1
|
Wang P, Huang J, Xue F, Abuduaini M, Tao Y, Liu H. Associations of serum vitamin B6 status with the risks of cardiovascular, cancer, and all-cause mortality in the elderly. Front Immunol 2024; 15:1354958. [PMID: 38698865 PMCID: PMC11064647 DOI: 10.3389/fimmu.2024.1354958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 04/02/2024] [Indexed: 05/05/2024] Open
Abstract
Background There are few studies investigating the relationship between serum vitamin B6 and mortality risk in the elderly. This study hereby evaluated the associations between biomarkers of serum vitamin B6 status and cardiovascular, cancer, and all-cause mortality risks in the elderly. Methods Our study included a total of 4,881 participants aged 60 years or older from the National Health and Nutrition Examination Survey (NHANES) 2005-2010. Serum vitamin B6 status was estimated based on levels of pyridoxal 5'-phosphate (PLP), 4-pyridoxic acid (4-PA), and vitamin B6 turnover rate (4-PA/PLP) detected by high-performance liquid chromatography. Survival status and corresponding causes of death were matched through the National Death Index records through December 31, 2019. Multivariate Cox regression model was adopted to assess the relationships between serum vitamin B6 status and the risk of mortality. Results During a median follow-up period of 10.33 years, 507 cardiovascular deaths, 426 cancer deaths, and 1995 all-cause deaths were recorded, respectively. In the multivariate-adjusted Cox model, the hazard ratios (HRs) and 95% confidence intervals (CIs) for the highest versus the lowest quartiles of PLP, 4-PA, and 4-PA/PLP were 0.70(0.54-0.90), 1.33(0.88-2.02), and 2.01(1.41-2.79) for cardiovascular mortality, 0.73(0.52-1.02), 1.05(0.71-1.57), and 1.95(1.25-3.05) for cancer mortality, and 0.62(0.53-0.74), 1.05(0.82-1.34), and 2.29(1.87-2.79) for all-cause mortality, respectively. Conclusion Our study found that lower serum PLP levels were associated with increased risks of cardiovascular and all-cause mortality among the elderly population. And higher vitamin B6 turnover rate was associated with increased risks of cardiovascular, cancer, and all-cause mortality.
Collapse
Affiliation(s)
- Pengxi Wang
- Department of Medical Genetics, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan, China
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Jia Huang
- Department of Medical Genetics, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Feng Xue
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Munire Abuduaini
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Yuchang Tao
- Department of Medical Genetics, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Hongyan Liu
- Department of Medical Genetics, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
2
|
Roth-Walter F, Berni Canani R, O'Mahony L, Peroni D, Sokolowska M, Vassilopoulou E, Venter C. Nutrition in chronic inflammatory conditions: Bypassing the mucosal block for micronutrients. Allergy 2024; 79:353-383. [PMID: 38084827 DOI: 10.1111/all.15972] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/14/2023] [Accepted: 11/27/2023] [Indexed: 02/01/2024]
Abstract
Nutritional Immunity is one of the most ancient innate immune responses, during which the body can restrict nutrients availability to pathogens and restricts their uptake by the gut mucosa (mucosal block). Though this can be a beneficial strategy during infection, it also is associated with non-communicable diseases-where the pathogen is missing; leading to increased morbidity and mortality as micronutritional uptake and distribution in the body is hindered. Here, we discuss the acute immune response in respect to nutrients, the opposing nutritional demands of regulatory and inflammatory cells and particularly focus on some nutrients linked with inflammation such as iron, vitamins A, Bs, C, and other antioxidants. We propose that while the absorption of certain micronutrients is hindered during inflammation, the dietary lymph path remains available. As such, several clinical trials investigated the role of the lymphatic system during protein absorption, following a ketogenic diet and an increased intake of antioxidants, vitamins, and minerals, in reducing inflammation and ameliorating disease.
Collapse
Affiliation(s)
- Franziska Roth-Walter
- Comparative Medicine, The Interuniversity Messerli Research Institute of the University of Veterinary Medicine Vienna, Medical University Vienna and University Vienna, Vienna, Austria
- Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Roberto Berni Canani
- Department of Translational Medical Science and ImmunoNutritionLab at CEINGE-Advanced Biotechnologies, University of Naples "Federico II", Naples, Italy
| | - Liam O'Mahony
- Department of Medicine, School of Microbiology, APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Diego Peroni
- Section of Paediatrics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Milena Sokolowska
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland
- Christine Kühne - Center for Allergy Research and Education (CK-CARE), Davos, Switzerland
| | - Emilia Vassilopoulou
- Pediatric Area, Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, Milan, Italy
- Department of Nutritional Sciences and Dietetics, International Hellenic University, Thessaloniki, Greece
| | - Carina Venter
- Children's Hospital Colorado, University of Colorado, Aurora, Colorado, USA
| |
Collapse
|
3
|
Li F, Liu X, Zhao L, Wang H, Zhang L, Xing W, Cui J. Vitamin B6 Turnover Predicts Long-term Mortality Risk in Patients with Type 2 Diabetes. Curr Dev Nutr 2024; 8:102073. [PMID: 38312433 PMCID: PMC10830545 DOI: 10.1016/j.cdnut.2023.102073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 02/06/2024] Open
Abstract
Background Inflammation can increase vitamin B6 uptake and catabolism. Higher vitamin B6 turnover [4-pyridoxic acid (4-PA)/pyridoxal 5'-phosphate (PLP) ratio], was associated with mortality risk in the general population. Objectives We aimed to investigate the association between 4-PA/PLP and long-term mortality in patients with type 2 diabetes mellitus (T2DM), an inflammatory disease. Methods In this prospective cohort study from the National Health and Nutrition Examination Survey (NHANES) cycles 2005-2010, the concentrations of 4-PA and PLP in plasma were measured using high-performance liquid chromatography, with mortality data updated to 31 December 2019. We included 2074 patients with T2DM aged between 20 and 85 y at baseline. Results There were 739 deaths among 2279 patients with T2DM with a median follow-up of 11.83 y. In the age- and sex-adjusted COX model (model 1), 4-PA/PLP was positively associated with mortality in patients with T2DM [hazard ratio (HR) and 95% confidence interval (CI) highest compared with lowest quartiles: 35.55 (18.29, 69.09); P < 0.001], and in model 3, which was adjusted for demographics as well as inflammation, nutrition, and renal function, high 4-PA/PLP concentrations remained an independent risk factor for mortality in patients with T2DM [HR (95% CI) highest compared with lowest quartiles: 5.03 (2.46, 10.30); P < 0.001]. In restricted cubic spline (RCS), the link between 4-PA/PLP and all-cause mortality displays a positive correlation. Patients with died within the previous 2 y were excluded, the sensitivity analysis had no effect on the association between 4-PA/PLP and mortality in patients with T2DM. Finally, comparable results were found in subgroup analyses of specific-cause mortality. Conclusion Higher vitamin B6 turnover is associated with long-term mortality risk in patients with T2DM. 4-PA/PLP may serve as a convenient prognostic marker in T2DM management.
Collapse
Affiliation(s)
| | | | | | - Hongyi Wang
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Lili Zhang
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Weiwei Xing
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Jiuwei Cui
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
4
|
Holthuijsen DDB, van Roekel EH, Bours MJL, Ueland PM, Breukink SO, Janssen-Heijnen MLG, Keulen ETP, Gsur A, Kok DE, Ulvik A, Weijenberg MP, Eussen SJPM. Longitudinal associations of macronutrient and micronutrient intake with plasma kynurenines in colorectal cancer survivors up to 12 months posttreatment. Am J Clin Nutr 2023; 118:865-880. [PMID: 37923499 DOI: 10.1016/j.ajcnut.2023.08.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 07/20/2023] [Accepted: 08/07/2023] [Indexed: 11/07/2023] Open
Abstract
BACKGROUND The tryptophan-kynurenine pathway is increasingly recognized to play a role in health-related quality of life (HRQoL) after cancer. Because tryptophan is an essential amino acid, and vitamins and minerals act as enzymatic cofactors in the tryptophan-kynurenine pathway, a link between diet and kynurenines is plausible. OBJECTIVES This study aimed to investigate the longitudinal associations of macronutrient and micronutrient intake with metabolites of the kynurenine pathway in colorectal cancer (CRC) survivors up to 12 mo posttreatment. METHODS In a prospective cohort of stage I-III CRC survivors (n = 247), repeated measurements were performed at 6 wk, 6 mo, and 12 mo posttreatment. Macronutrient and micronutrient intake was measured by 7-d dietary records. Plasma concentrations of tryptophan and kynurenines were analyzed using liquid chromatography tandem mass spectrometry (LC/MS-MS). Longitudinal associations were analyzed using linear mixed models adjusted for sociodemographic, clinical, and lifestyle factors. RESULTS After adjustment for multiple testing, higher total protein intake was positively associated with kynurenic acid (KA) (β as standard deviation [SD] change in KA concentration per 1 SD increase in total protein intake: 0.12; 95% CI: 0.04, 0.20), xanthurenic acid (XA) (standardized β: 0.22; 95% CI: 0.11, 0.33), 3-hydroxyanthranilic acid (HAA) (standardized β: 0.15; 95% CI: 0.04, 0.27) concentrations, and the kynurenic acid-to-quinolinic acid ratio (KA/QA) (standardized β: 0.12; 95% CI: 0.02,0.22). In contrast, higher total carbohydrate intake was associated with lower XA concentrations (standardized β: -0.18; 95% CI: -0.30, -0.07), a lower KA/QA (standardized β: -0.23; 95% CI: -0.34, -0.13), and a higher kynurenine-to-tryptophan ratio (KTR) (standardized β: 0.20; 95% CI: 0.10, 0.30). Higher fiber intake was associated with a higher KA/QA (standardized β: 0.11; 95% CI: 0.02, 0.21) and a lower KTR (standardized β: -0.12; 95% CI: -0.20, -0.03). Higher total fat intake was also associated with higher tryptophan (Trp) concentrations (standardized β: 0.18; 95% CI: 0.06, 0.30) and a lower KTR (standardized β: -0.13; 95% CI: -0.22, -0.03). For micronutrients, positive associations were observed for zinc with XA (standardized β: 0.13; 95% CI: 0.04, 0.21) and 3-hydroxykynurenine (HK) (standardized β: 0.12; 95% CI: 0.03, 0.20) concentrations and for magnesium with KA/QA (standardized β: 0.24; 95% CI: 0.13, 0.36). CONCLUSIONS Our findings show that intake of several macronutrients and micronutrients is associated with some metabolites of the kynurenine pathway in CRC survivors up to 12 mo posttreatment. These results may be relevant for enhancing HRQoL after cancer through potential diet-induced changes in kynurenines. Further studies are necessary to confirm our findings.
Collapse
Affiliation(s)
- Daniëlle D B Holthuijsen
- Department of Epidemiology, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands; Department of Epidemiology, GROW School for Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands.
| | - Eline H van Roekel
- Department of Epidemiology, GROW School for Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands
| | - Martijn J L Bours
- Department of Epidemiology, GROW School for Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands
| | | | - Stéphanie O Breukink
- Department of Surgery, GROW School for Oncology and Reproduction, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Maryska L G Janssen-Heijnen
- Department of Epidemiology, GROW School for Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands; Department of Clinical Epidemiology, VieCuri Medical Centre, Venlo, The Netherlands
| | - Eric T P Keulen
- Department of Internal Medicine and Gastroenterology, Zuyderland Medical Centre Sittard-Geleen, Geleen, The Netherlands
| | - Andrea Gsur
- Center for Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Dieuwertje E Kok
- Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, The Netherlands
| | | | - Matty P Weijenberg
- Department of Epidemiology, GROW School for Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands
| | - Simone J P M Eussen
- Department of Epidemiology, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands; Department of Epidemiology, CAPHRI School for Care and Public Health Research Institute, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
5
|
Schorgg P, Karavasiloglou N, Beyer A, Cantwell M, Danquah I, Gojda J, Rohrmann S, Cassidy A, Bärnighausen T, Cahova M, Kühn T. Increased vitamin B6 turnover is associated with greater mortality risk in the general US population: A prospective biomarker study. Clin Nutr 2022; 41:1343-1356. [DOI: 10.1016/j.clnu.2022.04.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 04/02/2022] [Accepted: 04/20/2022] [Indexed: 11/03/2022]
|
6
|
The Controversial Role of HCY and Vitamin B Deficiency in Cardiovascular Diseases. Nutrients 2022; 14:nu14071412. [PMID: 35406025 PMCID: PMC9003430 DOI: 10.3390/nu14071412] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/21/2022] [Accepted: 03/24/2022] [Indexed: 11/16/2022] Open
Abstract
Plasma homocysteine (HCY) is an established risk factor for cardiovascular disease CVD and stroke. However, more than two decades of intensive research activities has failed to demonstrate that Hcy lowering through B-vitamin supplementation results in a reduction in CVD risk. Therefore, doubts about a causal involvement of hyperhomocysteinemia (HHcy) and B-vitamin deficiencies in atherosclerosis persist. Existing evidence indicates that HHcy increases oxidative stress, causes endoplasmatic reticulum (ER) stress, alters DNA methylation and, thus, modulates the expression of numerous pathogenic and protective genes. Moreover, Hcy can bind directly to proteins, which can change protein function and impact the intracellular redox state. As most mechanistic evidence is derived from experimental studies with rather artificial settings, the relevance of these results in humans remains a matter of debate. Recently, it has also been proposed that HHcy and B-vitamin deficiencies may promote CVD through accelerated telomere shortening and telomere dysfunction. This review provides a critical overview of the existing literature regarding the role of HHcy and B-vitamin deficiencies in CVD. At present, the CVD risk associated with HHcy and B vitamins is not effectively actionable. Therefore, routine screening for HHcy in CVD patients is of limited value. However, B-vitamin depletion is rather common among the elderly, and in such cases existing deficiencies should be corrected. While Hcy-lowering with high doses of B vitamins has no beneficial effects in secondary CVD prevention, the role of Hcy in primary disease prevention is insufficiently studied. Therefore, more intervention and experimental studies are needed to address existing gaps in knowledge.
Collapse
|
7
|
Alme KN, Askim T, Assmus J, Mollnes TE, Naik M, Næss H, Saltvedt I, Ueland PM, Ulvik A, Knapskog AB. Investigating novel biomarkers of immune activation and modulation in the context of sedentary behaviour: a multicentre prospective ischemic stroke cohort study. BMC Neurol 2021; 21:318. [PMID: 34399717 PMCID: PMC8365944 DOI: 10.1186/s12883-021-02343-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 07/26/2021] [Indexed: 12/11/2022] Open
Abstract
Background Sedentary behaviour is associated with disease, but the molecular mechanisms are not understood. Valid biomarkers with predictive and explanatory properties are required. Therefore, we have investigated traditional and novel biomarkers of inflammation and immune modulation and their association to objectively measured sedentary behaviour in an ischemic stroke population. Methods Patients admitted to hospital with acute ischemic stroke were included in the multicentre Norwegian Cognitive Impairment After Stroke (Nor-COAST) study (n = 815). For this sub-study (n = 257), sedentary behaviour was registered 3 months after stroke using position transition data from the body-worn sensor, ActivPal®. Blood samples were analysed for high sensitive C-reactive protein (hsCRP), the cytokines interleukin-6 (IL-6) and 10 (IL-10), neopterin, tryptophan (Trp), kynurenine (kyn), kynurenic acid (KA), and three B6 vitamers, pyridoxal 5′-phosphate (PLP), pyridoxal (PL), and pyridoxic acid (PA). The kynurenine/tryptophan ratio (KTR) and the pyridoxic acid ratio index (PAr = PA: PL + PLP) were calculated. Results Of the 815 patients included in the main study, 700 attended the three-month follow-up, and 257 fulfilled the inclusion criteria for this study. Sedentary time was significantly associated with levels of hsCRP, IL-6, neopterin, PAr-index, and KA adjusted for age, sex, waist circumference, and creatinine. In a fully adjusted model including all the significant biomarkers except hsCRP (because of missing values), sedentary time was independently positively associated with the PAr-index and negatively with KA. We did not find an association between sedentary behaviour, IL-10, and KTR. Conclusions The PAr-index is known to capture several modes of inflammation and has previously shown predictive abilities for future stroke. This novel result indicates that the PAr-index could be a useful biomarker in future studies on sedentary behaviour and disease progression. KA is an important modulator of inflammation, and this finding opens new and exciting pathways to understand the hazards of sedentary behaviour. Trial registration The study was registered at Clinicaltrials.gov (NCT02650531). First posted 08/01/2016. Supplementary Information The online version contains supplementary material available at 10.1186/s12883-021-02343-0.
Collapse
Affiliation(s)
- Katinka Nordheim Alme
- Institute of Clinical Medicine (K1), University of Bergen, Bergen, Norway. .,Department of Internal Medicine, Haraldsplass Deaconess Hospital, Bergen, Norway.
| | - Torunn Askim
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Science, NTNU-Norwegian University of Science and Technology, Trondheim, Norway
| | - Jörg Assmus
- Centre for Clinical Research, Haukeland University Hospital, Bergen, Norway
| | - Tom Eirik Mollnes
- Department of Immunology, Oslo University Hospital and University of Oslo, Oslo, Norway.,Research Laboratory, Nordland Hospital, Bodø, and K.G. Jebsen TREC, University of Tromsø, Tromsø, Norway.,Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway
| | - Mala Naik
- Department of Internal Medicine, Haraldsplass Deaconess Hospital, Bergen, Norway.,Department of Clinical Science (K2), University of Bergen, Bergen, Norway
| | - Halvor Næss
- Institute of Clinical Medicine (K1), University of Bergen, Bergen, Norway.,Department of Neurology, Haukeland University Hospital, Bergen, Norway.,Centre for age-related medicine, Stavanger University Hospital, Stavanger, Norway
| | - Ingvild Saltvedt
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Science, NTNU-Norwegian University of Science and Technology, Trondheim, Norway.,Department of Geriatrics, Clinic of internal medicine, St Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | | | | | - Anne-Brita Knapskog
- Department of Geriatric Medicine, Oslo University Hospital, Ullevaal, Oslo, Norway
| |
Collapse
|
8
|
Rudzki L, Stone TW, Maes M, Misiak B, Samochowiec J, Szulc A. Gut microbiota-derived vitamins - underrated powers of a multipotent ally in psychiatric health and disease. Prog Neuropsychopharmacol Biol Psychiatry 2021; 107:110240. [PMID: 33428888 DOI: 10.1016/j.pnpbp.2020.110240] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 11/19/2020] [Accepted: 12/30/2020] [Indexed: 02/06/2023]
Abstract
Despite the well-established roles of B-vitamins and their deficiencies in health and disease, there is growing evidence indicating a key role of those nutrients in functions of the central nervous system and in psychopathology. Clinical data indicate the substantial role of B-vitamins in various psychiatric disorders, including major depression, bipolar disorder, schizophrenia, autism, and dementia, including Alzheimer's and Parkinson's diseases. As enzymatic cofactors, B-vitamins are involved in many physiological processes such as the metabolism of glucose, fatty acids and amino acids, metabolism of tryptophan in the kynurenine pathway, homocysteine metabolism, synthesis and metabolism of various neurotransmitters and neurohormones including serotonin, dopamine, adrenaline, acetylcholine, GABA, glutamate, D-serine, glycine, histamine and melatonin. Those vitamins are highly involved in brain energetic metabolism and respiration at the cellular level. They have a broad range of anti-inflammatory, immunomodulatory, antioxidant and neuroprotective properties. Furthermore, some of those vitamins are involved in the regulation of permeability of the intestinal and blood-brain barriers. Despite the fact that a substantial amount of the above vitamins is acquired from various dietary sources, deficiencies are not uncommon, and it is estimated that micronutrient deficiencies affect about two billion people worldwide. The majority of gut-resident microbes and the broad range of bacteria available in fermented food, express genetic machinery enabling the synthesis and metabolism of B-vitamins and, consequently, intestinal microbiota and fermented food rich in probiotic bacteria are essential sources of B-vitamins for humans. All in all, there is growing evidence that intestinal bacteria-derived vitamins play a significant role in physiology and that dysregulation of the "microbiota-vitamins frontier" is related to various disorders. In this review, we will discuss the role of vitamins in mental health and explore the perspectives and potential of how gut microbiota-derived vitamins could contribute to mental health and psychiatric treatment.
Collapse
Affiliation(s)
- Leszek Rudzki
- The Charleston Centre, 49 Neilston Road, Paisley PA2 6LY, UK.
| | | | - Michael Maes
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Department of Psychiatry, Medical University of Plovdiv, Bulgaria; IMPACT Strategic Research Center, Deakin University, Geelong, Australia
| | - Błażej Misiak
- Department of Psychiatry, Wroclaw Medical University, Pasteura 10 Street, 50-367 Wroclaw, Poland
| | - Jerzy Samochowiec
- Department of Psychiatry, Pomeranian Medical University, Broniewskiego 26 Street, 71-460 Szczecin, Poland
| | - Agata Szulc
- Department of Psychiatry, Medical University of Warsaw, Poland
| |
Collapse
|
9
|
Kummen M, Thingholm LB, Rühlemann MC, Holm K, Hansen SH, Moitinho-Silva L, Liwinski T, Zenouzi R, Storm-Larsen C, Midttun Ø, McCann A, Ueland PM, Høivik ML, Vesterhus M, Trøseid M, Laudes M, Lieb W, Karlsen TH, Bang C, Schramm C, Franke A, Hov JR. Altered Gut Microbial Metabolism of Essential Nutrients in Primary Sclerosing Cholangitis. Gastroenterology 2021; 160:1784-1798.e0. [PMID: 33387530 PMCID: PMC7611822 DOI: 10.1053/j.gastro.2020.12.058] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 12/02/2020] [Accepted: 12/22/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS To influence host and disease phenotype, compositional microbiome changes, which have been demonstrated in patients with primary sclerosing cholangitis (PSC), must be accompanied by functional changes. We therefore aimed to characterize the genetic potential of the gut microbiome in patients with PSC compared with healthy controls (HCs) and patients with inflammatory bowel disease (IBD). METHODS Fecal DNA from 2 cohorts (1 Norwegian and 1 German), in total comprising 136 patients with PSC (58% with IBD), 158 HCs, and 93 patients with IBD without PSC, were subjected to metagenomic shotgun sequencing, generating 17 billion paired-end sequences, which were processed using HUMAnN2 and MetaPhlAn2, and analyzed using generalized linear models and random effects meta-analyses. RESULTS Patients with PSC had fewer microbial genes compared with HCs (P < .0001). Compared with HCs, patients with PSC showed enrichment and increased prevalence of Clostridium species and a depletion of, for example, Eubacterium spp and Ruminococcus obeum. Patients with PSC showed marked differences in the abundance of genes related to vitamin B6 synthesis and branched-chain amino acid synthesis (Qfdr < .05). Targeted metabolomics of plasma from an independent set of patients with PSC and controls found reduced concentrations of vitamin B6 and branched-chain amino acids in PSC (P < .0001), which strongly associated with reduced liver transplantation-free survival (log-rank P < .001). No taxonomic or functional differences were detected between patients with PSC with and without IBD. CONCLUSIONS The gut microbiome in patients with PSC exhibits large functional differences compared with that in HCs, including microbial metabolism of essential nutrients. Alterations in related circulating metabolites associated with disease course, suggesting that microbial functions may be relevant for the disease process in PSC.
Collapse
Affiliation(s)
- Martin Kummen
- Norwegian PSC Research Center, Department of Transplantation Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway,Institute of Clinical Medicine, University of Oslo, Oslo, Norway,Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway,Department of Oncology, Oslo University Hospital, Oslo, Norway
| | - Louise B. Thingholm
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Malte C. Rühlemann
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Kristian Holm
- Norwegian PSC Research Center, Department of Transplantation Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway,Institute of Clinical Medicine, University of Oslo, Oslo, Norway,Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Simen H. Hansen
- Norwegian PSC Research Center, Department of Transplantation Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway,Institute of Clinical Medicine, University of Oslo, Oslo, Norway,Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Lucas Moitinho-Silva
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany,Department of Dermatology, Venereology and Allergy, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Timur Liwinski
- Institute of Medical Systems Biology, Center for Molecular Neurobiology, Hamburg, Germany,I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Roman Zenouzi
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christopher Storm-Larsen
- Norwegian PSC Research Center, Department of Transplantation Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway,Institute of Clinical Medicine, University of Oslo, Oslo, Norway,Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | | | | | | | - Marte L. Høivik
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway,Department of Gastroenterology, Oslo University Hospital Ullevål, Oslo, Norway
| | - Mette Vesterhus
- Norwegian PSC Research Center, Department of Transplantation Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway,Department of Medicine, Haraldsplass Deaconess Hospital, Bergen, Norway,Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Marius Trøseid
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway,Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Matthias Laudes
- Division of Endocrinology, Diabetes and Clinical Nutrition, Department of Medicine 1, University of Kiel, Germany
| | - Wolfgang Lieb
- Institute of Epidemiology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Tom H. Karlsen
- Norwegian PSC Research Center, Department of Transplantation Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway,Institute of Clinical Medicine, University of Oslo, Oslo, Norway,Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway,Section of Gastroenterology, Department of Transplantation Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Corinna Bang
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Christoph Schramm
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany,Martin Zeitz Centre for Rare Diseases, University Medical Center Hamburg-Eppendorf, Hamburg, Germany,Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Johannes R. Hov
- Norwegian PSC Research Center, Department of Transplantation Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway,Institute of Clinical Medicine, University of Oslo, Oslo, Norway,Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway,Section of Gastroenterology, Department of Transplantation Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| |
Collapse
|
10
|
Martínez-Navarro FJ, Martínez-Morcillo FJ, López-Muñoz A, Pardo-Sánchez I, Martínez-Menchón T, Corbalán-Vélez R, Cayuela ML, Pérez-Oliva AB, García-Moreno D, Mulero V. The vitamin B6-regulated enzymes PYGL and G6PD fuel NADPH oxidases to promote skin inflammation. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 108:103666. [PMID: 32126244 DOI: 10.1016/j.dci.2020.103666] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/26/2020] [Accepted: 02/26/2020] [Indexed: 06/10/2023]
Abstract
Psoriasis is a skin inflammatory disorder that affects 3% of the human population. Although several therapies based on the neutralization of proinflammatory cytokines have been used with relative success, additional treatments are required. The in silico analysis of gene expression data of psoriasis lesional skin and an analysis of vitamin B6 metabolites in the sera of psoriasis patients point to altered vitamin B6 metabolism at both local and systemic levels. Functional studies showed that vitamin B6 vitamers reduced skin neutrophil infiltration, oxidative stress and Nfkb activity in two zebrafish models of skin inflammation. Strikingly, inhibition of glycogen phosphorylase L (Pygl) and glucose-6-phosphate dehydrogenase (G6pd), two vitamin B6-regulated enzymes, alleviated oxidative-stress induced inflammation in zebrafish skin inflammation models. Despite the central role of G6pd in antioxidant defenses, the results of the study demonstrate that glycogen stores and G6pd fuel NADPH oxidase to promote skin inflammation, revealing novel targets for the treatment of skin inflammatory disorders.
Collapse
Affiliation(s)
- Francisco J Martínez-Navarro
- Departmento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, Spain; Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, Murcia, Spain
| | - Francisco J Martínez-Morcillo
- Departmento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, Spain; Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, Murcia, Spain
| | - Azucena López-Muñoz
- Departmento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, Spain; Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, Murcia, Spain
| | - Irene Pardo-Sánchez
- Departmento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, Spain; Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, Murcia, Spain
| | - Teresa Martínez-Menchón
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, Murcia, Spain; Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain
| | - Raúl Corbalán-Vélez
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, Murcia, Spain; Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain
| | - María L Cayuela
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, Murcia, Spain; Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain
| | - Ana B Pérez-Oliva
- Departmento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, Spain; Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, Murcia, Spain.
| | - Diana García-Moreno
- Departmento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, Spain; Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, Murcia, Spain.
| | - Victoriano Mulero
- Departmento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, Spain; Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, Murcia, Spain.
| |
Collapse
|
11
|
Vrolijk MF, Hageman GJ, van de Koppel S, van Hunsel F, Bast A. Inter-individual differences in pharmacokinetics of vitamin B6: A possible explanation of different sensitivity to its neuropathic effects. PHARMANUTRITION 2020. [DOI: 10.1016/j.phanu.2020.100188] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
12
|
Ryan KM, Allers KA, Harkin A, McLoughlin DM. Blood plasma B vitamins in depression and the therapeutic response to electroconvulsive therapy. Brain Behav Immun Health 2020; 4:100063. [PMID: 34589848 PMCID: PMC8474603 DOI: 10.1016/j.bbih.2020.100063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/22/2020] [Accepted: 03/22/2020] [Indexed: 02/07/2023] Open
Abstract
A growing body of research has indicated a role for B vitamins in depression, with some previous studies suggesting that B vitamin status in patients with depression can impact on antidepressant response. Here we aimed to investigate B vitamin plasma concentrations in medicated patients with depression (n = 94) compared to age- and sex-matched healthy controls (n = 57), and in patients with depression after electroconvulsive therapy (ECT) in a real-world clinical setting. Our results show that nicotinamide (vitamin B3), N1-methylnicotinamide (vitamin B3 metabolite), and pyridoxal 5'-phosphate (PLP; vitamin B6) concentrations were significantly reduced in patients with depression compared to controls. The Cohen's d effect sizes for nicotinamide, N1-methylnicotinamide, and PLP were moderate-large (-0.47, -0.51, and -0.59, respectively), and likely to be of clinical relevance. Functional biomarkers of vitamin B6 status (PAr index, 3-hydroxykynurenine: hydroxyanthranilic acid ratio, 3-hydroxykynurenine: xanthurenic acid ratio, and HKr) were elevated in depressed patients compared to controls, suggestive of reduced vitamin B6 function. Over 30% of the patient cohort were found to have low to deficient PLP concentrations, and exploratory analyses revealed that these patients had higher IL-6 and CRP concentrations compared to patients with PLP levels within the normal range. Treatment with ECT did not alter B vitamin concentrations, and B vitamin concentrations were not associated with depression severity or the therapeutic response to ECT. Overall, reduced plasma PLP, nicotinamide, and N1-methylnicotinamide concentrations could have wide ranging effects on pathways and systems implicated in depression. Further studies are required to understand the reasons why patients with depression present with low plasma B vitamin concentrations.
Collapse
Affiliation(s)
- Karen M Ryan
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland.,Department of Psychiatry, Trinity College Dublin, St. Patrick's University Hospital, James Street, Dublin 8, Ireland
| | - Kelly A Allers
- Central Nervous System Disease Research, Boehringer Ingelheim Pharma GmbH + Co. KG, Birkendorferstrabe 65, Biberach a.d. Riss, Germany
| | - Andrew Harkin
- Neuropsychopharmacology Research Group, School of Pharmacy and Pharmaceutical Sciences & Trinity College Institute of Neuroscience, Trinity College, Dublin 2, Ireland
| | - Declan M McLoughlin
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland.,Department of Psychiatry, Trinity College Dublin, St. Patrick's University Hospital, James Street, Dublin 8, Ireland
| |
Collapse
|
13
|
Titcomb TJ, Tanumihardjo SA. Global Concerns with B Vitamin Statuses: Biofortification, Fortification, Hidden Hunger, Interactions, and Toxicity. Compr Rev Food Sci Food Saf 2019; 18:1968-1984. [DOI: 10.1111/1541-4337.12491] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/18/2019] [Accepted: 07/11/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Tyler J. Titcomb
- Dept. of Nutritional SciencesUniv. of Wisconsin‐Madison Madison WI 53706 U.S.A
| | | |
Collapse
|
14
|
Dhar I, Lysne V, Svingen GFT, Ueland PM, Gregory JF, Bønaa KH, Nygård OK. Elevated plasma cystathionine is associated with increased risk of mortality among patients with suspected or established coronary heart disease. Am J Clin Nutr 2019; 109:1546-1554. [PMID: 31005968 DOI: 10.1093/ajcn/nqy391] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 12/26/2018] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Elevated circulating cystathionine levels are related to atherosclerotic cardiovascular disease, a leading cause of death globally. OBJECTIVE We investigated whether plasma cystathionine was associated with mortality in patients with suspected or established coronary heart disease (CHD). METHODS Data from 2 independent cohorts of patients with suspected stable angina pectoris (SAP) (3033 patients; median 10.7 y follow-up; 648 deaths) or acute myocardial infarction (AMI) (3670 patients; median 7.0 y follow-up; 758 deaths) were included. Hazard ratios with 95% CIs per SD increment of log-transformed cystathionine were calculated using Cox regression modeling. Endpoint data was obtained from a national health registry. RESULTS Among patients with SAP, there was a positive association between plasma cystathionine and death (age- and sex-adjusted HRs [95% CI] per SD: 1.23 [1.14, 1.32], 1.29 [1.16, 1.44], and 1.17 [1.05, 1.29] for total, cardiovascular, and noncardiovascular mortality, respectively). Corresponding risk estimates were 1.28 (1.19, 1.37) for all-cause, 1.33 (1.22, 1.45) for cardiovascular, and 1.19 (1.06, 1.34) for noncardiovascular death among AMI patients. In both cohorts, estimates were slightly attenuated after multivariate adjustments for established CHD risk factors. Subgroup analyses showed that the relation between cystathionine and all-cause mortality in SAP patients was stronger among nonsmokers and those with lower plasma concentration of pyridoxal-5'-phosphate (P-interaction ≤ 0.01 for both). CONCLUSIONS Elevated plasma cystathionine is associated with both cardiovascular and noncardiovascular mortality among patients with suspected or established CHD. The joint risk associations of high plasma cystathionine with lifestyle factors and impaired vitamin B-6 status on mortality need further investigation. This trial was registered at clinicaltrials.gov as NCT00354081 and NCT00266487.
Collapse
Affiliation(s)
- Indu Dhar
- Department of Clinical Science, KG Jebsen Centre for Diabetes Research, University of Bergen, Bergen, Norway.,KG Jebsen Centre for Diabetes Research, University of Bergen, Bergen, Norway
| | - Vegard Lysne
- Department of Clinical Science, KG Jebsen Centre for Diabetes Research, University of Bergen, Bergen, Norway
| | - Gard F T Svingen
- Department of Heart Disease, Haukeland University Hospital, Bergen, Norway
| | - Per M Ueland
- Department of Clinical Science, KG Jebsen Centre for Diabetes Research, University of Bergen, Bergen, Norway.,Bevital AS, Bergen, Norway
| | - Jesse F Gregory
- Food Science and Human Nutrition Department, University of Florida, Gainesville, FL
| | - Kaare H Bønaa
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Ottar K Nygård
- Department of Clinical Science, KG Jebsen Centre for Diabetes Research, University of Bergen, Bergen, Norway.,KG Jebsen Centre for Diabetes Research, University of Bergen, Bergen, Norway.,Department of Heart Disease, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
15
|
Velásquez M, Méndez D, Moneriz C. Pyridoxine Decreases Oxidative Stress on Human Erythrocyte Membrane Protein in vitro. Open Biochem J 2019. [DOI: 10.2174/1874091x01913010037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Background:
Pyridoxine has reduction and prevention against the levels of reactive oxygen species in in vitro studies. However, the biochemical mechanism that explains this behavior has not yet been fully clarified.
Objective:
To evaluate the effect of pyridoxine against oxidative damage on the membrane of human erythrocytes.
Methods:
Cumene hydroperoxide was used to induce oxidative stress in protein and lipid. Human erythrocytes were incubated with pyridoxine and cumene hydroperoxide, either alone or together for 8 h. Oxidative damage was determined by measuring lipid peroxidation and membrane protein carbonylation.
Results:
The results indicate that the malondialdehyde concentration decreased with increasing concentration of pyridoxine. The membrane protein content also decreased with increasing concentration of vitamin B6, which was confirmed by the decreased signal intensity in the western blot when compared to control without pyridoxine. Results demonstrate that pyridoxine can significantly decrease lipid peroxidation and protein carbonylation in red cell membrane exposed to high concentrations of oxidant agent.
Conclusion:
Pyridoxine showed a protective effect against the oxidative stress in human erythrocytes in vitro, inhibiting the carbonylation and the oxidative damage of erythrocyte membrane proteins. To date, such an effect has not yet been reported in terms of protein oxidation.
Collapse
|
16
|
Subclinical inflammation, telomere shortening, homocysteine, vitamin B6, and mortality: the Ludwigshafen Risk and Cardiovascular Health Study. Eur J Nutr 2019; 59:1399-1411. [PMID: 31129702 PMCID: PMC7230054 DOI: 10.1007/s00394-019-01993-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 05/07/2019] [Indexed: 01/08/2023]
Abstract
Purpose Short telomeres and B vitamin deficiencies have been proposed as risk factors for age-related diseases and mortality that interact through oxidative stress and inflammation. However, available data to support this concept are insufficient. We aimed to investigate the predictive role of B vitamins and homocysteine (HCY) for mortality in cardiovascular patients. We explored potential relationships between HCY, B vitamins, relative telomere length (RTL), and indices of inflammation. Methods Vitamin B6, HCY, interleukin-6 (IL-6), high-sensitive-C-reactive protein (hs-CRP), and RTL were measured in participants of the Ludwigshafen Risk and Cardiovascular Health Study. Death events were recorded over a median follow-up of 9.9 years. Results All-cause mortality increased with higher concentrations of HCY and lower vitamin B6. Patients in the 4th quartile of HCY and vitamin B6 had hazard ratios (HR) for all-cause mortality of 2.77 (95% CI 2.28–3.37) and 0.41(95% CI 0.33–0.49), respectively, and for cardiovascular mortality of 2.78 (95% CI 2.29–3.39) and 0.40 (95% CI 0.33–0.49), respectively, compared to those in the 1st quartile. Multiple adjustments for confounders did not change these results. HCY and vitamin B6 correlated with age-corrected RTL (r = − 0.086, p < 0.001; r = 0.04, p = 0.031, respectively), IL-6 (r = 0.148, p < 0.001; r = − 0.249, p < 0.001, respectively), and hs-CRP (r = 0.101, p < 0.001; r = − 0.320, p < 0.001, respectively). Subjects with the longest telomeres had a significantly higher concentration of vitamin B6, but lower concentrations of HCY, IL-6, and hs-CRP. Multiple regression analyses identified HCY as an independent negative predictor of age-corrected RTL. Conclusions In conclusion, hyperhomocysteinemia and vitamin B6 deficiency are risk factors for death from any cause. Hyperhomocysteinemia and vitamin B6 deficiency correlate with increased mortality. This correlation might, at least partially, be explained by accelerated telomere shortening induced by oxidative stress and systemic inflammation in these circumstances. Electronic supplementary material The online version of this article (10.1007/s00394-019-01993-8) contains supplementary material, which is available to authorized users.
Collapse
|
17
|
Ruiz-León AM, Lapuente M, Estruch R, Casas R. Clinical Advances in Immunonutrition and Atherosclerosis: A Review. Front Immunol 2019; 10:837. [PMID: 31068933 PMCID: PMC6491827 DOI: 10.3389/fimmu.2019.00837] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 04/01/2019] [Indexed: 12/11/2022] Open
Abstract
Atherosclerosis is a chronic low-grade inflammatory disease that affects large and medium-sized arteries and is considered to be a major underlying cause of cardiovascular disease (CVD). The high risk of mortality by atherosclerosis has led to the development of new strategies for disease prevention and management, including immunonutrition. Plant-based dietary patterns, functional foods, dietary supplements, and bioactive compounds such as the Mediterranean Diet, berries, polyunsaturated fatty acids, ω-3 and ω-6, vitamins E, A, C, and D, coenzyme Q10, as well as phytochemicals including isoflavones, stilbenes, and sterols have been associated with improvement in atheroma plaque at an inflammatory level. However, many of these correlations have been obtained in vitro and in experimental animals' models. On one hand, the present review focuses on the evidence obtained from epidemiological, dietary intervention and supplementation studies in humans supporting the role of immunonutrient supplementation and its effect on anti-inflammatory response in atherosclerotic disease. On the other hand, this review also analyzes the possible molecular mechanisms underlying the protective action of these supplements, which may lead a novel therapeutic approach to prevent or attenuate diet-related disease, such as atherosclerosis.
Collapse
Affiliation(s)
- Ana María Ruiz-León
- Department of Internal Medicine, Hospital Clinic, University of Barcelona, Barcelona, Spain.,Mediterranean Diet Foundation, Barcelona, Spain
| | - María Lapuente
- Department of Internal Medicine, Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Ramon Estruch
- Department of Internal Medicine, Hospital Clinic, University of Barcelona, Barcelona, Spain.,CIBER 06/03: Fisiopatología de la Obesidad y la Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Rosa Casas
- Department of Internal Medicine, Hospital Clinic, University of Barcelona, Barcelona, Spain.,CIBER 06/03: Fisiopatología de la Obesidad y la Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
18
|
Obeid R, Geisel J, Nix WA. 4-Pyridoxic Acid/Pyridoxine Ratio in Patients with Type 2 Diabetes is Related to Global Cardiovascular Risk Scores. Diagnostics (Basel) 2019; 9:diagnostics9010028. [PMID: 30845778 PMCID: PMC6468858 DOI: 10.3390/diagnostics9010028] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 02/27/2019] [Accepted: 02/28/2019] [Indexed: 11/29/2022] Open
Abstract
Background: Vascular diseases are multifactorial and several risk factors may have synergetic effect on the global vascular risk. Among patients with diabetes, we investigated whether vitamin B6 species differ according to global cardiovascular risk. Methods: The present observational study included 122 patients with type 2 diabetes (mean (SD) age = 69.9 (9.1) years; 50% men). Concentrations of vitamin B6 vitamers were measured. Classical blood biomarkers and risk factors were used to compute a multivariate risk score. Results: Plasma concentrations of 4-pyridoxic acid were higher in patients with high risk versus those with low risk scores (48.2 (63.7) vs. 31.9 (15.0) nmol/L; p = 0.031). Plasma pyridoxine was significantly lowered in patients at high risk (2.8 (28.4) vs. 38.1 (127.8) nmol/L; p = 0.003). PAr index (4-pyridoxic acid/pyridoxal + pyridoxal 5′-phosphate) (1.05 (0.07) vs. 0.84 (0.06); p = 0.017) and the ratio of 4-pyridoxic acid/pyridoxine (7.0 (4.8) vs. 3.9 (3.2); p < 0.001) were higher in patients at high risk. After adjustment for cystatin C and C-reactive protein, only pyridoxine and 4-pyridoxic acid/pyridoxine ratio remained significantly different according to vascular risk scores. 4-Pyridoxic acid/pyridoxine ratio was the best marker to discriminate between patients according to their risk scores—area under the curve (AUC) (95% confidence intervals (CI)) = 0.72 (0.62–0.81). 4-Pyridoxic acid/pyridoxine ratio was directly related to plasma levels of soluble vascular cell adhesion molecule 1. Conclusion: Vitamin B6 metabolism was shifted in patients with multiple vascular risk factors. The catabolism to 4-pyridoxic acid was enhanced, whereas the catabolism to pyridoxine was lowered. High 4-Pyridoxic acid/pyridoxine ratio is independently associated with global cardiovascular risk.
Collapse
Affiliation(s)
- Rima Obeid
- Department of Clinical Chemistry and Laboratory Medicine, Saarland University Hospital, Building 57, 66424 Homburg/Saar, Germany.
| | - Juergen Geisel
- Department of Clinical Chemistry and Laboratory Medicine, Saarland University Hospital, Building 57, 66424 Homburg/Saar, Germany.
| | - Wilfred A Nix
- Department of Neurology, Mains University Hospital, Langenbeckstr 1, 55131 Mainz, Germany.
| |
Collapse
|
19
|
Micronutrient status assessment in humans: Current methods of analysis and future trends. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.02.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
20
|
Christensen MHE, Fadnes DJ, Røst TH, Pedersen ER, Andersen JR, Våge V, Ulvik A, Midttun Ø, Ueland PM, Nygård OK, Mellgren G. Inflammatory markers, the tryptophan-kynurenine pathway, and vitamin B status after bariatric surgery. PLoS One 2018; 13:e0192169. [PMID: 29401505 PMCID: PMC5798786 DOI: 10.1371/journal.pone.0192169] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 01/17/2018] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE Obesity is associated with increased inflammation and insulin resistance. In conditions with chronic immune activation, low plasma vitamin B6-levels are described, as well as an increased kynurenine:tryptophan-ratio (KTR). We investigated circulating tryptophan, kynurenine and its metabolites, neopterin, B-vitamins, CRP, and HbA1c in individuals with obesity before and after bariatric surgery. METHODS This longitudinal study included 37 patients with severe obesity, scheduled for bariatric surgery. Blood samples were taken at inclusion and at three months and one year postoperatively. RESULTS We observed significant positive correlations between HbA1c and both 3-hydroxy-kynurenine and 3-hydroxyanthranilic acid at inclusion. After surgery, fasting glucose, HbA1C and triglycerides decreased, whereas HDL-cholesterol increased. Tryptophan, kynurenine and its metabolites, except for anthranilic acid, decreased during weight loss. The KTR and CRP decreased while vitamin B6 increased during the year following operation, indicating reduced inflammation (all p<0.05). CONCLUSIONS In patients with obesity subjected to bariatric surgery, levels of 3-hydroxykynurenine and 3-hydroxyanthranilic acid seemed to be positively correlated to impaired glucose tolerance. One year following surgery, plasma levels of the kynurenine metabolites were substantially decreased, along with a metabolic improvement. The relation of circulating kynurenine pathway metabolites with biomarkers of metabolic impairment in patients with obesity needs further evaluation.
Collapse
Affiliation(s)
- Monika H. E. Christensen
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Dag J. Fadnes
- Medical Department, Førde Hospital Trust, Førde, Norway
| | - Therese H. Røst
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Eva R. Pedersen
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Heart Disease, Haukeland University Hospital, Bergen, Norway
| | - John R. Andersen
- Sogn og Fjordane University College, Førde, Norway
- Center of Health Research, Førde Hospital Trust, Førde, Norway
| | - Villy Våge
- Center of Health Research, Førde Hospital Trust, Førde, Norway
- Department of Surgery, Voss Hospital, Bergen Health Trust, Voss, Norway
| | | | | | - Per M. Ueland
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Laboratory of Clinical Biochemistry, Haukeland University Hospital, Bergen, Norway
| | - Ottar K. Nygård
- Department of Heart Disease, Haukeland University Hospital, Bergen, Norway
- KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Gunnar Mellgren
- KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, Bergen, Norway
- Hormone Laboratory, Haukeland University Hospital, Bergen, Norway
- * E-mail:
| |
Collapse
|
21
|
Bird RP. The Emerging Role of Vitamin B6 in Inflammation and Carcinogenesis. ADVANCES IN FOOD AND NUTRITION RESEARCH 2018; 83:151-194. [PMID: 29477221 DOI: 10.1016/bs.afnr.2017.11.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Vitamin B6 serves as a coenzyme catalyzing more than 150 enzymes regulating metabolism and synthesis of proteins, carbohydrates, lipids, heme, and important bioactive metabolites. For several years vitamin B6 and its vitamers (B6) were recognized as antioxidant and antiinflammatory and in modulating immunity and gene expression. During the last 10 years, there were growing reports implicating B6 in inflammation and inflammation-related chronic illnesses including cancer. It is unclear if the deficiency of B6 or additional intake of B6, above the current requirement, should be the focus. Whether the current recommended daily intake for B6 is adequate should be revisited, since B6 is important to human health beyond its role as a coenzyme and its status is affected by many factors including but not limited to age, obesity, and inflammation associated with chronic illnesses. A link between inflammation B6 status and carcinogenesis is not yet completely understood. B6-mediated synthesis of H2S, a gasotransmitter, and taurine in health and disease, especially in maintaining mitochondrial integrity and biogenesis and inflammation, remains an important area to be explored. Recent developments in the molecular role of B6 and its direct interaction with inflammasomes, and nuclear receptor corepressor and coactivator, receptor-interacting protein 140, provide a strong impetus to further explore the multifaceted role of B6 in carcinogenesis and human health.
Collapse
Affiliation(s)
- Ranjana P Bird
- School of Health Sciences, University of Northern British Columbia, Prince George, BC, Canada.
| |
Collapse
|
22
|
Li Y, Zhang D, He Y, Chen C, Song C, Zhao Y, Bai Y, Wang Y, Pu J, Chen J, Yang Y, Dou K. Investigation of novel metabolites potentially involved in the pathogenesis of coronary heart disease using a UHPLC-QTOF/MS-based metabolomics approach. Sci Rep 2017; 7:15357. [PMID: 29127404 PMCID: PMC5681629 DOI: 10.1038/s41598-017-15737-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 10/31/2017] [Indexed: 11/09/2022] Open
Abstract
Coronary heart disease (CHD) is associated with complex metabolic disorders, but its molecular aetiology remains unclear. Using a novel nontargeted metabolomics approach, we explored the global metabolic perturbation profile for CHD. Blood samples from 150 patients with severe obstructive CHD and 150 angiographically normal controls were collected. Metabolic fingerprinting was performed by ultra-high performance liquid chromatography coupled to quadruple time-of-flight mass spectrometry (UHPLC-QTOF/MS) technique. After adjusting for CHD traditional risk factors and metabolic batch, a comprehensive list of 105 metabolites was found to be significantly altered in CHD patients. Among the metabolites identified, six metabolites were discovered to have the strongest correlation with CHD after adjusting for multiple testing: palmitic acid (β = 0.205; p < 0.0001), linoleic acid (β = 0.133; p < 0.0001), 4-pyridoxic acid (β = 0.142; p < 0.0001), phosphatidylglycerol (20:3/2:0) (β = 0.287; p < 0.0001), carnitine (14:1) (β = 0.332; p < 0.0001) and lithocholic acid (β = 0.224; p < 0.0001); of these, 4-pyridoxic acid, lithocholic acid and phosphatidylglycerol (20:3/2:0) were, to the best of our knowledge, first reported in this study. A logistic regression model further quantified their positive independent correlations with CHD. In conclusion, this study surveyed a broad panel of nontargeted metabolites in Chinese CHD populations and identified novel metabolites that are potentially involved in CHD pathogenesis.
Collapse
Affiliation(s)
- Yiping Li
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Centre for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100037, People's Republic of China
| | - Dong Zhang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Centre for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100037, People's Republic of China
| | - Yuan He
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Centre for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100037, People's Republic of China
| | - Changzhe Chen
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Centre for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100037, People's Republic of China
| | - Chenxi Song
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Centre for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100037, People's Republic of China
| | - Yanyan Zhao
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Centre for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100037, People's Republic of China
| | - Yinxiao Bai
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Centre for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100037, People's Republic of China
| | - Yang Wang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Centre for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100037, People's Republic of China
| | - Jielin Pu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Centre for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100037, People's Republic of China
| | - Jingzhou Chen
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Centre for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100037, People's Republic of China
| | - Yuejin Yang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Centre for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100037, People's Republic of China
| | - Kefei Dou
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Centre for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100037, People's Republic of China.
| |
Collapse
|
23
|
Colliou N, Ge Y, Sahay B, Gong M, Zadeh M, Owen JL, Neu J, Farmerie WG, Alonzo F, Liu K, Jones DP, Li S, Mohamadzadeh M. Commensal Propionibacterium strain UF1 mitigates intestinal inflammation via Th17 cell regulation. J Clin Invest 2017; 127:3970-3986. [PMID: 28945202 PMCID: PMC5663347 DOI: 10.1172/jci95376] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 08/02/2017] [Indexed: 12/21/2022] Open
Abstract
Consumption of human breast milk (HBM) attenuates the incidence of necrotizing enterocolitis (NEC), which remains a leading and intractable cause of mortality in preterm infants. Here, we report that this diminution correlates with alterations in the gut microbiota, particularly enrichment of Propionibacterium species. Transfaunation of microbiota from HBM-fed preterm infants or a newly identified and cultured Propionibacterium strain, P. UF1, to germfree mice conferred protection against pathogen infection and correlated with profound increases in intestinal Th17 cells. The induction of Th17 cells was dependent on bacterial dihydrolipoamide acetyltransferase (DlaT), a major protein expressed on the P. UF1 surface layer (S-layer). Binding of P. UF1 to its cognate receptor, SIGNR1, on dendritic cells resulted in the regulation of intestinal phagocytes. Importantly, transfer of P. UF1 profoundly mitigated induced NEC-like injury in neonatal mice. Together, these results mechanistically elucidate the protective effects of HBM and P. UF1-induced immunoregulation, which safeguard against proinflammatory diseases, including NEC.
Collapse
Affiliation(s)
- Natacha Colliou
- Department of Infectious Diseases and Immunology
- Division of Gastroenterology, Hepatology & Nutrition, Department of Medicine
| | - Yong Ge
- Department of Infectious Diseases and Immunology
- Division of Gastroenterology, Hepatology & Nutrition, Department of Medicine
| | - Bikash Sahay
- Department of Infectious Diseases and Immunology
| | - Minghao Gong
- Department of Infectious Diseases and Immunology
- Division of Gastroenterology, Hepatology & Nutrition, Department of Medicine
| | - Mojgan Zadeh
- Department of Infectious Diseases and Immunology
- Division of Gastroenterology, Hepatology & Nutrition, Department of Medicine
| | | | - Josef Neu
- Division of Neonatology, Department of Pediatrics, and
| | - William G. Farmerie
- Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, Florida, USA
| | - Francis Alonzo
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, USA
| | - Ken Liu
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Dean P. Jones
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Shuzhao Li
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Mansour Mohamadzadeh
- Department of Infectious Diseases and Immunology
- Division of Gastroenterology, Hepatology & Nutrition, Department of Medicine
| |
Collapse
|
24
|
DeRatt BN, Ralat MA, Lysne V, Tayyari F, Dhar I, Edison AS, Garrett TJ, Midttun Ø, Ueland PM, Nygård OK, Gregory JF. Metabolomic Evaluation of the Consequences of Plasma Cystathionine Elevation in Adults with Stable Angina Pectoris. J Nutr 2017; 147:1658-1668. [PMID: 28794210 PMCID: PMC5572496 DOI: 10.3945/jn.117.254029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 05/30/2017] [Accepted: 06/29/2017] [Indexed: 02/02/2023] Open
Abstract
Background: An elevated circulating cystathionine concentration, which arises in part from insufficiencies of vitamin B-6, B-12, or folate, has been shown to be associated with cardiovascular disease (CVD) risk. Hydrogen sulfide (H2S) is a gasotransmitter involved in vasodilation, neuromodulation, and inflammation. Most endogenously produced H2S is formed by pyridoxal phosphate (PLP)-dependent enzymes by noncanonical reactions of the transsulfuration pathway that yield H2S concurrently form lanthionine and homolanthionine. Thus, plasma lanthionine and homolanthionine concentrations can provide relative information about H2S production in vivo.Objective: To determine the metabolic consequences of an elevated plasma cystathionine concentration in adults with stable angina pectoris (SAP), we conducted both targeted and untargeted metabolomic analyses.Methods: We conducted NMR and LC-mass spectrometry (MS) metabolomic analyses on a subset of 80 plasma samples from the Western Norway Coronary Angiography Cohort and selected, based on plasma cystathionine concentrations, a group with high cystathionine concentrations [1.32 ± 0.60 μmol/L (mean ± SD); n = 40] and a group with low cystathionine concentrations [0.137 ± 0.011 μmol/L (mean ± SD); n = 40]. Targeted and untargeted metabolomic analyses were performed and assessed with the use of Student's t tests corrected for multiple testing. Overall differences between the cystathionine groups were assessed by untargeted NMR and LC-MS metabolomic methods and evaluated by partial least squares discriminant analysis (PLS-DA) with significant discriminating metabolites identified with 99% confidence.Results: Subjects with high cystathionine concentrations had 75% higher plasma lanthionine concentrations (0.12 ± 0.044 μmol/L) than subjects with low cystathionine concentrations [0.032 ± 0.013 μmol/L (P < 0.001)]. Although plasma homolanthionine concentrations were notably higher than lanthionine concentrations, they were not different between the groups (P = 0.47). PLS-DA results showed that a high plasma cystathionine concentration in SAP was associated with higher glucose, branched-chain amino acids, and phenylalanine concentrations, lower kidney function, and lower glutathione and plasma PLP concentrations due to greater catabolism. The high-cystathionine group had a greater proportion of subjects in the postprandial state.Conclusion: These data suggest that metabolic perturbations consistent with higher CVD risk exist in SAP patients with elevated plasma cystathionine concentrations.
Collapse
Affiliation(s)
| | | | - Vegard Lysne
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Fariba Tayyari
- Departments of Biochemistry and,Genetics, Institute of Bioinformatics, and Complex Carbohydrate Research Center, University of Georgia, Athens, GA
| | - Indu Dhar
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Arthur S Edison
- Departments of Biochemistry and,Genetics, Institute of Bioinformatics, and Complex Carbohydrate Research Center, University of Georgia, Athens, GA
| | - Timothy J Garrett
- Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL
| | | | - Per Magne Ueland
- Department of Clinical Science, University of Bergen, Bergen, Norway;,Laboratory of Clinical Biochemistry and
| | - Ottar Kjell Nygård
- Department of Clinical Science, University of Bergen, Bergen, Norway;,Department of Heart Disease, Haukeland University Hospital, Bergen, Norway
| | | |
Collapse
|
25
|
High-dose B-vitamin supplements and risk for age-related cataract: a population-based prospective study of men and women. Br J Nutr 2017; 118:154-160. [DOI: 10.1017/s0007114517001994] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
AbstractPrevious studies that have investigated the association between B-vitamin supplement use and risk for cataract yield conflicting results. The aim of this study was to examine the association between use of high-dose B-vitamin supplements (approximately 10 times recommended daily intake) and risk for age-related cataract in a population-based prospective study of 13 757 women from the Swedish Mammography Cohort and 22 823 men from the Cohort of Swedish Men. Dietary supplement use and potential confounders were assessed using a questionnaire at baseline. Information on cataract diagnosis and extraction was obtained through linkage to registers. During the follow-up period between January 1998 and December 2011, we identified 8395 cataract cases (3851 for women and 4544 for men). The use of B vitamins plus other supplements and B vitamins only was associated with 9 % (95 % CI 2, 17) and 27 % (95 % CI 12, 43) increased risk for cataract, respectively. The hazard ratios for use of B vitamins only and risk for cataract stratified by different age groups were as follows: <60 years: 1·88 (95 % CI 1·47, 2·39); 60–69 years: 1·21 (95 % CI 0·96, 1·53); and ≥70 years: 1·09 (95 % CI 0·91, 1·31) (Pinteraction=0·002). Our results suggest that the use of high-dose B-vitamin supplements was associated with an increased risk for cataract. This association might be confined to younger participants.
Collapse
|
26
|
Ueland PM, McCann A, Midttun Ø, Ulvik A. Inflammation, vitamin B6 and related pathways. Mol Aspects Med 2016; 53:10-27. [PMID: 27593095 DOI: 10.1016/j.mam.2016.08.001] [Citation(s) in RCA: 216] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 08/27/2016] [Indexed: 12/11/2022]
Abstract
The active form of vitamin B6, pyridoxal 5'-phosphate (PLP), serves as a co-factor in more than 150 enzymatic reactions. Plasma PLP has consistently been shown to be low in inflammatory conditions; there is a parallel reduction in liver PLP, but minor changes in erythrocyte and muscle PLP and in functional vitamin B6 biomarkers. Plasma PLP also predicts the risk of chronic diseases like cardiovascular disease and some cancers, and is inversely associated with numerous inflammatory markers in clinical and population-based studies. Vitamin B6 intake and supplementation improve some immune functions in vitamin B6-deficient humans and experimental animals. A possible mechanism involved is mobilization of vitamin B6 to the sites of inflammation where it may serve as a co-factor in pathways producing metabolites with immunomodulating effects. Relevant vitamin B6-dependent inflammatory pathways include vitamin B6 catabolism, the kynurenine pathway, sphingosine 1-phosphate metabolism, the transsulfuration pathway, and serine and glycine metabolism.
Collapse
Affiliation(s)
- Per Magne Ueland
- Department of Clinical Science, University of Bergen, 5021 Bergen, Norway; Laboratory of Clinical Biochemistry, Haukeland University Hospital, 5021 Bergen, Norway.
| | | | | | - Arve Ulvik
- Bevital A/S, Laboratoriebygget, 5021 Bergen, Norway
| |
Collapse
|
27
|
Deac OM, Mills JL, Gardiner CM, Shane B, Quinn L, Midttun Ø, McCann A, Meyer K, Ueland PM, Fan R, Lu Z, Brody LC, Molloy AM. Serum Immune System Biomarkers Neopterin and Interleukin-10 Are Strongly Related to Tryptophan Metabolism in Healthy Young Adults. J Nutr 2016; 146:1801-6. [PMID: 27489009 PMCID: PMC4997280 DOI: 10.3945/jn.116.230698] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 07/05/2016] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Changes in tryptophan metabolism through the vitamin B-6-dependent kynurenine pathway have been linked to activation of the immune system. OBJECTIVE We hypothesized that blood concentrations of tryptophan and its catabolites were associated with biomarkers relevant to inflammatory processes in healthy noninflamed subjects. METHODS Healthy young adults (n = 737) aged 18-28 y without any known diseases or clinical evidence of inflammation provided blood samples for analysis of serum tryptophan/kynurenine metabolites, neopterin, C-reactive protein (CRP), and plasma pyridoxal 5'-phosphate (PLP) with LC-tandem mass spectrometry methodologies. A panel of cytokines was measured in serum by using high-sensitivity ELISA assays. Anthropometric and lifestyle data were collected by questionnaire. Multiple linear regression analysis to determine the effect of measured serum cytokine concentrations as predictors of tryptophan metabolites was performed on inverse normal-rank transformations of the data, adjusted for sex, body mass index, smoking, alcohol intake, and contraceptive use in women. RESULTS Median serum CRP and neopterin concentrations were well below established clinical cutoffs for inflammation. We observed significant positive associations between serum interleukin-10 (IL-10) and serum kynurenine (P = 0.0002), the kynurenine-to-tryptophan ratio (KTR) (P = 0.003), 3-hydroxykynurenine (P = 0.01), and 3-hydroxyanthranilic acid (P = 0.04). Serum neopterin was positively associated with kynurenine, the KTR (both P < 0.0001), and anthranilic acid (P = 0.004), and was negatively associated with serum tryptophan (P = 0.01) and PLP (P < 0.0001). Serum tumor necrosis factor α was also negatively associated with tryptophan (P < 0.001). CONCLUSIONS In healthy young adults with no apparent inflammatory conditions, serum tryptophan metabolites are significantly associated with key immune system biomarkers. The observed association between IL-10 and kynurenine is unexpected and suggests that kynurenine-linked mechanisms promoting negative regulation of inflammatory responses are associated with normal immune homeostasis.
Collapse
Affiliation(s)
| | - James L Mills
- Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, and
| | - Clair M Gardiner
- School of Biochemistry and Immunology, Trinity College Dublin, Ireland
| | - Barry Shane
- Nutritional Science and Toxicology, University of California, Berkeley, Berkeley, CA
| | - Louise Quinn
- School of Biochemistry and Immunology, Trinity College Dublin, Ireland
| | | | | | | | - Per M Ueland
- Section of Pharmacology, Institute of Medicine, University of Bergen and Haukeland University Hospital, Bergen, Norway
| | - Ruzong Fan
- Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, and
| | - Zhaohui Lu
- Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, and
| | - Lawrence C Brody
- Molecular Pathogenesis Section, Genome Technology Branch, National Human Genome Research Institute, NIH, Bethesda, MD
| | - Anne M Molloy
- School of Medicine and School of Biochemistry and Immunology, Trinity College Dublin, Ireland;
| |
Collapse
|
28
|
Poudel-Tandukar K, Chandyo RK. Dietary B Vitamins and Serum C-Reactive Protein in Persons With Human Immunodeficiency Virus Infection: The Positive Living With HIV (POLH) Study. Food Nutr Bull 2016; 37:517-528. [PMID: 27370977 DOI: 10.1177/0379572116657268] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND B vitamins may have beneficial roles in reducing inflammation; however, research on the role of B vitamins in inflammation among HIV-infected persons is lacking. OBJECTIVE This study assessed the association between B vitamins and serum C-reactive protein (CRP) concentrations in HIV-infected persons. METHODS A cross-sectional survey was conducted among 314 HIV-infected persons (180 men and 134 women) aged 18 to 60 years residing in the Kathmandu, Nepal. High-sensitive and regular serum CRP concentrations were measured by the latex agglutination nephelometry and latex agglutination turbidimetric method, respectively. Dietary intake was assessed using 2 nonconsecutive 24-hour dietary recalls. The relationships between B vitamins and serum CRP concentrations were assessed using multiple regression analysis. RESULTS The multivariate-adjusted geometric mean of serum CRP concentrations was significantly decreased with an increasing B vitamins intake across quartiles of niacin (P for trend = .007), pyridoxine (P for trend = .042), and cobalamin (P for trend = .037) in men. In men, the mean serum CRP concentrations in the highest quartiles of niacin, pyridoxine, and cobalamin were 63%, 38%, and 58%, respectively, lower than that in the lowest quartile. In women, the mean serum CRP concentrations in the highest quartiles of riboflavin (P for trend = .084) and pyridoxine (P for trend = .093) were 37% and 47%, respectively, lower than that in the lowest quartile. CONCLUSION High intake of niacin, pyridoxine, or cobalamin was independently associated with decreased serum CRP concentrations among HIV-infected men. Further prospective studies are warranted to confirm the role of B vitamins in inflammation among HIV-infected persons.
Collapse
Affiliation(s)
| | - Ram Krishna Chandyo
- Centre for International Health, University of Bergen, Norway.,Department of Community Medicine, Kathmandu Medical College, Kathmandu, Nepal
| |
Collapse
|
29
|
Ulvik A, Pedersen ER, Svingen GF, McCann A, Midttun Ø, Nygård O, Ueland PM. Vitamin B-6 catabolism and long-term mortality risk in patients with coronary artery disease. Am J Clin Nutr 2016; 103:1417-25. [PMID: 27169836 DOI: 10.3945/ajcn.115.126342] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 04/05/2016] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Low vitamin B-6 status has been related to increased risk of coronary artery disease (CAD), which is a condition that is associated with inflammation. The most common status marker, plasma pyridoxal 5'-phosphate (PLP), decreases during inflammation; therefore, causal relations are uncertain. OBJECTIVE We evaluated the vitamin B-6 biomarkers PLP, pyridoxal, and pyridoxic acid (PA) and the pyridoxic acid:(pyridoxal + PLP) ratio (PAr), a proposed marker of vitamin B-6 catabolism during activated cellular immunity, as predictors of mortality. DESIGN Associations with risks of long-term all-cause mortality and cardiovascular mortality were evaluated with the use of Cox regression in patients who were undergoing elective coronary angiography for suspected stable angina pectoris (SAP) (n = 4131) and an independent cohort of patients who were hospitalized for acute myocardial infarction (AMI) (n = 3665). RESULTS Plasma PLP (AMI patients only) and PA predicted all-cause mortality in models that were adjusted for established risk predictors, but associations were attenuated or nonsignificant after additional adjustment for inflammatory markers. PAr was correlated with biomarkers of inflammation (Pearson's r ≥ 0.37) and predicted all-cause mortality and cardiovascular mortality after adjustment for established risk predictors. In SAP patients, PAr had greater predictive strength than did current smoking, diabetes, hypertension, apolipoproteins, or C-reactive protein. PAr provided multiadjusted HRs per SD of 1.45 (95% CI: 1.30, 1.63) and 1.31 (95% CI: 1.21, 1.41) in SAP and AMI patients, respectively. In both cohorts, PAr was a particularly strong predictor of all-cause mortality for patients with no previous CAD history (P-interaction ≤ 0.04). CONCLUSION PAr may capture unique aspects of inflammatory activation and thus provide new insights into disease mechanisms that may aid in identifying patients at increased risk of future fatal events.
Collapse
Affiliation(s)
| | - Eva R Pedersen
- Department of Clinical Science, University of Bergen, Bergen, Norway; and
| | - Gard Ft Svingen
- Department of Clinical Science, University of Bergen, Bergen, Norway; and
| | | | | | - Ottar Nygård
- Department of Clinical Science, University of Bergen, Bergen, Norway; and Department of Heart Disease and
| | - Per M Ueland
- Department of Clinical Science, University of Bergen, Bergen, Norway; and Laboratory of Ok Clinical Biochemistry, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
30
|
Rios-Avila L, Coats B, Ralat M, Chi YY, Midttun Ø, Ueland PM, Stacpoole PW, Gregory JF. Pyridoxine supplementation does not alter in vivo kinetics of one-carbon metabolism but modifies patterns of one-carbon and tryptophan metabolites in vitamin B-6-insufficient oral contraceptive users. Am J Clin Nutr 2015; 102:616-25. [PMID: 26201817 PMCID: PMC4548178 DOI: 10.3945/ajcn.115.113159] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 07/01/2015] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Low chronic vitamin B-6 status can occur in a subset of women who use oral contraceptives (OCs) with uncertain metabolic consequences. An insufficiency of cellular pyridoxal 5'-phosphate (PLP), which is the coenzyme form of vitamin B-6, may impair many metabolic processes including one-carbon and tryptophan metabolism. OBJECTIVE We investigated the effects of vitamin B-6 supplementation on the in vivo kinetics of one-carbon metabolism and the concentration of one-carbon and tryptophan metabolites in vitamin B-6-deficient OC users. DESIGN A primed, constant infusion of [(13)C5]methionine, [3-(13)C]serine, and [(2)H3]leucine was performed on 10 OC users (20-40 y old; plasma PLP concentrations <30 nmol/L) before and after 28 d of supplementation with 10 mg pyridoxine hydrochloric acid/d. In vivo fluxes of total homocysteine remethylation, the remethylation of homocysteine from serine, and rates of homocysteine and cystathionine production were assessed. Targeted metabolite profiling was performed, and data were analyzed by using orthogonal partial least-squares-discriminant analysis and paired t tests adjusted for multiple testing. RESULTS Pyridoxine supplementation increased the mean ± SD plasma PLP concentration from 25.8 ± 3.6 to 143 ± 58 nmol/L (P < 0.001) and decreased the leucine concentration from 103 ± 17 to 90 ± 20 nmol/L (P = 0.007) and glycine concentration from 317 ± 63 to 267 ± 58 nmol/L (P = 0.03). Supplementation did not affect in vivo rates of homocysteine remethylation or the appearance of homocysteine and cystathionine. A multivariate analysis showed a clear overall effect on metabolite profiles resulting from supplementation. Leucine, glycine, choline, cysteine, glutathione, trimethylamine N-oxide, and the ratios glycine:serine, 3-hydroxykynurenine:kynurenine, 3-hydroxykynurenine:3-hydroxyanthranilic acid, and 3-hydroxykynurenine:anthranilic acid were significant discriminating variables. CONCLUSIONS Consistent with previous vitamin B-6-restriction studies, fluxes of one-carbon metabolic processes exhibited little or no change after supplementation in low-vitamin B-6 subjects. In contrast, changes in the metabolic profiles after supplementation indicated perturbations in metabolism, suggesting functional vitamin B-6 deficiency. This study was registered at clinicaltrials.gov as NCT01128244.
Collapse
Affiliation(s)
| | - Bonnie Coats
- Department of Medicine, Division of Endocrinology and Metabolism, College of Medicine
| | | | | | | | - Per M Ueland
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Peter W Stacpoole
- Department of Medicine, Division of Endocrinology and Metabolism, College of Medicine, Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL
| | | |
Collapse
|
31
|
Abstract
Measures of B6 status are categorized as direct biomarkers and as functional biomarkers. Direct biomarkers measure B6 vitamers in plasma/serum, urine and erythrocytes, and among these plasma pyridoxal 5'-phosphate (PLP) is most commonly used. Functional biomarkers include erythrocyte transaminase activities and, more recently, plasma levels of metabolites involved in PLP-dependent reactions, such as the kynurenine pathway, one-carbon metabolism, transsulfuration (cystathionine), and glycine decarboxylation (serine and glycine). Vitamin B6 status is best assessed by using a combination of biomarkers because of the influence of potential confounders, such as inflammation, alkaline phosphatase activity, low serum albumin, renal function, and inorganic phosphate. Ratios between substrate-products pairs have recently been investigated as a strategy to attenuate such influence. These efforts have provided promising new markers such as the PAr index, the 3-hydroxykynurenine:xanthurenic acid ratio, and the oxoglutarate:glutamate ratio. Targeted metabolic profiling or untargeted metabolomics based on mass spectrometry allow the simultaneous quantification of a large number of metabolites, which are currently evaluated as functional biomarkers, using data reduction statistics.
Collapse
Affiliation(s)
- Per Magne Ueland
- Department of Clinical Science, University of Bergen, and the Laboratory of Clinical Biochemistry, Haukeland University Hospital, 5021 Bergen, Norway;
| | | | | | | | | |
Collapse
|
32
|
Deac OM, Mills JL, Shane B, Midttun Ø, Ueland PM, Brosnan JT, Brosnan ME, Laird E, Gibney ER, Fan R, Wang Y, Brody LC, Molloy AM. Tryptophan catabolism and vitamin B-6 status are affected by gender and lifestyle factors in healthy young adults. J Nutr 2015; 145:701-7. [PMID: 25833774 PMCID: PMC4381767 DOI: 10.3945/jn.114.203091] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 01/21/2015] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Abnormalities of tryptophan (Trp) metabolism through the kynurenine (Kyn) pathway have been reported in various diseases; however, nutritional and lifestyle factors that affect this pathway in healthy individuals are not well documented. OBJECTIVE Our aim was to examine the effect of vitamin B-6 status and lifestyle factors including the use of vitamin B-6 supplements, alcohol, smoking, and oral contraceptives on Trp and its Kyn metabolites in a cohort of 2436 healthy young adults aged 18-28 y. METHODS Anthropometric and lifestyle data were collected by questionnaire. Participants provided blood samples for analysis of Trp, Kyn, anthranilic acid, kynurenic acid (KA), 3-hydroxykynurenine (HK), 3-hydroxyanthranilic acid (HAA), and xanthurenic acid (XA). Vitamin B-6 species were also measured. RESULTS Serum Trp metabolites were 10-15% higher among men (n = 993) compared with women (n = 1443; P < 0.0001), except for HK and XA. In all participants, serum Trp was positively associated with plasma pyridoxal 5'-phosphate (PLP; r = 0.28, P < 0.0001), reaching a plateau at PLP concentrations of ∼83 nmol/L. HK was inversely associated with PLP (r = -0.14, P < 0.01). Users of vitamin B-6 supplements (n = 671) had 6% lower concentrations of HK than nonusers (n = 1765; P = 0.0006). Oral contraceptive users (n = 385) had lower concentrations of KA (20.7%) but higher XA (24.1%) and HAA (9.0%) than did nonusers (n = 1058; P < 0.0001). After adjustment for gender and other lifestyle variables, XA concentrations were 16% higher in heavy drinkers (n = 713) than in never or occasional drinkers (n = 975; P = 0.0007). Concentrations of 2 other essential amino acids, methionine and arginine, also were positively associated with serum Trp (r = 0.65 and 0.33, respectively; P < 0.0001). CONCLUSIONS In this population of healthy young adults, gender has the largest influence on serum Kyn metabolite concentrations. The significant covariance of Trp with unrelated amino acids suggests that protein intake may be an important consideration in evaluating Kyn metabolism.
Collapse
Affiliation(s)
| | - James L Mills
- Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD
| | - Barry Shane
- Nutritional Science and Toxicology, University of California, Berkeley, CA
| | | | - Per M Ueland
- Section of Pharmacology, Institute of Medicine, University of Bergen and Haukeland University Hospital, Bergen, Norway
| | - John T Brosnan
- Department of Biochemistry, Memorial University, Newfoundland, Canada
| | | | - Eamon Laird
- Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| | - Eileen R Gibney
- Institute of Food and Health, University College Dublin, Dublin, Ireland; and
| | - Ruzong Fan
- Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD
| | - Yifan Wang
- Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD
| | - Lawrence C Brody
- Molecular Pathogenesis Section, Genome Technology Branch, National Human Genome Research Institute, NIH, Bethesda, MD
| | - Anne M Molloy
- Schools of Medicine and Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland;
| |
Collapse
|
33
|
3-Hydroxykynurenic Acid and Type 2 Diabetes: Implications for Aging, Obesity, Depression, Parkinson’s Disease, and Schizophrenia. TRYPTOPHAN METABOLISM: IMPLICATIONS FOR BIOLOGICAL PROCESSES, HEALTH AND DISEASE 2015. [DOI: 10.1007/978-3-319-15630-9_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
34
|
Zuo H, Ueland PM, Eussen SJPM, Tell GS, Vollset SE, Nygård O, Midttun Ø, Meyer K, Ulvik A. Markers of vitamin B6 status and metabolism as predictors of incident cancer: the Hordaland Health Study. Int J Cancer 2014; 136:2932-9. [PMID: 25404109 DOI: 10.1002/ijc.29345] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 11/07/2014] [Indexed: 12/26/2022]
Abstract
Dietary intake and/or circulating concentrations of vitamin B6 have been associated with risk of cancer, but results are inconsistent and mechanisms uncertain. Pyridoxal 5'-phosphate (PLP) is the most commonly used marker of B6 status. We recently proposed the ratio 3-hydroxykynurenine/xanthurenic acid (HK/XA) as an indicator of functional vitamin B6 status, and the 4-pyridoxic acid (PA) /(pyridoxal (PL) +PLP) ratio (PAr) as a marker of vitamin B6 catabolism during inflammation. We compared plasma PLP, HK/XA and PAr as predictors of cancer incidence in a prospective community-based cohort in Norway. This study included 6,539 adults without known cancer at baseline (1998-99) from the Hordaland Health Study (HUSK). HR and 95% CI were calculated for the risk of overall and site-specific cancers using multivariate Cox proportional hazards regression with adjustment for potential confounders. After a median follow-up time of 11.9 years, 963 cancer cases (501 men and 462 women) were identified. Multivariate-adjusted Cox-regression showed no significant relation of plasma PLP or HK/XA with risk of incident cancer. In contrast, PAr was significantly associated with risk of cancer with HR (95% CI) = 1.31 (1.12-1.52) per two standard deviation (SD) increment (p < 0.01). Further analysis showed that PAr was a particular strong predictor of lung cancer with HR (95% CI) = 2.46 (1.49-4.05) per two SD increment (p < 0.01). The present results indicate that associations of vitamin B6 with cancer may be related to increased catabolism of vitamin B6, in particular for lung cancer where inflammation may be largely involved in carcinogenesis.
Collapse
Affiliation(s)
- Hui Zuo
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway; Department of Clinical Science, University of Bergen, Bergen, Norway
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Visser NA, Notermans NC, Degen LAR, de Kruijk JR, van den Berg LH, Vrancken AFJE. Chronic idiopathic axonal polyneuropathy and vitamin B6: a controlled population-based study. J Peripher Nerv Syst 2014; 19:136-44. [DOI: 10.1111/jns5.12063] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Revised: 03/03/2014] [Accepted: 03/19/2014] [Indexed: 12/12/2022]
Affiliation(s)
- Nora A. Visser
- Department of Neurology, Brain Center Rudolf Magnus; University Medical Center Utrecht; Utrecht The Netherlands
| | - Nicolette C. Notermans
- Department of Neurology, Brain Center Rudolf Magnus; University Medical Center Utrecht; Utrecht The Netherlands
| | - Lieveke A. R. Degen
- Julius Center for Health Sciences and Primary Care, Vocational Training in General Practice; University Medical Center Utrecht; Utrecht The Netherlands
| | | | - Leonard H. van den Berg
- Department of Neurology, Brain Center Rudolf Magnus; University Medical Center Utrecht; Utrecht The Netherlands
| | - Alexander F. J. E. Vrancken
- Department of Neurology, Brain Center Rudolf Magnus; University Medical Center Utrecht; Utrecht The Netherlands
| |
Collapse
|
36
|
Vitamins B2and B6as determinants of kynurenines and related markers of interferon-γ-mediated immune activation in the community-based Hordaland Health Study. Br J Nutr 2014; 112:1065-72. [DOI: 10.1017/s0007114514001858] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Vitamins B2and B6are cofactors in the kynurenine pathway. Many of the kynurenines are neuroactive compounds with immunomodulatory effects. In the present study, we aimed to investigate plasma concentrations of vitamins B2and B6as determinants of kynurenines and two markers of interferon-γ-mediated immune activation (kynurenine:tryptophan ratio (KTR) and neopterin). We measured the concentrations of vitamins B2and B6vitamers, neopterin, tryptophan and six kynurenines (i.e. kynurenine, anthranilic acid, kynurenic acid, 3-hydroxykynurenine, 3-hydroxyanthranilic acid and xanthurenic acid) in plasma from 7051 individuals. Dietary intake of vitamins B2and B6was assessed using a validated FFQ. Associations were investigated using partial Spearman's correlations, generalised additive models, and segmented or multiple linear regression. The B2vitamer, riboflavin, was positively associated with 3-hydroxyanthranilic acid and xanthurenic acid, with correlation coefficients, as obtained by segmented regression, of 0·20 (95 % CI 0·16, 0·23) and 0·24 (95 % CI 0·19, 0·28), at riboflavin concentrations below the median value (13·0 nmol/l). The vitamin B6vitamer, pyridoxal 5′-phosphate (PLP), was positively associated with most kynurenines at PLP concentrations < 39·3–47·0 nmol/l, and inversely associated with 3-hydroxykynurenine with the association being more prominent at PLP concentrations < 18·9 nmol/l. Riboflavin and PLP were associated with xanthurenic acid only at relatively low, but normal concentrations of both vitamers. Lastly, PLP was negatively correlated with neopterin and KTR. These results demonstrate the significant and complex determination of kynurenine metabolism by vitamin status. Future studies on B-vitamins and kynurenines in relation to chronic diseases should therefore integrate data on relevant biomarkers related to B-vitamins status and tryptophan metabolism.
Collapse
|
37
|
Albersen M, Bosma M, Luykx JJ, Jans JJM, Bakker SC, Strengman E, Borgdorff PJ, Keijzers PJM, van Dongen EPA, Bruins P, de Sain-van der Velden MGM, Visser G, Knoers NVVAM, Ophoff RA, Verhoeven-Duif NM. Vitamin B-6 vitamers in human plasma and cerebrospinal fluid. Am J Clin Nutr 2014; 100:587-92. [PMID: 24808484 DOI: 10.3945/ajcn.113.082008] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Vitamin B-6 comprises a group of 6 interrelated vitamers and is essential for numerous physiologic processes, including brain functioning. Genetic disorders disrupting vitamin B-6 metabolism have severe clinical consequences. OBJECTIVE To adequately diagnose known and novel disorders in vitamin B-6 metabolism, a reference set is required containing information on all vitamin B-6 vitamers in plasma and cerebrospinal fluid (CSF). DESIGN Concentrations of vitamin B-6 vitamers in the plasma and CSF of 533 adult subjects were measured by ultra high-performance liquid chromatography-tandem mass spectrometry. RESULTS The relative vitamin B-6 vitamer composition of plasma [pyridoxal phosphate (PLP) > pyridoxic acid (PA) > pyridoxal] differed from that of CSF (pyridoxal > PLP > PA > pyridoxamine). Sex influenced vitamin B-6 vitamer concentrations in plasma and CSF and should therefore be taken into account when interpreting vitamin B-6 vitamer concentrations. The strict ratios and strong correlations between vitamin B-6 vitamers point to a tight regulation of vitamin B-6 vitamer concentrations in blood and CSF. Given the unique design of this study, with simultaneously withdrawn blood and CSF from a large number of subjects, reliable CSF:plasma ratios and correlations of vitamin B-6 vitamers could be established. CONCLUSIONS We provide an extensive reference set of vitamin B-6 vitamer concentrations in plasma and CSF. In addition to providing insight on the regulation of individual vitamers and their intercompartmental distribution, we anticipate that these data will prove to be a valuable reference set for the diagnosis and treatment of conditions associated with altered vitamin B-6 metabolism.
Collapse
Affiliation(s)
- Monique Albersen
- Department of Medical Genetics, University Medical Center Utrecht, Utrecht, Netherlands (MA, MB, JJMJ, ES, MGMdS-vdV, NVVAMK, and NMV-D); the Neurogenetics Unit (JJL) and the Department of Psychiatry (SCB and RAO), Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, Netherlands; the Department of Psychiatry, ZNA Hospitals, Antwerp, Belgium (JJL); the Department of Anesthesiology, Intensive Care and Pain Management, Diakonessenhuis Hospital, Utrecht, Netherlands (PJB); the Department of Anesthesiology, Central Military Hospital, Utrecht, Netherlands (PJMK); the Department of Anesthesiology, Intensive Care and Pain Management, St Antonius Hospital, Nieuwegein, Netherlands (EPAvD and PB); the Department of Pediatric Metabolic Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, Netherlands (GV); and the Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA (RAO)
| | - Marjolein Bosma
- Department of Medical Genetics, University Medical Center Utrecht, Utrecht, Netherlands (MA, MB, JJMJ, ES, MGMdS-vdV, NVVAMK, and NMV-D); the Neurogenetics Unit (JJL) and the Department of Psychiatry (SCB and RAO), Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, Netherlands; the Department of Psychiatry, ZNA Hospitals, Antwerp, Belgium (JJL); the Department of Anesthesiology, Intensive Care and Pain Management, Diakonessenhuis Hospital, Utrecht, Netherlands (PJB); the Department of Anesthesiology, Central Military Hospital, Utrecht, Netherlands (PJMK); the Department of Anesthesiology, Intensive Care and Pain Management, St Antonius Hospital, Nieuwegein, Netherlands (EPAvD and PB); the Department of Pediatric Metabolic Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, Netherlands (GV); and the Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA (RAO)
| | - Jurjen J Luykx
- Department of Medical Genetics, University Medical Center Utrecht, Utrecht, Netherlands (MA, MB, JJMJ, ES, MGMdS-vdV, NVVAMK, and NMV-D); the Neurogenetics Unit (JJL) and the Department of Psychiatry (SCB and RAO), Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, Netherlands; the Department of Psychiatry, ZNA Hospitals, Antwerp, Belgium (JJL); the Department of Anesthesiology, Intensive Care and Pain Management, Diakonessenhuis Hospital, Utrecht, Netherlands (PJB); the Department of Anesthesiology, Central Military Hospital, Utrecht, Netherlands (PJMK); the Department of Anesthesiology, Intensive Care and Pain Management, St Antonius Hospital, Nieuwegein, Netherlands (EPAvD and PB); the Department of Pediatric Metabolic Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, Netherlands (GV); and the Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA (RAO)
| | - Judith J M Jans
- Department of Medical Genetics, University Medical Center Utrecht, Utrecht, Netherlands (MA, MB, JJMJ, ES, MGMdS-vdV, NVVAMK, and NMV-D); the Neurogenetics Unit (JJL) and the Department of Psychiatry (SCB and RAO), Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, Netherlands; the Department of Psychiatry, ZNA Hospitals, Antwerp, Belgium (JJL); the Department of Anesthesiology, Intensive Care and Pain Management, Diakonessenhuis Hospital, Utrecht, Netherlands (PJB); the Department of Anesthesiology, Central Military Hospital, Utrecht, Netherlands (PJMK); the Department of Anesthesiology, Intensive Care and Pain Management, St Antonius Hospital, Nieuwegein, Netherlands (EPAvD and PB); the Department of Pediatric Metabolic Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, Netherlands (GV); and the Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA (RAO)
| | - Steven C Bakker
- From the Department of Medical Genetics, University Medical Center Utrecht, Utrecht, Netherlands (MA, MB, JJMJ, ES, MGMdS-vdV, NVVAMK, and NMV-D); the Neurogenetics Unit (JJL) and the Department of Psychiatry (SCB and RAO), Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, Netherlands; the Department of Psychiatry, ZNA Hospitals, Antwerp, Belgium (JJL); the Department of Anesthesiology, Intensive Care and Pain Management, Diakonessenhuis Hospital, Utrecht, Netherlands (PJB); the Department of Anesthesiology, Central Military Hospital, Utrecht, Netherlands (PJMK); the Department of Anesthesiology, Intensive Care and Pain Management, St Antonius Hospital, Nieuwegein, Netherlands (EPAvD and PB); the Department of Pediatric Metabolic Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, Netherlands (GV); and the Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA (RAO)
| | - Eric Strengman
- Department of Medical Genetics, University Medical Center Utrecht, Utrecht, Netherlands (MA, MB, JJMJ, ES, MGMdS-vdV, NVVAMK, and NMV-D); the Neurogenetics Unit (JJL) and the Department of Psychiatry (SCB and RAO), Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, Netherlands; the Department of Psychiatry, ZNA Hospitals, Antwerp, Belgium (JJL); the Department of Anesthesiology, Intensive Care and Pain Management, Diakonessenhuis Hospital, Utrecht, Netherlands (PJB); the Department of Anesthesiology, Central Military Hospital, Utrecht, Netherlands (PJMK); the Department of Anesthesiology, Intensive Care and Pain Management, St Antonius Hospital, Nieuwegein, Netherlands (EPAvD and PB); the Department of Pediatric Metabolic Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, Netherlands (GV); and the Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA (RAO)
| | - Paul J Borgdorff
- Department of Medical Genetics, University Medical Center Utrecht, Utrecht, Netherlands (MA, MB, JJMJ, ES, MGMdS-vdV, NVVAMK, and NMV-D); the Neurogenetics Unit (JJL) and the Department of Psychiatry (SCB and RAO), Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, Netherlands; the Department of Psychiatry, ZNA Hospitals, Antwerp, Belgium (JJL); the Department of Anesthesiology, Intensive Care and Pain Management, Diakonessenhuis Hospital, Utrecht, Netherlands (PJB); the Department of Anesthesiology, Central Military Hospital, Utrecht, Netherlands (PJMK); the Department of Anesthesiology, Intensive Care and Pain Management, St Antonius Hospital, Nieuwegein, Netherlands (EPAvD and PB); the Department of Pediatric Metabolic Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, Netherlands (GV); and the Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA (RAO)
| | - Peter J M Keijzers
- From the Department of Medical Genetics, University Medical Center Utrecht, Utrecht, Netherlands (MA, MB, JJMJ, ES, MGMdS-vdV, NVVAMK, and NMV-D); the Neurogenetics Unit (JJL) and the Department of Psychiatry (SCB and RAO), Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, Netherlands; the Department of Psychiatry, ZNA Hospitals, Antwerp, Belgium (JJL); the Department of Anesthesiology, Intensive Care and Pain Management, Diakonessenhuis Hospital, Utrecht, Netherlands (PJB); the Department of Anesthesiology, Central Military Hospital, Utrecht, Netherlands (PJMK); the Department of Anesthesiology, Intensive Care and Pain Management, St Antonius Hospital, Nieuwegein, Netherlands (EPAvD and PB); the Department of Pediatric Metabolic Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, Netherlands (GV); and the Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA (RAO)
| | - Eric P A van Dongen
- Department of Medical Genetics, University Medical Center Utrecht, Utrecht, Netherlands (MA, MB, JJMJ, ES, MGMdS-vdV, NVVAMK, and NMV-D); the Neurogenetics Unit (JJL) and the Department of Psychiatry (SCB and RAO), Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, Netherlands; the Department of Psychiatry, ZNA Hospitals, Antwerp, Belgium (JJL); the Department of Anesthesiology, Intensive Care and Pain Management, Diakonessenhuis Hospital, Utrecht, Netherlands (PJB); the Department of Anesthesiology, Central Military Hospital, Utrecht, Netherlands (PJMK); the Department of Anesthesiology, Intensive Care and Pain Management, St Antonius Hospital, Nieuwegein, Netherlands (EPAvD and PB); the Department of Pediatric Metabolic Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, Netherlands (GV); and the Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA (RAO)
| | - Peter Bruins
- Department of Medical Genetics, University Medical Center Utrecht, Utrecht, Netherlands (MA, MB, JJMJ, ES, MGMdS-vdV, NVVAMK, and NMV-D); the Neurogenetics Unit (JJL) and the Department of Psychiatry (SCB and RAO), Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, Netherlands; the Department of Psychiatry, ZNA Hospitals, Antwerp, Belgium (JJL); the Department of Anesthesiology, Intensive Care and Pain Management, Diakonessenhuis Hospital, Utrecht, Netherlands (PJB); the Department of Anesthesiology, Central Military Hospital, Utrecht, Netherlands (PJMK); the Department of Anesthesiology, Intensive Care and Pain Management, St Antonius Hospital, Nieuwegein, Netherlands (EPAvD and PB); the Department of Pediatric Metabolic Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, Netherlands (GV); and the Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA (RAO)
| | - Monique G M de Sain-van der Velden
- Department of Medical Genetics, University Medical Center Utrecht, Utrecht, Netherlands (MA, MB, JJMJ, ES, MGMdS-vdV, NVVAMK, and NMV-D); the Neurogenetics Unit (JJL) and the Department of Psychiatry (SCB and RAO), Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, Netherlands; the Department of Psychiatry, ZNA Hospitals, Antwerp, Belgium (JJL); the Department of Anesthesiology, Intensive Care and Pain Management, Diakonessenhuis Hospital, Utrecht, Netherlands (PJB); the Department of Anesthesiology, Central Military Hospital, Utrecht, Netherlands (PJMK); the Department of Anesthesiology, Intensive Care and Pain Management, St Antonius Hospital, Nieuwegein, Netherlands (EPAvD and PB); the Department of Pediatric Metabolic Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, Netherlands (GV); and the Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA (RAO)
| | - Gepke Visser
- Department of Medical Genetics, University Medical Center Utrecht, Utrecht, Netherlands (MA, MB, JJMJ, ES, MGMdS-vdV, NVVAMK, and NMV-D); the Neurogenetics Unit (JJL) and the Department of Psychiatry (SCB and RAO), Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, Netherlands; the Department of Psychiatry, ZNA Hospitals, Antwerp, Belgium (JJL); the Department of Anesthesiology, Intensive Care and Pain Management, Diakonessenhuis Hospital, Utrecht, Netherlands (PJB); the Department of Anesthesiology, Central Military Hospital, Utrecht, Netherlands (PJMK); the Department of Anesthesiology, Intensive Care and Pain Management, St Antonius Hospital, Nieuwegein, Netherlands (EPAvD and PB); the Department of Pediatric Metabolic Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, Netherlands (GV); and the Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA (RAO)
| | - Nine V V A M Knoers
- Department of Medical Genetics, University Medical Center Utrecht, Utrecht, Netherlands (MA, MB, JJMJ, ES, MGMdS-vdV, NVVAMK, and NMV-D); the Neurogenetics Unit (JJL) and the Department of Psychiatry (SCB and RAO), Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, Netherlands; the Department of Psychiatry, ZNA Hospitals, Antwerp, Belgium (JJL); the Department of Anesthesiology, Intensive Care and Pain Management, Diakonessenhuis Hospital, Utrecht, Netherlands (PJB); the Department of Anesthesiology, Central Military Hospital, Utrecht, Netherlands (PJMK); the Department of Anesthesiology, Intensive Care and Pain Management, St Antonius Hospital, Nieuwegein, Netherlands (EPAvD and PB); the Department of Pediatric Metabolic Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, Netherlands (GV); and the Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA (RAO)
| | - Roel A Ophoff
- Department of Medical Genetics, University Medical Center Utrecht, Utrecht, Netherlands (MA, MB, JJMJ, ES, MGMdS-vdV, NVVAMK, and NMV-D); the Neurogenetics Unit (JJL) and the Department of Psychiatry (SCB and RAO), Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, Netherlands; the Department of Psychiatry, ZNA Hospitals, Antwerp, Belgium (JJL); the Department of Anesthesiology, Intensive Care and Pain Management, Diakonessenhuis Hospital, Utrecht, Netherlands (PJB); the Department of Anesthesiology, Central Military Hospital, Utrecht, Netherlands (PJMK); the Department of Anesthesiology, Intensive Care and Pain Management, St Antonius Hospital, Nieuwegein, Netherlands (EPAvD and PB); the Department of Pediatric Metabolic Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, Netherlands (GV); and the Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA (RAO)
| | - Nanda M Verhoeven-Duif
- Department of Medical Genetics, University Medical Center Utrecht, Utrecht, Netherlands (MA, MB, JJMJ, ES, MGMdS-vdV, NVVAMK, and NMV-D); the Neurogenetics Unit (JJL) and the Department of Psychiatry (SCB and RAO), Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, Netherlands; the Department of Psychiatry, ZNA Hospitals, Antwerp, Belgium (JJL); the Department of Anesthesiology, Intensive Care and Pain Management, Diakonessenhuis Hospital, Utrecht, Netherlands (PJB); the Department of Anesthesiology, Central Military Hospital, Utrecht, Netherlands (PJMK); the Department of Anesthesiology, Intensive Care and Pain Management, St Antonius Hospital, Nieuwegein, Netherlands (EPAvD and PB); the Department of Pediatric Metabolic Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, Netherlands (GV); and the Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA (RAO)
| |
Collapse
|
38
|
Ulvik A, Midttun Ø, Pedersen ER, Eussen SJ, Nygård O, Ueland PM. Evidence for increased catabolism of vitamin B-6 during systemic inflammation. Am J Clin Nutr 2014; 100:250-5. [PMID: 24808485 DOI: 10.3945/ajcn.114.083196] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Plasma concentrations of PL 5'-phosphate (PLP), which is the active coenzyme form of vitamin B-6, are reduced during inflammation. The underlying mechanisms may include altered tissue distribution or increased catabolism via pyridoxal (PL) to pyridoxic acid (PA). Recently, we showed that catabolic enzyme activity could be assessed by substrate product ratios measured in plasma. OBJECTIVE We evaluated the ratios PA:PL, PA:PLP, and PA:(PL + PLP) as possible markers of vitamin B-6 catabolism. DESIGN Cross-sectional and longitudinal data were derived from the Western Norway B-Vitamin Intervention Trial. We analyzed associations of ratios with inflammatory markers and other clinical variables by using multiple linear regression and partial correlation. In addition, intraclass correlation coefficients (ICCs) were used to assess the ability of plasma indexes to differentiate between subjects. RESULTS PA:(PL + PLP) had the highest ICC of all vitamin B-6 metabolites and ratios tested. In regression models, the inflammatory markers C-reactive protein, white blood cell count, neopterin, and kynurenine:tryptophan collectively accounted for 28% of the total and > 90% of the explained variation in PA:(PL + PLP). For individual B-6 metabolites, corresponding numbers were 19-25% and 20-44%, respectively, with vitamin supplement intake, smoking, and kidney function (estimated glomerular filtration rate) as additional predictors. In an analysis of receiver operating characteristics, PA:(PL + PLP) discriminated high inflammatory concentrations with an area under the curve (95% CI) of 0.85 (0.81, 0.89). CONCLUSIONS Broad-specificity enzymes upregulated to reduce oxidative and aldehyde stress could explain increased catabolism of vitamin B-6 during inflammation. The ratio PA:(PL + PLP) may provide novel insights into pathologic processes and potentially predict risk of future disease.
Collapse
Affiliation(s)
- Arve Ulvik
- From Bevital A/S, Laboratoriebygget, Bergen, Norway (AU and ØM); the Section for Cardiology (ERP and ON), Department of Clinical Science (SJPME and PMU), University of Bergen, Bergen, Norway; the Department of Heart Disease (ON) and the Laboratory of Clinical Biochemistry (PMU), Haukeland University Hospital, Bergen, Norway (ON); and the Department of Epidemiology, School for Public Health and Primary Care, Maastricht University, Maastricht, Netherlands (SJPME)
| | - Øivind Midttun
- From Bevital A/S, Laboratoriebygget, Bergen, Norway (AU and ØM); the Section for Cardiology (ERP and ON), Department of Clinical Science (SJPME and PMU), University of Bergen, Bergen, Norway; the Department of Heart Disease (ON) and the Laboratory of Clinical Biochemistry (PMU), Haukeland University Hospital, Bergen, Norway (ON); and the Department of Epidemiology, School for Public Health and Primary Care, Maastricht University, Maastricht, Netherlands (SJPME)
| | - Eva R Pedersen
- From Bevital A/S, Laboratoriebygget, Bergen, Norway (AU and ØM); the Section for Cardiology (ERP and ON), Department of Clinical Science (SJPME and PMU), University of Bergen, Bergen, Norway; the Department of Heart Disease (ON) and the Laboratory of Clinical Biochemistry (PMU), Haukeland University Hospital, Bergen, Norway (ON); and the Department of Epidemiology, School for Public Health and Primary Care, Maastricht University, Maastricht, Netherlands (SJPME)
| | - Simone Jpm Eussen
- From Bevital A/S, Laboratoriebygget, Bergen, Norway (AU and ØM); the Section for Cardiology (ERP and ON), Department of Clinical Science (SJPME and PMU), University of Bergen, Bergen, Norway; the Department of Heart Disease (ON) and the Laboratory of Clinical Biochemistry (PMU), Haukeland University Hospital, Bergen, Norway (ON); and the Department of Epidemiology, School for Public Health and Primary Care, Maastricht University, Maastricht, Netherlands (SJPME)
| | - Ottar Nygård
- From Bevital A/S, Laboratoriebygget, Bergen, Norway (AU and ØM); the Section for Cardiology (ERP and ON), Department of Clinical Science (SJPME and PMU), University of Bergen, Bergen, Norway; the Department of Heart Disease (ON) and the Laboratory of Clinical Biochemistry (PMU), Haukeland University Hospital, Bergen, Norway (ON); and the Department of Epidemiology, School for Public Health and Primary Care, Maastricht University, Maastricht, Netherlands (SJPME)
| | - Per M Ueland
- From Bevital A/S, Laboratoriebygget, Bergen, Norway (AU and ØM); the Section for Cardiology (ERP and ON), Department of Clinical Science (SJPME and PMU), University of Bergen, Bergen, Norway; the Department of Heart Disease (ON) and the Laboratory of Clinical Biochemistry (PMU), Haukeland University Hospital, Bergen, Norway (ON); and the Department of Epidemiology, School for Public Health and Primary Care, Maastricht University, Maastricht, Netherlands (SJPME)
| |
Collapse
|
39
|
A simple high-performance liquid chromatography (HPLC) method for the measurement of pyridoxal-5-phosphate and 4-pyridoxic acid in human plasma. Clin Chim Acta 2014; 433:150-6. [DOI: 10.1016/j.cca.2014.03.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 03/03/2014] [Accepted: 03/03/2014] [Indexed: 12/23/2022]
|
40
|
West J, Phillips RB. Chiropractic management of a patient with persistent headache. J Chiropr Med 2014; 12:281-7. [PMID: 24396331 DOI: 10.1016/j.jcm.2013.08.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 08/15/2013] [Accepted: 08/21/2013] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVE The purpose of this case report is to describe chiropractic care of a patient with persistent headache treated using chiropractic manipulative therapy and adjunct treatments. CLINICAL FEATURES A 54-year-old multiparous woman had chronic debilitating headaches for 11 months. Previous care from a variety of specialties had brought no appreciable relief. INTERVENTION AND OUTCOME The patient was managed with chiropractic manipulative therapy, injections, and electromagnetic therapy. Five treatments over 6 weeks brought resolution of the headaches. CONCLUSION This patient with persistent headache responded favorably to a course of chiropractic and adjunctive care.
Collapse
Affiliation(s)
| | - Reed B Phillips
- Adjunct Faculty, Southern California University of Health Sciences, Whittier, CA
| |
Collapse
|
41
|
da Silva VR, Rios-Avila L, Lamers Y, Ralat MA, Midttun Ø, Quinlivan EP, Garrett TJ, Coats B, Shankar MN, Percival SS, Chi YY, Muller KE, Ueland PM, Stacpoole PW, Gregory JF. Metabolite profile analysis reveals functional effects of 28-day vitamin B-6 restriction on one-carbon metabolism and tryptophan catabolic pathways in healthy men and women. J Nutr 2013; 143:1719-27. [PMID: 23966327 PMCID: PMC3796343 DOI: 10.3945/jn.113.180588] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 06/19/2013] [Accepted: 08/02/2013] [Indexed: 12/16/2022] Open
Abstract
Suboptimal vitamin B-6 status, as reflected by low plasma pyridoxal 5'-phosphate (PLP) concentration, is associated with increased risk of vascular disease. PLP plays many roles, including in one-carbon metabolism for the acquisition and transfer of carbon units and in the transsulfuration pathway. PLP also serves as a coenzyme in the catabolism of tryptophan. We hypothesize that the pattern of these metabolites can provide information reflecting the functional impact of marginal vitamin B-6 deficiency. We report here the concentration of major constituents of one-carbon metabolic processes and the tryptophan catabolic pathway in plasma from 23 healthy men and women before and after a 28-d controlled dietary vitamin B-6 restriction (<0.35 mg/d). liquid chromatography-tandem mass spectrometry analysis of the compounds relevant to one-carbon metabolism showed that vitamin B-6 restriction yielded increased cystathionine (53% pre- and 76% postprandial; P < 0.0001) and serine (12% preprandial; P < 0.05), and lower creatine (40% pre- and postprandial; P < 0.0001), creatinine (9% postprandial; P < 0.05), and dimethylglycine (16% postprandial; P < 0.05) relative to the vitamin B-6-adequate state. In the tryptophan pathway, vitamin B-6 restriction yielded lower kynurenic acid (22% pre- and 20% postprandial; P < 0.01) and higher 3-hydroxykynurenine (39% pre- and 34% postprandial; P < 0.01). Multivariate ANOVA analysis showed a significant global effect of vitamin B-6 restriction and multilevel partial least squares-discriminant analysis supported this conclusion. Thus, plasma concentrations of creatine, cystathionine, kynurenic acid, and 3-hydroxykynurenine jointly reveal effects of vitamin B-6 restriction on the profiles of one-carbon and tryptophan metabolites and serve as biomarkers of functional effects of marginal vitamin B-6 deficiency.
Collapse
Affiliation(s)
- Vanessa R. da Silva
- Food Science and Human Nutrition Department, Institute of Food and Agricultural Sciences
| | - Luisa Rios-Avila
- Food Science and Human Nutrition Department, Institute of Food and Agricultural Sciences
| | - Yvonne Lamers
- Food Science and Human Nutrition Department, Institute of Food and Agricultural Sciences
| | - Maria A. Ralat
- Food Science and Human Nutrition Department, Institute of Food and Agricultural Sciences
| | | | - Eoin P. Quinlivan
- Biomedical Mass Spectrometry Laboratory, Clinical and Translational Science Institute
| | - Timothy J. Garrett
- Division of Endocrinology and Metabolism, Department of Medicine, College of Medicine
| | - Bonnie Coats
- Division of Endocrinology and Metabolism, Department of Medicine, College of Medicine
| | | | - Susan S. Percival
- Food Science and Human Nutrition Department, Institute of Food and Agricultural Sciences
| | | | | | - Per Magne Ueland
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Peter W. Stacpoole
- Division of Endocrinology and Metabolism, Department of Medicine, College of Medicine
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL
| | - Jesse F. Gregory
- Food Science and Human Nutrition Department, Institute of Food and Agricultural Sciences
| |
Collapse
|
42
|
Ulvik A, Theofylaktopoulou D, Midttun Ø, Nygård O, Eussen SJPM, Ueland PM. Substrate product ratios of enzymes in the kynurenine pathway measured in plasma as indicators of functional vitamin B-6 status. Am J Clin Nutr 2013; 98:934-40. [PMID: 24004893 DOI: 10.3945/ajcn.113.064998] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Tryptophan metabolism through the kynurenine pathway includes 2 vitamin B-6 [pyridoxal 5'-phosphate (PLP)]-dependent enzymes. We recently showed that plasma 3-hydroxykynurenine (HK) was elevated at low PLP concentrations. OBJECTIVE We further evaluated and characterized kynurenine-based indexes as possible markers of functional B-vitamin status in plasma. DESIGN Cross-sectional and longitudinal data were derived from the Western Norway B-vitamin Intervention Trial, including PLP, kynurenine, HK, kynurenic acid (KA), anthranilic acid, xanthurenic acid (XA), and 3-hydroxyanthranilic acid (HAA) measured in plasma at 2 time points. Partial Spearman's correlation, generalized additive models, and receiver operating characteristic (ROC) analysis were used to assess associations of kynurenines with PLP. RESULTS Ratios HK:XA, HK:HAA, and HK:KA showed markedly stronger negative correlations with PLP than did HK alone (Spearman's ρ = -0.36, -0.29, and -0.31 compared with -0.18, respectively). All associations were nonlinear, with the strongest relation at low PLP. In the ROC analysis, areas under the curve for discriminating low PLP (less than the fifth percentile; 18.6 nmol/L) were 0.78, 0.78, and 0.74, respectively, compared with 0.65 for HK. Oral treatment with 40 mg pyridoxin hydrochloride for 28 d reduced the ratios by up to 60%, with strongest reductions for subjects with low plasma PLP at baseline. Whereas HK was associated with kidney function and several inflammatory markers, such associations were abolished or attenuated for the ratios. CONCLUSION Plasma values of HK:XA and HK:HAA, which are substrate-product pairs for kynurenine transaminase and kynureninase, respectively, may reflect the intracellular availability of the cofactor (PLP) and, therefore, present as potential markers of functional vitamin B-6 status.
Collapse
Affiliation(s)
- Arve Ulvik
- Bevital A/S, Laboratoriebygget, Bergen, Norway and Laboratory of Clinical Biochemistry, Haukeland University Hospital, Bergen, Norway
| | | | | | | | | | | |
Collapse
|
43
|
Zysset-Burri DC, Bellac CL, Leib SL, Wittwer M. Vitamin B6 reduces hippocampal apoptosis in experimental pneumococcal meningitis. BMC Infect Dis 2013; 13:393. [PMID: 23977941 PMCID: PMC3765858 DOI: 10.1186/1471-2334-13-393] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 08/21/2013] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Bacterial meningitis caused by Streptococcus pneumoniae leads to death in up to 30% of patients and leaves up to half of the survivors with neurological sequelae. The inflammatory host reaction initiates the induction of the kynurenine pathway and contributes to hippocampal apoptosis, a form of brain damage that is associated with learning and memory deficits in experimental paradigms. Vitamin B6 is an enzymatic cofactor in the kynurenine pathway and may thus limit the accumulation of neurotoxic metabolites and preserve the cellular energy status. The aim of this study in a pneumococcal meningitis model was to investigate the effect of vitamin B6 on hippocampal apoptosis by histomorphology, by transcriptomics and by measurement of cellular nicotine amide adenine dinucleotide content. METHODS AND RESULTS Eleven day old Wistar rats were infected with 1x10(6) cfu/ml of S. pneumoniae and randomized for treatment with vitamin B6 or saline as controls. Vitamin B6 led to a significant (p > 0.02) reduction of hippocampal apoptosis. According to functional annotation based clustering, vitamin B6 led to down-regulation of genes involved in processes of inflammatory response, while genes encoding for processes related to circadian rhythm, neuronal signaling and apoptotic cell death were mostly up-regulated. CONCLUSIONS Our results provide evidence that attenuation of apoptosis by vitamin B6 is multi-factorial including down-modulation of inflammation, up-regulation of the neuroprotective brain-derived neurotrophic factor and prevention of the exhaustion of cellular energy stores. The neuroprotective effect identifies vitamin B6 as a potential target for the development of strategies to attenuate brain injury in bacterial meningitis.
Collapse
Affiliation(s)
- Denise C Zysset-Burri
- Biology Division, Spiez Laboratory, Federal Office for Civil Protection, Austrasse, CH-3700, Spiez, Switzerland.
| | | | | | | |
Collapse
|
44
|
de Vogel S, Ulvik A, Meyer K, Ueland PM, Nygård O, Vollset SE, Tell GS, Gregory JF, Tretli S, Bjørge T. Sarcosine and other metabolites along the choline oxidation pathway in relation to prostate cancer--a large nested case-control study within the JANUS cohort in Norway. Int J Cancer 2013; 134:197-206. [PMID: 23797698 DOI: 10.1002/ijc.28347] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 05/29/2013] [Accepted: 06/03/2013] [Indexed: 01/01/2023]
Abstract
Methyl group donors and intermediates of one-carbon metabolism affect DNA synthesis and DNA methylation, and may thereby affect prostate carcinogenesis. Choline, the precursor of betaine, and the one-carbon metabolite sarcosine have been associated with increased prostate cancer risk. Within JANUS, a prospective cohort in Norway (n = 317,000) with baseline serum samples, we conducted a nested case-control study among 3,000 prostate cancer cases and 3,000 controls. Using conditional logistic regression, odds ratios (ORs) and 95% confidence intervals (CIs) for prostate cancer risk were estimated according to quintiles of circulating betaine, dimethylglycine (DMG), sarcosine, glycine and serine. High sarcosine and glycine concentrations were associated with reduced prostate cancer risk of borderline significance (sarcosine: highest vs. lowest quintile OR = 0.86, CI = 0.72-1.01, p(trend) = 0.03; glycine: OR = 0.83, CI = 0.70-1.00, p(trend) = 0.07). Serum betaine, DMG and serine were not associated with prostate cancer risk. However, individuals with a high glycine/serine ratio were at decreased prostate cancer risk (OR = 0.74, CI = 0.69-0.85, p(trend) < 0.001). This population-based study suggested that men with high serum sarcosine or glycine concentrations have modestly reduced prostate cancer risk. Ratios of metabolites reflecting one-carbon balance may be associated with prostate cancer risk, as demonstrated for the glycine/serine ratio, and should be explored in future studies.
Collapse
Affiliation(s)
- Stefan de Vogel
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Zhao M, Ralat MA, da Silva V, Garrett TJ, Melnyk S, James SJ, Gregory JF. Vitamin B-6 restriction impairs fatty acid synthesis in cultured human hepatoma (HepG2) cells. Am J Physiol Endocrinol Metab 2013; 304:E342-51. [PMID: 23211517 PMCID: PMC3566509 DOI: 10.1152/ajpendo.00359.2012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Vitamin B-6 deficiency has been reported to alter n-6 and n-3 fatty acid profiles in plasma and tissue lipids; however, the mechanisms underlying such metabolic changes remain unclear. The objective of this study was to determine the effects of vitamin B-6 restriction on fatty acid profiles and fatty acid synthesis in HepG2 cells. Cells were cultured for 6 wk in media with four different vitamin B-6 concentrations (10, 20, 50, and 2,000 nM added pyridoxal, representing deficient, marginal, adequate, and supraphysiological conditions) that induced a range of steady-state cellular concentrations of pyridoxal phosphate. Total cellular lipid content was greatest in the deficient (10 nM pyridoxal) medium. The percentage of arachidonic acid and the ratio of arachidonic acid to linoleic acid in the total lipid fraction were ~15% lower in vitamin B-6-restricted cells, which suggests that vitamin B-6 restriction affects n-6 fatty acid interconversions. Metabolic flux studies indicated significantly lower fractional synthesis rate of oleic acid and arachidonic acid at 10, 20, and 50 nM pyridoxal, whereas that of eicosapentaenoic acid was lower in the cells cultured in 10 nM pyridoxal. Additionally, relative mRNA expressions of Δ5 and Δ6 desaturases were 40-50% lower in vitamin B-6-restricted cells. Overall, these findings suggest that vitamin B-6 restriction alters unsaturated fatty acid synthesis, particularly n-6 and n-3 polyunsaturated fatty acid synthesis. These results and observations of changes in human plasma fatty acid profiles caused by vitamin B-6 restriction suggest a mechanism by which vitamin B-6 inadequacy influences the cardiovascular risk.
Collapse
Affiliation(s)
- Mei Zhao
- Food Science and Human Nutrition Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611-0370, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Christensen MHE, Pedersen EKR, Nordbø Y, Varhaug JE, Midttun Ø, Ueland PM, Nygård OK, Mellgren G, Lien EA. Vitamin B6 status and interferon-γ-mediated immune activation in primary hyperparathyroidism. J Intern Med 2012; 272:583-91. [PMID: 22757621 DOI: 10.1111/j.1365-2796.2012.02570.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Primary hyperparathyroidism (PHPT) has been associated with low-grade inflammation and elevated risk of cardiovascular disease (CVD). In inflammatory conditions, interferon-γ (IFN-γ) activity is enhanced and a decreased circulating concentration of vitamin B6 is often observed. Such changes in IFN-γ activity or vitamin B6 levels have been associated with increased incidence of CVD. The aim of the study was to investigate systemic markers of IFN-γ-mediated immune activation, such as neopterin, the kynurenine-to-tryptophan ratio (KTR) and kynurenine pathway metabolites, as well as B6 vitamers in patients with PHPT. DESIGN/SUBJECTS A total of 57 patients with PHPT and a control group of 20 healthy blood donors were included in this study. PHPT patients who responded positively to parathyroidectomy were followed for 6 months. Forty-three patients participated in the longitudinal study in which blood samples were taken at inclusion and 1, 3 and 6 months after surgery. RESULTS Plasma concentrations of the B6 vitamers pyridoxal 5'-phosphate (PLP) (P = 0.007) and pyridoxal (P = 0.013) were significantly lower in the patient group compared to healthy control subjects. An increase in the KTR indicated that the kynurenine pathway of tryptophan metabolism was altered in PHPT patients (P = 0.015). During the initial 6 months after surgery, levels of PLP (P < 0.001) and anthranilic acid (P < 0.001) increased significantly, whereas neopterin decreased (P = 0.018). CONCLUSIONS The results of this study demonstrate altered levels of vitamin B6 and the KTR in PHPT patients, both of which may reflect cellular immune activation. These abnormalities should be considered in relation to the increased risk of CVD previously observed in patients with PHPT.
Collapse
|