1
|
Li T, Li J, Wang J, Xue KS, Su X, Qu H, Duan X, Jiang Y. The occurrence and management of fumonisin contamination across the food production and supply chains. J Adv Res 2024; 60:13-26. [PMID: 37544477 PMCID: PMC11156612 DOI: 10.1016/j.jare.2023.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 04/05/2023] [Accepted: 08/02/2023] [Indexed: 08/08/2023] Open
Abstract
BACKGROUND Fumonisins (FUMs) are among the most common mycotoxins in plant-derived food products. FUMs contamination has considerably impacted human and animal health, while causing significant economic losses. Hence, management of FUMs contamination in food production and supply chains is needed. The toxicities of FUMs have been widely investigated. FUMs management has been reported and several available strategies have been developed successfully to mitigate FUMs contamination present in foods. However, currently available management of FUMs contamination from different phases of food chains and the mechanisms of some major strategies are not comprehensively summarized. AIM OF REVIEW This review comprehensively characterize the occurrence, impacts, and management of FUMs contamination across food production and supply chains. Pre- and post-harvest strategies to prevent FUMs contamination also are reviewed, with an emphasis on the potential applications and the mechanisms of major mitigation strategies. The presence of modified FUMs products and their potential toxic effects are also considered. Importantly, the potential application of biotechnological approaches and emerging technologies are enunciated. KEY SCIENTIFIC CONCEPTS OF REVIEW Currently available pre- and post-harvest management of FUMs contamination primarily involves prevention and decontamination. Prevention strategies are mainly based on limiting fungal growth and FUMs biosynthesis. Decontamination strategies are implemented through alkalization, hydrolysis, thermal or chemical transformation, and enzymatic or chemical degradation of FUMs. Concerns have been raised about toxicities of modified FUMs derivatives, which presents challenges for reducing FUMs contamination in foods with conventional methodologies. Integrated prevention and decontamination protocols are recommended to control FUMs contamination across entire value chains in developed countries. In developing countries, several other approaches, including cultivating, introducing Bt maize, simple sorting/cleaning, and dehulling, are suggested. Future studies should focus on biotechnological approaches, emerging technologies, and metagenomic/genomic identification of new degradation enzymes that could allow better opportunities to manage FUMs contamination in the entire food system.
Collapse
Affiliation(s)
- Taotao Li
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Jiajia Li
- College of Tourism and Planning, Pingdingshan University, Pingdingshan 467000, China
| | - Jiasheng Wang
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA, USA.
| | - Kathy S Xue
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA, USA
| | - Xinguo Su
- Tropical Agriculture and Forestry College, Guangdong AIB Polytechnic, No. 198, Yueken Road, Tianhe District, Guangzhou 510507, China
| | - Hongxia Qu
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Xuewu Duan
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Yueming Jiang
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; College of Advanced Agricultural Sciences, University of the Chinese Academy of Sciences, Beijing 100039, China.
| |
Collapse
|
2
|
Stoev SD. Natural feed additives and bioactive supplements versus chemical additives as a safe and practical approach to combat foodborne mycotoxicoses. Front Nutr 2024; 11:1335779. [PMID: 38450227 PMCID: PMC10915786 DOI: 10.3389/fnut.2024.1335779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/06/2024] [Indexed: 03/08/2024] Open
Abstract
This review highlights the possible hazard of mycotoxins occurrence in foods and feeds in regards to foodborne diseases. The possible management of the risk of contamination of foods and feeds with mycotoxins by using natural feed additives, protecting against deleterious effects of mycotoxins or inhibiting the growth of fungi and mycotoxin production, is deeply investigated in the available literature and some effective measures for safe utilization of mycotoxin contaminated feed/food are proposed. The biological methods of decontamination, degradation or biotransformation of mycotoxins are deeply analyzed and discussed. Some natural antagonists against target fungi are also reviewed and a comparison is made with conventional fungicides for ensuring a safe prevention of mycotoxin contamination. The most common and useful chemical methods of mycotoxins decontamination of agricultural commodities or raw materials are also investigated, e.g., chemical additives inactivating or destroying and/or adsorbing mycotoxins as well as chemical additives inhibiting the growth of fungi and mycotoxin production. The practical use and safety of various kind of feed/food additives or herbal/biological supplements as possible approach for ameliorating the adverse effects of some dangerous mycotoxins is deeply investigated and some suggestions are given. Various possibilities for decreasing mycotoxins toxicity, e.g., by clarifying the mechanisms of their toxicity and using some target antidotes and vitamins as supplements to the diet, are also studied in the literature and appropriate discussions or suggestions are made in this regard. Some studies on animal diets such as low carbohydrate intake, increased protein content, calorie restriction or the importance of dietary fats are also investigated in the available literature for possible amelioration of the ailments associated with mycotoxins exposure. It could be concluded that natural feed additives and bioactive supplements would be more safe and practical approach to combat foodborne mycotoxicoses as compared to chemical additives.
Collapse
Affiliation(s)
- Stoycho D. Stoev
- Department of General and Clinical Pathology, Faculty of Veterinary Medicine, Trakia University, Stara Zagora, Bulgaria
| |
Collapse
|
3
|
Yadavalli R, Valluru P, Raj R, Reddy CN, Mishra B. Biological detoxification of mycotoxins: Emphasizing the role of algae. ALGAL RES 2023. [DOI: 10.1016/j.algal.2023.103039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
4
|
Wang Y, Chen Y, Jiang L, Huang H. Improvement of the enzymatic detoxification activity towards mycotoxins through structure-based engineering. Biotechnol Adv 2022; 56:107927. [PMID: 35182727 DOI: 10.1016/j.biotechadv.2022.107927] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 02/09/2022] [Accepted: 02/14/2022] [Indexed: 12/11/2022]
Abstract
Mycotoxin contamination of food and feed is posing a serious threat to the global food safety and public health. Biological detoxification mediated by enzymes has emerged as a promising approach, as they can specifically degrade mycotoxins into non-toxic ones. However, the low degradation efficiency and stability limit their further application. To optimize the enzymes for mycotoxin removal, modification strategies that combine computational design with their structural data have been developed. Accordingly, this review will comprehensively summarize the recent trends in structure-based engineering to improve the enzyme catalytic efficiency, selectivity and stability in mycotoxins detoxification, which also provides perspectives in obtaining innovative and effective biocatalysts for mycotoxins degradation.
Collapse
Affiliation(s)
- Yanxia Wang
- College of Food Science and Light Industry, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yao Chen
- College of Food Science and Light Industry, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Ling Jiang
- College of Food Science and Light Industry, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - He Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210046, China; College of Pharmaceutical Science, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
5
|
Liu L, Xie M, Wei D. Biological Detoxification of Mycotoxins: Current Status and Future Advances. Int J Mol Sci 2022; 23:ijms23031064. [PMID: 35162993 PMCID: PMC8835436 DOI: 10.3390/ijms23031064] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 02/01/2023] Open
Abstract
Mycotoxins are highly toxic metabolites produced by fungi that pose a huge threat to human and animal health. Contamination of food and feed with mycotoxins is a worldwide issue, which leads to huge financial losses, annually. Decades of research have developed various approaches to degrade mycotoxins, among which the biological methods have been proved to have great potential and advantages. This review provides an overview on the important advances in the biological removal of mycotoxins over the last decade. Here, we provided further insight into the chemical structures and the toxicity of the main mycotoxins. The innovative strategies including mycotoxin degradation by novel probiotics are summarized in an in-depth discussion on potentialities and limitations. We prospected the promising future for the development of multifunctional approaches using recombinant enzymes and microbial consortia for the simultaneous removal of multiple mycotoxins.
Collapse
Affiliation(s)
- Lu Liu
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China;
- Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, School of Food Science and Engineering, South China University of Technology, Wushan Road 381, Guangzhou 510641, China
| | - Mei Xie
- Food Science and Technology Program, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai 519087, China;
| | - Dong Wei
- Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, School of Food Science and Engineering, South China University of Technology, Wushan Road 381, Guangzhou 510641, China
- Correspondence: ; Tel.: +86-20-8711-3849
| |
Collapse
|
6
|
Habschied K, Kanižai Šarić G, Krstanović V, Mastanjević K. Mycotoxins-Biomonitoring and Human Exposure. Toxins (Basel) 2021; 13:113. [PMID: 33546479 PMCID: PMC7913644 DOI: 10.3390/toxins13020113] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/23/2021] [Accepted: 01/26/2021] [Indexed: 12/31/2022] Open
Abstract
Mycotoxins are secondary metabolites produced by fungal species that commonly have a toxic effect on human and animal health. Different foodstuff can be contaminated and are considered the major source of human exposure to mycotoxins, but occupational and environmental exposure can also significantly contribute to this problem. This review aims to provide a short overview of the occurrence of toxigenic fungi and regulated mycotoxins in foods and workplaces, following the current literature and data presented in scientific papers. Biomonitoring of mycotoxins in plasma, serum, urine, and blood samples has become a common method for determining the exposure to different mycotoxins. Novel techniques are more and more precise and accurate and are aiming toward the simultaneous determination of multiple mycotoxins in one analysis. Application of liquid chromatography (LC) methodologies, coupled with tandem mass spectrometry (MS/MS) or high-resolution mass spectrometry (HRMS) has become a common and most reliable method for determining the exposure to mycotoxins. Numerous references confirm the importance of mycotoxin biomonitoring to assess the exposure for humans and animals. The objectives of this paper were to review the general approaches to biomonitoring of different mycotoxins and the occurrence of toxigenic fungi and their mycotoxins, using recent literature sources.
Collapse
Affiliation(s)
- Kristina Habschied
- Department of Process Engineering, Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (V.K.); (K.M.)
| | - Gabriella Kanižai Šarić
- Department of Agroecology and Environment Protection, Faculty of Agrobiotechnical Sciences Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia;
| | - Vinko Krstanović
- Department of Process Engineering, Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (V.K.); (K.M.)
| | - Krešimir Mastanjević
- Department of Process Engineering, Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (V.K.); (K.M.)
| |
Collapse
|
7
|
Gallo A, Minuti A, Bani P, Bertuzzi T, Cappelli FP, Doupovec B, Faas J, Schatzmayr D, Trevisi E. A mycotoxin-deactivating feed additive counteracts the adverse effects of regular levels of Fusarium mycotoxins in dairy cows. J Dairy Sci 2020; 103:11314-11331. [PMID: 33222853 DOI: 10.3168/jds.2020-18197] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 08/10/2020] [Indexed: 12/11/2022]
Abstract
Little is known about the effects of commonly found levels of Fusarium mycotoxins on the performance, metabolism, and immunity of dairy cattle. We investigated the effects of regular contamination levels, meaning contamination levels that can be commonly detected in dairy feeds, of deoxynivalenol (DON) and fumonisins (FB) in total mixed ration (TMR) on the performance, diet digestibility, milk quality, and plasma liver enzymes in dairy cows. This trial examined 12 lactating Holstein dairy cows using a 3-period × 3-treatment Latin square design. The experimental period was 21 d of mycotoxin exposure followed by 14 d of washout. During treatment periods, cows received one of 3 diets: (1) CTR (control) diet of TMR contaminated with 340.5 µg of DON/kg of dry matter (DM) and 127.9 µg FB/kg of DM; (2) MTX diet of TMR contaminated with Fusarium mycotoxins at levels higher than CTR but below US and European Union guidelines (i.e., 733.0 µg of DON/kg of DM and 994.4 µg of FB/kg of DM); or (3) MDP diet, which was MTX diet supplemented with a mycotoxin deactivator product (i.e., 897.3 µg of DON/kg of DM and 1,247.1 µg of FB/kg of DM; Mycofix, 35 g/animal per day). During washout, all animals were fed the same CTR diet. Body weight, body condition score, DM intake, dietary nutrient digestibility, milk production, milk composition and rennet coagulation properties, somatic cell count, blood serum chemistry, hematology, serum immunoglobulin concentrations, and expression of multiple genes in circulating leucocytes were measured. Milk production was significantly greater in the CTR group (37.73 kg/d) than in the MTX (36.39 kg/d) and the MDP (36.55 kg/d) groups. Curd firmness and curd firming time were negatively affected by the MTX diet compared with the other 2 diets. Furthermore, DM and neutral detergent fiber digestibility were lower after the MTX diet than after the CTR diet (67.3 vs. 71.0% and 42.8 vs. 52.3%). The MDP diet had the highest digestibility coefficients for DM (72.4%) and neutral detergent fiber (53.6%) compared with the other 2 diets. The activities of plasma liver transaminases were higher after the MTX diet than after the CTR and MDP diets. Compared with the CTR diet, the MTX diet led to slightly lower expression of genes related to immune and inflammatory functions, indicating that Fusarium mycotoxins had an immunosuppressive effect. Our results indicated that feed contaminated with regular levels of Fusarium mycotoxins adversely affected the performance, milk quality, diet digestibility, metabolic variables, and immunity of dairy cows, and that supplementation with mycotoxin deactivator product counteracted most of these negative effects.
Collapse
Affiliation(s)
- A Gallo
- Department of Animal Science, Food and Nutrition (DIANA), Faculty of Agricultural, Food and Environmental Sciences, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy.
| | - A Minuti
- Department of Animal Science, Food and Nutrition (DIANA), Faculty of Agricultural, Food and Environmental Sciences, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - P Bani
- Department of Animal Science, Food and Nutrition (DIANA), Faculty of Agricultural, Food and Environmental Sciences, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - T Bertuzzi
- Department of Animal Science, Food and Nutrition (DIANA), Faculty of Agricultural, Food and Environmental Sciences, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - F Piccioli Cappelli
- Department of Animal Science, Food and Nutrition (DIANA), Faculty of Agricultural, Food and Environmental Sciences, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - B Doupovec
- BIOMIN Research Center, Technopark 1, 3430 Tulln, Austria
| | - J Faas
- BIOMIN Research Center, Technopark 1, 3430 Tulln, Austria
| | - D Schatzmayr
- BIOMIN Research Center, Technopark 1, 3430 Tulln, Austria
| | - E Trevisi
- Department of Animal Science, Food and Nutrition (DIANA), Faculty of Agricultural, Food and Environmental Sciences, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| |
Collapse
|
8
|
Yu S, Jia B, Liu N, Yu D, Wu A. Evaluation of the Individual and Combined Toxicity of Fumonisin Mycotoxins in Human Gastric Epithelial Cells. Int J Mol Sci 2020; 21:ijms21165917. [PMID: 32824643 PMCID: PMC7460643 DOI: 10.3390/ijms21165917] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/13/2020] [Accepted: 08/14/2020] [Indexed: 12/11/2022] Open
Abstract
Fumonisin contaminates food and feed extensively throughout the world, causing chronic and acute toxicity in human and animals. Currently, studies on the toxicology of fumonisins mainly focus on fumonisin B1 (FB1). Considering that FB1, fumonisin B2 (FB2) and fumonisin B3 (FB3) could coexist in food and feed, a study regarding a single toxin, FB1, may not completely reflect the toxicity of fumonisin. The gastrointestinal tract is usually exposed to these dietary toxins. In our study, the human gastric epithelial cell line (GES-1) was used as in vitro model to evaluate the toxicity of fumonisin. Firstly, we found that they could cause a decrease in cell viability, and increase in membrane leakage, cell death and the induction of expression of markers for endoplasmic reticulum (ER) stress. Their toxicity potency rank is FB1 > FB2 >> FB3. The results also showed that the synergistic effect appeared in the combinations of FB1 + FB2 and FB1 + FB3. Nevertheless, the combinations of FB2 + FB3 and FB1 + FB2 + FB3 showed a synergistic effect at low concentration and an antagonistic effect at high concentration. We also found that myriocin (ISP-1) could alleviate the cytotoxicity induced by fumonisin in GES-1 cells. Finally, this study may help to determine or optimize the legal limits and risk assessment method of mycotoxins in food and feed and provide a potential method to block the fumonisin toxicity.
Collapse
Affiliation(s)
| | | | | | | | - Aibo Wu
- Correspondence: ; Tel.: +86-21-54920716
| |
Collapse
|
9
|
Toxicokinetics of Hydrolyzed Fumonisin B 1 after Single Oral or Intravenous Bolus to Broiler Chickens Fed a Control or a Fumonisins-Contaminated Diet. Toxins (Basel) 2020; 12:toxins12060413. [PMID: 32575914 PMCID: PMC7354465 DOI: 10.3390/toxins12060413] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/08/2020] [Accepted: 06/18/2020] [Indexed: 01/16/2023] Open
Abstract
The toxicokinetics (TK) of hydrolyzed fumonisin B1 (HFB1) were evaluated in 16 broiler chickens after being fed either a control or a fumonisins-contaminated diet (10.8 mg fumonisin B1, 3.3 mg B2 and 1.5 mg B3/kg feed) for two weeks, followed by a single oral (PO) or intravenous (IV) dose of 1.25 mg/kg bodyweight (BW) of HFB1. Fumonisin B1 (FB1), its partially hydrolyzed metabolites pHFB1a and pHFB1b, and fully hydrolyzed metabolite HFB1, were determined in chicken plasma using a validated ultra-performance liquid chromatography–tandem mass spectrometry method. None of the broiler chicken showed clinical symptoms of fumonisins (FBs) or HFB1 toxicity during the trial, nor was an aberration in body weight observed between the animals fed the FBs-contaminated diet and those fed the control diet. HFB1 was shown to follow a two-compartmental pharmacokinetic model with first order elimination in broiler chickens after IV administration. Toxicokinetic parameters of HFB1 demonstrated a total body clearance of 16.39 L/kg·h and an intercompartmental flow of 8.34 L/kg·h. Low levels of FB1 and traces of pHFB1b were found in plasma of chickens fed the FBs-contaminated diet. Due to plasma concentrations being under the limit of quantification (LOQ) after oral administration of HFB1, no toxicokinetic modelling could be performed in broiler chickens after oral administration of HFB1. Moreover, no phase II metabolites, nor N-acyl-metabolites of HFB1 could be detected in this study.
Collapse
|
10
|
Yang C, Song G, Lim W. Effects of mycotoxin-contaminated feed on farm animals. JOURNAL OF HAZARDOUS MATERIALS 2020; 389:122087. [PMID: 32004836 DOI: 10.1016/j.jhazmat.2020.122087] [Citation(s) in RCA: 149] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 01/09/2020] [Accepted: 01/13/2020] [Indexed: 06/10/2023]
Abstract
Mycotoxins are secondary products produced by fungi in cereals and are frequently found in the livestock industry as contaminants of farm animal feed. Studies analyzing feed mycotoxins have been conducted worldwide and have confirmed the presence of mycotoxins with biological activity, including aflatoxin, ochratoxin A, fumonisin, zearalenone, and deoxynivalenol, in a large proportion of feed samples. Exposure to mycotoxins can cause immunotoxicity and impair reproductive function in farm animals. In addition, exposure of tissues, such as the kidneys, liver, and intestines, to mycotoxins can exert histopathological changes that can interfere with animal growth and survival. This review describes previous studies regarding the presence of major mycotoxins in the feed of farm animals, especially pigs and poultry. Moreover, it describes the adverse effects of mycotoxins in farm animals following exposure, as well as the biological activity of mycotoxins in animal-derived cells. Mycotoxins have been shown to regulate signaling pathways, oxidative stress, endoplasmic reticulum stress, apoptosis, and proliferation in porcine and bovine cells. A clear understanding of the effects of mycotoxins on farm animals will help reduce farm household economic loss and address the health concerns of people who consume these meat and dairy products.
Collapse
Affiliation(s)
- Changwon Yang
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea.
| | - Whasun Lim
- Department of Food and Nutrition, Kookmin University, Seoul, 02707, Republic of Korea.
| |
Collapse
|
11
|
De Ruyck K, Huybrechts I, Yang S, Arcella D, Claeys L, Abbeddou S, De Keyzer W, De Vries J, Ocke M, Ruprich J, De Boevre M, De Saeger S. Mycotoxin exposure assessments in a multi-center European validation study by 24-hour dietary recall and biological fluid sampling. ENVIRONMENT INTERNATIONAL 2020; 137:105539. [PMID: 32035364 DOI: 10.1016/j.envint.2020.105539] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/29/2020] [Accepted: 01/29/2020] [Indexed: 06/10/2023]
Abstract
The European Food Consumption Validation (EFCOVAL) project includes 600 men and women from Belgium, the Czech Republic, France, the Netherlands, and Norway, who had given serum and 24-hour urine samples, and completed 24-hour dietary recall (24-HDR) interviews. Consumption, according to 24-HDR, was matched against the European Food Safety Authority (EFSA) databases of mycotoxin contaminations, via the FoodEx1 standard classifications, producing an indirect external estimate of dietary mycotoxin exposure. Direct, internal measurements of dietary mycotoxin exposure were made in serum and urine by ultra-performance liquid chromatography coupled to tandem mass spectrometry. For the first time, mycotoxin exposures were thoroughly compared between two 24-HDRs, and two 24-hour urine samples collected during the same days covered by the 24-HDRs. These measurements were compared to a single-time point serum measurement to investigate evidence of chronic mycotoxin exposure. According to 24-HDR data, all 600 individuals were exposed to between 4 and 34 mycotoxins, whereof 10 found to exceed the tolerable daily intake. Correlations were observed between two time points, and significant correlations were observed between concentrations in serum and urine. However, only acetyldeoxynivalenol, ochratoxin A, and sterigmatocystin were found to have significant positive correlations between 24-HDR exposures and serum, while aflatoxin G1 and G2, HT-2 toxin, and deoxynivalenol were associated between concurrent 24-HDR and 24-hour urine. Substantial agreements on quantitative levels between serum and urine were observed for the groups Type B Trichothecenes and Zearalenone. Further research is required to bridge the interpretation of external and internal exposure estimates of the individual on a time scale of hours. Additionally, metabolomic profiling of dietary mycotoxin exposures could help with a comprehensive assessment of single time-point exposures, but also with the identification of chronic exposure biomarkers. Such detailed characterization informs population exposure assessments, and aids in the interpretation of epidemiological health outcomes related to multi-mycotoxin exposure.
Collapse
Affiliation(s)
- Karl De Ruyck
- Centre of Excellence in Mycotoxicology and Public Health, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Inge Huybrechts
- International Agency for Research on Cancer (IARC), Nutritional Epidemiology Group, Lyon, France
| | - Shupeng Yang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | | | - Liesel Claeys
- Centre of Excellence in Mycotoxicology and Public Health, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Souheila Abbeddou
- Department of Public Health, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Willem De Keyzer
- Department of Nutrition and Dietetics, University College Ghent, Ghent, Belgium
| | - Jeanne De Vries
- Division of Human Nutrition and Health, Wageningen University and Research, Wageningen, the Netherlands
| | - Marga Ocke
- National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Jiri Ruprich
- National Institute of Public Health, Department for Health, Nutrition and Food, Brno, Czech Republic
| | - Marthe De Boevre
- Centre of Excellence in Mycotoxicology and Public Health, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Sarah De Saeger
- Centre of Excellence in Mycotoxicology and Public Health, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium.
| |
Collapse
|
12
|
Fruhauf S, Novak B, Nagl V, Hackl M, Hartinger D, Rainer V, Labudová S, Adam G, Aleschko M, Moll WD, Thamhesl M, Grenier B. Biotransformation of the Mycotoxin Zearalenone to its Metabolites Hydrolyzed Zearalenone (HZEN) and Decarboxylated Hydrolyzed Zearalenone (DHZEN) Diminishes its Estrogenicity In Vitro and In Vivo. Toxins (Basel) 2019; 11:toxins11080481. [PMID: 31434326 PMCID: PMC6722729 DOI: 10.3390/toxins11080481] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 08/09/2019] [Accepted: 08/16/2019] [Indexed: 01/10/2023] Open
Abstract
Zearalenone (ZEN)-degrading enzymes are a promising strategy to counteract the negative effects of this mycotoxin in livestock. The reaction products of such enzymes need to be thoroughly characterized before technological application as a feed additive can be envisaged. Here, we evaluated the estrogenic activity of the metabolites hydrolyzed zearalenone (HZEN) and decarboxylated hydrolyzed zearalenone (DHZEN) formed by hydrolysis of ZEN by the zearalenone-lactonase Zhd101p. ZEN, HZEN, and DHZEN were tested in two in vitro models, the MCF-7 cell proliferation assay (0.01–500 nM) and an estrogen-sensitive yeast bioassay (1–10,000 nM). In addition, we compared the impact of dietary ZEN (4.58 mg/kg) and equimolar dietary concentrations of HZEN and DHZEN on reproductive tract morphology as well as uterine mRNA and microRNA expression in female piglets (n = 6, four weeks exposure). While ZEN increased cell proliferation and reporter gene transcription, neither HZEN nor DHZEN elicited an estrogenic response, suggesting that these metabolites are at least 50–10,000 times less estrogenic than ZEN in vitro. In piglets, HZEN and DHZEN did not increase vulva size or uterus weight. Moreover, RNA transcripts altered upon ZEN treatment (EBAG9, miR-135a-5p, miR-187-3p and miR-204-5p) were unaffected by HZEN and DHZEN. Our study shows that both metabolites exhibit markedly reduced estrogenicity in vitro and in vivo, and thus provides an important basis for further evaluation of ZEN-degrading enzymes.
Collapse
Affiliation(s)
| | - Barbara Novak
- BIOMIN Research Center, Technopark 1, 3430 Tulln, Austria
| | - Veronika Nagl
- BIOMIN Research Center, Technopark 1, 3430 Tulln, Austria.
| | | | | | | | | | - Gerhard Adam
- Institute of Applied Genetics and Cell Biology (IAGZ), University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad Lorenz-Straße 24, 3430 Tulln, Austria
| | | | | | | | | |
Collapse
|
13
|
Marsalek L, Puxbaum V, Buchetics M, Mattanovich D, Gasser B. Disruption of vacuolar protein sorting components of the HOPS complex leads to enhanced secretion of recombinant proteins in Pichia pastoris. Microb Cell Fact 2019; 18:119. [PMID: 31269943 PMCID: PMC6607557 DOI: 10.1186/s12934-019-1155-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 06/04/2019] [Indexed: 12/14/2022] Open
Abstract
Background The yeast Pichia pastoris is a widely used host for the secretion of heterologous proteins. Despite being an efficient producer, we observed previously that certain recombinant proteins were mistargeted to the vacuole on their route to secretion. Simultaneous disruption of one vacuolar sorting pathway together with vacuolar proteases prevented this mis-sorting and resulted in higher levels of secreted heterologous protein. Inspired by the positive results, we now set out to investigate the influence of further parts of the vacuolar pathway, namely the Cvt-pathway and the homotypic fusion and protein sorting (HOPS) complex. Results Strains impaired in the Cvt pathway (∆atg11, ∆atg8) had no effect on secretion of the model protein carboxylesterase (CES), but resulted in lower secretion levels of the antibody fragment HyHEL-Fab. Disruption of genes involved in the HOPS complex led to vacuole-like compartments of the B category of vps mutants, which are characteristic for the deleted genes YPT7, VPS41 and VAM6. In particular ∆ypt7 and ∆vam6 strains showed an improvement in secreting the model proteins HyHEL-Fab and CES. Additional disruption of the vacuolar protease Pep4 and the potential protease Vps70 led to even further enhanced secretion in ∆ypt7 and ∆vam6 strains. Nevertheless, intracellular product accumulation was still observed. Therefore, the secretory route was strengthened by overexpression of early or late secretory genes in the vacuolar sorting mutants. Thereby, overexpression of Sbh1, a subunit of the ER translocation pore, significantly increased HyHEL-Fab secretion, leading up to fourfold higher extracellular Fab levels in the ∆ypt7 strain. The beneficial impact on protein secretion and the suitability of these strains for industrial applicability was confirmed in fed-batch cultivations. Conclusions Disruption of genes involved in the HOPS complex, especially YPT7, has a great influence on the secretion of the two different model proteins HyHEL-Fab and CES. Therefore, disruption of HOPS genes shows a high potential to increase secretion of other recombinant proteins as well. Secretion of HyHEL-Fab was further enhanced when overexpressing secretion enhancing factors. As the positive effect was also present in fed-batch cultivations, these modifications likely have promising industrial relevance. Electronic supplementary material The online version of this article (10.1186/s12934-019-1155-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lukas Marsalek
- Austrian Centre of Industrial Biotechnology (ACIB GmbH), Muthgasse 11, 1190, Vienna, Austria.,Department of Biotechnology, BOKU-University of Natural Resources and Life Sciences, Muthgasse 18, 1190, Vienna, Austria
| | - Verena Puxbaum
- Austrian Centre of Industrial Biotechnology (ACIB GmbH), Muthgasse 11, 1190, Vienna, Austria.,Department of Biotechnology, BOKU-University of Natural Resources and Life Sciences, Muthgasse 18, 1190, Vienna, Austria
| | - Markus Buchetics
- Austrian Centre of Industrial Biotechnology (ACIB GmbH), Muthgasse 11, 1190, Vienna, Austria.,Department of Biotechnology, BOKU-University of Natural Resources and Life Sciences, Muthgasse 18, 1190, Vienna, Austria.,BHAK/BHAS Stegersbach, Kirchengasse 44, 7551, Stegersbach, Austria
| | - Diethard Mattanovich
- Austrian Centre of Industrial Biotechnology (ACIB GmbH), Muthgasse 11, 1190, Vienna, Austria.,Department of Biotechnology, BOKU-University of Natural Resources and Life Sciences, Muthgasse 18, 1190, Vienna, Austria
| | - Brigitte Gasser
- Austrian Centre of Industrial Biotechnology (ACIB GmbH), Muthgasse 11, 1190, Vienna, Austria. .,Department of Biotechnology, BOKU-University of Natural Resources and Life Sciences, Muthgasse 18, 1190, Vienna, Austria.
| |
Collapse
|
14
|
Azam MS, Yu D, Liu N, Wu A. Degrading Ochratoxin A and Zearalenone Mycotoxins Using a Multifunctional Recombinant Enzyme. Toxins (Basel) 2019; 11:toxins11050301. [PMID: 31137857 PMCID: PMC6563298 DOI: 10.3390/toxins11050301] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 05/23/2019] [Accepted: 05/23/2019] [Indexed: 12/14/2022] Open
Abstract
Zearalenone (ZEA) is an estrogenic and ochratoxin A (OTA) is a hepatotoxic Fusarium mycotoxin commonly seen in cereals and fruits products. No previous investigation has studied on a single platform for the multi degradation mycotoxin. The current study aimed to investigate the bifunctional activity of a novel fusion recombinant. We have generated a recombinant fusion enzyme (ZHDCP) by combining two single genes named zearalenone hydrolase (ZHD) and carboxypeptidase (CP) in frame deletion by crossover polymerase chain reaction (PCR). We identified enzymatic properties and cell cytotoxicity assay of ZHDCP enzyme. Our findings have demonstrated that ZEA was completely degraded to the non-toxic product in 2 h by ZHDCP enzyme at an optimum pH of 7 and a temperature of 35 °C. For the first time, it was found out that ZEA 60% was degraded by CP degrades in 48 h. Fusion ZHDCP and CP enzyme were able to degrade 100% OTA in 30 min at pH 7 and temperature 30 °C. ZEA- and OTA-induced cell death and increased cell apoptosis rate and regulated mRNA expression of Sirt1, Bax, Bcl2, Caspase3, TNFα, and IL6 genes. Our novel findings demonstrated that the fusion enzyme ZHDCP possess bifunctional activity (degrade OTA and ZEA), and it could be used to degrade more mycotoxins.
Collapse
Affiliation(s)
- Md Shofiul Azam
- SIBS-UGENT-SJTU Joint Laboratory of Mycotoxin Research, CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Dianzhen Yu
- SIBS-UGENT-SJTU Joint Laboratory of Mycotoxin Research, CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Na Liu
- SIBS-UGENT-SJTU Joint Laboratory of Mycotoxin Research, CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Aibo Wu
- SIBS-UGENT-SJTU Joint Laboratory of Mycotoxin Research, CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| |
Collapse
|
15
|
Ponce-García N, Serna-Saldivar SO, Garcia-Lara S. Fumonisins and their analogues in contaminated corn and its processed foods - a review. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2018; 35:2183-2203. [PMID: 30028638 DOI: 10.1080/19440049.2018.1502476] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
One of the food security problems faced worldwide is the occurrence of mycotoxins in grains and their foods. Fumonisins (FBs) are mycotoxins which are prevalent in corn (Zea mays L.) and its based foods. Their intake and exposure have been epidemiologically and inconclusively associated with oesophageal cancer and neural tube defects in humans, and other harmful health effects in animals. The toxic effects of FBs can be acute or chronic and these metabolites bioaccumulate mainly in liver and kidney tissues. Among FBs, fumonisin B1 (FB1) is the most relevant moiety although the 'hidden' forms produced after food thermal processes are becoming relevant. Corn is the grain most susceptible to Fusarium and FBs contamination and the mould growth is affected both by abiotic and biotic factors during grain maturation and storage. Mould counts are mainly affected by the grain water activity, the environmental temperature during grain maturation and insect damage. The abiotic factors affected by climatic change patterns have increased their incidence in other regions of the world. Among FBs, the hidden forms are the most difficult to detect and quantify. Single or combined physical, chemical and biological methods are emerging to significantly reduce FBs in processed foods and therefore diminish their toxicological effects.
Collapse
Affiliation(s)
- Nestor Ponce-García
- a Center of Biotechnology FEMSA , School of Engineering and Sciences, Tecnologico de Monterrey , Monterrey , Mexico.,b Faculty of Agricultural Sciences , Autonomous University of Mexico State, UAEM, Campus Universitario "El Cerrillo" , Toluca , Mexico
| | - Sergio O Serna-Saldivar
- a Center of Biotechnology FEMSA , School of Engineering and Sciences, Tecnologico de Monterrey , Monterrey , Mexico
| | - Silverio Garcia-Lara
- a Center of Biotechnology FEMSA , School of Engineering and Sciences, Tecnologico de Monterrey , Monterrey , Mexico
| |
Collapse
|
16
|
Ogunade IM, Martinez-Tuppia C, Queiroz OCM, Jiang Y, Drouin P, Wu F, Vyas D, Adesogan AT. Silage review: Mycotoxins in silage: Occurrence, effects, prevention, and mitigation. J Dairy Sci 2018; 101:4034-4059. [PMID: 29685276 DOI: 10.3168/jds.2017-13788] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 10/28/2017] [Indexed: 01/03/2023]
Abstract
Ensiled forage, particularly corn silage, is an important component of dairy cow diets worldwide. Forages can be contaminated with several mycotoxins in the field pre-harvest, during storage, or after ensiling during feed-out. Exposure to dietary mycotoxins adversely affects the performance and health of livestock and can compromise human health. Several studies and surveys indicate that ruminants are often exposed to mycotoxins such as aflatoxins, trichothecenes, ochratoxin A, fumonisins, zearalenone, and many other fungal secondary metabolites, via the silage they ingest. Problems associated with mycotoxins in silage can be minimized by preventing fungal growth before and after ensiling. Proper silage management is essential to reduce mycotoxin contamination of dairy cow feeds, and certain mold-inhibiting chemical additives or microbial inoculants can also reduce the contamination levels. Several sequestering agents also can be added to diets to reduce mycotoxin levels, but their efficacy varies with the type and level of mycotoxin contamination. This article gives an overview of the types, prevalence, and levels of mycotoxin contamination in ensiled forages in different countries, and describes their adverse effects on health of ruminants, and effective prevention and mitigation strategies for dairy cow diets. Future research priorities discussed include research efforts to develop silage additives or rumen microbial innocula that degrade mycotoxins.
Collapse
Affiliation(s)
- I M Ogunade
- Department of Animal Sciences, Institute of Food and Agricultural Sciences, University of Florida, Gainesville 32608
| | - C Martinez-Tuppia
- Lallemand Animal Nutrition, Lallemand SAS, 19 rue des Briquetiers, B.P. 59, F-31702 Blagnac, France
| | - O C M Queiroz
- Chr Hansen, Animal Health and Nutrition, Chr. Hansen, Buenos Aires 1107, Argentina
| | - Y Jiang
- Department of Animal Sciences, Institute of Food and Agricultural Sciences, University of Florida, Gainesville 32608
| | - P Drouin
- Lallemand Animal Nutrition, Lallemand SAS, 19 rue des Briquetiers, B.P. 59, F-31702 Blagnac, France
| | - F Wu
- Department of Food Science and Human Nutrition, Department of Agricultural, Food, and Resource Economics, Michigan State University, East Lansing 48824
| | - D Vyas
- Department of Animal Sciences, Institute of Food and Agricultural Sciences, University of Florida, Gainesville 32608
| | - A T Adesogan
- Department of Animal Sciences, Institute of Food and Agricultural Sciences, University of Florida, Gainesville 32608.
| |
Collapse
|
17
|
Chen C, Riley RT, Wu F. Dietary Fumonisin and Growth Impairment in Children and Animals: A Review. Compr Rev Food Sci Food Saf 2018; 17:1448-1464. [DOI: 10.1111/1541-4337.12392] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 07/24/2018] [Accepted: 08/01/2018] [Indexed: 11/30/2022]
Affiliation(s)
- Chen Chen
- Dept. of Food Science and Human Nutrition; Michigan State Univ.; East Lansing MI 48824 U.S.A
- Inst. of Quality Standards and Testing Technology for Agro-Products; Chinese Academy of Agricultural Sciences; Beijing 100081 China
| | - Ronald T. Riley
- Dept. of Environmental Health Science; Univ. of Georgia; Athens GA 30602 U.S.A
| | - Felicia Wu
- Dept. of Food Science and Human Nutrition; Michigan State Univ.; East Lansing MI 48824 U.S.A
| |
Collapse
|
18
|
Grenier B, Schwartz-Zimmermann HE, Gruber-Dorninger C, Dohnal I, Aleschko M, Schatzmayr G, Moll WD, Applegate TJ. Enzymatic hydrolysis of fumonisins in the gastrointestinal tract of broiler chickens. Poult Sci 2018; 96:4342-4351. [PMID: 29053869 PMCID: PMC5850661 DOI: 10.3382/ps/pex280] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 09/04/2017] [Indexed: 12/18/2022] Open
Abstract
Fumonisins (FB) are among the most frequently detected mycotoxins in feedstuffs and finished feed, and recent data suggest that the functions of the gastrointestinal tract (GIT) in poultry species might be compromised at doses ranging from 10 to 20 mg/kg, close to field incidences and below the US and EU guidelines. Strategies are therefore necessary to reduce the exposure of poultry to FB. In the present study, we assessed the efficacy of fumonisin esterase FumD (EC 3.1.1.87, commercial name FUMzyme®) to cleave the tricarballylic acid side chains of FB, leading to the formation of non-toxic hydrolyzed fumonisins in the GIT of broiler chickens. Broiler chickens were fed for 14 d (7 to 21 d of age) 3 different diets (6 birds/cage, 6 cages/diet), i) control feed (negative control group), ii) feed contaminated with 10 mg FB/kg (FB group), and iii) feed contaminated with 10 mg FB/kg and supplemented with 100 units of FUMzyme®/kg (FB+FUMzyme® group). To determine the degree of reduction of FB in the GIT, 2 characteristics were analyzed. First, the sphinganine-to-sphingosine ratio in the serum and liver was determined as a biomarker of effect for exposure to FB. Second, the concentration of fumonisin B1 and its hydrolyzed forms was evaluated in the gizzard, the proximal and distal parts of the small intestine, and the excreta. Significantly reduced sphinganine-to-sphingosine ratios in the serum and liver of the FB+FUMzyme® group (serum: 0.15 ± 0.01; liver: 0.17 ± 0.01) compared to the FB group (serum: 0.20 ± 0.01; liver: 0.29 ± 0.03) proved that supplementation of broiler feed with FUMzyme® was effective in partially counteracting the toxic effect of dietary FB. Likewise, FB concentrations in digesta and excreta were significantly reduced in the FB+FUMzyme® group compared to the FB group (P < 0.05; up to 75%). FUMzyme® furthermore partially counteracted FB-induced up-regulation of cytokine gene expression (IL-8 and IL-10) in the jejunum. The FB group showed significantly higher gene expression of IL-8 and IL-10 compared to the negative control group (IL-8: fold change = 2.9 ± 1.1, P < 0.05; IL-10: fold change = 3.6 ± 1.4, P < 0.05), whereas IL-8 and IL-10 mRNA levels were not significantly different in the FB+FUMzyme®® group compared to the other 2 groups. In conclusion, FUMzyme® is suitable to detoxify FB in chickens and maintain gut functions.
Collapse
Affiliation(s)
- B Grenier
- Department of Animal Sciences, Purdue University, W. Lafayette, IN.,BIOMIN Research Center, Tulln, Austria
| | - H E Schwartz-Zimmermann
- Christian Doppler Laboratory for Mycotoxin Metabolism and Center for Analytical Chemistry, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna, Tulln, Austria
| | | | - I Dohnal
- BIOMIN Research Center, Tulln, Austria
| | | | | | - W D Moll
- BIOMIN Research Center, Tulln, Austria
| | - T J Applegate
- Department of Animal Sciences, Purdue University, W. Lafayette, IN.,Department of Poultry Science, University of Georgia, Athens
| |
Collapse
|
19
|
Schwartz-Zimmermann H, Hartinger D, Doupovec B, Gruber-Dorninger C, Aleschko M, Schaumberger S, Nagl V, Hahn I, Berthiller F, Schatzmayr D, Moll W. Application of biomarker methods to investigate FUMzyme mediated gastrointestinal hydrolysis of fumonisins in pigs. WORLD MYCOTOXIN J 2018. [DOI: 10.3920/wmj2017.2265] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Fumonisins are among the most prevalent mycotoxins in feedstuffs. They disrupt the sphingolipid metabolism, thereby inducing a plethora of toxic effects in livestock. Supplementation with mycotoxin-degrading enzymes is a promising strategy for the detoxification of feedstuffs in the animals’ gastrointestinal tract. Here, we evaluated the suitability of the fumonisin esterase FumD as a feed additive (FUMzyme®) for the prevention of fumonisin toxicity in pigs by using a combination of different fumonisin biomarkers (sphinganine to sphingosine (Sa/So) ratio in serum and organs, concentrations of fumonisin B1 and hydrolysed derivatives in urine and faeces). In a pre-trial, we exposed pigs to 30 mg/kg fumonisins in feed and found the minimum effective dose of FUMzyme to be 15 U/kg. In a second trial we investigated the long-term efficacy of this minimum effective FUMzyme dose to counteract toxic effects elicited by 6 weeks of exposure to 2.5 mg/kg fumonisins in a diet containing naturally contaminated maize. Supplementation of feed with the minimum effective FUMzyme dose prevented an increase in the Sa/So ratio in serum and kidneys of fumonisin exposed pigs. The Sa/So ratio in serum proved to be the most reliable biomarker. The fumonisin pattern in faeces was less suitable as biomarker for assessing the efficacy of FUMzyme due to natural gastrointestinal hydrolysis of fumonisins. Analysis of urine samples provided additional information about gastrointestinal fumonisin hydrolysis before fumonisin absorption, but was analytically challenging because of low urinary fumonisin concentrations.
Collapse
Affiliation(s)
- H.E. Schwartz-Zimmermann
- Christian Doppler Laboratory for Mycotoxin Metabolism, Center for Analytical Chemistry, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna, 3430 Tulln, Austria
| | - D. Hartinger
- BIOMIN Research Center, Technopark 1, 3430 Tulln, Austria
| | - B. Doupovec
- BIOMIN Research Center, Technopark 1, 3430 Tulln, Austria
| | | | - M. Aleschko
- BIOMIN Research Center, Technopark 1, 3430 Tulln, Austria
| | | | - V. Nagl
- Christian Doppler Laboratory for Mycotoxin Metabolism, Center for Analytical Chemistry, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna, 3430 Tulln, Austria
- BIOMIN Research Center, Technopark 1, 3430 Tulln, Austria
| | - I. Hahn
- Christian Doppler Laboratory for Mycotoxin Metabolism, Center for Analytical Chemistry, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna, 3430 Tulln, Austria
| | - F. Berthiller
- Christian Doppler Laboratory for Mycotoxin Metabolism, Center for Analytical Chemistry, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna, 3430 Tulln, Austria
| | - D. Schatzmayr
- BIOMIN Research Center, Technopark 1, 3430 Tulln, Austria
| | - W.D. Moll
- BIOMIN Research Center, Technopark 1, 3430 Tulln, Austria
| |
Collapse
|
20
|
Martinez Tuppia C, Atanasova-Penichon V, Chéreau S, Ferrer N, Marchegay G, Savoie JM, Richard-Forget F. Yeast and bacteria from ensiled high moisture maize grains as potential mitigation agents of fumonisin B 1. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2017; 97:2443-2452. [PMID: 27696424 DOI: 10.1002/jsfa.8058] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 09/23/2016] [Accepted: 09/23/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND Fumonisin B1 (FB1 ) is a mycotoxin produced by several Fusarium species and is a very common contaminant of maize-based food and feed throughout the world. The selection and use of FB1 -degrading microorganisms appears as a promising alternative to cope with the problem of toxicity towards humans and livestock. High moisture maize grain silage, which is based on natural maize fermentation, could be an interesting reservoir of such microorganisms. RESULTS Using an in vitro simulated silage model with FB1 naturally contaminated grains, we demonstrated a significant raw decrease in FB1 during ensiling process ascribed to biodegradation mechanisms. A panel of 98 bacteria and yeasts were isolated from this matrix and selected for their ability to use FB1 as the sole source of C and N. For nine of them, the ability to degrade FB1 in vitro was evidenced. Notably, two bacteria identified as Lactobacillus sp. were highlighted for their efficient FB1 -degrading capacity and production of hydrolysed FB1 as intermediate degradation metabolite. CONCLUSION Fermentation of high moisture maize grain contaminated with FB1 leads to a significant reduction of the toxin and allows the isolation of FB1 -degrading microorganisms that could further be used as FB1 decontaminating agents. © 2016 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ccori Martinez Tuppia
- MycSA, Inra, 71 avenue Edouard Bourleaux, CS20032, F-33882 Villenave d'Ornon Cedex, France
- Lallemand Animal Nutrition, 19 rue des Briquetiers, B.P. 59, F-31702 Blagnac, France
| | | | - Sylvain Chéreau
- MycSA, Inra, 71 avenue Edouard Bourleaux, CS20032, F-33882 Villenave d'Ornon Cedex, France
| | - Nathalie Ferrer
- MycSA, Inra, 71 avenue Edouard Bourleaux, CS20032, F-33882 Villenave d'Ornon Cedex, France
| | - Gisèle Marchegay
- MycSA, Inra, 71 avenue Edouard Bourleaux, CS20032, F-33882 Villenave d'Ornon Cedex, France
| | - Jean-Michel Savoie
- MycSA, Inra, 71 avenue Edouard Bourleaux, CS20032, F-33882 Villenave d'Ornon Cedex, France
| | | |
Collapse
|
21
|
Zhu Y, Hassan YI, Lepp D, Shao S, Zhou T. Strategies and Methodologies for Developing Microbial Detoxification Systems to Mitigate Mycotoxins. Toxins (Basel) 2017; 9:E130. [PMID: 28387743 PMCID: PMC5408204 DOI: 10.3390/toxins9040130] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 04/03/2017] [Accepted: 04/04/2017] [Indexed: 02/01/2023] Open
Abstract
Mycotoxins, the secondary metabolites of mycotoxigenic fungi, have been found in almost all agricultural commodities worldwide, causing enormous economic losses in livestock production and severe human health problems. Compared to traditional physical adsorption and chemical reactions, interest in biological detoxification methods that are environmentally sound, safe and highly efficient has seen a significant increase in recent years. However, researchers in this field have been facing tremendous unexpected challenges and are eager to find solutions. This review summarizes and assesses the research strategies and methodologies in each phase of the development of microbiological solutions for mycotoxin mitigation. These include screening of functional microbial consortia from natural samples, isolation and identification of single colonies with biotransformation activity, investigation of the physiological characteristics of isolated strains, identification and assessment of the toxicities of biotransformation products, purification of functional enzymes and the application of mycotoxin decontamination to feed/food production. A full understanding and appropriate application of this tool box should be helpful towards the development of novel microbiological solutions on mycotoxin detoxification.
Collapse
Affiliation(s)
- Yan Zhu
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON N1G5C9, Canada.
| | - Yousef I Hassan
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON N1G5C9, Canada.
| | - Dion Lepp
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON N1G5C9, Canada.
| | - Suqin Shao
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON N1G5C9, Canada.
| | - Ting Zhou
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON N1G5C9, Canada.
| |
Collapse
|
22
|
Marsalek L, Gruber C, Altmann F, Aleschko M, Mattanovich D, Gasser B, Puxbaum V. Disruption of genes involved in CORVET complex leads to enhanced secretion of heterologous carboxylesterase only in protease deficient Pichia pastoris. Biotechnol J 2017; 12. [PMID: 28230321 DOI: 10.1002/biot.201600584] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 02/20/2017] [Accepted: 02/22/2017] [Indexed: 11/10/2022]
Abstract
The methylotrophic yeast Pichia pastoris (Komagataella spp.) is a popular microbial host for the production of recombinant proteins. Previous studies have shown that mis-sorting to the vacuole can be a bottleneck during production of recombinant secretory proteins in yeast, however, no information was available for P. pastoris. In this work the authors have therefore generated vps (vacuolar protein sorting) mutant strains disrupted in genes involved in the CORVET (class C core vacuole/endosome tethering) complex at the early stages of endosomal sorting. Both Δvps8 and Δvps21 strains contained lower extracellular amounts of heterologous carboxylesterase (CES) compared to the control strain, which could be attributed to a high proteolytic activity present in the supernatants of CORVET engineered strains due to rerouting of vacuolar proteases. Serine proteases were identified to be responsible for this proteolytic degradation by liquid chromatography-mass spectrometry and protease inhibitor assays. Deletion of the major cellular serine protease Prb1 in Δvps8 and Δvps21 strains did not only rescue the extracellular CES levels, but even outperformed the parental CES strain (56 and 80% higher yields, respectively). Further deletion of Ybr139W, another serine protease, did not show a further increase in secretion levels. Higher extracellular CES activity and low proteolytic activity were detected also in fed batch cultivation of Δvps21Δprb1 strains, thus confirming that modifying early steps in the vacuolar pathway has a positive impact on heterologous protein secretion.
Collapse
Affiliation(s)
- Lukas Marsalek
- Austrian Centre of Industrial Biotechnology (ACIB GmbH), Vienna, Austria.,Department of Biotechnology, University of Natural Resources and Life Sciences Vienna (BOKU), Vienna, Austria
| | - Clemens Gruber
- Austrian Centre of Industrial Biotechnology (ACIB GmbH), Vienna, Austria.,Department of Chemistry, University of Natural Resources and Life Sciences Vienna (BOKU), Vienna, Austria
| | - Friedrich Altmann
- Austrian Centre of Industrial Biotechnology (ACIB GmbH), Vienna, Austria.,Department of Chemistry, University of Natural Resources and Life Sciences Vienna (BOKU), Vienna, Austria
| | - Markus Aleschko
- BIOMIN Research Center, Technologiezentrum Tulln, Tulln, Austria
| | - Diethard Mattanovich
- Austrian Centre of Industrial Biotechnology (ACIB GmbH), Vienna, Austria.,Department of Biotechnology, University of Natural Resources and Life Sciences Vienna (BOKU), Vienna, Austria
| | - Brigitte Gasser
- Austrian Centre of Industrial Biotechnology (ACIB GmbH), Vienna, Austria.,Department of Biotechnology, University of Natural Resources and Life Sciences Vienna (BOKU), Vienna, Austria
| | - Verena Puxbaum
- Austrian Centre of Industrial Biotechnology (ACIB GmbH), Vienna, Austria.,Department of Biotechnology, University of Natural Resources and Life Sciences Vienna (BOKU), Vienna, Austria
| |
Collapse
|
23
|
Díaz-Gómez J, Marín S, Capell T, Sanchis V, Ramos A. The impact of Bacillus thuringiensis technology on the occurrence of fumonisins and other mycotoxins in maize. WORLD MYCOTOXIN J 2016. [DOI: 10.3920/wmj2015.1960] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In many developing countries, maize is both a staple food crop and a widely-used animal feed. However, adventitious colonisation or damage caused by insect pests allows fungi to penetrate the vegetative parts of the plant and the kernels, the latter resulting in mycotoxin contamination. Maize seeds contaminated with fumonisins and other mycotoxins pose a serious threat to both humans and livestock. However, numerous studies have reported a significant reduction in pest damage, disease symptoms and fumonisin levels in maize hybrids expressing the Bacillus thuringiensis (Bt) gene cry1Ab, particularly in areas where the European corn borer is prevalent. When other pests are also present, the cry1Ab gene alone offers insufficient protection, and combinations of insecticidal genes are required to reduce damage to plants caused by insects. The combination of Cry1Ab protein with other Cry proteins (such as Cry1F) or Vip proteins has reduced the incidence of pests and, indirectly, mycotoxin levels. Maize hybrids expressing multiple Bt genes, such as SmartStax®, are less susceptible to damage by insects, but mycotoxin levels are not routinely and consistently compared in these crops. Bt maize has a greater economic impact on Fusarium toxins than aflatoxins. The main factors that determine the effectiveness of Bt hybrids are the type of pest and the environmental conditions, but the different fungal infection pathways must also be considered. An alternative strategy to reduce mycotoxin levels in crops is the development of transgenic plants expressing genes that protect against fungal infection or reduce mycotoxin levels by in situ detoxification. In this review article, we summarise what is known about the relationship between the cultivation of Bt maize hybrids and contamination levels with different types of mycotoxins.
Collapse
Affiliation(s)
- J. Díaz-Gómez
- Food Technology Department, University of Lleida, UTPV-XaRTA, Agrotecnio Center, Av. Rovira Roure 191, 25198 Lleida, Spain
| | - S. Marín
- Food Technology Department, University of Lleida, UTPV-XaRTA, Agrotecnio Center, Av. Rovira Roure 191, 25198 Lleida, Spain
| | - T. Capell
- Plant Production and Forestry Science Department, University of Lleida, Agrotecnio Center, Av. Rovira Roure 191, 25198 Lleida, Spain
| | - V. Sanchis
- Food Technology Department, University of Lleida, UTPV-XaRTA, Agrotecnio Center, Av. Rovira Roure 191, 25198 Lleida, Spain
| | - A.J. Ramos
- Food Technology Department, University of Lleida, UTPV-XaRTA, Agrotecnio Center, Av. Rovira Roure 191, 25198 Lleida, Spain
| |
Collapse
|
24
|
Masching S, Naehrer K, Schwartz-Zimmermann HE, Sărăndan M, Schaumberger S, Dohnal I, Nagl V, Schatzmayr D. Gastrointestinal Degradation of Fumonisin B₁ by Carboxylesterase FumD Prevents Fumonisin Induced Alteration of Sphingolipid Metabolism in Turkey and Swine. Toxins (Basel) 2016; 8:toxins8030084. [PMID: 27007395 PMCID: PMC4810229 DOI: 10.3390/toxins8030084] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 03/03/2016] [Accepted: 03/14/2016] [Indexed: 01/12/2023] Open
Abstract
The mycotoxin fumonisin B1 (FB1) is a frequent contaminant of feed and causes various adverse health effects in domestic animals. Hence, effective strategies are needed to prevent the impact of fumonisins on livestock productivity. Here we evaluated the capability of the fumonisin carboxylesterase FumD to degrade FB1 to its less toxic metabolite hydrolyzed FB1 (HFB1) in the gastrointestinal tract of turkeys and pigs. First, an ex vivo pig model was used to examine the activity of FumD under digestive conditions. Within 2 h of incubation with FumD, FB1 was completely degraded to HFB1 in the duodenum and jejunum, respectively. To test the efficacy of the commercial application of FumD (FUMzyme) in vivo, female turkeys (n = 5) received either basal feed (CON), fumonisin-contaminated feed (15 mg/kg FB1+FB2; FB) or fumonisin-contaminated feed supplemented with FUMzyme (15 U/kg; FB+FUMzyme) for 14 days ad libitum. Addition of FUMzyme resulted in significantly decreased levels of FB1 in excreta, whereas HFB1 concentrations were significantly increased. Compared to the FB group (0.24 ± 0.02), the mean serum sphinganine-to-sphingosine (Sa/So) ratio was significantly reduced in the FB+FUMzyme group (0.19 ± 0.02), thus resembling values of the CON group (0.16 ± 0.02). Similarly, exposure of piglets (n = 10) to 2 mg/kg FB1+FB2 for 42 days caused significantly elevated serum Sa/So ratios (0.39 ± 0.15) compared to the CON group (0.14 ± 0.01). Supplementation with FUMzyme (60 U/kg) resulted in gastrointestinal degradation of FB1 and unaffected Sa/So ratios (0.16 ± 0.02). Thus, the carboxylesterase FumD represents an effective strategy to detoxify FB1 in the digestive tract of turkeys and pigs.
Collapse
Affiliation(s)
- Sabine Masching
- BIOMIN Holding GmbH, Erber Campus 1, 3131 Getzersdorf, Austria.
| | - Karin Naehrer
- BIOMIN Holding GmbH, Erber Campus 1, 3131 Getzersdorf, Austria.
| | - Heidi-Elisabeth Schwartz-Zimmermann
- Christian Doppler Laboratory for Mycotoxin Metabolism, Center for Analytical Chemistry, Department for Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad Lorenz Str. 20, 3430 Tulln, Austria.
| | - Mihai Sărăndan
- Faculty of Veterinary Medicine Timișoara, Calea Aradului 119, 300645 Timișoara, Romania.
| | | | - Ilse Dohnal
- BIOMIN Research Center, Technopark 1, 3430 Tulln, Austria.
| | - Veronika Nagl
- BIOMIN Research Center, Technopark 1, 3430 Tulln, Austria.
| | | |
Collapse
|
25
|
Murugesan GR, Ledoux DR, Naehrer K, Berthiller F, Applegate TJ, Grenier B, Phillips TD, Schatzmayr G. Prevalence and effects of mycotoxins on poultry health and performance, and recent development in mycotoxin counteracting strategies. Poult Sci 2015; 94:1298-315. [PMID: 25840963 PMCID: PMC4988553 DOI: 10.3382/ps/pev075] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 08/31/2014] [Accepted: 02/01/2015] [Indexed: 11/20/2022] Open
Abstract
Extensive research over the last couple of decades has made it obvious that mycotoxins are commonly prevalent in majority of feed ingredients. A worldwide mycotoxin survey in 2013 revealed 81% of around 3,000 grain and feed samples analyzed had at least 1 mycotoxin, which was higher than the 10-year average (from 2004 to 2013) of 76% in a total of 25,944 samples. The considerable increase in the number of positive samples in 2013 may be due to the improvements in detection methods and their sensitivity. The recently developed liquid chromatography coupled to (tandem) mass spectrometry allows the inclusion of a high number of analytes and is the most selective, sensitive, and accurate of all the mycotoxin analytical methods. Mycotoxins can affect the animals either individually or additively in the presence of more than 1 mycotoxin, and may affect various organs such as gastrointestinal tract, liver, and immune system, essentially resulting in reduced productivity of the birds and mortality in extreme cases. While the use of mycotoxin binding agents has been a commonly used counteracting strategy, considering the great diversity in the chemical structures of mycotoxins, it is very obvious that there is no single method that can be used to deactivate mycotoxins in feed. Therefore, different strategies have to be combined in order to specifically target individual mycotoxins without impacting the quality of feed. Enzymatic or microbial detoxification, referred to as "biotransformation" or "biodetoxification," utilizes microorganisms or purified enzymes thereof to catabolize the entire mycotoxin or transform or cleave it to less or non-toxic compounds. However, the awareness on the prevalence of mycotoxins, available modern techniques to analyze them, the effects of mycotoxicoses, and the recent developments in the ways to safely eliminate the mycotoxins from the feed are very minimal among the producers. This symposium review paper comprehensively discusses the above mentioned aspects.
Collapse
Affiliation(s)
| | - D R Ledoux
- Department of Animal Sciences, University of Missouri-Columbia, MO, USA
| | - K Naehrer
- BIOMIN Research Center, Tulln, Austria
| | - F Berthiller
- Christian Doppler Laboratory for Mycotoxin Metabolism, University of Natural Resources and Life Sciences Vienna (BOKU), Tulln, Austria
| | - T J Applegate
- Department of Animal Sciences, Purdue University West Lafayette, IN, USA
| | - B Grenier
- Department of Animal Sciences, Purdue University West Lafayette, IN, USA
| | | | | |
Collapse
|
26
|
Thamhesl M, Apfelthaler E, Schwartz-Zimmermann HE, Kunz-Vekiru E, Krska R, Kneifel W, Schatzmayr G, Moll WD. Rhodococcus erythropolis MTHt3 biotransforms ergopeptines to lysergic acid. BMC Microbiol 2015; 15:73. [PMID: 25887091 PMCID: PMC4411749 DOI: 10.1186/s12866-015-0407-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 03/11/2015] [Indexed: 12/04/2022] Open
Abstract
Background Ergopeptines are a predominant class of ergot alkaloids produced by tall fescue grass endophyte Neotyphodium coenophialum or cereal pathogen Claviceps purpurea. The vasoconstrictive activity of ergopeptines makes them toxic for mammals, and they can be a problem in animal husbandry. Results We isolated an ergopeptine degrading bacterial strain, MTHt3, and classified it, based on its 16S rDNA sequence, as a strain of Rhodococcus erythropolis (Nocardiaceae, Actinobacteria). For strain isolation, mixed microbial cultures were obtained from artificially ergot alkaloid-enriched soil, and provided with the ergopeptine ergotamine in mineral medium for enrichment. Individual colonies derived from such mixed cultures were screened for ergotamine degradation by high performance liquid chromatography and fluorescence detection. R. erythropolis MTHt3 converted ergotamine to ergine (lysergic acid amide) and further to lysergic acid, which accumulated as an end product. No other tested R. erythropolis strain degraded ergotamine. R. erythropolis MTHt3 degraded all ergopeptines found in an ergot extract, namely ergotamine, ergovaline, ergocristine, ergocryptine, ergocornine, and ergosine, but the simpler lysergic acid derivatives agroclavine, chanoclavine, and ergometrine were not degraded. Temperature and pH dependence of ergotamine and ergine bioconversion activity was different for the two reactions. Conclusions Degradation of ergopeptines to ergine is a previously unknown microbial reaction. The reaction end product, lysergic acid, has no or much lower vasoconstrictive activity than ergopeptines. If the genes encoding enzymes for ergopeptine catabolism can be cloned and expressed in recombinant hosts, application of ergopeptine and ergine degrading enzymes for reduction of toxicity of ergot alkaloid-contaminated animal feed may be feasible.
Collapse
Affiliation(s)
| | - Elisabeth Apfelthaler
- Department for Agrobiotechnology (IFA-Tulln), Christian Doppler Laboratory for Mycotoxin Research, Center for Analytical Chemistry, University of Natural Resources and Life Sciences (BOKU) Vienna, Konrad Lorenz Straße 20, 3430, Tulln, Austria.
| | - Heidi Elisabeth Schwartz-Zimmermann
- Department for Agrobiotechnology (IFA-Tulln), Christian Doppler Laboratory for Mycotoxin Research, Center for Analytical Chemistry, University of Natural Resources and Life Sciences (BOKU) Vienna, Konrad Lorenz Straße 20, 3430, Tulln, Austria.
| | - Elisavet Kunz-Vekiru
- Department for Agrobiotechnology (IFA-Tulln), Christian Doppler Laboratory for Mycotoxin Research, Center for Analytical Chemistry, University of Natural Resources and Life Sciences (BOKU) Vienna, Konrad Lorenz Straße 20, 3430, Tulln, Austria.
| | - Rudolf Krska
- Department for Agrobiotechnology (IFA-Tulln), Christian Doppler Laboratory for Mycotoxin Research, Center for Analytical Chemistry, University of Natural Resources and Life Sciences (BOKU) Vienna, Konrad Lorenz Straße 20, 3430, Tulln, Austria.
| | - Wolfgang Kneifel
- Christian Doppler Laboratory for Innovative Bran Biorefinery, University of Natural Resources and Life Sciences, Muthgasse 18, 1190, Vienna, Austria.
| | | | | |
Collapse
|
27
|
Effects of orally administered fumonisin B1 (FB1), partially hydrolysed FB1, hydrolysed FB1 and N-(1-deoxy-D-fructos-1-yl) FB1 on the sphingolipid metabolism in rats. Food Chem Toxicol 2015; 76:11-8. [DOI: 10.1016/j.fct.2014.11.020] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 11/14/2014] [Accepted: 11/24/2014] [Indexed: 11/18/2022]
|
28
|
Ruth C, Buchetics M, Vidimce V, Kotz D, Naschberger S, Mattanovich D, Pichler H, Gasser B. Pichia pastoris Aft1--a novel transcription factor, enhancing recombinant protein secretion. Microb Cell Fact 2014; 13:120. [PMID: 25205197 PMCID: PMC4161868 DOI: 10.1186/s12934-014-0120-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 08/10/2014] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The methylotrophic yeast Pichia pastoris is frequently used for the production of recombinant proteins. However, expression levels can vary depending on the target protein. Allowing for simultaneous regulation of many genes, which may elicit a desired phenotype like increased protein production, overexpression of transcription factors can be used to overcome expression bottlenecks. Here, we present a novel P. pastoris transcription factor currently annotated as Aft1, activator of ferrous transport. RESULTS The promoter regions of key secretory P. pastoris genes were screened for fungal transcription factor binding sites, revealing Aft1 as an interesting candidate for improving secretion. Genome wide analysis of transcription factor binding sites suggested Aft1 to be involved in the regulation of many secretory genes, but also indicated possible novel functions in carbohydrate metabolism. No Aft binding sites were found in promoters of characteristic iron homeostasis genes in P. pastoris. Microarrays were used to study the Aft1 regulon in detail, confirming Aft1 involvement in the regulation of carbon-responsive genes, and showing that iron regulation is dependent on FEP1, but not AFT1 expression levels. The positive effect of AFT1 overexpression on recombinant protein secretion was demonstrated for a carboxylesterase from Sphingopyxis sp. MTA144, for which secretion was improved 2.5-fold in fed batch bioreactor cultivations. CONCLUSION This study demonstrates that the transcription factor Aft1 can be used to improve recombinant protein secretion in P. pastoris. Furthermore, we discovered possible novel functions of Aft1 in carbohydrate metabolism and provide evidence arguing against a direct role of Aft1 in P. pastoris iron regulation.
Collapse
|
29
|
Miller J, Schaafsma A, Bhatnagar D, Bondy G, Carbone I, Harris L, Harrison G, Munkvold G, Oswald I, Pestka J, Sharpe L, Sumarah M, Tittlemier S, Zhou T. Mycotoxins that affect the North American agri-food sector: state of the art and directions for the future. WORLD MYCOTOXIN J 2014. [DOI: 10.3920/wmj2013.1624] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
This paper summarises workshop discussions at the 5th international MYCORED meeting in Ottawa, Canada (June 2012) with over 200 participants representing academics, government and industry scientists, government officials and farming organisations (present in roughly equal proportions) from 27 countries. Workshops centred on how mycotoxins in food and feed affect value chains and trade in the region covered by the North American Free Trade Agreement. Crops are contaminated by one or more of five important mycotoxins in parts of Canada and the United States every year, and when contaminated food and feed are consumed in amounts above tolerable limits, human and animal health are at risk. Economic loss from such contamination includes reduced crop yield, grain quality, animal productivity and loss of domestic and export markets. A systematic effort by grain producers, primary, transfer, and terminal elevators, millers and food and feed processers is required to manage these contaminants along the value chain. Workshops discussed lessons learned from investments in plant genetics, fungal genomics, toxicology, analytical and sampling science, management strategies along the food and feed value chains and methods to ameliorate the effects of toxins in grain on animal production and on reducing the impact of mycotoxins on population health in developing countries. These discussions were used to develop a set of priorities and recommendations.
Collapse
Affiliation(s)
- J.D. Miller
- Department of Chemistry, Carleton University, 228 Steacie Building, Ottawa, ON K1S 5B6, Canada
| | - A.W. Schaafsma
- Ridgetown Campus, University of Guelph, 120 Main Street East, Ridgetown, ON N0P 2C0, Canada
| | - D. Bhatnagar
- Southern Regional Research Center, USDA, ARS, 1100 Robert E. Lee Boulevard, New Orleans, LA 70124, USA
| | - G. Bondy
- Health Canada, Food Directorate, Bureau of Chemical Safety, 251 Sir Frederick Banting Driveway, 2202C Ottawa, ON K1A 0K9, Canada
| | - I. Carbone
- Department of Plant Pathology, North Carolina State University, 851 Main Campus Drive, Suite 233, Partners III, Raleigh, NC 27606, USA
| | - L.J. Harris
- Agriculture and Agri-Food Canada, Eastern Cereal and Oilseed Research Centre, 960 Carling Ave., Ottawa, ON K1A 0C6, Canada
| | - G. Harrison
- Canadian National Millers' Association, 236 Metcalfe Street, Ottawa, ON K2P 1R3, Canada
| | - G.P. Munkvold
- Department of Plant Pathology and Microbiology, Iowa State University, 160 Seed Science Building, Ames, IA 50011, USA
| | - I.P. Oswald
- Toxalim, Research Centre in Food Toxicology, INRA, UMR1331, 180 Chemin de Tournefeuille, 31027 Toulouse, France
| | - J.J. Pestka
- Department of Microbiology and Molecular Genetics, Michigan State University, 234 GM Trout Building, East Lansing, MI 48824-1224, USA
| | - L. Sharpe
- DuPont Pioneer Hi-Bred, 7398 Queen's Line, Chatham, ON N7M 5L1, Canada
| | - M.W. Sumarah
- Agriculture and Agri-Food Canada, Southern Crop Protection and Food Research Centre, 1391 Sandford Street, London, ON N5V 4T3, Canada
| | - S.A. Tittlemier
- Grain Research Laboratory, Canadian Grain Commission, 1404-303 Main Street, Winnipeg, MB R3C 3G8, Canada
| | - T. Zhou
- Agriculture and Agri-Food Canada, Guelph Food Research Center, 93 Stone Road West, Guelph, ON N1G 5C9, Canada
| |
Collapse
|
30
|
Schatzmayr G, Streit E. Global occurrence of mycotoxins in the food and feed chain: facts and figures. WORLD MYCOTOXIN J 2013. [DOI: 10.3920/wmj2013.1572] [Citation(s) in RCA: 189] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Mycotoxins are ubiquitously present in agricultural commodities, such as cereals and oil seeds. If ingested in sufficiently high concentrations, they exert severe toxic effects in humans and animals. In 2004, a survey programme was launched to assess the extent of mycotoxin contamination in feed and feed raw materials. Since then, over 19,000 samples have been analysed and more than 70,000 individual analyses have been conducted. While it is difficult to infer any long-term trends on a global level, the data confirm that high mycotoxin contamination is often linked to unusual weather. Overall, 72% of the samples contained detectable amounts of aflatoxins, fumonisins, deoxynivalenol, zearalenone or ochratoxin A. Co-contamination with two or more mycotoxins was detected in 38% of the samples. In most cases the concentrations were low enough to ensure compliance with EU guidance values or maximum levels. However, co-contaminated samples with concentrations below guidance and maximum values might still exert adverse effects due to synergistic interactions of the mycotoxins. Emerging mycotoxins and masked mycotoxins may also contribute to the overall toxicity of the feed and their presence is frequently detected with multi-mycotoxin LC-MS/MS. Since by-product feeds, such as distillers dried grain with solubles, often concentrate the mycotoxins of the original substrate, they contribute excessively to the overall contamination of feed rations and therefore need special attention. Regarding food the situation is quite similar: low level contamination is frequently observed in official controls but maximum levels are rarely exceeded in developed countries. As it is very difficult to remove mycotoxins from contaminated commodities, preventing them from accumulation in agricultural commodities is the most effective strategy to combat the problem. Preventive measures range from crop rotation and resistance breeding to inoculation with microbial antagonists. Nevertheless, excessive mycotoxin levels may occur despite all preventive measures. Therefore, continuous monitoring is essential and efficient detoxification strategies are needed to deal with such outbreaks.
Collapse
Affiliation(s)
- G. Schatzmayr
- BIOMIN Research Center, Technopark 1, 3430 Tulln, Austria
| | - E. Streit
- BIOMIN Research Center, Technopark 1, 3430 Tulln, Austria
| |
Collapse
|
31
|
Grenier B, Bracarense APFL, Schwartz HE, Lucioli J, Cossalter AM, Moll WD, Schatzmayr G, Oswald IP. Biotransformation approaches to alleviate the effects induced by fusarium mycotoxins in swine. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:6711-6719. [PMID: 23758213 DOI: 10.1021/jf400213q] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Mycotoxin mitigation is of major interest as ingestion of mycotoxins results in poor animal health, decreased productivity, as well as substantial economic losses. A feed additive (FA) consisting of a combination of bacteria (Eubacterium BBSH797) and enzyme (fumonisin esterase FumD) was tested in pigs for its ability to neutralize the effects of mono- and co-contaminated diets with deoxynivalenol (DON) and fumonisins (FB) on hematology, biochemistry, tissue morphology, and immune response. Forty-eight animals, allocated into eight groups, received one of eight diets for 35 days: a control diet, a diet contaminated with either DON (3 mg/kg) or FB (6 mg/kg), or both toxins, and the same four diets with FA. Inclusion of FA restored the circulating number of neutrophils of piglets fed the FB and DON + FB diets. Similarly, FA counteracted the minor changes observed on plasma concentrations of albumin and creatinine. In lung, the lesions induced by the ingestion of FB in mono- and co-contaminated diets were no longer observed after addition of FA in these diets. Lesions recorded in the liver of pigs fed either of the contaminated diets with FA were partly reduced, and the increased hepatocyte proliferation was totally neutralized when FA was present in the co-contaminated diet. After 35 days of exposure, the development of the vaccinal response was significantly improved in animals fed diets supplemented with FA, as shown by results of lymphocyte proliferation, cytokine expression in spleen, and the production of specific Ig. Similarly, in jejunum of animals fed diets with FA, occurrence of lesions and upregulation of pro-inflammatory cytokines were much less obvious. The ameliorative effects provided by FA suggest that this approach would be suitable in the control of DON and FB that commonly co-occur in feed.
Collapse
Affiliation(s)
- Bertrand Grenier
- INRA, UMR 1331 ToxAlim, Research Centre in Food Toxicology, 180 Chemin de Tournefeuille BP 93173, 31027 Toulouse Cedex 3, Toulouse, France
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Grenier B, Bracarense APFL, Schwartz HE, Trumel C, Cossalter AM, Schatzmayr G, Kolf-Clauw M, Moll WD, Oswald IP. The low intestinal and hepatic toxicity of hydrolyzed fumonisin B₁ correlates with its inability to alter the metabolism of sphingolipids. Biochem Pharmacol 2012; 83:1465-73. [PMID: 22366513 DOI: 10.1016/j.bcp.2012.02.007] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Revised: 02/09/2012] [Accepted: 02/14/2012] [Indexed: 10/28/2022]
Abstract
Fumonisins are mycotoxins frequently found as natural contaminants in maize, where they are produced by the plant pathogen Fusarium verticillioides. They are toxic to animals and exert their effects through mechanisms involving disruption of sphingolipid metabolism. Fumonisin B₁ (FB₁) is the predominant fumonisin in this family. FB₁ is converted to its hydrolyzed analogs HFB₁, by alkaline cooking (nixtamalization) or through enzymatic degradation. The toxicity of HFB₁ is poorly documented especially at the intestinal level. The objectives of this study were to compare the toxicity of HFB₁ and FB₁ and to assess the ability of these toxins to disrupt sphingolipids biosynthesis. HFB₁ was obtained by a deesterification of FB₁ with a carboxylesterase. Piglets, animals highly sensitive to FB₁, were exposed by gavage for 2 weeks to 2.8 μmol FB₁ or HFB₁/kg body weight/day. FB₁ induced hepatotoxicity as indicated by the lesion score, the level of several biochemical analytes and the expression of inflammatory cytokines. Similarly, FB₁ impaired the morphology of the different segments of the small intestine, reduced villi height and modified intestinal cytokine expression. By contrast, HFB₁ did not trigger hepatotoxicity, did not impair intestinal morphology and slightly modified the intestinal immune response. This low toxicity of HFB₁ correlates with a weak alteration of the sphinganine/sphingosine ratio in the liver and in the plasma. Taken together, these data demonstrate that HFB₁ does not cause intestinal or hepatic toxicity in the sensitive pig model and only slightly disrupts sphingolipids metabolism. This finding suggests that conversion to HFB₁ could be a good strategy to reduce FB₁ exposure.
Collapse
Affiliation(s)
- Bertrand Grenier
- INRA, UMR 1331 ToxAlim, Immuno-Myco-Toxicology Team, 180 Chemin de Tournefeuille BP 93173, 31027 Toulouse Cedex 3, France
| | | | | | | | | | | | | | | | | |
Collapse
|