1
|
Guo W, Zhong W, He L, Wei X, Hao L, Dong H, Yue R, Sun X, Yin X, Zhao J, Zhang X, Zhou Z. Reversal of hepatic accumulation of nordeoxycholic acid underlines the beneficial effects of cholestyramine on alcohol-associated liver disease in mice. Hepatol Commun 2024; 8:e0507. [PMID: 39082957 DOI: 10.1097/hc9.0000000000000507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 05/31/2024] [Indexed: 08/30/2024] Open
Abstract
BACKGROUND Dysregulation of bile acids (BAs) has been reported in alcohol-associated liver disease. However, the causal relationship between BA dyshomeostasis and alcohol-associated liver disease remains unclear. The study aimed to determine whether correcting BA perturbation protects against alcohol-associated liver disease and elucidate the underlying mechanism. METHODS BA sequestrant cholestyramine (CTM) was administered to C57BL/6J mice fed alcohol for 8 weeks to assess its protective effect and explore potential BA targets. The causal relationship between identified BA metabolite and cellular damage was examined in hepatocytes, with further manipulation of the detoxifying enzyme cytochrome p450 3A11. The toxicity of the BA metabolite was further validated in mice in an acute study. RESULTS We found that CTM effectively reversed hepatic BA accumulation, leading to a reversal of alcohol-induced hepatic inflammation, cell death, endoplasmic reticulum stress, and autophagy dysfunction. Specifically, nordeoxycholic acid (NorDCA), a hydrophobic BA metabolite, was identified as predominantly upregulated by alcohol and reduced by CTM. Hepatic cytochrome p450 3A11 expression was in parallel with NorDCA levels, being upregulated by alcohol and reduced by CTM. Moreover, CTM reversed alcohol-induced gut barrier disruption and endotoxin translocation. Mechanistically, NorDCA was implicated in causing endoplasmic reticulum stress, suppressing autophagy flux, and inducing cell injury, and such deleterious effects could be mitigated by cytochrome p450 3A11 overexpression. Acute NorDCA administration in mice significantly induced hepatic inflammation and injury along with disrupting gut barrier integrity, leading to subsequent endotoxemia. CONCLUSIONS Our study demonstrated that CTM treatment effectively reversed alcohol-induced liver injury in mice. The beneficial effects of BA sequestrant involve lowering toxic NorDCA levels. NorDCA not only worsens hepatic endoplasmic reticulum stress and inhibits autophagy but also mediates gut barrier disruption and systemic translocation of pathogen-associated molecular patterns in mice.
Collapse
Affiliation(s)
- Wei Guo
- Center for Translational Biomedical Research
| | - Wei Zhong
- Center for Translational Biomedical Research
- Department of Nutrition, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, NC, USA
| | - Liqing He
- Department of Chemistry, University of Louisville, Louisville, Kentucky, USA
| | - Xiaoyuan Wei
- Department of Animal Science, Division of Agriculture, University of Arkansas, Fayetteville, AR, USA
| | - Liuyi Hao
- Center for Translational Biomedical Research
| | - Haibo Dong
- Center for Translational Biomedical Research
| | - Ruichao Yue
- Center for Translational Biomedical Research
| | - Xinguo Sun
- Center for Translational Biomedical Research
| | - Xinmin Yin
- Department of Chemistry, University of Louisville, Louisville, Kentucky, USA
| | - Jiangchao Zhao
- Department of Animal Science, Division of Agriculture, University of Arkansas, Fayetteville, AR, USA
| | - Xiang Zhang
- Department of Chemistry, University of Louisville, Louisville, Kentucky, USA
| | - Zhanxiang Zhou
- Center for Translational Biomedical Research
- Department of Nutrition, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, NC, USA
| |
Collapse
|
2
|
Tao TP, Brandmair K, Gerlach S, Przibilla J, Schepky A, Marx U, Hewitt NJ, Maschmeyer I, Kühnl J. Application of a skin and liver Chip2 microphysiological model to investigate the route-dependent toxicokinetics and toxicodynamics of consumer-relevant doses of genistein. J Appl Toxicol 2024; 44:287-300. [PMID: 37700462 DOI: 10.1002/jat.4540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/25/2023] [Accepted: 08/27/2023] [Indexed: 09/14/2023]
Abstract
The HUMMIC skin-liver Chip2 microphysiological system using EpiDerm™ and HepaRG and stellate liver spheroids was used to evaluate the route-specific metabolism and toxicodynamic effects of genistein. Human-relevant exposure levels were compared: 60 nM representing the plasma concentration expected after topical application of a cosmetic product and 1 μM representing measured plasma concentrations after ingesting soya products. Genistein was applied as single and repeated topical and/or systemic doses. The kinetics of genistein and its metabolites were measured over 5 days. Toxicodynamic effects were measured using transcriptional analyses of skin and liver organoids harvested on Days 2 and 5. Route-specific differences in genistein's bioavailability were observed, with first-pass metabolism (sulfation) occurring in the skin after topical application. Only repeated application of 1 μM, resembling daily oral intake of soya products, induced statistically significant changes in gene expression in liver organoids only. This was concomitant with a much higher systemic concentration of genistein which was not reached in any other dosing scenario. This suggests that single or low doses of genistein are rapidly metabolised which limits its toxicodynamic effects on the liver and skin. Therefore, by facilitating longer and/or repeated applications, the Chip2 can support safety assessments by linking relevant gene modulation with systemically available parent or metabolite(s). The rate of metabolism was in accordance with the short half-life observed in in vivo in humans, thus supporting the relevance of the findings. In conclusion, the skin-liver Chip2 provides route-specific information on metabolic fate and toxicodynamics that may be relevant to safety assessment.
Collapse
|
3
|
Wu X, Quan M, Hadisurya M, Hu J, Liu YK, Zhuang Y, Li L, Iliuk AB, Yang JJ, Kuang S, Tao WA. Monitoring drug metabolic pathways through extracellular vesicles in mouse plasma. PNAS NEXUS 2024; 3:pgae023. [PMID: 38312223 PMCID: PMC10833468 DOI: 10.1093/pnasnexus/pgae023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/04/2024] [Indexed: 02/06/2024]
Abstract
The ability to monitor the response of metabolic enzymes to drug exposure in individuals is highly appealing and critical to personalized medicine. Although pharmacogenomics assesses genotypic differences, it does not report changes in metabolic enzyme activities due to environmental factors such as drug interactions. Here, we report a quantitative proteomics strategy to monitor drug metabolic pathways by profiling metabolic enzymes in circulating extracellular vesicles (EVs) upon drug exposure. Mass spectrometry (MS)-based measurement revealed that changes in metabolic enzyme abundance in EVs paralleled those in hepatic cells isolated from liver tissue. Coupling with multiplexed isotopic labeling, we temporally quantified 34 proteins involved in drug absorption, distribution, metabolism, and excretion (ADME) pathways. Out of 44 known ADME proteins in plasma EVs, previously annotated mouse cytochrome P450 3A11 (Cyp3a11), homolog to human CYP3A4, and uridine 5'-diphospho (UDP) glucuronosyltransferase 2A3 (Ugt2a3), increased upon daily rifampicin dosage. Dasatinib, a tyrosine kinase inhibitor to treat leukemia, also elevated Cyp3a11 levels in plasma EVs, but to a lesser extent. Altogether, this study demonstrates that measuring drug enzymes in circulating EVs as an effective surrogate is highly feasible and may transform today's drug discovery and development for personalized medicine.
Collapse
Affiliation(s)
- Xiaofeng Wu
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Menchus Quan
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Marco Hadisurya
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Jianzhong Hu
- Department of Pharmaceutical Sciences, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Yi-Kai Liu
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Yuxin Zhuang
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Li Li
- Tymora Analytical Operations, West Lafayette, IN 47906, USA
| | - Anton B Iliuk
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
- Tymora Analytical Operations, West Lafayette, IN 47906, USA
| | - Jun J Yang
- Department of Pharmaceutical Sciences, St Jude Children's Research Hospital, Memphis, TN 38105, USA
- Department of Oncology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Shihuan Kuang
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
- Purdue Institute for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| | - W Andy Tao
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
- Tymora Analytical Operations, West Lafayette, IN 47906, USA
- Purdue Institute for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
4
|
Shimoda T, Shimizu H, Iwasaki W, Liu H, Kamo Y, Tada K, Hanai T, Hori S, Joe GH, Tanaka Y, Sato M, Miyazaki H, Ishizuka S. A diet supplemented with cholic acid elevates blood pressure accompanied by albuminuria in rats. Biosci Biotechnol Biochem 2023; 87:434-441. [PMID: 36623851 DOI: 10.1093/bbb/zbad004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023]
Abstract
A diet supplemented with cholic acid (CA), the primary 12α-hydroxylated bile acid, can induce hepatic lipid accumulation in rats without obesity. This study examined the effects of a CA-supplemented diet on blood pressure (BP). After acclimation, WKAH/HkmSlc rats (3 weeks old) were divided into two groups and fed with a control AIN-93-based diet or a CA-supplemented diet (0.5 g CA/kg) for 13 weeks. The CA diet increased systolic and diastolic BP as well as hepatic lipid concentrations in the rats. No changes were found in the blood sodium concentration. Urinary albumin concentration increased in CA-fed rats. An increase was observed in the hepatic expression of ATP-binding cassette subfamily B member 1B that correlated BPs and urinary albumin concentration accompanied by an increase in portal taurocholic acid concentration. These results suggest that 12α-hydroxylated bile acids are involved in increased BP and albuminuria via alteration of hepatic function.
Collapse
Affiliation(s)
- Tomoko Shimoda
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Hidehisa Shimizu
- Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, Matsue, Japan
| | - Wakana Iwasaki
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Hongxia Liu
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Yoshie Kamo
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Koji Tada
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Taketo Hanai
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Shota Hori
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Ga-Hyun Joe
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
- Research Faculty of Fisheries, Hokkaido University, Hakodate, Japan
| | - Yasutake Tanaka
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
- Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Masao Sato
- Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Hitoshi Miyazaki
- Graduate School of Life and Environment Sciences, University of Tsukuba, Tsukuba, Japan
| | - Satoshi Ishizuka
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| |
Collapse
|
5
|
Yagi R, Masuda T, Ito S, Ohtsuki S. Effect of antibiotic-administration period on hepatic bile acid profile and expression of pharmacokinetic-related proteins in mouse liver, kidney, and brain capillaries. Drug Metab Pharmacokinet 2023; 50:100494. [PMID: 37119611 DOI: 10.1016/j.dmpk.2023.100494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/12/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023]
Abstract
Antibiotic administration affects pharmacokinetics through changes in the intestinal microbiota, and bile acids are involved in this regulation. The purpose of the present study was to clarify the effect of different periods of antibiotic administration on the hepatic bile acid profile and expression of pharmacokinetic-related proteins in mouse liver, kidney, and brain capillaries. Vancomycin and polymyxin B were orally administered to mice for either 5- or 25-days. The hepatic bile acid profile of the 25-day treatment group was distinct. In the liver, the protein expression of cytochrome P450 (Cyp)3a11 showed the greatest reduction to 11.4% after the 5-day treatment and further reduced to 7.01% after the 25-day treatment. Similar reductions were observed for sulfotransferase 1d1, Cyp2b10, carboxylesterase 2e, UDP-glucuronosyltransferase (Ugt)1a5, and Ugt1a9. In the kidney and brain capillaries, no drug-metabolizing enzymes or drug transporters were changed with >1.5-fold or <0.66-fold statistical significance in either period. These results suggest that bile acids and metabolizing enzymes in the liver are affected in a period-dependent manner by antibiotic treatment, while the blood-brain barrier and kidneys are less affected. Drug-drug interactions of antibiotics via the intestinal microbiota should be considered by changing drug metabolism in the liver.
Collapse
Affiliation(s)
- Ryotaro Yagi
- Department of Pharmaceutical Microbiology, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
| | - Takeshi Masuda
- Department of Pharmaceutical Microbiology, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan; Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
| | - Shingo Ito
- Department of Pharmaceutical Microbiology, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan; Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
| | - Sumio Ohtsuki
- Department of Pharmaceutical Microbiology, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan; Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan.
| |
Collapse
|
6
|
Chiba T, Tousen Y, Nishijima C, Umegaki K. The Prevalence of Dietary Supplements That Claim Estrogen-like Effects in Japanese Women. Nutrients 2022; 14:4509. [PMID: 36364772 PMCID: PMC9653890 DOI: 10.3390/nu14214509] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/21/2022] [Accepted: 10/24/2022] [Indexed: 08/13/2023] Open
Abstract
Recently, adverse events, such as irregular vaginal bleeding and menstrual disorders, associated with the use of dietary supplements containing Pueraria mirifica, have been reported in Japan. P. mirifica contains phytoestrogens, such as deoxymiroestrol and miroestrol. Therefore, we investigated the use of supplements that claim to have estrogen-like effects (i.e., estrogen-like supplements) in Japanese women aged from 15 to 69 years old in an online survey. The prevalence of estrogen-like supplement use was 5%, accounting for approximately 15% of the sample, including ex-users. The majority of the users were in their 40s and 50s, mainly using these supplements for the treatment of menopausal symptoms. In contrast, the younger generation mainly used them for beauty purposes, such as weight loss, mastogenic effects, and skin care. Many of them visited a clinic or took medicines for menstrual-related troubles. In all age groups, soybeans/isoflavones were the most commonly used, followed by equol and placenta. Participants in their teens and 20s also used P. mirifica. Among them, 16.2% had experienced adverse events, including irregular vaginal bleeding, breast swelling and pain, and heavy menstruation. In conclusion, estrogen-like supplement use is associated with adverse events; thus, it is necessary to pay attention to the use of these supplement. Furthermore, because the purpose of use differs depending on generation, caution according to each generation is necessary.
Collapse
Affiliation(s)
- Tsuyoshi Chiba
- Department of Food Function and Labeling, National Institute of Health and Nutrition, National Institutes of Biomedical Innovation, Health and Nutrition, Tokyo 162-8363, Japan
| | - Yuko Tousen
- Department of Food Function and Labeling, National Institute of Health and Nutrition, National Institutes of Biomedical Innovation, Health and Nutrition, Tokyo 162-8363, Japan
| | - Chiharu Nishijima
- Department of Food Function and Labeling, National Institute of Health and Nutrition, National Institutes of Biomedical Innovation, Health and Nutrition, Tokyo 162-8363, Japan
| | - Keizo Umegaki
- Department of Food Safety and Management, Showa Women’s University, Tokyo 154-8533, Japan
| |
Collapse
|
7
|
Jain R, Bolch C, Al-Nakkash L, Sweazea KL. Systematic Review of the Impact of Genistein on Diabetes Related Outcomes. Am J Physiol Regul Integr Comp Physiol 2022; 323:R279-R288. [PMID: 35816719 DOI: 10.1152/ajpregu.00236.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Diabetes is the 8th leading cause of death in the world and the prevalence is rising in low-income countries. Cardiovascular diseases are the leading cause of death worldwide, especially for individuals with diabetes. While medications exist to treat symptoms of diabetes, lack of availability and high costs may deter their use by individuals with low incomes as well as those in low-income nations. Therefore, this systematic review was performed to determine whether genistein, a phytoestrogen found in soy products, could provide therapeutic benefits for individuals with diabetes. We searched PubMed and SCOPUS using the terms 'genistein', 'diabetes', and 'glucose' and identified 33 peer-reviewed articles that met our inclusion criteria. In general, preclinical studies demonstrated that genistein decreases body weight and circulating glucose and triglycerides concentrations while increasing insulin levels and insulin sensitivity. Genistein also delayed the onset of type 1 and type 2 diabetes. In contrast, clinical studies utilizing genistein generally reported no significant relationship between genistein and body mass, circulating glucose, A1C concentrations, or onset of type 1 diabetes. However, genistein was found to improve insulin sensitivity and serum triglyceride concentrations and delayed the onset of type 2 diabetes. In summary, preclinical and clinical studies suggest that genistein may help delay the onset of type 2 diabetes and improve several symptoms associated with the disease. Although additional research is required to confirm these findings, the results highlighted in this review provide some evidence that genistein may offer a natural approach to mitigating some of the complications associated with diabetes.
Collapse
Affiliation(s)
- Rijul Jain
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Charlotte Bolch
- Office of Research and Sponsored Programs and College of Graduate Studies, Midwestern University, Glendale, Arizona, United States
| | - Layla Al-Nakkash
- Department of Physiology, College of Graduate Studies, Midwestern University, Glendale, Arizona, United States
| | - Karen L Sweazea
- College of Health Solutions, Arizona State University, Tempe, AZ, United States
| |
Collapse
|
8
|
Zeng W, Hu M, Lee HK, Wat E, Lau CBS, Ho CS, Wong CK, Tomlinson B. Effects of Soy Isoflavones and Green Tea Extract on Simvastatin Pharmacokinetics and Influence of the SLCO1B1 521T > C Polymorphism. Front Nutr 2022; 9:868126. [PMID: 35685887 PMCID: PMC9171976 DOI: 10.3389/fnut.2022.868126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 02/17/2022] [Indexed: 11/13/2022] Open
Abstract
Objectives Green tea and soy products are extensively consumed by many people and they may influence the activity of drug metabolizing enzymes and drug transporters to result in drug interactions. This study was performed to evaluate the effect of green tea and soy isoflavone extracts on the pharmacokinetics of simvastatin in healthy subjects and to clarify the role of polymorphisms in the SLCO1B1 drug transporter in this effect. Methods This was an open-label, three-phase randomized crossover pharmacokinetic study. A single dose of simvastatin 20 mg was taken on three occasions (without herbs, with green tea, and with soy isoflavones) by healthy male Chinese subjects. The green tea and soy isoflavone extracts were given at a dose containing EGCG 800 mg once daily or soy isoflavones about 80 mg once daily for 14 days before simvastatin dosing with at least 4-weeks washout period between phases. Results All the 18 subjects completed the study. Intake of soy isoflavones was associated with reduced systemic exposure to simvastatin acid [geometric mean (% coefficient of variation) AUC0-24h from 16.1 (44.2) h⋅μg/L to 12.1 (54.6) h⋅μg/L, P < 0.05) but not the lactone. Further analysis showed that the interaction between simvastatin and the soy isoflavones only resulted in a significant reduction of AUC in subjects with the SLCO1B1 521TT genotype and not in those with the 521C variant allele. There was no overall effect of the green tea extract on simvastatin pharmacokinetics but the group with the SLCO1B1 521TT genotype showed reduced AUC values for simvastatin acid. Conclusion This study showed repeated administration of soy isoflavones reduced the systemic bioavailability of simvastatin in healthy volunteers that was dependent on the SLCO1B1 genotype which suggested that soy isoflavones-simvastatin interaction is impacted by genotype-related function of this liver uptake transporter.
Collapse
Affiliation(s)
- Weiwei Zeng
- The Second People's Hospital of Longgang District, Shenzhen, China.,Shenzhen Baoan Women's and Children's Hospital, Jinan University, Shenzhen, China
| | - Miao Hu
- Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Hon Kit Lee
- Department of Chemical Pathology, The Chinese University of Hong Kong, Hong Kong SAR, China.,Department of Clinical Pathology, Tuen Mun Hospital, Hong Kong, Hong Kong SAR, China
| | - Elaine Wat
- State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Clara Bik San Lau
- State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Chung Shun Ho
- Department of Chemical Pathology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Chun Kwok Wong
- Department of Chemical Pathology, The Chinese University of Hong Kong, Hong Kong SAR, China.,State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Brian Tomlinson
- Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China.,Faculty of Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| |
Collapse
|
9
|
Tao G, Dagher F, Ghose R. Neratinib causes non-recoverable gut injury and reduces intestinal cytochrome P450 3A enzyme in mice. Toxicol Res (Camb) 2022; 11:184-194. [PMID: 35237423 PMCID: PMC8882787 DOI: 10.1093/toxres/tfab111] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/15/2021] [Accepted: 10/29/2021] [Indexed: 01/21/2023] Open
Abstract
Neratinib is a pan-HER tyrosine kinase inhibitor newly approved by FDA in 2017 to treat HER2-positive breast cancer, but the phase III trial of neratinib showed that 96% of the patients taking neratinib experienced diarrhea. So far very few mechanistic studies explore neratinib-induced gastrointestinal (GI) toxicity. Hereby, we performed toxicity studies in mice to characterize the potential mechanism underlying this adverse effect. C57BL/6 J mice were separated into three groups A, B, C. Group A received vehicle; group B was orally dosed with 100 mg/kg neratinib once daily for 18 days. Group C was dosed with 100 mg/kg neratinib for 12 days and switched to vehicle for 6 days. Intestine and liver were collected for further analysis. Human intestine-derived cells were treated with neratinib in vitro. Our results showed that 12 days treatment of neratinib caused persistent histological damage in mouse GI tract. Both gene expression and activity of Cyp3a11, the major enzyme metabolizing neratinib in mice was reduced in small intestine. The gene expression of proinflammatory cytokines increased throughout the GI tract. Such damages were not recovered after 6 days without neratinib treatment. In addition, in vitro data showed that neratinib was potent in killing human intestine-derived cell lines. Based on such findings, we hypothesized that neratinib downregulates intestinal CYP3A enzyme to cause excessive drug disposition, eventually leading to gut injury.
Collapse
Affiliation(s)
- Gabriel Tao
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA
| | - Fatima Dagher
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA
| | - Romi Ghose
- Correspondence address. Department of Pharmacological and Pharmaceutical Sciences, University of Houston College of Pharmacy, Health Building 2, Room 7045, 4849 Calhoun Rd., 4349 Martin Luther King Blvd., Houston, TX 77204, USA. Tel: +1-832-842-8343. E-mail:
| |
Collapse
|
10
|
Togao M, Tajima S, Kurakawa T, Wagai G, Otsuka J, Kado S, Kawakami K. Normal variation of the gut microbiota affects hepatic cytochrome P450 activity in mice. Pharmacol Res Perspect 2021; 9:e00893. [PMID: 34747570 PMCID: PMC8573722 DOI: 10.1002/prp2.893] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 10/21/2021] [Indexed: 12/12/2022] Open
Abstract
Several studies revealed that substantial artificial changes in the gut microbiota resulted in modification of hepatic cytochrome P450 3a (Cyp3a) in mice. Consequently, we hypothesized that "normal" variation of the gut microbiota might also alter hepatic Cyp activity and lead to individual differences in drug metabolism. Therefore, this study investigated the effects of normal gut microbiota variation on hepatic Cyp activity under the same genetic and environmental conditions using ex-germ-free mice. Using the feces of three breeder BALB/c mice (Jcl, Slc, and Crj), germ-free BALB/cYit mice were conventionalized (Yit-Jcl, Yit-Slc, and Yit-Crj). The gut microbiota composition and hepatic Cyp activity of these donors and recipients were evaluated. 16S rRNA sequencing revealed clear differences of the gut microbiota among donors and among recipients. Cyp3a activity was significantly higher in Slc mice than in Jcl and Crj mice. Notably, among recipients, Cyp3a activity was significantly higher in Yit-Slc and Yit-Crj mice than in Yit-Jcl mice. Cyp2b activity was significantly higher in Slc mice than in Jcl and Crj mice. Cyp2b activity was significantly higher in Yit-Slc mice than in Yit-Jcl mice. Additionally, in correlation analysis, some genera displayed significant positive or negative correlations with Cyp activity, particular the strong positive correlation between Clostridium sensu stricto 1 with Cyp3a activity. In conclusion, this study demonstrated that normal variation of the gut microbiota affected hepatic Cyp3a and Cyp2b activity, which might result in individual differences of drug metabolism.
Collapse
Affiliation(s)
- Masao Togao
- Safety Research DepartmentYakult Central InstituteKunitachi‐shiTokyoJapan
| | - Shinnosuke Tajima
- Safety Research DepartmentYakult Central InstituteKunitachi‐shiTokyoJapan
| | - Takashi Kurakawa
- Basic Research DepartmentYakult Central InstituteKunitachi‐shiTokyoJapan
| | - Gaku Wagai
- Safety Research DepartmentYakult Central InstituteKunitachi‐shiTokyoJapan
| | - Jun Otsuka
- Safety Research DepartmentYakult Central InstituteKunitachi‐shiTokyoJapan
| | - Shoichi Kado
- Safety Research DepartmentYakult Central InstituteKunitachi‐shiTokyoJapan
| | - Koji Kawakami
- Safety Research DepartmentYakult Central InstituteKunitachi‐shiTokyoJapan
| |
Collapse
|
11
|
Rigalli JP, Theile D, Nilles J, Weiss J. Regulation of PXR Function by Coactivator and Corepressor Proteins: Ligand Binding Is Just the Beginning. Cells 2021; 10:cells10113137. [PMID: 34831358 PMCID: PMC8625645 DOI: 10.3390/cells10113137] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 12/13/2022] Open
Abstract
The pregnane X receptor (PXR, NR1I2) is a nuclear receptor which exerts its regulatory function by heterodimerization with the retinoid-X-receptor α (RXRα, NR2B1) and binding to the promoter and enhancer regions of diverse target genes. PXR is involved in the regulation of drug metabolism and excretion, metabolic and immunological functions and cancer pathogenesis. PXR activity is strongly regulated by the association with coactivator and corepressor proteins. Coactivator proteins exhibit histone acetyltransferase or histone methyltransferase activity or associate with proteins having one of these activities, thus promoting chromatin decondensation and activation of the gene expression. On the contrary, corepressor proteins promote histone deacetylation and therefore favor chromatin condensation and repression of the gene expression. Several studies pointed to clear cell- and ligand-specific differences in the activation of PXR. In this article, we will review the critical role of coactivator and corepressor proteins as molecular determinants of the specificity of PXR-mediated effects. As already known for other nuclear receptors, understanding the complex mechanism of PXR activation in each cell type and under particular physiological and pathophysiological conditions may lead to the development of selective modulators with therapeutic potential.
Collapse
|
12
|
Zhang J, Pavek P, Kamaraj R, Ren L, Zhang T. Dietary phytochemicals as modulators of human pregnane X receptor. Crit Rev Food Sci Nutr 2021:1-23. [PMID: 34698593 DOI: 10.1080/10408398.2021.1995322] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
As a promiscuous xenobiotic sensor, pregnane X receptor (PXR) plays a crucial role in drug metabolism. Since dietary phytochemicals exhibit the potential to modulate human PXR, this review aims to summarize the plant-derived PXR modulators, including agonists, partial agonists, and antagonists. The crystal structures of the apo and ligand-bound forms of PXR especially that of PXR complexed with binary mixtures are summarized, in order to provide the structural basis for PXR binding promiscuity and synergistic activation of PXR by composite ligands. Furthermore, this review summarizes the characterized agonists, partial agonists, and antagonists of human PXR from botanical source. Contrary to PXR agonists, there are only a few antagonists obtained from botanical source due to the promiscuity of PXR. It is worth noting that trans-resveratrol and a series of methylindoles have been identified as partial agonists of PXR, both in activating PXR function, but also inhibiting the effect of other PXR agonists. Since antagonizing PXR function plays a crucial role in the prevention of drug-drug interactions and improvement of therapeutic efficacy, further research is necessary to screen more plant-derived PXR antagonists in the future. In summary, this review may contribute to understanding the roles of phytochemicals in food-drug and herb-drug interactions.
Collapse
Affiliation(s)
- Jie Zhang
- College of Food Science and Engineering, Jilin University, Changchun, China
| | - Petr Pavek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Hradec Kralove, Czech Republic
| | - Rajamanikkam Kamaraj
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Hradec Kralove, Czech Republic
| | - Li Ren
- College of Food Science and Engineering, Jilin University, Changchun, China
| | - Tiehua Zhang
- College of Food Science and Engineering, Jilin University, Changchun, China
| |
Collapse
|
13
|
Kozaczek M, Bottje W, Albataineh D, Hakkak R. Effects of Short- and Long-Term Soy Protein Feeding on Hepatic Cytochrome P450 Expression in Obese Nonalcoholic Fatty Liver Disease Rat Model. Front Nutr 2021; 8:699620. [PMID: 34262928 PMCID: PMC8273275 DOI: 10.3389/fnut.2021.699620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/03/2021] [Indexed: 12/16/2022] Open
Abstract
Obesity can lead to chronic health complications such as nonalcoholic fatty liver disease (NAFLD). NAFLD is characterized by lipid aggregation in the hepatocytes and inflammation of the liver tissue as a consequence that can contribute to the development of cirrhosis and hepatocellular carcinoma (HCC). Previously, we reported that feeding obese Zucker rats with soy protein isolate (SPI) can reduce liver steatosis when compared with a casein (CAS) diet as a control. However, the effects of SPI on cytochrome P450 (CYP) in an obese rat model are less known. In addition, there is a lack of information concerning the consumption of soy protein in adolescents and its effect in reducing the early onset of NAFLD in this group. Our main goal was to understand if the SPI diet had any impact on the hepatic CYP gene expression when compared with the CAS diet. For this purpose, we used the transcriptomic data obtained in a previous study in which liver samples were collected from obese rats after short-term (eight-week) and long-term (16-week) feeding of SPI (n = 8 per group). To analyze this RNAseq data, we used Ingenuity Pathway Analysis (IPA) software. Comparing short- vs long-term feeding revealed an increase in the number of downregulated CYP genes from three at 8 weeks of SPI diet to five at 16 weeks of the same diet (P ≤ 0.05). On the other hand, upregulated CYP gene numbers showed a small increase in the long-term SPI diet compared to the short-term SPI diet, from 14 genes at 8 weeks to 17 genes at 16 weeks (P ≤ 0.05). The observed changes may have an important role in the attenuation of liver steatosis.
Collapse
Affiliation(s)
- Melisa Kozaczek
- Department of Dietetics and Nutrition, University of Arkansas for Medical Sciences, Little Rock, AR, United States.,Department of Poultry Science and The Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States.,Arkansas Children's Research Institute, Little Rock, AR, United States
| | - Walter Bottje
- Department of Poultry Science and The Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Diyana Albataineh
- Department of Poultry Science and The Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Reza Hakkak
- Department of Dietetics and Nutrition, University of Arkansas for Medical Sciences, Little Rock, AR, United States.,Arkansas Children's Research Institute, Little Rock, AR, United States.,Department of Pediatrics, University of Arkansas for Medical Sciences, Arkansas Children's Hospital, Little Rock, AR, United States
| |
Collapse
|
14
|
Safe S, Jayaraman A, Chapkin RS, Howard M, Mohankumar K, Shrestha R. Flavonoids: structure-function and mechanisms of action and opportunities for drug development. Toxicol Res 2021; 37:147-162. [PMID: 33868973 DOI: 10.1007/s43188-020-00080-z] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 12/04/2020] [Indexed: 12/14/2022] Open
Abstract
Flavonoids are polyphenolic phytochemicals produced in fruits, nuts and vegetables and dietary consumption of these structurally diverse compounds is associated with multiple health benefits including increased lifespan, decreased cardiovascular problems and low rates of metabolic diseases. Preclinical studies with individual flavonoids demonstrate that these compounds exhibit anti-inflammatory and anticancer activities and they enhance the immune system. Their effectiveness in both chemoprevention and chemotherapy is associated with their targeting of multiple genes/pathways including nuclear receptors, the aryl hydrocarbon receptor (AhR), kinases, receptor tyrosine kinases and G protein-coupled receptors. However, despite the remarkable preclinical activities of flavonoids, their clinical applications have been limited and this is due, in part, to problems in drug delivery and poor bioavailability and these problems are being addressed. Further improvements that will expand clinical applications of flavonoids include mechanism-based precision medicine approaches which will identify critical mechanisms of action of individual flavonoids with optimal activities that can be used in combination therapies.
Collapse
Affiliation(s)
- Stephen Safe
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, 4466 TAMU, College Station, TX 77843-4466 USA
| | - Arul Jayaraman
- Department of Chemical Engineering, Texas A&M University, College Station, TX 77843 USA
| | - Robert S Chapkin
- Department of Nutrition, Texas A&M University, College Station, TX 77843 USA
| | - Marcell Howard
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, 4466 TAMU, College Station, TX 77843-4466 USA
| | - Kumaravel Mohankumar
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, 4466 TAMU, College Station, TX 77843-4466 USA
| | - Rupesh Shrestha
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843 USA
| |
Collapse
|
15
|
Chappell GA, Heintz MM, Haws LC. Transcriptomic analyses of livers from mice exposed to 1,4-dioxane for up to 90 days to assess potential mode(s) of action underlying liver tumor development. Curr Res Toxicol 2021; 2:30-41. [PMID: 34345848 PMCID: PMC8320614 DOI: 10.1016/j.crtox.2021.01.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 12/11/2022] Open
Abstract
1,4-Dioxane is a volatile organic compound with industrial and commercial applications as a solvent and in the manufacture of other chemicals. 1,4-Dioxane has been demonstrated to induce liver tumors in chronic rodent bioassays conducted at very high doses. The available evidence for 1,4-dioxane-induced liver tumors in rodents aligns with a threshold-dependent mode of action (MOA), with the underlying mechanism being less clear in the mouse than in rats. To gain a better understanding of the underlying molecular mechanisms related to liver tumor development in mice orally exposed to 1,4-dioxane, transcriptomics analysis was conducted on liver tissue collected from a 90-day drinking water study in female B6D2F1/Crl mice (Lafranconi et al., 2020). Using tissue samples from female mice exposed to 1,4-dioxane in the drinking water at concentrations of 0, 40, 200, 600, 2,000 or 6,000 ppm for 7, 28, and 90 days, transcriptomic analyses demonstrate minimal treatment effects on global gene expression at concentrations below 600 ppm. At higher concentrations, genes involved in phase II metabolism and mitotic cell cycle checkpoints were significantly upregulated. There was an overall lack of enrichment of genes related to DNA damage response. The increase in mitotic signaling is most prevalent in the livers of mice exposed to 1,4-dioxane at the highest concentrations for 90 days. This finding aligns with phenotypic changes reported by Lafranconi et al. (2020) after 90-days of exposure to 6,000 ppm 1,4-dioxane in the same tissues. The transcriptomics analysis further supports overarching study findings demonstrating a non-mutagenic, threshold-based, mitogenic MOA for 1,4-dioxane-induced liver tumors.
Collapse
Affiliation(s)
- G A Chappell
- ToxStrategies, Inc., Asheville, NC, United States
| | - M M Heintz
- ToxStrategies, Inc., Asheville, NC, United States
| | - L C Haws
- ToxStrategies, Inc., Austin, TX, United States
| |
Collapse
|
16
|
Ariyani W, Miyazaki W, Amano I, Hanamura K, Shirao T, Koibuchi N. Soy Isoflavones Accelerate Glial Cell Migration via GPER-Mediated Signal Transduction Pathway. Front Endocrinol (Lausanne) 2020; 11:554941. [PMID: 33250856 PMCID: PMC7672195 DOI: 10.3389/fendo.2020.554941] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 10/12/2020] [Indexed: 01/04/2023] Open
Abstract
Soybean isoflavones, such as genistein, daidzein, and its metabolite, S-equol, are widely known as phytoestrogens. Their biological actions are thought to be exerted via the estrogen signal transduction pathway. Estrogens, such as 17β-estradiol (E2), play a crucial role in the development and functional maintenance of the central nervous system. E2 bind to the nuclear estrogen receptor (ER) and regulates morphogenesis, migration, functional maturation, and intracellular metabolism of neurons and glial cells. In addition to binding to nuclear ER, E2 also binds to the G-protein-coupled estrogen receptor (GPER) and activates the nongenomic estrogen signaling pathway. Soybean isoflavones also bind to the ER and GPER. However, the effect of soybean isoflavone on brain development, particularly glial cell function, remains unclear. We examined the effects of soybean isoflavones using an astrocyte-enriched culture and astrocyte-derived C6 clonal cells. Isoflavones increased glial cell migration. This augmentation was suppressed by co-exposure with G15, a selective GPER antagonist, or knockdown of GPER expression using RNA interference. Isoflavones also activated actin cytoskeleton arrangement via increased actin polymerization and cortical actin, resulting in an increased number and length of filopodia. Isoflavones exposure increased the phosphorylation levels of FAK (Tyr397 and Tyr576/577), ERK1/2 (Thr202/Tyr204), Akt (Ser473), and Rac1/cdc42 (Ser71), and the expression levels of cortactin, paxillin and ERα. These effects were suppressed by knockdown of the GPER. Co-exposure of isoflavones to the selective RhoA inhibitor, rhosin, selective Cdc42 inhibitor, casin, or Rac1/Cdc42 inhibitor, ML-141, decreased the effects of isoflavones on cell migration. These findings indicate that soybean isoflavones exert their action via the GPER to activate the PI3K/FAK/Akt/RhoA/Rac1/Cdc42 signaling pathway, resulting in increased glial cell migration. Furthermore, in silico molecular docking studies to examine the binding mode of isoflavones to the GPER revealed the possibility that isoflavones bind directly to the GPER at the same position as E2, further confirming that the effects of the isoflavones are at least in part exerted via the GPER signal transduction pathway. The findings of the present study indicate that isoflavones may be an effective supplement to promote astrocyte migration in developing and/or injured adult brains.
Collapse
Affiliation(s)
- Winda Ariyani
- Research Fellow of Japan Society for the Promotion of Science, Tokyo, Japan
- Department of Integrative Physiology, Graduate School of Medicine, Gunma University, Maebashi, Japan
| | - Wataru Miyazaki
- Department of Integrative Physiology, Graduate School of Medicine, Gunma University, Maebashi, Japan
- Department of Bioscience and Laboratory Medicine, Graduate School of Health Science, Hirosaki University, Hirosaki, Japan
| | - Izuki Amano
- Department of Integrative Physiology, Graduate School of Medicine, Gunma University, Maebashi, Japan
| | - Kenji Hanamura
- Department of Neurobiology and Behavior, Graduate School of Medicine, Gunma University, Maebashi, Japan
| | - Tomoaki Shirao
- Department of Neurobiology and Behavior, Graduate School of Medicine, Gunma University, Maebashi, Japan
| | - Noriyuki Koibuchi
- Department of Integrative Physiology, Graduate School of Medicine, Gunma University, Maebashi, Japan
| |
Collapse
|
17
|
12α-Hydroxylated bile acid induces hepatic steatosis with dysbiosis in rats. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158811. [PMID: 32896622 DOI: 10.1016/j.bbalip.2020.158811] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 08/11/2020] [Accepted: 08/23/2020] [Indexed: 01/06/2023]
Abstract
There is an increasing need to explore the mechanism of the progression of non-alcoholic fatty liver disease. Steroid metabolism is closely linked to hepatic steatosis and steroids are excreted as bile acids (BAs). Here, we demonstrated that feeding WKAH/HkmSlc inbred rats a diet supplemented with cholic acid (CA) at 0.5 g/kg for 13 weeks induced simple steatosis without obesity. Liver triglyceride and cholesterol levels were increased accompanied by mild elevation of aminotransferase activities. There were no signs of inflammation, insulin resistance, oxidative stress, or fibrosis. CA supplementation increased levels of CA and taurocholic acid (TCA) in enterohepatic circulation and deoxycholic acid (DCA) levels in cecum with an increased ratio of 12α-hydroxylated BAs to non-12α-hydroxylated BAs. Analyses of hepatic gene expression revealed no apparent feedback control of BA and cholesterol biosynthesis. CA feeding induced dysbiosis in cecal microbiota with enrichment of DCA producers, which underlines the increased cecal DCA levels. The mechanism of steatosis was increased expression of Srebp1 (positive regulator of liver lipogenesis) through activation of the liver X receptor by increased oxysterols in the CA-fed rats, especially 4β-hydroxycholesterol (4βOH) formed by upregulated expression of hepatic Cyp3a2, responsible for 4βOH formation. Multiple regression analyses identified portal TCA and cecal DCA as positive predictors for liver 4βOH levels. The possible mechanisms linking these predictors and upregulated expression of Cyp3a2 are discussed. Overall, our observations highlight the role of 12α-hydroxylated BAs in triggering liver lipogenesis and allow us to explore the mechanisms of hepatic steatosis onset, focusing on cholesterol and BA metabolism.
Collapse
|
18
|
Regulation of hepatic P-gp expression and activity by genistein in rats. Arch Toxicol 2020; 94:1625-1635. [DOI: 10.1007/s00204-020-02708-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 03/09/2020] [Indexed: 12/16/2022]
|
19
|
4-methylumbelliferone Prevents Liver Fibrosis by Affecting Hyaluronan Deposition, FSTL1 Expression and Cell Localization. Int J Mol Sci 2019; 20:ijms20246301. [PMID: 31847129 PMCID: PMC6941058 DOI: 10.3390/ijms20246301] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 12/12/2019] [Indexed: 02/06/2023] Open
Abstract
4-methylumbelliferone (4MU) is an inhibitor of hyaluronan deposition and an active substance of hymecromone, a choleretic and antispasmodic drug. 4MU reported to be anti-fibrotic in mouse models; however, precise mechanism of action still requires further investigation. Here we describe the cellular and molecular mechanisms of 4MU action on CCl4-induced liver fibrosis in mice using NGS transcriptome, Q-PCR and immunohistochemical analysis. Collagen and hyaluronan deposition were prevented by 4MU. The CCl4 stimulated expression of Col1a and αSMA were reduced, while the expression of the ECM catabolic gene Hyal1 was increased in the presence of 4MU. Bioinformatic analysis identified an activation of TGF-beta and Wnt/beta-catenin signaling pathways, and inhibition of the genes associated with lipid metabolism by CCL4 treatment, while 4MU restored key markers of these pathways to the control level. Immunohistochemical analysis reveals the suppression of hepatic stellate cells (HSCs) transdifferentiation to myofibroblasts by 4MU treatment. The drug affected the localization of HSCs and macrophages in the sites of fibrogenesis. CCl4 treatment induced the expression of FSTL1, which was downregulated by 4MU. Our results support the hypothesis that 4MU alleviates CCl4-induced liver fibrosis by reducing hyaluronan deposition and downregulating FSTL1 expression, accompanied by the suppression of HSC trans-differentiation and altered macrophage localization.
Collapse
|
20
|
Parvez MK, Rishi V. Herb-Drug Interactions and Hepatotoxicity. Curr Drug Metab 2019; 20:275-282. [PMID: 30914020 DOI: 10.2174/1389200220666190325141422] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 01/02/2019] [Accepted: 03/11/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND In recent times, herbals or phytomedicines have become very popular due to their global acceptance as a complementary and alternative remedy. While modern drugs are commercially available only after laboratory validations, clinical trials, as well as approval from drug regulatory authorities, majority of the marketed herbal products lack such scientific evidence of efficacy and safety. This results in herb or herb-drug interaction induced unfavorable clinical outcomes without crucial documentation on their temporal relations and concomitant use. METHODS An online literature search for peer-reviewed articles was conducted on the PubMed, Europe PMC, Medline and Google Scholar portals, using the phrases: complementary & alternative medicine, traditional Chinese medicine, herb-drug interaction, mechanisms of herb-drug interaction, herb-induced toxicity, herbal hepatotoxicity and causality, traditional medicine, viral hepatitis, etc. Results The retrieved data showed that globally, patients are attracted to herbal remedies with the misconception that these are completely safe and therefore, use them simultaneously with prescription drugs. Notably, there exists a potential risk of herb-drug interactions leading to some adverse side effects, including hepatotoxicity. The toxicological effect of a drug or herb is due to the inhibition of drug metabolizing enzymes (e.g., cytochrome P450), including interactions with certain prescription drugs through various mechanisms. Several cases of hepatotoxicity due to use of herbals in viral hepatitis-related liver diseases have been recently reported. However, limited experimental data and clinical evidence on herbal pharmacokinetics hamper the evaluation and reporting of adverse reactions and the underlying mechanisms. CONCLUSION Herb-drug interaction related morbidity is thus an emerging serious public health issue with broad implications for clinicians, pharmaceutical industries and health authorities. Nonetheless, despite increasing recognition of herb-drug interaction, a standard system for interaction prediction and evaluation is still nonexistent. This review article discusses the herb-drug interactions related hepatotoxicity and underlying mechanisms, including drug metabolizing enzymes and their regulation.
Collapse
Affiliation(s)
- Mohammad K Parvez
- Department of Pharmacognosy, King Saud University College of Pharmacy, Riyadh 11451, Saudi Arabia
| | - Vikas Rishi
- National Agri-Food Biotechnology Institute, Mohali, Punjab 140306, India
| |
Collapse
|
21
|
A Systematic Review of Drug Metabolism Studies of Plants With Anticancer Properties: Approaches Applied and Limitations. Eur J Drug Metab Pharmacokinet 2019; 45:173-225. [DOI: 10.1007/s13318-019-00582-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
22
|
Kozaczek M, Bottje W, Greene E, Lassiter K, Kong B, Dridi S, Korourian S, Hakkak R. Comparison of liver gene expression by RNAseq and PCR analysis after 8 weeks of feeding soy protein isolate- or casein-based diets in an obese liver steatosis rat model. Food Funct 2019; 10:8218-8229. [DOI: 10.1039/c9fo01387c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Differential expression of genes provides insight into fundamental mechanisms associated with the ability of soy protein isolate to attenuate liver steatosis in genetically obese rats.
Collapse
Affiliation(s)
- Melisa Kozaczek
- Department of Poultry Science & The Center of Excellence for Poultry Science
- University of Arkansas
- Fayetteville
- USA
| | - Walter Bottje
- Department of Poultry Science & The Center of Excellence for Poultry Science
- University of Arkansas
- Fayetteville
- USA
| | - Elizabeth Greene
- Department of Poultry Science & The Center of Excellence for Poultry Science
- University of Arkansas
- Fayetteville
- USA
| | - Kentu Lassiter
- Department of Poultry Science & The Center of Excellence for Poultry Science
- University of Arkansas
- Fayetteville
- USA
| | - Byungwhi Kong
- Department of Poultry Science & The Center of Excellence for Poultry Science
- University of Arkansas
- Fayetteville
- USA
| | - Sami Dridi
- Department of Poultry Science & The Center of Excellence for Poultry Science
- University of Arkansas
- Fayetteville
- USA
| | - Soheila Korourian
- Department of Pathology
- University of Arkansas for Medical Sciences
- Little Rock
- USA
| | - Reza Hakkak
- Department of Dietetics and Nutrition
- University of Arkansas for Medical Sciences
- Little Rock
- USA
- Department of Pediatrics
| |
Collapse
|
23
|
Zhou T, Meng C, He P. Soy Isoflavones and their Effects on Xenobiotic Metabolism. Curr Drug Metab 2019; 20:46-53. [PMID: 29708073 DOI: 10.2174/1389200219666180427170213] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 01/20/2018] [Accepted: 02/18/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND Soy isoflavones, such as genistein and daidzein, are bioflavonoids found in soy products that are able to interact with various hormones such as estrogen. Epidemiological studies reveal a proper level of isoflavones in diet can prevent many diseases like cancers or diabetes. Therefore, it is important to study the biotransformation and xenobiotic metabolism of soy isoflavones. METHODS A systematic review of published studies was carried out to investigate the characterization of isoflavones and their metabolites, sample pretreatment and quantitative analysis of isoflavones, and the influence of soy isoflavones on drug and xenobiotic metabolism. RESULTS Aglycones with weak estrogen-like activities are the biologically active forms of the soy isoflavones in mammals. The most recent advances including extraction, purification and detection of isoflavones in soybean and soy products are discussed. The effects of soy isoflavones on drug and xenobiotic metabolism involve in regulation of phase I cytochrome P450 (CYPs) enzyme and phase I detoxifying enzymes expression and activity. At the molecular level, soy isoflavones have proved capable of estrogenic/antiestrogenic with tissue-selective, anti-cancer, antiobesity, anti-oxidation, and tyrosine kinase inhibition activities. CONCLUSION This review summarized different aspects of soy isoflavones and their molecular mechanisms of pharmacological action on xenobiotic, which demonstrated that soy isoflavones can decrease the incidence of many diseases and benefit for human health. However, since the lack of clinical research for evaluation of the proper dosage of intake of soy isoflavones in diet or adjunctive therapy, there is a need for further studies on the selection of doses, biomedical applications and adverse effects of isoflavones for human health.
Collapse
Affiliation(s)
- Tianjiao Zhou
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Chengzhen Meng
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Pingli He
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
24
|
Wang C, Xu W, Zhang Y, Huang D, Huang K. Poly(ADP-ribosyl)ated PXR is a critical regulator of acetaminophen-induced hepatotoxicity. Cell Death Dis 2018; 9:819. [PMID: 30050067 PMCID: PMC6062506 DOI: 10.1038/s41419-018-0875-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 07/10/2018] [Accepted: 07/12/2018] [Indexed: 12/11/2022]
Abstract
Acetaminophen (APAP) overdose is the most frequent cause of acute liver failure and remains a critical problem in medicine. PARP1-dependent poly(ADPribosyl)ation is a key mediator of cellular stress responses and functions in multiple physiological and pathological processes. However, whether it is involved in the process of APAP metabolism remains elusive. In this study, we find that PARP1 is activated in mouse livers after APAP overdose. Pharmacological or genetic manipulations of PARP1 are sufficient to suppress the APAP-induced hepatic toxicity and injury, as well as reduced APAP metabolism. Mechanistically, we identify pregnane X receptor (PXR) as a substrate of PARP1-mediated poly(ADP-ribosyl)ation. The poly(ADP-ribosyl)ation of PXR in ligand-binding domain activates PXR competitively and solidly, facilitates its recruitment to target gene CYP3A11 promoter, and promotes CYP3A11 gene transcription, thus resulting in increases of APAP pro-toxic metabolism. Additionally, PXR silence antagonizes the effects of PARP1 on APAP-induced hepatotoxicity. These results identifies poly(ADP-ribosyl)ation of PXR by PARP1 as a key step in APAP-induced liver injury. We propose that inhibition of PARP1-dependent poly(ADP-ribosyl)ation might represent a novel approach for the treatment of drug-induced hepatotoxicity.
Collapse
Affiliation(s)
- Cheng Wang
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenjing Xu
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanqing Zhang
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dan Huang
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kai Huang
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China. .,Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
25
|
Gα i3 signaling is associated with sexual dimorphic expression of the clock-controlled output gene Dbp in murine liver. Oncotarget 2018; 9:30213-30224. [PMID: 30100984 PMCID: PMC6084400 DOI: 10.18632/oncotarget.25727] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 06/14/2018] [Indexed: 11/25/2022] Open
Abstract
The albumin D-box binding protein (DBP) is a member of the PAR bZip (proline and acidic amino acid-rich basic leucine zipper) transcription factor family and functions as important regulator of circadian core and output gene expression. Gene expression of DBP itself is under the control of E-box-dependent binding by the Bmal1-Clock heterodimer and CRE-dependent binding by the cAMP responsive element binding protein (CREB). However, the signaling mechanism mediating CREB-dependent regulation of DBP expression in the peripheral clock remains elusive. In this study, we examined the role of the GPCR (G-protein-coupled receptor)/Gαi3 (Galphai3) controlled cAMP-CREB signaling pathway in the regulation of hepatic expression of core clock and clock-regulated genes, including Dbp. Analysis of circadian gene expression revealed that rhythmicity of hepatic transcript levels of the majority of core clock (including Per1) and clock-regulated genes were not affected by Gαi3 deficiency. Consistently, the period length of primary Gαi3 deficient tail fibroblasts expressing a Bmal1-Luciferase reporter was not affected. Interestingly, however, Gαi3 deficient female but not male mice showed a tendentiously increased activation of CREB (nuclear pSer133-CREB) accompanied by an advanced peak in Dbp gene expression and elevated mRNA levels of the cytochrome P450 family member Cyp3a11, a target gene of DBP. Accordingly, selective inhibition of CREB led to a strongly decreased expression of DBP and CYP3A4 (human Cyp3a11 homologue) in HepG2 liver cells. In summary, our data suggest that the Gαi3-pCREB signalling pathway functions as a regulator of sexual-dimorphic expression of DBP and its xenobiotic target enzymes Cyp3a11/CYP3A4.
Collapse
|
26
|
Put "gender glasses" on the effects of phenolic compounds on cardiovascular function and diseases. Eur J Nutr 2018; 57:2677-2691. [PMID: 29696400 DOI: 10.1007/s00394-018-1695-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 04/19/2018] [Indexed: 12/15/2022]
Abstract
INTRODUCTION The influence of sex and gender is particularly relevant in cardiovascular diseases (CVD) as well as in several aspects of drug pharmacodynamics and pharmacokinetics. Anatomical and physiological differences between the sexes may influence the activity of many drugs, including the possibility of their interaction with other drugs, bioactive compounds, foods and beverages. Phenolic compounds could interact with our organism at organ, cellular, and molecular levels triggering a preventive action against chronic diseases, including CVD. RESULTS This article will review the role of sex on the activity of these bioactive molecules, considering the existence of sex differences in oxidative stress. It describes the pharmacokinetics of phenolic compounds, their effects on vessels, on cardiovascular system, and during development, including the role of nuclear receptors and microbiota. CONCLUSIONS Although there is a large gap between the knowledge of the sex differences in the phenolic compounds' activity and safety, and the urgent need for more research, available data underlie the possibility that plant-derived phenolic compounds could differently influence the health of male and female subjects.
Collapse
|
27
|
Ariyani W, Iwasaki T, Miyazaki W, Yu L, Takeda S, Koibuchi N. A Possible Novel Mechanism of Action of Genistein and Daidzein for Activating Thyroid Hormone Receptor-Mediated Transcription. Toxicol Sci 2018; 164:417-427. [DOI: 10.1093/toxsci/kfy097] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Affiliation(s)
- Winda Ariyani
- Department of Integrative Physiology, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Toshiharu Iwasaki
- Department of Integrative Physiology, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
- Department of Liberal Arts and Human Development, Kanagawa University of Human Service, Yokosuka, Kanagawa 238-8522, Japan
| | - Wataru Miyazaki
- Department of Integrative Physiology, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Lu Yu
- Department of Integrative Physiology, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
- Department of Physiology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Shigeki Takeda
- Department of Physiology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
- Faculty of Science and Technology, Division of Molecular Science, Gunma University, Kiryu, Gunma 376-8515, Japan
| | - Noriyuki Koibuchi
- Department of Integrative Physiology, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| |
Collapse
|
28
|
Jha A, Ryu MH, Oo O, Bews HJ, Carlson JC, Schwartz J, Basu S, Wong CS, Halayko AJ. Prophylactic benefits of systemically delivered simvastatin treatment in a house dust mite challenged murine model of allergic asthma. Br J Pharmacol 2018; 175:1004-1016. [PMID: 29318574 DOI: 10.1111/bph.14140] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 11/23/2017] [Accepted: 12/10/2017] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND AND PURPOSE Systemically delivered statins can blunt airway inflammation in ovalbumin-challenged mice. However, in asthma clinical trials the beneficial effects of introducing oral statins are not compelling. We have invetigated this discrepancy using a clinically relevant murine model of allergic asthma, and by including a prophylactic study arm. EXPERIMENTAL APPROACH Adult mice were: 1) challenged with house dust mite (HDM) alone or with subcutaneous (s.c.) simvastatin for two weeks; or 2) also treated with simvastatin for one week prior to HDM challenge. We assayed lung function, inflammatory cell influx and cytokine profile, goblet cell abundance, and simvastatin concentration in serum, lung lavage and tissue. KEY RESULTS Ultrahigh performance liquid chromatography-tandem mass spectrometry revealed that pharmacologically active simvastatin reached peak serum concentration after 8 h, but declined rapidly. Prophylactic treatment doubled peak serum simvastatin and repeated s.c. delivery established stable serum levels, but simvastatin was undetectable in the lungs. Both simvastatin treatment arms suppressed indices of HDM-induced airway inflammation and goblet cell hyperplasia, but this was significantly greater with prophylactic therapy, in particular, inhibition of neutrophil and eosinophil influx, and cytokine accumulation. Conversely, neither acute nor prophylactic delivery of simvastatin prevented HDM challenge-induced airway hyperreactivity. CONCLUSION AND IMPLICATIONS Systemically administered simvastatin accumulates in the blood, but not in lung tissues, and reduces leukocyte influx and associated lung inflammation. Prophylactic therapy has the greatest anti-inflammatory effects, but as observed in human clinical trials, systemic simvastatin therapy does not prevent allergic airway hyperreactivity.
Collapse
Affiliation(s)
- Aruni Jha
- Departments of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB, Canada.,Biology of Breathing Group, Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada.,Canadian Respiratory Research Network, Ottawa, ON, Canada
| | - Min H Ryu
- Departments of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB, Canada.,Biology of Breathing Group, Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada.,Canadian Respiratory Research Network, Ottawa, ON, Canada
| | - Ojo Oo
- Departments of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB, Canada.,Biology of Breathing Group, Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
| | - Hilary J Bews
- Richardson College for the Environment, University of Winnipeg, Winnipeg, MB, Canada
| | - Jules C Carlson
- Richardson College for the Environment, University of Winnipeg, Winnipeg, MB, Canada
| | - Jacquie Schwartz
- Departments of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB, Canada.,Biology of Breathing Group, Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
| | - Sujata Basu
- Departments of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB, Canada.,Biology of Breathing Group, Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
| | - Charles S Wong
- Biology of Breathing Group, Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada.,Richardson College for the Environment, University of Winnipeg, Winnipeg, MB, Canada
| | - Andrew J Halayko
- Departments of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB, Canada.,Internal Medicine, University of Manitoba, Winnipeg, MB, Canada.,Biology of Breathing Group, Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada.,Canadian Respiratory Research Network, Ottawa, ON, Canada
| |
Collapse
|
29
|
Alfaro-Viquez E, Roling BF, Krueger CG, Rainey CJ, Reed JD, Ricketts ML. An extract from date palm fruit (Phoenix dactylifera) acts as a co-agonist ligand for the nuclear receptor FXR and differentially modulates FXR target-gene expression in vitro. PLoS One 2018; 13:e0190210. [PMID: 29293579 PMCID: PMC5749773 DOI: 10.1371/journal.pone.0190210] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 12/11/2017] [Indexed: 02/07/2023] Open
Abstract
Date palm fruit (Phoenix dactylifera) consumption reduces serum triglyceride levels in human subjects. The objective of this study was to prepare an extract from dates and determine whether it acts as a ligand for the farnesoid x receptor (FXR), a nuclear receptor important for maintaining triglyceride and cholesterol homeostasis. Freeze-dried extracts were isolated from California-grown dates (Deglet Noor and Medjool) from the 2014 and 2015 harvests, by means of liquid extraction and solid phase separation. Each date palm extract (DPE) was characterized via HPLC and MALDI-TOF mass spectrometry, and the procyanidin content was qualitatively determined. Extracts were tested to determine their ability to modulate nuclear receptor-mediated transactivation using transient transfection. The effect of DPE on FXR-target genes regulating bile acid absorption and transport was then assessed in vitro, in Caco-2 cells. Characterization reveals that DPE is a rich source of polyphenols including hydroxycinnamic acids, proanthocyanidins, and lipohilic polyphenols, and comprises 13% proanthocyanidins. Transactivation results show that DPE acts as a co-agonist ligand for both mouse and human FXR, wherein it activates bile acid-bound FXR greater than that seen with bile acid alone. Additionally, DPE alone activated a peroxisome proliferator activated receptor alpha (PPARα) chimera in a dose-dependent manner. Consistent with DPE as a co-agonist ligand for FXR, studies in Caco-2 cells reveal that co-incubation with bile acid, dose-dependently enhances the expression of fibroblast growth factor 19 (FGF19), compared to treatment with bile acid alone. In contrast, DPE inhibited bile acid-induced expression of ileal bile acid binding protein (IBABP). Our results demonstrate that DPE acts as a potent co-agonist ligand for FXR, and that it differentially regulates FXR-target gene expression in vitro in human intestinal cells. This study provides novel insight into a potential mechanism by which dates may exert a hypotriglyceridemic effect via FXR and modulation of bile acid homeostasis.
Collapse
Affiliation(s)
- Emilia Alfaro-Viquez
- Reed Research Group, Department of Animal Sciences, University of Wisconsin-Madison, Madison, WI, United States of America
| | - Brent F. Roling
- Department of Agriculture, Nutrition and Veterinary Sciences, University of Nevada, Reno, Reno, NV, United States of America
| | - Christian G. Krueger
- Reed Research Group, Department of Animal Sciences, University of Wisconsin-Madison, Madison, WI, United States of America
- Complete Phytochemical Solutions, Cambridge, WI, United States of America
| | - Charlene J. Rainey
- Date Research Institute, San Juan Capistrano, CA, United States of America
| | - Jess D. Reed
- Reed Research Group, Department of Animal Sciences, University of Wisconsin-Madison, Madison, WI, United States of America
- Complete Phytochemical Solutions, Cambridge, WI, United States of America
| | - Marie-Louise Ricketts
- Department of Agriculture, Nutrition and Veterinary Sciences, University of Nevada, Reno, Reno, NV, United States of America
- * E-mail:
| |
Collapse
|
30
|
Amawi H, Ashby CR, Tiwari AK. Cancer chemoprevention through dietary flavonoids: what's limiting? CHINESE JOURNAL OF CANCER 2017. [PMID: 28629389 PMCID: PMC5477375 DOI: 10.1186/s40880-017-0217-4] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Flavonoids are polyphenols that are found in numerous edible plant species. Data obtained from preclinical and clinical studies suggest that specific flavonoids are chemo-preventive and cytotoxic against various cancers via a multitude of mechanisms. However, the clinical use of flavonoids is limited due to challenges associated with their effective use, including (1) the isolation and purification of flavonoids from their natural resources; (2) demonstration of the effects of flavonoids in reducing the risk of certain cancer, in tandem with the cost and time needed for epidemiological studies, and (3) numerous pharmacokinetic challenges (e.g., bioavailability, drug–drug interactions, and metabolic instability). Currently, numerous approaches are being used to surmount some of these challenges, thereby increasing the likelihood of flavonoids being used as chemo-preventive drugs in the clinic. In this review, we summarize the most important challenges and efforts that are being made to surmount these challenges.
Collapse
Affiliation(s)
- Haneen Amawi
- Department of Pharmacology and Systems Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, 43560, USA
| | - Charles R Ashby
- Pharmaceutical Sciences, College of Pharmacy, St. John's University, Queens, NY, 11432, USA
| | - Amit K Tiwari
- Department of Pharmacology and Systems Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, 43560, USA. .,Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, 43614, USA.
| |
Collapse
|
31
|
Narmada BC, Goh YT, Li H, Sinha S, Yu H, Cheung C. Human Stem Cell-Derived Endothelial-Hepatic Platform for Efficacy Testing of Vascular-Protective Metabolites from Nutraceuticals. Stem Cells Transl Med 2017; 6:851-863. [PMID: 28297582 PMCID: PMC5442778 DOI: 10.5966/sctm.2016-0129] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 08/09/2016] [Indexed: 12/28/2022] Open
Abstract
Atherosclerosis underlies many cardiovascular and cerebrovascular diseases. Nutraceuticals are emerging as a therapeutic moiety for restoring vascular health. Unlike small-molecule drugs, the complexity of ingredients in nutraceuticals often confounds evaluation of their efficacy in preclinical evaluation. It is recognized that the liver is a vital organ in processing complex compounds into bioactive metabolites. In this work, we developed a coculture system of human pluripotent stem cell-derived endothelial cells (hPSC-ECs) and human pluripotent stem cell-derived hepatocytes (hPSC-HEPs) for predicting vascular-protective effects of nutraceuticals. To validate our model, two compounds (quercetin and genistein), known to have anti-inflammatory effects on vasculatures, were selected. We found that both quercetin and genistein were ineffective at suppressing inflammatory activation by interleukin-1β owing to limited metabolic activity of hPSC-ECs. Conversely, hPSC-HEPs demonstrated metabolic capacity to break down both nutraceuticals into primary and secondary metabolites. When hPSC-HEPs were cocultured with hPSC-ECs to permit paracrine interactions, the continuous turnover of metabolites mitigated interleukin-1β stimulation on hPSC-ECs. We observed significant reductions in inflammatory gene expressions, nuclear translocation of nuclear factor κB, and interleukin-8 production. Thus, integration of hPSC-HEPs could accurately reproduce systemic effects involved in drug metabolism in vivo to unravel beneficial constituents in nutraceuticals. This physiologically relevant endothelial-hepatic platform would be a great resource in predicting the efficacy of complex nutraceuticals and mechanistic interrogation of vascular-targeting candidate compounds. Stem Cells Translational Medicine 2017;6:851-863.
Collapse
Affiliation(s)
| | - Yeek Teck Goh
- Institute of Molecular and Cell Biology, Proteos, Singapore
| | - Huan Li
- Institute of Bioengineering and Nanotechnology, Nanos, Singapore
| | - Sanjay Sinha
- The Anne McLaren Laboratory of Regenerative Medicine, Wellcome Trust‐Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Division of Cardiovascular Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| | - Hanry Yu
- Institute of Bioengineering and Nanotechnology, Nanos, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Mechanobiology Institute, Singapore
- Singapore‐MIT Alliance for Research and Technology, BioSyM, Singapore
| | - Christine Cheung
- Institute of Molecular and Cell Biology, Proteos, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| |
Collapse
|
32
|
Piekos S, Pope C, Ferrara A, Zhong XB. Impact of Drug Treatment at Neonatal Ages on Variability of Drug Metabolism and Drug-drug Interactions in Adult Life. ACTA ACUST UNITED AC 2017; 3:1-9. [PMID: 28344923 DOI: 10.1007/s40495-016-0078-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
PURPOSE OF REVIEW As the number of patients taking more than one medication concurrently continues to increase, predicting and preventing drug-drug interactions (DDIs) is now more important than ever. Administration of one drug can cause changes in the expression and activity of drug metabolizing enzymes (DMEs) and alter the efficacy or toxicity of other medications that are substrates for these enzymes, resulting in a DDI. In today's medical practice, potential DDIs are evaluated based on the current medications a patient is taking with little regard to drugs the patient has been exposed to in the past. The purpose of this review is to discuss potential impacts of drug treatment at neonatal ages on the variability of drug metabolism and DDIs in adult life. RECENT FINDINGS Existing evidence from the last thirty years has shown that exposure to certain xenobiotics during neonatal life has the potential to persistently alter DME expression through adult life. With recent advancements in the understanding of epigenetic regulation on gene expression, this phenomenon is resurfacing in the scientific community in hopes of defining possible mechanisms. Exposure to compounds that have the ability to bind nuclear receptors and trigger epigenetic modifications at neonatal and pediatric ages may have long-term, if not permanent, consequences on gene expression and DME activity. SUMMARY The information summarized in this review should challenge the way current healthcare providers assess DDI potential and may offer an explanation to the significant interindividual variability in drug metabolism that is observed among patients.
Collapse
Affiliation(s)
- Stephanie Piekos
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, 69 North Eagleville Road, Storrs, CT 06269, USA
| | - Chad Pope
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, 69 North Eagleville Road, Storrs, CT 06269, USA
| | - Austin Ferrara
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, 69 North Eagleville Road, Storrs, CT 06269, USA
| | - Xiao-Bo Zhong
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, 69 North Eagleville Road, Storrs, CT 06269, USA
| |
Collapse
|
33
|
Luo T, Snyder SM, Zhao B, Sullivan DK, Hamilton-Reeves J, Guthrie G, Ricketts ML, Shiverick KT, Shay N. Gene Expression Patterns Are Altered in Athymic Mice and Metabolic Syndrome Factors Are Reduced in C57BL/6J Mice Fed High-Fat Diets Supplemented with Soy Isoflavones. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:7492-7501. [PMID: 27653593 DOI: 10.1021/acs.jafc.6b03401] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Soy isoflavones exert beneficial health effects; however, their potential to ameliorate conditions associated with the metabolic syndrome (MetS) has not been studied in detail. In vitro and in vivo models were used to determine the effect of isoflavones on lipid metabolism, inflammation, and oxidative stress. In nude mice, consumption of Novasoy (NS) increased cholesterol and lipid metabolism gene expression, including Scd-1 (27.7-fold), Cyp4a14 (35.2-fold), and Cyp4a10 (9.5-fold), and reduced anti-inflammatory genes, including Cebpd (16.4-fold). A high-fat (HF) diet containing 0.4% (w/w) NS for 10 weeks significantly reduced percent weight gain (74.6 ± 2.5 vs 68.6 ± 3.5%) and hepatic lipid accumulation (20 ± 1.2 vs 27 ± 1.5%), compared to HF alone (p < 0.05) in C57BL/6J mice. NS also increased lipid oxidation and antioxidant gene expression while decreasing inflammatory cytokines. In vitro analysis in HepG2 cells revealed that genistein dose-dependently decreases oleic acid-induced lipid accumulation. Soy isoflavones may ameliorate symptoms associated with MetS via anti-inflammatory, antioxidant, and hypolipidemic modulation.
Collapse
Affiliation(s)
- Ting Luo
- Food Science and Technology, Oregon State University , Corvallis, Oregon 97330, United States
| | - Sarah M Snyder
- Food Science and Technology, Oregon State University , Corvallis, Oregon 97330, United States
| | - Bingxin Zhao
- Food Science and Technology, Oregon State University , Corvallis, Oregon 97330, United States
| | - Debra K Sullivan
- Dietetics and Nutrition, Kansas University Medical Center , Kansas City, Kansas 66160, United States
| | - Jill Hamilton-Reeves
- Dietetics and Nutrition, Kansas University Medical Center , Kansas City, Kansas 66160, United States
| | - Gregory Guthrie
- Baylor College of Medicine , Houston, Texas 77030, United States
| | - Marie-Louise Ricketts
- Agriculture, Nutrition and Veterinary Sciences, University of Nevada , Reno, Nevada 89557, United States
| | - Kathleen T Shiverick
- Pharmacology, University of Florida College of Medicine , Gainesville, Florida 32610, United States
| | - Neil Shay
- Food Science and Technology, Oregon State University , Corvallis, Oregon 97330, United States
| |
Collapse
|
34
|
Humanizing the zebrafish liver shifts drug metabolic profiles and improves pharmacokinetics of CYP3A4 substrates. Arch Toxicol 2016; 91:1187-1197. [PMID: 27485346 DOI: 10.1007/s00204-016-1789-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 07/05/2016] [Indexed: 12/29/2022]
Abstract
Understanding and predicting whether new drug candidates will be safe in the clinic is a critical hurdle in pharmaceutical development, that relies in part on absorption, distribution, metabolism, excretion and toxicology studies in vivo. Zebrafish is a relatively new model system for drug metabolism and toxicity studies, offering whole organism screening coupled with small size and potential for high-throughput screening. Through toxicity and absorption analyses of a number of drugs, we find that zebrafish is generally predictive of drug toxicity, although assay outcomes are influenced by drug lipophilicity which alters drug uptake. In addition, liver microsome assays reveal specific differences in metabolism of compounds between human and zebrafish livers, likely resulting from the divergence of the cytochrome P450 superfamily between species. To reflect human metabolism more accurately, we generated a transgenic "humanized" zebrafish line that expresses the major human phase I detoxifying enzyme, CYP3A4, in the liver. Here, we show that this humanized line shows an elevated metabolism of CYP3A4-specific substrates compared to wild-type zebrafish. The generation of this first described humanized zebrafish liver suggests such approaches can enhance the accuracy of the zebrafish model for toxicity prediction.
Collapse
|
35
|
Abstract
Cytochromes P450 (CYPs) play an important role in metabolism and clearance of most clinically utilized drugs and other xenobiotics. They are important in metabolism of endogenous compounds including fatty acids, sterols, steroids and lipid-soluble vitamins. Dietary factors such as phytochemicals are capable of affecting CYP expression and activity, which may be important in diet-drug interactions and in the development of fatty liver disease, cardiovascular disease and cancer. One important diet-CYP interaction is with diets containing plant proteins, particularly soy protein. Soy diets are traditionally consumed in Asian countries and are linked to lower incidence of several cancers and of cardiovascular disease in Asian populations. Soy is also an important protein source in vegetarian and vegan diets and the sole protein source in soy infant formulas. Recent studies suggest that consumption of soy can inhibit induction of CY1 enzymes by polycyclic aromatic hydrocarbons (PAHs) which may contribute to cancer prevention. In addition, there are data to suggest that soy components promiscuously activate several nuclear receptors including PXR, PPAR and LXR resulting in increased expression of CYP3As, CYP4As and CYPs involved in metabolism of cholesterol to bile acids. Such soy-CYP interactions may alter drug pharmacokinetics and therapeutic efficacy and are associated with improved lipid homeostasis and reduced risk of cardiovascular disease. The current review summarizes results from in vitro; in vivo and clinical studies of soy-CYP interactions and examines the evidence linking the effects of soy diets on CYP expression to isoflavone phytoestrogens, particularly, genistein and daidzein that are associated with soy protein.
Collapse
Affiliation(s)
- Martin J J Ronis
- a Department of Pharmacology & Experimental Therapeutics , Louisiana State University Health Sciences Center , New Orleans , LA , USA
| |
Collapse
|
36
|
Snyder SM, Zhao B, Luo T, Kaiser C, Cavender G, Hamilton-Reeves J, Sullivan DK, Shay NF. Consumption of Quercetin and Quercetin-Containing Apple and Cherry Extracts Affects Blood Glucose Concentration, Hepatic Metabolism, and Gene Expression Patterns in Obese C57BL/6J High Fat-Fed Mice. J Nutr 2016; 146:1001-7. [PMID: 27052533 PMCID: PMC4841928 DOI: 10.3945/jn.115.228817] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 01/22/2016] [Accepted: 02/22/2016] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Intake of polyphenols and polyphenol-rich fruit extracts has been shown to reduce markers of inflammation, diabetes, and hepatic complications that result from the consumption of a high-fat (HF) diet. OBJECTIVE The objective of this study was to determine whether mice fed polyphenol-rich apple peel extract (AE), cherry extract (CE), and quercetin, a phytochemical abundant in fruits including apples and cherries, would modulate the harmful effects of adiposity on blood glucose regulation, endocrine concentrations, and hepatic metabolism in HF-fed C57BL/6J male mice. METHODS Groups of 8-wk-old mice (n = 8 each) were fed 5 diets for 10 wk, including low-fat (LF; 10% of total energy) and HF (60% of total energy) control diets and 3 HF diets containing polyphenol-rich AE, CE, and quercetin (0.2% wt:wt). Also, an in vitro study used HepG2 cells exposed to quercetin (0-100 μmol/L) to determine whether intracellular lipid accumulation could be modulated by this phytochemical. RESULTS Mice fed the HF control diet consumed 36% more energy, gained 14 g more body weight, and had ∼50% elevated blood glucose concentrations (all P < 0.05) than did LF-fed mice. Mice fed HF diets containing AE, CE, or quercetin became as obese as HF-fed mice, but had significantly lower blood glucose concentrations after food deprivation (-36%, -22%, -22%, respectively; P < 0.05). Concentrations of serum C-reactive protein were reduced 29% in quercetin-fed mice compared with HF-fed controls (P < 0.05). A qualitative evaluation of liver tissue sections suggested that fruit phytochemicals may reduce hepatic lipid accumulation. A quantitative analysis of lipid accumulation in HepG2 cells demonstrated a dose-dependent decrease in lipid content in cells treated with 0-100 μmol quercetin/L (P < 0.05). CONCLUSIONS In mice, consumption of AE, CE, or quercetin appears to modulate some of the harmful effects associated with the consumption of an obesogenic HF diet. Furthermore, in a cell culture model, quercetin was shown to reduce intracellular lipid accumulation in a dose-dependent fashion.
Collapse
Affiliation(s)
- Sarah M Snyder
- Department of Food Science and Technology, Oregon State University, Corvallis, OR
| | - Bingxin Zhao
- Department of Food Science and Technology, Oregon State University, Corvallis, OR
| | | | - Clive Kaiser
- Department of Horticulture, Oregon State University, Milton-Freewater, OR; and
| | - George Cavender
- Department of Food Science and Technology, Oregon State University, Corvallis, OR
| | - Jill Hamilton-Reeves
- Department of Dietetics and Nutrition, University of Kansas Medical Center, Kansas City, KS
| | - Debra K Sullivan
- Department of Dietetics and Nutrition, University of Kansas Medical Center, Kansas City, KS
| | - Neil F Shay
- Department of Food Science and Technology, Oregon State University, Corvallis, OR;
| |
Collapse
|
37
|
Rigalli JP, Tocchetti GN, Arana MR, Villanueva SSM, Catania VA, Theile D, Ruiz ML, Weiss J. The phytoestrogen genistein enhances multidrug resistance in breast cancer cell lines by translational regulation of ABC transporters. Cancer Lett 2016; 376:165-72. [PMID: 27033456 DOI: 10.1016/j.canlet.2016.03.040] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 03/22/2016] [Accepted: 03/22/2016] [Indexed: 02/07/2023]
Abstract
Breast cancer is the most frequent malignancy in women. Multidrug resistance due to overexpression of ABC drug transporters is a common cause of chemotherapy failure and disease recurrence. Genistein (GNT) is a phytoestrogen present in soybeans and hormone supplements. We investigated the effect of GNT on the expression and function of ABC transporters in MCF-7 and MDA-MB-231 breast cancer cell lines. Results demonstrated an induction at the protein level of ABCC1 and ABCG2 and of ABCC1 in MCF-7 and MDA-MB-231, respectively. MCF-7 cells showed a concomitant increase in doxorubicin and mitoxantrone efflux and resistance, dependent on ABCG2 activity. ABCC1 induction by GNT in MDA-MB-231 cells modified neither drug efflux nor chemoresistance due to simultaneous acute inhibition of the transporter activity by GNT. All inductions took place at the translational level, as no increment in mRNA was observed and protein increase was prevented by cycloheximide. miR-181a, already demonstrated to inhibit ABCG2 translation, was down-regulated by GNT, explaining translational induction. Effects were independent of classical estrogen receptors. Results suggest potential nutrient-drug interactions that could threaten chemotherapy efficacy, especially in ABCG2-expressing tumors treated with substrates of this transporter.
Collapse
Affiliation(s)
- Juan Pablo Rigalli
- Department of Clinical Pharmacology and Pharmacoepidemiology, University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; Institute of Experimental Physiology, Faculty of Biochemical and Pharmaceutical Science, Rosario National University, Suipacha 570, 2000 Rosario, Argentina
| | - Guillermo Nicolás Tocchetti
- Institute of Experimental Physiology, Faculty of Biochemical and Pharmaceutical Science, Rosario National University, Suipacha 570, 2000 Rosario, Argentina
| | - Maite Rocío Arana
- Institute of Experimental Physiology, Faculty of Biochemical and Pharmaceutical Science, Rosario National University, Suipacha 570, 2000 Rosario, Argentina
| | - Silvina Stella Maris Villanueva
- Institute of Experimental Physiology, Faculty of Biochemical and Pharmaceutical Science, Rosario National University, Suipacha 570, 2000 Rosario, Argentina
| | - Viviana Alicia Catania
- Institute of Experimental Physiology, Faculty of Biochemical and Pharmaceutical Science, Rosario National University, Suipacha 570, 2000 Rosario, Argentina
| | - Dirk Theile
- Department of Clinical Pharmacology and Pharmacoepidemiology, University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - María Laura Ruiz
- Institute of Experimental Physiology, Faculty of Biochemical and Pharmaceutical Science, Rosario National University, Suipacha 570, 2000 Rosario, Argentina
| | - Johanna Weiss
- Department of Clinical Pharmacology and Pharmacoepidemiology, University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany.
| |
Collapse
|
38
|
Wang L, Li L, Zhao L, Liu C, Liu J, Liu L, Lin P, Liu B, Li M. Chronopharmacokinetics and mechanisms of gefitinib in a nude mice model of non-small cell lung cancer. RSC Adv 2016. [DOI: 10.1039/c6ra13854c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Circadian rhythms may influence the pharmacokinetics of drugs.
Collapse
Affiliation(s)
- Le Wang
- Department of Pharmacy
- Pharmaceutical College of Qingdao University
- Qingdao 266021
- China
| | - Lujia Li
- Department of Oncology
- No. 401 Hospital of Chinese People's Liberation Army
- Qingdao 266071
- China
| | - Liyan Zhao
- Department of Pharmacy
- No. 401 Hospital of Chinese People's Liberation Army
- Qingdao 266071
- China
| | - Changjiao Liu
- Pharmaceutical College of Dalian Medical University
- Dalian 116000
- China
| | - Jiao Liu
- Department of Pharmacy
- Affiliate Hospital of Weifang Medical University
- Weifang
- 261000 China
| | - Liang Liu
- Department of Pharmacy
- Pharmaceutical College of Qingdao University
- Qingdao 266021
- China
| | - Pingping Lin
- Department of Clinical Pharmacology
- Zhongshan Hospital
- Fudan University
- Shanghai 200032
- China
| | - Bo Liu
- Department of Pharmacy
- No. 401 Hospital of Chinese People's Liberation Army
- Qingdao 266071
- China
| | - Mingchun Li
- Department of Pharmacy
- No. 401 Hospital of Chinese People's Liberation Army
- Qingdao 266071
- China
| |
Collapse
|
39
|
Korobkova EA. Effect of Natural Polyphenols on CYP Metabolism: Implications for Diseases. Chem Res Toxicol 2015; 28:1359-90. [PMID: 26042469 DOI: 10.1021/acs.chemrestox.5b00121] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Cytochromes P450 (CYPs) are a large group of hemeproteins located on mitochondrial membranes or the endoplasmic reticulum. They play a crucial role in the metabolism of endogenous and exogenous molecules. The activity of CYP is associated with a number of factors including redox potential, protein conformation, the accessibility of the active site by substrates, and others. This activity may be potentially modulated by a variety of small molecules. Extensive experimental data collected over the past decade point at the active role of natural polyphenols in modulating the catalytic activity of CYP. Polyphenols are widespread micronutrients present in human diets of plant origin and in medicinal herbs. These compounds may alter the activity of CYP either via direct interactions with the enzymes or by affecting CYP gene expression. The polyphenol-CYP interactions may significantly alter the pharmacokinetics of drugs and thus influence the effectiveness of chemical therapies used in the treatment of different types of cancers, diabetes, obesity, and cardiovascular diseases (CVD). CYPs are involved in the oxidation and activation of external carcinogenic agents, in which case the inhibition of the CYP activity is beneficial for health. CYPs also support detoxification processes. In this case, it is the upregulation of CYP genes that would be favorable for the organism. A CYP enzyme aromatase catalyzes the formation of estrone and estradiol from their precursors. CYPs also catalyze multiple reactions leading to the oxidation of estrogen. Estrogen signaling and oxidative metabolism of estrogen are associated with the development of cancer. Thus, polyphenol-mediated modulation of the CYP's activity also plays a vital role in estrogen carcinogenesis. The aim of the present review is to summarize the data collected over the last five to six years on the following topics: (1) the mechanisms of the interactions of CYP with food constituents that occur via the direct binding of polyphenols to the enzymes and (2) the mechanisms of the regulation of CYP gene expression mediated by polyphenols. The structure-activity relationship relevant to the ability of polyphenols to affect the activity of CYP is analyzed. The application of polyphenol-CYP interactions to diseases is discussed.
Collapse
Affiliation(s)
- Ekaterina A Korobkova
- John Jay College of Criminal Justice, The Department of Sciences, City University of New York, 524 W 59th Street, New York, New York 10019, United States
| |
Collapse
|
40
|
Zanella I, Di Lorenzo D. Intracellular receptor regulation of adipose metabolism by the isoflavone genistein. Eur J Nutr 2015; 54:493-5. [PMID: 25662823 DOI: 10.1007/s00394-015-0849-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Isabella Zanella
- Biotechnology/3rd Laboratory and Department of Diagnostics, Civic Hospital of Brescia, 25123, Brescia, Italy
| | | |
Collapse
|
41
|
Rigalli JP, Ciriaci N, Arias A, Ceballos MP, Villanueva SSM, Luquita MG, Mottino AD, Ghanem CI, Catania VA, Ruiz ML. Regulation of multidrug resistance proteins by genistein in a hepatocarcinoma cell line: impact on sorafenib cytotoxicity. PLoS One 2015; 10:e0119502. [PMID: 25781341 PMCID: PMC4364073 DOI: 10.1371/journal.pone.0119502] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 01/13/2015] [Indexed: 12/17/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the fifth most frequent cancer worldwide. Sorafenib is the only drug available that improves the overall survival of HCC patients. P-glycoprotein (P-gp), Multidrug resistance-associated proteins 2 and 3 (MRP2 and 3) and Breast cancer resistance protein (BCRP) are efflux pumps that play a key role in cancer chemoresistance. Their modulation by dietary compounds may affect the intracellular accumulation and therapeutic efficacy of drugs that are substrates of these transporters. Genistein (GNT) is a phytoestrogen abundant in soybean that exerts its genomic effects through Estrogen-Receptors and Pregnane-X-Receptor (PXR), which are involved in the regulation of the above-mentioned transporters. We evaluated the effect of GNT on the expression and activity of P-gp, MRP2, MRP3 and BCRP in HCC-derived HepG2 cells. GNT (at 1.0 and 10 μM) increased P-gp and MRP2 protein expression and activity, correlating well with an increased resistance to sorafenib cytotoxicity as detected by the methylthiazole tetrazolium (MTT) assay. GNT induced P-gp and MRP2 mRNA expression at 10 but not at 1.0 μM concentration suggesting a different pattern of regulation depending on the concentration. Induction of both transporters by 1.0 μM GNT was prevented by cycloheximide, suggesting translational regulation. Downregulation of expression of the miR-379 by GNT could be associated with translational regulation of MRP2. Silencing of PXR abolished P-gp induction by GNT (at 1.0 and 10 μM) and MRP2 induction by GNT (only at 10 μM), suggesting partial mediation of GNT effects by PXR. Taken together, the data suggest the possibility of nutrient-drug interactions leading to enhanced chemoresistance in HCC when GNT is ingested with soy rich diets or dietary supplements.
Collapse
Affiliation(s)
- Juan Pablo Rigalli
- Institute of Experimental Physiology (IFISE-CONICET), Faculty of Biochemical and Pharmaceutical Science, Rosario National University, Rosario, Argentina
| | - Nadia Ciriaci
- Institute of Experimental Physiology (IFISE-CONICET), Faculty of Biochemical and Pharmaceutical Science, Rosario National University, Rosario, Argentina
| | - Agostina Arias
- Institute of Experimental Physiology (IFISE-CONICET), Faculty of Biochemical and Pharmaceutical Science, Rosario National University, Rosario, Argentina
| | - María Paula Ceballos
- Institute of Experimental Physiology (IFISE-CONICET), Faculty of Biochemical and Pharmaceutical Science, Rosario National University, Rosario, Argentina
| | - Silvina Stella Maris Villanueva
- Institute of Experimental Physiology (IFISE-CONICET), Faculty of Biochemical and Pharmaceutical Science, Rosario National University, Rosario, Argentina
| | - Marcelo Gabriel Luquita
- Institute of Experimental Physiology (IFISE-CONICET), Faculty of Biochemical and Pharmaceutical Science, Rosario National University, Rosario, Argentina
| | - Aldo Domingo Mottino
- Institute of Experimental Physiology (IFISE-CONICET), Faculty of Biochemical and Pharmaceutical Science, Rosario National University, Rosario, Argentina
| | - Carolina Inés Ghanem
- Institute of Pharmacological Investigations (ININFA-CONICET), Faculty of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina
| | - Viviana Alicia Catania
- Institute of Experimental Physiology (IFISE-CONICET), Faculty of Biochemical and Pharmaceutical Science, Rosario National University, Rosario, Argentina
| | - María Laura Ruiz
- Institute of Experimental Physiology (IFISE-CONICET), Faculty of Biochemical and Pharmaceutical Science, Rosario National University, Rosario, Argentina
- * E-mail:
| |
Collapse
|
42
|
Eyster K, Appt S, Chalpe A, Register T, Clarkson T. Effects of equol on gene expression in female cynomolgus monkey iliac arteries. Nutr Metab Cardiovasc Dis 2014; 24:423-427. [PMID: 24525253 PMCID: PMC3972297 DOI: 10.1016/j.numecd.2013.09.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 08/19/2013] [Accepted: 09/05/2013] [Indexed: 01/24/2023]
Abstract
BACKGROUND AND AIMS To examine effects of equol, the soy phytoestrogen metabolite, on gene expression in the monkey iliac artery. METHODS AND RESULTS A high fat/high cholesterol diet was fed to eight ovariectomized cynomolgus monkeys for 6.5 years. After biopsy of the left iliac artery, the animals were randomized to two treatment groups for 8 months; the treatment groups were equol (23.7 mg/100 g diet, n = 4) and vehicle (n = 4). The right iliac artery was removed at necropsy. Gene expression in the iliac arteries in response to equol was determined by DNA microarray. Comparison of atherosclerotic lesions and plasma lipids at pre-versus post-equol treatment time points and in vehicle versus equol treatment groups did not identify any significant differences. Despite the lack of effect of equol on these parameters, 59 genes were down-regulated and 279 were up-regulated in response to equol. Comparison of these data to previous work identified 10 genes regulated in opposite directions by equol compared to presence of atherosclerosis plaque (Menopause 2011; 18:1087-1095) and 55 genes differentially expressed in the same direction in response to both equol and estradiol (Eyster et al., Menopause 2014;21:143-152.). CONCLUSIONS Similar responses of genes to both equol and estradiol may reflect the extent to which equol serves as a natural selective estrogen receptor modulator in the arteries. Opposite responses of 10 genes to equol versus the presence of atherosclerosis implicates those genes in the potential protective effects of equol in arteries.
Collapse
Affiliation(s)
- K Eyster
- Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, 414 E. Clark St., Vermillion, SD 57069, USA.
| | - S Appt
- Comparative Medicine Clinical Research Center, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - A Chalpe
- Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, 414 E. Clark St., Vermillion, SD 57069, USA
| | - T Register
- Comparative Medicine Clinical Research Center, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - T Clarkson
- Comparative Medicine Clinical Research Center, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| |
Collapse
|
43
|
Yu CP, Hsieh YW, Lin SP, Chi YC, Hariharan P, Chao PDL, Hou YC. Potential modulation on P-glycoprotein and CYP3A by soymilk and miso: in vivo and ex-vivo studies. Food Chem 2013; 149:25-30. [PMID: 24295672 DOI: 10.1016/j.foodchem.2013.10.058] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 08/23/2013] [Accepted: 10/14/2013] [Indexed: 10/26/2022]
Abstract
P-glycoprotein (P-gp) and CYP3A4 both play very important roles in drug bioavailability, resistance and interactions. Our in vitro studies indicated that P-gp function was activated by many isoflavones. This study investigated the in vivo effects of soymilk and miso, isoflavone-rich soy foods, on P-gp and CYP3A by tracing the pharmacokinetics of cyclosporine (CSP), a probe drug of P-gp. Rats were orally administered CSP with and without soymilk or miso. A specific monoclonal fluorescence polarisation immunoassay was used to determine the blood concentration of CSP. The results showed that soymilk and miso significantly decreased the C(max) of CSP by 64.5% and 78.3%, and reduced the AUC(0-540) by 64.9% and 78.3%, respectively. Mechanism studies revealed that the activities of P-gp and CYP3A4 were induced by soymilk and miso. In conclusion, ingestion of soymilk and miso significantly activated the functions of P-gp and CYP3A.
Collapse
Affiliation(s)
- C P Yu
- School of Pharmacy, China Medical University, Taichung 404, Taiwan, ROC
| | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
At least 468 individual genes have been manipulated by molecular methods to study their effects on the initiation, promotion, and progression of atherosclerosis. Most clinicians and many investigators, even in related disciplines, find many of these genes and the related pathways entirely foreign. Medical schools generally do not attempt to incorporate the relevant molecular biology into their curriculum. A number of key signaling pathways are highly relevant to atherogenesis and are presented to provide a context for the gene manipulations summarized herein. The pathways include the following: the insulin receptor (and other receptor tyrosine kinases); Ras and MAPK activation; TNF-α and related family members leading to activation of NF-κB; effects of reactive oxygen species (ROS) on signaling; endothelial adaptations to flow including G protein-coupled receptor (GPCR) and integrin-related signaling; activation of endothelial and other cells by modified lipoproteins; purinergic signaling; control of leukocyte adhesion to endothelium, migration, and further activation; foam cell formation; and macrophage and vascular smooth muscle cell signaling related to proliferation, efferocytosis, and apoptosis. This review is intended primarily as an introduction to these key signaling pathways. They have become the focus of modern atherosclerosis research and will undoubtedly provide a rich resource for future innovation toward intervention and prevention of the number one cause of death in the modern world.
Collapse
Affiliation(s)
- Paul N Hopkins
- Cardiovascular Genetics, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA.
| |
Collapse
|
45
|
Avior Y, Bomze D, Ramon O, Nahmias Y. Flavonoids as dietary regulators of nuclear receptor activity. Food Funct 2013; 4:831-44. [PMID: 23598551 PMCID: PMC3781338 DOI: 10.1039/c3fo60063g] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Metabolic diseases such as obesity, type II diabetes, and dyslipidemia are a rising cause of mortality worldwide. The progression of many metabolic diseases is fundamentally regulated on the transcriptional level by a family of ligand-activated transcription factors, called nuclear receptors, which detect and respond to metabolic changes. Their role in maintaining metabolic homeostasis makes nuclear receptors an important pharmaceutical and dietary target. This review will present the growing evidence that flavonoids, natural secondary plant metabolites, are important regulators of nuclear receptor activity. Structural similarities between flavonoids and cholesterol derivatives combined with the promiscuous nature of most nuclear receptors provide a wealth of possibilities for pharmaceutical and dietary modulation of metabolism. While the challenges of bringing flavonoid-derived therapeutics to the market are significant, we consider this rapidly growing field to be an essential aspect of the functional food initiative and an important mine for pharmaceutical compounds.
Collapse
Affiliation(s)
- Yishai Avior
- School of Computer Science and Engineering, Center for Bioengineering, The Hebrew University of Jerusalem, Edmond J. Safra Campus (Givat Ram), Silberman 3-512, Jerusalem 91904, Israel.
| | - David Bomze
- Department of Cell and Developmental Biology, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ory Ramon
- School of Computer Science and Engineering, Center for Bioengineering, The Hebrew University of Jerusalem, Edmond J. Safra Campus (Givat Ram), Silberman 3-512, Jerusalem 91904, Israel.
| | - Yaakov Nahmias
- School of Computer Science and Engineering, Center for Bioengineering, The Hebrew University of Jerusalem, Edmond J. Safra Campus (Givat Ram), Silberman 3-512, Jerusalem 91904, Israel.
- Department of Cell and Developmental Biology, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
46
|
Del Rio D, Rodriguez-Mateos A, Spencer JPE, Tognolini M, Borges G, Crozier A. Dietary (poly)phenolics in human health: structures, bioavailability, and evidence of protective effects against chronic diseases. Antioxid Redox Signal 2013; 18:1818-92. [PMID: 22794138 PMCID: PMC3619154 DOI: 10.1089/ars.2012.4581] [Citation(s) in RCA: 1626] [Impact Index Per Article: 135.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Human intervention trials have provided evidence for protective effects of various (poly)phenol-rich foods against chronic disease, including cardiovascular disease, neurodegeneration, and cancer. While there are considerable data suggesting benefits of (poly)phenol intake, conclusions regarding their preventive potential remain unresolved due to several limitations in existing studies. Bioactivity investigations using cell lines have made an extensive use of both (poly)phenolic aglycones and sugar conjugates, these being the typical forms that exist in planta, at concentrations in the low-μM-to-mM range. However, after ingestion, dietary (poly)phenolics appear in the circulatory system not as the parent compounds, but as phase II metabolites, and their presence in plasma after dietary intake rarely exceeds nM concentrations. Substantial quantities of both the parent compounds and their metabolites pass to the colon where they are degraded by the action of the local microbiota, giving rise principally to small phenolic acid and aromatic catabolites that are absorbed into the circulatory system. This comprehensive review describes the different groups of compounds that have been reported to be involved in human nutrition, their fate in the body as they pass through the gastrointestinal tract and are absorbed into the circulatory system, the evidence of their impact on human chronic diseases, and the possible mechanisms of action through which (poly)phenol metabolites and catabolites may exert these protective actions. It is concluded that better performed in vivo intervention and in vitro mechanistic studies are needed to fully understand how these molecules interact with human physiological and pathological processes.
Collapse
Affiliation(s)
- Daniele Del Rio
- The Laboratory of Phytochemicals in Physiology, Human Nutrition Unit, Department of Food Science, University of Parma, Parma, Italy
| | | | | | | | | | | |
Collapse
|
47
|
Haneishi A, Takagi K, Asano K, Yamamoto T, Tanaka T, Nakamura S, Noguchi T, Yamada K. Analysis of regulatory mechanisms of an insulin-inducible SHARP-2 gene by (S)-Equol. Arch Biochem Biophys 2012; 525:32-9. [PMID: 22683650 DOI: 10.1016/j.abb.2012.05.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Revised: 05/24/2012] [Accepted: 05/30/2012] [Indexed: 01/01/2023]
Abstract
Small compounds that activate the insulin-dependent signaling pathway have potential therapeutic applications in controlling type 2 diabetes mellitus. The rat enhancer of split- and hairy-related protein-2 (SHARP-2) is an insulin-inducible transcription factor that decreases expression of the phosphoenolpyruvate carboxykinase gene, a gluconeogenic enzyme gene. In this study, we screened for soybean isoflavones that can induce the rat SHARP-2 gene expression and analyzed their mechanism(s). Genistein and (S)-Equol, a metabolite of daidzein, induced rat SHARP-2 gene expression in H4IIE rat hepatoma cells. The (S)-Equol induction was mediated by both the phosphoinositide 3-kinase- and protein kinase C (PKC)-pathways. When a dominant negative form of atypical PKC lambda (aPKCλ) was expressed, the induction of SHARP-2 mRNA level by (S)-Equol was inhibited. In addition, Western blot analyses showed that (S)-Equol rapidly activated both aPKCλ and classical PKC alpha. Furthermore, the (S)-Equol induction was inhibited by treatment with a RNA polymerase inhibitor or a protein synthesis inhibitor. Finally, a reporter gene assay revealed that the transcriptional stimulation by (S)-Equol was mediated by nucleotide sequences located between -4687 and -4133 of the rat SHARP-2 gene. Thus, we conclude that (S)-Equol is an useful dietary supplement to control type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Ayumi Haneishi
- Department of Health and Nutritional Science, Faculty of Human Health Science, Matsumoto University, 2095-1 Niimura, Matsumoto, Nagano 390-1295, Japan
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Caiozzi G, Wong BS, Ricketts ML. Dietary modification of metabolic pathways via nuclear hormone receptors. Cell Biochem Funct 2012; 30:531-51. [PMID: 23027406 DOI: 10.1002/cbf.2842] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Revised: 04/07/2012] [Accepted: 05/09/2012] [Indexed: 12/17/2022]
Abstract
Nuclear hormone receptors (NHRs), as ligand-dependent transcription factors, have emerged as important mediators in the control of whole body metabolism. Because of the promiscuous nature of several members of this superfamily that have been found to bind ligand with lower affinity than the classical steroid NHRs, they consequently display a broader ligand selectivity. This promiscuous nature has facilitated various bioactive dietary components being able to act as agonist ligands for certain members of the NHR superfamily. By binding to these NHRs, bioactive dietary components are able to mediate changes in various metabolic pathways, including, glucose, cholesterol and triglyceride homeostasis among others. This review will provide a general overview of the nuclear hormone receptors that have been shown to be activated by dietary components. The physiological consequences of such receptor activation by these dietary components will then be discussed in more detail.
Collapse
Affiliation(s)
- Gianella Caiozzi
- Department of Agriculture, Nutrition and Veterinary Sciences, University of Nevada Reno, Reno, NV 89557, USA
| | | | | |
Collapse
|
49
|
Xiao CQ, Chen R, Lin J, Wang G, Chen Y, Tan ZR, Zhou HH. Effect of genistein on the activities of cytochrome P450 3A and P-glycoprotein in Chinese healthy participants. Xenobiotica 2011; 42:173-8. [PMID: 21943317 DOI: 10.3109/00498254.2011.615954] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
To determine the effect of genistein on cytochrome P450 3A (CYP3A) and P-glycoprotein (P-gp) function using the probe substrates midazolam and talinolol, respectively. Eighteen healthy adult male participants were enrolled in a two-phase randomized crossover design. In each phase, the participants received placebo or genistein for 14 days. On the 15th day, midazolam and talinolol were administered and blood samples were obtained. Midazolam and talinolol pharmacokinetic parameter values were calculated and compared before and after genistein administration. Co-administration of genistein decreased the area under the concentration-time curve from 0 to 36 h (AUC 0-36) (143.65 ± 55.40 ng h/mL versus 126.10 ± 40.14 ng h/mL, p < 0.05), and the area under the concentration-time curve from zero to infinity (AUC 0-∞) (209.18 ± 56.61 ng h/mL versus 180.59 ± 43.03 ng h/mL, p < 0.05), and also maximum concentration (Cmax) of midazolam (48.86 ± 20.21 ng/mL versus 36.25 ± 14.35 ng/mL p < 0.05). Similarly, AUC 0-36 (2490.282 ± 668.79 ng h/mL versus 2114.46 ± 861.11 ng h/mL, p < 0.05), AUC 0-∞ (2980.45 ± 921.09 ng h/mL versus 2626.92 ± 1003.78 ng h/mL, p < 0.05) and Cmax of talinolol (326.58 ± 197.67 ng/mL versus 293.42 ± 127.19 ng/mL, p < 0.05) were reduced by genistein co-administration. The oral clearance of midazolam (1.68 ± 0.85 h-1 versus 3.98 ± 0.59 h-1, p < 0.05) and talinolol (3.34 ± 1.24 h-1 versus 3.79 ± 1.55 h-1, p<0.05) were increased by genistien significantly. Administration of genistein can result in a modest induction of CYP3A and possibly P-gp activity in healthy volunteers.
Collapse
Affiliation(s)
- C-Q Xiao
- The First People's Hospital of Chenzhou City, Chenzhou, Hunan, P. R. China
| | | | | | | | | | | | | |
Collapse
|
50
|
Ronis MJJ, Chen Y, Liu X, Blackburn ML, Shankar K, Landes RD, Fang N, Badger TM. Enhanced expression and glucocorticoid-inducibility of hepatic cytochrome P450 3A involve recruitment of the pregnane-X-receptor to promoter elements in rats fed soy protein isolate. J Nutr 2011; 141:10-6. [PMID: 21084653 DOI: 10.3945/jn.110.127423] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Previous studies and Expt. 1 of the current study demonstrate that diets made with soy protein isolate (SPI) enhance the glucocorticoid-inducibility of hepatic cytochrome P450 (CYP)3A-dependent monooxygenase activities (P < 0.05) compared with diets made with casein (CAS). To determine the underlying molecular mechanism, in a second experiment, we analyzed the time course of dexamethasone (DEX)-induction of hepatic CYP3A mRNA expression on postnatal d (PND) 25 and PND60 in male and female rats fed SPI- or CAS-based diets. After 50 mg(/)kg DEX, CYP3A1 mRNA expression increased >200-fold in SPI-fed males and females at PND25 compared with a 100-fold increase in CAS-fed rats (P < 0.05). The DEX-induced increase in CYP3A1 mRNA in SPI-fed rats on PND60 was also greater than that in CAS-fed rats. The induction by DEX of CYP3A2 mRNA was 1- to 3-fold greater in rats fed SPI compared with those fed CAS on PND25 (P < 0.05). Quantitation of newly synthesized CYP3A1 RNA transcripts by nuclear run-on analysis demonstrated a greater rate of basal transcription in SPI-fed compared with CAS-fed rats on PND60 accompanied by greater binding of the pregnane X receptor (PXR) to a response element on the CYP3A1 promoter in SPI-fed compared with CAS-fed rats (P < 0.05). These data suggest that increased hepatic CYP3A expression and inducibility following SPI feeding involves recruitment of PXR to its response element and suggests that soy consumption has potential effects on metabolism and transport of a wide variety of drugs and on bile acid homeostasis via proteins regulated by this transcription factor.
Collapse
Affiliation(s)
- Martin J J Ronis
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| | | | | | | | | | | | | | | |
Collapse
|