1
|
Liu X, Han Z, Ma W, Cui W, Zhen D, Jiang S, Zhang J. Effects of Lactiplantibacillus plantarum HNU082 intervention on fungi and bacteriophages in different intestinal segments of mice. BMC Microbiol 2025; 25:69. [PMID: 39922998 PMCID: PMC11806771 DOI: 10.1186/s12866-025-03784-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/30/2024] [Accepted: 01/24/2025] [Indexed: 02/10/2025] Open
Abstract
BACKGROUND Gut fungi and bacteriophages, as members of the gut microbiota, can affect the interactions between gut bacteria and the host, participate in host metabolism, and are associated with various diseases. Probiotics substantially influence gut fungi and bacteriophages, modulating their composition through both direct and indirect mechanisms, thereby influencing host health. Current research primarily focuses on the effects of probiotics on the intestinal bacterial community. However, the alterations in the compositions of gut fungi and bacteriophages following probiotic intervention are not yet fully understood. Therefore, this study used Lactiplantibacillus plantarum HNU082 (Lp082) as the research subject and aimed to investigate the changes of the gut fungi and bacteriophages in the small intestine and the large intestine after the gavage of Lp082. RESULTS After probiotics entered the gut, the changes of the gut fungi and bacteriophages caused by the probiotics were more pronounced in the small intestine compared to the large intestine. The relative abundance of pathogenic fungi, such as Candida albicans, decreased in the small intestine. Furthermore, a strong positive correlation between the relative abundance of bacteriophages and their host bacteria in the gut was observed. The relative abundance of both Clostridia class bacteria and their bacteriophages increased. CONCLUSIONS In summary, the effects of probiotics on gut fungi and bacteriophages differed between the small intestine and the large intestine. This study contributed to a better understanding of the impact of probiotics on gut fungi and bacteriophages and provided data support for the association and dynamic changes between gut bacteria and their bacteriophages.
Collapse
Affiliation(s)
- Xinlei Liu
- School of Food Science and Engineering, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou, 570228, Hainan, China
| | - Zhe Han
- School of Food Science and Engineering, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou, 570228, Hainan, China
| | - Wenyao Ma
- School of Food Science and Engineering, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou, 570228, Hainan, China
| | - Weipeng Cui
- School of Food Science and Engineering, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou, 570228, Hainan, China
| | - Dongyu Zhen
- School of Food Science and Engineering, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou, 570228, Hainan, China
| | - Shuaiming Jiang
- School of Food Science and Engineering, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou, 570228, Hainan, China.
| | - Jiachao Zhang
- School of Food Science and Engineering, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou, 570228, Hainan, China.
- Collaborative Innovation Center of One Health, Hainan University, Haikou, 570228, Hainan, China.
| |
Collapse
|
2
|
Slykerman RF, Davies N, Vlckova K, O'Riordan KJ, Bassett SA, Dekker J, Schellekens H, Hyland NP, Clarke G, Patterson E. Precision Psychobiotics for Gut-Brain Axis Health: Advancing the Discovery Pipelines to Deliver Mechanistic Pathways and Proven Health Efficacy. Microb Biotechnol 2025; 18:e70079. [PMID: 39815671 PMCID: PMC11735468 DOI: 10.1111/1751-7915.70079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/16/2024] [Revised: 12/19/2024] [Accepted: 12/26/2024] [Indexed: 01/18/2025] Open
Abstract
Advancing microbiome-gut-brain axis science requires systematic, rational and translational approaches to bridge the critical knowledge gaps currently preventing full exploitation of the gut microbiome as a tractable therapeutic target for gastrointestinal, mental and brain health. Current research is still marked by many open questions that undermine widespread application to humans. For example, the lack of mechanistic understanding of probiotic effects means it remains unclear why even apparently closely related strains exhibit different effects in vivo. For the therapeutic application of live microbial psychobiotics, consensus on their application as adjunct treatments to conventional neuromodulators, use in unmedicated populations or in at-risk cohorts with sub-clinical symptomatology is warranted. This missing information on both sides of the therapeutic equation when treating central nervous system (CNS) conditions makes psychobiotic research challenging, especially when compared to other pharmaceutical or functional food approaches. Expediting the transition from positive preclinical data to proven benefits in humans includes interpreting the promises and pitfalls of animal behavioural assays, as well as navigating mechanism-informed decision making to select the right microbe(s) for the job. In this review, we consider how these decisions can be supported in light of information accrued from a range of clinical studies across healthy, at-risk and pathological study populations, where specific strains have been evaluated in the context of gastrointestinal physiology, brain function and behaviour. Examples of successful, partial and unsuccessful translation from bench to bedside are considered. We also discuss the developments in in silico analyses that have enhanced our understanding of the gut microbiome and that have moved research towards pinpointing the host-microbe interactions most important for optimal gut-brain axis function. Combining this information with knowledge from functional assays across in vitro and ex vivo domains and incorporating model organisms can prime the discovery pipelines with the most promising and rationally selected psychobiotic candidates.
Collapse
Affiliation(s)
| | - Naomi Davies
- Department of Psychological MedicineUniversity of AucklandAucklandNew Zealand
| | - Klara Vlckova
- Fonterra Microbiome Research CentreUniversity College CorkCorkIreland
| | | | - Shalome A. Bassett
- Fonterra Research and Development CentrePalmerston NorthNew Zealand
- Riddet InstituteMassey UniversityPalmerston NorthNew Zealand
| | - James Dekker
- Fonterra Research and Development CentrePalmerston NorthNew Zealand
| | - Harriët Schellekens
- APC Microbiome IrelandUniversity College CorkCorkIreland
- Department of Anatomy and NeuroscienceUniversity College CorkCorkIreland
| | - Niall P. Hyland
- APC Microbiome IrelandUniversity College CorkCorkIreland
- Department of PhysiologyUniversity College CorkCorkIreland
| | - Gerard Clarke
- APC Microbiome IrelandUniversity College CorkCorkIreland
- Department of Psychiatry and Neurobehavioural ScienceUniversity College CorkCorkIreland
| | - Elaine Patterson
- Fonterra Microbiome Research CentreUniversity College CorkCorkIreland
| |
Collapse
|
3
|
Li J, Ye J, Zhou Q, Guo K, Zhou Z. Impact of live microbe intake on cardiovascular disease and mortality in adults with diabetes: A nationwide cohort study. Diabetes Res Clin Pract 2025; 219:111942. [PMID: 39615795 DOI: 10.1016/j.diabres.2024.111942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 10/20/2024] [Accepted: 11/27/2024] [Indexed: 12/10/2024]
Abstract
OBJECTIVE This study examines the association between dietary intake of live microbes (LM) and the risk of cardiovascular disease (CVD) and cardiovascular mortality in adults with diabetes. METHODS A retrospective cohort study was conducted using National Health and Nutrition Examination Survey (NHANES) data from 2001 to 2010, with follow-up mortality data through December 31, 2019. A total of 3,955 adults with diabetes were included. Dietary LM intake was categorized as low (LLM), medium (MLM), or high (HLM). Multivariate weighted logistic regression assessed the relationship between LM intake and CVD, and weighted Cox proportional hazards models were used to evaluate cardiovascular mortality. RESULTS Among the 3,955 participants, 1,064 had CVD. MLM consumers had a significantly lower risk of CVD (OR: 0.55; 95 % CI: 0.33, 0.92) compared to non-consumers, with no significant associations for LLM and HLM. During a median follow-up of 10.5 years, 432 cardiovascular deaths occurred. MLM intake was associated with a lower risk of cardiovascular mortality (HR: 0.65; 95 % CI: 0.49, 0.86). CONCLUSION Moderate consumption of dietary live microbes is associated with reduced CVD risk and cardiovascular mortality in adults with diabetes. These findings suggest potential cardiovascular benefits from including LM in the diet of diabetic patients.
Collapse
Affiliation(s)
- Jiaqi Li
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jianan Ye
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Qin Zhou
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Keyu Guo
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China.
| | - Zhiguang Zhou
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
4
|
Nelios G, Prapa I, Mitropoulou G, Kompoura V, Balafas E, Kostomitsopoulos N, Yanni AE, Kourkoutas Y. Assessment of Immobilized Lacticaseibacillus rhamnosus OLXAL-1 Cells on Oat Flakes for Functional Regulation of the Intestinal Microbiome in a Type-1 Diabetic Animal Model. Foods 2024; 13:4134. [PMID: 39767077 PMCID: PMC11675650 DOI: 10.3390/foods13244134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/16/2024] [Revised: 12/14/2024] [Accepted: 12/16/2024] [Indexed: 01/05/2025] Open
Abstract
The aim of this study was to examine the effect of free or immobilized Lacticaseibacillus rhamnosus OLXAL-1 cells on oat flakes on the gut microbiota and metabolic and inflammatory markers in a streptozotocin (STZ)-induced Type-1 Diabetes Mellitus (T1DM) animal model. Forty-eight male Wistar rats were assigned into eight groups (n = 6): healthy or diabetic animals that received either a control diet (CD and DCD), an oat-supplemented diet (OD and DOD), a diet supplemented with free L. rhamnosus OLXAL-1 cells (CFC and DFC), or a diet supplemented with immobilized L. rhamnosus OLXAL-1 cells on oat flakes (CIC and DIC). Neither L. rhamnosus OLXAL-1 nor oat supplementation led to any significant positive effects on body weight, insulin levels, plasma glucose concentrations, or lipid profile parameters. L. rhamnosus OLXAL-1 administration resulted in a rise in the relative abundances of Lactobacillus and Bifidobacterium, as well as increased levels of lactic, acetic, and butyric acids in the feces of the diabetic animals. Additionally, supplementation with oat flakes significantly reduced the microbial populations of E. coli, Enterobacteriaceae, coliforms, staphylococci, and enterococci and lowered IL-1β levels in the blood plasma of diabetic animals. These findings suggested that probiotic food-based strategies could have a potential therapeutic role in managing dysbiosis and inflammation associated with T1DM.
Collapse
Affiliation(s)
- Grigorios Nelios
- Laboratory of Applied Microbiology and Biotechnology, Department of Molecular Biology and Genetics, Democritus University of Thrace, Dragana, 68100 Alexandroupolis, Greece; (G.N.); (I.P.); (G.M.); (V.K.)
| | - Ioanna Prapa
- Laboratory of Applied Microbiology and Biotechnology, Department of Molecular Biology and Genetics, Democritus University of Thrace, Dragana, 68100 Alexandroupolis, Greece; (G.N.); (I.P.); (G.M.); (V.K.)
| | - Gregoria Mitropoulou
- Laboratory of Applied Microbiology and Biotechnology, Department of Molecular Biology and Genetics, Democritus University of Thrace, Dragana, 68100 Alexandroupolis, Greece; (G.N.); (I.P.); (G.M.); (V.K.)
| | - Vasiliki Kompoura
- Laboratory of Applied Microbiology and Biotechnology, Department of Molecular Biology and Genetics, Democritus University of Thrace, Dragana, 68100 Alexandroupolis, Greece; (G.N.); (I.P.); (G.M.); (V.K.)
| | - Evangelos Balafas
- Laboratory Animal Facility, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece; (E.B.); (N.K.)
| | - Nikolaos Kostomitsopoulos
- Laboratory Animal Facility, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece; (E.B.); (N.K.)
| | - Amalia E. Yanni
- Laboratory of Chemistry, Biochemistry, Physical Chemistry of Foods, Department of Nutrition and Dietetics, Harokopio University of Athens, 17671 Athens, Greece
| | - Yiannis Kourkoutas
- Laboratory of Applied Microbiology and Biotechnology, Department of Molecular Biology and Genetics, Democritus University of Thrace, Dragana, 68100 Alexandroupolis, Greece; (G.N.); (I.P.); (G.M.); (V.K.)
| |
Collapse
|
5
|
Stougaard EB, Tougaard NH, Sivalingam S, Hansen CS, Størling J, Hansen TW, Frimodt-Møller M, Steinert RE, Varasteh S, Groop PH, Salmenkari H, Lehto MJ, Persson F, Rossing P. Effects of probiotics and fibers on markers of nephropathy, inflammation, intestinal barrier dysfunction and endothelial dysfunction in individuals with type 1 diabetes and albuminuria. The ProFOS Study. J Diabetes Complications 2024; 38:108892. [PMID: 39471704 DOI: 10.1016/j.jdiacomp.2024.108892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 08/15/2024] [Revised: 10/09/2024] [Accepted: 10/18/2024] [Indexed: 11/01/2024]
Abstract
AIMS To estimate whether a mix of pre- and probiotics would strengthen the gut barrier and protect the kidneys in individuals with type 1 diabetes and albuminuria. METHODS Randomized, placebo-controlled, crossover study. Forty-one participants received synbiotic (pre- and probiotics) mix or placebo for 12 weeks with 6 weeks washout. Primary endpoint was change from baseline to end-of-period in UACR. Secondary endpoints were changes in endothelial glycocalyx thickness, inflammatory and intestinal barrier dysfunction markers, glomerular filtration rate (GFR) and ambulatory systolic blood pressure. RESULTS Thirty-five participants completed the study. Mean age was 58 (SD 10) years, 73 % (n = 30) were male, median UACR was 134 (IQR 63-293) mg/g, estimated GFR was 75 (30) ml/min/1.73m2. There was no significant difference in UACR with a mean relative change (CI 95 %) from baseline to end-of-treatment of -3.0 (-18.4; 15.5) % in the synbiotic group and -12.0 (-29.6; 9.6) % in the placebo group with no significant difference between treatment periods (9.37 (-25.2; 44.0) percentage points; p = 0.60). No significant beneficial difference in the secondary end points was demonstrated. CONCLUSION Twelve weeks treatment with synbiotic mix had no effect on UACR or on any of the secondary endpoints in subjects with type 1 diabetes and albuminuria.
Collapse
Affiliation(s)
| | | | | | | | - Joachim Størling
- Translational Type 1 Diabetes Research, Steno Diabetes Center Copenhagen, Denmark
| | | | | | - Robert E Steinert
- DSM-Firmenich, Health, Nutrition & Care (HNC), Kaiseraugst, Switzerland; Department of Surgery, Division of Visceral and Transplantation Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Soheil Varasteh
- DSM-Firmenich, Health, Nutrition & Care (HNC), Kaiseraugst, Switzerland
| | - Per-Henrik Groop
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland; Department of Nephrology, Helsinki University Central Hospital, University of Helsinki, Helsinki, Finland; Clinical and Molecular Metabolism, Faculty of Medicine Research Programs, University of Helsinki, Helsinki, Finland
| | - Hanne Salmenkari
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland; Clinical and Molecular Metabolism, Faculty of Medicine Research Programs, University of Helsinki, Helsinki, Finland
| | - Markku J Lehto
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland; Department of Nephrology, Helsinki University Central Hospital, University of Helsinki, Helsinki, Finland; Clinical and Molecular Metabolism, Faculty of Medicine Research Programs, University of Helsinki, Helsinki, Finland
| | - Frederik Persson
- Complication Research, Steno Diabetes Center Copenhagen, Denmark
| | - Peter Rossing
- Complication Research, Steno Diabetes Center Copenhagen, Denmark; Department of Clinical Medicine, University of Copenhagen, Denmark
| |
Collapse
|
6
|
Kim H, Lee E, Park M, Min K, Diep YN, Kim J, Ahn H, Lee E, Kim S, Kim Y, Kang YJ, Jung JH, Byun MS, Joo Y, Jeong C, Lee DY, Cho H, Park H, Kim T. Microbiome-derived indole-3-lactic acid reduces amyloidopathy through aryl-hydrocarbon receptor activation. Brain Behav Immun 2024; 122:568-582. [PMID: 39197546 DOI: 10.1016/j.bbi.2024.08.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 01/09/2024] [Revised: 07/30/2024] [Accepted: 08/24/2024] [Indexed: 09/01/2024] Open
Abstract
Alzheimer's disease (AD) pathogenesis has been associated with the gut microbiome and its metabolites, though the specific mechanisms have remained unclear. In our study, we used a multi-omics approach to identify specific microbial strains and metabolites that could potentially mitigate amyloidopathy in 5xFAD mice, a widely used model for AD research. Among the microbial strains tested, three showed promising results in reducing soluble amyloid-beta (Aβ) levels. Plasma metabolomics analysis revealed an enrichment of tryptophan (Trp) and indole-3-lactic acid (ILA) in mice with reduced soluble Aβ levels, suggesting a potential preventative role. The administration of a combined treatment of Trp and ILA prevented both Aβ accumulation and cognitive impairment in the 5xFAD mice. Our investigation into the mechanism revealed that ILA's effect on reducing Aβ levels was mediated through the activation of microglia and astrocytes, facilitated by the aryl hydrocarbon receptor (AhR) signaling pathway. These mechanisms were verified through experiments in 5xFAD mice that included an additional group with the administration of ILA alone, as well as in vitro experiments using an AhR inhibitor. Clinical data analysis revealed a greater abundance of Lactobacillus reuteri in the gut of healthy individuals compared to those at early stages of Aβ accumulation or with mild cognitive impairment. Additionally, human post-mortem brain analyses showed an increased expression of genes associated with the AhR signaling pathway in individuals without AD, suggesting a protective effect against AD progression. Our results indicate that ILA from gut microbes could inhibit the progression of amyloidopathy in 5xFAD mice through activation of AhR signaling in the brain.
Collapse
Affiliation(s)
- Hyun Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Eunkyung Lee
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Mincheol Park
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Kyungchan Min
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Yen N Diep
- Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, Gyeonggi, Republic of Korea; Department of Biophysics, Sungkyunkwan University, Suwon, Gyeonggi, Republic of Korea; Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, Gyeonggi, Republic of Korea
| | - Jinhong Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Hyeok Ahn
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Eulgi Lee
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Sujeong Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Yunjae Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - You Jung Kang
- Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, Gyeonggi, Republic of Korea; Department of Biophysics, Sungkyunkwan University, Suwon, Gyeonggi, Republic of Korea
| | - Joon Hyung Jung
- Department of Psychiatry, Chungbuk National University Hospital, Cheongju, Republic of Korea
| | - Min Soo Byun
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea; Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Yanghyun Joo
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Chanyeong Jeong
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Dong Young Lee
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea; Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea; Institute of Human Behavioral Medicine, Medical Research Center Seoul National University, Seoul, Republic of Korea
| | - Hansang Cho
- Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, Gyeonggi, Republic of Korea; Department of Biophysics, Sungkyunkwan University, Suwon, Gyeonggi, Republic of Korea; Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, Gyeonggi, Republic of Korea
| | - Hansoo Park
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea; Genome and Company, Gyeonggi-do, Republic of Korea.
| | - Tae Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea.
| |
Collapse
|
7
|
Borges Martins da Silva L, Vieira Arruda K, Yumi Suzuki J, Edgar Herkenhoff M. Survival of the probiotic strain Lacticaseibacillus paracasei subsp. paracasei F19 in high-hopped beers. Food Res Int 2024; 196:115040. [PMID: 39614485 DOI: 10.1016/j.foodres.2024.115040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/21/2024] [Revised: 08/12/2024] [Accepted: 09/01/2024] [Indexed: 12/01/2024]
Abstract
This study aims to enhance understanding of probiotic lactic acid bacteria (LAB) survival in high-hopped beer formulations and their interactions with different yeasts and highlights the fermentation processes, microbial metabolism, and production of distinctive beer flavors. For this, this research used Lacticaseibacillus paracasei F19 (F19), Saccharomycodes ludwigii, and Saccharomyces cerevisiae strains US-05 (US-05) and Kveik (Kveik) for brewing. Bacterial and yeast cultures were prepared, fermented in wort, and analyzed in different hop concentrations (International Bitterness Units - IBU 0, 20, 40). Methods included physicochemical analysis, yeast and bacterial counts, RT-qPCR for gene expression, statistical analysis, and sensory evaluation by sommeliers following BJCP guidelines. Physicochemical analysis showed efficient fermentation across all hop concentrations (IBU 0, 20, 40), with decreasing SG and pH over time due to lactic acid bacteria and yeast metabolism. Higher hop levels (IBU 20 and 40) resulted in less acidic beer, indicating hop interference with bacterial activity. Yeast populations remained stable regardless of hop content, with Saccharomyces cerevisiae and Saccharomycodes ludwigii performing well. Probiotic strain F19 exhibited robust viability in all formulations. Sensory analysis favored higher hop content beers, suggesting consumer acceptance and potential health benefits of probiotic, high-hop beers. Higher hop content hindered sour beer production as only hop-free beers reached low pH levels. Probiotic strain F19 remained viable under high IBU formulations (20 and 40), with these being preferred by sommeliers using BJCP methodology. All yeast strains supported F19 survival. Further studies are needed on gastrointestinal resistance and clinical benefits.
Collapse
Affiliation(s)
- Lucas Borges Martins da Silva
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo, Av. Professor Lineu Prestes, 580, São Paulo, SP 05508-000, Brazil; Food Research Center FoRC, University of São Paulo, Av. Professor Lineu Prestes, 580, São Paulo, SP 05508-000, Brazil.
| | - Katy Vieira Arruda
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo, Av. Professor Lineu Prestes, 580, São Paulo, SP 05508-000, Brazil; Food Research Center FoRC, University of São Paulo, Av. Professor Lineu Prestes, 580, São Paulo, SP 05508-000, Brazil.
| | - Juliana Yumi Suzuki
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo, Av. Professor Lineu Prestes, 580, São Paulo, SP 05508-000, Brazil; Food Research Center FoRC, University of São Paulo, Av. Professor Lineu Prestes, 580, São Paulo, SP 05508-000, Brazil.
| | - Marcos Edgar Herkenhoff
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo, Av. Professor Lineu Prestes, 580, São Paulo, SP 05508-000, Brazil; Food Research Center FoRC, University of São Paulo, Av. Professor Lineu Prestes, 580, São Paulo, SP 05508-000, Brazil.
| |
Collapse
|
8
|
Sabahi S, Noori SMA, Ekrami A, Hosseini SA, Seyedtabib M, Akrami S. Application of lactobacillus casei and lactobacillus plantarum to develop dried functional apple and banana. Microsc Res Tech 2024; 87:2636-2642. [PMID: 38925599 DOI: 10.1002/jemt.24639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/07/2024] [Revised: 05/08/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024]
Abstract
The goal of this research was to create dried fruits loaded with probiotic microorganisms (Lactobacillus casei and Lactobacillus plantarum). In separate bottles for each probiotic microbe, apple and banana pieces have been submerged into the impermeability solution with gentle shaking. The vacuum pressure was applied. By the conclusion of the incubation time, L. casei and L. plantarum colonies were enumerated (CFU/g). The scanning electron microscope method was applied to confirm the penetration of impregnation solutions into the intercellular spaces of fruit tissue. On day 28, the population of L. plantarum was 5 log CFU/g for apples and 5.5 log CFU/g for bananas. After storage, the number of L. casei in apples was 5 log CFU/g and 5.5 log CFU/g, respectively. L. casei was found on the surface of apple and banana tissue. After one-week, whole phenolic content of probiotic-enriched bananas and apples augmented. After storage, the antioxidant activity of all samples decreased greatly. The sensory qualities of the samples were excellent throughout storage in terms of color, quality, scent, sensitivity, chewiness, and general adequacy. As a result, dried apples and bananas infused with L. plantarum and L. casei might be a novel probiotic meal. RESEARCH HIGHLIGHTS: Dried apples and bananas infused with L. plantarum and L. casei are novel probiotic meal. After one-week, whole phenolic content of probiotic-enriched bananas and apples augmented. The sensory qualities of the samples were excellent throughout storage in terms of color, quality, scent, sensitivity, chewiness, and general adequacy.
Collapse
Affiliation(s)
- Sahar Sabahi
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Nutrition, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyyed Mohammad Ali Noori
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Alireza Ekrami
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyed Ahmad Hosseini
- Nutrition & Metabolic Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Maryam Seyedtabib
- Department of Biostatistics and Epidemiology, School of Public Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sousan Akrami
- Department of Microbiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Students' Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Hodzhev V, Dzhambazov K, Sapundziev N, Encheva M, Todorov S, Youroukova V, Benchev R, Nikolov R, Bogov B, Momekov G, Hadjiev V. High-dose Probiotic Mix of Lactobacillus spp., Bifidobacterium spp., Bacillus coagulans, and Saccharomyces boulardii to Prevent Antibiotic-associated Diarrhea in Adults: A Multicenter, Randomized, Double-blind, Placebo-controlled Trial (SPAADA). Open Forum Infect Dis 2024; 11:ofae615. [PMID: 39529939 PMCID: PMC11551610 DOI: 10.1093/ofid/ofae615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/29/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024] Open
Abstract
Background Probiotics have been used to prevent antibiotic-associated diarrhea (AAD), but practical guidelines are sparse. This trial evaluated the efficacy and safety of a high-dose, multistrain probiotic mix (Sinquanon), specially designed for prevention of AAD in adults. Methods A phase IV, multicenter, randomized, double-blind, placebo-controlled, parallel-group clinical trial was conducted over 5 months. Participants receiving broad-spectrum antibiotics were administered the specialized probiotic mix or placebo from the first dose of antibiotics until 14 days after the last antibiotic dose. The primary outcome measure was the incidence of AAD. Results In total, 564 participants were randomized (probiotic mix: 285; placebo: 279), of which 9 participants discontinued the trial early (probiotic mix: 3; placebo: 6), had no efficacy data, and were excluded from the efficacy analysis. The 555 remaining participants completed the trial and were included in the efficacy analysis (probiotic mix: 282; placebo: 273). AAD occurred less frequently in the studied probiotic mix versus placebo group (9.2% vs 25.3%, P < .001), resulting in an absolute risk reduction of 16% and a number needed to treat of 6 (95% confidence interval, 4.55-10.49). A significant improvement in the average gastrointestinal quality of life in the studied probiotic mix versus placebo group was also observed. There were no clinically relevant differences in the incidence of adverse events between the studied probiotic mix and the placebo group. Conclusions The specially designed high-dose, multistrain probiotic mix (Sinquanon) demonstrated to be beneficial compared with placebo in the prevention of AAD in adults who received broad-spectrum antibiotics. ClinicalTrialsgov Identifier and URL NCT05607056; https://classic.clinicaltrials.gov/ct2/show/NCT05607056.
Collapse
Affiliation(s)
- Vladimir Hodzhev
- University Hospital for Active Treatment “Sveti Georgi” JSC, Medical University of Plovdiv, Plovdiv, Bulgaria
| | - Karen Dzhambazov
- University Hospital for Active Treatment “Sveti Georgi” JSC, Medical University of Plovdiv, Plovdiv, Bulgaria
| | - Nikolay Sapundziev
- Department of Neurosurgery and Otorhinolaryngology, Medical University of Varna, Varna, Bulgaria
| | | | - Spiridon Todorov
- University Hospital “Tsaritsa Yoanna-ISUL”, Medical University of Sofia, Sofia, Bulgaria
| | - Vania Youroukova
- Clinic for the treatment of nonspecific pulmonary diseases and physiatry, UMHAT “St. Ivan Rilski”, Medical University of Sofia, Sofia, Bulgaria
| | | | - Rosen Nikolov
- UMHAT “St. Ivan Rilski”, Medical University of Sofia, Sofia, Bulgaria
| | - Boris Bogov
- UMHAT “St. Anna” Department of Internal Diseases, Medical University of Sofia, Sofia, Bulgaria
| | - Georgi Momekov
- Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University of Sofia, Sofia, Bulgaria
| | - Veselin Hadjiev
- Research Institute, University of Economics, Varna, Bulgaria
| |
Collapse
|
10
|
Coelho LMD, da Fonseca VMB, Labadessa IG, Salvador SL, Del Arco Mastrange M, Gembre AF, Martins NS, Bonato VLD, Vianna ÉO, Carvalho Borges M. The Effect of Lacticaseibacillus rhamnosus, Lacticaseibacillus paracasei, and Bifidobacterium animalis ssp. lactis on the Prevention of Asthma in an Animal Model. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10366-5. [PMID: 39382739 DOI: 10.1007/s12602-024-10366-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Accepted: 09/13/2024] [Indexed: 10/10/2024]
Abstract
The increase in the prevalence of asthma, particularly in urban communities, has encouraged investigations into preventive strategies. The hygiene theory proposes that early exposure to infections and unhygienic conditions during childhood influences immune system development, potentially protecting against allergic diseases. The mechanisms involved are related to alterations in the intestinal microbiota, such as with probiotics. This study aimed to evaluate the preventive effect of Lacticaseibacillus rhamnosus, Lacticaseibacillus paracasei, and Bifidobacterium animalis ssp. lactis, administered isolated or in combination, at various concentrations, on asthma in an animal model. Mice received two concentrations (1 × 109 and 1 × 1010 CFU/ml) of three probiotics, isolated and in combination, over 26 consecutive days, initiating 10 days before sensitizing and challenging with ovalbumin. In vivo bronchial hyperresponsiveness and airway and lung inflammation were assessed. The administration of L. paracasei, L. rhamnosus, and B. animalis spp. lactis in different concentrations, isolated or in combination, did not reduce hyperresponsiveness and airway and lung inflammation. As probiotic effects are strain and dose-dependents, specific studies are necessary to assess the effect of different probiotic strains, doses, and regimes.
Collapse
Affiliation(s)
- Líris Marini Dias Coelho
- Departament of Internal Medicine, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, 14048-900, Brazil
| | | | - Ivana Golçalves Labadessa
- Departament of Internal Medicine, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, 14048-900, Brazil
| | - Sergio Luiz Salvador
- Department of Clinical Analyses, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP, 14040-903, Brazil
| | - Marina Del Arco Mastrange
- Department of Clinical Analyses, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP, 14040-903, Brazil
| | - Ana Flávia Gembre
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Núbia Sabrina Martins
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Vânia Luiza Deperon Bonato
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Élcio Oliveira Vianna
- Departament of Internal Medicine, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, 14048-900, Brazil
| | - Marcos Carvalho Borges
- Departament of Internal Medicine, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, 14048-900, Brazil.
| |
Collapse
|
11
|
Treven P, Paveljšek D, Bogovič Matijašić B, Mohar Lorbeg P. The Effect of Food Matrix Taken with Probiotics on the Survival of Commercial Probiotics in Simulation of Gastrointestinal Digestion. Foods 2024; 13:3135. [PMID: 39410170 PMCID: PMC11475386 DOI: 10.3390/foods13193135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/18/2024] [Revised: 09/27/2024] [Accepted: 09/29/2024] [Indexed: 10/20/2024] Open
Abstract
The adequate survival of probiotics in the harsh environment of the gastrointestinal (GI) tract plays a crucial role in the expression of their functional properties. The aim of the present study was to evaluate the survival of commercial probiotics during digestion using a standardised INFOGEST 2.0 model extended with three food matrices simulating three scenarios for the consumption of probiotics: on an empty stomach, with juice, or with food (porridge). All eight products matched the bacterial content stated on the label. After simulated digestion, we observed an average decrease in viability of 1.6 log10 colony forming units (CFU) when the product was co-digested with water, a 2.5 log10 CFU decrease in the presence of juice, and a 1.2 log10 CFU decrease in the presence of porridge. The survival rate of the probiotics was statistically higher in the test samples with porridge (91.8%) than in those with juice (79.0%). For two products, the number of lactobacilli and bifidobacteria strains after digestion was less than <3 × 105 CFU, which can be considered insufficient. The present study has shown that the survival of probiotic strains during GI passage depends not only on their ability to withstand these harsh conditions but may also be influenced by the manufacturing process and by the foods consumed together with the probiotics.
Collapse
Affiliation(s)
- Primož Treven
- University of Ljubljana, Biotechnical Faculty, Department of Animal Science, Institute of Dairy Science and Probiotics, Groblje 3, SI-1230 Domžale, Slovenia
| | | | | | | |
Collapse
|
12
|
Campos LL, Oliveira SRM, Amaral MNS, Gallotti B, Oliveira AF, Arantes RME, Ribeiro-Souza S, Vital KD, Fernandes SOA, Cardoso VN, Nicoli JR, Martins FS. Oral Treatment with Saccharomyces cerevisiae CNCM I-3856 Mitigates the Inflammatory Response Experimentally Induced by Salmonella enterica subsp. enterica Serovar Typhimurium in Mice. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10359-4. [PMID: 39243351 DOI: 10.1007/s12602-024-10359-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
Salmonella spp. are intracellular, Gram-negative pathogens responsible for a range of diarrheal diseases, which can present either as self-limited (gastroenteritis) or as a systemic form (typhoid fever), characterizing a serious public health problem. In this study, we investigated the therapeutic effects of oral administration of Saccharomyces cerevisiae CNCM I-3856 in a murine model infected with Salmonella Typhimurium (ST). This yeast species has previously demonstrated the potential to support immune function and reduce inflammation and the ability to exert antimicrobial activity, which is important considering the increasing prevalence of antibiotic-resistant bacteria. Our findings revealed that mice infected with ST and only treated with sterile saline exhibited a higher mortality rate and body weight loss. In contrast, mice treated with I-3856 showed a notable reduction in these adverse outcomes. The yeast demonstrated a high capacity for co-aggregation with the pathogen. Furthermore, the significant amounts of yeast found in the feces of treated mice suggest that intestinal colonization was effective, which was associated with several beneficial effects, including reduced intestinal permeability, which likely limits bacterial translocation to extraintestinal organs. Additionally, the administration of I-3856 reduced levels of sIgA and resulted in a decrease in the recruitment of neutrophils and eosinophils to infection sites, indicating a modulation of the inflammatory response. Histological analyses showed attenuated liver and intestinal lesions in the yeast-treated mice, corroborating the protective effects of the yeast. In conclusion, the results suggest that S. cerevisiae CNCM I-3856 has the potential to control the inflammatory response experimentally induced by S. Typhimurium when administered to mice.
Collapse
Affiliation(s)
- Lara L Campos
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Samantha R M Oliveira
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Maisa N S Amaral
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Bruno Gallotti
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Aline F Oliveira
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Rosa M E Arantes
- Departamento de Patologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Samantha Ribeiro-Souza
- Departamento de Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
| | - Katia D Vital
- Departamento de Análises Clínicas E Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Simone O A Fernandes
- Departamento de Análises Clínicas E Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Valbert N Cardoso
- Departamento de Análises Clínicas E Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Jacques R Nicoli
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Flaviano S Martins
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
13
|
Suzuki JY, Herkenhoff ME, Brödel O, Cucick ACC, Frohme M, Saad SMI. Exploring the potential of red pitaya pulp (Hylocererus sp.) as a plant-based matrix for probiotic delivery and effects on betacyanin content and flavoromics. Food Res Int 2024; 192:114820. [PMID: 39147472 DOI: 10.1016/j.foodres.2024.114820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/30/2024] [Revised: 07/11/2024] [Accepted: 07/21/2024] [Indexed: 08/17/2024]
Abstract
This study evaluated the potential of red pitaya pulp fermented with Lacticaseibacillus paracasei subsp. paracasei F-19 (F-19) as a base for probiotic products. Physicochemical parameters, sugar, betacyanin, and phenolic contents, and antioxidant activity were analyzed over 28 days at 4 °C and compared to a non-fermented pulp, and to a pulp fermented with Bifidobacterium animalis subsp. lactis BB-12 (BB-12). Volatile compounds were identified using HS-SPME/GC-MS. Probiotic viability during storage and survival through in vitro-simulated gastrointestinal tract (GIT) stress were assessed. Red pitaya pulp, rich in moisture (85.83 g/100 g), carbohydrates (11.65 g/100 g), and fibers (2.49 g/100 g), supported fermentation by both strains. F-19 and BB-12 lowered pH, with F-19 showing stronger acidification, and maintained high viability (8.85-8.90 log CFU/mL). Fermentation altered sugar profiles and produced unique volatile compounds, enhancing aroma and sensory attributes. F-19 generated 2-phenylethanol, a unique flavor compound, absent in BB-12. Phenolic content initially increased but antioxidant activity decreased during storage. Betacyanin remained stable for up to 14 days. Red pitaya improved F-19 viability through the simulated GIT, while BB-12 populations significantly decreased (p < 0.05). These results suggest red pitaya pulp is a promising plant-based matrix for F-19, offering protection during digestion and highlighting its potential as a functional food with enhanced bioactive compound bioavailability and sensory attributes.
Collapse
Affiliation(s)
- Juliana Yumi Suzuki
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo (USP), Brazil; Food Research Center, University of São Paulo (USP), Brazil.
| | - Marcos Edgar Herkenhoff
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo (USP), Brazil; Food Research Center, University of São Paulo (USP), Brazil.
| | | | - Ana Clara Candelaria Cucick
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo (USP), Brazil; Food Research Center, University of São Paulo (USP), Brazil.
| | | | - Susana Marta Isay Saad
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo (USP), Brazil; Food Research Center, University of São Paulo (USP), Brazil.
| |
Collapse
|
14
|
Costa PCT, de Luna Freire MO, de Oliveira Coutinho D, Godet M, Magnani M, Antunes VR, de Souza EL, Vidal H, de Brito Alves JL. Nutraceuticals in the management of autonomic function and related disorders: A comprehensive review. Pharmacol Res 2024; 208:107368. [PMID: 39191337 DOI: 10.1016/j.phrs.2024.107368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 05/21/2024] [Revised: 07/31/2024] [Accepted: 08/21/2024] [Indexed: 08/29/2024]
Abstract
Nutraceuticals have been described as phytocomplexes when derived from foods of plant origin or a pool of secondary metabolites when derived from foods of animal origin, which are concentrated and administered in an appropriate form and can promote beneficial health effects in the prevention/treatment of diseases. Considering that pharmaceutical medications can cause side effects, there is a growing interest in using nutraceuticals as an adjuvant therapeutic tool for several disorders involving autonomic dysfunction, such as obesity, atherosclerosis and other cardiometabolic diseases. This review summarizes and discusses the evidence from the literature on the effects of various nutraceuticals on autonomic control, addressing the gut microbiota modulation, production of secondary metabolites from bioactive compounds, and improvement of physical and chemical properties of cell membranes. Additionally, the safety of nutraceuticals and prospects are discussed. Probiotics, resveratrol, quercetin, curcumin, nitrate, inositol, L-carnosine, and n-3 polyunsaturated fatty acids (n-3 PUFAs) are among the nutraceuticals most studied to improve autonomic dysfunction in experimental animal models and clinical trials. Further human studies are needed to elucidate the effects of nutraceuticals formulated of multitarget compounds and their underlying mechanisms of action, which could benefit conditions involving autonomic dysfunction.
Collapse
Affiliation(s)
- Paulo César Trindade Costa
- Department of Nutrition, Federal University of Paraíba, João Pessoa, PB, Brazil; Laboratoire CarMeN, INSERM U.1060, INRAe U. 1397, Université Claude Bernard Lyon1, Pierre Bénite, France
| | | | | | - Murielle Godet
- Laboratoire CarMeN, INSERM U.1060, INRAe U. 1397, Université Claude Bernard Lyon1, Pierre Bénite, France
| | - Marciane Magnani
- Department of Food Engineering, Federal University of Paraíba, João Pessoa, PB, Brazil
| | - Vagner Roberto Antunes
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | | | - Hubert Vidal
- Laboratoire CarMeN, INSERM U.1060, INRAe U. 1397, Université Claude Bernard Lyon1, Pierre Bénite, France
| | | |
Collapse
|
15
|
Eom JE, Shin DU, Kim GD, Yoon JH, Shin HS, Lee SY. Pediococcus pentosaceus KF159 alleviates house dust mite-induced atopic dermatitis by promoting IL10 production and regulatory T cell induction. Food Funct 2024; 15:6975-6987. [PMID: 38853660 DOI: 10.1039/d4fo00933a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 06/11/2024]
Abstract
Atopic dermatitis (AD) is a chronic immune disease that requires long-term management owing to its relative ease of recurrence. However, steroid treatment is limited owing to the side effects. Therefore, research on therapeutics with proven safety is required. Here, we evaluated the anti-allergic activity of the probiotic strain Pediococcus pentosaceus KF159 (PPKF159) with an ex vivo mouse model sensitized with ovalbumin (OVA) and a mouse model of AD induced by house dust mites. Changes in pathological symptoms were confirmed based on the clinical status of the AD-induced lesion site and the levels of T helper type 2 (Th2)-derived cytokines and immunoglobulin E (IgE). In addition, cell-mediated responses and related mechanisms were elucidated using various kinds of primary cells including splenocytes, mesenteric lymph nodes, Peyer's patch, and bone marrow-derived dendritic cells (BMDCs) in vitro and ex vivo. Oral administration of PPKF159 alleviated AD-like clinical symptoms such as erythema, edema, hemorrhage, and increased tissue thickness, and suppressed the production of Th2-associated cytokines and serum IgE while increasing T helper type 1 (Th1)-mediated cytokine production. PPKF159 induced tolerogenic dendritic cells (tol-DCs) by increasing the expression of ICOS-L, PD-L1, and IDO which were closely related to Treg induction in PPKF159-treated BMDCs. In addition, BMDCs and naive T cells co-cultured in the presence of PPKF159 had elevated IL10 production and increased proportions of CD4+CD25+Foxp3+ Tregs compared to the absence of PPKF159. This study showed that PPKF159 relieved AD-like clinical symptoms, modulated the Th1/Th2 immune balance, and inhibited IgE production in a mouse AD model. PPKF159 induced the transformation of dendritic cells into tolerogenic versions. These induced tol-DCs directly enhanced the production of IL10 or improved the secretion of IL10 through the induction of CD4+CD25+Foxp3+ Treg cells, thereby improving AD. These results suggest that PPKF159 can be applied as a functional food material for the treatment and prevention of AD.
Collapse
Affiliation(s)
- Ji-Eun Eom
- Food Functionality Research Division, Korea Food Research Institute (KFRI), Wanju 55365, Republic of Korea.
| | - Dong-Uk Shin
- Food Functionality Research Division, Korea Food Research Institute (KFRI), Wanju 55365, Republic of Korea.
- Department of Food Biotechnology, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Gun-Dong Kim
- Food Functionality Research Division, Korea Food Research Institute (KFRI), Wanju 55365, Republic of Korea.
| | - Jung-Hoon Yoon
- Department of Food Science and Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hee Soon Shin
- Food Functionality Research Division, Korea Food Research Institute (KFRI), Wanju 55365, Republic of Korea.
- Department of Food Biotechnology, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - So-Young Lee
- Food Functionality Research Division, Korea Food Research Institute (KFRI), Wanju 55365, Republic of Korea.
- Department of Food Biotechnology, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| |
Collapse
|
16
|
Zhao M, Zhang Y, Li Y, Liu K, Bao K, Li G. Impact of Pediococcus acidilactici GLP06 supplementation on gut microbes and metabolites in adult beagles: a comparative analysis. Front Microbiol 2024; 15:1369402. [PMID: 38633690 PMCID: PMC11021720 DOI: 10.3389/fmicb.2024.1369402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/12/2024] [Accepted: 03/13/2024] [Indexed: 04/19/2024] Open
Abstract
There is growing interest in the potential health benefits of probiotics for both humans and animals. The study aimed to investigate the effects of feeding the canine-derived probiotic Pediococcus acidilactici GLP06 to adult beagles by analysing the microbiome and metabolome. Twenty-four healthy adult beagles were randomly assigned to four groups. The CK group received a standard diet, while the three probiotic groups, the LG group (2 × 108 CFU/day/dog), MG group (2 × 109 CFU/day/dog), and HG group (2 × 1010 CFU/day/dog), received the standard diet supplemented with varying amounts of probiotics. The results show that, compared to the CK group, total antioxidant capacity was significantly increased in the MG and HG groups (p < 0.05), and superoxide dismutase and catalase were significantly increased in the HG group (p < 0.05). Compared to the CK group, malondialdehyde and blood urea nitrogen content were significantly decreased in the MG and HG groups (p < 0.05). Additionally, secretory immunoglobulin A activity was significantly increased in the HG group compared to the CK and LG groups (p < 0.05), and immunoglobulin G activity was significantly increased in the HG group compared to the CK, LG, and MG groups (p < 0.05). In addition, compared with the CK group, the abundance of Faecalitalea and Collinsella increased in the LG group, and the relative abundance of Tyzzerella and Parasutterella increased in the MG group. The α diversity and the relative abundances of beneficial bacteria (Faecalibacterium, Lachnospiraceae_NK4A1316, and Ruminococcaceae_UCG-005) were higher in the HG group than in the CK group. Furthermore, acetic acid content was significantly increased in the HG group compared to the CK, LG, and MG groups (p < 0.05). Butyric acid, isobutyric acid, and the total SCFA content were significantly increased in the HG group compared to the CK group (p < 0.05). Moreover, metabolome analysis revealed 111 upregulated and 171 downregulated metabolites in the HG group. In conclusion, this study presents evidence that supplementing with P. acidilactici GLP06 can have a positive impact on antioxidant activity, immunoproteins, SCFAs, and gut microbiota in adult beagles. These findings highlight the potential of probiotics as a dietary intervention to enhance gut health and overall wellbeing in companion animals.
Collapse
Affiliation(s)
- Mengdi Zhao
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
- College of Animal Science and Technology, Jilin Agriculture University, Changchun, China
| | - Yuanyuan Zhang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Yueyao Li
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Keyuan Liu
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Kun Bao
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Guangyu Li
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
17
|
Carneiro dos Santos LA, Carvalho RDDO, Cruz Neto JPR, de Albuquerque Lemos DE, de Oliveira KÁR, Sampaio KB, de Luna Freire MO, Aburjaile FF, Azevedo VADC, de Souza EL, de Brito Alves JL. A Mix of Potentially Probiotic Limosilactobacillus fermentum Strains Alters the Gut Microbiota in a Dose- and Sex-Dependent Manner in Wistar Rats. Microorganisms 2024; 12:659. [PMID: 38674604 PMCID: PMC11052373 DOI: 10.3390/microorganisms12040659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/02/2024] [Revised: 03/18/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024] Open
Abstract
Multi-strain Limosilactobacillus (L.) fermentum is a potential probiotic with reported immunomodulatory properties. This study aimed to evaluate the composition, richness, and diversity of the gut microbiota in male and female rats after treatment with a multi-strain of L. fermentum at different doses. Thirty rats (fifteen male and fifteen female) were allocated into a control group (CTL), a group receiving L. fermentum at a dose of 108 CFU (Lf-108), and a group receiving L. fermentum at a dose of 1010 CFU (Lf-1010) for 13 weeks. Gut microbiota and serum cytokine levels were evaluated after L. fermentum treatment. Male CTL rats had a lower relative abundance of Bifidobacteriaceae and Prevotella and a lower alpha diversity than their female CTL counterparts (p < 0.05). In addition, male CTL rats had a higher Firmicutes/Bacteroidetes (F/B) ratio than female CTL rats (p < 0.05). In female rats, the administration of L. fermentum at 108 CFU decreased the relative abundance of Bifidobacteriaceae and Anaerobiospirillum and increased Lactobacillus (p < 0.05). In male rats, the administration of L. fermentum at 1010 CFU decreased the F/B ratio and increased Lachnospiraceae and the diversity of the gut microbiota (p < 0.05). The relative abundance of Lachnospiraceae and the alpha-diversity of gut microbiota were negatively correlated with serum levels of IL1β (r = -0.44) and TNFα (r = -0.39), respectively. This study identified important changes in gut microbiota between male and female rats and showed that a lower dose of L. fermentum may have more beneficial effects on gut microbiota in females, while a higher dose may result in more beneficial effects on gut microbiota in male rats.
Collapse
Affiliation(s)
- Lucas Alves Carneiro dos Santos
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa 58051-900, Brazil; (L.A.C.d.S.); (J.P.R.C.N.); (D.E.d.A.L.); (K.Á.R.d.O.); (K.B.S.); (M.O.d.L.F.); (E.L.d.S.)
| | | | - José Patrocínio Ribeiro Cruz Neto
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa 58051-900, Brazil; (L.A.C.d.S.); (J.P.R.C.N.); (D.E.d.A.L.); (K.Á.R.d.O.); (K.B.S.); (M.O.d.L.F.); (E.L.d.S.)
| | - Deborah Emanuelle de Albuquerque Lemos
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa 58051-900, Brazil; (L.A.C.d.S.); (J.P.R.C.N.); (D.E.d.A.L.); (K.Á.R.d.O.); (K.B.S.); (M.O.d.L.F.); (E.L.d.S.)
| | - Kataryne Árabe Rimá de Oliveira
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa 58051-900, Brazil; (L.A.C.d.S.); (J.P.R.C.N.); (D.E.d.A.L.); (K.Á.R.d.O.); (K.B.S.); (M.O.d.L.F.); (E.L.d.S.)
| | - Karoliny Brito Sampaio
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa 58051-900, Brazil; (L.A.C.d.S.); (J.P.R.C.N.); (D.E.d.A.L.); (K.Á.R.d.O.); (K.B.S.); (M.O.d.L.F.); (E.L.d.S.)
| | - Micaelle Oliveira de Luna Freire
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa 58051-900, Brazil; (L.A.C.d.S.); (J.P.R.C.N.); (D.E.d.A.L.); (K.Á.R.d.O.); (K.B.S.); (M.O.d.L.F.); (E.L.d.S.)
| | - Flavia Figueira Aburjaile
- Department of Preventive Veterinary Medicine, Veterinary School, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil; (F.F.A.); (V.A.d.C.A.)
| | - Vasco Ariston de Carvalho Azevedo
- Department of Preventive Veterinary Medicine, Veterinary School, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil; (F.F.A.); (V.A.d.C.A.)
| | - Evandro Leite de Souza
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa 58051-900, Brazil; (L.A.C.d.S.); (J.P.R.C.N.); (D.E.d.A.L.); (K.Á.R.d.O.); (K.B.S.); (M.O.d.L.F.); (E.L.d.S.)
| | - José Luiz de Brito Alves
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa 58051-900, Brazil; (L.A.C.d.S.); (J.P.R.C.N.); (D.E.d.A.L.); (K.Á.R.d.O.); (K.B.S.); (M.O.d.L.F.); (E.L.d.S.)
| |
Collapse
|
18
|
Castro-López C, Pascacio-Villafán C, Aluja M, García HS, González-Córdova AF, Vallejo-Cordoba B, Hernández-Mendoza A. Safety Assessment of the Potential Probiotic Bacterium Limosilactobacillus fermentum J23 Using the Mexican Fruit Fly (Anastrepha ludens Loew, Diptera: Tephritidae) as a Novel In Vivo Model. Probiotics Antimicrob Proteins 2024; 16:233-248. [PMID: 36574190 DOI: 10.1007/s12602-022-10034-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Accepted: 12/12/2022] [Indexed: 12/29/2022]
Abstract
Safety assessment of probiotics is difficult but essential. In this work, the Mexican fruit fly, Anastrepha ludens (Loew) (Diptera: Tephritidae), was used as in vivo model to assess the biosafety of Limosilactobacillus fermentum J23. In the first set of experiments, the strain was orally administered to adult flies through direct feeding, whereas in the second set of experiments, it was supplemented through the larval rearing medium. Data showed that L. fermentum J23 did not lead to increased mortality or treatment-related toxicity signs in adult female and male flies. Ingestion of L. fermentum J23 by adult female flies led to a statistically significant improvement in locomotor activity compared to the control groups (ca. 59% decrease in climbing time, p < 0.0001). A positive trend in lifespan extension under stress (maximum lifespan = 144 h) was also observed. When L. fermentum J23 was administered to the larvae, the adult emergence (p = 0.0099), sex ratio (p = 0.0043), and flight ability (p = 0.0009) increased significantly by 7%, 31%, and 8%, respectively, compared to the control diet. No statistical effect between the control diet and the L. fermentum J23-based diet for the number of pupae recovered, pupal weight, duration of the pupal stage, lifespan under stress, and morphological development was observed. We conclude that feeding L. fermentum J23 to the novel experimental model A. ludens had no toxic effects and could be safely considered a potential probiotic for food supplements; however, further studies are still needed to establish its biosafety in humans.
Collapse
Affiliation(s)
- Cecilia Castro-López
- Laboratorio de Química y Biotecnología de Productos Lácteos, Centro de Investigación en Alimentación y Desarrollo A.C. ‒ CIAD, Carretera Gustavo Enrique Astiazarán Rosas 46, Hermosillo, 83304, Sonora, México
| | - Carlos Pascacio-Villafán
- Clúster Científico y Tecnológico BioMimic®, Red de Manejo Biorracional de Plagas y Vectores, Instituto de Ecología A.C. ‒ INECOL, Carretera Antigua a Coatepec 351, Veracruz, 91073, Xalapa, México
| | - Martin Aluja
- Clúster Científico y Tecnológico BioMimic®, Red de Manejo Biorracional de Plagas y Vectores, Instituto de Ecología A.C. ‒ INECOL, Carretera Antigua a Coatepec 351, Veracruz, 91073, Xalapa, México.
| | - Hugo S García
- Unidad de Investigación y Desarrollo de Alimentos, Tecnológico Nacional de México, Instituto Tecnológico de Veracruz, Miguel Ángel de Quevedo 2779, Veracruz, 91897, Veracruz, México
| | - Aarón F González-Córdova
- Laboratorio de Química y Biotecnología de Productos Lácteos, Centro de Investigación en Alimentación y Desarrollo A.C. ‒ CIAD, Carretera Gustavo Enrique Astiazarán Rosas 46, Hermosillo, 83304, Sonora, México
| | - Belinda Vallejo-Cordoba
- Laboratorio de Química y Biotecnología de Productos Lácteos, Centro de Investigación en Alimentación y Desarrollo A.C. ‒ CIAD, Carretera Gustavo Enrique Astiazarán Rosas 46, Hermosillo, 83304, Sonora, México
| | - Adrián Hernández-Mendoza
- Laboratorio de Química y Biotecnología de Productos Lácteos, Centro de Investigación en Alimentación y Desarrollo A.C. ‒ CIAD, Carretera Gustavo Enrique Astiazarán Rosas 46, Hermosillo, 83304, Sonora, México.
| |
Collapse
|
19
|
Gkitsaki I, Potsaki P, Dimou I, Laskari Z, Koutelidakis A, Giaouris E. Development of a functional Greek sheep yogurt incorporating a probiotic Lacticaseibacillus rhamnosus wild-type strain as adjunct starter culture. Heliyon 2024; 10:e24446. [PMID: 38312657 PMCID: PMC10835171 DOI: 10.1016/j.heliyon.2024.e24446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/28/2023] [Revised: 12/23/2023] [Accepted: 01/09/2024] [Indexed: 02/06/2024] Open
Abstract
Greek yogurt is a fermented dairy product of high nutritional value that can be used as a matrix for the delivery of probiotics. The aim of this study was to develop a new probiotic Greek sheep yogurt with upgraded quality and functional characteristics. To do this, yogurt was manufactured by fermenting pasteurized milk with the commercial starter culture (Streptococcus thermophilus (ST), Lactobacillus bulgaricus (LB)) together with a probiotic Lacticaseibacillus rhamnosus (LR) wild-type strain (probiotic yogurt; PY). As a control, yogurt manufactured with only the starter culture (ST, LB) was used (conventional yogurt; CY) The survival of all three lactic acid bacteria (LAB) species (ST, LB, and LR) was monitored throughout the products' shelf life (storage at 4 °C for 25 days), and also following exposure to a static in vitro digestion model (SIVDM). The population dynamics of total aerobic plate count (APC), Enterobacteriaceae, yeasts and molds grown in both yogurts were also determined. The total antioxidant activity (AA) of yogurts was comparatively determined using in parallel two different assays, whereas the Folin-Ciocalteu assay was used to determine their total phenolic content (TPC). At each sampling day, yogurts were also evaluated for their pH, titratable acidity (TA) and main sensory characteristics. The population of probiotic LR remained stable during the shelf life (and above 108 CFU/g). Yogurt starters (ST, LB) were not detected following SIVDM, whereas LR (in PY) presented a reduction of about only one log. The AA and TPC of PY were found significantly higher than that of CY (P < 0.05). At the end of storage (25th day), neither pH nor TA differed significantly between the two yogurt types, while no fungal growth was observed in the PY. Consumer sensory analysis did not reveal important differences between the two yogurt types during their shelf life. To sum up, the novel yogurt was able to deliver to consumers a high number of probiotic cells (>108 CFU/g), presented increased antioxidant power, had an expanded shelf life, and maintained its good sensory attributes.
Collapse
Affiliation(s)
- Ioanna Gkitsaki
- Laboratory of Food Microbiology and Hygiene, Department of Food Science and Nutrition, School of the Environment, University of the Aegean, 81400 Myrina, Lemnos, Greece
| | - Panagiota Potsaki
- Laboratory of Nutrition and Public Health, Department of Food Science and Nutrition, School of the Environment, University of the Aegean, 81400 Myrina, Lemnos, Greece
| | - Ioanna Dimou
- Laboratory of Nutrition and Public Health, Department of Food Science and Nutrition, School of the Environment, University of the Aegean, 81400 Myrina, Lemnos, Greece
| | - Zoi Laskari
- Mystakelli Traditional Dairy Products, 81103 Mantamados, Lesvos, Greece
| | - Antonios Koutelidakis
- Laboratory of Nutrition and Public Health, Department of Food Science and Nutrition, School of the Environment, University of the Aegean, 81400 Myrina, Lemnos, Greece
| | - Efstathios Giaouris
- Laboratory of Food Microbiology and Hygiene, Department of Food Science and Nutrition, School of the Environment, University of the Aegean, 81400 Myrina, Lemnos, Greece
| |
Collapse
|
20
|
Goldman DA, Xue KS, Parrott AB, Jeeda RR, Franzese LR, Lopez JG, Vila JCC, Petrov DA, Good BH, Relman DA, Huang KC. Competition for shared resources increases dependence on initial population size during coalescence of gut microbial communities. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.29.569120. [PMID: 38076867 PMCID: PMC10705444 DOI: 10.1101/2023.11.29.569120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 12/20/2023]
Abstract
The long-term success of introduced populations depends on their initial size and ability to compete against existing residents, but it remains unclear how these factors collectively shape colonization. Here, we investigate how initial population (propagule) size and resource competition interact during community coalescence by systematically mixing eight pairs of in vitro microbial communities at ratios that vary over six orders of magnitude, and we compare our results to a neutral ecological model. Although the composition of the resulting co-cultures deviated substantially from neutral expectations, each co-culture contained species whose relative abundance depended on propagule size even after ~40 generations of growth. Using a consumer-resource model, we show that this dose-dependent colonization can arise when resident and introduced species have high niche overlap and consume shared resources at similar rates. This model predicts that propagule size will have larger, longer-lasting effects in diverse communities in which niche overlap is higher, and we experimentally confirm that strain isolates show stronger dose dependence when introduced into diverse communities than in pairwise co-culture. This work shows how neutral-like colonization dynamics can emerge from non-neutral resource competition and have lasting effects on the outcomes of community coalescence.
Collapse
Affiliation(s)
- Doran A. Goldman
- Department of Biology, Stanford University, Stanford, CA 94305, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Katherine S. Xue
- Department of Biology, Stanford University, Stanford, CA 94305, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Autumn B. Parrott
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Rashi R. Jeeda
- Department of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Lauryn R. Franzese
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Jaime G. Lopez
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Jean C. C. Vila
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Dmitri A. Petrov
- Department of Biology, Stanford University, Stanford, CA 94305, USA
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Benjamin H. Good
- Department of Biology, Stanford University, Stanford, CA 94305, USA
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
- Department of Applied Physics, Stanford University, Stanford, CA 94305, USA
| | - David A. Relman
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
- Infectious Diseases Section, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, USA
| | - Kerwyn Casey Huang
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| |
Collapse
|
21
|
McFarland LV, Hecht G, Sanders ME, Goff DA, Goldstein EJC, Hill C, Johnson S, Kashi MR, Kullar R, Marco ML, Merenstein DJ, Millette M, Preidis GA, Quigley EMM, Reid G, Salminen S, Sniffen JC, Sokol H, Szajewska H, Tancredi DJ, Woolard K. Recommendations to Improve Quality of Probiotic Systematic Reviews With Meta-Analyses. JAMA Netw Open 2023; 6:e2346872. [PMID: 38064222 DOI: 10.1001/jamanetworkopen.2023.46872] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Indexed: 12/18/2023] Open
Abstract
Importance Systematic reviews and meta-analyses often report conflicting results when assessing evidence for probiotic efficacy, partially because of the lack of understanding of the unique features of probiotic trials. As a consequence, clinical decisions on the use of probiotics have been confusing. Objective To provide recommendations to improve the quality and consistency of systematic reviews with meta-analyses on probiotics, so evidence-based clinical decisions can be made with more clarity. Evidence Review For this consensus statement, an updated literature review was conducted (January 1, 2020, to June 30, 2022) to supplement a previously published 2018 literature search to identify areas where probiotic systematic reviews with meta-analyses might be improved. An expert panel of 21 scientists and physicians with experience on writing and reviewing probiotic reviews and meta-analyses was convened and used a modified Delphi method to develop recommendations for future probiotic reviews. Findings A total of 206 systematic reviews with meta-analysis components on probiotics were screened and representative examples discussed to determine areas for improvement. The expert panel initially identified 36 items that were inconsistently reported or were considered important to consider in probiotic meta-analyses. Of these, a consensus was reached for 9 recommendations to improve the quality of future probiotic meta-analyses. Conclusions and Relevance In this study, the expert panel reached a consensus on 9 recommendations that should promote improved reporting of probiotic systematic reviews with meta-analyses and, thereby, assist in clinical decisions regarding the use of probiotics.
Collapse
Affiliation(s)
- Lynne V McFarland
- McFarland Consulting, Seattle, Washington
- Public Health Reserve Corp, Seattle Washington
| | - Gail Hecht
- Division of Gastroenterology and Nutrition, Loyola University Chicago, Maywood, Illinois
| | - Mary E Sanders
- International Scientific Association for Probiotics and Prebiotics, Centennial, Colorado
| | - Debra A Goff
- Ohio State University Wexner Medical Center, Ohio State University College of Pharmacy, Columbus
| | | | - Colin Hill
- International Scientific Association for Probiotics and Prebiotics, University College Cork, Ireland
| | - Stuart Johnson
- Stritch School of Medicine, Loyola University Medical Center, Chicago, Illinois
- Departments of Medicine and Research, Edward Hines Jr Veterans Affairs Hospital, Hines, Illinois
| | - Maryam R Kashi
- Department of Gastroenterology, AdventHealth Medical Group, Orlando, Florida
| | | | - Maria L Marco
- Department of Food Science and Technology, University of California, Davis
| | - Daniel J Merenstein
- Research Programs Family Medicine, Department of Human Science, Georgetown University School of Health, Washington, DC
| | - Mathieu Millette
- Bio-K Plus, a Kerry Company, Laval, Quebec, Canada
- INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, Quebec, Canada
| | - Geoffrey A Preidis
- Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition, Baylor College of Medicine and Texas Children's Hospital, Houston
| | - Eamonn M M Quigley
- Lynda K and David M. Underwood Center for Digestive Disorders, Houston Methodist Hospital and Weill Cornell Medical College, Houston, Texas
| | - Gregor Reid
- St Joseph's Hospital, Lawson Health Research Institute, London, Ontario, Canada
| | - Seppo Salminen
- Functional Foods Forum, Faculty of Medicine, University of Turku, Turku, Finland
| | - Jason C Sniffen
- Infectious Disease Consultants, Altamonte Springs, Florida
- Department of Internal Medicine, Infectious Diseases and Tropical Medicine Section, University of South Florida, Tampa
| | - Harry Sokol
- Gastroenterology Department, Centre de Recherche Saint-Antoine, Assistance Publique-Hôpitaux de Paris, Sorbonne University, INSERM, Paris, France
- Paris Centre for Microbiome Medicine FHU, Paris, France
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche, Micalis & AgroParisTech, Jouy en Josas, France
| | - Hania Szajewska
- Department of Paediatrics, Medical University of Warsaw, Warsaw, Poland
| | - Daniel J Tancredi
- Department of Pediatrics, University of California, Davis School of Medicine, Sacramento
| | | |
Collapse
|
22
|
Rath C, Athalye-Jape G, Rao S, Patole S. Effect of Probiotic Dose Escalation on Gut Microbiota and Clinical Outcomes in Preterm Infants-A Systematic Review. CHILDREN (BASEL, SWITZERLAND) 2023; 10:1710. [PMID: 37892373 PMCID: PMC10605636 DOI: 10.3390/children10101710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 08/31/2023] [Revised: 09/29/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023]
Abstract
Probiotics are known to decrease incidences of necrotising enterocolitis, feeding intolerance, late-onset sepsis, and mortality in preterm infants. Administering an adequate dose is important for optimizing the benefits and safety of probiotics. We conducted a systematic review to assess the effect of probiotic dose escalation on clinical outcomes and gut microbiota in preterm neonates. We searched PubMed, EMBASE, EMCARE, Medline, Cochrane Library, Google Scholar, and MedNar databases in July 2023. Three studies were included. In one of the randomized studies (n = 149, gestation 27 to 33 weeks), no significant differences in faecal Lactobacillus and Bifidobacterium counts and clinical outcomes were seen between the high- and low-dose groups. There was a trend towards increased Lactobacillus and Bifidobacterium counts in the high-dose group. In the other randomized study (n = 120, birth weight 500 to 2000 gm), smaller infants (500 to 1000 gm) required higher doses to display Lactobacillus in their faeces. The cohort study (n = 12, gestation < 33 weeks) showed a trend towards an increase in faecal abundance of bifidobacteria and bacterial diversity in the B. infantis group with increasing dose/time. Limited evidence suggests a higher dose might improve gut colonization in preterm infants. Further studies are urgently needed to address this gap in the knowledge considering the increasing use of probiotics for preterm infants.
Collapse
Affiliation(s)
- Chandra Rath
- Neonatal Directorate, King Edward Memorial Hospital for Women, Subiaco, WA 6008, Australia; (C.R.); (G.A.-J.)
- Neonatal Directorate, Perth Children’s Hospital, Nedlands, WA 6009, Australia;
- School of Medicine, University of Western Australia, Crawley, WA 6009, Australia
| | - Gayatri Athalye-Jape
- Neonatal Directorate, King Edward Memorial Hospital for Women, Subiaco, WA 6008, Australia; (C.R.); (G.A.-J.)
- School of Medicine, University of Western Australia, Crawley, WA 6009, Australia
| | - Shripada Rao
- Neonatal Directorate, Perth Children’s Hospital, Nedlands, WA 6009, Australia;
- School of Medicine, University of Western Australia, Crawley, WA 6009, Australia
| | - Sanjay Patole
- Neonatal Directorate, King Edward Memorial Hospital for Women, Subiaco, WA 6008, Australia; (C.R.); (G.A.-J.)
- School of Medicine, University of Western Australia, Crawley, WA 6009, Australia
| |
Collapse
|
23
|
Yang J, Meng L, Li Y, Huang H. Strategies for applying probiotics in the antibiotic management of Clostridioides difficile infection. Food Funct 2023; 14:8711-8733. [PMID: 37725066 DOI: 10.1039/d3fo02110f] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 09/21/2023]
Abstract
The vital role of probiotics in the food field has been widely recognized, and at the same time, probiotics are gradually exhibiting surprising effects in the field of nutraceuticals, especially in regulating gut inflammation and the nutritional environment. As a dietary supplement in clinical nutrition, the coadministration of probiotics with antibiotics model has been applied to prevent intestinal infections caused by Clostridioides difficile. However, the mechanism behind this "bacteria-drug combination" model remains unclear. In particular, the selection of specific probiotic strains, the order of probiotics or antibiotics, and the time interval of coadministration are key issues that need to be further explored and clarified. Here, we focus on the issues mentioned above and give reasonable opinions, mainly including: (1) probiotics are safer and more effective when they intervene after antibiotics have been used; (2) the choice of the time interval between coadministration should be based on the metabolism of antibiotics in the host, differences in probiotic strains, the baseline ecological environment of the host's intestine, and the host immune level; in addition, the selection of the coadministration regime should also take into account factors such as the antibiotic sensitivity of probiotics and dosage of probiotics; and (3) by encapsulating probiotics, combining probiotics with prebiotics, and developing next-generation probiotics (NGPs) and postbiotic formulations, we can provide a more reasonable reference for this type of "bacteria-drug combination" model, and also provide targeted guidance for the application of probiotic dietary supplements in the antibiotic management of C. difficile infection.
Collapse
Affiliation(s)
- Jingpeng Yang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, China.
| | - Lingtong Meng
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, China.
| | - Yanan Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, China.
| | - He Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, China.
| |
Collapse
|
24
|
Rahkola EN, Rautava S, Hiltunen H, Ross C, Lahti L, Isolauri E. The preterm gut microbiota and administration routes of different probiotics: a randomized controlled trial. Pediatr Res 2023; 94:1480-1487. [PMID: 37020105 PMCID: PMC10589095 DOI: 10.1038/s41390-023-02560-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 08/30/2022] [Revised: 02/09/2023] [Accepted: 02/14/2023] [Indexed: 04/07/2023]
Abstract
BACKGROUND Preterm children with their aberrant gut microbiota and susceptibility to infections and inflammation constitute a considerable target group for probiotic therapy to generate the age-appropriate healthy microbiota. METHODS 68 preterm neonates were randomized into five intervention groups: Beginning from the median age of 3 days, 13 children received Lactobacillus rhamnosus GG (LGG) directly orally, and 17 via the lactating mother. 14 children received LGG with Bifidobacterium lactis Bb-12 (Bb12) orally, and 10 via the lactating mother. 14 children received placebo. The children's faecal microbiota was assessed at the age of 7 days by 16S rRNA gene sequencing. RESULTS The gut microbiota compositions of the children directly receiving the probiotic combination (LGG + Bb12) were significantly different from those of the children receiving the other intervention modes or placebo (p = 0.0012; PERMANOVA), the distinction being due to an increase in the relative abundance of Bifidobacterium animalis (P < 0.00010; ANCOM-BC), and the order Lactobacillales (P = 0.020; ANCOM-BC). CONCLUSION The connection between aberrant primary gut microbiota and a heightened risk of infectious and non-communicable diseases invites effective microbiota modulation. We show that the direct, early, and brief probiotic intervention of LGG + Bb12 109 CFU each, is sufficient to modulate the gut microbiota of the preterm neonate. IMPACT Preterm children have a higher risk of several health problems partly due to their aberrant gut microbiota. More research is needed to find a safe probiotic intervention to modify the gut microbiota of preterm children. The maternal administration route via breast milk might be safer for the newborn. In our study, the early and direct administration of the probiotic combination Lactobacillus rhamnosus GG with Bifidobacterium lactis Bb-12 increased the proportion of bifidobacteria in the preterm children's gut at the age of 7 days, but the maternal administration route was not as effective.
Collapse
Affiliation(s)
- Ella-Noora Rahkola
- Department of Clinical Sciences, Faculty of Medicine, University of Turku, Turku, Finland.
- Department of Paediatrics and Adolescent Medicine, Turku University Hospital, Turku, Finland.
| | - Samuli Rautava
- Department of Clinical Sciences, Faculty of Medicine, University of Turku, Turku, Finland
- Department of Pediatrics, University of Helsinki and Children's Hospital, Helsinki University Hospital, Helsinki, Finland
| | - Henni Hiltunen
- Department of Clinical Sciences, Faculty of Medicine, University of Turku, Turku, Finland
- Department of Paediatrics and Adolescent Medicine, Turku University Hospital, Turku, Finland
| | - Chandler Ross
- Department of Computing, University of Turku, Turku, Finland
| | - Leo Lahti
- Department of Computing, University of Turku, Turku, Finland
| | - Erika Isolauri
- Department of Clinical Sciences, Faculty of Medicine, University of Turku, Turku, Finland
- Department of Paediatrics and Adolescent Medicine, Turku University Hospital, Turku, Finland
| |
Collapse
|
25
|
Sanahuja I, Fernandez-Alacid L, Torrecillas S, Ruiz A, Vallejos-Vidal E, Firmino JP, Reyes-Lopez FE, Tort L, Tovar-Ramirez D, Ibarz A, Gisbert E. Dietary Debaryomyces hansenii promotes skin and skin mucus defensive capacities in a marine fish model. Front Immunol 2023; 14:1247199. [PMID: 37711618 PMCID: PMC10499179 DOI: 10.3389/fimmu.2023.1247199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/25/2023] [Accepted: 08/09/2023] [Indexed: 09/16/2023] Open
Abstract
The present study explores the effects of two supplementation levels of Debaryomyces hansenii (1.1% and 2.2%) as a probiotic in a reference low fish meal-based diet on the skin mucosal tissue in Sparus aurata. This study includes the evaluation of fish performance coupled with a holistic study of the skin mucosa: i) a transcriptomic study of the skin tissue, and ii) the evaluation of its secreted mucus both in terms of skin mucosal-associated biomarkers and its defensive capacity by means of co-culture analysis with two pathogenic bacteria. Results showed that after 70 days of diet administration, fish fed the diet supplemented with D. hansenii at 1.1% presented increased somatic growth and a better feed conversion ratio, compared to fish fed the control diet. In contrast, fish fed the diet including 2.2% of the probiotic presented intermediate values. Regarding gene regulation, the probiotic administration at 1.1% resulted in 712 differentially expressed genes (DEGs), among which 53.4% and 46.6% were up- and down-regulated, respectively. In particular, D. hansenii modulated some skin biological processes related to immunity and metabolism. Specifically, D. hansenii administration induced a strong modulation of some immune biological-related processes (61 DEGs), mainly involved in B- and T-cell regulatory pathways. Furthermore, dietary D. hansenii promoted the skin barrier function by the upregulation of anchoring junction genes (23 DEGs), which reinforces the physical defense against potential skin damage. In contrast, the skin showed modulated genes related to extracellular exosome and membrane organization (50 DEGs). This modulated functioning is of great interest, particularly in relation to the increased skin mucus defensive capacity observed in the bacterial co-culture in vitro trials, which could be related to the increased modulation and exudation of the innate immune components from the skin cells into the mucus. In summary, the modulation of innate immune parameters coupled with increased skin barrier function and cell trafficking potentiates the skin's physical barrier and mucus defensive capacity, while maintaining the skin mucosa's homeostatic immune and metabolic status. These findings confirmed the advantages of D. hansenii supplementation in low fish meal-based diets, demonstrating the probiotic benefits on cultured marine species.
Collapse
Affiliation(s)
- Ignasi Sanahuja
- Aquaculture Program, Institute of Agrifood Research and Technology (IRTA), La Ràpita, Spain
| | - Laura Fernandez-Alacid
- Department of Cell Biology, Physiology, and Immunology, University of Barcelona, Barcelona, Spain
| | - Silvia Torrecillas
- Aquaculture Program, Institute of Agrifood Research and Technology (IRTA), La Ràpita, Spain
| | - Alberto Ruiz
- Aquaculture Program, Institute of Agrifood Research and Technology (IRTA), La Ràpita, Spain
| | - Eva Vallejos-Vidal
- Núcleo de Investigaciones Aplicadas en Ciencias Veterinarias y Agronómicas, Facultad de Medicina Veterinaria y Agronomía, Universidad de Las Américas, Santiago, Chile
| | - Joana P. Firmino
- Aquaculture Program, Institute of Agrifood Research and Technology (IRTA), La Ràpita, Spain
| | | | - Lluis Tort
- Department of Cell Biology, Physiology, and Immunology, Universitat Autonoma de Barcelona, Barcelona, Spain
| | | | - Antoni Ibarz
- Department of Cell Biology, Physiology, and Immunology, University of Barcelona, Barcelona, Spain
| | - Enric Gisbert
- Aquaculture Program, Institute of Agrifood Research and Technology (IRTA), La Ràpita, Spain
| |
Collapse
|
26
|
Liu N, Yang D, Sun J, Li Y. Probiotic supplements are effective in people with cognitive impairment: a meta-analysis of randomized controlled trials. Nutr Rev 2023; 81:1091-1104. [PMID: 36629438 DOI: 10.1093/nutrit/nuac113] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/12/2023] Open
Abstract
CONTEXT Cognitive function is a significant concern among the elderly and has a major negative effect on their quality of life. Probiotics have a positive effect on improving cognition, but the exact nature of the association between probiotic supplements and cognitive function is poorly understood. OBJECTIVE The purpose of this systematic review was to evaluate how probiotic supplements improve cognitive function. DATA SOURCES A systematic search was conducted of the PubMed, Web of Science, the Cochrane Library, Embase, and ClinicalTrials.gov databases for all relevant studies published in English, with no date restrictions. DATA EXTRACTION The estimated, pooled results were analyzed with a standardized mean difference (SMD) and a corresponding 95% confidence interval (95%CI). Publication bias was analyzed by the Egger's and Begg's tests. Funnel plots were also constructed to assess the probability of publication bias. The robustness of the results was tested using the method of sequential removal and cumulation of each trial. DATA ANALYSIS Overall, the pooled SMD showed significant differences between the probiotic and placebo groups (SMD = 0.64; 95%CI, 0.15-1.12), with significant heterogeneity (I2 = 92%). Subgroup analyses showed a significant effect of probiotics on cognition in the studies involving populations with Alzheimer's disease and cognitive impairment (SMD = 1.34; 95%CI, 0.51-2.16; P < 0.01). In addition, subgroup analysis showed that single probiotic strains, receiving probiotic supplements over 12 weeks, and doses >1 × 109 CFU/g were more beneficial for improving cognitive impairment. CONCLUSIONS According to this meta-analysis, probiotic supplementation had a highly significant effect on cognitive function in people with cognitive impairment or Alzheimer's disease. For people without cognitive impairment, probiotic supplementation may be ineffective.
Collapse
Affiliation(s)
- Nanyang Liu
- Department of Geratology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Di Yang
- Hepingli Hospital, Beijing, China
| | - Jiahui Sun
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yapeng Li
- Rehabilitation Therapy Center, Luoyang Orthopedic Hospital of Henan Province, Orthopedic Hospital of Henan Province, Luoyang, China
| |
Collapse
|
27
|
Husein-ElAhmed H, Steinhoff M. Metaanalyse zu präventiven und therapeutischen Effekten probiotischer Supplementierung bei Kindern mit atopischer Dermatitis. J Dtsch Dermatol Ges 2023; 21:833-844. [PMID: 37574674 DOI: 10.1111/ddg.15120_g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/25/2022] [Accepted: 04/10/2023] [Indexed: 08/15/2023]
Abstract
ZusammenfassungTrotz zahlreicher wissenschaftlicher Untersuchungen gibt es zur Wirkung von Probiotika auf die Inzidenz und Schwere der atopischen Dermatitis (AD) widersprüchliche Ergebnisse. Wir untersuchten, ob die Supplementierung mit Probiotika diese Parameter verringern. Dazu wurden drei Datenbanken systematisch durchsucht. In der Probiotika‐Gruppe war die AD‐Inzidenz um 22% geringer. Bei Verabreichung der Probiotika an schwangere und stillende Mütter betrug die Verringerung der Inzidenz 49% und bei Verabreichung an schwangere Mütter und Kinder 27%. Bei Verabreichung an schwangere und stillende Mütter sowie Kinder wurde eine 39%ige Verringerung der AD‐Inzidenz erreicht. Es wurden signifikante Unterschiede beim SCORAD (SCORing Atopic Dermatitis) zugunsten der Probiotika beobachtet, die IDLQI blieb jedoch unverändert. Lactobacillus (L.) rhamnosus war der am häufigsten dokumentierte Stamm, erwies sich jedoch bezüglich der Verringerung des SCORAD als unwirksam. Im Gegensatz dazu zeigte sich bei L. paracasei und L. sakei eine signifikante Verringerung des SCORAD. Während Probiotika bei der Prävention einer AD effektiv sind, ist die Wirkung bei der Behandlung einer AD weniger eindeutig, insbesondere bei Kindern <1 Jahr. Die Einnahme von Probiotika durch stillende Mütter ist eine wichtige Maßnahme und kann eine neue prophylaktische Strategie darstellen. Der präventive Effekt von Probiotika bei AD ist nicht mit dem familiären Hintergrund oder dem AD‐Risiko assoziiert. Bei L. paracasei und L. sakei zeigte sich die größte Verringerung des SCORAD.
Collapse
Affiliation(s)
- Husein Husein-ElAhmed
- Department of Dermatology and Venereology, Hospital de Baza, Granada, Spanien
- Translational Research Institute, Hamad Medical Corporation, Doha, Katar
| | - Martin Steinhoff
- Translational Research Institute, Hamad Medical Corporation, Doha, Katar
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Katar
- Weill Cornell Medicine-Qatar, College of Medicine, Doha, Katar
- Qatar University, Medical School, Doha, Katar
- Department of Dermatology, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
28
|
Husein-ElAhmed H, Steinhoff M. Meta-analysis on preventive and therapeutic effects of probiotic supplementation in infant atopic dermatitis. J Dtsch Dermatol Ges 2023; 21:833-843. [PMID: 37345893 DOI: 10.1111/ddg.15120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/25/2022] [Accepted: 04/10/2023] [Indexed: 06/23/2023]
Abstract
Despite a large body of research, the effect of probiotic administration on the incidence and severity of atopic dermatitis (AD) shows conflicting results. We aimed to investigate whether probiotic supplementation reduces the incidence and severity of AD. Three databases were systematically searched. A 22% lower incidence of AD was found in the probiotic group. The reduction in incidence was 49% when probiotics were given to pregnant and lactating mothers, and 27% when they were given to pregnant mothers and infants. A 39% reduction of AD incidence was achieved when administered to pregnant-breastfeeding mothers and infants. Significant differences in SCORAD (SCORing Atopic Dermatitis) favoring probiotics were observed, but the IDLQI remained unchanged. Lactobacillus (L.) rhamnosus was the most documented strain, but it turned out to be ineffective in reducing SCORAD. Conversely, L. paracasei and L. sakei showed a significant decrease in SCORAD. Probiotics are effective in the prevention of AD, but the effect is less conclusive for the treatment of AD, especially in infants <1 year. The intake of probiotics by breastfeeding mothers is an important measure and may become a novel preventive strategy. The preventive effect of probiotics against AD is not associated with family background or AD risk. L. paracasei and L. sakei show the greatest reduction in SCORAD.
Collapse
Affiliation(s)
- Husein Husein-ElAhmed
- Department of Dermatology and Venereology, Hospital de Baza, Granada, Spain
- Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - Martin Steinhoff
- Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar
- Weill Cornell Medicine-Qatar, College of Medicine, Doha, Qatar
- Qatar University, Medical School, Doha, Qatar
- Department of Dermatology, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
29
|
Branco-Lopes R, Bernal-Córdoba C, Valldecabres A, Winder C, Canozzi ME, Silva-Del-Río N. Characterization of controlled trials on probiotic supplementation to dairy calves: A scoping review. J Dairy Sci 2023; 106:5388-5401. [PMID: 37331870 DOI: 10.3168/jds.2022-23017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/10/2022] [Accepted: 02/13/2023] [Indexed: 06/20/2023]
Abstract
The objective of this scoping review was to identify, describe, and characterize the literature on probiotic supplementation in dairy calves. Eligible studies were nonrandomized, quasi-randomized and randomized controlled trials in English, Spanish, or Portuguese that evaluated the effect of probiotic supplementation on growth and health of dairy calves. The search strategies were based on a modification of the PICO (Population, Intervention, Comparator, Outcome) framework and used synonyms and words related to "dairy calves" (population), "probiotics" (intervention), and "growth and health measurements" (outcomes). No restrictions for publication year or language were applied. Searches were conducted in Biosis, CAB Abstracts, Medline, Scopus, and the Dissertations and Theses Database. In total, the search identified 4,467 records, of which 103 studies (110 controlled trials) met the inclusion criteria. The studies were published between 1980 and 2021 and originated from 28 countries. Trials were randomized (80.0%), nonrandomized (16.4%), and quasi-randomized (3.6%), ranging in sample size from 5 to 1,801 dairy calves (mode = 24; average = 64). Enrolled calves were frequently Holstein (74.5%), males (43.6%), and younger than 15 d at the beginning of probiotic supplementation (71.8%). Often, trials were conducted in research facilities (47.3%). Trials evaluated probiotics with single or multiple species of the same genus: Lactobacillus (26.4%), Saccharomyces (15.4%), Bacillus (10.0%), Enterococcus (3.6%), or multiple species of various genera (31.8%). Eight trials did not report the probiotic species used. Lactobacillus acidophilus and Enterococcus faecium were the species most supplemented to calves. The duration of probiotic supplementation ranged from 1 to 462 d (mode = 56; average = 50). In trials with a constant dose, it ranged from 4.0 × 106 to 3.7 × 1011 cfu/calf per day. Most probiotics were administered mixed solely into feed (88.5%; whole milk, milk replacer, starter, or total mixed ration) and less frequently orally as a drench or oral paste (7.9%). Most trials evaluated weight gain (88.2%) as a growth indicator and fecal consistency score (64.5%) as a health indicator. Our scoping review summarizes the breadth of controlled trials evaluating probiotic supplementation in dairy calves. Differences in intervention design (mode of probiotic administration, dose, and duration of probiotic supplementation) and outcomes evaluation (type and methods) justify future efforts toward standardized guidelines in clinical trials.
Collapse
Affiliation(s)
- R Branco-Lopes
- Veterinary Medicine Teaching and Research Center, Tulare, CA 93274
| | - C Bernal-Córdoba
- Veterinary Medicine Teaching and Research Center, Tulare, CA 93274
| | - A Valldecabres
- Teagasc, Animal and Grassland Research and Innovation Center, Moorepark, Fermoy, Co. Cork, Ireland P61 C996
| | - C Winder
- Department of Population Medicine, University of Guelph, Guelph, ON, Canada, N1G 2W1
| | - M E Canozzi
- Instituto Nacional de Investigación Agropecuaria (INIA), Programa Producción de Carne y Lana, Estación Experimental INIA La Estanzuela, Colonia, Uruguay, 70000
| | - N Silva-Del-Río
- Veterinary Medicine Teaching and Research Center, Tulare, CA 93274; Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis 95616.
| |
Collapse
|
30
|
Racines MP, Solis MN, Šefcová MA, Herich R, Larrea-Álvarez M, Revajová V. An Overview of the Use and Applications of Limosilactobacillus fermentum in Broiler Chickens. Microorganisms 2023; 11:1944. [PMID: 37630504 PMCID: PMC10459855 DOI: 10.3390/microorganisms11081944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/30/2023] [Revised: 07/24/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023] Open
Abstract
The implementation of government regulations on antibiotic use, along with the public's concern for drug resistance, has strengthened interest in developing alternatives not only aimed at preserving animal production but also at reducing the effects of pathogenic infections. Probiotics, in particular, are considered microorganisms that induce health benefits in the host after consumption of adequate amounts; they have been established as a potential strategy for improving growth, especially by stimulating intestinal homeostasis. Probiotics are commonly associated with lactic acid bacteria, and Limosilactobacillus fermentum is a well-studied species recognized for its favorable characteristics, including adhesion to epithelial cells, production of antimicrobial compounds, and activation of receptors that prompt the transcription of immune-associated genes. Recently, this species has been used in animal production. Different studies have shown that the application of L. fermentum strains not only improves the intestinal ecosystem but also reduces the effects caused by potentially pathogenic microorganisms. These studies have also revealed key insights into the mechanisms behind the actions exerted by this probiotic. In this manuscript, we aim to provide a concise overview of the effects of L. fermentum administration on broiler chicken health and performance.
Collapse
Affiliation(s)
- Maria Paula Racines
- Facultad de Ciencias Médicas Enrique Ortega Moreira, Carrera de Medicina, Universidad Espíritu Santo, Samborondón 092301, Ecuador; (M.P.R.); (M.N.S.); (M.A.Š.)
| | - Maria Nicole Solis
- Facultad de Ciencias Médicas Enrique Ortega Moreira, Carrera de Medicina, Universidad Espíritu Santo, Samborondón 092301, Ecuador; (M.P.R.); (M.N.S.); (M.A.Š.)
| | - Miroslava Anna Šefcová
- Facultad de Ciencias Médicas Enrique Ortega Moreira, Carrera de Medicina, Universidad Espíritu Santo, Samborondón 092301, Ecuador; (M.P.R.); (M.N.S.); (M.A.Š.)
| | - Róbert Herich
- Department of Morphological Disciplines, University of Veterinary Medicine and Pharmacy, 040 01 Košice, Slovakia;
| | - Marco Larrea-Álvarez
- Facultad de Ciencias Médicas Enrique Ortega Moreira, Carrera de Medicina, Universidad Espíritu Santo, Samborondón 092301, Ecuador; (M.P.R.); (M.N.S.); (M.A.Š.)
| | - Viera Revajová
- Department of Morphological Disciplines, University of Veterinary Medicine and Pharmacy, 040 01 Košice, Slovakia;
| |
Collapse
|
31
|
Yang Q, Hu Z, Lei Y, Li X, Xu C, Zhang J, Liu H, Du X. Overview of systematic reviews of probiotics in the prevention and treatment of antibiotic-associated diarrhea in children. Front Pharmacol 2023; 14:1153070. [PMID: 37564180 PMCID: PMC10411537 DOI: 10.3389/fphar.2023.1153070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/28/2023] [Accepted: 07/10/2023] [Indexed: 08/12/2023] Open
Abstract
Background: Antibiotics alter the microbial balance commonly resulting in antibiotic-associated diarrhea (AAD). Probiotics may prevent and treat AAD by providing the gut barrier and restoring the gut microflora. This study will overview the Systematic Reviews (SRs) of probiotics in preventing and treating AAD in children. It will also assess the reporting, methodological, and evidence quality of the included SRs to provide evidence for their clinical practice. Methods: After searching PubMed, Embase, Cochrane Library, CNKI, CBM, VIP, and WanFang Data databases, and finally included SRs of probiotics in the prevention and treatment of AAD in children, which were published before 1 October 2022. The reporting, methodological, and evidence quality of the included SRs were assessed by PRISMA 2020 statement, AMSTAR 2 tool, and GRADE system. Results: A total of 20 SRs were included, and the results of PRISMA 2020 showed that 4 out of 20 SRs with relatively complete reporting, and the others within some reporting deficiencies, with scores ranging from 17 points to 26.5 points; the results of AMSTAR 2 showed that 3 SRs belonged to moderate quality level, 10 SRs belonged to low-quality level and 7 SRs being extremely low-quality level; the results of the GRADE system showed that a total of 47 outcomes were reported for the included SRs, three were high-level evidence quality, 16 were medium-level evidence quality, 24 were low-level evidence quality, and four were extremely low-level evidence quality; the results of the Meta-analysis showed that high doses (5-40 billion CFUs per day) of probiotics had a significant effect in the prevention of AAD, but it is too early to conclude the effectiveness and safety of other probiotic drugs for AAD in children, except for Lacticaseibacillus rhamnosus and Saccharomyces boulardii. Conclusion: Current evidence shows that probiotics effectively prevent and treat AAD in children, and the effect of probiotics on pediatric AAD may be a potential dose-response effect. However, the conclusion should be treated with caution due to deficiencies in the methodological, reporting, and evidence quality of the included SRs. Therefore, the methodological, reporting, and evidence quality of relevant SRs still need further improvement. Systematic Review Registration: https://www.crd.york.ac.uk/prospero/, identifier CRD42022362328.
Collapse
Affiliation(s)
- Qingrui Yang
- The First Clinical Medical College, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Zeyu Hu
- The First Clinical Medical College, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Yuyu Lei
- The First Clinical Medical College, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Xinzhu Li
- The First Clinical Medical College, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Chao Xu
- The First Clinical Medical College, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Jie Zhang
- The First Clinical Medical College, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Haitao Liu
- Department of Gastroenterology, The Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, China
| | - Xiaoquan Du
- Department of Gastroenterology, The Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, China
| |
Collapse
|
32
|
Chen Y, Wang W, Zhang W, Lan D, Wang Y. Co-encapsulation of probiotics with acylglycerols in gelatin-gum arabic complex coacervates: Stability evaluation under adverse conditions. Int J Biol Macromol 2023; 242:124913. [PMID: 37217064 DOI: 10.1016/j.ijbiomac.2023.124913] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/28/2022] [Revised: 04/21/2023] [Accepted: 05/13/2023] [Indexed: 05/24/2023]
Abstract
Co-encapsulation of acylglycerols and probiotics may improve the resistance of probiotics to adverse conditions. In this study, three probiotic microcapsule models were constructed using gelatin (GE)-gum arabic (GA) complex coacervate as wall material: microcapsules containing only probiotics (GE-GA), microcapsules containing triacylglycerol (TAG) oil and probiotics (GE-T-GA) and microcapsules containing diacylglycerol (DAG) oil and probiotics (GE-D-GA). The protective effects of three microcapsules on probiotic cells under environmental stresses (freeze-drying, heat treatment, simulated digestive fluid and storage) were evaluated. The results of cell membrane fatty acid composition and Fourier transform infrared (FTIR) spectroscopy revealed that GE-D-GA could improve the fluidity of cell membrane, maintain the stability of protein and nucleic acid structure, and decrease the damage of cell membrane. These characteristics supported the high freeze-dried survival rate (96.24 %) of GE-D-GA. Furthermore, regardless of thermotolerance or storage, GE-D-GA showed the best cell viability retention. More importantly, GE-D-GA provided the best protection for probiotics under simulated gastrointestinal conditions, as the presence of DAG reduced cell damage during freeze-drying and the degree of contact between probiotics and digestive fluids. Therefore, co-microencapsulation of DAG oil and probiotics is a promising strategy to resist adverse conditions.
Collapse
Affiliation(s)
- Ying Chen
- Department of Food Science and Engineering, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Weifei Wang
- Sericultural and Agrifood Res Inst, Guangdong Academy of Agricultural Sciences, Guangzhou 510610, China
| | - Weiqian Zhang
- Department of Food Science and Engineering, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Dongming Lan
- Department of Food Science and Engineering, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Yonghua Wang
- Department of Food Science and Engineering, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Youmei Institute of Intelligent Bio-manufacturing, Foshan 528225, China.
| |
Collapse
|
33
|
Benichou Haziot C, Birak KS. Therapeutic Potential of Microbiota Modulation in Alzheimer's Disease: A Review of Preclinical Studies. J Alzheimers Dis Rep 2023; 7:415-431. [PMID: 37220623 PMCID: PMC10200201 DOI: 10.3233/adr-220097] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/02/2022] [Accepted: 04/18/2023] [Indexed: 05/25/2023] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease, yet it currently lacks effective treatment due to its complex etiology. The pathological changes in AD have been linked to the neurotoxic immune responses following aggregation of Aβ and phosphorylated tau. The gut microbiota (GM) is increasingly studied for modulating neuroinflammation in neurodegenerative diseases and in vivo studies emerge for AD. This critical review selected 7 empirical preclinical studies from 2019 onwards assessing therapy approaches targeting GM modulating microglia neuroinflammation in AD mouse models. Results from probiotics, fecal microbiota transplantation, and drugs were compared and contrasted, including for cognition, neuroinflammation, and toxic aggregation of proteins. Studies consistently reported significant amelioration or prevention of cognitive deficits, decrease in microglial activation, and lower levels of pro-inflammatory cytokines, compared to AD mouse models. However, there were differences across papers for the brain regions affected, and changes in astrocytes were inconsistent. Aβ plaques deposition significantly decreased in all papers, apart from Byur dMar Nyer lNga Ril Bu (BdNlRB) treatment. Tau phosphorylation significantly declined in 5 studies. Effects in microbial diversity following treatment varied across studies. Findings are encouraging regarding the efficacy of study but information on the effect size is limited. Potentially, GM reverses GM derived abnormalities, decreasing neuroinflammation, which reduces AD toxic aggregations of proteins in the brain, resulting in cognitive improvements. Results support the hypothesis of AD being a multifactorial disease and the potential synergies through multi-target approaches. The use of AD mice models limits conclusions around effectiveness, as human translation is challenging.
Collapse
Affiliation(s)
- Carla Benichou Haziot
- Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Kulbir Singh Birak
- Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| |
Collapse
|
34
|
Herkenhoff ME, Battistini C, Praia AB, Rossini BC, dos Santos LD, Brödel O, Frohme M, Saad SMI. The combination of omics strategies to evaluate starter and probiotic strains in the Catharina sour Brazilian-style beer. Food Res Int 2023; 167:112704. [PMID: 37087270 DOI: 10.1016/j.foodres.2023.112704] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/11/2022] [Revised: 03/08/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023]
Abstract
Catharina sour, the first internationally recognized Brazilian beer, is characterized by fermentation with lactic acid bacteria (LAB), which may have probiotic potential, and the addition of fruit juice. This study aimed to evaluate the use of the starter Streptococcus thermophilus TH-4 (TH-4) and the probiotics Lacticaseibacillus paracasei F19 and 431, associated with Saccharomyces cerevisiae US-05, in the absence (control)/presence of passion fruit or peach juices. Evaluation proceeded during fermentation and storage by enumeration using pour-plate and qPCR; gene expressions of hop resistance; proteome by Liquid Chromatography Tandem Mass Spectrometry (LC-MS/MS); and odor, flavor, and metabolome by Headspace Solid-Phase Microextraction (HS-SPME), coupled with the gas chromatography-mass spectrometry (GC-MS) analysis. We concluded that the strains studied are recommended for applications in sour beers, due to the presence of defense mechanisms like membrane adhesion and H + pump. Furthermore, HS-SPME/GC-MS indicated that the strains may contribute to the beer flavor and odor.
Collapse
|
35
|
Zhou X, Mao B, Tang X, Zhang Q, Zhao J, Zhang H, Cui S. Exploring the Dose–Effect Relationship of Bifidobacterium longum in Relieving Loperamide Hydrochloride-Induced Constipation in Rats through Colon-Released Capsules. Int J Mol Sci 2023; 24:ijms24076585. [PMID: 37047557 PMCID: PMC10095166 DOI: 10.3390/ijms24076585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/24/2023] [Revised: 03/19/2023] [Accepted: 03/22/2023] [Indexed: 04/05/2023] Open
Abstract
Constipation is a common disease affecting humans. Bifidobacterium longum is reportedly effective in relieving constipation. Current studies generally focus on the dose–response relationship of oral doses; however, the dose–effect relationship of B. longum in the colon, which is the primary site where B. longum exerts constipation-relieving effects, to treat constipation has not been studied. Herein, three strains of B. longum (FGSZY6M4, FJSWXJ10M2, and FSDJN6M3) were packaged in colon-released capsules to explore the dose–effect relationship in the colon. For each strain, three groups of capsules (104, 106, and 108 CFU/capsule, respectively) and one group of free probiotics (108 CFU/mL) were used to explore the colonic dose effect of B. longum. The results showed that the three strains of B. longum improved fecal water content and promoted intestinal motility by regulating gastrointestinal peptide (MTL, GAS, and VIP), aquaporin-3, and 5-hydroxytryptamine levels while promoting gastrointestinal motility and relieving constipation by regulating the intestinal flora composition of constipated rats and changing their metabolite content (short-chain fatty acids). Among the three free bacterial solution groups (108 CFU/mL), FGSZY6M4 was the most effective in relieving constipation caused by loperamide hydrochloride in rats. The optimal effective dose of each strain was 6M4 (104 CFU/day), 10M2 (106 CFU/day), and S3 (108 CFU/day) of the colon-released capsules. Therefore, for some effective strains, the dose of oral probiotics can be reduced by colon-released capsules, and constipation can be relieved without administering a great number of bacterial solutions. Therefore, investigating the most effective dose of B. longum at the colon site can help to improve the efficiency of relieving constipation.
Collapse
Affiliation(s)
- Xin Zhou
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Bingyong Mao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xin Tang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Qiuxiang Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Shumao Cui
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
36
|
Battistini C, Herkenhoff ME, de Souza Leite M, Vieira ADS, Bedani R, Saad SMI. Brewer's Spent Grain Enhanced the Recovery of Potential Probiotic Strains in Fermented Milk After Exposure to In Vitro-Simulated Gastrointestinal Conditions. Probiotics Antimicrob Proteins 2023; 15:326-337. [PMID: 34491541 DOI: 10.1007/s12602-021-09839-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Accepted: 08/19/2021] [Indexed: 11/28/2022]
Abstract
Brewer's spent grain (BSG) is a beer industry by-product with interesting functional properties by its high fiber content and bioactive compounds, which may be possibly employed as a prebiotic ingredient. The fermentability of BSG by ten probiotics and two starter cultures was evaluated, and the co-culture of Lacticaseibacillus paracasei subsp. paracasei F-19® (probiotic) and Streptococcus thermophilus TH-4® (starter) was selected to produce a potentially probiotic fermented milk (FM). Four formulations of FM were studied: FM1 (control), FM2 (probiotic - /BSG +), FM3 (probiotic + /BSG -), and FM4 (probiotic + /BSG +). The viability of the microorganisms in the FM was monitored throughout 28 days of storage. The resistance of the microorganisms in the FM to in vitro-simulated gastrointestinal tract (GIT) conditions was also evaluated. Even though the BSG did not influence the fermentation kinetics or increase the populations of both microorganisms in the FM, a significant improvement on the survival of TH-4® against in vitro-simulated GIT stress was observed in the formulations containing BSG alone or in combination with F-19®. All formulations showed potential as probiotic FM, since total probiotic populations were kept above 1010 CFU in a daily portion of 200 mL, and a minimum of 1010 and 108 CFU equivalent of, respectively, TH-4® and F-19® was recovered after the GIT stress. Therefore, TH-4® has potential as a probiotic strain in addition to its starter feature, while BSG may be employed as a possible prebiotic ingredient in a synbiotic approach. Nonetheless, further studies to evaluate possible health benefits are needed.
Collapse
Affiliation(s)
- Carolina Battistini
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo (Universidade de São Paulo, USP), São Paulo, Av. Professor Lineu Prestes, SP, 58005508-000, Brazil.
- Food Research Center FoRC, University of São Paulo (USP), Rua Do Lago, 250, Ed. Semi Industrial, Bloco C, São Paulo, SP, 05508-000, Brazil.
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois At Chicago, Chicago, 840 S Wood Street, Room 1044 CSB, IL, 60612, USA.
| | - Marcos Edgar Herkenhoff
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo (Universidade de São Paulo, USP), São Paulo, Av. Professor Lineu Prestes, SP, 58005508-000, Brazil
- Food Research Center FoRC, University of São Paulo (USP), Rua Do Lago, 250, Ed. Semi Industrial, Bloco C, São Paulo, SP, 05508-000, Brazil
| | - Marcela de Souza Leite
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo (Universidade de São Paulo, USP), São Paulo, Av. Professor Lineu Prestes, SP, 58005508-000, Brazil
- Food Research Center FoRC, University of São Paulo (USP), Rua Do Lago, 250, Ed. Semi Industrial, Bloco C, São Paulo, SP, 05508-000, Brazil
| | - Antonio Diogo Silva Vieira
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo (Universidade de São Paulo, USP), São Paulo, Av. Professor Lineu Prestes, SP, 58005508-000, Brazil
- Food Research Center FoRC, University of São Paulo (USP), Rua Do Lago, 250, Ed. Semi Industrial, Bloco C, São Paulo, SP, 05508-000, Brazil
| | - Raquel Bedani
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo (Universidade de São Paulo, USP), São Paulo, Av. Professor Lineu Prestes, SP, 58005508-000, Brazil
- Food Research Center FoRC, University of São Paulo (USP), Rua Do Lago, 250, Ed. Semi Industrial, Bloco C, São Paulo, SP, 05508-000, Brazil
| | - Susana Marta Isay Saad
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo (Universidade de São Paulo, USP), São Paulo, Av. Professor Lineu Prestes, SP, 58005508-000, Brazil.
- Food Research Center FoRC, University of São Paulo (USP), Rua Do Lago, 250, Ed. Semi Industrial, Bloco C, São Paulo, SP, 05508-000, Brazil.
| |
Collapse
|
37
|
Can probiotic gargles reduce post-tonsillectomy morbidity in adult patients? A pilot, triple-blind, randomised, controlled trial and feasibility study. J Laryngol Otol 2023; 137:323-341. [PMID: 35317870 PMCID: PMC9975764 DOI: 10.1017/s0022215122000743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVE This study aimed to determine the efficacy of probiotic gargles compared with placebo gargles on reducing post-tonsillectomy morbidity in adults. METHOD This was a triple-blind, randomised, controlled trial and feasibility study. Thirty adults underwent elective tonsillectomy and were randomly assigned to receive either probiotic or placebo gargles for 14 days after surgery. Daily pain scores and requirement of analgesia were measured for 14 days post-operatively. Secondary outcomes assessed probiotic safety and tolerability and the feasibility of the trial. RESULTS The probiotic group experienced less pain at rest on day 2. However, the amount of oxycodone (5 mg) tablets used was greater in the probiotic group compared with placebo. There were no statistically significant differences in the frequency of adverse effects between both groups. This trial was feasible. CONCLUSION This pilot study suggested that probiotic gargles do not reduce post-tonsillectomy pain or bleeding, highlighting the importance of pilot and feasibility studies in clinical research.
Collapse
|
38
|
Kim YI, Lee ES, Song EJ, Shin DU, Eom JE, Shin HS, Kim JE, Oh JY, Nam YD, Lee SY. Lacticaseibacillus paracasei AO356 ameliorates obesity by regulating adipogenesis and thermogenesis in C57BL/6J male mice. J Funct Foods 2023. [DOI: 10.1016/j.jff.2023.105404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/09/2023] Open
|
39
|
Bubnov R, Spivak M. Pathophysiology-Based Individualized Use of Probiotics and Prebiotics for Metabolic Syndrome: Implementing Predictive, Preventive, and Personalized Medical Approach. ADVANCES IN PREDICTIVE, PREVENTIVE AND PERSONALISED MEDICINE 2023:133-196. [DOI: 10.1007/978-3-031-19564-8_6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 01/03/2025]
|
40
|
Angulo M, Ramos A, Reyes-Becerril M, Guerra K, Monreal-Escalante E, Angulo C. Probiotic Debaryomyces hansenii CBS 8339 yeast enhanced immune responses in mice. 3 Biotech 2023; 13:28. [PMID: 36590244 PMCID: PMC9797638 DOI: 10.1007/s13205-022-03442-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/14/2022] [Accepted: 12/17/2022] [Indexed: 12/29/2022] Open
Abstract
This study aimed to examine the effect of Debaryomyces hansenii CBS 8339 on innate immune responses in mice. Thirty BALB/c mice were randomly treated with phosphate buffered saline (PBS) (control) and two D. hansenii (Dh) doses: Dh 10ˆ6 CFU (colony forming units) and Dh 10ˆ8 CFU daily for 15 days. Spleen, blood, and gut samples were taken on days 7 and 15. Mouse splenocytes were isolated and challenged with Escherichia coli. Immunological assays and immune-related gene expressions were performed. Serum was obtained from blood for total IgA and IgG antibody titer determination. Gut samples were taken for yeast colonization assessment. Phagocytosis, respiratory burst activity, and nitric oxide production in mice were mainly enhanced (p < 0.05) upon 7 days of D. hansenii intake at a concentration of 10ˆ8 CFU before and after bacterial challenge. Moreover, oral D. hansenii in mice upregulated (p < 0.05) gene expression of pro-inflammatory cytokines (INF-γ, IL-6 and IL-1β) before or after E. coli challenge on day 7 but downregulated (p < 0.05) on day 15. Furthermore, total serum IgG and IgA titers were higher (p < 0.05) in Dh 10ˆ8 CFU at days 7 and 15, and only at day 7, respectively, than that in the other dose and control groups. Finally, D. hansenii was detected in the gut of mice that received the treatments, suggesting that yeast survived gastrointestinal transit. Altogether, a short period (7 days) of D. hansenii CBS 8339 oral delivery improved immune innate response on mice.
Collapse
Affiliation(s)
- Miriam Angulo
- Immunology and Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste, S.C., Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, C.P. 23096 La Paz, BCS Mexico
| | - Abel Ramos
- Immunology and Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste, S.C., Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, C.P. 23096 La Paz, BCS Mexico
| | - Martha Reyes-Becerril
- Immunology and Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste, S.C., Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, C.P. 23096 La Paz, BCS Mexico
| | - Kevyn Guerra
- Immunology and Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste, S.C., Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, C.P. 23096 La Paz, BCS Mexico
| | - Elizabeth Monreal-Escalante
- Immunology and Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste, S.C., Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, C.P. 23096 La Paz, BCS Mexico
| | - Carlos Angulo
- Immunology and Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste, S.C., Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, C.P. 23096 La Paz, BCS Mexico
| |
Collapse
|
41
|
Chiu YH, Chiu HP, Lin MY. Synergistic effect of probiotic and postbiotic on attenuation of PM2.5-induced lung damage and allergic response. J Food Sci 2023; 88:513-522. [PMID: 36463413 DOI: 10.1111/1750-3841.16398] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/20/2022] [Revised: 11/03/2022] [Accepted: 11/10/2022] [Indexed: 12/05/2022]
Abstract
To date, few studies have been conducted on the relationship between postbiotics and air pollution, and there is limited knowledge if postbiotic and probiotic have synergistic effects. Therefore, we created a PM-induced lung inflammation mice model and demonstrated the effect of probiotic, postbiotic, and their combination treatment on attenuation of PM2.5-induced lung damage and allergic response. The mice were intratracheally given PM2.5 triggering conditions of acute lung damage and allergic response. Our results showed that individual treatment of probiotic and postbiotic reduced body weight loss by 47.1% and 48.9%, but the results did not show any effect on polarizing IFN-γ/IL-4 ratio. In addition, PM2.5-induced overactive expression of IgE treated by probiotic and postbiotic was reduced by 33.2% and 30.4%, respectively. While combination treatment of probiotic and postbiotic exerted a synergistic effect, especially considerably on improving IgE reduction by 57.1%, body weight loss by 78.3%, and IFN-γ/IL-4 ratio boost by 87.5%. To sum up the above functionality, these research findings may help establish a novel platform for postbiotic application, formulation, and mechanistic selection with regard to PM2.5-induced lung injury. PRACTICAL APPLICATION: Allergic inflammation caused by PM2.5 is not like common allergens (ex. Pollens, ovalbumin, dust mites), which simply skewing Th1/Th2 polarization to Th2. Thus using probiotics screened by Th1-skewing criteria might not be the best choice to treat on PM2.5-induced symptoms. This research proposed a combination of probiotics and postbiotics on modulating immunity homeostasis, and consequently attenuating complications of PM2.5-induced lung damage. These research findings may help establish a novel platform for postbiotic application, formulation and mechanistic selection with regard to PM2.5-induced lung injury.
Collapse
Affiliation(s)
- Yi-Heng Chiu
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung, ROC, Taiwan.,Chambio Co., Ltd., Taichung, ROC, Taiwan
| | | | - Meei-Yn Lin
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung, ROC, Taiwan
| |
Collapse
|
42
|
Praia AB, Herkenhoff ME, Broedel O, Frohme M, Saad SMI. Sour Beer with Lacticaseibacillus paracasei subsp. paracasei F19: Feasibility and Influence of Supplementation with Spondias mombin L. Juice and/or By-Product. Foods 2022; 11:foods11244068. [PMID: 36553809 PMCID: PMC9778371 DOI: 10.3390/foods11244068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/01/2022] [Revised: 11/30/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
This study aimed to evaluate the probiotic strain Lacticaseibacillus (L.) paracasei subsp. paracasei F19 (F19) with the yeast Saccharomyces cerevisiae US-05 (US-05), using Spondias mombin L. ('taperebá' or 'cajá') juice and by-product, in four sour-type beer formulations: control, with bagasse, juice, and juice and bagasse. The viability of F19 was evaluated by pour-plating and PMA-qPCR. Fermentability, in addition to physicochemical and sensory parameters, and aroma and flavor, were evaluated during brewery by using Headspace Solid-Phase Microextraction (HS-SPME) coupled with gas chromatography-mass spectrometry (GC-MS). F19 was successful in fermenting bagasse in a MRS medium (9.28 log CFU/mL in 24 h) but had a low viability in hopped wort, growing better in formulations without bagasse or juice. No difference between formulations was observed regarding sensory acceptability, and the HS-SPME/GC-MS revealed different flavors and aroma compounds. In conclusion, the production of a potential probiotic sour beer with F19 and US-05 is feasible regarding probiotic viability. However, S. mombin, as juice or bagasse, threatened probiotic survival. Different flavors and aroma compounds were detected, whereas no difference between formulations was found regarding sensory acceptability. The moderate alcohol content achieved is important for bacterial survival and for the development of a probiotic beer with health claims.
Collapse
Affiliation(s)
- Ana Beatriz Praia
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo (USP), Av. Professor Lineu Prestes, 580, São Paulo 05508-000, SP, Brazil
- Food Research Center FoRC, University of São Paulo (USP), Av. Professor Lineu Prestes, 580, São Paulo 05508-000, SP, Brazil
| | - Marcos Edgar Herkenhoff
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo (USP), Av. Professor Lineu Prestes, 580, São Paulo 05508-000, SP, Brazil
- Food Research Center FoRC, University of São Paulo (USP), Av. Professor Lineu Prestes, 580, São Paulo 05508-000, SP, Brazil
| | - Oliver Broedel
- Division Molecular Biotechnology and Functional Genomics, Technical University of Applied Sciences Wildau, 15745 Wildau, Germany
| | - Marcus Frohme
- Division Molecular Biotechnology and Functional Genomics, Technical University of Applied Sciences Wildau, 15745 Wildau, Germany
| | - Susana Marta Isay Saad
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo (USP), Av. Professor Lineu Prestes, 580, São Paulo 05508-000, SP, Brazil
- Food Research Center FoRC, University of São Paulo (USP), Av. Professor Lineu Prestes, 580, São Paulo 05508-000, SP, Brazil
- Correspondence:
| |
Collapse
|
43
|
Porchia LM, Vazquez-Marroquin G, Ochoa-Précoma R, Pérez-Fuentes R, Gonzalez-Mejia ME. Probiotics' effect on visceral and subcutaneous adipose tissue: a systematic review of randomized controlled trials. Eur J Clin Nutr 2022; 76:1646-1656. [PMID: 35418606 DOI: 10.1038/s41430-022-01135-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/05/2021] [Revised: 03/22/2022] [Accepted: 03/25/2022] [Indexed: 11/08/2022]
Abstract
Probiotics are shown to alter the microbiota, leading to a favorable environment, in which weight loss and metabolic parameters are improve. However, the results on probiotics' effect on specific types of central adipose tissues, mainly visceral (VAT) and subcutaneous adipose tissue (SAT), are conflicting. Therefore, we conducted a systematic review, aimed to evaluate the effects of probiotics on VAT and SAT. PubMed, SCOPUS, EBSCO, and LILACS databases were searched for studies that investigated the effect of probiotics on VAT and SAT. Fixed effects were used to calculate the pooled difference in means (DM) and 95% confidence intervals (95%CI). Fourteen publications met the inclusion criteria, which consisted of 1523 participants. For VAT, overall, there was a significant decrease (DM = -3.63 cm2, 95% CI: -5.08 to -2.17, p < 0.001). When stratified by type of probiotic, single Bifidobacterium (DM = -4.49 cm2, 95% CI:-7.37 to -1.61, p = 0.002) and single Lactobacillus probiotics (DM = -3.84 cm2, 95% CI:-5.74 to -1.93, p < 0.001) resulted in significant reductions. Mixed probiotics had no effect. For SAT, overall, there was a significant decrease (DM = -2.91 cm2, 95% CI:-4.82 to -1.01, p = 0.003), and when stratified by type of probiotic, single Lactobacillus (DM = -3.39 cm2, 95% CI:-5.90 to -0.88, p = 0.008) and mixed probiotics (DM = -5.97 cm2, 95% CI:-10.32 to -1.62, p = 0.007) resulted in a significant decrease. Single Bifidobacterium probiotics had no effect. Using meta-regression, no association was observed between the total daily probiotic dose and VAT or SAT reduction. This study shows that probiotics have a beneficial effect on central adiposity. Single Lactobacillus-based probiotics reduced VAT and SAT, whereas Bifidobacterium-based probiotics reduce VAT.
Collapse
Affiliation(s)
- Leonardo M Porchia
- Laboratorio de Fisiopatología en Enfermedades Crónicas, Centro de investigación Biomédica de Oriente, IMSS. Delegación Puebla, Carretera Federal Atlixco Metepec Km. 4.5, Colonia Centro, C.P, 74360, Atlixco, Puebla, México
| | - Gabriela Vazquez-Marroquin
- Posgrado en Ciencias Biológicas, Universidad Autónoma de Tlaxcala, Carretera Federal Tlaxcala, Puebla. S/N; Km. 1.5, Tlaxcala, Tlaxcala, 90062, Mexico
| | - Renata Ochoa-Précoma
- Facultad de Medicina, Benemérita Universidad Autónoma de Puebla. Calle 13 Sur 2901, Colonia Volcanes, C.P. 72420, Puebla, Puebla, México
| | - Ricardo Pérez-Fuentes
- Laboratorio de Fisiopatología en Enfermedades Crónicas, Centro de investigación Biomédica de Oriente, IMSS. Delegación Puebla, Carretera Federal Atlixco Metepec Km. 4.5, Colonia Centro, C.P, 74360, Atlixco, Puebla, México
- Facultad de Medicina, Benemérita Universidad Autónoma de Puebla. Calle 13 Sur 2901, Colonia Volcanes, C.P. 72420, Puebla, Puebla, México
| | - M Elba Gonzalez-Mejia
- Facultad de Medicina, Benemérita Universidad Autónoma de Puebla. Calle 13 Sur 2901, Colonia Volcanes, C.P. 72420, Puebla, Puebla, México.
| |
Collapse
|
44
|
Preventive Effect of Probiotics on Oral Mucositis Induced by Cancer Treatment: A Systematic Review and Meta-Analysis. Int J Mol Sci 2022; 23:ijms232113268. [PMID: 36362057 PMCID: PMC9656871 DOI: 10.3390/ijms232113268] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/07/2022] [Revised: 10/27/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022] Open
Abstract
Oral mucositis is a common adverse effect of cancer therapy. Probiotics have been shown to exert anti-inflammatory and immunomodulatory effects. We performed a meta-analysis of randomized controlled trials (RCTs) to investigate whether probiotics can prevent cancer therapy−induced oral mucositis. We searched PubMed, Embase, Cochrane Library, and ClinicalTrials.gov databases for trials related to probiotics and oral mucositis published before September 2022; no language restrictions were applied. The primary outcome was the incidence of oral mucositis and severe oral mucositis. Secondary outcomes were the requirement for enteral nutrition during treatment, body weight loss, and decreased quality of life. The study has been registered in PROSPERO (number: CRD 42022302339). Eight RCTs, including 708 patients, were reviewed; however, a meta-analysis of only seven trials could be performed. Three trials using Lactobacilli-based probiotics reported that the incidence of oral mucositis in the probiotic group was significantly low (risk ratio [RR] = 0.84, 95% confidence interval [CI] = 0.77−0.93, p = 0.0004). Seven trials reported a significantly low incidence of severe oral mucositis in the probiotic group (RR = 0.65, 95% CI = 0.53−0.81, p < 0.0001). The requirement of enteral nutrition was significantly low in the probiotic group (odds ratio = 0.34, 95% CI: 0.13−0.92, p < 0.05). This study demonstrated the effectiveness of probiotics in the prevention and mitigation of cancer therapy−induced oral mucositis. We recommend the use of probiotics to prevent and treat oral mucositis during cancer therapy.
Collapse
|
45
|
Decreasing the Adverse Effects in Pelvic Radiation Therapy: A Randomized Controlled Trial Evaluating the Use of Probiotics. Adv Radiat Oncol 2022; 8:101089. [PMID: 36483069 PMCID: PMC9723296 DOI: 10.1016/j.adro.2022.101089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/07/2022] [Accepted: 09/15/2022] [Indexed: 01/19/2023] Open
Abstract
PURPOSE The aim of this randomized controlled trial was to evaluate the potential benefit from 2 probiotic bacteria of the species Lactiplantibacillus plantarum against radiation therapy-induced comorbidities. METHODS AND MATERIALS Women (>18 years of age) scheduled for radiation therapy because of gynecologic cancer were randomly allocated to consume placebo or either low-dose probiotics (1 × 1010 colony-forming unit/capsule twice daily) or high-dose probiotics (5 × 1010 colony-forming unit/capsule twice daily). The intervention started approximately 1 week before the onset of radiation therapy and continued until 2 weeks after completion. During this period the participants were daily filling in a study diary documenting the incidence and severity of symptoms, intake of concomitant medication, and stool consistency. The primary endpoint was the probiotic effect on the mean number of loose stools during radiation therapy. RESULTS Of the 97 randomized women, 75 provided data for the analysis of the results. The mean number of loose stools (sum of Bristol stool type 6 and 7) was not significantly reduced in the probiotic groups, but there was a significant reduction in the mean number of days with >1 loose stool with 15.04 ± 8.92 days in the placebo and 8.65 ± 5.93 days in the high-dose probiotics group (P = .014). The benefit was even more pronounced in the 2 weeks following the end of radiation therapy (P = .005). Moreover, intake of the probiotics resulted in a reduced severity of the symptoms grinding abdominal pain (P = .041) and defecation urgency (P = .08) and a reduced percentage of days with these symptoms (P = .023 and P = .042, respectively), compared with placebo. There were no differences regarding reported adverse events. CONCLUSIONS Intake of the 2 probiotic bacteria was beneficial and reduced many measures or symptoms of the radiation-induced toxicity in women treated for gynecologic cancer.
Collapse
|
46
|
Sheng S, Fu Y, Pan N, Zhang H, Xiu L, Liang Y, Liu Y, Liu B, Ma C, Du R, Wang X. Novel exopolysaccharide derived from probiotic Lactobacillus pantheris TCP102 strain with immune-enhancing and anticancer activities. Front Microbiol 2022; 13:1015270. [PMID: 36225355 PMCID: PMC9549278 DOI: 10.3389/fmicb.2022.1015270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/09/2022] [Accepted: 08/30/2022] [Indexed: 11/24/2022] Open
Abstract
Probiotics are gaining attention due to their functions of regulating the intestinal barrier and promoting human health. The production of exopolysaccharide (EPS) is one of the important factors for probiotics to exert beneficial properties. This study aimed to screen exopolysaccharides-producing lactic acid bacteria (LAB) and evaluate the probiotic potential. we obtained three exopolysaccharide fractions (EPS1, EPS2, and EPS3) from Lactobacillus pantheris TCP102 and purified by a combination of ion-exchange chromatography and gel permeation chromatography. The structures of the fractions were characterized by FT-IR, UV, HPLC, and scanning electron microscopy (SEM) analysis. The Mw of EPS1, EPS2, and EPS3 were approximately 20.3, 23.0, and 19.3 kDa, and were mainly composed of galactose, glucose, and mannose, with approximate molar ratios of 2.86:1:1.48, 1.26:1:1, 1.58:1.80:1, respectively. Furthermore, SEM analysis demonstrated that the three polysaccharide fractions differ in microstructure and surface morphology. Additionally, preliminary results for immune-enhancing and anticancer activities reveal that these EPSs significantly induced the production of nitric oxide (NO), TNF-α, and IL-6 in Ana-1 cells and peritoneal macrophage cells. Meanwhile, the EPSs also significantly suppressed the proliferation of HCT-116, BCG-803, and particularly A-2780 cells. The results suggest that the three novel EPSs isolated from Lactobacillus pantheris TCP102 can be regarded as potential application value in functional food and natural antitumor drugs.
Collapse
Affiliation(s)
- Shouxin Sheng
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Yubing Fu
- School of Life Sciences, Faculty of Medicine and Life Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, China
| | - Na Pan
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Haochi Zhang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Lei Xiu
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Yanchen Liang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Yang Liu
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Bohui Liu
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Cheng Ma
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Ruiping Du
- Animal Nutrition Institute, Agriculture and Animal Husbandry Academy of Inner Mongolia, Hohhot, China
| | - Xiao Wang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| |
Collapse
|
47
|
van der Geest AM, Schukking I, Brummer RJM, van de Burgwal LHM, Larsen OFA. Comparing probiotic and drug interventions in irritable bowel syndrome: a meta-analysis of randomised controlled trials. Benef Microbes 2022; 13:183-194. [PMID: 35848115 DOI: 10.3920/bm2021.0123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/13/2022]
Abstract
Clinical decisions made by health professionals to recommend either drug or probiotic interventions for irritable bowel syndrome (IBS) should be supported by proper knowledge of the efficacy rates of both types of interventions. In this article, we performed a systematic review and meta-analysis to examine the efficacy of both probiotic- and drug interventions in IBS. Medline was searched between January 2015 - January 2021. Randomised controlled trials (RCT) recruiting participants > 18 years old with IBS and examining the effect of probiotics or drugs were eligible for inclusion. The data of the primary outcome, i.e. the persistence of IBS symptoms (dichotomous symptom data), were pooled to obtain a relative risk (RR), with a 95% confidence interval (CI). Secondary outcomes, abdominal pain- and bloating scores (continuous data), were pooled using a standardised mean difference with a 95% CI. The search identified 269 citations of which 32 RCTs were eligible. Our meta-analysis indicated that both probiotic and drug interventions are able to improve the persistence of IBS symptoms (RR 0.60 [0.51; 0.92] versus 0.87 [0.81; 0.92], respectively) and abdominal pain scores (standardised mean difference (SMD) -0.35 [-0.56; -0.14] versus -0.10 [-0.20; 0.00], respectively). However, determining the overall efficacy of both intervention types is inherently complex and such results should be interpreted with care, due to the large diversity of probiotic- and drug types and doses, which is also complicated by variety in IBS subtypes. Hence, as a first step, more large scale randomised double blind placebo-controlled trials focussing on a specific IBS subtype targeted with specific probiotic strains or specific pharmaceutical modalities should be executed, enabling a more proper comparison between trials.
Collapse
Affiliation(s)
- A M van der Geest
- Vrije Universiteit Amsterdam, Athena Institute, De Boelelaan 1085, 1081 HV Amsterdam, the Netherlands
| | - I Schukking
- Vrije Universiteit Amsterdam, Athena Institute, De Boelelaan 1085, 1081 HV Amsterdam, the Netherlands
| | - R J M Brummer
- Örebro University, School of Medical Sciences, Faculty of Medical and Health Sciences, Fakultetsgatan 1, 70182 Örebro, Sweden
| | - L H M van de Burgwal
- Vrije Universiteit Amsterdam, Athena Institute, De Boelelaan 1085, 1081 HV Amsterdam, the Netherlands
| | - O F A Larsen
- Vrije Universiteit Amsterdam, Athena Institute, De Boelelaan 1085, 1081 HV Amsterdam, the Netherlands
| |
Collapse
|
48
|
Ahire J, Mokashe N, Kashikar M, Madempudi R. Survival of Limosilactobacillus reuteri UBLRu-87 during passage through the in vitro gut model system. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/27/2022]
|
49
|
Zeng X, Jia H, Shi Y, Chen K, Wang Z, Gao Z, Yuan Y, Yue T. Lactobacillus kefiranofaciens JKSP109 and Saccharomyces cerevisiae JKSP39 isolated from Tibetan kefir grain co-alleviated AOM/DSS induced inflammation and colorectal carcinogenesis. Food Funct 2022; 13:6947-6961. [PMID: 35575226 DOI: 10.1039/d1fo02939h] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/21/2022]
Abstract
This study aimed to investigate the alleviative effects of Lactobacillus kefiranofaciens JKSP109 (LK) and Saccharomyces cerevisiae JKSP39 (SC) isolated from Tibetan kefir grain on colon inflammation and colorectal carcinogenesis. Azoxymethane (AOM) and dextran sulfate sodium (DSS) were used to establish a mouse model of colorectal cancer (CRC). The treatment group mice were administered with LK, SC, or the combination of LK and SC for five days per week from the day of receiving AOM. The composition of the gut microbiota was assessed using internal transcribed spacer 2 and 16S rRNA gene high-throughput sequencing. Furthermore, the biomarkers associated with gut barrier integrity, inflammation, regulators of cell proliferation, and apoptosis were evaluated. The results showed that the administration of LK, SC, and their combination increased the body weights and decreased the disease activity index (DAI) score and tumor multiplicity. As compared to the CRC model group, the three treatment groups positively regulated the gut microbiota. Meanwhile, the three treatments also enhanced the gut barrier, decreased the expression of proinflammatory cytokines and oncocyte proliferation indicators, and increased the expression of terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL)-positive tumor epithelial cells and content of short chain fatty acids in fecal samples. All these results indicated that the LK and SC alleviated the inflammation and colorectal carcinogenesis in AOM/DSS-induced CRC mouse models, and the majority of tested indexes in the combination group were superior to single strain groups.
Collapse
Affiliation(s)
- Xuejun Zeng
- College of Food Science and Engineering, Northwest A & F University, Yangling, 712100, China. .,Laboratory of Quality & Safety Risk Assessment for Agri-products (Yangling), Ministry of Agriculture, Yangling, 712100, China
| | - Hang Jia
- College of Food Science and Engineering, Northwest A & F University, Yangling, 712100, China. .,Laboratory of Quality & Safety Risk Assessment for Agri-products (Yangling), Ministry of Agriculture, Yangling, 712100, China
| | - Yiheng Shi
- College of Food Science and Engineering, Northwest A & F University, Yangling, 712100, China. .,Laboratory of Quality & Safety Risk Assessment for Agri-products (Yangling), Ministry of Agriculture, Yangling, 712100, China
| | - Ke Chen
- College of Food Science and Engineering, Northwest A & F University, Yangling, 712100, China. .,Laboratory of Quality & Safety Risk Assessment for Agri-products (Yangling), Ministry of Agriculture, Yangling, 712100, China
| | - Zhouli Wang
- College of Food Science and Engineering, Northwest A & F University, Yangling, 712100, China. .,Laboratory of Quality & Safety Risk Assessment for Agri-products (Yangling), Ministry of Agriculture, Yangling, 712100, China
| | - Zhenpeng Gao
- College of Food Science and Engineering, Northwest A & F University, Yangling, 712100, China. .,Laboratory of Quality & Safety Risk Assessment for Agri-products (Yangling), Ministry of Agriculture, Yangling, 712100, China
| | - Yahong Yuan
- College of Food Science and Engineering, Northwest A & F University, Yangling, 712100, China. .,Laboratory of Quality & Safety Risk Assessment for Agri-products (Yangling), Ministry of Agriculture, Yangling, 712100, China
| | - Tianli Yue
- College of Food Science and Engineering, Northwest A & F University, Yangling, 712100, China. .,Laboratory of Quality & Safety Risk Assessment for Agri-products (Yangling), Ministry of Agriculture, Yangling, 712100, China.,College of Food Science and Technology, Northwest University, Xi'an, 710069, China
| |
Collapse
|
50
|
Nobre LMS, da Silva Lopes MH, Geraix J, Cajado AG, Silva JMR, Ribeiro LR, Freire RS, Cavalcante DIM, Wong DVT, Alves APNN, Lima-Júnior RCP. Paraprobiotic Enterococcus faecalis EC-12 prevents the development of irinotecan-induced intestinal mucositis in mice. Life Sci 2022; 296:120445. [PMID: 35245522 DOI: 10.1016/j.lfs.2022.120445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/27/2021] [Revised: 02/17/2022] [Accepted: 02/26/2022] [Indexed: 12/17/2022]
Abstract
AIMS This study tested the protective effect of purified paraprobiotic Enterococcus faecalis (EC-12) and an E. faecalis-based formulation (Med LanS) on irinotecan-induced intestinal mucositis murine model. MAIN METHODS C57BL/6 male mice received saline, irinotecan (75 mg/Kg, i.p.), EC-12 (0.3, 1, or 3 × 107 CFU/Kg, p.o.) + irinotecan or Med Lan-S (3 × 107 CFU/Kg, p.o.) + irinotecan. Body mass variation was assessed daily, and blood samples were collected for evaluating bacteremia and leukocyte count. The ileum was harvested for myeloperoxidase assay, histopathology, quantitative PCR, and immunofluorescence for macrophages (F4/80), TLR4, and IL-18 binding protein (IL-18BP). KEY FINDINGS The best therapeutic strategy was EC-12 administration at 3 × 107 CFU/Kg, starting 1 week before irinotecan. EC-12 and Med Lan-S did not prevent the irinotecan-induced body mass loss or leukopenia but attenuated the neutrophil infiltration in the intestine and increased the villus/crypt ratio (P < 0.05). Additionally, EC-12 and Med Lan-S reduced the mRNA expression of Cldn-2, Ocln, and Tlr4 versus the irinotecan group (P < 0.05). Irinotecan also augmented the expression of Il-18, IL-18BP, the immunofluorescence of F4/80, and TLR4, while only EC-12 prevented the expression of all these markers. Remarkably, EC-12 and Med Lan inhibited the irinotecan-induced bacterial translocation to the blood. SIGNIFICANCE Paraprobiotic E. faecalis EC-12 prevents the development of intestinal mucositis by downregulating the inflammatory response. Med Lan-S also protects from mucositis. Possibly, the complexity of the formulation accounts for an innate immune-driven protective mechanism.
Collapse
Affiliation(s)
- Lívia Maria Soares Nobre
- Laboratory of Inflammation and Cancer Pharmacology, Drug Research and Development Center (NPDM), Department of Physiology and Pharmacology, Federal University of Ceara, Fortaleza, Ceará, Brazil
| | - Marina Helena da Silva Lopes
- Graduate Program in Pathology, Department of Pathology and Forensic Medicine, Faculty of Medicine, Federal University of Ceara, Fortaleza, Ceará, Brazil
| | - Juliana Geraix
- Laboratory of Inflammation and Cancer Pharmacology, Drug Research and Development Center (NPDM), Department of Physiology and Pharmacology, Federal University of Ceara, Fortaleza, Ceará, Brazil
| | - Aurilene Gomes Cajado
- Laboratory of Inflammation and Cancer Pharmacology, Drug Research and Development Center (NPDM), Department of Physiology and Pharmacology, Federal University of Ceara, Fortaleza, Ceará, Brazil
| | - Jussara Matyelle Rodrigues Silva
- Laboratory of Inflammation and Cancer Pharmacology, Drug Research and Development Center (NPDM), Department of Physiology and Pharmacology, Federal University of Ceara, Fortaleza, Ceará, Brazil
| | - Lyanna Rodrigues Ribeiro
- Laboratory of Inflammation and Cancer Pharmacology, Drug Research and Development Center (NPDM), Department of Physiology and Pharmacology, Federal University of Ceara, Fortaleza, Ceará, Brazil
| | | | - Diane Isabelle Magno Cavalcante
- Graduate Program in Pathology, Department of Pathology and Forensic Medicine, Faculty of Medicine, Federal University of Ceara, Fortaleza, Ceará, Brazil
| | - Deysi Viviana Tenazoa Wong
- Laboratory of Inflammation and Cancer Pharmacology, Drug Research and Development Center (NPDM), Department of Physiology and Pharmacology, Federal University of Ceara, Fortaleza, Ceará, Brazil
| | - Ana Paula Negreiros Nunes Alves
- Department of Dental Clinic, Division of Oral Pathology, Faculty of Pharmacy, Dentistry and Nursing, Federal University of Ceara, Fortaleza, Ceará, Brazil
| | - Roberto César Pereira Lima-Júnior
- Laboratory of Inflammation and Cancer Pharmacology, Drug Research and Development Center (NPDM), Department of Physiology and Pharmacology, Federal University of Ceara, Fortaleza, Ceará, Brazil.
| |
Collapse
|