1
|
Abbott W, Walsh L, Clifford T. The influence of muscle strength and aerobic fitness on functional recovery in elite female soccer players. J Sports Med Phys Fitness 2024; 64:1260-1266. [PMID: 39287577 DOI: 10.23736/s0022-4707.24.15964-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
BACKGROUND We examined the influence of muscle strength and aerobic fitness on wellbeing and muscle function recovery in female soccer players. METHODS Sixteen players from the English Women's Super League (age: 26±4 yrs; height, 1.70±0.07 m; mass, 67.9±6.4 kg) completed an isometric mid-thigh pull test (IMTP) and maximal aerobic speed test (MAST). Using a median split, players were divided by strength into high (H-IMTP) and low (L-IMPT) groups and by fitness into high (H-MAST) and low (L-MAST) groups. Countermovement jump height (CMJ), Reactive Strength Index (RSI) and wellbeing were measured 2 days prematch, then 3 subsequent days post-match (M+1, M+2, M+3). RESULTS In H-IMTP, CMJ, RSI and wellbeing were higher at M+1-M+3 (P<0.05). At M+3, CMJ in H-IMTP was 30.3±3.5 cm vs. 26.2±3.4 in L-IMTP. CMJ and wellbeing were unaffected by fitness, but RSI was lower at M+1-M+3 in the L-IMTP group (P<0.05). CONCLUSIONS In conclusion, isometrically stronger but not aerobically fitter female soccer players recover quicker after matches.
Collapse
Affiliation(s)
- Will Abbott
- Brighton and Hove Albion F.C., American Express Elite Performance Center, Lancing, UK
| | - Lisa Walsh
- Brighton and Hove Albion F.C., American Express Elite Performance Center, Lancing, UK
| | - Tom Clifford
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK -
| |
Collapse
|
2
|
da Silva LA, Boeira D, Doeynart R, Longen WC, Marqueze LF, Silveira PC, Thirupathi A, Gu Y, Pinho RA. Effects of aerobic exercise during recovery from eccentric contraction on muscular performance, oxidative stress and inflammation. Curr Res Physiol 2024; 7:100129. [PMID: 39070775 PMCID: PMC11283083 DOI: 10.1016/j.crphys.2024.100129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 05/24/2024] [Accepted: 06/10/2024] [Indexed: 07/30/2024] Open
Abstract
This study investigated the effects of aerobic exercise during recovery from eccentric contraction (EC) on muscular performance, oxidative stress, and inflammation. Nineteen male subjects between 18 and 29 years were divided into unexercised (control, n = 9) and exercised (n = 10) groups. Initially, the subjects performed EC as 3 sets until exhaustion with elbow flexion and extension on the Scott bench at 80% in 1RM, followed by four aerobic exercise sessions. The results obtained indicated (p > 0.05) that aerobic physical exercise during the recovery period does not improve muscle performance (isometric strength and muscular fatigue), oxidative stress parameters (lipid peroxidation, protein oxidation and antioxidant enzyme activity), and inflammatory cytokines (IL-1β, TNF-α, IL-10). In conclusion, the aerobic exercise during the recovery period does not alter the parameters of performance, oxidative stress and inflammation induced by the EC.
Collapse
Affiliation(s)
- Luciano A. da Silva
- Research Academy of Medicine Combining Sports, Ningbo No 2 Hospital, Ningbo, China
- Laboratory of Exercise Biochemistry and Physiology, Graduate Programme in Health Sciences, Health Sciences Unit, Universidade do Extremo Sul Catarinense, Criciúma, Brazil
- Laboratory of Exercise Psychophysiology, Advanced Aquatic Exercise Research Group/Extremo Sul Catarinense, Criciúma, Brazil
| | - Daniel Boeira
- Laboratory of Exercise Psychophysiology, Advanced Aquatic Exercise Research Group/Extremo Sul Catarinense, Criciúma, Brazil
| | - Ramiro Doeynart
- Laboratory of Exercise Psychophysiology, Advanced Aquatic Exercise Research Group/Extremo Sul Catarinense, Criciúma, Brazil
| | - Willians C. Longen
- Laboratory of Exercise Biochemistry and Physiology, Graduate Programme in Health Sciences, Health Sciences Unit, Universidade do Extremo Sul Catarinense, Criciúma, Brazil
- Faculty of Sports Sciences, Ningbo University, Ningbo, China
| | - Luis Felipe Marqueze
- Graduate Program in Health Sciences, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná, Curitiba, Brazil
| | - Paulo C.L. Silveira
- Laboratory of Exercise Biochemistry and Physiology, Graduate Programme in Health Sciences, Health Sciences Unit, Universidade do Extremo Sul Catarinense, Criciúma, Brazil
| | - Anand Thirupathi
- Research Academy of Medicine Combining Sports, Ningbo No 2 Hospital, Ningbo, China
- Faculty of Sports Sciences, Ningbo University, Ningbo, China
| | - Yaodong Gu
- Research Academy of Medicine Combining Sports, Ningbo No 2 Hospital, Ningbo, China
- Faculty of Sports Sciences, Ningbo University, Ningbo, China
| | - Ricardo A. Pinho
- Graduate Program in Health Sciences, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná, Curitiba, Brazil
- Faculty of Sports Sciences, Ningbo University, Ningbo, China
| |
Collapse
|
3
|
Radulescu D, Mihai FD, Trasca MET, Caluianu EI, Calafeteanu CDM, Radulescu PM, Mercut R, Ciupeanu-Calugaru ED, Marinescu GA, Siloşi CA, Nistor CCE, Danoiu S. Oxidative Stress in Military Missions-Impact and Management Strategies: A Narrative Analysis. Life (Basel) 2024; 14:567. [PMID: 38792589 PMCID: PMC11121804 DOI: 10.3390/life14050567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/26/2024] Open
Abstract
This narrative review comprehensively examines the impact of oxidative stress on military personnel, highlighting the crucial role of physical exercise and tailored diets, particularly the ketogenic diet, in minimizing this stress. Through a meticulous analysis of the recent literature, the study emphasizes how regular physical exercise not only enhances cardiovascular, cognitive, and musculoskeletal health but is also essential in neutralizing the effects of oxidative stress, thereby improving endurance and performance during long-term missions. Furthermore, the implementation of the ketogenic diet provides an efficient and consistent energy source through ketone bodies, tailored to the specific energy requirements of military activities, and significantly contributes to the reduction in reactive oxygen species production, thus protecting against cellular deterioration under extreme stress. The study also underlines the importance of integrating advanced technologies, such as wearable devices and smart sensors that allow for the precise and real-time monitoring of oxidative stress and physiological responses, thus facilitating the customization of training and nutritional regimes. Observations from this review emphasize significant variability among individuals in responses to oxidative stress, highlighting the need for a personalized approach in formulating intervention strategies. It is crucial to develop and implement well-monitored, personalized supplementation protocols to ensure that each member of the military personnel receives a regimen tailored to their specific needs, thereby maximizing the effectiveness of measures to combat oxidative stress. This analysis makes a valuable contribution to the specialized literature, proposing a detailed framework for addressing oxidative stress in the armed forces and opening new directions for future research with the aim of optimizing clinical practices and improving the health and performance of military personnel under stress and specific challenges of the military field.
Collapse
Affiliation(s)
- Dumitru Radulescu
- Department of Surgery, The Military Emergency Clinical Hospital ‘Dr. Stefan Odobleja’ Craiova, 200749 Craiova, Romania; (D.R.); (E.-I.C.); (P.-M.R.); (G.-A.M.)
| | - Florina-Diana Mihai
- Doctoral School, University of Medicine and Pharmacy of Craiova, 2 Petru Rares Street, 200349 Craiova, Romania;
| | - Major Emil-Tiberius Trasca
- Department of Surgery, The Military Emergency Clinical Hospital ‘Dr. Stefan Odobleja’ Craiova, 200749 Craiova, Romania; (D.R.); (E.-I.C.); (P.-M.R.); (G.-A.M.)
| | - Elena-Irina Caluianu
- Department of Surgery, The Military Emergency Clinical Hospital ‘Dr. Stefan Odobleja’ Craiova, 200749 Craiova, Romania; (D.R.); (E.-I.C.); (P.-M.R.); (G.-A.M.)
| | - Captain Dan Marian Calafeteanu
- Department of Ortopedics, The Military Emergency Clinical Hospital ‘Dr. Stefan Odobleja’ Craiova, 200749 Craiova, Romania;
| | - Patricia-Mihaela Radulescu
- Department of Surgery, The Military Emergency Clinical Hospital ‘Dr. Stefan Odobleja’ Craiova, 200749 Craiova, Romania; (D.R.); (E.-I.C.); (P.-M.R.); (G.-A.M.)
| | - Razvan Mercut
- Department of Plastic and Reconstructive Surgery, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | | | - Georgiana-Andreea Marinescu
- Department of Surgery, The Military Emergency Clinical Hospital ‘Dr. Stefan Odobleja’ Craiova, 200749 Craiova, Romania; (D.R.); (E.-I.C.); (P.-M.R.); (G.-A.M.)
| | - Cristian-Adrian Siloşi
- Doctoral School, University of Medicine and Pharmacy of Craiova, 2 Petru Rares Street, 200349 Craiova, Romania;
| | | | - Suzana Danoiu
- Department of Pathophysiology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| |
Collapse
|
4
|
Supruniuk E, Górski J, Chabowski A. Endogenous and Exogenous Antioxidants in Skeletal Muscle Fatigue Development during Exercise. Antioxidants (Basel) 2023; 12:antiox12020501. [PMID: 36830059 PMCID: PMC9952836 DOI: 10.3390/antiox12020501] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/09/2023] [Accepted: 02/15/2023] [Indexed: 02/18/2023] Open
Abstract
Muscle fatigue is defined as a decrease in maximal force or power generated in response to contractile activity, and it is a risk factor for the development of musculoskeletal injuries. One of the many stressors imposed on skeletal muscle through exercise is the increased production of reactive oxygen species (ROS) and reactive nitrogen species (RNS), which intensifies as a function of exercise intensity and duration. Exposure to ROS/RNS can affect Na+/K+-ATPase activity, intramyofibrillar calcium turnover and sensitivity, and actin-myosin kinetics to reduce muscle force production. On the other hand, low ROS/RNS concentrations can likely upregulate an array of cellular adaptative responses related to mitochondrial biogenesis, glucose transport and muscle hypertrophy. Consequently, growing evidence suggests that exogenous antioxidant supplementation might hamper exercise-engendering upregulation in the signaling pathways of mitogen-activated protein kinases (MAPKs), peroxisome-proliferator activated co-activator 1α (PGC-1α), or mammalian target of rapamycin (mTOR). Ultimately, both high (exercise-induced) and low (antioxidant intervention) ROS concentrations can trigger beneficial responses as long as they do not override the threshold range for redox balance. The mechanisms underlying the two faces of ROS/RNS in exercise, as well as the role of antioxidants in muscle fatigue, are presented in detail in this review.
Collapse
Affiliation(s)
- Elżbieta Supruniuk
- Department of Physiology, Medical University of Białystok, 15-222 Białystok, Poland
- Correspondence: ; Tel.: +48-(85)-748-55-85
| | - Jan Górski
- Department of Medical Sciences, Academy of Applied Sciences, 18-400 Łomża, Poland
| | - Adrian Chabowski
- Department of Physiology, Medical University of Białystok, 15-222 Białystok, Poland
| |
Collapse
|
5
|
Martínez-Ferrán M, Berlanga LA, Barcelo-Guido O, Matos-Duarte M, Vicente-Campos D, Sánchez-Jorge S, Romero-Morales C, Munguía-Izquierdo D, Pareja-Galeano H. Antioxidant vitamin supplementation on muscle adaptations to resistance training: A double-blind, randomized controlled trial. Nutrition 2023; 105:111848. [PMID: 36283241 DOI: 10.1016/j.nut.2022.111848] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/05/2022] [Accepted: 09/05/2022] [Indexed: 11/16/2022]
Abstract
OBJECTIVES The aim of this study was to examine whether antioxidant vitamin supplementation with vitamin C (VitC) and vitamin E (VitE) affects the hypertrophic and functional adaptations to resistance training in trained men. METHODS This was a double-blind, randomized controlled trial in which participants were supplemented daily with VitC and VitE ( n = 12) or placebo ( n = 11) while completing a 10-wk resistance training program accompanied by a dietary intervention (300 kcal surplus and adequate protein intake) designed to optimize hypertrophy. Body composition (dual-energy x-ray absorptiometry), handgrip strength, and one-repetition maximum (1-RM), maximal force (F0), velocity (V0), and power (Pmax) were measured in bench press (BP) and squat (SQ) tests conducted before and after the intervention. To detect between-group differences, multiple-mixed analysis of variance, standardized differences, and qualitative differences were estimated. Relative changes within each group were assessed using a paired Student's t test. RESULTS In both groups, similar improvements were produced in BP 1-RM , SQ 1-RM SQ, and BP F0 (P < 0.05) after the resistance training program. A small effect size was observed for BP 1-RM (d = 0.53), BP F0 (d = 0.48), and SQ 1-RM (d = -0.39), but not for SQ F0 (d = 0.03). Dominant handgrip strength was significantly increased only in the placebo group (P < 0.05). According to body composition data, a significant increase was produced in upper body fat-free mass soft tissue (FFMST; P < 0.05) in the placebo group, whereas neither total nor segmental FFMST was increased in the vitamin group. Small intervention effect sizes were observed for upper body FFSMT (d = 0.32), non-dominant and dominant leg FFMST (d = -0.39; d = -0.42). Although a significant increase in total body fat was observed in both groups (P < 0.05) only the placebo group showed an increase in visceral adipose tissue (P < 0.05), showing a substantial intervention effect (d = 0.85). CONCLUSIONS The data indicated that, although VitC/VitE supplementation seemed to blunt upper body strength and hypertrophy adaptations to resistance training, it could also mitigate gains in visceral adipose tissue elicited by an energy surplus.
Collapse
Affiliation(s)
- María Martínez-Ferrán
- Faculty of Sports Sciences, Universidad Europea de Madrid, Madrid, Spain; Faculty of Health Sciences, Universidad Isabel I, Burgos, Spain.
| | - Luis A Berlanga
- Faculty of Health Sciences, Universidad Francisco de Vitoria, Madrid, Spain
| | - Olga Barcelo-Guido
- Faculty of Sports Sciences, Universidad Europea de Madrid, Madrid, Spain
| | | | | | | | | | - Diego Munguía-Izquierdo
- Physical Performance and Sports Research Center, Department of Sports and Computer Science, Section of Physical Education and Sports, Faculty of Sport Sciences, Universidad Pablo de Olavide, Sevilla, Spain
| | - Helios Pareja-Galeano
- Department of Physical Education, Sport and Human Movement, Universidad Autónoma de Madrid, Spain
| |
Collapse
|
6
|
Nutritional Compounds to Improve Post-Exercise Recovery. Nutrients 2022; 14:nu14235069. [PMID: 36501099 PMCID: PMC9736198 DOI: 10.3390/nu14235069] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/17/2022] [Accepted: 11/28/2022] [Indexed: 11/30/2022] Open
Abstract
The metabolic and mechanical stresses associated with muscle-fatiguing exercise result in perturbations to bodily tissues that lead to exercise-induced muscle damage (EIMD), a state of fatigue involving oxidative stress and inflammation that is accompanied by muscle weakness, pain and a reduced ability to perform subsequent training sessions or competitions. This review collates evidence from previous research on a wide range of nutritional compounds that have the potential to speed up post-exercise recovery. We show that of the numerous compounds investigated thus far, only two-tart cherry and omega-3 fatty acids-are supported by substantial research evidence. Further studies are required to clarify the potential effects of other compounds presented here, many of which have been used since ancient times to treat conditions associated with inflammation and disease.
Collapse
|
7
|
Baker C, Hunt J, Piasecki J, Hough J. Lymphocyte and dendritic cell response to a period of intensified training in young healthy humans and rodents: A systematic review and meta-analysis. Front Physiol 2022; 13:998925. [PMID: 36439269 PMCID: PMC9691956 DOI: 10.3389/fphys.2022.998925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 10/14/2022] [Indexed: 01/25/2023] Open
Abstract
Background: Intensified training coupled with sufficient recovery is required to improve athletic performance. A stress-recovery imbalance can lead to negative states of overtraining. Hormonal alterations associated with intensified training, such as blunted cortisol, may impair the immune response. Cortisol promotes the maturation and migration of dendritic cells which subsequently stimulate the T cell response. However, there are currently no clear reliable biomarkers to highlight the overtraining syndrome. This systematic review and meta-analysis examined the effect of intensified training on immune cells. Outcomes from this could provide insight into whether these markers may be used as an indicator of negative states of overtraining. Methods: SPORTDiscus, PUBMED, Academic Search Complete, Scopus and Web of Science were searched until June 2022. Included articles reported on immune biomarkers relating to lymphocytes, dendritic cells, and cytokines before and after a period of intensified training, in humans and rodents, at rest and in response to exercise. Results: 164 full texts were screened for eligibility. Across 57 eligible studies, 16 immune biomarkers were assessed. 7 were assessed at rest and in response to a bout of exercise, and 9 assessed at rest only. Included lymphocyte markers were CD3+, CD4+ and CD8+ T cell count, NK cell count, NK Cytolytic activity, lymphocyte proliferation and CD4/CD8 ratio. Dendritic cell markers examined were CD80, CD86, and MHC II expression. Cytokines included IL-1β, IL-2, IL-10, TNF-α and IFN-γ. A period of intensified training significantly decreased resting total lymphocyte (d= -0.57, 95% CI -0.30) and CD8+ T cell counts (d= -0.37, 95% CI -0.04), and unstimulated plasma IL-1β levels (d= -0.63, 95% CI -0.17). Resting dendritic cell CD86 expression significantly increased (d = 2.18, 95% CI 4.07). All other biomarkers remained unchanged. Conclusion: Although some biomarkers alter after a period of intensified training, definitive immune biomarkers are limited. Specifically, due to low study numbers, further investigation into the dendritic cell response in human models is required.
Collapse
Affiliation(s)
- Carla Baker
- SHAPE Research Centre, Department of Sport Science, Nottingham Trent University, Nottingham, United Kingdom,*Correspondence: Carla Baker,
| | - John Hunt
- Medical Technologies Innovation Facility, Nottingham Trent University, Nottingham, United Kingdom
| | - Jessica Piasecki
- SHAPE Research Centre, Department of Sport Science, Nottingham Trent University, Nottingham, United Kingdom
| | - John Hough
- SHAPE Research Centre, Department of Sport Science, Nottingham Trent University, Nottingham, United Kingdom
| |
Collapse
|
8
|
Ataei L, Giannaki CD, Petrou C, Aphamis G. Effect of Tribulus terrestris L. supplementation on Exercise-Induced Oxidative Stress and Delayed Onset Muscle Soreness Markers: A Pilot Study. J Diet Suppl 2022; 20:811-831. [PMID: 36073362 DOI: 10.1080/19390211.2022.2120147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Tribulus terrestris L. contains compounds with antioxidant and anti-inflammatory properties, but its effects on exercise-induced oxidative stress and inflammatory responses are unclear. The aim of this study was to examine whether Tribulus terrestris L. supplementation can attenuate oxidative stress and inflammatory responses to acute aerobic exercise and improve DOMS. In a randomized, double-blind, crossover design study, thirteen healthy men received either a daily supplement of Tribulus terrestris L. or a placebo for 4 weeks (2-week wash-out period between trials). Before and after the supplementation periods, participants performed an exercise test to exhaustion (75% VO2max). DOMS, thigh girth, and knee joint range of motion (KJRM) were assessed before and after the exercise (2, 24, and 48 h). Blood samples were analyzed for reduced (GSH) and oxidized (GSSG) glutathione, GSH/GSSG ratio, protein carbonyls, total antioxidant capacity, creatine kinase activity, white blood cell count, and TBARS. Acute exercise to exhaustion induced inflammatory responses and changed the blood redox status in both Tribulus and Placebo groups (p < 0.050). Tribulus terrestris L. improved GSH fall (p = 0.005), GSSG rise (p = 0.001) and maintained a higher level of GSH/GSSG ratio at the 2 h point (p = 0.034). TBARS were lowered, protein carbonyls, creatine kinase activity, and white blood cell count elevation diminished significantly (p < 0.050). Tribulus terrestris L. administration did not affect DOMS, thigh girth, or KJRM (p > 0.050). 4-weeks of Tribulus terrestris L. supplementation effectively attenuates oxidative stress responses but cannot improve DOMS.
Collapse
Affiliation(s)
- Leila Ataei
- Department of Life and Health Sciences, University of Nicosia, Nicosia, Cyprus
| | | | - Christos Petrou
- Department of Life and Health Sciences, University of Nicosia, Nicosia, Cyprus
| | - George Aphamis
- Department of Life and Health Sciences, University of Nicosia, Nicosia, Cyprus
| |
Collapse
|
9
|
Tékus E, Szénási NL, Szabó E, Heckel Z, Mintál T, Kőszegi T, Atlasz T, Gazdag Z, Váczi M, Wilhelm M. Well-Trained Elders Have Antioxidant Responses and an Equal Magnitude of EIMD as Young Adults. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19158889. [PMID: 35897260 PMCID: PMC9332484 DOI: 10.3390/ijerph19158889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/17/2022] [Accepted: 07/19/2022] [Indexed: 02/01/2023]
Abstract
Aim The aim of the study was to investigate acute and chronic effects of a two-week eccentric concentric, dynamometric training concerning the time-course changes of blood antioxidant parameters (total antioxidant capacity, catalase enzyme activity, thiol concentration), and to compare the adaptability of young and older muscle to this type of training. Methods Seventeen moderately trained young and older men participated in this research. Subjects performed six eccentric concentric exercise bouts during the training period and maximal voluntary isometric contraction torque, plasma CK and intensity of muscle soreness were determined before and 24 h after the first exercise. During five testing sessions (baseline, 24 h, 48 h, week 1, week 2) the level of blood antioxidants were measured. Results No significant changes were registered in total antioxidant capacity and catalase enzyme activity for any time points; furthermore, no difference was found between groups during the training period. However, total thiol concentrations measured two weeks after the first exercise bout significantly differed between the young and elderly groups. Plasma CK and the subjective intensity of soreness elevated significantly 24 h following the first training, while maximal voluntary isometric contraction torque decreased at the same time. Conclusions Our results do not support previous findings that chronic, short-term eccentric concentric training programs enhance the antioxidant defense of well-trained older and young men. This type and setting of exercise did not cause a different time course of changes in the markers of exercise-induced muscle damage (EIMD) in the studied population. Subjects may already have adapted to maintain constant levels of antioxidants and isometric torque due to their active lifestyle.
Collapse
Affiliation(s)
- Eva Tékus
- Institute of Sport Sciences and Physical Education, University of Pecs, H-7624 Pecs, Hungary; (N.L.S.); (E.S.); (Z.H.); (T.A.); (M.V.); (M.W.)
- Sports Medicine Center, Medical School, University of Pecs, H-7632 Pecs, Hungary;
- Correspondence: ; Tel.: +36-72-536-823
| | - Nikolett Lilla Szénási
- Institute of Sport Sciences and Physical Education, University of Pecs, H-7624 Pecs, Hungary; (N.L.S.); (E.S.); (Z.H.); (T.A.); (M.V.); (M.W.)
| | - Edina Szabó
- Institute of Sport Sciences and Physical Education, University of Pecs, H-7624 Pecs, Hungary; (N.L.S.); (E.S.); (Z.H.); (T.A.); (M.V.); (M.W.)
- Department of Anatomy, Medical School, University of Pecs, H-7624 Pecs, Hungary
| | - Zoltan Heckel
- Institute of Sport Sciences and Physical Education, University of Pecs, H-7624 Pecs, Hungary; (N.L.S.); (E.S.); (Z.H.); (T.A.); (M.V.); (M.W.)
- Doctoral School of Health Sciences, University of Pecs, H-7621 Pecs, Hungary
| | - Tibor Mintál
- Sports Medicine Center, Medical School, University of Pecs, H-7632 Pecs, Hungary;
| | - Tamas Kőszegi
- Department of Laboratory Medicine, Medical School, University of Pecs, H-7624 Pecs, Hungary;
- János Szentágothai Research Center, University of Pecs, H-7624 Pecs, Hungary
| | - Tamas Atlasz
- Institute of Sport Sciences and Physical Education, University of Pecs, H-7624 Pecs, Hungary; (N.L.S.); (E.S.); (Z.H.); (T.A.); (M.V.); (M.W.)
| | - Zoltan Gazdag
- Department of General and Environmental Microbiology, Faculty of Sciences, University of Pecs, H-7624 Pecs, Hungary;
| | - Mark Váczi
- Institute of Sport Sciences and Physical Education, University of Pecs, H-7624 Pecs, Hungary; (N.L.S.); (E.S.); (Z.H.); (T.A.); (M.V.); (M.W.)
| | - Marta Wilhelm
- Institute of Sport Sciences and Physical Education, University of Pecs, H-7624 Pecs, Hungary; (N.L.S.); (E.S.); (Z.H.); (T.A.); (M.V.); (M.W.)
| |
Collapse
|
10
|
Sellitto C, Corbi G, Stefanelli B, Manzo V, Trucillo M, Charlier B, Mensitieri F, Izzo V, Lucariello A, Perna A, Guerra G, De Luca A, Filippelli A, Conti V. Antioxidant Supplementation Hinders the Role of Exercise Training as a Natural Activator of SIRT1. Nutrients 2022; 14:nu14102092. [PMID: 35631233 PMCID: PMC9146003 DOI: 10.3390/nu14102092] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/11/2022] [Accepted: 05/13/2022] [Indexed: 12/14/2022] Open
Abstract
Exercise training (ET) is a natural activator of silent mating type information regulation 2 homolog 1 (SIRT1), a stress-sensor able to increase the endogenous antioxidant system. SIRT1 activators include polyphenols and vitamins, the antioxidant properties of which are well-known. Antioxidant supplements are used to improve athletic performance. However, they might blunt ET-related benefits. Middle-distance runners (MDR) taking (MDR-S) or not taking antioxidant supplements (MDR-NoS) were compared with each other and with sedentary subjects (CTR) to evaluate the ET effects on SIRT1 levels and oxidative stress, and to investigate whether an exogenous source of antioxidants could interfere with such effects. Thirty-two MDR and 14 CTR were enrolled. MDR-S took 240 mg vitamin C and 15 mg vitamin E together with mineral salts. SIRT1 mRNA and activity were measured in PBMCs. Total oxidative status (TOS) and total antioxidant capacity (TEAC) were determined in plasma. MDR showed higher levels of SIRT1 mRNA (p = 0.0387) and activity (p = 0.0055) than did CTR. MDR-NoS also showed higher levels than did MDR-S without reaching statistical significance. SIRT1 activity was higher (p = 0.0012) in MDR-NoS (1909 ± 626) than in MDR-S (1276 ± 474). TOS did not differ among the groups, while MDR showed higher TEAC levels than did CTR (2866 ± 581 vs. 2082 ± 560, p = 0.0001) as did MDR-S (2784 ± 643) and MDR-NoS (2919 ± 551) (MDR-S vs. CTR, p = 0.0007 and MDR-NoS vs. CTR, p = 0.003). TEAC (β = 0.4488356, 95% CI 0.2074645 0.6902067; p < 0.0001) and the MDR-NoS group (β = 744.6433, 95% CI 169.9954 1319.291; p= 0.012) predicted SIRT1 activity levels. Antioxidant supplementation seems to hinder the role of ET as a natural activator of SIRT1.
Collapse
Affiliation(s)
- Carmine Sellitto
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, Medicina Traslazionale dello Sviluppo e dell’Invecchiamento Attivo, University of Salerno, Via S. Allende, 84081 Baronissi, Italy; (C.S.); (B.C.)
- Clinical Pharmacology Unit, San Giovanni di Dio e Ruggi d’Aragona University Hospital, Via San Leonardo 1, 84131 Salerno, Italy; (V.M.); (A.F.); (V.C.)
| | - Graziamaria Corbi
- Department of Medicine and Health Sciences, University of Molise, 86100 Campobasso, Italy; (A.P.); (G.G.)
- Correspondence: ; Tel.: +39-(0)8-7440-4771
| | - Berenice Stefanelli
- Postgraduate School of Clinical Pharmacology and Toxicology, University of Salerno, Via S. Allende, 84081 Baronissi, Italy;
| | - Valentina Manzo
- Clinical Pharmacology Unit, San Giovanni di Dio e Ruggi d’Aragona University Hospital, Via San Leonardo 1, 84131 Salerno, Italy; (V.M.); (A.F.); (V.C.)
| | - Marta Trucillo
- Department of Mental and Physical Health and Preventive Medicine, Section of Human Anatomy, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.T.); (A.D.L.)
| | - Bruno Charlier
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, Medicina Traslazionale dello Sviluppo e dell’Invecchiamento Attivo, University of Salerno, Via S. Allende, 84081 Baronissi, Italy; (C.S.); (B.C.)
| | - Francesca Mensitieri
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Via S. Allende, 84081 Baronissi, Italy; (F.M.); (V.I.)
| | - Viviana Izzo
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Via S. Allende, 84081 Baronissi, Italy; (F.M.); (V.I.)
| | - Angela Lucariello
- Department of Sport Sciences and Wellness, Section of Human Anatomy, University of Naples “Parthenope”, 80100 Naples, Italy;
| | - Angelica Perna
- Department of Medicine and Health Sciences, University of Molise, 86100 Campobasso, Italy; (A.P.); (G.G.)
| | - Germano Guerra
- Department of Medicine and Health Sciences, University of Molise, 86100 Campobasso, Italy; (A.P.); (G.G.)
| | - Antonio De Luca
- Department of Mental and Physical Health and Preventive Medicine, Section of Human Anatomy, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.T.); (A.D.L.)
| | - Amelia Filippelli
- Clinical Pharmacology Unit, San Giovanni di Dio e Ruggi d’Aragona University Hospital, Via San Leonardo 1, 84131 Salerno, Italy; (V.M.); (A.F.); (V.C.)
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Via S. Allende, 84081 Baronissi, Italy; (F.M.); (V.I.)
| | - Valeria Conti
- Clinical Pharmacology Unit, San Giovanni di Dio e Ruggi d’Aragona University Hospital, Via San Leonardo 1, 84131 Salerno, Italy; (V.M.); (A.F.); (V.C.)
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Via S. Allende, 84081 Baronissi, Italy; (F.M.); (V.I.)
| |
Collapse
|
11
|
Santos de Lima K, Schuch FB, Camponogara Righi N, Chagas P, Hemann Lamberti M, Puntel GO, Vargas da Silva AM, Ulisses Signori L. Effects of the combination of vitamins C and E supplementation on oxidative stress, inflammation, muscle soreness, and muscle strength following acute physical exercise: meta-analyses of randomized controlled trials. Crit Rev Food Sci Nutr 2022; 63:7584-7597. [PMID: 35261309 DOI: 10.1080/10408398.2022.2048290] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Background:The combined supplementation of vitamins C and E potentially can mitigate oxidative stress (OS) and accelerate recovery following exercise. However, there is little evidence and a lack of consensus on the effects of these vitamins for this purpose. The objective of this systematic review was to summarize the evidence on the effects of the combined supplementation of vitamins C and E in OS, inflammatory markers, muscle damage, muscle soreness, and musculoskeletal functionality following acute exercise. Methods: The search was carried out from inception until March 2021, on MEDLINE, EMBASE, Cochrane CENTRAL, Web of Science, and SPORT Discus. We included placebo-controlled randomized clinical trials (RCTs) that evaluated the effects of combined supplementation of vitamins C and E in OS, inflammatory markers, muscle damage, muscle soreness, and muscle strength following a single bout of exercise. Random-effect meta-analyses were used to compare pre to post-exercise mean changes in subjects who received supplementation with vitamins C and E or placebo versus controls. Data are presented as standard mean difference (SMD) and 95% confidence interval (95% CI). Results: Eighteen RCTs, accounting for data from 322 individuals, were included. The use of vitamins attenuated lipid peroxidation (SMD= -0.703; 95% CI= -1.035 to -0.372; p < 0.001), IL-6 (SMD= -0.576; 95%CI= -1.036 to -0.117; p = 0.014), and cortisol levels (SMD= -0.918; 95%CI= -1.475 to -0.361; p = 0.001) immediately, and creatine kinase levels 48 h following exercise (SMD= -0.991; 95%CI= -1.611 to -0.372; p = 0.002). Supplementing the combination of vitamins had no effects on protein carbonyls, reduced/oxidized glutathione ratio, catalase, interleukin-1Ra, C-reactive protein, lactate dehydrogenase, muscle soreness, and muscle strength. Conclusion: Prior supplementation of the combination of vitamins C and E attenuates OS (lipid peroxidation), the inflammatory response (interleukin-6), cortisol levels, and muscle damage (creatine kinase) following a session of exercise.
Collapse
Affiliation(s)
| | - Felipe Barreto Schuch
- Departamento de Métodos e Técnicas Desportivas, Universidade Federal de Santa Maria, Santa Maria, Brasil
| | | | - Patricia Chagas
- Departamento de Alimentos e Nutrição, Universidade Federal de Santa Maria, Santa Maria, Brasil
| | | | | | | | - Luis Ulisses Signori
- Fisioterapia e Reabilitação, Universidade Federal de Santa Maria, Santa Maria, Brasil
| |
Collapse
|
12
|
Broome S, Atiola RD, Braakhuis A, Mitchell C, Merry TL. Mitochondria-targeted antioxidant supplementation does not affect muscle soreness or recovery of maximal voluntary isometric contraction force following muscle-damaging exercise in untrained men: a randomised clinical trial. Appl Physiol Nutr Metab 2022; 47:762-774. [PMID: 35201920 DOI: 10.1139/apnm-2021-0767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Unaccustomed exercise causes muscle damage resulting in loss of muscle function, which may be attributable to exercise-induced increases in skeletal muscle reactive oxygen species (ROS). This study examined the effect of mitochondria-targeted antioxidant supplementation on recovery of muscle function following exercise. Thirty-two untrained men received MitoQ (20 mg/day) or a placebo for 14 days before performing 300 maximal eccentric contractions of the knee extensor muscles of one leg. Muscle function was assessed using isokinetic dynamometry before, immediately after, and 24, 48, 72, and 168 hours after exercise. Muscle soreness was assessed using a visual analogue scale 24, 48, 72, and 168 hours after exercise. Blood samples were collected before, immediately after, and 2, 24, 48, 72, and 168 hours after exercise and urine samples were collected before and during the 48 hours after exercise. The reduction in maximal voluntary isometric contraction force and peak concentric torque following exercise was unaffected by MitoQ while recovery of peak eccentric torque was delayed in the MitoQ group. Exercise-induced increases in urine F2-isoprostanes were unaffected by MitoQ. MitoQ augmented exercise-induced increases in plasma CK levels while plasma IL-6 was similar between groups. Muscle soreness was not affected by MitoQ. These results indicate that MitoQ does not attenuate post-exercise muscle soreness and may delay recovery of muscle function following eccentric exercise. Novelty: • Post-exercise recovery of maximal voluntary isometric contraction force and peak concentric torque were unaffected by MitoQ. • MitoQ delayed post-exercise recovery of peak eccentric torque. • Post-exercise muscle soreness was unaffected by MitoQ.
Collapse
Affiliation(s)
- Sophie Broome
- The University of Auckland Faculty of Medical and Health Sciences, 62710, Auckland, Auckland, New Zealand;
| | - R D Atiola
- The University of Auckland Faculty of Medical and Health Sciences, 62710, Auckland, Auckland, New Zealand;
| | - A Braakhuis
- The University of Auckland Faculty of Medical and Health Sciences, 62710, Auckland, Auckland, New Zealand;
| | - Cam Mitchell
- The University of British Columbia Faculty of Education, 141631, Vancouver, British Columbia, Canada;
| | - Troy L Merry
- The University of Auckland Faculty of Medical and Health Sciences, 62710, Auckland, Auckland, New Zealand;
| |
Collapse
|
13
|
Kawamura A, Hashimoto S, Suzuki M, Ueno H, Sugita M. Oligomerized polyphenols in lychee fruit extract supplements may improve high-intensity exercise performance in male athletes: a pilot study. Phys Act Nutr 2021; 25:8-15. [PMID: 34727683 PMCID: PMC8580582 DOI: 10.20463/pan.2021.0015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 09/06/2021] [Indexed: 11/25/2022] Open
Abstract
[Purpose] Excessive reactive oxygen species (ROS) induced by prolonged high-intensity exercise can cause structural and functional damage. Antioxidant polyphenol supplementation, which reduces ROS levels, may improve high-intensity exercise performance. We evaluated the effect of lychee fruit extract, which contains high levels of low-molecular-weight oligomerized polyphenols, on high-intensity exercise performance. [Methods] Ten male athletes were included in an open-label trial that consisted of control and intervention phases, with a 7-day washout period between phases. The participants were administered oligomerized lychee fruit extract for seven days, whereas no intervention was given in the control phase. High-intensity intermittent exercise and the Wingate test were performed. The power output, blood lactate levels, reactive oxygen metabolite levels, biological antioxidant potential, heart rate, and rate of perceived exertion were measured. [Results] The average power output was significantly higher in the intervention phase than in the control phase (P < 0.01), while the change in blood lactate levels was significantly lower in the intervention phase than in the control phase (P < 0.05). The average heart rate was significantly higher in the intervention phase than in the control phase (P < 0.05), without changing the rate of perceived exertion. Although there was no difference in reactive oxygen metabolite levels between the phase, the change in biological antioxidant potential was larger in the intervention phase than in the control phase (P = 0.06). The Wingate test showed no significant differences between the phase. [Conclusion] Short-term loading with oligomerized lychee fruit extract may increase performance during high-intensity intermittent exercise by improving metabolism.
Collapse
Affiliation(s)
- Aki Kawamura
- Sports Science Research Promotion Centre, Nippon Sport Science University, Tokyo, Japan
| | - Shun Hashimoto
- Sports Science Research Promotion Centre, Nippon Sport Science University, Tokyo, Japan
| | - Miho Suzuki
- Faculty of Sport Science, Nippon Sport Science University, Tokyo, Japan
| | - Hiromasa Ueno
- Graduate School of Health and Sport Science, Nippon Sport Science University, Tokyo, Japan.,Research Fellow of Japan Society for the Promotion of Science, Tokyo, Japan
| | - Masaaki Sugita
- Faculty of Sport Science, Nippon Sport Science University, Tokyo, Japan
| |
Collapse
|
14
|
An Overview of Physical Exercise and Antioxidant Supplementation Influences on Skeletal Muscle Oxidative Stress. Antioxidants (Basel) 2021; 10:antiox10101528. [PMID: 34679663 PMCID: PMC8532825 DOI: 10.3390/antiox10101528] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 12/21/2022] Open
Abstract
One of the essential injuries caused by moderate to high-intensity and short-duration physical activities is the overproduction of reactive oxygen species (ROS), damaging various body tissues such as skeletal muscle (SM). However, ROS is easily controlled by antioxidant defense systems during low to moderate intensity and long-term exercises. In stressful situations, antioxidant supplements are recommended to prevent ROS damage. We examined the response of SM to ROS generation during exercise using an antioxidant supplement treatment strategy in this study. The findings of this review research are paradoxical due to variances in antioxidant supplements dose and duration, intensity, length, frequency, types of exercise activities, and, in general, the lack of a regular exercise and nutrition strategy. As such, further research in this area is still being felt.
Collapse
|
15
|
Pappas A, Tsiokanos A, Fatouros IG, Poulios A, Kouretas D, Goutzourelas N, Giakas G, Jamurtas AZ. The Effects of Spirulina Supplementation on Redox Status and Performance Following a Muscle Damaging Protocol. Int J Mol Sci 2021; 22:ijms22073559. [PMID: 33808079 PMCID: PMC8037525 DOI: 10.3390/ijms22073559] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/18/2021] [Accepted: 03/22/2021] [Indexed: 11/19/2022] Open
Abstract
Spirulina plantensis is a popular supplement which has been shown to have antioxidant and performance enhancing properties. The purpose of this study was to evaluate the effects of spirulina supplementation on (a) redox status (b) muscle performance and (c) muscle damage following an eccentric bout of exercise that would induce muscle damage. Twenty-four healthy, recreationally trained males participated in the study and were randomly separated into two groups: a spirulina supplementation (6 g per day) and a placebo group. Both groups performed an eccentric bout of exercise consisting of 5 sets and 15 maximum reps per set. Blood was collected at 24, 48, 72 and 96 h after the bout and total antioxidant capacity (TAC) and protein carbonyls (PC) were assessed in plasma. Delayed onset muscle soreness (DOMS) was also assessed at the same aforementioned time points. Eccentric peak torque (EPT) was evaluated immediately after exercise, as well as at 24, 48, 72 and 96 h post exercise. Redox status indices (TAC and PC) did not change significantly at any time point post exercise. DOMS increased significantly 24 h post exercise and remained elevated until 72 h and 96 h post exercise for the placebo and spirulina group, respectively. EPT decreased significantly and immediately post exercise and remained significantly lower compared to baseline until 72 h post exercise. No significant differences between groups were found for DOMS and EPT. These results indicate that spirulina supplementation following a muscle damaging protocol does not confer beneficial effects on redox status, muscle performance or damage.
Collapse
Affiliation(s)
- Aggelos Pappas
- Department of Physical Education and Sport Science, University of Thessaly, 42100 Trikala, Greece; (A.P.); (A.T.); (I.G.F.); (A.P.); (G.G.)
| | - Athanasios Tsiokanos
- Department of Physical Education and Sport Science, University of Thessaly, 42100 Trikala, Greece; (A.P.); (A.T.); (I.G.F.); (A.P.); (G.G.)
| | - Ioannis G. Fatouros
- Department of Physical Education and Sport Science, University of Thessaly, 42100 Trikala, Greece; (A.P.); (A.T.); (I.G.F.); (A.P.); (G.G.)
| | - Athanasios Poulios
- Department of Physical Education and Sport Science, University of Thessaly, 42100 Trikala, Greece; (A.P.); (A.T.); (I.G.F.); (A.P.); (G.G.)
| | - Dimitris Kouretas
- Department of Biochemistry and Biotechnology, University of Thessaly, 41500 Larissa, Greece; (D.K.); (N.G.)
| | - Nikos Goutzourelas
- Department of Biochemistry and Biotechnology, University of Thessaly, 41500 Larissa, Greece; (D.K.); (N.G.)
| | - Giannis Giakas
- Department of Physical Education and Sport Science, University of Thessaly, 42100 Trikala, Greece; (A.P.); (A.T.); (I.G.F.); (A.P.); (G.G.)
| | - Athanasios Z. Jamurtas
- Department of Physical Education and Sport Science, University of Thessaly, 42100 Trikala, Greece; (A.P.); (A.T.); (I.G.F.); (A.P.); (G.G.)
- Correspondence:
| |
Collapse
|
16
|
Kawamura A, Aoi W, Abe R, Kobayashi Y, Kuwahata M, Higashi A. Astaxanthin-, β-Carotene-, and Resveratrol-Rich Foods Support Resistance Training-Induced Adaptation. Antioxidants (Basel) 2021; 10:antiox10010113. [PMID: 33466842 PMCID: PMC7830030 DOI: 10.3390/antiox10010113] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/11/2021] [Accepted: 01/11/2021] [Indexed: 01/06/2023] Open
Abstract
Resistance training adaptively increases the muscle strength associated with protein anabolism. Previously, we showed that the combined intake of astaxanthin, β-carotene, and resveratrol can accelerate protein anabolism in the skeletal muscle of mice. The purpose of this study was to investigate the effect of anabolic nutrient-rich foods on muscle adaptation induced by resistance training. Twenty-six healthy men were divided into control and intervention groups. All participants underwent a resistance training program twice a week for 10 weeks. Astaxanthin-, β-carotene-, and resveratrol-rich foods were provided to the intervention group. Body composition, nutrient intake, maximal voluntary contraction of leg extension, oxygen consumption, and serum carbonylated protein level were measured before and after training. The skeletal muscle mass was higher after training than before training in both groups (p < 0.05). Maximal voluntary contraction was increased after training in the intervention group (p < 0.05), but not significantly increased in the control group. Resting oxygen consumption was higher after training in the intervention group only (p < 0.05). As an oxidative stress marker, serum carbonylated protein level tended to be lower immediately after exercise than before exercise in the intervention group only (p = 0.056). Intake of astaxanthin-, β-carotene-, and resveratrol-rich foods supported resistance training-induced strength and metabolic adaptations.
Collapse
Affiliation(s)
- Aki Kawamura
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto 6068522, Japan; (A.K.); (R.A.); (Y.K.); (M.K.); (A.H.)
- Sports Science Research Promotion Center, Nippon Sport Science University, Tokyo 1588508, Japan
| | - Wataru Aoi
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto 6068522, Japan; (A.K.); (R.A.); (Y.K.); (M.K.); (A.H.)
- Correspondence: ; Tel.: +81-75-703-5417
| | - Ryo Abe
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto 6068522, Japan; (A.K.); (R.A.); (Y.K.); (M.K.); (A.H.)
- Department of Nutrition Management, Wakayama Medical University Hospital, Wakayama 6418510, Japan
| | - Yukiko Kobayashi
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto 6068522, Japan; (A.K.); (R.A.); (Y.K.); (M.K.); (A.H.)
| | - Masashi Kuwahata
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto 6068522, Japan; (A.K.); (R.A.); (Y.K.); (M.K.); (A.H.)
| | - Akane Higashi
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto 6068522, Japan; (A.K.); (R.A.); (Y.K.); (M.K.); (A.H.)
| |
Collapse
|
17
|
The Role of Vitamin C in Two Distinct Physiological States: Physical Activity and Sleep. Nutrients 2020; 12:nu12123908. [PMID: 33371359 PMCID: PMC7767325 DOI: 10.3390/nu12123908] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/11/2020] [Accepted: 12/16/2020] [Indexed: 12/26/2022] Open
Abstract
This paper is a literature overview of the complex relationship between vitamin C and two opposing physiological states, physical activity and sleep. The evidence suggests a clinically important bidirectional association between these two phenomena mediated by different physiological mechanisms. With this in mind, and knowing that both states share a connection with oxidative stress, we discuss the existing body of evidence to answer the question of whether vitamin C supplementation can be beneficial in the context of sleep health and key aspects of physical activity, such as performance, metabolic changes, and antioxidant function. We analyze the effect of ascorbic acid on the main sleep components, sleep duration and quality, focusing on the most common disorders: insomnia, obstructive sleep apnea, and restless legs syndrome. Deeper understanding of those interactions has implications for both public health and clinical practice.
Collapse
|
18
|
Papanikolaou K, Veskoukis AS, Draganidis D, Baloyiannis I, Deli CK, Poulios A, Jamurtas AZ, Fatouros IG. Redox-dependent regulation of satellite cells following aseptic muscle trauma: Implications for sports performance and nutrition. Free Radic Biol Med 2020; 161:125-138. [PMID: 33039652 DOI: 10.1016/j.freeradbiomed.2020.10.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 09/26/2020] [Accepted: 10/01/2020] [Indexed: 12/21/2022]
Abstract
Skeletal muscle satellite cells (SCs) are indispensable for tissue regeneration, remodeling and growth. Following myotrauma, SCs are activated, and assist in tissue repair. Exercise-induced muscle damage (EIMD) is characterized by a pronounced inflammatory response and the production of reactive oxygen species (ROS). Experimental evidence suggests that SCs kinetics (the propagation from a quiescent to an activated/proliferative state) following EIMD is redox-dependent and interconnected with changes in the SCs microenvironment (niche). Animal studies have shown that following aseptic myotrauma, antioxidant and/or anti-inflammatory supplementation leads to an improved recovery and skeletal muscle regeneration through enhanced SCs kinetics, suggesting a redox-dependent molecular mechanism. Although evidence suggests that antioxidant/anti-inflammatory compounds may prevent performance deterioration and enhance recovery, there is lack of information regarding the redox-dependent regulation of SCs responses following EIMD in humans. In this review, SCs kinetics following aseptic myotrauma, as well as the intrinsic redox-sensitive molecular mechanisms responsible for SCs responses are discussed. The role of redox status on SCs function should be further investigated in the future with human clinical trials in an attempt to elucidate the molecular pathways responsible for muscle recovery and provide information for potential nutritional strategies aiming at performance recovery.
Collapse
Affiliation(s)
- Konstantinos Papanikolaou
- Department of Physical Education and Sport Science, University of Thessaly, Karies, Trikala, 42132, Greece
| | - Aristidis S Veskoukis
- Department of Nutrition and Dietetics, University of Thessaly, Argonafton 1, 42132, Trikala, Greece; Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, Mezourlo, 41500, Larissa, Greece
| | - Dimitrios Draganidis
- Department of Physical Education and Sport Science, University of Thessaly, Karies, Trikala, 42132, Greece
| | - Ioannis Baloyiannis
- Department of Surgery, University Hospital of Larissa, Mezourlo, 41110, Larissa, Greece
| | - Chariklia K Deli
- Department of Physical Education and Sport Science, University of Thessaly, Karies, Trikala, 42132, Greece
| | - Athanasios Poulios
- Department of Physical Education and Sport Science, University of Thessaly, Karies, Trikala, 42132, Greece
| | - Athanasios Z Jamurtas
- Department of Physical Education and Sport Science, University of Thessaly, Karies, Trikala, 42132, Greece
| | - Ioannis G Fatouros
- Department of Physical Education and Sport Science, University of Thessaly, Karies, Trikala, 42132, Greece.
| |
Collapse
|
19
|
Higgins MR, Izadi A, Kaviani M. Antioxidants and Exercise Performance: With a Focus on Vitamin E and C Supplementation. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E8452. [PMID: 33203106 PMCID: PMC7697466 DOI: 10.3390/ijerph17228452] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 11/05/2020] [Accepted: 11/06/2020] [Indexed: 02/08/2023]
Abstract
Antioxidant supplementation, including vitamin E and C supplementation, has recently received recognition among athletes as a possible method for enhancing athletic performance. Increased oxidative stress during exercise results in the production of free radicals, which leads to muscle damage, fatigue, and impaired performance. Despite their negative effects on performance, free radicals may act as signaling molecules enhancing protection against greater physical stress. Current evidence suggests that antioxidant supplementation may impair these adaptations. Apart from athletes training at altitude and those looking for an immediate, short-term performance enhancement, supplementation with vitamin E does not appear to be beneficial. Moreover, the effectiveness of vitamin E and C alone and/or combined on muscle mass and strength have been inconsistent. Given that antioxidant supplements (e.g., vitamin E and C) tend to block anabolic signaling pathways, and thus, impair adaptations to resistance training, special caution should be taken with these supplements. It is recommended that athletes consume a diet rich in fruits and vegetables, which provides vitamins, minerals phytochemicals, and other bioactive compounds to meet the recommended intakes of vitamin E and C.
Collapse
Affiliation(s)
- Madalyn Riley Higgins
- Faculty of Pure and Applied Science, School of Nutrition and Dietetics, Acadia University, Wolfville, NS B4P 2R6, Canada;
| | - Azimeh Izadi
- Department of Biochemistry and Diet Therapy, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz 5166/15731, Iran;
| | - Mojtaba Kaviani
- Faculty of Pure and Applied Science, School of Nutrition and Dietetics, Acadia University, Wolfville, NS B4P 2R6, Canada;
| |
Collapse
|
20
|
Margaritelis NV, Theodorou AA, Chatzinikolaou PN, Kyparos A, Nikolaidis MG, Paschalis V. Eccentric exercise per se does not affect muscle damage biomarkers: early and late phase adaptations. Eur J Appl Physiol 2020; 121:549-559. [PMID: 33156414 DOI: 10.1007/s00421-020-04528-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 10/07/2020] [Indexed: 12/16/2022]
Abstract
PURPOSE Acute high-intensity unaccustomed eccentric exercise performed by naive subjects is accompanied by disturbances in muscle damage biomarkers. The aim of the study was to investigate whether a causal relationship indeed exists between eccentric exercise and muscle damage. METHODS Twenty-four men randomly assigned into a concentric only or an eccentric-only training group and performed 10 weeks of isokinetic resistance exercise (one session/week of 75 maximal knee extensors actions). Physiological markers of muscle function and damage (i.e., range of motion, delayed onset muscle soreness, isometric, concentric and eccentric peak torque) were assessed prior to and 1-3 and 5 days post each session. Biochemical markers of muscle damage (creatine kinase) and inflammation (C-reactive protein) were measured prior and 2 days post each session. RESULTS After the first bout, eccentric exercise induced greater muscle damage compared to concentric exercise; however, during the nine following sessions, this effect progressively diminished, while after the 10th week of training, no alterations in muscle damage biomarkers were observed after either exercise protocol. Additionally, strength gains at the end of the training period were comparable between the two groups and were mode-specific. CONCLUSION (1) eccentric exercise per se does not affect muscle damage biomarkers; (2) muscle damage occurs as a result of muscle unaccustomedness to this action type; (3) exercise-induced muscle damage is not a prerequisite for increased muscle strength. Collectively, we believe that muscle unaccustomedness to high-intensity eccentric exercise, and not eccentric exercise per se, is the trigger for muscle damage as indicated by muscle damage biomarkers.
Collapse
Affiliation(s)
- Nikos V Margaritelis
- Dialysis Unit, 424 General Military Hospital of Thessaloniki, Thessaloniki, Greece.,Department of Physical Education and Sport Science at Serres, Aristotle University of Thessaloniki, Serres, Greece
| | - Anastasios A Theodorou
- Department of Health Sciences, School of Sciences, European University Cyprus, Nicosia, Cyprus
| | - Panagiotis N Chatzinikolaou
- Department of Physical Education and Sport Science at Serres, Aristotle University of Thessaloniki, Serres, Greece
| | - Antonios Kyparos
- Department of Physical Education and Sport Science at Serres, Aristotle University of Thessaloniki, Serres, Greece
| | - Michalis G Nikolaidis
- Department of Physical Education and Sport Science at Serres, Aristotle University of Thessaloniki, Serres, Greece
| | - Vassilis Paschalis
- Department of Physical Education and Sport Sciences, School of Physical Education and Sport Science, National and Kapodistrian University of Athens, Ethnikis Αntistasis 41, 17237, Athens, Greece.
| |
Collapse
|
21
|
de Brito E, Teixeira ADO, Righi NC, Paulitcth FDS, da Silva AMV, Signori LU. Vitamins C and E Associated With Cryotherapy in the Recovery of the Inflammatory Response After Resistance Exercise: A Randomized Clinical Trial. J Strength Cond Res 2020; 36:135-141. [PMID: 33021585 DOI: 10.1519/jsc.0000000000003342] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
de Brito, E, Teixeira, AdO, Righi, NC, Paulitcth, FdS, da Silva, AMV, and Signori, LU. Vitamins C and E associated with cryotherapy in the recovery of the inflammatory response after resistance exercise: A randomized clinical trial. J Strength Cond Res XX(X): 000-000, 2019-The objective of this research was to compare the effects of cryotherapy associated with vitamins (C and E) on the recovery of the inflammatory response from the resistance exercise (RE) session of untrained volunteers. Fourteen subjects (26.2 ± 5 years old, 25.8 ± 3 kg·m) underwent 4 sessions of RE with different forms of recovery. The RE consisted of 4 sets of 10 maximal repetitions for each exercise (extensor bench, squat, and leg press). The recoveries were randomized and comprised the passive (control), with vitamins C (1 g) and E (800 UI) supplementation 40 minutes before exercise, with cryotherapy (immersion in water 15° C for 10 minutes), and the association (vitamins and cryotherapy). Hemogram, inflammatory markers (C-reactive protein and creatine kinase [CK]), and parameters of oxidative stress (lipid peroxidation [LPO] and antioxidant capacity against radical peroxyl) were evaluated before (baseline) and after (0, 30, and 120 minutes) the RE sessions. Muscle pain (primary outcome) was evaluated 24 hours after exercise. C-reactive protein (p = 0.010) and LPO (p < 0.001) increased (120 minutes) only in passive recovery. Recovery with cryotherapy (30 minutes), with vitamins and the association (0 and 30 minutes) delayed increases in CK (p < 0.001). Antioxidant capacity against radical peroxyl increased (30 minutes) only in recovery with the association (p < 0.011). The pain decreased in the recoveries with cryotherapy and association (p < 0.001). The association of vitamins (C and E) with cryotherapy attenuated the inflammatory response and pain, favoring recovery after an acute RE session.
Collapse
Affiliation(s)
- Edineia de Brito
- Postgraduate Program in Functional Rehabilitation, Department of Physical Therapy and Rehabilitation, Federal University of Santa Maria-UFSM, Santa Maria, RS, Brazil
| | - André de Oliveira Teixeira
- Health Sciences Graduate Program, School of Medicine, Federal University of Rio Grande-FURG, Rio Grande, RS, Brazil
| | - Natiele Camponogara Righi
- Postgraduate Program in Functional Rehabilitation, Department of Physical Therapy and Rehabilitation, Federal University of Santa Maria-UFSM, Santa Maria, RS, Brazil
| | - Felipe da Silva Paulitcth
- Health Sciences Graduate Program, School of Medicine, Federal University of Rio Grande-FURG, Rio Grande, RS, Brazil
| | - Antonio Marcos Vargas da Silva
- Postgraduate Program in Functional Rehabilitation, Department of Physical Therapy and Rehabilitation, Federal University of Santa Maria-UFSM, Santa Maria, RS, Brazil
| | - Luis Ulisses Signori
- Postgraduate Program in Functional Rehabilitation, Department of Physical Therapy and Rehabilitation, Federal University of Santa Maria-UFSM, Santa Maria, RS, Brazil
| |
Collapse
|
22
|
Mason SA, Trewin AJ, Parker L, Wadley GD. Antioxidant supplements and endurance exercise: Current evidence and mechanistic insights. Redox Biol 2020; 35:101471. [PMID: 32127289 PMCID: PMC7284926 DOI: 10.1016/j.redox.2020.101471] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/11/2020] [Accepted: 02/17/2020] [Indexed: 01/07/2023] Open
Abstract
Antioxidant supplements are commonly consumed by endurance athletes to minimize exercise-induced oxidative stress, with the intention of enhancing recovery and improving performance. There are numerous commercially available nutritional supplements that are targeted to athletes and health enthusiasts that allegedly possess antioxidant properties. However, most of these compounds are poorly investigated with respect to their in vivo redox activity and efficacy in humans. Therefore, this review will firstly provide a background to endurance exercise-related redox signalling and the subsequent adaptations in skeletal muscle and vascular function. The review will then discuss commonly available compounds with purported antioxidant effects for use by athletes. N-acetyl cysteine may be of benefit over the days prior to an endurance event; while chronic intake of combined 1000 mg vitamin C + vitamin E is not recommended during periods of heavy training associated with adaptations in skeletal muscle. Melatonin, vitamin E and α-lipoic acid appear effective at decreasing markers of exercise-induced oxidative stress. However, evidence on their effects on endurance performance are either lacking or not supportive. Catechins, anthocyanins, coenzyme Q10 and vitamin C may improve vascular function, however, evidence is either limited to specific sub-populations and/or does not translate to improved performance. Finally, additional research should clarify the potential benefits of curcumin in improving muscle recovery post intensive exercise; and the potential hampering effects of astaxanthin, selenium and vitamin A on skeletal muscle adaptations to endurance training. Overall, we highlight the lack of supportive evidence for most antioxidant compounds to recommend to athletes.
Collapse
Affiliation(s)
- Shaun A Mason
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Adam J Trewin
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Lewan Parker
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Glenn D Wadley
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia.
| |
Collapse
|
23
|
Saracino PG, Saylor HE, Hanna BR, Hickner RC, Kim JS, Ormsbee MJ. Effects of Pre-Sleep Whey vs. Plant-Based Protein Consumption on Muscle Recovery Following Damaging Morning Exercise. Nutrients 2020; 12:nu12072049. [PMID: 32664290 PMCID: PMC7400837 DOI: 10.3390/nu12072049] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/24/2020] [Accepted: 07/06/2020] [Indexed: 11/25/2022] Open
Abstract
Pre-sleep whey protein intake has been shown to improve overnight muscle protein synthesis, muscle size and strength, and muscle recovery. Despite a growing interest in alternative protein sources, such as plant-based protein, there is no evidence regarding the efficacy of plant-based proteins consumed pre-sleep. Therefore, we aimed to compare whey vs. plant-based pre-sleep protein dietary supplementation on muscle recovery in middle-aged men. Twenty-seven recreationally active, middle-aged men performed 5 sets of 15 repetitions of maximal eccentric voluntary contractions (ECC) for the knee extensors (ext) and flexors (flex), respectively, in the morning. Participants consumed 40 g of either whey hydrolysate (WH, n = 9), whey isolate (WI, n = 6), rice and pea combination (RP, n = 6), or placebo (PL, n = 6) 30 min pre-sleep on the day of ECC and the following two nights. Catered meals (15% PRO, 55% CHO, 30% Fat) were provided to participants for 5 days to standardize nutrition. Plasma creatine kinase (CK), interleukin-6 (IL-6), and interleukin-10 (IL-10) were measured at pre, immediately post (+0), +4, +6, +24, +48, and +72 h post-ECC. Isometric (ISOM) and isokinetic (ISOK) maximal voluntary contraction force were measured at pre, immediately post (+0), +24, +48, and +72 h post-ECC. Muscle soreness, thigh circumference, and HOMA-IR were measured at pre, +24, +48, and +72 h post-ECC. CK was increased at +4 h post-ECC, remained elevated at all time points compared to baseline (p < 0.001), and was significantly greater at +72 h compared to all other time points (p < 0.001). IL-6 was increased at +6 h (p = 0.002) with no other time differing from baseline. ISOMext was reduced after ECC (p = 0.001) and remained reduced until returning to baseline at +72 h. ISOMflex, ISOKext, and ISOKflex were reduced after ECC and remained reduced at +72 h (p < 0.001). Muscle soreness increased post-ECC (p < 0.001) and did not return to baseline. Thigh circumference (p = 0.456) and HOMA-IR (p = 0.396) did not change post-ECC. There were no significant differences between groups for any outcome measure. These data suggest that middle-aged men consuming 1.08 ± 0.02 g/kg/day PRO did not recover from damaging eccentric exercise at +72 h and that pre-sleep protein ingestion, regardless of protein source, did not aid in muscle recovery when damaging eccentric exercise was performed in the morning.
Collapse
Affiliation(s)
- Patrick G. Saracino
- Department of Nutrition, Food and Exercise Sciences, Institute of Sports Sciences and Medicine, Florida State University, Tallahassee, FL 32306, USA; (P.G.S.); (H.E.S.); (B.R.H.); (R.C.H.); (J.-S.K.)
| | - Hannah E. Saylor
- Department of Nutrition, Food and Exercise Sciences, Institute of Sports Sciences and Medicine, Florida State University, Tallahassee, FL 32306, USA; (P.G.S.); (H.E.S.); (B.R.H.); (R.C.H.); (J.-S.K.)
| | - Brett R. Hanna
- Department of Nutrition, Food and Exercise Sciences, Institute of Sports Sciences and Medicine, Florida State University, Tallahassee, FL 32306, USA; (P.G.S.); (H.E.S.); (B.R.H.); (R.C.H.); (J.-S.K.)
| | - Robert C. Hickner
- Department of Nutrition, Food and Exercise Sciences, Institute of Sports Sciences and Medicine, Florida State University, Tallahassee, FL 32306, USA; (P.G.S.); (H.E.S.); (B.R.H.); (R.C.H.); (J.-S.K.)
- Discipline of Biokinetics, Exercise and Leisure Sciences, University of KwaZulu-Natal, Durban 4041, South Africa
| | - Jeong-Su Kim
- Department of Nutrition, Food and Exercise Sciences, Institute of Sports Sciences and Medicine, Florida State University, Tallahassee, FL 32306, USA; (P.G.S.); (H.E.S.); (B.R.H.); (R.C.H.); (J.-S.K.)
| | - Michael J. Ormsbee
- Department of Nutrition, Food and Exercise Sciences, Institute of Sports Sciences and Medicine, Florida State University, Tallahassee, FL 32306, USA; (P.G.S.); (H.E.S.); (B.R.H.); (R.C.H.); (J.-S.K.)
- Discipline of Biokinetics, Exercise and Leisure Sciences, University of KwaZulu-Natal, Durban 4041, South Africa
- Correspondence:
| |
Collapse
|
24
|
de Lima FD, Battaglini CL, Chaves SN, Ugliara L, Sarandy J, Lima RM, Bottaro M. Effect of strength training and antioxidant supplementation on perceived and performance fatigability in breast cancer survivors: a randomized, double-blinded, placebo-controlled study. Appl Physiol Nutr Metab 2020; 45:1165-1173. [PMID: 32348688 DOI: 10.1139/apnm-2020-0166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This randomized, double-blinded, placebo-controlled study aimed to investigate the effect of strength training (ST) combined with vitamin C and E supplementation on perceived and performance fatigability in breast cancer survivors (BCS). Twenty-five BCS were randomly assigned to 1 of 2 groups: vitamins (VIT; n = 12; 51.0 ± 9.0 years) or placebo (PLA; n = 13; 48.2 ± 8.3 years). Both groups performed a 10-week ST protocol, twice a week. The VIT group was supplemented with vitamins C (500 mg/day) and E (180 mg/day) and the PLA group with polydextrose (1 g/day), once a day after breakfast. At the beginning and at the end of the training period, perceived fatigability was assessed using Multidimensional Fatigue Inventory (MFI)-20 (general fatigue and physical fatigue). Performance fatigability was assessed during 30 maximal isokinetic knee extensions at 120°/s. General fatigue decreased similarly in the VIT (p = 0.004) and PLA (p = 0.011) groups. Physical fatigue decreased similarly in the VIT (p = 0.011) and PLA (p = 0.001) groups. Performance fatigability also decreased similarly in the VIT (p = 0.026) and PLA (p < 0.001) groups. There was no difference between groups at any moment (p > 0.05). In summary, antioxidant supplementation does not add any positive synergistic effect to ST in terms of improving perceived or performance fatigability in BCS. This clinical trial is registered in the Brazilian Clinical Trials Registry, number RBR-843pth (UTN no.: U1111-1222-6511). Novelty ST with maximal repetitions reduces perceived and performance fatigability of BCS. Vitamins C and E supplementation does not add any positive synergistic effect to ST in terms of reducing fatigability in BCS.
Collapse
Affiliation(s)
- Filipe Dinato de Lima
- College of Health Sciences, University of Brasília, Brasília, DF 70910-900, Brazil.,College of Health and Education Sciences, University Center of Brasília, Brasília, DF 70790-075, Brazil
| | - Cláudio L Battaglini
- Department of Exercise and Sport Science and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-8700, USA
| | - Sandro Nobre Chaves
- College of Physical Education, University of Brasília, Brasília, DF 70910-900, Brazil
| | - Lucas Ugliara
- College of Physical Education, University of Brasília, Brasília, DF 70910-900, Brazil
| | - Jonathan Sarandy
- College of Physical Education, University of Brasília, Brasília, DF 70910-900, Brazil
| | - Ricardo Moreno Lima
- College of Physical Education, University of Brasília, Brasília, DF 70910-900, Brazil
| | - Martim Bottaro
- College of Physical Education, University of Brasília, Brasília, DF 70910-900, Brazil
| |
Collapse
|
25
|
Do Antioxidant Vitamins Prevent Exercise-Induced Muscle Damage? A Systematic Review. Antioxidants (Basel) 2020; 9:antiox9050372. [PMID: 32365669 PMCID: PMC7278664 DOI: 10.3390/antiox9050372] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 12/20/2022] Open
Abstract
Free radicals produced during exercise play a role in modulating cell signaling pathways. High doses of antioxidants may hamper adaptations to exercise training. However, their benefits are unclear. This review aims to examine whether vitamin C (VitC) and/or vitamin E (VitE) supplementation (SUP) prevents exercise-induced muscle damage. The PubMed, Web of Science, Medline, CINAHL, and SPORTDiscus databases were searched, and 21 articles were included. Four studies examined the effects of acute VitC SUP given pre-exercise: in one study, lower CK levels post-exercise was observed; in three, no difference was recorded. In one study, acute VitE SUP reduced CK activity 1 h post-exercise in conditions of hypoxia. In three studies, chronic VitE SUP did not reduce CK activity after an exercise session. Chronic VitE SUP did not reduce creatine kinase (CK) concentrations after three strength training sessions, but it was effective after 6 days of endurance training in another study. Chronic SUP with VitC + E reduced CK activity post-exercise in two studies, but there was no such effect in four studies. Finally, three studies described the effects of chronic VitC + E SUP and long-term exercise, reporting dissimilar results. To conclude, although there is some evidence of a protective effect of VitC and/or VitE against exercise-induced muscle damage, the available data are not conclusive.
Collapse
|
26
|
Ammar A, MounaTurki, Trabelsi K, Bragazzi NL, Boukhris O, Bouaziz M, Ayadi F, El Abed K, Driss T, Souissi N, Chtourou H, Bailey SJ, Hoekelmann A. Effects of natural polyphenol-rich pomegranate juice on the acute and delayed response of Homocysteine and steroidal hormones following weightlifting exercises: a double-blind, placebo-controlled trial. J Int Soc Sports Nutr 2020; 17:15. [PMID: 32143716 PMCID: PMC7060517 DOI: 10.1186/s12970-020-00345-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 03/02/2020] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Maximal strength-speed exercise is a powerful stimulus to acutely increase concentrations of circulating steroid hormones and homocysteine [Hcy]. There is some evidence that antioxidant beverages rich in polyphenols can attenuate [Hcy] levels and modulate endocrine responses in favor of an anabolic environment. Polyphenols-rich pomegranate (POM) have been reported to possess one of the highest antioxidant capacities compared to other purported nutraceuticals and other food stuffs. Studies focused on proving the beneficial effect of POM consumption during maximal strength exercises have only measured physical performance, muscle damage, oxidative stress and inflammatory responses, while POM effects on [Hcy] and hormonal adaptations are lacking. The aim of the present study was to investigate the effect of consuming natural polyphenol-rich pomegranate juice (POMj) on the acute and delayed [Hcy] and steroidal hormonal responses to a weightlifting exercises session. METHODS Nine elite weightlifters (21.0 ± 1 years) performed two Olympic-weightlifting sessions after ingesting either the placebo (PLA) or POMj supplements. Venous blood samples were collected at rest and 3 min and 48 h after each session. RESULTS Compared to baseline values, circulating cortisol [C] decreased (p < 0.01) and testosterone/cortisol [T/C] ratio increased immediately following the training session in both PLA and POMj conditions (p = 0.003 for PLA and p = 0.02 for POM). During the 48 h recovery period, all tested parameters were shown to recover to baseline values in both conditions with significant increases in [C] and decreases in [T/C] (p < 0.01 for PLA and p < 0.05 for POMj) from 3 min to 48 h post-exercises. Compared to PLA, a lower level of plasma testosterone [T] was registered 3 min post exercise using POMj supplementation (p = 0.012) and a significant decrease (p = 0.04, %change = - 14%) in plasma [Hcy] was registered during the 48 h recovery period only using POMj. A moderate correlation was observed between [Hcy] and [T] responses (p = 0.002, r = - 0.50). CONCLUSION In conclusion, supplementation with POMj has the potential to attenuate the acute plasma [T] response, but did not effect 48 h recovery kinetics of [Hcy] following weightlifting exercise. Further studies investigating androgen levels in both plasma and muscular tissue are needed to resolve the functional consequences of the observed acute POMj effect on plasma [T]. TRIAL REGISTRATION Clinical Trials.gov, ID: NCT02697903. Registered 03 March 2016.
Collapse
Affiliation(s)
- Achraf Ammar
- Institute of Sport Sciences, Otto-von-Guericke University, 39104, Magdeburg, Germany.
- Unit of Research Molecular Bases of Human Diseases, 12ES17, Faculty of Medicine of Sfax, University of Sfax, 3000, Sfax, Tunisia.
| | - MounaTurki
- Laboratory of Biochemistry, CHU Habib Bourguiba, Sfax University, 3000, Sfax, Tunisia
| | - Khaled Trabelsi
- High Institute of Sport and Physical Education, University of Sfax, 3000, Sfax, Tunisia
| | - Nicola Luigi Bragazzi
- Department of Health Sciences (DISSAL), Postgraduate School of Public Health, University of Genoa, 16132, Genoa, Italy
| | - Omar Boukhris
- High Institute of Sport and Physical Education, University of Sfax, 3000, Sfax, Tunisia
| | - Mohamed Bouaziz
- High Institute of Biotechnology, Sfax University, 3000, Sfax, Tunisia
| | - Fatma Ayadi
- Laboratory of Biochemistry, CHU Habib Bourguiba, Sfax University, 3000, Sfax, Tunisia
| | - Kais El Abed
- High Institute of Sport and Physical Education, University of Sfax, 3000, Sfax, Tunisia
| | - Tarak Driss
- Interdisciplinary Laboratory in Neurosciences, Physiology and Psychology: Physical Activity, Health and Learning (LINP2-2APS), UFR STAPS, UPL, Paris Nanterre University, Nanterre, France
| | - Nizar Souissi
- Activité Physique, Sport et Santé, UR18JS01, Observatoire National du Sport, 1003, Tunis, Tunisia
| | - Hamdi Chtourou
- High Institute of Sport and Physical Education, University of Sfax, 3000, Sfax, Tunisia
- Activité Physique, Sport et Santé, UR18JS01, Observatoire National du Sport, 1003, Tunis, Tunisia
| | - Stephen J Bailey
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, LE11 3TU, UK
| | - Anita Hoekelmann
- Institute of Sport Sciences, Otto-von-Guericke University, 39104, Magdeburg, Germany
| |
Collapse
|
27
|
Pastor R, Tur JA. Antioxidant Supplementation and Adaptive Response to Training: A Systematic Review. Curr Pharm Des 2020; 25:1889-1912. [PMID: 31267859 DOI: 10.2174/1381612825666190701164923] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 06/20/2019] [Indexed: 01/02/2023]
Abstract
BACKGROUND Antioxidant supplementation has become a common practice among athletes to theoretically achieve a reduction in oxidative stress, promote recovery and improve performance. OBJECTIVE To assess the effect of antioxidant supplements on exercise. METHODS A systematic literature search was performed up to January 2019 in MEDLINE via EBSCO and Pubmed, and in Web of Sciences based on the following terms: "antioxidants" [Major] AND "exercise" AND "adaptation"; "antioxidant supplement" AND "(exercise or physical activity)" AND "(adaptation or adjustment)" [MesH]. Thirty-six articles were finally included. RESULTS Exhaustive exercise induces an antioxidant response in neutrophils through an increase in antioxidant enzymes, and antioxidant low-level supplementation does not block this adaptive cellular response. Supplementation with antioxidants appears to decrease oxidative damage blocking cell-signaling pathways associated with muscle hypertrophy. However, upregulation of endogenous antioxidant enzymes after resistance training is blocked by exogenous antioxidant supplementation. Supplementation with antioxidants does not affect the performance improvement induced by resistance exercise. The effects of antioxidant supplementation on physical performance and redox status may vary depending on baseline levels. CONCLUSION The antioxidant response to exercise has two components: At the time of stress and adaptation through genetic modulation processes in front of persistent pro-oxidant situation. Acute administration of antioxidants immediately before or during an exercise session can have beneficial effects, such as a delay in the onset of fatigue and a reduction in the recovery period. Chronic administration of antioxidant supplements may impair exercise adaptations, and is only beneficial in subjects with low basal levels of antioxidants.
Collapse
Affiliation(s)
- Rosario Pastor
- Research Group on Community Nutrition and Oxidative Stress, University of the Balearic Islands, E-07122 Palma de Mallorca, Spain.,Faculty of Health Sciences, Catholic University of Avila, 05005 Avila, Spain
| | - Josep A Tur
- Research Group on Community Nutrition and Oxidative Stress, University of the Balearic Islands, E-07122 Palma de Mallorca, Spain.,CIBEROBN (Physiopathology of Obesity and Nutrition), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
28
|
S. Stavrinou P, Andreou E, Aphamis G, Pantzaris M, Ioannou M, S. Patrikios I, D. Giannaki C. The Effects of a 6-Month High Dose Omega-3 and Omega-6 Polyunsaturated Fatty Acids and Antioxidant Vitamins Supplementation on Cognitive Function and Functional Capacity in Older Adults with Mild Cognitive Impairment. Nutrients 2020; 12:E325. [PMID: 31991898 PMCID: PMC7071310 DOI: 10.3390/nu12020325] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 01/23/2020] [Accepted: 01/23/2020] [Indexed: 12/19/2022] Open
Abstract
The aim of the present study was to examine the effects of a high-dose omega-3 and omega-6 fatty acids supplementation, in combination with antioxidant vitamins, on cognitive function and functional capacity of older adults with mild cognitive impairment (MCI), over a 6-month period in a randomized, double-blind, placebo-controlled trial. Forty-six older adults with MCI (age: 78.8 ± 7.3 years) were randomized 1:1 to receive either a 20 mL dose of a formula containing a mixture of omega-3 (810 mg Eicosapentaenoic acid and 4140 mg Docosahexaenoic acid) and omega-6 fatty acids (1800 mg gamma-Linolenic acid and 3150 mg Linoleic acid) (1:1 w/w), with 0.6 mg vitamin A, vitamin E (22 mg) plus pure γ-tocopherol (760 mg), or 20mL placebo containing olive oil. Participants completed assessments of cognitive function, functional capacity, body composition and various aspects of quality of life at baseline and following three and six months of supplementation. Thirty-six participants completed the study (eighteen from each group). A significant interaction between supplementation and time was found on cognitive function (Addenbrooke's Cognitive Examination -Revised (ACE-R), Mini-Mental State Examination (MMSE) and Stroop Color and Word Test (STROOP) color test; p < 0.001, p = 0.011 and p = 0.037, respectively), functional capacity (6-min walk test and sit-to-stand-60; p = 0.028 and p = 0.032, respectively), fatigue (p < 0.001), physical health (p = 0.007), and daily sleepiness (p = 0.007)-showing a favorable improvement for the participants receiving the supplement. The results indicate that this nutritional modality could be promising for reducing cognitive and functional decline in the elderly with MCI.
Collapse
Affiliation(s)
- Pinelopi S. Stavrinou
- Department of Life and Health Sciences, University of Nicosia, Nicosia 2417, Cyprus; (P.S.S.); (E.A.); (G.A.)
- University of Nicosia Research Foundation, Nicosia 2417, Cyprus
| | - Eleni Andreou
- Department of Life and Health Sciences, University of Nicosia, Nicosia 2417, Cyprus; (P.S.S.); (E.A.); (G.A.)
| | - George Aphamis
- Department of Life and Health Sciences, University of Nicosia, Nicosia 2417, Cyprus; (P.S.S.); (E.A.); (G.A.)
| | - Marios Pantzaris
- The Cyprus Institute of Neurology and Genetics, Nicosia 2371, Cyprus;
| | - Melina Ioannou
- Noesis Cognitive Center, Materia Group, Nicosia 2221, Cyprus;
| | | | - Christoforos D. Giannaki
- Department of Life and Health Sciences, University of Nicosia, Nicosia 2417, Cyprus; (P.S.S.); (E.A.); (G.A.)
- University of Nicosia Research Foundation, Nicosia 2417, Cyprus
- The Cyprus Institute of Neurology and Genetics, Nicosia 2371, Cyprus;
| |
Collapse
|
29
|
Dutra MT, Martins WR, Ribeiro ALA, Bottaro M. The Effects of Strength Training Combined with Vitamin C and E Supplementation on Skeletal Muscle Mass and Strength: A Systematic Review and Meta-Analysis. JOURNAL OF SPORTS MEDICINE (HINDAWI PUBLISHING CORPORATION) 2020; 2020:3505209. [PMID: 31970196 PMCID: PMC6973181 DOI: 10.1155/2020/3505209] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 11/22/2019] [Accepted: 12/18/2019] [Indexed: 01/06/2023]
Abstract
Intense muscle contractile activity can result in reactive oxygen species production in humans. Thus, supplementation of antioxidant vitamins has been used to prevent oxidative stress, enhance performance, and improve muscle mass. In this sense, randomized controlled studies on the effect of vitamin C and E supplementation combined with strength training (ST) on skeletal muscle mass and strength have been conducted. As these studies have come to ambiguous findings, a better understanding of this topic has yet to emerge. The purpose of the present review is to discuss the current knowledge about the effect of vitamin C and E supplementation on muscle mass and strength gains induced by ST. Search for articles was conducted in the following databases: PubMed/Medline, Web of Science, Scopus, Cochrane Central Register of Controlled Trials, and Google Scholar. This work is in line with the recommendations of the PRISMA statement. Eligible studies were placebo-controlled trials with a minimum of four weeks of ST combined with vitamin C and E supplementation. The quality of each included study was evaluated using the Physiotherapy Evidence Database Scale (PEDro). 134 studies were found to be potentially eligible, but only seven were selected to be included in the qualitative synthesis. A meta-analysis of muscle strength was conducted with 3 studies. Findings from these studies indicate that vitamins C and E has no effect on muscle force production after chronic ST. Most of the evidence suggests that this kind of supplementation does not potentiate muscle growth and could possibly attenuate hypertrophy over time.
Collapse
Affiliation(s)
- Maurilio T. Dutra
- College of Physical Education, University of Brasilia, 70910-900 Brasilia, DF, Brazil
- Federal Institute of Education, Science and Technology, IFB, Campus Recanto das Emas, 72620-100 Brasilia, DF, Brazil
| | | | | | - Martim Bottaro
- College of Physical Education, University of Brasilia, 70910-900 Brasilia, DF, Brazil
| |
Collapse
|
30
|
Clifford T, Jeffries O, Stevenson EJ, Davies KAB. The effects of vitamin C and E on exercise-induced physiological adaptations: a systematic review and Meta-analysis of randomized controlled trials. Crit Rev Food Sci Nutr 2019; 60:3669-3679. [PMID: 31851538 DOI: 10.1080/10408398.2019.1703642] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We conducted a systematic review and meta-analysis of randomized controlled trials examining the effect of vitamin C and/or E on exercise-induced training adaptations. Medline, Embase and SPORTDiscus databases were searched for articles from inception until June 2019. Inclusion criteria was studies in adult humans where vitamin C and/or E had to be consumed alongside a supervised exercise training program of ≥4 weeks. Nine trials were included in the analysis of aerobic exercise adaptations and nine for resistance training (RT) adaptations. Vitamin C and/or E did not attenuate aerobic exercise induced improvements in maximal aerobic capacity (V ̇ O2max) (SMD -0.14, 95% CI: -0.43 to 0.15, P = 0.35) or endurance performance (SMD -0.01, 95% CI: -0.38 to 0.36, P = 0.97). There were also no effects of these supplements on lean mass and muscle strength following RT (SMD -0.07, 95% CI: -0.36 to 0.23, P = 0.67) and (SMD -0.15, 95% CI: -0.16 to 0.46, P = 0.35), respectively. There was also no influence of age on any of these outcomes (P > 0.05). These findings suggest that vitamin C and/or E does not inhibit exercise-induced changes in physiological function. Studies with larger sample sizes and adequate power are still required.
Collapse
Affiliation(s)
- Tom Clifford
- Institute of Cellular Medicine, Newcastle University, Newcastle on Tyne, UK
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Owen Jeffries
- Institute of Cellular Medicine, Newcastle University, Newcastle on Tyne, UK
| | - Emma J Stevenson
- Institute of Cellular Medicine, Newcastle University, Newcastle on Tyne, UK
| | | |
Collapse
|
31
|
Kawamura A, Aoi W, Abe R, Kobayashi Y, Wada S, Kuwahata M, Higashi A. Combined intake of astaxanthin, β-carotene, and resveratrol elevates protein synthesis during muscle hypertrophy in mice. Nutrition 2019; 69:110561. [PMID: 31539816 DOI: 10.1016/j.nut.2019.110561] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/23/2019] [Accepted: 05/12/2019] [Indexed: 01/09/2023]
Abstract
OBJECTIVE The antioxidant factors, astaxanthin, β-carotene, and resveratrol, have a potential effect on protein synthesis in skeletal muscle and a combined intake may have a greater cumulative effect than individual intake. The aim of this study was to investigate the combined effects on skeletal muscle mass and protein metabolic signaling during the hypertrophic process from atrophy in mice. METHODS Male ICR mice were divided into five dietary groups consisting of seven animals each: normal, astaxanthin, β-carotene, resveratrol, and all three antioxidants. Equal concentrations (0.06% [w/w]) of the respective antioxidants were included in the diet of each group. In the mixed group, three antioxidants were added in equal proportion. One leg of each mouse was casted for 3 wk to induce muscle atrophy. After removal of the cast, the mice were fed each diet for 2 wk. The muscle tissues were collected, weighed, and examined for protein metabolism signaling and oxidative damage. RESULTS The weight of the soleus muscle was increased in the astaxanthin, β-carotene, and resveratrol groups to a greater extent than in the normal group; this was accelerated by intake of the mixed antioxidants (P = 0.007). Phosphorylation levels of mammalian target of rapamycin and p70 S6 K in the muscle were higher in the mixed antioxidant group than in the normal group (P = 0.025; P = 0.020). The carbonylated protein concentration was lower in the mixed antioxidant group than in the normal group (P = 0.021). CONCLUSIONS These results suggested that a combination of astaxanthin, β-carotene, and resveratrol, even in small amounts, promoted protein synthesis during the muscle hypertrophic process following atrophy.
Collapse
Affiliation(s)
- Aki Kawamura
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan; Sports Science Research Promotion Center, Nippon Sport Science University, Tokyo, Japan
| | - Wataru Aoi
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan.
| | - Ryo Abe
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan; Wakayama Medical University Hospital, Wakayama, Japan
| | - Yukiko Kobayashi
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
| | - Sayori Wada
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
| | - Masashi Kuwahata
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
| | - Akane Higashi
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
| |
Collapse
|
32
|
Papanikolaou K, Draganidis D, Chatzinikolaou A, Laschou VC, Georgakouli K, Tsimeas P, Batrakoulis A, Deli CK, Jamurtas AZ, Fatouros IG. The redox-dependent regulation of satellite cells following aseptic muscle trauma (SpEED): study protocol for a randomized controlled trial. Trials 2019; 20:469. [PMID: 31366396 PMCID: PMC6668149 DOI: 10.1186/s13063-019-3557-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 07/05/2019] [Indexed: 01/10/2023] Open
Abstract
Background Muscle satellite cells (SCs) are crucial for muscle regeneration following muscle trauma. Acute skeletal muscle damage results in inflammation and the production of reactive oxygen species (ROS) which may be implicated in SCs activation. Protection of these cells from oxidative damage is essential to ensure sufficient muscle regeneration. The aim of this study is to determine whether SCs activity under conditions of aseptic skeletal muscle trauma induced by exercise is redox-dependent. Methods/design Based on the SCs content in their vastus lateralis skeletal muscle, participants will be classified as either high or low respondents. In a randomized, double-blind, crossover, repeated-measures design, participants will then receive either placebo or N-acetylcysteine (alters redox potential in muscle) during a preliminary 7-day loading phase, and for eight consecutive days following a single bout of intense muscle-damaging exercise. In both trials, blood samples and muscle biopsies will be collected, and muscle performance and soreness will be measured at baseline, pre-exercise, 2 and 8 days post exercise. Biological samples will be analyzed for redox status and SCs activity. Between trials, a 4-week washout period will be implemented. Discussion This study is designed to investigate the impact of redox status on SCs mobilization and thus skeletal muscle potential for regeneration under conditions of aseptic inflammation induced by exercise. Findings of this trial should provide insight into (1) molecular pathways involved in SCs recruitment and muscle healing under conditions of aseptic skeletal muscle trauma present in numerous catabolic conditions and (2) whether skeletal muscle’s potential for regeneration depends on its basal SCs content. Trial registration ClinicalTrials.gov, ID: NCT03711838. Registered on 19 Oct 2018. Electronic supplementary material The online version of this article (10.1186/s13063-019-3557-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Konstantinos Papanikolaou
- School of Physical Education, Sport Sciences and Dietetics, University of Thessaly, Karies, 42100, Trikala, Greece
| | - Dimitrios Draganidis
- School of Physical Education, Sport Sciences and Dietetics, University of Thessaly, Karies, 42100, Trikala, Greece
| | - Athanasios Chatzinikolaou
- School of Physical Education and Sport Sciences, Democritus University of Thrace, 69100, Komotini, Greece
| | - Vassiliki C Laschou
- School of Physical Education, Sport Sciences and Dietetics, University of Thessaly, Karies, 42100, Trikala, Greece
| | - Kalliopi Georgakouli
- School of Physical Education, Sport Sciences and Dietetics, University of Thessaly, Karies, 42100, Trikala, Greece
| | - Panagiotis Tsimeas
- School of Physical Education, Sport Sciences and Dietetics, University of Thessaly, Karies, 42100, Trikala, Greece
| | - Alexios Batrakoulis
- School of Physical Education, Sport Sciences and Dietetics, University of Thessaly, Karies, 42100, Trikala, Greece
| | - Chariklia K Deli
- School of Physical Education, Sport Sciences and Dietetics, University of Thessaly, Karies, 42100, Trikala, Greece
| | - Athanasios Z Jamurtas
- School of Physical Education, Sport Sciences and Dietetics, University of Thessaly, Karies, 42100, Trikala, Greece
| | - Ioannis G Fatouros
- School of Physical Education, Sport Sciences and Dietetics, University of Thessaly, Karies, 42100, Trikala, Greece.
| |
Collapse
|
33
|
The beneficial effect of α-tocopherol succinate supplementation on DNA oxidation induced by intensive exercise training. SPORT SCIENCES FOR HEALTH 2019. [DOI: 10.1007/s11332-018-0508-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
34
|
Yfanti C, Deli CK, Georgakouli K, Fatouros I, Jamurtas AZ. Sport nutrition, redox homeostasis and toxicity in sport performance. CURRENT OPINION IN TOXICOLOGY 2019. [DOI: 10.1016/j.cotox.2019.01.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
35
|
Margaritelis NV, Paschalis V, Theodorou AA, Kyparos A, Nikolaidis MG. Antioxidants in Personalized Nutrition and Exercise. Adv Nutr 2018; 9:813-823. [PMID: 30256898 PMCID: PMC6247356 DOI: 10.1093/advances/nmy052] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The present review highlights the idea that antioxidant supplementation can be optimized when tailored to the precise antioxidant status of each individual. A novel methodologic approach involving personalized nutrition, the mechanisms by which antioxidant status regulates human metabolism and performance, and similarities between antioxidants and other nutritional supplements are described. The usefulness of higher-level phenotypes for data-driven personalized treatments is also explained. We conclude that personally tailored antioxidant interventions based on specific antioxidant inadequacies or deficiencies could result in improved exercise performance accompanied by consistent alterations in redox profile.
Collapse
Affiliation(s)
- Nikos V Margaritelis
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece,Intensive Care Unit, 424 General Military Hospital of Thessaloniki, Thessaloniki, Greece,Address correspondence to NVM (e-mail: )
| | - Vassilis Paschalis
- School of Physical Education and Sport Science, National and Kapodistrian University of Athens, Athens, Greece
| | - Anastasios A Theodorou
- Department of Health Sciences, School of Sciences, European University Cyprus, Nicosia, Cyprus
| | - Antonios Kyparos
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece
| | - Michalis G Nikolaidis
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece
| |
Collapse
|
36
|
Dutra MT, Alex S, Mota MR, Sales NB, Brown LE, Bottaro M. Effect of strength training combined with antioxidant supplementation on muscular performance. Appl Physiol Nutr Metab 2018; 43:775-781. [DOI: 10.1139/apnm-2017-0866] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
This was a placebo-controlled randomized study that aimed to investigate the effects of strength training (ST) combined with antioxidant supplementation on muscle performance and thickness. Forty-two women (age, 23.8 ± 2.7 years; body mass, 58.7 ± 11.0 kg; height, 1.63 ± 0.1 m) were allocated into 3 groups: vitamins (n = 15), placebo (n = 12), or control (n = 15). The vitamins and placebo groups underwent an ST program, twice a week, for 10 weeks. The vitamins group was supplemented with vitamins C (1 g/day) and E (400 IU/day) during the ST period. Before and after training, peak torque (PT) and total work (TW) were measured on an isokinetic dynamometer, and quadriceps muscle thickness (MT) was assessed by ultrasound. Mixed-factor ANOVA was used to analyze data and showed a significant group × time interaction for PT and TW. Both the vitamins (37.2 ± 5.4 to 40.3 ± 5.6 mm) and placebo (39.7 ± 5.2 to 42.5 ± 5.6 mm) groups increased MT after the intervention (P < 0.05) with no difference between them. The vitamins (146.0 ± 29.1 to 170.1 ± 30.3 N·m) and placebo (158.9 ± 22.4 to 182.7 ± 23.2 N·m) groups increased PT after training (P < 0.05) and PT was higher in the placebo compared with the control group (P = 0.01). The vitamins (2068.3 ± 401.2 to 2295.5 ± 426.8 J) and placebo (2165.1 ± 369.5 to 2480.8 ± 241.3 J) groups increased TW after training (P < 0.05) and TW was higher in the placebo compared with the control group (P = 0.01). Thus, chronic antioxidant supplementation may attenuate peak torque and total work improvement in young women after 10 weeks of ST.
Collapse
Affiliation(s)
- Maurilio T. Dutra
- Strength Training Research Laboratory, College of Physical Education, Campus Universitário Darcy Ribeiro, University of Brasília, Asa Norte, Brasília, DF 70910900, Brazil
- State Department of Education of the Federal District, Entre Avenidas Contorno e Independência, Setor de Saúde, Planaltina, Brasília, DF 73300-000, Brazil
| | - Sávio Alex
- Strength Training Research Laboratory, College of Physical Education, Campus Universitário Darcy Ribeiro, University of Brasília, Asa Norte, Brasília, DF 70910900, Brazil
| | - Marcio Rabelo Mota
- College of Education and Health Sciences, SEPN 707/907, Campus Universitário, University Center of Brasília, Asa Norte, Brasília, DF 70790075, Brazil
| | - Nathalia B. Sales
- Strength Training Research Laboratory, College of Physical Education, Campus Universitário Darcy Ribeiro, University of Brasília, Asa Norte, Brasília, DF 70910900, Brazil
| | - Lee E. Brown
- Department of Kinesiology, California State University, Fullerton, 800 North State College Blvd., Fullerton, CA 92834, USA
| | - Martim Bottaro
- Strength Training Research Laboratory, College of Physical Education, Campus Universitário Darcy Ribeiro, University of Brasília, Asa Norte, Brasília, DF 70910900, Brazil
| |
Collapse
|
37
|
Ranchordas MK, Rogerson D, Soltani H, Costello JT. Antioxidants for preventing and reducing muscle soreness after exercise: a Cochrane systematic review. Br J Sports Med 2018; 54:74-78. [PMID: 30054340 DOI: 10.1136/bjsports-2018-099599] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2018] [Indexed: 12/24/2022]
Abstract
OBJECTIVE To determine whether antioxidant supplements and antioxidant-enriched foods can prevent or reduce delayed-onset muscle soreness after exercise. METHODS We searched the Cochrane Bone, Joint and Muscle Trauma Group Specialised Register, the Cochrane Central Register of Controlled Trials, MEDLINE, Embase, SPORTDiscus, trial registers, reference lists of articles and conference proceedings up to February 2017. RESULTS In total, 50 studies were included in this review which included a total of 1089 participants (961 were male and 128 were female) with an age range of 16-55 years. All studies used an antioxidant dosage higher than the recommended daily amount. The majority of trials (47) had design features that carried a high risk of bias due to selective reporting and poorly described allocation concealment, potentially limiting the reliability of their findings. We rescaled to a 0-10 cm scale in order to quantify the actual difference between groups and we found that the 95% CIs for all five follow-up times were all well below the minimal important difference of 1.4 cm: up to 6 hours (MD -0.52, 95% CI -0.95 to -0.08); at 24 hours (MD -0.17, 95% CI -0.42 to 0.07); at 48 hours (mean difference (MD) -0.41, 95% CI -0.69 to -0.12); at 72 hours (MD -0.29, 95% CI -0.59 to 0.02); and at 96 hours (MD -0.03, 95% CI -0.43 to 0.37). Thus, the effect sizes suggesting less muscle soreness with antioxidant supplementation were very unlikely to equate to meaningful or important differences in practice. CONCLUSIONS There is moderate to low-quality evidence that high-dose antioxidant supplementation does not result in a clinically relevant reduction of muscle soreness after exercise of up to 6 hours or at 24, 48, 72 and 96 hours after exercise. There is no evidence available on subjective recovery and only limited evidence on the adverse effects of taking antioxidant supplements.
Collapse
Affiliation(s)
- Mayur K Ranchordas
- Academy of Sport and Physical Activity, Sheffield Hallam University, Sheffield, UK
| | - David Rogerson
- Academy of Sport and Physical Activity, Sheffield Hallam University, Sheffield, UK
| | - Hora Soltani
- Centre for Health and Social Care Research, Sheffield Hallam University, Sheffield, UK
| | - Joseph T Costello
- Department of Sport and Exercise Science, University of Portsmouth, Portsmouth, UK
| |
Collapse
|
38
|
Beyer KS, Stout JR, Fukuda DH, Jajtner AR, Townsend JR, Church DD, Wang R, Riffe JJ, Muddle TWD, Herrlinger KA, Hoffman JR. Impact of Polyphenol Supplementation on Acute and Chronic Response to Resistance Training. J Strength Cond Res 2018; 31:2945-2954. [PMID: 29068862 PMCID: PMC5662159 DOI: 10.1519/jsc.0000000000002104] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Beyer, KS, Stout, JR, Fukuda, DH, Jajtner, AR, Townsend, JR, Church, DD, Wang, R, Riffe, JJ, Muddle, TWD, Herrlinger, KA, and Hoffman, JR. Impact of polyphenol supplementation on acute and chronic response to resistance training. J Strength Cond Res 31(11): 2945–2954, 2017—This study investigated the effect of a proprietary polyphenol blend (PPB) on acute and chronic adaptations to resistance exercise. Forty untrained men were assigned to control, PPB, or placebo. Participants in PPB or placebo groups completed a 4-week supplementation period (phase I), an acute high-volume exercise bout (phase II), and a 6-week resistance training program (phase III); whereas control completed only testing during phase II. Blood draws were completed during phases I and II. Maximal strength in squat, leg press, and leg extension were assessed before and after phase III. The exercise protocol during phase II consisted of squat, leg press, and leg extension exercises using 70% of the participant's strength. The resistance training program consisted of full-body exercises performed 3 d·wk−1. After phase I, PPB (1.56 ± 0.48 mM) had greater total antioxidant capacity than placebo (1.00 ± 0.90 mM). Changes in strength from phase III were similar between PPB and placebo. Polyphenol blend supplementation may be an effective strategy to increase antioxidant capacity without limiting strength gains from training.
Collapse
Affiliation(s)
- Kyle S Beyer
- 1Department of Educational and Human Sciences, Institute of Exercise Physiology and Wellness, University of Central Florida, Orlando, Florida;2Department of Exercise Physiology, Kent State University, Kent, Ohio;3Department of Kinesiology, Lipscomb University, Nashville, Tennessee; and4Kemin Foods, L.C., Des Moines, Iowa
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Ranchordas MK, Rogerson D, Soltani H, Costello JT. Antioxidants for preventing and reducing muscle soreness after exercise. Cochrane Database Syst Rev 2017; 12:CD009789. [PMID: 29238948 PMCID: PMC6486214 DOI: 10.1002/14651858.cd009789.pub2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Muscle soreness typically occurs after intense exercise, unaccustomed exercise or actions that involve eccentric contractions where the muscle lengthens while under tension. It peaks between 24 and 72 hours after the initial bout of exercise. Many people take antioxidant supplements or antioxidant-enriched foods before and after exercise in the belief that these will prevent or reduce muscle soreness after exercise. OBJECTIVES To assess the effects (benefits and harms) of antioxidant supplements and antioxidant-enriched foods for preventing and reducing the severity and duration of delayed onset muscle soreness following exercise. SEARCH METHODS We searched the Cochrane Bone, Joint and Muscle Trauma Group Specialised Register, the Cochrane Central Register of Controlled Trials, MEDLINE, Embase, SPORTDiscus, trial registers, reference lists of articles and conference proceedings up to February 2017. SELECTION CRITERIA We included randomised and quasi-randomised controlled trials investigating the effects of all forms of antioxidant supplementation including specific antioxidant supplements (e.g. tablets, powders, concentrates) and antioxidant-enriched foods or diets on preventing or reducing delayed onset muscle soreness (DOMS). We excluded studies where antioxidant supplementation was combined with another supplement. DATA COLLECTION AND ANALYSIS Two review authors independently screened search results, assessed risk of bias and extracted data from included trials using a pre-piloted form. Where appropriate, we pooled results of comparable trials, generally using the random-effects model. The outcomes selected for presentation in the 'Summary of findings' table were muscle soreness, collected at times up to 6 hours, 24, 48, 72 and 96 hours post-exercise, subjective recovery and adverse effects. We assessed the quality of the evidence using GRADE. MAIN RESULTS Fifty randomised, placebo-controlled trials were included, 12 of which used a cross-over design. Of the 1089 participants, 961 (88.2%) were male and 128 (11.8%) were female. The age range for participants was between 16 and 55 years and training status varied from sedentary to moderately trained. The trials were heterogeneous, including the timing (pre-exercise or post-exercise), frequency, dose, duration and type of antioxidant supplementation, and the type of preceding exercise. All studies used an antioxidant dosage higher than the recommended daily amount. The majority of trials (47) had design features that carried a high risk of bias due to selective reporting and poorly described allocation concealment, potentially limiting the reliability of their findings.We tested only one comparison: antioxidant supplements versus control (placebo). No studies compared high-dose versus low-dose, where the low-dose supplementation was within normal or recommended levels for the antioxidant involved.Pooled results for muscle soreness indicated a small difference in favour of antioxidant supplementation after DOMS-inducing exercise at all main follow-ups: up to 6 hours (standardised mean difference (SMD) -0.30, 95% confidence interval (CI) -0.56 to -0.04; 525 participants, 21 studies; low-quality evidence); at 24 hours (SMD -0.13, 95% CI -0.27 to 0.00; 936 participants, 41 studies; moderate-quality evidence); at 48 hours (SMD -0.24, 95% CI -0.42 to -0.07; 1047 participants, 45 studies; low-quality evidence); at 72 hours (SMD -0.19, 95% CI -0.38 to -0.00; 657 participants, 28 studies; moderate-quality evidence), and little difference at 96 hours (SMD -0.05, 95% CI -0.29 to 0.19; 436 participants, 17 studies; low-quality evidence). When we rescaled to a 0 to 10 cm scale in order to quantify the actual difference between groups, we found that the 95% CIs for all five follow-up times were all well below the minimal important difference of 1.4 cm: up to 6 hours (MD -0.52, 95% CI -0.95 to -0.08); at 24 hours (MD -0.17, 95% CI -0.42 to 0.07); at 48 hours (MD -0.41, 95% CI -0.69 to -0.12); at 72 hours (MD -0.29, 95% CI -0.59 to 0.02); and at 96 hours (MD -0.03, 95% CI -0.43 to 0.37). Thus, the effect sizes suggesting less muscle soreness with antioxidant supplementation were very unlikely to equate to meaningful or important differences in practice. Neither of our subgroup analyses to examine for differences in effect according to type of DOMS-inducing exercise (mechanical versus whole body aerobic) or according to funding source confirmed subgroup differences. Sensitivity analyses excluding cross-over trials showed that their inclusion had no important impact on results.None of the 50 included trials measured subjective recovery (return to previous activities without signs or symptoms).There is very little evidence regarding the potential adverse effects of taking antioxidant supplements as this outcome was reported in only nine trials (216 participants). From the studies that did report adverse effects, two of the nine trials found adverse effects. All six participants in the antioxidant group of one trial had diarrhoea and four of these also had mild indigestion; these are well-known side effects of the particular antioxidant used in this trial. One of 26 participants in a second trial had mild gastrointestinal distress. AUTHORS' CONCLUSIONS There is moderate to low-quality evidence that high dose antioxidant supplementation does not result in a clinically relevant reduction of muscle soreness after exercise at up to 6 hours or at 24, 48, 72 and 96 hours after exercise. There is no evidence available on subjective recovery and only limited evidence on the adverse effects of taking antioxidant supplements. The findings of, and messages from, this review provide an opportunity for researchers and other stakeholders to come together and consider what are the priorities, and underlying justifications, for future research in this area.
Collapse
Affiliation(s)
- Mayur K Ranchordas
- Sheffield Hallam UniversityDepartment of SportCollegiate Crescent CampusA221 Collegiate Hall, Ecclesall RoadSheffieldSouth YorkshireUKS10 2BP
| | - David Rogerson
- Sheffield Hallam UniversityDepartment of SportCollegiate Crescent CampusA221 Collegiate Hall, Ecclesall RoadSheffieldSouth YorkshireUKS10 2BP
| | - Hora Soltani
- Sheffield Hallam UniversityCentre for Health and Social Care Research32 Collegiate CrescentSheffieldUKS10 2BP
| | - Joseph T Costello
- University of PortsmouthDepartment of Sport and Exercise ScienceSpinnaker BuildingCambridge RoadPortsmouthUKP01 2ER
| | | |
Collapse
|
40
|
The Combination of Physical Exercise with Muscle-Directed Antioxidants to Counteract Sarcopenia: A Biomedical Rationale for Pleiotropic Treatment with Creatine and Coenzyme Q10. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:7083049. [PMID: 29123615 PMCID: PMC5632475 DOI: 10.1155/2017/7083049] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 08/13/2017] [Accepted: 08/23/2017] [Indexed: 12/21/2022]
Abstract
Sarcopenia represents an increasing public health risk due to the rapid aging of the world's population. It is characterized by both low muscle mass and function and is associated with mobility disorders, increased risk of falls and fractures, loss of independence, disabilities, and increased risk of death. Despite the urgency of the problem, the development of treatments for sarcopenia has lagged. Increased reactive oxygen species (ROS) production and decreased antioxidant (AO) defences seem to be important factors contributing to muscle impairment. Studies have been conducted to verify whether physical exercise and/or AOs could prevent and/or delay sarcopenia through a normalization of the etiologically relevant ROS imbalance. Despite the strong rationale, the results obtained were contradictory, particularly with regard to the effects of the tested AOs. A possible explanation might be that not all the agents included in the general heading of "AOs" could fulfill the requisites to counteract the complex series of events causing/accelerating sarcopenia: the combination of the muscle-directed antioxidants creatine and coenzyme Q10 with physical exercise as a biomedical rationale for pleiotropic prevention and/or treatment of sarcopenia is discussed.
Collapse
|
41
|
Webb R, Hughes MG, Thomas AW, Morris K. The Ability of Exercise-Associated Oxidative Stress to Trigger Redox-Sensitive Signalling Responses. Antioxidants (Basel) 2017; 6:antiox6030063. [PMID: 28796154 PMCID: PMC5618091 DOI: 10.3390/antiox6030063] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 08/07/2017] [Accepted: 08/08/2017] [Indexed: 12/17/2022] Open
Abstract
In this review, we discuss exercise as an oxidative stressor, and elucidate the mechanisms and downstream consequences of exercise-induced oxidative stress. Reactive oxygen species (ROS) are generated in the mitochondria of contracting skeletal myocytes; also, their diffusion across the myocyte membrane allows their transport to neighbouring muscle tissue and to other regions of the body. Although very intense exercise can induce oxidative damage within myocytes, the magnitudes of moderate-intensity exercise-associated increases in ROS are quite modest (~two-fold increases in intracellular and extracellular ROS concentrations during exercise), and so the effects of such increases are likely to involve redox-sensitive signalling effects rather than oxidative damage. Therefore, the responses of muscle and non-muscle cells to exercise-associated redox-sensitive signalling effects will be reviewed; for example, transcription factors such as Peroxisome Proliferator Activated Receptor-gamma (PPARγ) and Liver X-Receptor-alpha (LXRα) comprise redox-activable signalling systems, and we and others have reported exercise-associated modulation of PPARγ and/or LXRα-regulated genes in skeletal myocyte and in non-muscle cell-types such as monocyte-macrophages. Finally, the consequences of such responses in the context of management of chronic inflammatory conditions, and also their implications for the design of exercise training programmes (particularly the use of dietary antioxidants alongside exercise), will be discussed.
Collapse
Affiliation(s)
- Richard Webb
- Department of Biomedical Sciences, Cardiff School of Health Sciences, Cardiff Metropolitan University, Cardiff CF5 2YB, UK.
| | - Michael G Hughes
- Physiology and Health, Cardiff School of Sport, Cardiff Metropolitan University, Cardiff CF23 6XD, UK.
| | - Andrew W Thomas
- Department of Biomedical Sciences, Cardiff School of Health Sciences, Cardiff Metropolitan University, Cardiff CF5 2YB, UK.
| | - Keith Morris
- Department of Biomedical Sciences, Cardiff School of Health Sciences, Cardiff Metropolitan University, Cardiff CF5 2YB, UK.
| |
Collapse
|
42
|
Nikolaidis MG. The Effects of Resistance Exercise on Muscle Damage, Position Sense, and Blood Redox Status in Young and Elderly Individuals. Geriatrics (Basel) 2017; 2:geriatrics2030020. [PMID: 31011030 PMCID: PMC6371112 DOI: 10.3390/geriatrics2030020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 06/19/2017] [Accepted: 06/20/2017] [Indexed: 12/26/2022] Open
Abstract
Background: The purpose of the present investigation was to study the possible differences between young and elderly individuals regarding muscle damage, position sense, and oxidative stress biomarkers in response to resistance eccentric-biased exercise. Methods: Ten young and 10 elderly individuals performed a bout of resistance exercise (i.e., squat exercise). Muscle damage indices (i.e., isometric peak torque, range of movement, delayed onset muscle soreness, and creatine kinase), position sense, and oxidative stress biomarkers (i.e., protein carbonyls and reduced glutathione) were assessed before and 48 h post exercise. Results: The main effect of time was significant for all measured parameters, indicating that resistance exercise that includes a large eccentric component causes muscle damage, disturbs position sense, and induces oxidative stress. However, no significant main effect of group or time × group interaction was found for all measured parameters (except isometric peak torque), indicating similar responses to resistance exercise for both young and the elderly individuals. Conclusion: There are no differences between young and elderly individuals regarding muscle damage, position sense, and oxidative stress after resistance exercise, while elderly individuals have lower muscle strength and seem to have a tendency for greater baseline oxidative stress compared to young individuals.
Collapse
Affiliation(s)
- Michalis G Nikolaidis
- Department of Physical Education and Sports Sciences at Serres, Aristotle University of Thessaloniki, Agios Ioannis, 62110 Serres, Greece.
| |
Collapse
|
43
|
Oliveira CC, Ferreira D, Caetano C, Granja D, Pinto R, Mendes B, Sousa M. Nutrition and Supplementation in Soccer. Sports (Basel) 2017; 5:sports5020028. [PMID: 29910389 PMCID: PMC5968974 DOI: 10.3390/sports5020028] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 04/25/2017] [Accepted: 05/03/2017] [Indexed: 12/26/2022] Open
Abstract
Contemporary elite soccer features increased physical demands during match-play, as well as a larger number of matches per season. Now more than ever, aspects related to performance optimization are highly regarded by both players and soccer coaches. Here, nutrition takes a special role as most elite teams try to provide an adequate diet to guarantee maximum performance while ensuring a faster recovery from matches and training exertions. It is currently known that manipulation and periodization of macronutrients, as well as sound hydration practices, have the potential to interfere with training adaptation and recovery. A careful monitoring of micronutrient status is also relevant to prevent undue fatigue and immune impairment secondary to a deficiency status. Furthermore, the sensible use of evidence-based dietary supplements may also play a role in soccer performance optimization. In this sense, several nutritional recommendations have been issued. This detailed and comprehensive review addresses the most relevant and up-to-date nutritional recommendations for elite soccer players, covering from macro and micronutrients to hydration and selected supplements in different contexts (daily requirements, pre, peri and post training/match and competition).
Collapse
Affiliation(s)
- César Chaves Oliveira
- Instituto Politécnico de Viana do Castelo - Escola Superior de Desporto e Lazer, Viana do Castelo 4960-320, Portugal.
| | - Diogo Ferreira
- Benfica LAB, Sport Lisboa e Benfica, Lisbon 1500-313, Portugal.
| | - Carlos Caetano
- Benfica LAB, Sport Lisboa e Benfica, Lisbon 1500-313, Portugal.
| | - Diana Granja
- Benfica LAB, Sport Lisboa e Benfica, Lisbon 1500-313, Portugal.
| | - Ricardo Pinto
- Benfica LAB, Sport Lisboa e Benfica, Lisbon 1500-313, Portugal.
| | - Bruno Mendes
- Benfica LAB, Sport Lisboa e Benfica, Lisbon 1500-313, Portugal.
| | - Mónica Sousa
- Instituto Politécnico de Leiria - Escola Superior de Saúde, Leiria 2411-901, Portugal.
| |
Collapse
|
44
|
Radak Z, Ishihara K, Tekus E, Varga C, Posa A, Balogh L, Boldogh I, Koltai E. Exercise, oxidants, and antioxidants change the shape of the bell-shaped hormesis curve. Redox Biol 2017; 12:285-290. [PMID: 28285189 PMCID: PMC5345970 DOI: 10.1016/j.redox.2017.02.015] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 02/16/2017] [Accepted: 02/21/2017] [Indexed: 12/24/2022] Open
Abstract
It is debated whether exercise-induced ROS production is obligatory to cause adaptive response. It is also claimed that antioxidant treatment could eliminate the adaptive response, which appears to be systemic and reportedly reduces the incidence of a wide range of diseases. Here we suggest that if the antioxidant treatment occurs before the physiological function-ROS dose-response curve reaches peak level, the antioxidants can attenuate function. On the other hand, if the antioxidant treatment takes place after the summit of the bell-shaped dose response curve, antioxidant treatment would have beneficial effects on function. We suggest that the effects of antioxidant treatment are dependent on the intensity of exercise, since the adaptive response, which is multi pathway dependent, is strongly influenced by exercise intensity. It is further suggested that levels of ROS concentration are associated with peak physiological function and can be extended by physical fitness level and this could be the basis for exercise pre-conditioning. Physical inactivity, aging or pathological disorders increase the sensitivity to oxidative stress by altering the bell-shaped dose response curve.
Collapse
Affiliation(s)
- Zsolt Radak
- Research Institute of Sport Science, University of Physical Education, Budapest, Hungary.
| | - Kazunari Ishihara
- Research Institute of Sport Science, University of Physical Education, Budapest, Hungary
| | - Eva Tekus
- Institute of Sport Science and Physical Education, University of Pecs, Pecs, Hungary
| | - Csaba Varga
- Department of Physiology, Anatomy and Neuroscience, University of Szeged, Szeged, Hungary
| | - Aniko Posa
- Department of Physiology, Anatomy and Neuroscience, University of Szeged, Szeged, Hungary
| | - Laszlo Balogh
- Institute of Sport Science, University of Debrecen, Debrecen, Hungary
| | - Istvan Boldogh
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Erika Koltai
- Research Institute of Sport Science, University of Physical Education, Budapest, Hungary
| |
Collapse
|
45
|
Deli CK, Fatouros IG, Paschalis V, Tsiokanos A, Georgakouli K, Zalavras A, Avloniti A, Koutedakis Y, Jamurtas AZ. Iron Supplementation Effects on Redox Status following Aseptic Skeletal Muscle Trauma in Adults and Children. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:4120421. [PMID: 28203319 PMCID: PMC5292163 DOI: 10.1155/2017/4120421] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 11/24/2016] [Indexed: 01/05/2023]
Abstract
Exercise-induced skeletal muscle microtrauma is characterized by loss of muscle cell integrity, marked aseptic inflammatory response, and oxidative stress. We examined if iron supplementation would alter redox status after eccentric exercise. In a randomized, double blind crossover study, that was conducted in two cycles, healthy adults (n = 14) and children (n = 11) received daily either 37 mg of elemental iron or placebo for 3 weeks prior to and up to 72 h after an acute eccentric exercise bout. Blood was drawn at baseline, before exercise, and 72 h after exercise for the assessment of iron status, creatine kinase activity (CK), and redox status. Iron supplementation at rest increased iron concentration and transferrin saturation (p < 0.01). In adults, CK activity increased at 72 h after exercise, while no changes occurred in children. Iron supplementation increased TBARS at 72 h after exercise in both adults and children; no changes occurred under placebo condition. Eccentric exercise decreased bilirubin concentration at 72 h in all groups. Iron supplementation can alter redox responses after muscle-damaging exercise in both adults and children. This could be of great importance not only for healthy exercising individuals, but also in clinical conditions which are characterized by skeletal muscle injury and inflammation, yet iron supplementation is crucial for maintaining iron homeostasis. This study was registered at Clinicaltrials.gov Identifier: NCT02374619.
Collapse
Affiliation(s)
- Chariklia K. Deli
- School of Physical Education and Sport Science, University of Thessaly, Trikala, Greece
- Institute for Research and Technology of Thessaly (I.RE.TE.TH), Trikala, Greece
- Center for Research and Technology Hellas (CERTH), Thessaloniki, Greece
| | - Ioannis G. Fatouros
- School of Physical Education and Sport Science, University of Thessaly, Trikala, Greece
- Institute for Research and Technology of Thessaly (I.RE.TE.TH), Trikala, Greece
- Center for Research and Technology Hellas (CERTH), Thessaloniki, Greece
| | - Vassilis Paschalis
- School of Physical Education and Sport Science, University of Thessaly, Trikala, Greece
- Institute for Research and Technology of Thessaly (I.RE.TE.TH), Trikala, Greece
- Center for Research and Technology Hellas (CERTH), Thessaloniki, Greece
| | - Athanasios Tsiokanos
- School of Physical Education and Sport Science, University of Thessaly, Trikala, Greece
- Institute for Research and Technology of Thessaly (I.RE.TE.TH), Trikala, Greece
- Center for Research and Technology Hellas (CERTH), Thessaloniki, Greece
| | - Kalliopi Georgakouli
- School of Physical Education and Sport Science, University of Thessaly, Trikala, Greece
- Institute for Research and Technology of Thessaly (I.RE.TE.TH), Trikala, Greece
- Center for Research and Technology Hellas (CERTH), Thessaloniki, Greece
| | - Athanasios Zalavras
- School of Physical Education and Sport Science, University of Thessaly, Trikala, Greece
- Institute for Research and Technology of Thessaly (I.RE.TE.TH), Trikala, Greece
- Center for Research and Technology Hellas (CERTH), Thessaloniki, Greece
| | - Alexandra Avloniti
- School of Physical Education and Sport Science, Democritus University of Thrace, Komotini, Greece
| | - Yiannis Koutedakis
- School of Physical Education and Sport Science, University of Thessaly, Trikala, Greece
- Institute for Research and Technology of Thessaly (I.RE.TE.TH), Trikala, Greece
- Center for Research and Technology Hellas (CERTH), Thessaloniki, Greece
- School of Sports, Performing Arts and Leisure, University of Wolverhampton, Wolverhampton, UK
| | - Athanasios Z. Jamurtas
- School of Physical Education and Sport Science, University of Thessaly, Trikala, Greece
- Institute for Research and Technology of Thessaly (I.RE.TE.TH), Trikala, Greece
- Center for Research and Technology Hellas (CERTH), Thessaloniki, Greece
| |
Collapse
|
46
|
|
47
|
Shill DD, Southern WM, Willingham TB, Lansford KA, McCully KK, Jenkins NT. Mitochondria-specific antioxidant supplementation does not influence endurance exercise training-induced adaptations in circulating angiogenic cells, skeletal muscle oxidative capacity or maximal oxygen uptake. J Physiol 2016; 594:7005-7014. [PMID: 27501153 PMCID: PMC5134375 DOI: 10.1113/jp272491] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 08/02/2016] [Indexed: 01/01/2023] Open
Abstract
KEY POINTS Reducing excessive oxidative stress, through chronic exercise or antioxidants, can decrease the negative effects induced by excessive amounts of oxidative stress. Transient increases in oxidative stress produced during acute exercise facilitate beneficial vascular training adaptations, but the effects of non-specific antioxidants on exercise training-induced vascular adaptations remain elusive. Circulating angiogenic cells (CACs) are an exercise-inducible subset of white blood cells that maintain vascular integrity. We investigated whether mitochondria-specific antioxidant (MitoQ) supplementation would affect the response to 3 weeks of endurance exercise training in CACs, muscle mitochondrial capacity and maximal oxygen uptake in young healthy men. We show that endurance exercise training increases multiple CAC types, an adaptation that is not altered by MitoQ supplementation. Additionally, MitoQ does not affect skeletal muscle or whole-body aerobic adaptations to exercise training. These results indicate that MitoQ supplementation neither enhances nor attenuates endurance training adaptations in young healthy men. ABSTRACT Antioxidants have been shown to improve endothelial function and cardiovascular outcomes. However, the effects of antioxidants on exercise training-induced vascular adaptations remain elusive. General acting antioxidants combined with exercise have not impacted circulating angiogenic cells (CACs). We investigated whether mitochondria-specific antioxidant (MitoQ) supplementation would affect the response to 3 weeks of endurance exercise training on CD3+ , CD3+ /CD31+ , CD14+ /CD31+ , CD31+ , CD34+ /VEGFR2+ and CD62E+ peripheral blood mononuclear cells (PBMCs), muscle mitochondrial capacity, and maximal oxygen uptake (VO2 max ) in healthy men aged 22.1 ± 0.7 years, with a body mass index of 26.9 ± 0.9 kg m-2 , and 24.8 ± 1.3% body fat. Analysis of main effects revealed that training induced 33, 105 and 285% increases in CD14+ /CD31+ , CD62E+ and CD34+ /VEGFR2+ CACs, respectively, and reduced CD3+ /CD31- PBMCs by 14%. There was no effect of MitoQ on CAC levels. Also independent of MitoQ supplementation, exercise training significantly increased quadriceps muscle mitochondrial capacity by 24% and VO2 max by roughly 7%. In conclusion, endurance exercise training induced increases in multiple CAC types, and this adaptation is not modified by MitoQ supplementation. Furthermore, we demonstrate that a mitochondrial-targeted antioxidant does not influence skeletal muscle or whole-body aerobic adaptations to exercise training.
Collapse
|
48
|
He F, Li J, Liu Z, Chuang CC, Yang W, Zuo L. Redox Mechanism of Reactive Oxygen Species in Exercise. Front Physiol 2016; 7:486. [PMID: 27872595 PMCID: PMC5097959 DOI: 10.3389/fphys.2016.00486] [Citation(s) in RCA: 215] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 10/10/2016] [Indexed: 01/04/2023] Open
Abstract
It is well known that regular exercise can benefit health by enhancing antioxidant defenses in the body. However, unaccustomed and/or exhaustive exercise can generate excessive reactive oxygen species (ROS), leading to oxidative stress-related tissue damages and impaired muscle contractility. ROS are produced in both aerobic and anaerobic exercise. Mitochondria, NADPH oxidases and xanthine oxidases have all been identified as potential contributors to ROS production, yet the exact redox mechanisms underlying exercise-induced oxidative stress remain elusive. Interestingly, moderate exposure to ROS is necessary to induce body's adaptive responses such as the activation of antioxidant defense mechanisms. Dietary antioxidant manipulation can also reduce ROS levels and muscle fatigue, as well as enhance exercise recovery. To elucidate the complex role of ROS in exercise, this review updates on new findings of ROS origins within skeletal muscles associated with various types of exercises such as endurance, sprint and mountain climbing. In addition, we will examine the corresponding antioxidant defense systems as well as dietary manipulation against damages caused by ROS.
Collapse
Affiliation(s)
- Feng He
- Department of Kinesiology, California State University-Chico Chico, CA, USA
| | - Juan Li
- Department of Physical Education, Anhui University Anhui, China
| | - Zewen Liu
- Affiliated Ezhou Central Hospital at Medical School of Wuhan UniversityHubei, China; Radiologic Sciences and Respiratory Therapy Division, School of Health and Rehabilitation Sciences, The Ohio State University College of MedicineColumbus, OH, USA
| | - Chia-Chen Chuang
- Radiologic Sciences and Respiratory Therapy Division, School of Health and Rehabilitation Sciences, The Ohio State University College of MedicineColumbus, OH, USA; Interdisciplinary Biophysics Graduate Program, The Ohio State UniversityColumbus, OH, USA
| | - Wenge Yang
- Department of Physical Education, China University of Geosciences Beijing, China
| | - Li Zuo
- Radiologic Sciences and Respiratory Therapy Division, School of Health and Rehabilitation Sciences, The Ohio State University College of MedicineColumbus, OH, USA; Interdisciplinary Biophysics Graduate Program, The Ohio State UniversityColumbus, OH, USA
| |
Collapse
|
49
|
Fatouros IG, Jamurtas AZ. Insights into the molecular etiology of exercise-induced inflammation: opportunities for optimizing performance. J Inflamm Res 2016; 9:175-186. [PMID: 27799809 PMCID: PMC5085309 DOI: 10.2147/jir.s114635] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The study of exercise-induced muscle damage (EIMD) is of paramount importance not only because it affects athletic performance but also because it is an excellent model to study the mechanisms governing muscle cachexia under various clinical conditions. Although, a large number of studies have investigated EIMD and its associated inflammatory response, several aspects of skeletal muscles responses remain unclear. In the first section of this article, the mechanisms of EIMD are reviewed in an attempt to follow the events that result in functional and structural alterations of skeletal muscle. In the second section, the inflammatory response associated with EIMD is presented with emphasis in leukocyte accumulation through mechanisms that are largely coordinated by pro- and anti-inflammatory cytokines released either by injured muscle itself or other cells. The practical applications of EIMD and the subsequent inflammatory response are discussed with respect to athletic performance. Specifically, the mechanisms leading to performance deterioration and development of muscle soreness are discussed. Emphasis is given to the factors affecting individual responses to EIMD and the resulting interindividual variability to this phenomenon.
Collapse
Affiliation(s)
- Ioannis G Fatouros
- School of Physical Education and Sport Sciences, University of Thessaly, Karies, Trikala, Greece
| | - Athanasios Z Jamurtas
- School of Physical Education and Sport Sciences, University of Thessaly, Karies, Trikala, Greece
| |
Collapse
|
50
|
Merry TL, Ristow M. Do antioxidant supplements interfere with skeletal muscle adaptation to exercise training? J Physiol 2016; 594:5135-47. [PMID: 26638792 PMCID: PMC5023714 DOI: 10.1113/jp270654] [Citation(s) in RCA: 194] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 11/18/2015] [Indexed: 12/19/2022] Open
Abstract
A popular belief is that reactive oxygen species (ROS) and reactive nitrogen species (RNS) produced during exercise by the mitochondria and other subcellular compartments ubiquitously cause skeletal muscle damage, fatigue and impair recovery. However, the importance of ROS and RNS as signals in the cellular adaptation process to stress is now evident. In an effort to combat the perceived deleterious effects of ROS and RNS it has become common practice for active individuals to ingest supplements with antioxidant properties, but interfering with ROS/RNS signalling in skeletal muscle during acute exercise may blunt favourable adaptation. There is building evidence that antioxidant supplementation can attenuate endurance training-induced and ROS/RNS-mediated enhancements in antioxidant capacity, mitochondrial biogenesis, cellular defence mechanisms and insulin sensitivity. However, this is not a universal finding, potentially indicating that there is redundancy in the mechanisms controlling skeletal muscle adaptation to exercise, meaning that in some circumstances the negative impact of antioxidants on acute exercise response can be overcome by training. Antioxidant supplementation has been more consistently reported to have deleterious effects on the response to overload stress and high-intensity training, suggesting that remodelling of skeletal muscle following resistance and high-intensity exercise is more dependent on ROS/RNS signalling. Importantly there is no convincing evidence to suggest that antioxidant supplementation enhances exercise-training adaptions. Overall, ROS/RNS are likely to exhibit a non-linear (hormetic) pattern on exercise adaptations, where physiological doses are beneficial and high exposure (which would seldom be achieved during normal exercise training) may be detrimental.
Collapse
Affiliation(s)
- Troy L Merry
- Energy Metabolism Laboratory, Swiss Federal Institute of Technology (ETH), 8603, Zurich, Switzerland.
| | - Michael Ristow
- Energy Metabolism Laboratory, Swiss Federal Institute of Technology (ETH), 8603, Zurich, Switzerland
| |
Collapse
|