe Maiorano
- Department of Agricultural, Environmental and Food Sciences, University of Molise, 86100 Campobasso, Italy;
| | - Marek Bednarczyk
- Department of Animal Biotechnology and Genetics, Faculty of Animal Breeding and Biology, UTP University of Science and Technology, 28 Mazowiecka, 85-022 Bydgoszcz, Poland;
| |
Collapse
|
36
|
Ebrahimzadeh Leylabadlo H, Sanaie S, Sadeghpour Heravi F, Ahmadian Z, Ghotaslou R. From role of gut microbiota to microbial-based therapies in type 2-diabetes. INFECTION GENETICS AND EVOLUTION 2020; 81:104268. [PMID: 32126303 DOI: 10.1016/j.meegid.2020.104268] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/18/2020] [Accepted: 02/27/2020] [Indexed: 02/06/2023]
Abstract
The incidence of type 2 diabetes mellitus (T2DM) has increased dramatically at an alarming level around the world.T2DM is associated with changeable risk factors in lifestyle as well as genetic and family associated risk factors. More importantly, imbalanced or impaired gut microbial distribution (dysbiosis) has been reported as a contributing risk factor in insulin resistance progression in T2DM. Dysbiosis may restructure the metabolic and functional pathways in the intestine which are involved in the development of T2DM. However, several studies have indicated the constructive and helpful effect of prebiotics, probiotics, and fecal microbiota transplantation (FMT) on the improvement of gut microbiota (GM) and accordingly host metabolism. In this review, the association between GM and T2DM have been evaluated and the role of prebiotics, probiotics and FMT, as potential therapeutic approaches have been discussed. Relevant studies were obtained randomly from online databases such as PubMed/Medline and ISI Web of Science.
Collapse
Affiliation(s)
- Hamed Ebrahimzadeh Leylabadlo
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sarvin Sanaie
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemah Sadeghpour Heravi
- Surgical Infection Research Group, Faculty of Medicine and Health Science, Macquarie University, Sydney 2019, Australia
| | - Zainab Ahmadian
- Department of Pharmaceutics, School of Pharmacy, Zanjan University of Medical Science, 45139-56184 Zanjan, Iran
| | - Reza Ghotaslou
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
37
|
Alyousif Z, Mendoza DR, Auger J, De Carvalho V, Amos S, Sims C, Dahl WJ. Gastrointestinal Tolerance and Microbiome Response to Snacks Fortified with Pea Hull Fiber: A Randomized Trial in Older Adults. Curr Dev Nutr 2020; 4:nzaa005. [PMID: 32025615 PMCID: PMC6994441 DOI: 10.1093/cdn/nzaa005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 12/31/2019] [Accepted: 01/14/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Consuming foods with added fiber may help older adults achieve fiber recommendations; however, many high-fiber ingredients have little effect on laxation and may contribute to unpleasant gastrointestinal side effects. OBJECTIVES The aim of the study was to determine the effects of consuming snacks fortified with pea hull fiber (PHF) on stool frequency and form, gastrointestinal symptoms, and appetite in older adults. An exploratory aim was to determine if PHF altered the microbiota profile. METHODS A 10-wk, randomized, blinded, crossover study was carried out. Following a 2-wk baseline period, participants [aged (mean ± SD) 69.7 ± 6.5 y; n = 31; 14 men, 17 women] consumed snacks providing 10 g/d of PHF or a control, each for 2-wk periods followed by 2-wk washouts. Participants used the Bristol Stool Form Scale (BSFS) to record daily stool frequency and gastrointestinal symptoms, and completed the Gastrointestinal Symptom Rating Scale (GSRS) and Simplified Nutritional Appetite Questionnaire (SNAQ) biweekly. One stool was collected per period for 16S ribosomal RNA high-throughput amplicon sequencing of the fecal microbiota profile. RESULTS Participants reported 1.63 ± 0.05 stools/d and 76.6% normal transit stool form at baseline and no change with PHF. GSRS syndrome scores were similarly unchanged. Daily abdominal noises and bloating were higher for PHF versus control, and flatulence was higher for PHF versus baseline, suggesting fermentation in some individuals. There was no evidence to suggest a common PHF-induced microbiome response for the group as a whole; however, a subgroup of participants (n = 7) who responded with increased flatulence (fermenters), harbored many different taxa than nonfermenters, and demonstrated lower abundance of Clostridiales with PHF. Appetite was unchanged with PHF. CONCLUSIONS PHF did not modulate stool form or frequency in older adults with normal bowel habits. Because snacks fortified with PHF did not suppress appetite, PHF may be an appropriate fiber source for older adults at nutritional risk. Microbiome profile may be predictive of gastrointestinal symptom response to PHF. This trial was registered at www.clinicaltrials.gov as NCT02778230.
Collapse
Affiliation(s)
- Zainab Alyousif
- Department of Food Science and Human Nutrition, University of Florida, Gainesville, FL, USA
| | - Daniela Rivero Mendoza
- Department of Food Science and Human Nutrition, University of Florida, Gainesville, FL, USA
| | - Jérémie Auger
- Rosell Institute for Microbiome and Probiotics, Montreal, Quebec, Canada
| | | | - Samantha Amos
- Department of Food Science and Human Nutrition, University of Florida, Gainesville, FL, USA
| | - Charles Sims
- Department of Food Science and Human Nutrition, University of Florida, Gainesville, FL, USA
| | - Wendy J Dahl
- Department of Food Science and Human Nutrition, University of Florida, Gainesville, FL, USA
| |
Collapse
|
38
|
Yang Q, Liang Q, Balakrishnan B, Belobrajdic DP, Feng QJ, Zhang W. Role of Dietary Nutrients in the Modulation of Gut Microbiota: A Narrative Review. Nutrients 2020; 12:E381. [PMID: 32023943 PMCID: PMC7071260 DOI: 10.3390/nu12020381] [Citation(s) in RCA: 244] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 01/21/2020] [Accepted: 01/29/2020] [Indexed: 02/07/2023] Open
Abstract
Understanding how dietary nutrients modulate the gut microbiome is of great interest for the development of food products and eating patterns for combatting the global burden of non-communicable diseases. In this narrative review we assess scientific studies published from 2005 to 2019 that evaluated the effect of micro- and macro-nutrients on the composition of the gut microbiome using in vitro and in vivo models, and human clinical trials. The clinical evidence for micronutrients is less clear and generally lacking. However, preclinical evidence suggests that red wine- and tea-derived polyphenols and vitamin D can modulate potentially beneficial bacteria. Current research shows consistent clinical evidence that dietary fibers, including arabinoxylans, galacto-oligosaccharides, inulin, and oligofructose, promote a range of beneficial bacteria and suppress potentially detrimental species. The preclinical evidence suggests that both the quantity and type of fat modulate both beneficial and potentially detrimental microbes, as well as the Firmicutes/Bacteroides ratio in the gut. Clinical and preclinical studies suggest that the type and amount of proteins in the diet has substantial and differential effects on the gut microbiota. Further clinical investigation of the effect of micronutrients and macronutrients on the microbiome and metabolome is warranted, along with understanding how this influences host health.
Collapse
Affiliation(s)
- Qi Yang
- Center for Marine Drugs, State Key Laboratory of Oncogene and Related Genes, Department of Pharmacy, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China;
- Centre for Marine Biopro ducts Development, College of Medicine and Public Health, Flinders University, Adelaide, South Australia 5042, Australia; (Q.L.); (B.B.)
| | - Qi Liang
- Centre for Marine Biopro ducts Development, College of Medicine and Public Health, Flinders University, Adelaide, South Australia 5042, Australia; (Q.L.); (B.B.)
- Shanxi University of Chinese Medicine, Tai Yuan 030619, China;
| | - Biju Balakrishnan
- Centre for Marine Biopro ducts Development, College of Medicine and Public Health, Flinders University, Adelaide, South Australia 5042, Australia; (Q.L.); (B.B.)
| | | | - Qian-Jin Feng
- Shanxi University of Chinese Medicine, Tai Yuan 030619, China;
| | - Wei Zhang
- Centre for Marine Biopro ducts Development, College of Medicine and Public Health, Flinders University, Adelaide, South Australia 5042, Australia; (Q.L.); (B.B.)
| |
Collapse
|
39
|
Ferreira H, Vasconcelos M, Gil AM, Pinto E. Benefits of pulse consumption on metabolism and health: A systematic review of randomized controlled trials. Crit Rev Food Sci Nutr 2020; 61:85-96. [PMID: 31983216 DOI: 10.1080/10408398.2020.1716680] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Pulses are nutrient-dense foods that have for a long time been empirically known to have beneficial effects in human health. In the last decade, several studies have gathered evidence of the metabolic benefits of pulse intake. However, it remains unclear at what amounts these effects may be attained. This study aimed to systematically review the scientific outputs of the last two decades regarding health benefits of pulse consumption and the amounts necessary for positive outcomes to be achieved. A PubMed search including keywords [("dietary pulses", "pulses", "legumes", "grain legumes", "bean", "chickpea", "pea", "lentil", "cowpea", "faba bean", "lupin") and ("inflammation", "inflammatory markers", "C-reactive protein", "blood lipids", "cholesterol", "cardiometabolic health", "cardiovascular disease", "diabetes", "glycaemia", "insulin", "HOMA-IR", "body weight", "body fat", "obesity", "overweight", "metabolome", "metabolic profile", "metabolomics", "biomarkers", "microbiome", "microbiota", "gut")] was performed. Only English written papers referring to human dietary interventions, longer than one day, focusing on whole pulses intake, were included. Most of the twenty eligible publications reported improvements in blood lipid profile, blood pressure, inflammation biomarkers, as well as, in body composition, resulting from pulse daily amounts of 150 g (minimum-maximum: 54-360 g/day; cooked). Concerns regarding methodological approaches are evident and the biochemical mechanisms underlying such effects require further investigation.
Collapse
Affiliation(s)
- Helena Ferreira
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal
| | - Marta Vasconcelos
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal
| | - Ana M Gil
- Department of Chemistry and, CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
| | - Elisabete Pinto
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal
- EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
| |
Collapse
|
40
|
Abstract
A wide variety of plant species provide edible seeds. Seeds are the dominant source of human calories and protein. The most important and popular seed food sources are cereals, followed by legumes and nuts. Their nutritional content of fiber, protein, and monounsaturated/polyunsaturated fats make them extremely nutritious. They are important additions to our daily food consumption. When consumed as part of a healthy diet, seeds can help reduce blood sugar, cholesterol, and blood pressure.
Collapse
|
41
|
Dennis-Wall JC, Burns AM, Solch RJ, Ukhanova M, Dahl WJ, Christman MC, Boileau T, Brauchla M, Shin JE, Nieves C, Mai V, Langkamp-Henken B. A beverage containing orange pomace improves laxation and modulates the microbiome in healthy adults: A randomised, blinded, controlled trial. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.103438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
42
|
Cooked Red Lentils Dose-Dependently Modulate the Colonic Microenvironment in Healthy C57Bl/6 Male Mice. Nutrients 2019; 11:nu11081853. [PMID: 31405019 PMCID: PMC6724071 DOI: 10.3390/nu11081853] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 07/30/2019] [Accepted: 08/01/2019] [Indexed: 02/07/2023] Open
Abstract
Dietary pulses, including lentils, are protein-rich plant foods that are enriched in intestinal health-promoting bioactives, such as non-digestible carbohydrates and phenolic compounds. The aim of this study was to investigate the effect of diets supplemented with cooked red lentils on the colonic microenvironment (microbiota composition and activity and epithelial barrier integrity and function). C57Bl/6 male mice were fed one of five diets: a control basal diet (BD), a BD-supplemented diet with 5, 10 or 20% cooked red lentils (by weight), or a BD-supplemented diet with 0.7% pectin (equivalent soluble fiber level as found in the 20% lentil diet). Red lentil supplementation resulted in increased: (1) fecal microbiota α-diversity; (2) abundance of short-chain fatty acid (SCFA)-producing bacteria (e.g., Prevotella, Roseburia and Dorea spp.); (3) concentrations of fecal SCFAs; (4) mRNA expression of SCFA receptors (G-protein-coupled receptors (GPR 41 and 43) and tight/adherens junction proteins (Zona Occulden-1 (ZO-1), Claudin-2, E-cadherin). Overall, 20% lentil had the greatest impact on colon health outcomes, which were in part explained by a change in the soluble and insoluble fiber profile of the diet. These results support recent public health recommendations to increase consumption of plant-based protein foods for improved health, in particular intestinal health.
Collapse
|
43
|
Gehrig JL, Venkatesh S, Chang HW, Hibberd MC, Kung VL, Cheng J, Chen RY, Subramanian S, Cowardin CA, Meier MF, O'Donnell D, Talcott M, Spears LD, Semenkovich CF, Henrissat B, Giannone RJ, Hettich RL, Ilkayeva O, Muehlbauer M, Newgard CB, Sawyer C, Head RD, Rodionov DA, Arzamasov AA, Leyn SA, Osterman AL, Hossain MI, Islam M, Choudhury N, Sarker SA, Huq S, Mahmud I, Mostafa I, Mahfuz M, Barratt MJ, Ahmed T, Gordon JI. Effects of microbiota-directed foods in gnotobiotic animals and undernourished children. Science 2019; 365:eaau4732. [PMID: 31296738 PMCID: PMC6683325 DOI: 10.1126/science.aau4732] [Citation(s) in RCA: 249] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 04/24/2019] [Accepted: 06/07/2019] [Indexed: 12/16/2022]
Abstract
To examine the contributions of impaired gut microbial community development to childhood undernutrition, we combined metabolomic and proteomic analyses of plasma samples with metagenomic analyses of fecal samples to characterize the biological state of Bangladeshi children with severe acute malnutrition (SAM) as they transitioned, after standard treatment, to moderate acute malnutrition (MAM) with persistent microbiota immaturity. Host and microbial effects of microbiota-directed complementary food (MDCF) prototypes targeting weaning-phase bacterial taxa underrepresented in SAM and MAM microbiota were characterized in gnotobiotic mice and gnotobiotic piglets colonized with age- and growth-discriminatory bacteria. A randomized, double-blind controlled feeding study identified a lead MDCF that changes the abundances of targeted bacteria and increases plasma biomarkers and mediators of growth, bone formation, neurodevelopment, and immune function in children with MAM.
Collapse
Affiliation(s)
- Jeanette L Gehrig
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Siddarth Venkatesh
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Hao-Wei Chang
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Matthew C Hibberd
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Vanderlene L Kung
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jiye Cheng
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Robert Y Chen
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Sathish Subramanian
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Carrie A Cowardin
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Martin F Meier
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - David O'Donnell
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Michael Talcott
- Division of Comparative Medicine, Washington University, St. Louis, MO 63110, USA
| | - Larry D Spears
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Clay F Semenkovich
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Bernard Henrissat
- Architecture et Fonction des Macromolécules Biologiques, Centre National de la Recherche Scientifique and Aix-Marseille Université, 13288 Marseille cedex 9, France
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Richard J Giannone
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - Robert L Hettich
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - Olga Ilkayeva
- Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27710, USA
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Michael Muehlbauer
- Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27710, USA
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Christopher B Newgard
- Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27710, USA
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC 27710, USA
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Christopher Sawyer
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
- Genome Technology Access Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Richard D Head
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
- Genome Technology Access Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Dmitry A Rodionov
- A. A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow 127994, Russia
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Aleksandr A Arzamasov
- A. A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow 127994, Russia
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Semen A Leyn
- A. A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow 127994, Russia
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Andrei L Osterman
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Md Iqbal Hossain
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka 1212, Bangladesh
| | - Munirul Islam
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka 1212, Bangladesh
| | - Nuzhat Choudhury
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka 1212, Bangladesh
| | - Shafiqul Alam Sarker
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka 1212, Bangladesh
| | - Sayeeda Huq
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka 1212, Bangladesh
| | - Imteaz Mahmud
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka 1212, Bangladesh
| | - Ishita Mostafa
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka 1212, Bangladesh
| | - Mustafa Mahfuz
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka 1212, Bangladesh
| | - Michael J Barratt
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Tahmeed Ahmed
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka 1212, Bangladesh
| | - Jeffrey I Gordon
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA.
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
44
|
Verhoog S, Taneri PE, Roa Díaz ZM, Marques-Vidal P, Troup JP, Bally L, Franco OH, Glisic M, Muka T. Dietary Factors and Modulation of Bacteria Strains of Akkermansia muciniphila and Faecalibacterium prausnitzii: A Systematic Review. Nutrients 2019; 11:nu11071565. [PMID: 31336737 PMCID: PMC6683038 DOI: 10.3390/nu11071565] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/05/2019] [Accepted: 07/08/2019] [Indexed: 02/06/2023] Open
Abstract
Akkermansia muciniphila and Faecalibacterium prausnitzii are highly abundant human gut microbes in healthy individuals, and reduced levels are associated with inflammation and alterations of metabolic processes involved in the development of type 2 diabetes. Dietary factors can influence the abundance of A. muciniphila and F. prausnitzii, but the evidence is not clear. We systematically searched PubMed and Embase to identify clinical trials investigating any dietary intervention in relation to A. muciniphila and F. prausnitzii. Overall, 29 unique trials were included, of which five examined A. muciniphila, 19 examined F. prausnitzii, and six examined both, in a total of 1444 participants. A caloric restriction diet and supplementation with pomegranate extract, resveratrol, polydextrose, yeast fermentate, sodium butyrate, and inulin increased the abundance of A. muciniphila, while a diet low in fermentable oligosaccharides, disaccharides, monosaccharides, and polyols decreased the abundance of A. muciniphila. For F. prausnitzii, the main studied intervention was prebiotics (e.g. fructo-oligosaccharides, inulin type fructans, raffinose); seven studies reported an increase after prebiotic intervention, while two studies reported a decrease, and four studies reported no difference. Current evidence suggests that some dietary factors may influence the abundance of A. muciniphila and F. prausnitzii. However, more research is needed to support these microflora strains as targets of microbiome shifts with dietary intervention and their use as medical nutrition therapy in prevention and management of chronic disease.
Collapse
Affiliation(s)
- Sanne Verhoog
- Institute of Social and Preventive Medicine, University of Bern, 3012 Bern, Switzerland.
| | - Petek Eylul Taneri
- Corlu Cancer Early Diognosis and Training Center, 59100 Tekirdag, Turkey
| | - Zayne M Roa Díaz
- Institute of Social and Preventive Medicine, University of Bern, 3012 Bern, Switzerland
| | - Pedro Marques-Vidal
- Department of Medicine, Internal Medicine, Lausanne University Hospital (CHUV), 1011 Lausanne, Switzerland
| | - John P Troup
- Standard Process Inc Nutrition Innovation Center, Kannapolis, NC 28018, USA
| | - Lia Bally
- Department of Diabetes, Endocrinology, Clinical Nutrition and Metabolism, Bern University Hospital, 3010 Bern, Switzerland
| | - Oscar H Franco
- Institute of Social and Preventive Medicine, University of Bern, 3012 Bern, Switzerland
| | - Marija Glisic
- Leibniz Institute for Prevention Research and Epidemiology-BIPS, 28359 Bremen, Germany
| | - Taulant Muka
- Institute of Social and Preventive Medicine, University of Bern, 3012 Bern, Switzerland
| |
Collapse
|
45
|
Dai Z, Feng S, Liu AB, Wang H, Zeng X, Yang CS. Protective effects of α-galacto-oligosaccharides against a high-fat/western-style diet-induced metabolic abnormalities in mice. Food Funct 2019; 10:3660-3670. [PMID: 31166330 PMCID: PMC6588291 DOI: 10.1039/c9fo00463g] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
In this study, we investigated the effects of a newly synthesized α-galacto-oligosaccharide mixture (α-GOSg), 0.5% in drinking water, on high-fat/western-style diet (HFWD)-induced metabolic abnormality in mice in a study of 13 weeks. Raffinose family oligosaccharides (RFOs) were included as a comparison. Mice treated with α-GOSg had significantly lower body weight and body fat (p < 0.05), while RFOs were less effective. Both α-GOSg and RFOs significantly reduced serum levels of total cholesterol and low-density lipoprotein cholesterol, alanine aminotransferase and liver lipids. However, only α-GOSg significantly decreased the histopathological score for liver steatosis and downregulated hepatic fatty acid synthesis gene acetyl CoA carboxylase-α. α-GOSg also significantly reduced the content of bile acids in the small intestine and significantly increased the abundance of gut Bifidobacterium and decreased the abundance of Clostridium leptum. These actions are proposed to be key mechanisms contributing to the beneficial health effects of α-GOSg.
Collapse
Affiliation(s)
- Zhuqing Dai
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, NJ 08854
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, People’s Republic of China
- Institute of Argo-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, People’s Republic of China
| | - Simin Feng
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, NJ 08854
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou, 310014, People’s Republic of China
| | - Anna Ba Liu
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, NJ 08854
| | - Hong Wang
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, NJ 08854
| | - Xiaoxiong Zeng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, People’s Republic of China
| | - Chung S. Yang
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, NJ 08854
| |
Collapse
|
46
|
Portman D, Blanchard C, Maharjan P, Naiker M, Panozzo JF. Water‐soluble carbohydrates during fermentation and baking of composite wheat and lentil flour—Implications for enhanced functionality. Cereal Chem 2019. [DOI: 10.1002/cche.10144] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Drew Portman
- School of Biomedical Science Charles Sturt University Wagga Wagga New South Wales Australia
- Department of Economic Development, Jobs, Transport and ResourcesHorsham Victoria Australia
| | - Chris Blanchard
- School of Biomedical Science Charles Sturt University Wagga Wagga New South Wales Australia
| | - Pankaj Maharjan
- Department of Economic Development, Jobs, Transport and ResourcesHorsham Victoria Australia
| | - Mani Naiker
- School of Health, Medical and Applied Science Central Queensland University Rockhampton Queensland Australia
| | - Joe F. Panozzo
- Department of Economic Development, Jobs, Transport and ResourcesHorsham Victoria Australia
| |
Collapse
|
47
|
Díaz-Rizzolo DA, Kostov B, López-Siles M, Serra A, Colungo C, González-de-Paz L, Martinez-Medina M, Sisó-Almirall A, Gomis R. Healthy dietary pattern and their corresponding gut microbiota profile are linked to a lower risk of type 2 diabetes, independent of the presence of obesity. Clin Nutr 2019; 39:524-532. [PMID: 30876826 DOI: 10.1016/j.clnu.2019.02.035] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 02/21/2019] [Indexed: 01/15/2023]
Abstract
BACKGROUND Prediabetes and old age are both high risk factors for developing Type 2 Diabetes (T2D), while obesity is one of the most important factors triggering the disease. Nutritional interventions are the most effective tool for preventing T2D, as they improve different biochemical and anthropometric outcomes and growth-promoting/inhibiting gut microbiota populations. However, to date there are no specific dietary recommendations to stop the development of T2D in elderly groups, for whom hypocaloric diets and other commonly used weight-loss programs could be considered dangerous. The objective of our study, thus, was to understand the impact of dietary patterns on T2D risk as related to gut microbiota profile in obese and non-obese elderly prediabetic subjects. METHODS A cross-sectional study was performed in 182 subjects ≥65 years old with prediabetes, divided into obese (OB) or non-obese (NOB) subgroups, and their risk of developing T2D was measured according to FINDRISK score and biochemical parameters. Also, clusters into different dietary patterns in each group by PCA analysis was related with gut microbiota, which was analyzed from stool samples by qPCR. The creation of clusters was used to re-evaluate T2D risk. RESULTS OB was at higher risk of developing T2D and showed worse metabolic outcomes. Unhealthier and healthier dietary pattern clusters were observed for both OB (OB-6 and OB-5 respectively) and NOB (NOB-2 and NOB-3 respectively) groups. Results obtained from the gut microbiota showed that only Prevotella was higher in NOB, but when comparisons were made between clusters, a clear relation with dietary pattern was observed; showing in healthier dietary clusters a decrease in Prevotella, an increase of Faecalibacterium prausnitzii and an increase in lactic acid bacteria. T2D risk was greater in the obese group between unhealthier dietary clusters. No difference between healthier dietary clusters was observed. CONCLUSION A healthy dietary pattern and the growth-promoting beneficial and growth-inhibiting disadvantageous gut microbiota populations linked to it provide protection against the development of T2D in an obese population with advanced age and preDM.
Collapse
Affiliation(s)
- D A Díaz-Rizzolo
- Diabetes and Obesity Research Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) - Hospital Clinic of Barcelona, Barcelona, Spain
| | - B Kostov
- Primary Care Research Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Primary Care Centre Les Corts, CAPSBE, Barcelona, Spain
| | - M López-Siles
- Laboratory of Molecular Microbiology, Biology Department, Universitat de Girona, Girona, Spain
| | - A Serra
- Diabetes and Obesity Research Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) - Hospital Clinic of Barcelona, Barcelona, Spain
| | - C Colungo
- Primary Care Research Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Primary Care Centre Les Corts, CAPSBE, Barcelona, Spain
| | - L González-de-Paz
- Primary Care Research Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Primary Care Centre Les Corts, CAPSBE, Barcelona, Spain
| | - M Martinez-Medina
- Laboratory of Molecular Microbiology, Biology Department, Universitat de Girona, Girona, Spain
| | - A Sisó-Almirall
- Primary Care Research Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Primary Care Centre Les Corts, CAPSBE, Barcelona, Spain; University of Barcelona, Barcelona, Spain
| | - R Gomis
- Diabetes and Obesity Research Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) - Hospital Clinic of Barcelona, Barcelona, Spain; University of Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain; Department of Endocrinology and Nutrition, Hospital Clinic of Barcelona, Barcelona, Spain; Faculty of Health Sciences, Universitat Oberta de Catalunya, Barcelona, Spain.
| |
Collapse
|
48
|
|
49
|
Causal Relationship between Diet-Induced Gut Microbiota Changes and Diabetes: A Novel Strategy to Transplant Faecalibacterium prausnitzii in Preventing Diabetes. Int J Mol Sci 2018; 19:ijms19123720. [PMID: 30467295 PMCID: PMC6320976 DOI: 10.3390/ijms19123720] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 11/18/2018] [Accepted: 11/20/2018] [Indexed: 02/06/2023] Open
Abstract
The incidence of metabolic disorders, including diabetes, has elevated exponentially during the last decades and enhanced the risk of a variety of complications, such as diabetes and cardiovascular diseases. In the present review, we have highlighted the new insights on the complex relationships between diet-induced modulation of gut microbiota and metabolic disorders, including diabetes. Literature from various library databases and electronic searches (ScienceDirect, PubMed, and Google Scholar) were randomly collected. There exists a complex relationship between diet and gut microbiota, which alters the energy balance, health impacts, and autoimmunity, further causes inflammation and metabolic dysfunction, including diabetes. Faecalibacterium prausnitzii is a butyrate-producing bacterium, which plays a vital role in diabetes. Transplantation of F. prausnitzii has been used as an intervention strategy to treat dysbiosis of the gut’s microbial community that is linked to the inflammation, which precedes autoimmune disease and diabetes. The review focuses on literature that highlights the benefits of the microbiota especially, the abundant of F. prausnitzii in protecting the gut microbiota pattern and its therapeutic potential against inflammation and diabetes.
Collapse
|
50
|
Dietary Effects on Microbiota-New Trends with Gluten-Free or Paleo Diet. Med Sci (Basel) 2018; 6:medsci6040092. [PMID: 30340395 PMCID: PMC6313618 DOI: 10.3390/medsci6040092] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 10/05/2018] [Accepted: 10/11/2018] [Indexed: 12/18/2022] Open
Abstract
A well-balanced diet is the basis for a healthy life. Both the western diet and special diets can have a relevant impact on the microbiome and promote the development of various diseases. There has been an increase in food-related disorders in recent years, largely associated with dramatic changes in food consumption trends and main nutrients. A major response to food intolerances has been the adoption of new dietary trends involving the reduction or exclusion of specific food ingredients. Especially gluten-containing, but also gluten-free cereals are in the cross-fire. Supporters of the gluten-free diet argue that gluten triggers inflammation and related diseases, while followers of the Paleo diet drastically impeach all cereals as dangerous for human health. To date, no controlled studies support or reject a positive health effect of a gluten-free or cereal-free diet. Future large-scale studies need to evaluate the effect of gluten-containing and gluten-free cereals and the various diets on human health, inflammatory parameters, clinical symptoms, and the gut microbiota (including the bacteria, fungi, and viruses). Dietary-associated changes in compositional and functional microbiota traits should be correlated with the health status for the future development of dietary recommendations and potential clinical interventions.
Collapse
|