1
|
Cuervo L, McAlpine PL, Olano C, Fernández J, Lombó F. Low-Molecular-Weight Compounds Produced by the Intestinal Microbiota and Cardiovascular Disease. Int J Mol Sci 2024; 25:10397. [PMID: 39408727 PMCID: PMC11477366 DOI: 10.3390/ijms251910397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
Cardiovascular disease is the main cause of mortality in industrialized countries, with over 500 million people affected worldwide. In this work, the roles of low-molecular-weight metabolites originating from the gut microbiome, such as short-chain fatty acids, hydrogen sulfide, trimethylamine, phenylacetic acid, secondary bile acids, indoles, different gases, neurotransmitters, vitamins, and complex lipids, are discussed in relation to their CVD-promoting or preventing activities. Molecules of mixed microbial and human hepatic origin, such as trimethylamine N-oxide and phenylacetylglutamine, are also presented. Finally, dietary agents with cardioprotective effects, such as probiotics, prebiotics, mono- and poly-unsaturated fatty acids, carotenoids, and polyphenols, are also discussed. A special emphasis is given to their gut microbiota-modulating properties.
Collapse
Affiliation(s)
- Lorena Cuervo
- Research Group BIOMIC (Biosynthesis of Antitumor Molecules), Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, 33006 Oviedo, Spain; (L.C.); (C.O.)
- IUOPA (Instituto Universitario de Oncología del Principado de Asturias), 33006 Oviedo, Spain
- ISPA (Instituto de Investigación Sanitaria del Principado de Asturias), 33006 Oviedo, Spain
| | - Patrick L. McAlpine
- IUOPA (Instituto Universitario de Oncología del Principado de Asturias), 33006 Oviedo, Spain
- ISPA (Instituto de Investigación Sanitaria del Principado de Asturias), 33006 Oviedo, Spain
- Research Group BIONUC (Biotechnology of Nutraceuticals and Bioactive Compounds), Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Carlos Olano
- Research Group BIOMIC (Biosynthesis of Antitumor Molecules), Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, 33006 Oviedo, Spain; (L.C.); (C.O.)
- IUOPA (Instituto Universitario de Oncología del Principado de Asturias), 33006 Oviedo, Spain
- ISPA (Instituto de Investigación Sanitaria del Principado de Asturias), 33006 Oviedo, Spain
| | - Javier Fernández
- IUOPA (Instituto Universitario de Oncología del Principado de Asturias), 33006 Oviedo, Spain
- ISPA (Instituto de Investigación Sanitaria del Principado de Asturias), 33006 Oviedo, Spain
- Research Group BIONUC (Biotechnology of Nutraceuticals and Bioactive Compounds), Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Felipe Lombó
- IUOPA (Instituto Universitario de Oncología del Principado de Asturias), 33006 Oviedo, Spain
- ISPA (Instituto de Investigación Sanitaria del Principado de Asturias), 33006 Oviedo, Spain
- Research Group BIONUC (Biotechnology of Nutraceuticals and Bioactive Compounds), Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, 33006 Oviedo, Spain
| |
Collapse
|
2
|
Wan S, Wu W, Zhang Y, He J, Wang X, An P, Luo J, Zhu Y, Luo Y. Antioxidant Lipid Supplement on Cardiovascular Risk Factors: A Systematic Review and Meta-Analysis. Nutrients 2024; 16:2213. [PMID: 39064656 PMCID: PMC11279989 DOI: 10.3390/nu16142213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/07/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
The efficacy of functional lipids with antioxidant properties in reducing cardiovascular risk has not been consistent. Randomized controlled trials (RCTs) reporting estimates for the effects of antioxidant functional lipid supplementations on cardiometabolic risk factors were searched up to 1 May 2024. Overall, antioxidant lipid supplementations, compared with placebo, had favorable effects on systolic blood pressure (lycopene: -1.95 [-3.54, -0.36] mmHg), low-density lipoprotein cholesterol (n6 fatty acid: -0.39 [-0.71, -0.06] mmol/L; astaxanthin: -0.11 [-0.21, -0.01] mmol/L), high-density lipoprotein cholesterol (n3 fatty acid: 0.20 [0.13, 0.27] mmol/L; n6 fatty acid: 0.08 [0.01, 0.14] mmol/L; astaxanthin: 0.13 [0.05, 0.21] mmol/L), total cholesterol (n6 fatty acid: -0.24 [-0.37, -0.11] mmol/L; astaxanthin: -0.22 [-0.32, -0.12] mmol/L; beta-carotene: -0.13 [-0.23, -0.04] mmol/L), triglyceride (n3 fatty acid: -0.37 [-0.47, -0.28] mmol/L; astaxanthin: -0.46 [-0.83, -0.10] mmol/L), and fasting blood insulin (astaxanthin: -2.66 [-3.98, -1.34] pmol/L). The benefits of antioxidant lipid supplementations appeared to be most evident in blood pressure and blood lipids in participants with different cardiometabolic health statuses. Notably, n9 fatty acid increased triglyceride and hemoglobin A1C in the total population, which increases CVD risk. Antioxidant lipid supplementations ameliorate cardiometabolic risk factors, while their effect may depend on type and cardiometabolic health status. Long-term RCTs are needed to corroborate risk-benefit ratios across different antioxidant functional lipid supplementation settings.
Collapse
Affiliation(s)
- Sitong Wan
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China; (S.W.); (Y.Z.)
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (W.W.); (P.A.)
| | - Wenbin Wu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (W.W.); (P.A.)
| | - Yan Zhang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China; (S.W.); (Y.Z.)
| | - Jian He
- National Center of Technology Innovation for Dairy, Hohhot 010110, China;
| | - Xiaoping Wang
- Zhejiang Medicine Co., Ltd., Shaoxing 312366, China;
| | - Peng An
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (W.W.); (P.A.)
| | - Junjie Luo
- Food Laboratory of Zhongyuan, Luohe 462300, China
| | - Yinhua Zhu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yongting Luo
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China; (S.W.); (Y.Z.)
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (W.W.); (P.A.)
| |
Collapse
|
3
|
Dymova OV, Parshukov VS, Novakovskaya IV, Patova EN. Content of Primary and Secondary Carotenoids in the Cells of Cryotolerant Microalgae Chloromonas reticulata. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:1251-1259. [PMID: 39218022 DOI: 10.1134/s0006297924070071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 09/04/2024]
Abstract
Snow (cryotolerant) algae often form red (pink) spots in mountain ecosystems on snowfields around the world, but little is known about their physiology and chemical composition. Content and composition of pigments in the cells of the cryotolerant green microalgae Chloromonas reticulata have been studied. Analysis of carotenoids content in the green (vegetative) cells grown under laboratory conditions and in the red resting cells collected from the snow surface in the Subpolar Urals was carried out. Carotenoids such as neoxanthin, violaxanthin, anteraxanthin, zeaxanthin, lutein, and β-carotene were detected. Among the carotenoids, the ketocarotenoid astaxanthin with high biological activity was also found. It was established that cultivation of the algae at low positive temperature (6°C) and moderate illumination (250 μmol quanta/(m2⋅s) contributed to accumulation of all identified carotenoids, including extraplastidic astaxanthin. In addition to the pigments, fatty acids accumulated in the algae cells. The data obtained allow us to consider the studied microalgae as a potentially promising species for production of carotenoids.
Collapse
Affiliation(s)
- Olga V Dymova
- Institute of Biology of Komi Science Centre of the Ural Branch of the Russian Academy of Sciences, Syktyvkar, Komi Republic, 167982, Russia.
| | - Vitaliy S Parshukov
- Institute of Biology of Komi Science Centre of the Ural Branch of the Russian Academy of Sciences, Syktyvkar, Komi Republic, 167982, Russia
| | - Irina V Novakovskaya
- Institute of Biology of Komi Science Centre of the Ural Branch of the Russian Academy of Sciences, Syktyvkar, Komi Republic, 167982, Russia
| | - Elena N Patova
- Institute of Biology of Komi Science Centre of the Ural Branch of the Russian Academy of Sciences, Syktyvkar, Komi Republic, 167982, Russia
| |
Collapse
|
4
|
Wu Y, Bashir MA, Shao C, Wang H, Zhu J, Huang Q. Astaxanthin targets IL-6 and alleviates the LPS-induced adverse inflammatory response of macrophages. Food Funct 2024; 15:4207-4222. [PMID: 38512055 DOI: 10.1039/d4fo00610k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Numerous natural compounds are recognized for their anti-inflammatory properties attributed to antioxidant effects and the modulation of key inflammatory factors. Among them, astaxanthin (AST), a potent carotenoid antioxidant, remains relatively underexplored regarding its anti-inflammatory mechanisms and specific molecular targets. In this study, human monocytic leukemia cell-derived macrophages (THP-1) were selected as experimental cells, and lipopolysaccharides (LPS) served as inflammatory stimuli. Upon LPS treatment, the oxidative stress was significantly increased, accompanied by remarkable cellular damage. Moreover, LPSs escalated the expression of inflammation-related molecules. Our results demonstrate that AST intervention could effectively alleviate LPS-induced oxidative stress, facilitate cellular repair, and significantly attenuate inflammation. Further exploration of the anti-inflammatory mechanism revealed AST could substantially inhibit NF-κB translocation and activation, and mitigate inflammatory factor production by hindering NF-κB through the antioxidant mechanism. We further confirmed that AST exhibited protective effects against cell damage and reduced the injury from inflammatory cytokines by activating p53 and inhibiting STAT3. In addition, utilizing network pharmacology and in silico calculations based on molecular docking, molecular dynamics simulation, we identified interleukin-6 (IL-6) as a prominent core target of AST anti-inflammation, which was further validated by the RNA interference experiment. This IL-6 binding capacity actually enabled AST to curb the positive feedback loop of inflammatory factors, averting the onset of possible inflammatory storms. Therefore, this study offers a new possibility for the application and development of astaxanthin as a popular dietary supplement of anti-inflammatory or immunomodulatory function.
Collapse
Affiliation(s)
- Yahui Wu
- CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Anhui Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institute of Intelligent Agriculture, Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China.
- Science Island Branch of Graduate School, University of Science & Technology of China, Hefei 230026, China
| | - Mona A Bashir
- CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Anhui Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institute of Intelligent Agriculture, Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China.
- Science Island Branch of Graduate School, University of Science & Technology of China, Hefei 230026, China
| | - Changsheng Shao
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Han Wang
- CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Anhui Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institute of Intelligent Agriculture, Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China.
- Science Island Branch of Graduate School, University of Science & Technology of China, Hefei 230026, China
| | - Jianxia Zhu
- CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Anhui Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institute of Intelligent Agriculture, Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China.
- School of Nursing, Anhui Medical University, Hefei, Anhui 230032, China
| | - Qing Huang
- CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Anhui Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institute of Intelligent Agriculture, Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China.
- Science Island Branch of Graduate School, University of Science & Technology of China, Hefei 230026, China
| |
Collapse
|
5
|
Papadaki S, Tricha N, Panagiotopoulou M, Krokida M. Innovative Bioactive Products with Medicinal Value from Microalgae and Their Overall Process Optimization through the Implementation of Life Cycle Analysis-An Overview. Mar Drugs 2024; 22:152. [PMID: 38667769 PMCID: PMC11050870 DOI: 10.3390/md22040152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Microalgae are being recognized as valuable sources of bioactive chemicals with important medical properties, attracting interest from multiple industries, such as food, feed, cosmetics, and medicines. This review study explores the extensive research on identifying important bioactive chemicals from microalgae, and choosing the best strains for nutraceutical manufacturing. It explores the most recent developments in recovery and formulation strategies for creating stable, high-purity, and quality end products for various industrial uses. This paper stresses the significance of using Life Cycle Analysis (LCA) as a strategic tool with which to improve the entire process. By incorporating LCA into decision-making processes, researchers and industry stakeholders can assess the environmental impact, cost-effectiveness, and sustainability of raw materials of several approaches. This comprehensive strategy will allow for the choosing of the most effective techniques, which in turn will promote sustainable practices for developing microalgae-based products. This review offers a detailed analysis of the bioactive compounds, strain selection methods, advanced processing techniques, and the incorporation of LCA. It will serve as a valuable resource for researchers and industry experts interested in utilizing microalgae for producing bioactive products with medicinal properties.
Collapse
Affiliation(s)
- Sofia Papadaki
- DIGNITY Private Company, 30-32 Leoforos Alexandrou Papagou, Zografou, 157 71 Athens, Greece
| | - Nikoletta Tricha
- Laboratory of Process Analysis and Design, School of Chemical Engineering, National Technical University of Athens, Iroon Polytechneiou 9, 157 80 Athens, Greece; (N.T.); (M.P.); (M.K.)
| | - Margarita Panagiotopoulou
- Laboratory of Process Analysis and Design, School of Chemical Engineering, National Technical University of Athens, Iroon Polytechneiou 9, 157 80 Athens, Greece; (N.T.); (M.P.); (M.K.)
| | - Magdalini Krokida
- Laboratory of Process Analysis and Design, School of Chemical Engineering, National Technical University of Athens, Iroon Polytechneiou 9, 157 80 Athens, Greece; (N.T.); (M.P.); (M.K.)
| |
Collapse
|
6
|
Jabarpour M, Aleyasin A, Shabani Nashtaei M, Amidi F. Astaxanthin supplementation impact on insulin resistance, lipid profile, blood pressure, and oxidative stress in polycystic ovary syndrome patients: A triple-blind randomized clinical trial. Phytother Res 2024; 38:321-330. [PMID: 37874168 DOI: 10.1002/ptr.8037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 09/18/2023] [Accepted: 09/29/2023] [Indexed: 10/25/2023]
Abstract
Astaxanthin (ASX) is a natural carotenoid compound found in several of microorganisms and seafood. It may have numerous therapeutic benefits for polycystic ovarian syndrome (PCOS) patients. The aim of this study was to investigate the effect of ASX on lipid profile, insulin resistance (IR), blood pressure (BP), and oxidative stress (OS) levels in infertile PCOS patients. Overall, 58 infertile women with diagnosed PCOS participated in this triple-blind randomized clinical trial. They were randomly assigned to two groups, taking either a placebo or ASX (2 × 6 mg/day) for 8 weeks. Blood serum samples were collected from patients before and after the intervention. Fasting Insulin (FI), fasting blood glucose (FBS), OS markers (malondialdehyde [MDA], superoxide dismutase [SOD], and total antioxidant capacity [TAC]), and lipid profiles were evaluated in serum. Moreover, based on the relevant formula, several indices associated with IR were calculated. BP was also assessed at the start and end of the study. After 8 weeks of ASX consumption, a significant reduction was observed in fasting blood sugar, HOMA-IR, FI, MDA, low-density lipoprotein-cholesterol, and TC/HDL-C. Conversely, ASX significantly increased TAC, HDL-C, and QUICKI. After adjusting the analysis for the baseline values of age, body mass index, and biochemical parameters, non-significant values were obtained for QUICKI and FI, along with no changes in other findings. Overall, ASX appears to be an effective and safe supplement that alleviates insulin metabolism, lipid profile parameters, and OS in infertile PCOS patients.
Collapse
Affiliation(s)
- Masoome Jabarpour
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ashraf Aleyasin
- Department of Infertility, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Shabani Nashtaei
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Department of Infertility, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Fardin Amidi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Department of Infertility, Yas Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Zhou M, Yin Y, Zhao J, Zhou M, Bai Y, Zhang P. Applications of microalga-powered microrobots in targeted drug delivery. Biomater Sci 2023; 11:7512-7530. [PMID: 37877241 DOI: 10.1039/d3bm01095c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Over the past decade, researchers have proposed a new class of drug delivery systems, bio-hybrid micro-robots, designed with a variety of living cell-driven micro-robots that utilize the unique mobility of natural organisms (bacteria, cells, exosomes, etc.) to transport effective drugs. Microalgae are considered potential drug delivery carriers. Recent studies have shown that microalga-based drug delivery systems exhibit excellent biocompatibility. In addition, microalgae have a large surfactant area, phototaxis, oxygen production, and other characteristics, so they are used as a carrier for the treatment of bacterial infections, cancer, etc. This review summarizes the modification of microalgae including click chemistry and electrostatic adsorption, and can improve the drug loading efficiency through dehydration and hydration strategies. The prepared microalgal drug delivery system can be targeted to different organs by different dosing methods or using external forces. Finally, it summarizes its antibacterial (gastritis, periodontitis, skin wound inflammation, etc.) and antitumor applications.
Collapse
Affiliation(s)
- Min Zhou
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Yannan Yin
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Jiuhong Zhao
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Mingyang Zhou
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, USA
| | - Yanjie Bai
- Department of Stomatology, People's Hospital of Liaoning Province, Shenyang 110016, China.
| | - Peng Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
8
|
Szczepanik K, Oczkowicz M, Dobrowolski P, Świątkiewicz M. The Protective Effects of Astaxanthin (AST) in the Liver of Weaned Piglets. Animals (Basel) 2023; 13:3268. [PMID: 37893992 PMCID: PMC10603637 DOI: 10.3390/ani13203268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
During the weaning period, piglets are exposed to high levels of stress, which often causes problems with the digestive system. This stress also promotes the production of free radicals, resulting in oxidative stress. Astaxanthin (AST) stands out as one of the most potent antioxidants. Its resistance to light and heat makes it particularly valuable in compound feed production. This study was to determine the effect of AST impact on liver histology and gene expression in piglets. For our experiment, we used 16 weaned piglets of the PL breed, which we divided into two groups: Group I (control group with no AST supplementation) and Group II (supplemented with AST at 0.025 g/kg). Both feed mixtures were iso-proteins and iso-energetic, meeting the nutritional requirements of the piglets. The experiment lasted from day 35 to day 70 of the piglets' age, during which they had ad libitum access. The results indicate that the addition of AST prevents liver fibrosis due to reduced collagen deposition in the tissue. Analysis of gene expression supported these results. In the AST-supplemented group, we noted a decrease in NR1H3 expression, an increase in CYP7A1 expression, and reductions in the expression of NOTCH1 and CREB genes.
Collapse
Affiliation(s)
- Kinga Szczepanik
- Department of Animal Nutrition and Feed Science, National Research Institute of Animal Production, Krakowska St. 1, 32-083 Balice, Poland; (K.S.); (M.Ś.)
| | - Maria Oczkowicz
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Krakowska St. 1, 32-083 Balice, Poland
| | - Piotr Dobrowolski
- Department of Functional Anatomy and Cytobiology, Maria Curie-Skłodowska University, Akademicka St. 19, 20-033 Lublin, Poland;
| | - Małgorzata Świątkiewicz
- Department of Animal Nutrition and Feed Science, National Research Institute of Animal Production, Krakowska St. 1, 32-083 Balice, Poland; (K.S.); (M.Ś.)
| |
Collapse
|
9
|
Liang H, Chen H, Liu X, Wang Z, Li P, Lu S. Heterologous Production in the Synechocystis Chassis Suggests the Biosynthetic Pathway of Astaxanthin in Cyanobacteria. Antioxidants (Basel) 2023; 12:1826. [PMID: 37891905 PMCID: PMC10604110 DOI: 10.3390/antiox12101826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/24/2023] [Accepted: 10/01/2023] [Indexed: 10/29/2023] Open
Abstract
Astaxanthin is a carotenoid species with the highest antioxidant capability. Its natural resource is very rare. The biosynthesis of astaxanthin from β-carotene includes a hydroxylation step and a ketolation step, for which the corresponding enzymes have been characterized in a few species. However, the sequence of these two reactions is unclear, and may vary with different organisms. In this study, we aimed to elucidate this sequence in Synechocystis, which is an ideal cyanobacterial synthetic biology chassis. We first silenced the endogenous carotene oxygenase gene SyneCrtO to avoid its possible interference in the carotenoid metabolic network. We then introduced the β-carotene ketolase gene from Haematococcus pluvialis (HpBKT) and the CrtZ-type carotene β-hydroxylase gene from Pantoea agglomerans (PaCrtZ) to this δCrtO strain. Our pigment analysis demonstrated that both the endogenous CrtR-type carotene hydroxylase SyneCrtR and HpBKT have the preference to use β-carotene as their substrate for hydroxylation and ketolation reactions to produce zeaxanthin and canthaxanthin, respectively. However, the endogenous SyneCrtR is not able to further catalyze the 3,3'-hydroxylation of canthaxanthin to generate astaxanthin. From our results, a higher accumulation of canthaxanthin and a much lower level of astaxanthin, as confirmed using liquid chromatography-tandem mass spectrometry analysis, were detected in our transgenic BKT+/CrtZ+/δCrtO cells. Therefore, we proposed that the bottleneck for the heterologous production of astaxanthin in Synechocystis might exist at the hydroxylation step, which requires a comprehensive screening or genetic engineering for the corresponding carotene hydroxylase to enable the industrial production of astaxanthin.
Collapse
Affiliation(s)
- Hanyu Liang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
- Shenzhen Research Institute of Nanjing University, Shenzhen 518000, China
| | - Hongjuan Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Xinya Liu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Zihan Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Pengfu Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
- Shenzhen Research Institute of Nanjing University, Shenzhen 518000, China
| | - Shan Lu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
- Shenzhen Research Institute of Nanjing University, Shenzhen 518000, China
| |
Collapse
|
10
|
Liu S, Kuang X, Song X, Li H, Shao X, Gao T, Guo X, Li S, Liu R, Li K, Li D. Effects of lipid extract from blue mussel (Mytilus edulis) on gut microbiota, and its relationship with glycemic traits in type 2 diabetes mellitus patients: a double-blind randomized controlled trial. Food Funct 2023; 14:8922-8932. [PMID: 37721038 DOI: 10.1039/d3fo01491f] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Studies have shown that blue mussel lipid extract (BMLE) can improve the glycemic traits, inflammatory cytokines, and lipid profile of patients with type 2 diabetes mellitus (T2DM) in China. Gut microbiota is closely related to T2DM. This study aims to explore whether BMLE can improve the glycemic status of T2DM patients by regulating gut microbiota in a 60-day double-blind randomized controlled trial. A total of 133 T2DM subjects were randomized into BMLE (n = 44), fish oil (FO) (n = 44), and corn oil (CO) (n = 45) groups. The participants were asked to take two corresponding oil capsules (0.8 g per capsule each) every day. The faecal microbiota, glycemic traits, and other cardiometabolic factors were analyzed at baseline and endpoint. The α diversity estimators of Ace and Chao1 decreased significantly in all three groups, but there was no significant difference between the groups. Eight bacteria decreased significantly in the BMLE group but not in the FO and CO groups: unclassified_Clostridia_UCG_014, unclassified_Bacteroidia, Erysipelotrichaceae, and uncultured_Ruminococcaceae_bacterium at the family level and unclassified_Bacteroidia, uncultured_Ruminococcaceae_bacterium, unclassified_Clostridia_UCG_014, and Turicibacter at genus level. In the BMLE group, the change in the relative abundance of Erysipelotrichaceae was positively correlated with the changes in the homeostatic model assessment of insulin resistance (HOMA-IR) (r = 0.454, p < 0.01) and fasting insulin (r = 0.414, p < 0.01). The change in the relative abundance of Turicibacter was positively correlated with the changes in HOMA-IR (r = 0.431, p < 0.01), fasting insulin (r = 0.414, p < 0.01), total cholesterol (TC) (r = 0.358, p < 0.05), and triacylglycerol (TG) (r = 0.393 p = 0.013). In conclusion, BMLE might improve glycemic traits by modulating gut microbiota in T2DM patients.
Collapse
Affiliation(s)
- Shiyi Liu
- Institute of Nutrition and Health, Qingdao University, China.
- School of Public Health, Qingdao University, China
| | - Xiaotong Kuang
- Institute of Nutrition and Health, Qingdao University, China.
- School of Public Health, Qingdao University, China
| | - Xiaolei Song
- Institute of Nutrition and Health, Qingdao University, China.
- School of Public Health, Qingdao University, China
| | - Huiying Li
- Institute of Nutrition and Health, Qingdao University, China.
- School of Public Health, Qingdao University, China
| | - Xianfeng Shao
- Institute of Nutrition and Health, Qingdao University, China.
- School of Public Health, Qingdao University, China
| | - Tianlin Gao
- School of Public Health, Qingdao University, China
| | - Xiaofei Guo
- Institute of Nutrition and Health, Qingdao University, China.
- School of Public Health, Qingdao University, China
| | - Shan Li
- Institute of Nutrition and Health, Qingdao University, China.
- School of Public Health, Qingdao University, China
| | - Run Liu
- Institute of Nutrition and Health, Qingdao University, China.
- School of Public Health, Qingdao University, China
| | - Kelei Li
- Institute of Nutrition and Health, Qingdao University, China.
- School of Public Health, Qingdao University, China
| | - Duo Li
- Institute of Nutrition and Health, Qingdao University, China.
- School of Public Health, Qingdao University, China
| |
Collapse
|
11
|
Xie J, Hou X, He W, Xiao J, Cao Y, Liu X. Astaxanthin reduces fat storage in a fat-6/ fat-7 dependent manner determined using high fat Caenorhabditis elegans. Food Funct 2023; 14:7347-7360. [PMID: 37490309 DOI: 10.1039/d3fo01403g] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
Although astaxanthin has been shown to have high potential for weight loss, the specific action site and signal pathway generally cannot be confirmed in other animal models. This prevents us from finding therapeutic targets. Hence, we further illuminated its efficacy and specific action sites by using Caenorhabditis elegans (C. elegans). In this study, 60 μM astaxanthin supplementation reduced overall fat deposition and triglyceride levels by 21.47% and 22.00% (p < 0.01). The content of large lipid droplets was reversed after astaxanthin treatment, and the ratio of oleic acid/stearic acid (C18:1Δ9/C18:0) decreased significantly, which were essential substrates for triglyceride biosynthesis. In addition, astaxanthin prevented obesity caused by excessive energy accumulation and insufficient energy consumption. Furthermore, the above effects were induced by sbp-1/mdt-15 and insulin/insulin-like growth factor pathways, and finally co-regulated the specific site-fat-6 and fat-7 down-regulation. These results provided insight into therapeutic targets for future astaxanthin as a nutritional health product to relieve obesity.
Collapse
Affiliation(s)
- Junting Xie
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Xiaoning Hou
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Wanshi He
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Jie Xiao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Xiaojuan Liu
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| |
Collapse
|
12
|
Shehata MK, Ismail AA, Kamel MA. Combined Donepezil with Astaxanthin via Nanostructured Lipid Carriers Effective Delivery to Brain for Alzheimer's Disease in Rat Model. Int J Nanomedicine 2023; 18:4193-4227. [PMID: 37534058 PMCID: PMC10391537 DOI: 10.2147/ijn.s417928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/19/2023] [Indexed: 08/04/2023] Open
Abstract
Introduction Donepezil (DPL), a specific acetylcholinesterase inhibitor, is used as a first-line treatment to improve cognitive deficits in Alzheimer's disease (AD) and it might have a disease modifying effect. Astaxanthin (AST) is a natural potent antioxidant with neuroprotective, anti-amyloidogenic, anti-apoptotic, and anti-inflammatory effects. This study aimed to prepare nanostructured lipid carriers (NLCs) co-loaded with donepezil and astaxanthin (DPL/AST-NLCs) and evaluate their in vivo efficacy in an AD-like rat model 30 days after daily intranasal administration. Methods DPL/AST-NLCs were prepared using a hot high-shear homogenization technique, in vitro examined for their physicochemical parameters and in vivo evaluated. AD induction in rats was performed by aluminum chloride. The cortex and hippocampus were isolated from the brain of rats for biochemical testing and histopathological examination. Results DPL/AST-NLCs showed z-average diameter 149.9 ± 3.21 nm, polydispersity index 0.224 ± 0.017, zeta potential -33.7 ± 4.71 mV, entrapment efficiency 81.25 ±1.98% (donepezil) and 93.85 ±1.75% (astaxanthin), in vitro sustained release of both donepezil and astaxanthin for 24 h, spherical morphology by transmission electron microscopy, and they were stable at 4-8 ± 2°C for six months. Differential scanning calorimetry revealed that donepezil and astaxanthin were molecularly dispersed in the NLC matrix in an amorphous state. The DPL/AST-NLC-treated rats showed significantly lower levels of nuclear factor-kappa B, malondialdehyde, β-site amyloid precursor protein cleaving enzyme-1, caspase-3, amyloid beta (Aβ1‑42), and acetylcholinesterase, and significantly higher levels of glutathione and acetylcholine in the cortex and hippocampus than the AD-like untreated rats and that treated with donepezil-NLCs. DPL/AST-NLCs showed significantly higher anti-amyloidogenic, antioxidant, anti-acetylcholinesterase, anti-inflammatory, and anti-apoptotic effects, resulting in significant improvement in the cortical and hippocampal histopathology. Conclusion Nose-to-brain delivery of DPL/AST-NLCs is a promising strategy for the management of AD.
Collapse
Affiliation(s)
- Mustafa K Shehata
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Assem A Ismail
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Maher A Kamel
- Department of Biochemistry, Medical Research Institute, Alexandria University, Alexandria, Egypt
| |
Collapse
|
13
|
Heidari M, Chaboksafar M, Alizadeh M, Sohrabi B, Kheirouri S. Effects of Astaxanthin supplementation on selected metabolic parameters, anthropometric indices, Sirtuin1 and TNF-α levels in patients with coronary artery disease: A randomized, double-blind, placebo-controlled clinical trial. Front Nutr 2023; 10:1104169. [PMID: 37051124 PMCID: PMC10083413 DOI: 10.3389/fnut.2023.1104169] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/31/2023] [Indexed: 03/29/2023] Open
Abstract
BackgroundAtherosclerosis can develop as a result of an increase in oxidative stress and concurrently rising levels of inflammation. Astaxanthin (AX), a red fat-soluble pigment classified as a xanthophyll, may be able to prevent the vascular damage induced by free radicals and the activation of inflammatory signaling pathways. The objective of the current study is to assess the effects of AX supplementation on cardiometabolic risk factors in individuals with coronary artery disease (CAD).MethodsThis randomized double-blind placebo-controlled clinical trial was conducted among 50 CAD patients. Participants were randomly allocated into two groups to intake either AX supplements (12 mg/day) or placebo for 8 weeks. Lipid profile, glycemic parameters, anthropometric indices, body composition, Siruin1 and TNF-α levels were measured at baseline and after 8 weeks.ResultsBody composition, glycemic indices, serum levels of TNF-α, Sirtuin1 did not differ substantially between the AX and placebo groups (p > 0.05). The data of AX group showed significant reduction in total cholesterol (−14.95 ± 33.57 mg/dl, p < 0.05) and LDL-C (−14.64 ± 28.27 mg/dl, p < 0.05). However, TG and HDL-C levels could not be affected through AX supplementation.ConclusionOur results suggest that AX supplementation play a beneficial role in reducing some components of lipid profile levels. However, further clinical investigations in CAD patients are required to obtain more conclusive findings.Clinical trial registrationwww.Irct.ir., identifier IRCT20201227049857N1.
Collapse
Affiliation(s)
- Marzieh Heidari
- Department of Clinical Nutrition, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Chaboksafar
- Department of Clinical Nutrition, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Alizadeh
- Department of Clinical Nutrition, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
- *Correspondence: Mohammad Alizadeh,
| | - Bahram Sohrabi
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sorayya Kheirouri
- Department of Nutrition, Faculty of Nutrition, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
14
|
Akram W, Rihan M, Ahmed S, Arora S, Ahmad S, Vashishth R. Marine-Derived Compounds Applied in Cardiovascular Diseases: Submerged Medicinal Industry. Mar Drugs 2023; 21:md21030193. [PMID: 36976242 PMCID: PMC10052127 DOI: 10.3390/md21030193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/20/2023] [Accepted: 02/20/2023] [Indexed: 03/29/2023] Open
Abstract
Cardiovascular diseases (CVDs) are among the most impactful illnesses globally. Currently, the available therapeutic option has several side effects, including hypotension, bradycardia, arrhythmia, and alteration in different ion concentrations. Recently, bioactive compounds from natural sources, including plants, microorganisms, and marine creatures, have gained a lot of interest. Marine sources serve as reservoirs for new bioactive metabolites with various pharmacological activities. The marine-derived compound such as omega-3 acid ethyl esters, xyloketal B, asperlin, and saringosterol showed promising results in several CVDs. The present review focuses on marine-derived compounds' cardioprotective potential for hypertension, ischemic heart disease, myocardial infarction, and atherosclerosis. In addition to therapeutic alternatives, the current use of marine-derived components, the future trajectory, and restrictions are also reviewed.
Collapse
Affiliation(s)
- Wasim Akram
- Department of Pharmacology, SPER, Jamia Hamdard, New Delhi 110062, India
| | - Mohd Rihan
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Mohali 160062, India
| | - Sakeel Ahmed
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Mohali 160062, India
| | - Swamita Arora
- Department of Pharmacology, R. V. Northland Institute of Pharmacy, Dadri 203207, India
| | - Sameer Ahmad
- Department of Food Technology Jamia Hamdard, New Delhi 110062, India
| | - Rahul Vashishth
- School of BioSciences and Technology-Food Technology, Vellore Institute of Technology, Vellore 632014, India
| |
Collapse
|
15
|
Rizzo M, Colletti A, Penson PE, Katsiki N, Mikhailidis DP, Toth PP, Gouni-Berthold I, Mancini J, Marais D, Moriarty P, Ruscica M, Sahebkar A, Vinereanu D, Cicero AFG, Banach M, Al-Khnifsawi M, Alnouri F, Amar F, Atanasov AG, Bajraktari G, Banach M, Gouni-Berthold I, Bhaskar S, Bielecka-Dąbrowa A, Bjelakovic B, Bruckert E, Bytyçi I, Cafferata A, Ceska R, Cicero AF, Chlebus K, Collet X, Daccord M, Descamps O, Djuric D, Durst R, Ezhov MV, Fras Z, Gaita D, Gouni-Berthold I, Hernandez AV, Jones SR, Jozwiak J, Kakauridze N, Kallel A, Katsiki N, Khera A, Kostner K, Kubilius R, Latkovskis G, John Mancini G, David Marais A, Martin SS, Martinez JA, Mazidi M, Mikhailidis DP, Mirrakhimov E, Miserez AR, Mitchenko O, Mitkovskaya NP, Moriarty PM, Mohammad Nabavi S, Nair D, Panagiotakos DB, Paragh G, Pella D, Penson PE, Petrulioniene Z, Pirro M, Postadzhiyan A, Puri R, Reda A, Reiner Ž, Radenkovic D, Rakowski M, Riadh J, Richter D, Rizzo M, Ruscica M, Sahebkar A, Serban MC, Shehab AM, Shek AB, Sirtori CR, Stefanutti C, Tomasik T, Toth PP, Viigimaa M, Valdivielso P, Vinereanu D, Vohnout B, von Haehling S, Vrablik M, Wong ND, Yeh HI, Zhisheng J, Zirlik A. Nutraceutical approaches to non-alcoholic fatty liver disease (NAFLD): A position paper from the International Lipid Expert Panel (ILEP). Pharmacol Res 2023; 189:106679. [PMID: 36764041 DOI: 10.1016/j.phrs.2023.106679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 01/25/2023] [Accepted: 01/26/2023] [Indexed: 02/11/2023]
Abstract
Non-Alcoholic Fatty Liver Disease (NAFLD) is a common condition affecting around 10-25% of the general adult population, 15% of children, and even > 50% of individuals who have type 2 diabetes mellitus. It is a major cause of liver-related morbidity, and cardiovascular (CV) mortality is a common cause of death. In addition to being the initial step of irreversible alterations of the liver parenchyma causing cirrhosis, about 1/6 of those who develop NASH are at risk also developing CV disease (CVD). More recently the acronym MAFLD (Metabolic Associated Fatty Liver Disease) has been preferred by many European and US specialists, providing a clearer message on the metabolic etiology of the disease. The suggestions for the management of NAFLD are like those recommended by guidelines for CVD prevention. In this context, the general approach is to prescribe physical activity and dietary changes the effect weight loss. Lifestyle change in the NAFLD patient has been supplemented in some by the use of nutraceuticals, but the evidence based for these remains uncertain. The aim of this Position Paper was to summarize the clinical evidence relating to the effect of nutraceuticals on NAFLD-related parameters. Our reading of the data is that whilst many nutraceuticals have been studied in relation to NAFLD, none have sufficient evidence to recommend their routine use; robust trials are required to appropriately address efficacy and safety.
Collapse
Affiliation(s)
- Manfredi Rizzo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (Promise), University of Palermo, Via del Vespro 141, 90127 Palermo, Italy.
| | - Alessandro Colletti
- Department of Science and Drug Technology, University of Turin, Turin, Italy
| | - Peter E Penson
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK; Liverpool Centre for Cardiovascular Science, Liverpool, UK
| | - Niki Katsiki
- Department of Nutritional Sciences and Dietetics, International Hellenic University, Thessaloniki, Greece; School of Medicine, European University Cyprus, Nicosia, Cyprus
| | - Dimitri P Mikhailidis
- Department of Clinical Biochemistry, Royal Free Campus, Medical School, University College London (UCL), London, UK
| | - Peter P Toth
- The Johns Hopkins Ciccarone Center for the Prevention of Heart Disease, Baltimore, MD, USA; Preventive Cardiology, CGH Medical Center, Sterling, IL, USA
| | - Ioanna Gouni-Berthold
- Department of Endocrinology, Diabetes and Preventive Medicine, University of Cologne, Germany
| | - John Mancini
- Department of Medicine, Division of Cardiology, University of British Columbia, Vancouver, British Columbia, Canada
| | - David Marais
- Chemical Pathology Division of the Department of Pathology, University of Cape Town Health Science Faculty, Cape Town, South Africa
| | - Patrick Moriarty
- Division of Clinical Pharmacology, Division of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Massimiliano Ruscica
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Dragos Vinereanu
- Cardiology Department, University and Emergency Hospital, Bucharest, Romania, University of Medicine and Pharmacy Carol Davila, Bucharest, Romania
| | - Arrigo Francesco Giuseppe Cicero
- Hypertension and Cardiovascular disease risk research center, Medical and Surgical Sciences Department, University of Bologna, Bologna, Italy; IRCCS Policlinico S. Orsola-Malpighi, Bologna, Italy
| | - Maciej Banach
- Department of Preventive Cardiology and Lipidology, Medical University of Lodz (MUL), Poland; Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland; Cardiovascular Research Centre, University of Zielona Gora, Zielona Gora, Poland.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Shehata MK, Ismail AA, Kamel MA. Nose to Brain Delivery of Astaxanthin–Loaded Nanostructured Lipid Carriers in Rat Model of Alzheimer’s Disease: Preparation, in vitro and in vivo Evaluation. Int J Nanomedicine 2023; 18:1631-1658. [PMID: 37020692 PMCID: PMC10069509 DOI: 10.2147/ijn.s402447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/24/2023] [Indexed: 03/31/2023] Open
Abstract
Background Astaxanthin (AST) is a second-generation antioxidant with anti-inflammatory and neuroprotective properties and could be a promising candidate for Alzheimer's disease (AD) therapy, but is shows poor oral bioavailability due to its high lipophilicity. Purpose This study aimed to prepare and evaluate AST-loaded nanostructured lipid carriers (NLCs), for enhanced nose-to-brain drug delivery to improve its therapeutic efficacy in rat model of AD. Methods AST-NLCs were prepared using hot high-pressure homogenization technique, and processing parameters such as total lipid-to-drug ratio, solid lipid-to-liquid lipid ratio, and concentration of surfactant were optimized. Results The optimized AST-NLCs had a mean particle size of 142.8 ± 5.02 nm, polydispersity index of 0.247 ± 0.016, zeta potential of -32.2 ± 7.88 mV, entrapment efficiency of 94.1 ± 2.46%, drug loading of 23.5 ± 1.48%, and spherical morphology as revealed by transmission electron microscopy. Differential scanning calorimetry showed that AST was molecularly dispersed in the NLC matrix in an amorphous state, whereas Fourier transform infrared spectroscopy indicated that there is no interaction between AST and lipids. AST displayed a biphasic release pattern from NLCs; an initial burst release followed by sustained release for 24 h. AST-NLCs were stable at 4-8 ±2°C for six months. Intranasal treatment of AD-like rats with the optimized AST-NLCs significantly decreased oxidative stress, amyloidogenic pathway, neuroinflammation and apoptosis, and significantly improved the cholinergic neurotransmission compared to AST-solution. This was observed by the significant decline in the levels of malondialdehyde, nuclear factor-kappa B, amyloid beta (Aβ1‑42), caspase-3, acetylcholinesterase, and β-site amyloid precursor protein cleaving enzyme-1 expression, and significant increase in the contents of acetylcholine and glutathione after treatment with AST-NLCs. Conclusion NLCs enhanced the intranasal delivery of AST and significantly improved its therapeutic properties.
Collapse
Affiliation(s)
- Mustafa K Shehata
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
- Correspondence: Mustafa K Shehata, Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Khartoum Square, Azzarita, Alexandria, 21521, Egypt, Tel +20 1114740302, Fax +20 3 4871668, Email ;
| | - Assem A Ismail
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Maher A Kamel
- Department of Biochemistry, Medical Research Institute, Alexandria University, Alexandria, Egypt
| |
Collapse
|
17
|
Liu X, Xie J, Zhou L, Zhang J, Chen Z, Xiao J, Cao Y, Xiao H. Recent advances in health benefits and bioavailability of dietary astaxanthin and its isomers. Food Chem 2023; 404:134605. [DOI: 10.1016/j.foodchem.2022.134605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/28/2022] [Accepted: 10/11/2022] [Indexed: 11/22/2022]
|
18
|
Bioactive Compounds as Inhibitors of Inflammation, Oxidative Stress and Metabolic Dysfunctions via Regulation of Cellular Redox Balance and Histone Acetylation State. Foods 2023; 12:foods12050925. [PMID: 36900446 PMCID: PMC10000917 DOI: 10.3390/foods12050925] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/08/2023] [Accepted: 02/15/2023] [Indexed: 02/25/2023] Open
Abstract
Bioactive compounds (BCs) are known to exhibit antioxidant, anti-inflammatory, and anti-cancer properties by regulating the cellular redox balance and histone acetylation state. BCs can control chronic oxidative states caused by dietary stress, i.e., alcohol, high-fat, or high-glycemic diet, and adjust the redox balance to recover physiological conditions. Unique functions of BCs to scavenge reactive oxygen species (ROS) can resolve the redox imbalance due to the excessive generation of ROS. The ability of BCs to regulate the histone acetylation state contributes to the activation of transcription factors involved in immunity and metabolism against dietary stress. The protective properties of BCs are mainly ascribed to the roles of sirtuin 1 (SIRT1) and nuclear factor erythroid 2-related factor 2 (NRF2). As a histone deacetylase (HDAC), SIRT1 modulates the cellular redox balance and histone acetylation state by mediating ROS generation, regulating nicotinamide adenine dinucleotide (NAD+)/NADH ratio, and activating NRF2 in metabolic progression. In this study, the unique functions of BCs against diet-induced inflammation, oxidative stress, and metabolic dysfunction have been considered by focusing on the cellular redox balance and histone acetylation state. This work may provide evidence for the development of effective therapeutic agents from BCs.
Collapse
|
19
|
Saeidi A, Nouri-Habashi A, Razi O, Ataeinosrat A, Rahmani H, Mollabashi SS, Bagherzadeh-Rahmani B, Aghdam SM, Khalajzadeh L, Al Kiyumi MH, Hackney AC, Laher I, Heinrich KM, Zouhal H. Astaxanthin Supplemented with High-Intensity Functional Training Decreases Adipokines Levels and Cardiovascular Risk Factors in Men with Obesity. Nutrients 2023; 15:nu15020286. [PMID: 36678157 PMCID: PMC9866205 DOI: 10.3390/nu15020286] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 12/29/2022] [Accepted: 01/03/2023] [Indexed: 01/09/2023] Open
Abstract
The aim of this study was to investigate the effects of 12 weeks of high-intensity training with astaxanthin supplementation on adipokine levels, insulin resistance and lipid profiles in males with obesity. Sixty-eight males with obesity were randomly stratified into four groups of seventeen subjects each: control group (CG), supplement group (SG), training group (TG), and training plus supplement group (TSG). Participants underwent 12 weeks of treatment with astaxanthin or placebo (20 mg/d capsule daily). The training protocol consisted of 36 sessions of high-intensity functional training (HIFT), 60 min/sessions, and three sessions/week. Metabolic profiles, body composition, anthropometrical measurements, cardio-respiratory indices and adipokine [Cq1/TNF-related protein 9 and 2 (CTRP9 and CTRP2) levels, and growth differentiation factors 8 and 15 (GDF8 and GDF15)] were measured. There were significant differences for all indicators between the groups (p < 0.05). Post-hoc analysis indicated that the levels of CTRP9, CTRP2, and GDF8 were different from CG (p < 0.05), although levels of GDF15 were similar to CG (p > 0.05). Levels of GDF8 were similar in the SG and TG groups (p > 0.05), with reductions of GDF15 levels in both training groups (p < 0.05). A total of 12 weeks of astaxanthin supplementation and exercise training decreased adipokines levels, body composition (weight, %fat), anthropometrical factors (BMI), and improved lipid and metabolic profiles. These benefits were greater for men with obesity in the TSG group.
Collapse
Affiliation(s)
- Ayoub Saeidi
- Department of Physical Education and Sport Sciences, Faculty of Humanities and Social Sciences, University of Kurdistan, Sanandaj 66177-15175, Iran
| | - Akbar Nouri-Habashi
- Department of Exercise Physiology and Corrective Movements, Faculty of Sport Sciences, Urmia University, Urmia 57561-51818, Iran
- Correspondence: (A.N.-H.); (M.H.A.K.)
| | - Omid Razi
- Department of Exercise Physiology, Faculty of Physical Education and Sports Science, Razi University, Kermanshah 94Q5+6G3, Iran
| | - Ali Ataeinosrat
- Department of Physical Education and Sport Science, Science and Research Branch, Islamic Azad University, Tehran 14778-93855, Iran
| | - Hiwa Rahmani
- Faculty of Physical Education and Sports Science, Alzahra University, Tehran 19938 93973, Iran
| | | | - Behnam Bagherzadeh-Rahmani
- Department of Exercise Physiology, Faculty of Sport Sciences, Hakim Sabzevari University, Sabzevar M3J+373, Iran
| | - Shahin Mahmoudi Aghdam
- Department of Exercise Physiology, Central Tehran Branch, Islamic Azad University, Tehran 14778-93855, Iran
| | - Leila Khalajzadeh
- Department of Exercise Physiology, Central Tehran Branch, Islamic Azad University, Tehran 14778-93855, Iran
| | - Maisa Hamed Al Kiyumi
- Department of Family Medicine and Public Health, Sultan Qaboos University Hospital, Muscat H5QC+36M, Oman
- Correspondence: (A.N.-H.); (M.H.A.K.)
| | - Anthony C. Hackney
- Department of Exercise & Sport Science, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Nutrition, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Ismail Laher
- Department of Anesthesiology, Pharmacology and Therapeutics, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Katie M. Heinrich
- Department of Kinesiology, College of Health and Human Sciences, Kansas State University, Manhattan, KS 66506, USA
| | - Hassane Zouhal
- Laboratoire Mouvement, Sport, Santé, University of Rennes, M2S—EA 1274, 35000 Rennes, France
- Institut International des Sciences du Sport (2I2S), 35850 Irodouer, France
| |
Collapse
|
20
|
More Than an Antioxidant: Role of Dietary Astaxanthin on Lipid and Glucose Metabolism in the Liver of Rainbow Trout ( Oncorhynchus mykiss). Antioxidants (Basel) 2023; 12:antiox12010136. [PMID: 36670998 PMCID: PMC9854815 DOI: 10.3390/antiox12010136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/26/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023] Open
Abstract
This study investigated the influence of dietary astaxanthin (AX) on glucose and lipid metabolism in rainbow trout liver. Two iso-nitrogenous and iso-lipidic diets were tested for 12 weeks in rainbow trout with an initial mean weight of 309 g. The S-ASTA diet was supplemented with 100 mg of synthetic AX per kg of feed, whereas the control diet (CTRL) had no AX. Fish fed the S-ASTA diet displayed lower neutral and higher polar lipids in the liver, associated with smaller hepatocytes and lower cytoplasm vacuolization. Dietary AX upregulated adipose triglyceride lipase (atgl), hormone-sensitive lipase (hsl2) and 1,2-diacylglycerol choline phosphotransferase (chpt), and downregulated diacylglycerol acyltransferase (dgat2), suggesting the AX's role in triacylglycerol (TAG) turnover and phospholipid (PL) synthesis. Dietary AX may also affect beta-oxidation with the upregulation of carnitine palmitoyltransferase 1 (cpt1α2). Although hepatic cholesterol levels were not affected, dietary AX increased gene expression of sterol regulatory element-binding protein 2 (srebp2). Dietary AX upregulated the expression of 6-phosphogluconate dehydrogenase (6pgdh) and downregulated pyruvate kinase (pkl). Overall, results suggest that dietary AX modulates the oxidative phase of the pentose phosphate pathway and the last step of glycolysis, affecting TAG turnover, β-oxidation, PL and cholesterol synthesis in rainbow trout liver.
Collapse
|
21
|
Hien HTM, Oanh HT, Quynh QT, Thu NTH, Van Hanh N, Hong DD, Hoang MH. Astaxanthin-loaded nanoparticles enhance its cell uptake, antioxidant and hypolipidemic activities in multiple cell lines. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.104133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
22
|
Kumar R, Sahu DS, Chandra G, Yadav SP, Kumar R, Ali N, Roy D, Maurya PS. Effect of Astaxanthin and Copper Supplementation on Growth, Immunity, Antioxidant, and Blood Biochemical Status of Growing Murrah Buffalo Heifers. Biol Trace Elem Res 2022; 200:5052-5063. [PMID: 35061144 DOI: 10.1007/s12011-021-03091-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/28/2021] [Indexed: 11/02/2022]
Abstract
This study was aimed to explore the effect of astaxanthin (ASTX) and copper (Cu) supplementation on the growth, immunity, antioxidant, and blood biochemical status of growing Murrah buffalo heifers. Twenty-eight Murrah buffalo heifers were selected and randomly divided into 4 groups (n = 7) after blocking by body weight (BW) (129.86 ± 5.37 kg) and age (9.05 ± 1.02 months). The heifers were fed basal total mixed ration diet without supplementation (CON) or with ASTX (0.20 mg/kg BW; AX), Cu (10 mg/kg DM; CU), or ASTX + Cu (0.20 mg/kg BW + 10 mg/kg DM; AX + CU) for 90 days of study period. The result showed that BW and dry matter intake (DMI) were significantly higher (P < 0.05) in AX + CU than that in other groups. The average daily gain (ADG) and feed conversion efficiency (FCE) were statistically higher (P < 0.05) in treatments than the values observed in CON. The feed conversion ratio (FCR) was reported significantly lower (P < 0.05) in the AX + CU group followed by AX, CU, and CON groups. The total leukocytes count (TLC), lymphocytes, and total immunoglobulin (TIG) were statistically higher (P < 0.05) in AX + CU groups than that found in other groups. However, neutrophil % decreased (P < 0.05) in the AX + CU group than its level in other groups. Superoxide dismutase (SOD), catalase (CAT), and total antioxidant (TAA) levels were observed higher (P < 0.05) in treatments supplemented with ASTX, Cu, or both than CON group. Thiobarbituric acid reactive substance (TBARS) concentration was lower (P < 0.05) in treatments than its level found in the CON group. Glucose level was higher (P < 0.05); however, non-esterifies fatty acid (NEFA) was lower (P < 0.05) in AX + CU than that in others groups. The level of cholesterol (CH), HDL cholesterol (HDL-CH), alkaline phosphatase (ALP), alanine aminotransferase (ALT), and aspartate aminotransferase (AST) were reported lower (P < 0.05) in the AX + CU group followed by CU, AX, and CON groups. The copper (Cu) level was higher (P < 0.05) in CU and AX + CU than AX and CON groups. The result of the present study indicated that the supplementation of ASTX, Cu alone, or their combination improved the growth, immunity, antioxidant status, and liver function of growing heifers.
Collapse
Affiliation(s)
- Rajesh Kumar
- Department of Animal Husbandry, College of Veterinary and Animal Sciences, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut, 250110, UP, India
| | - Deo Saran Sahu
- Department of Animal Husbandry, College of Veterinary and Animal Sciences, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut, 250110, UP, India
| | - Gulab Chandra
- Department of Veterinary Physiology and Biochemistry, College of Veterinary and Animal Sciences, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut, 250110, UP, India.
| | - Satya Prakash Yadav
- Department of Animal Husbandry, College of Veterinary and Animal Sciences, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut, 250110, UP, India
| | - Raj Kumar
- Department of Animal Husbandry, College of Veterinary and Animal Sciences, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut, 250110, UP, India
| | - Nazim Ali
- Department of Animal Husbandry, College of Veterinary and Animal Sciences, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut, 250110, UP, India
| | - Debashis Roy
- Department of Animal Nutrition, College of Veterinary and Animal Sciences, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut, 250110, UP, India
| | - Prem Sagar Maurya
- Department of Veterinary Parasitology, College of Veterinary and Animal Sciences, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut, 250110, UP, India
| |
Collapse
|
23
|
Regulation of Cholesterol Metabolism by Phytochemicals Derived from Algae and Edible Mushrooms in Non-Alcoholic Fatty Liver Disease. Int J Mol Sci 2022; 23:ijms232213667. [PMID: 36430146 PMCID: PMC9697193 DOI: 10.3390/ijms232213667] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022] Open
Abstract
Cholesterol synthesis occurs in almost all cells, but mainly in hepatocytes in the liver. Cholesterol is garnering increasing attention for its central role in various metabolic diseases. In addition, cholesterol is one of the most essential elements for cells as both a structural source and a player participating in various metabolic pathways. Accurate regulation of cholesterol is necessary for the proper metabolism of fats in the body. Disturbances in cholesterol homeostasis have been linked to various metabolic diseases, such as hyperlipidemia and non-alcoholic fatty liver disease (NAFLD). For many years, the use of synthetic chemical drugs has been effective against many health conditions. Furthermore, from ancient to modern times, various plant-based drugs have been considered local medicines, playing important roles in human health. Phytochemicals are bioactive natural compounds that are derived from medicinal plants, fruit, vegetables, roots, leaves, and flowers and are used to treat a variety of diseases. They include flavonoids, carotenoids, polyphenols, polysaccharides, vitamins, and more. Many of these compounds have been proven to have antioxidant, anti-inflammatory, antiobesity and antihypercholesteremic activity. The multifaceted role of phytochemicals may provide health benefits to humans with regard to the treatment and control of cholesterol metabolism and the diseases associated with this disorder, such as NAFLD. In recent years, global environmental climate change, the COVID-19 pandemic, the current war in Europe, and other conflicts have threatened food security and human nutrition worldwide. This further emphasizes the urgent need for sustainable sources of functional phytochemicals to be included in the food industry and dietary habits. This review summarizes the latest findings on selected phytochemicals from sustainable sources-algae and edible mushrooms-that affect the synthesis and metabolism of cholesterol and improve or prevent NAFLD.
Collapse
|
24
|
Heidari M, Hajizadeh-Sharafabad F, Alizadeh M. Mechanistic insights into the effects of Astaxanthin on lipid profile and glucose homeostasis parameters: A systematic review of animal and clinical trial studies. NUTR CLIN METAB 2022. [DOI: 10.1016/j.nupar.2022.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
25
|
Liu D, Ji Y, Cheng Q, Zhu Y, Zhang H, Guo Y, Cao X, Wang H. Dietary astaxanthin-rich extract ameliorates atherosclerosis/retinopathy and restructures gut microbiome in apolipoprotein E-deficient mice fed on a high-fat diet. Food Funct 2022; 13:10461-10475. [PMID: 36134474 DOI: 10.1039/d2fo02102a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Scope: Atherosclerosis (AS) is the leading cause of ischemic disease. However, the anti-AS effects of astaxanthin and its potential mechanisms remain unclear. This study is aimed to investigate the function of astaxanthin-rich extract (ASTE) on AS and gut microbiota as well as the difference from atorvastatin (ATO) in apolipoprotein E-deficient (ApoE-/-) mice. Methods and results: Wild type (WT) and ApoE-/- mice were divided into seven groups: the low-fat diet (LFD) and high-fat diet (HFD) groups (in both types) as well as three ApoE-/- groups based on HFD added with two doses of ASTE and one dose of ATO, respectively. After 30 weeks of intervention, results showed that ASTE significantly inhibited body weight increase, lipids accumulation in serum/liver, and AS-lesions in the aorta. Furthermore, fundus fluorescein angiography and retinal CD31 immunohistochemical staining showed that ASTE could alleviate the occurrence of AS-retinopathy. H&E staining showed that ASTE could protect the colon's mucosal epithelium from damage. The gas chromatographic and gene expression analyses showed that ASTE promoted the excretion of fecal acidic and neutral sterols from cholesterol by increasing LXRα, CYP7A1, and ABCG5/8 and decreasing FXR, NPC1L1, ACAT2, and MTTP expressions. Remarkably, the ASTE administration maintained the gut barrier by enhancing gene expression of JAM-A, Occludin, and mucin2 in the colon and reshaped gut microbiota with the feature of blooming Akkermansia. Conclusion: Our results suggested that ASTE could prevent AS in both macrovascular and/or microvascular as well as used as novel prebiotics by supporting the bile acid excretion and growth of Akkermansia.
Collapse
Affiliation(s)
- Dong Liu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, No. 29, 13th Avenue, Economic and Technological Development Area (TEDA), Tianjin 300457, China. .,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Suzhou Medical College of Soochow University, Suzhou 215123, China
| | - Yanglin Ji
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, No. 29, 13th Avenue, Economic and Technological Development Area (TEDA), Tianjin 300457, China.
| | - Qian Cheng
- Angel Nutritech Company Limited, Yichang 443000, China
| | - Yamin Zhu
- Angel Nutritech Company Limited, Yichang 443000, China
| | - Haibo Zhang
- Angel Nutritech Company Limited, Yichang 443000, China
| | - Yatu Guo
- Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin Eye Hospital, Tianjin Eye Institute, Tianjin 300384, China
| | - Xiupeng Cao
- The First People's Hospital of Neijiang, Neijiang 641099, China
| | - Hao Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, No. 29, 13th Avenue, Economic and Technological Development Area (TEDA), Tianjin 300457, China.
| |
Collapse
|
26
|
Patil AD, Kasabe PJ, Dandge PB. Pharmaceutical and nutraceutical potential of natural bioactive pigment: astaxanthin. NATURAL PRODUCTS AND BIOPROSPECTING 2022; 12:25. [PMID: 35794254 PMCID: PMC9259778 DOI: 10.1007/s13659-022-00347-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 05/09/2022] [Indexed: 05/31/2023]
Abstract
Astaxanthin (3,3'-dihydroxy-β,β-carotene-4,4'-dione) is an orange-red, lipophilic keto-carotenoid pigment. It is majorly found in marine ecosystems particularly in aquatic animals such as salmon, shrimp, trout, krill, crayfish, and so on. It is also synthesized in microalgae Heamatococcus pluvialis, Chlorococcum, Chlorella zofingiensis, red yeast Phaffia rhodozyma and bacterium Paracoccus carotinifaciens. Some aquatic and terrestrial creatures regarded as a primary and secondary sources of the astaxanthin producing and accumulating it through their metabolic pathways. Astaxanthin is the powerful antioxidant, nutritional supplement as well as promising therapeutic compound, observed to have activities against different ravaging diseases and disorders. Researchers have reported remarkable bioactivities of astaxanthin against major non-communicable chronic diseases such as cardiovascular diseases, cancer, diabetes, neurodegenerative, and immune disorders. The current review discusses some structural aspects of astaxanthin. It further elaborates its multiple potencies such as antioxidant, anti-inflammatory, anti-proliferative, anti-cancer, anti-obese, anti-diabetic, anti-ageing, anti-TB, anti-viral, anti-COVID 19, neuro-protective, nephro-protective, and fertility-enhancing properties. These potencies make it a more precious entity in the preventions as well as treatments of prevalent systematic diseases and/or disorders. Also, the review is acknowledging and documenting its powerful bioactivities in relation with the pharmaceutical as well as nutraceutical applicability.
Collapse
Affiliation(s)
- Apurva D. Patil
- Department of Biochemistry, Shivaji University, Kolhapur, 416004 Maharashtra India
| | - Pramod J. Kasabe
- School of Nanoscience and Biotechnology, Shivaji University, Kolhapur, Maharashtra India
| | - Padma B. Dandge
- Department of Biochemistry, Shivaji University, Kolhapur, 416004 Maharashtra India
| |
Collapse
|
27
|
Aneesh P, Ajeeshkumar K, Lekshmi R, Anandan R, Ravishankar C, Mathew S. Bioactivities of astaxanthin from natural sources, augmenting its biomedical potential: A review. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.05.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
28
|
Alugoju P, Krishna Swamy VKD, Anthikapalli NVA, Tencomnao T. Health benefits of astaxanthin against age-related diseases of multiple organs: A comprehensive review. Crit Rev Food Sci Nutr 2022; 63:10709-10774. [PMID: 35708049 DOI: 10.1080/10408398.2022.2084600] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Age-related diseases are associated with increased morbidity in the past few decades and the cost associated with the treatment of these age-related diseases exerts a substantial impact on social and health care expenditure. Anti-aging strategies aim to mitigate, delay and reverse aging-associated diseases, thereby improving quality of life and reducing the burden of age-related pathologies. The natural dietary antioxidant supplementation offers substantial pharmacological and therapeutic effects against various disease conditions. Astaxanthin is one such natural carotenoid with superior antioxidant activity than other carotenoids, as well as well as vitamins C and E, and additionally, it is known to exhibit a plethora of pharmacological effects. The present review summarizes the protective molecular mechanisms of actions of astaxanthin on age-related diseases of multiple organs such as Neurodegenerative diseases [Alzheimer's disease (AD), Parkinson's disease (PD), Stroke, Multiple Sclerosis (MS), Amyotrophic lateral sclerosis (ALS), and Status Epilepticus (SE)], Bone Related Diseases [Osteoarthritis (OA) and Osteoporosis], Cancers [Colon cancer, Prostate cancer, Breast cancer, and Lung Cancer], Cardiovascular disorders [Hypertension, Atherosclerosis and Myocardial infarction (MI)], Diabetes associated complications [Diabetic nephropathy (DN), Diabetic neuropathy, and Diabetic retinopathy (DR)], Eye disorders [Age related macular degeneration (AMD), Dry eye disease (DED), Cataract and Uveitis], Gastric Disorders [Gastritis, Colitis, and Functional dyspepsia], Kidney Disorders [Nephrolithiasis, Renal fibrosis, Renal Ischemia reperfusion (RIR), Acute kidney injury (AKI), and hyperuricemia], Liver Diseases [Nonalcoholic fatty liver disease (NAFLD), Alcoholic Liver Disease (AFLD), Liver fibrosis, and Hepatic Ischemia-Reperfusion (IR) Injury], Pulmonary Disorders [Pulmonary Fibrosis, Acute Lung injury (ALI), and Chronic obstructive pulmonary disease (COPD)], Muscle disorders (skeletal muscle atrophy), Skin diseases [Atopic dermatitis (ATD), Skin Photoaging, and Wound healing]. We have also briefly discussed astaxanthin's protective effects on reproductive health.
Collapse
Affiliation(s)
- Phaniendra Alugoju
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok, Thailand
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - V K D Krishna Swamy
- Department of Biochemistry and Molecular Biology, Pondicherry University (A Central University), Puducherry, India
| | | | - Tewin Tencomnao
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok, Thailand
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
29
|
Zhu Y, Gao H, Han S, Li J, Wen Q, Dong B. Antidiabetic activity and metabolite profiles of ascidian Halocynthia roretzi. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
30
|
Khodir SA, Sweed E, Gadallah M, Shabaan A. Astaxanthin attenuates cardiovascular dysfunction associated with deoxycorticosterone acetate-salt-induced hypertension in rats. Clin Exp Hypertens 2022; 44:382-395. [PMID: 35322744 DOI: 10.1080/10641963.2022.2055764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
BACKGROUND Hypertension is a major global health problem. It is a major risk factor of cardiovascular disease. One of the most used experimental models in studying antihypertensive action is the deoxycorticosterone acetate (DOCA)-salt hypertensive rat. This study aimed to investigate the cardiovascular protective effect of astaxanthin (ASX) in DOCA-salt-induced hypertension and its possible underlying mechanisms. METHODS A total of 48 adult male Wistar albino rats were divided into three groups: control, DOCA, and DOCA + ASX. Blood pressure, serum cardiac enzyme levels, some oxidative stress and inflammatory biomarker levels, and lipid profile levels were measured. The weight of the left ventricle to tibial length ratio was calculated. Apoptosis detection and total genomic DNA extraction in aortic and cardiac tissues were investigated. The apoptotic marker BAX was also immunohistochemically assessed in the heart and aorta. RESULTS Compared to the control group, the DOCA group was associated with a significant increase in blood pressure, serum cardiac enzyme levels, oxidative stress and inflammatory biomarker levels, lipid profile except serum high-density lipoprotein (HDL), weight of the left ventricle to tibial length, and total released DNA fragmentation level of the left ventricle and aorta and a significant decrease in reduced glutathione (GSH) and HDL. Compared to the DOCA group, the DOCA + ASX group significantly improved the DOCA-induced changes. CONCLUSION ASX has beneficial protective effects on DOCA-salt-induced hypertension via DNA fragmentation protection, apoptosis inhibition, antioxidant, anti-inflammatory, and its effects on lipid levels.
Collapse
Affiliation(s)
- Suzan A Khodir
- Medical Physiology, Faculty of Medicine, Menoufia University, Menoufia, Egypt
| | - Eman Sweed
- Clinical pharmacology, Faculty of Medicine, Menoufia University, Menoufia, Egypt
| | - Marwa Gadallah
- Pathology, Faculty of Medicine, Menoufia University, Menoufia, Egypt
| | - Anwaar Shabaan
- Medical Physiology, Faculty of Medicine, Menoufia University, Menoufia, Egypt
| |
Collapse
|
31
|
The Beneficial Effects of Astaxanthin on Glucose Metabolism and Modified Low-Density Lipoprotein in Healthy Volunteers and Subjects with Prediabetes. Nutrients 2021; 13:nu13124381. [PMID: 34959932 PMCID: PMC8706636 DOI: 10.3390/nu13124381] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/04/2021] [Accepted: 12/05/2021] [Indexed: 12/13/2022] Open
Abstract
Astaxanthin (ASTX) is an antioxidant agent. Recently, its use has been focused on the prevention of diabetes and atherosclerosis. We examined the effects of astaxanthin supplementation for 12 weeks on glucose metabolism, glycemic control, insulin sensitivity, lipid profiles and anthropometric indices in healthy volunteers including subjects with prediabetes with a randomized, placebo-controlled trial. Methods: We enrolled 53 subjects who met our inclusion criteria and administered them with 12 mg astaxanthin or a placebo once daily for 12 weeks. Subsequently, their HbA1c levels, lipid profiles and biochemical parameters were determined. The participants also underwent a 75 g oral glucose tolerance test (OGTT), vascular endothelial function test and measurement of the visceral fat area. Results: After astaxanthin supplementation for 12 weeks, glucose levels after 120 min in a 75 g OGTT significantly decreased compared to those before supplementation. Furthermore, the levels of HbA1c (5.64 ± 0.33 vs. 5.57 ± 0.39%, p < 0.05), apo E (4.43 ± 1.29 vs. 4.13 ± 1.24 mg/dL, p < 0.05) and malondialdehyde-modified low-density lipoprotein (87.3 ± 28.6 vs. 76.3 ± 24.6 U/L, p < 0.05) were also reduced, whereas total cholesterol (TC), triglyceride (TG) and high-density lipoprotein-C (HDL-C) levels were unaltered. The Matuda index, which is one of the parameters of insulin resistance, was improved in the ASTX group compared to that before supplementation. Conclusions: our results suggest that ASTX may have preventive effects against diabetes and atherosclerosis and may be a novel complementary treatment option for the prevention of diabetes in healthy volunteers, including subjects with prediabetes, without adverse effects.
Collapse
|
32
|
Ma B, Lu J, Kang T, Zhu M, Xiong K, Wang J. Astaxanthin supplementation mildly reduced oxidative stress and inflammation biomarkers: a systematic review and meta-analysis of randomized controlled trials. Nutr Res 2021; 99:40-50. [DOI: 10.1016/j.nutres.2021.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/19/2021] [Accepted: 09/20/2021] [Indexed: 11/29/2022]
|
33
|
Shatoor AS, Al Humayed S, Almohiy HM. Astaxanthin attenuates hepatic steatosis in high-fat diet-fed rats by suppressing microRNA-21 via transactivation of nuclear factor erythroid 2-related factor 2. J Physiol Biochem 2021; 78:151-168. [PMID: 34651285 DOI: 10.1007/s13105-021-00850-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 09/29/2021] [Indexed: 02/08/2023]
Abstract
This study examined whether astaxanthin (ASX) could alleviate hepatic steatosis in rats fed a high-fat diet (HFD) by modulating the nuclear factor erythroid 2-related factor 2 (Nrf2)/miR-21 axis. Rats (n = 8/group) were fed either a standard diet (3.8 kcal/g; 10% fat) or HFD (4.6 kcal/g; 40% fat) and treated orally with either the vehicle or ASX (6 mg/kg) daily for 8 days. Another group was fed HFD and treated with ASX and brusatol (an Nrf2 inhibitor) (2 mg/kg/twice per week/i.p.). ASX prevented the gain in body and liver weights and attenuated hepatic lipid accumulation in HFD-fed rats. In the control and HFD-fed rats, ASX did not affect food intake, serum free fatty acid (FFA) content, and glucose and insulin levels and tolerance. However, serum triglyceride (TG), cholesterol, and low-density lipoprotein-cholesterol levels; hepatic levels of TGs and FFAs; and hepatic levels of Srebp1, Srebp2, HMGCR, and fatty acid synthase mRNAs and miR-21 were reduced and the mRNA levels of Pparα were significantly increased in both the groups. These effects were associated with a reduction in the hepatic levels of reactive oxygen species, malondialdehyde, tumor necrosis factor-α, and interlukin-6 as well as an increase in superoxide dismutase levels, total glutathione content, and nuclear levels and activity of Nrf2. miR-21 levels were strongly correlated with the nuclear activity of Nrf2. Brusatol completely reversed the effects of ASX. In conclusion, ASX prevents hepatic steatosis mainly by transactivating Nrf2 and is associated with the suppression of miR-21 and Srebp1/2 and upregulation of Pparα expression.
Collapse
Affiliation(s)
- Abdullah S Shatoor
- Department of Medicine, Cardiology Section, College of Medicine, King Khalid University (KKU), Abha, Saudi Arabia.
| | - Suliman Al Humayed
- Department of Internal Medicine, College of Medicine, King Khalid University (KKU), Abha, Saudi Arabia
| | - Hussain M Almohiy
- Depatrtment of Radiology Science, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
34
|
Liang B, Cai XY, Gu N. Marine Natural Products and Coronary Artery Disease. Front Cardiovasc Med 2021; 8:739932. [PMID: 34621803 PMCID: PMC8490644 DOI: 10.3389/fcvm.2021.739932] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 08/24/2021] [Indexed: 12/18/2022] Open
Abstract
Coronary artery disease is the major cause of mortality worldwide, especially in low- and middle-income earners. To not only reduce angina symptoms and exercise-induced ischemia but also prevent cardiovascular events, pharmacological intervention strategies, including antiplatelet drugs, anticoagulant drugs, statins, and other lipid-lowering drugs, and renin-angiotensin-aldosterone system blockers, are conducted. However, the existing drugs for coronary artery disease are incomprehensive and have some adverse reactions. Thus, it is necessary to look for new drug research and development. Marine natural products have been considered a valuable source for drug discovery because of their chemical diversity and biological activities. The experiments and investigations indicated that several marine natural products, such as organic small molecules, polysaccharides, proteins, and bioactive peptides, and lipids were effective for treating coronary artery disease. Here, we particularly discussed the functions and mechanisms of active substances in coronary artery disease, including antiplatelet, anticoagulant, lipid-lowering, anti-inflammatory, and antioxidant activities.
Collapse
Affiliation(s)
- Bo Liang
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Xin-Yi Cai
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Ning Gu
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
35
|
The effect of cranberry consumption on lipid metabolism and inflammation in human apo A-I transgenic mice fed a high-fat and high-cholesterol diet. Br J Nutr 2021; 126:183-190. [PMID: 33059793 DOI: 10.1017/s0007114520004080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Lipid metabolism and inflammation contribute to CVD development. This study investigated whether the consumption of cranberries (CR; Vaccinium macrocarpon) can alter HDL metabolism and prevent inflammation in mice expressing human apo A-I transgene (hApoAITg), which have similar HDL profiles to those of humans. Male hApoAITg mice were fed a modified American Institute of Nutrition-93M high-fat/high-cholesterol diet (16 % fat, 0·25 % cholesterol, w/w; n 15) or the high-fat/high-cholesterol diet containing CR (5 % dried CR powder, w/w, n 16) for 8 weeks. There were no significant differences in body weight between the groups. Serum total cholesterol, non-HDL-cholesterol and TAG concentrations were significantly lower in the control than CR group with no significant differences in serum HDL-cholesterol and apoA-I. Mice fed CR showed significantly lower serum lecithin-cholesterol acyltransferase activity than the control. Liver weight and steatosis were not significantly different between the groups, but hepatic expression of genes involved in cholesterol metabolism was significantly lower in the CR group. In the epididymal white adipose tissue (eWAT), the CR group showed higher weights with decreased expression of genes for lipogenesis and fatty acid oxidation. The mRNA abundance of F4/80, a macrophage marker and the numbers of crown-like structures were less in the CR group. In the soleus muscle, the CR group also demonstrated higher expression of genes for fatty acid β-oxidation and mitochondrial biogenesis than those of the control. In conclusion, although CR consumption elicited minor effects on HDL metabolism, it prevented obesity-induced inflammation in eWAT with concomitant alterations in soleus muscle energy metabolism.
Collapse
|
36
|
Shrimp Oil Extracted from Shrimp Processing By-Product Is a Rich Source of Omega-3 Fatty Acids and Astaxanthin-Esters, and Reveals Potential Anti-Adipogenic Effects in 3T3-L1 Adipocytes. Mar Drugs 2021; 19:md19050259. [PMID: 33946320 PMCID: PMC8146821 DOI: 10.3390/md19050259] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 12/20/2022] Open
Abstract
The province of Newfoundland and Labrador, Canada, generates tons of shrimp processing by-product every year. Shrimp contains omega (n)-3 polyunsaturated fatty acids (PUFA) and astaxanthin (Astx), a potent antioxidant that exists in either free or esterified form (Astx-E). In this study, shrimp oil (SO) was extracted from the shrimp processing by-product using the Soxhlet method (hexane:acetone 2:3). The extracted SO was rich in phospholipids, n-3 PUFA, and Astx-E. The 3T3-L1 preadipocytes were differentiated to mature adipocytes in the presence or absence of various treatments for 8 days. The effects of SO were then investigated on fat accumulation, and the mRNA expression of genes involved in adipogenesis and lipogenesis in 3T3-L1 cells. The effects of fish oil (FO), in combination with Astx-E, on fat accumulation, and the mRNA expression of genes involved in adipogenesis and lipogenesis were also investigated. The SO decreased fat accumulation, compared to untreated cells, which coincided with lower mRNA expression of adipogenic and lipogenic genes. However, FO and FO + Astx-E increased fat accumulation, along with increased mRNA expression of adipogenic and lipogenic genes, and glucose transporter type 4 (Glut-4), compared to untreated cells. These findings have demonstrated that the SO is a rich source of n-3 PUFA and Astx-E, and has the potential to elicit anti-adipogenic effects. Moreover, the SO and FO appear to regulate adipogenesis and lipogenesis via independent pathways in 3T3-L1 cells.
Collapse
|
37
|
Milan FS, Maleki BRS, Moosavy MH, Mousavi S, Sheikhzadeh N, Khatibi SA. Ameliorating effects of dietary Haematococcus pluvialis on arsenic-induced oxidative stress in rainbow trout (Oncorhynchus mykiss) fillet. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 207:111559. [PMID: 33254413 DOI: 10.1016/j.ecoenv.2020.111559] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/17/2020] [Accepted: 10/22/2020] [Indexed: 06/12/2023]
Abstract
The current study was performed to investigate the protective effects of dietary Haematococcus pluvialis (H. pluvialis) on the oxidative stress induced by arsenic in rainbow trout (Oncorhynchus mykiss). The fish (20.70 ± 0.09 g) were fed with H. pluvialis at the levels of 0.28, 0.56, and 1.12 g 100 g-1 diet for 60 days. Then, each group was divided into two subgroups. In one of the subgroups, fish were exposed to arsenic challenge at a level of 9.1 mg/L. The other subset was used as the negative control. After the 96 h of toxicity test, protein and lipid oxidative levels, antioxidant-relevant gene expression as well as several chemical factors, including pH and peroxide value and moisture content, were evaluated in the fillet samples. Results showed that feeding with H. pluvialis decreased the levels of pH, peroxide value, as well as protein and lipid oxidation levels in treatment groups. Besides, the expression of antioxidant genes was significantly increased in the groups administrated with H. pluvialis. Based on the results of this study, feeding H. pluvialis attenuated the oxidative stress induced by arsenic in rainbow trout fillet through improving the antioxidant defense system.
Collapse
Affiliation(s)
- Fatemeh Sheykhkanlu Milan
- Department of Food Hygiene and Aquatic, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | | | - Mir-Hassan Moosavy
- Department of Food Hygiene and Aquatic, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran.
| | - Shalaleh Mousavi
- Department of Food Hygiene and Aquatic, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Najmeh Sheikhzadeh
- Department of Food Hygiene and Aquatic, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Seyed Amin Khatibi
- Department of Food Hygiene and Aquatic, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran; Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
38
|
Supplemental Microalgal DHA and Astaxanthin Affect Astaxanthin Metabolism and Redox Status of Juvenile Rainbow Trout. Antioxidants (Basel) 2020; 10:antiox10010016. [PMID: 33375433 PMCID: PMC7823529 DOI: 10.3390/antiox10010016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/18/2020] [Accepted: 12/23/2020] [Indexed: 11/30/2022] Open
Abstract
Microalgal docosahexaenoic acid (DHA) and astaxanthin (AST) may substitute for fish oil and synthetic AST in aquafeeds. This study explored the effects and mechanisms of those substitutions on AST metabolism and redox status of rainbow trout fed plant protein meal (PM)- or fishmeal (FM)-based diets. Two parallel experiments (PM vs. FM) were performed with 612 juvenile rainbow trout for 16 weeks as a 2 × 3 factorial arrangement of treatments with two AST sources (synthetic (SA) vs. microalgal (AA), at 80 mg/kg) and three levels (0, 50, and 100%) of fish oil substitutions with DHA-rich microalgae. The fish oil substitutions exhibit main effects (p < 0.05) and/or interactive effects (p < 0.05) with the source of AST on AST deposition, malondialdehyde and glutathione concentrations, and mRNA levels and activities of major redox enzymes (glutathione reductase (GR), glutathione peroxidase (GPX), glutathione S-transferase (GST), and superoxide dismutase (SOD)) in the muscle and liver of trout fed both diet series. The AST source produced only differences in tissue AST deposition (p < 0.05) and number of metabolites. In conclusion, the substitutions of fish oil by the DHA-rich microalgae exerted more impacts than those of SA by AA on redox status and functional expression of antioxidant enzymes in the tissues of rainbow trout.
Collapse
|
39
|
Heng N, Gao S, Guo Y, Chen Y, Wang L, Sheng X, Wang X, Xing K, Xiao L, Ni H, Qi X. Effects of supplementing natural astaxanthin from Haematococcus pluvialis to laying hens on egg quality during storage at 4°C and 25°C. Poult Sci 2020; 99:6877-6883. [PMID: 33248603 PMCID: PMC7704997 DOI: 10.1016/j.psj.2020.09.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/18/2020] [Accepted: 09/07/2020] [Indexed: 11/24/2022] Open
Abstract
The objective of this study was to evaluate the effects of different levels of dietary natural astaxanthin (ASTA) (from the microalga Haematococcus pluvialis) and storage at 4°C and 25°C on the quality of eggs from laying hens. Nongda No. 3 laying hens (n = 450) were randomly allocated to 1 of 5 dietary treatments. Each treatment had 6 replicates of 15 hens each. All birds were assigned to a corn-soybean meal-based diet containing 0, 20, 40, 80, or 160 mg/kg natural ASTA for 4 wk. A total of 540 eggs were collected at the end of the 4-week feeding trial. Sixty fresh eggs were collected and measured for egg quality within 24 h after collection. The other 480 eggs were used in a factorial arrangement with 5 dietary ASTA levels, 4 storage times, and 2 storage temperatures. During the 8-week storage period at 4°C and 25°C, egg quality measurements were performed every 2 wk on 12 eggs per treatment. No significant effects (P > 0.05) on yolk index, yolk pH, Haugh units, weight loss, or eggshell strength were observed with increasing concentrations of dietary ASTA. Yolk color darkened linearly with increasing dose of ASTA (P < 0.05). During storage of eggs, yolk index and Haugh units decreased significantly (P < 0.05), whereas yolk pH and weight loss increased (P < 0.05). An interaction was observed between dietary ASTA level and storage time on yolk index, yolk color, and Haugh units (P < 0.05). These results demonstrated that dietary ASTA from H. pluvialis delayed the decrease in yolk index and yolk color during storage at 4°C and 25°C. Therefore, we speculate that there may be a combined effect of dietary ASTA level and storage time on egg internal quality; this information may provide additional options by which to extend the storage time of eggs.
Collapse
Affiliation(s)
- Nuo Heng
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Shan Gao
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Yong Guo
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Yu Chen
- Department of Livestock and Poultry Products Testing, Beijing General Station of Animal Husbandry, Beijing 100107, China
| | - Liang Wang
- Department of Livestock and Poultry Products Testing, Beijing General Station of Animal Husbandry, Beijing 100107, China
| | - Xihui Sheng
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Xiangguo Wang
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Kai Xing
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Longfei Xiao
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Hemin Ni
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Xiaolong Qi
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China.
| |
Collapse
|
40
|
Kang H, Lee Y, Bae M, Park YK, Lee JY. Astaxanthin inhibits alcohol-induced inflammation and oxidative stress in macrophages in a sirtuin 1-dependent manner. J Nutr Biochem 2020; 85:108477. [DOI: 10.1016/j.jnutbio.2020.108477] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 07/23/2020] [Accepted: 07/30/2020] [Indexed: 12/15/2022]
|
41
|
Xia W, Tang N, Kord-Varkaneh H, Low TY, Tan SC, Wu X, Zhu Y. The effects of astaxanthin supplementation on obesity, blood pressure, CRP, glycemic biomarkers, and lipid profile: A meta-analysis of randomized controlled trials. Pharmacol Res 2020; 161:105113. [DOI: 10.1016/j.phrs.2020.105113] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 06/14/2020] [Accepted: 07/24/2020] [Indexed: 10/23/2022]
|
42
|
Novel Insights into the Biotechnological Production of Haematococcus pluvialis-Derived Astaxanthin: Advances and Key Challenges to Allow Its Industrial Use as Novel Food Ingredient. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2020. [DOI: 10.3390/jmse8100789] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Astaxanthin shows many biological activities. It has acquired a high economic potential and its current market is dominated by its synthetic form. However, due to the increase of the health and environmental concerns from consumers, natural forms are now preferred for human consumption. Haematococcus pluvialis is artificially cultured at an industrial scale to produce astaxanthin used as a dietary supplement. However, due to the high cost of its cultivation and its relatively low biomass and pigment productivities, the astaxanthin extracted from this microalga remains expensive and this has probably the consequence of slowing down its economic development in the lower added-value market such as food ingredient. In this review, we first aim to provide an overview of the chemical and biochemical properties of astaxanthin, as well as of its natural sources. We discuss its bioavailability, metabolism, and biological activities. We present a state-of-the-art of the biology and physiology of H. pluvialis, and highlight novel insights into the biotechnological processes which allow optimizing the biomass and astaxanthin productivities. We are trying to identify some lines of research that would improve the industrial sustainability and economic viability of this bio-production and to broaden the commercial potential of astaxanthin produced from H. pluvialis.
Collapse
|
43
|
Satti HH, Khaleel EF, Badi RM, Elrefaie AO, Mostafa DG. Subacute administration of Astaxanthin inhibits vitamin K-dependent clotting factors in rats. J Food Biochem 2020; 44:e13407. [PMID: 32725659 DOI: 10.1111/jfbc.13407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 06/09/2020] [Accepted: 07/06/2020] [Indexed: 11/28/2022]
Abstract
This study investigated the effect of Astaxanthin (ASTX) on levels and activities of the clotting factors in control rats. Untreated or ASTX-treated rats (10 mg/kg, dissolved in DMSO) were used in this study. ASTX treatment was conducted for 10 days daily. ASTX significantly decreased the platelet count and prolonged values of prothrombin and activated partial thromboplastin time (PT and aPTT, respectively). Besides, it significantly reduced serum levels of vitamin K and the plasma activities and hepatic expression of vitamin K-dependent factors (FII, FVII, FIX, and FX) without altering the activities or levels of all other clotting factors nor plasma levels of fibrinogen or von Willebrand Factor. These effects were associated with a reduction in serum and fecal levels of cholesterol and triglycerides and lower serum levels of LDL-c. In conclusion, ASTX exerts an in vivo hypocoagulant effects mediated by the inhibition of vitamin K-dependent factors. PRACTICAL APPLICATIONS: The findings presented here are the first that show the ability of Astaxanthin (ASTX) to inhibit coagulation in rats by suppressing the circulatory levels of Vitamin K and decrease the synthesis and release of all Vitamin-K dependent factor (FII, FVII, FIX, and FX). Since some synthetic anti-coagulants had side effects, these findings may illustrate ASTX as a natural anti-coagulant with fewer side effects that require further investigation in more clinical trials. Besides, awareness should be established for those individuals with some bleeding disorders who are being treated with ASTX for other beneficial effects.
Collapse
Affiliation(s)
- Huda H Satti
- Department of Pathology, College of Medicine, King Khalid University, Abha, Kingdom of Saudi Arabia
- Department of Pathology, Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Eman F Khaleel
- Department of Medical Physiology, College of Medicine, King Khalid University, Abha, Kingdom of Saudi Arabia
- Faculty of Medicine, Department of Medical Physiology, Cairo University, Cairo, Egypt
| | - Rehab M Badi
- Department of Medical Physiology, College of Medicine, King Khalid University, Abha, Kingdom of Saudi Arabia
- Faculty of Medicine, Department of Physiology, University of Khartoum, Khartoum, Sudan
| | - Amany O Elrefaie
- Department of Pathology, College of Medicine, King Khalid University, Abha, Kingdom of Saudi Arabia
- National Liver Institute, Department of Pathology, Menoufyia University, Menoufyia, Egypt
| | - Dalia G Mostafa
- Department of Medical Physiology, College of Medicine, King Khalid University, Abha, Kingdom of Saudi Arabia
- Faculty of Medicine, Department of Medical Physiology, Assiut University, Assiut, Egypt
| |
Collapse
|
44
|
Cao Q, Zhao J, Xing M, Xiao H, Zhang Q, Liang H, Ji A, Song S. Current Research Landscape of Marine-Derived Anti-Atherosclerotic Substances. Mar Drugs 2020; 18:md18090440. [PMID: 32854344 PMCID: PMC7551282 DOI: 10.3390/md18090440] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/19/2020] [Accepted: 08/20/2020] [Indexed: 12/18/2022] Open
Abstract
Atherosclerosis is a chronic disease characterized by lipid accumulation and chronic inflammation of the arterial wall, which is the pathological basis for coronary heart disease, cerebrovascular disease and thromboembolic disease. Currently, there is a lack of low-cost therapeutic agents that effectively slow the progression of atherosclerosis. Therefore, the development of new drugs is urgently needed. The research and development of marine-derived drugs have gained increasing interest from researchers across the world. Many marine organisms provide a rich material basis for the development of atherosclerotic drugs. This review focuses on the latest technological advances in the structures and mechanisms of action of marine-derived anti-atherosclerotic substances and the challenges of the application of these substances including marine polysaccharides, proteins and peptides, polyunsaturated fatty acids and small molecule compounds. Here, we describe the theoretical basis of marine biological resources in the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Qi Cao
- Marine College, Shandong University, Weihai 264209, China; (Q.C.); (J.Z.); (M.X.); (H.X.); (Q.Z.); (H.L.)
| | - Jiarui Zhao
- Marine College, Shandong University, Weihai 264209, China; (Q.C.); (J.Z.); (M.X.); (H.X.); (Q.Z.); (H.L.)
| | - Maochen Xing
- Marine College, Shandong University, Weihai 264209, China; (Q.C.); (J.Z.); (M.X.); (H.X.); (Q.Z.); (H.L.)
| | - Han Xiao
- Marine College, Shandong University, Weihai 264209, China; (Q.C.); (J.Z.); (M.X.); (H.X.); (Q.Z.); (H.L.)
| | - Qian Zhang
- Marine College, Shandong University, Weihai 264209, China; (Q.C.); (J.Z.); (M.X.); (H.X.); (Q.Z.); (H.L.)
| | - Hao Liang
- Marine College, Shandong University, Weihai 264209, China; (Q.C.); (J.Z.); (M.X.); (H.X.); (Q.Z.); (H.L.)
| | - Aiguo Ji
- Marine College, Shandong University, Weihai 264209, China; (Q.C.); (J.Z.); (M.X.); (H.X.); (Q.Z.); (H.L.)
- School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
- Correspondence: (A.J.); (S.S.)
| | - Shuliang Song
- Marine College, Shandong University, Weihai 264209, China; (Q.C.); (J.Z.); (M.X.); (H.X.); (Q.Z.); (H.L.)
- Correspondence: (A.J.); (S.S.)
| |
Collapse
|
45
|
Mason SA, Trewin AJ, Parker L, Wadley GD. Antioxidant supplements and endurance exercise: Current evidence and mechanistic insights. Redox Biol 2020; 35:101471. [PMID: 32127289 PMCID: PMC7284926 DOI: 10.1016/j.redox.2020.101471] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/11/2020] [Accepted: 02/17/2020] [Indexed: 01/07/2023] Open
Abstract
Antioxidant supplements are commonly consumed by endurance athletes to minimize exercise-induced oxidative stress, with the intention of enhancing recovery and improving performance. There are numerous commercially available nutritional supplements that are targeted to athletes and health enthusiasts that allegedly possess antioxidant properties. However, most of these compounds are poorly investigated with respect to their in vivo redox activity and efficacy in humans. Therefore, this review will firstly provide a background to endurance exercise-related redox signalling and the subsequent adaptations in skeletal muscle and vascular function. The review will then discuss commonly available compounds with purported antioxidant effects for use by athletes. N-acetyl cysteine may be of benefit over the days prior to an endurance event; while chronic intake of combined 1000 mg vitamin C + vitamin E is not recommended during periods of heavy training associated with adaptations in skeletal muscle. Melatonin, vitamin E and α-lipoic acid appear effective at decreasing markers of exercise-induced oxidative stress. However, evidence on their effects on endurance performance are either lacking or not supportive. Catechins, anthocyanins, coenzyme Q10 and vitamin C may improve vascular function, however, evidence is either limited to specific sub-populations and/or does not translate to improved performance. Finally, additional research should clarify the potential benefits of curcumin in improving muscle recovery post intensive exercise; and the potential hampering effects of astaxanthin, selenium and vitamin A on skeletal muscle adaptations to endurance training. Overall, we highlight the lack of supportive evidence for most antioxidant compounds to recommend to athletes.
Collapse
Affiliation(s)
- Shaun A Mason
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Adam J Trewin
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Lewan Parker
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Glenn D Wadley
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia.
| |
Collapse
|
46
|
Schots PC, Pedersen AM, Eilertsen KE, Olsen RL, Larsen TS. Possible Health Effects of a Wax Ester Rich Marine Oil. Front Pharmacol 2020; 11:961. [PMID: 32676029 PMCID: PMC7333527 DOI: 10.3389/fphar.2020.00961] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 06/12/2020] [Indexed: 12/19/2022] Open
Abstract
The consumption of seafood and the use of fish oil for the production of nutraceuticals and fish feed have increased over the past decades due the high content of long-chain polyunsaturated omega-3 fatty acids. This increase has put pressure on the sustainability of fisheries. One way to overcome the limited supply of fish oil is to harvest lower in the marine food web. Calanus finmarchicus, feeding on phytoplankton, is a small copepod constituting a considerable biomass in the North Atlantic and is a novel source of omega-3 fatty acids. The oil is, however, different from other commercial marine oils in terms of chemistry and, possibly, bioactivity since it contains wax esters. Wax esters are fatty acids that are esterified with alcohols. In addition to the long-chain polyunsaturated omega-3 fatty acids, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), the oil is also rich in stearidonic acid (SDA), long-chain monounsaturated fatty acids, and the long-chain fatty alcohols eicosenol and docosenol. Recent animal studies have indicated anti-inflammatory and anti-obesogenic actions of this copepod oil beyond that provided by EPA and DHA. This review will discuss potential mechanisms behind these beneficial effects of the oil, focusing on the impact of the various components of the oil. The health effects of EPA and DHA are well recognized, whereas long-chain monounsaturated fatty acids and long-chain fatty alcohols have to a large degree been overlooked in relation to human health. Recently, however the fatty alcohols have received interest as potential targets for improved health via conversion to their corresponding fatty acids. Together, the different lipid components of the oil from C. finmarchicus may have potential as nutraceuticals for reducing obesity and obesity-related metabolic disorders.
Collapse
Affiliation(s)
- Pauke Carlijn Schots
- Faculty of Biosciences, Fisheries and Economics, Norwegian College of Fishery Science, UiT The Arctic University of Norway, Tromsø, Norway
| | | | - Karl-Erik Eilertsen
- Faculty of Biosciences, Fisheries and Economics, Norwegian College of Fishery Science, UiT The Arctic University of Norway, Tromsø, Norway
| | - Ragnar Ludvig Olsen
- Faculty of Biosciences, Fisheries and Economics, Norwegian College of Fishery Science, UiT The Arctic University of Norway, Tromsø, Norway
| | - Terje Steinar Larsen
- Cardiovascular Research Group, Department of Medical Biology, UiT The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
47
|
Li J, Guo C, Wu J. Astaxanthin in Liver Health and Disease: A Potential Therapeutic Agent. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:2275-2285. [PMID: 32606597 PMCID: PMC7293384 DOI: 10.2147/dddt.s230749] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 05/18/2020] [Indexed: 12/12/2022]
Abstract
Astaxanthin is a carotenoid derived from oxygen-containing non-vitamin A sources and is mainly obtained from marine organisms. Studies have demonstrated that astaxanthin is a natural antioxidant product and it is widely used in the fields of medicine, health-care products and cosmetics. Studies have shown that astaxanthin has important preventive and therapeutic effects on liver fibrosis, non-alcoholic fatty liver, liver cancer, drug and ischemia-induced liver injury, and its mechanism is related to antioxidant and anti-inflammatory activities, and the regulation of multiple signaling pathways. In this review, we discuss the latest data on astaxanthin in the prevention and treatment of liver diseases. An understanding of the structure, source and mechanism of action of astaxanthin in the body would not only provide a theoretical basis for its clinical application but could also have important significance in screening and improving related compounds for the treatment of liver diseases.
Collapse
Affiliation(s)
- Jingjing Li
- Department of Gastroenterology, Putuo People's Hospital, Tongji University School of Medicine, Shanghai 200060, People's Republic of China
| | - Chuanyong Guo
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, People's Republic of China
| | - Jianye Wu
- Department of Gastroenterology, Putuo People's Hospital, Tongji University School of Medicine, Shanghai 200060, People's Republic of China
| |
Collapse
|
48
|
Satti HH, Khaleel EF, Badi RM, Elrefaie AO, Mostafa DG. Antiplatelet activity of astaxanthin in control- and high cholesterol-fed rats mediated by down-regulation of P2Y 12, inhibition of NF-κB, and increasing intracellular levels of cAMP. Platelets 2020; 32:469-478. [PMID: 32379559 DOI: 10.1080/09537104.2020.1756237] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This study evaluated the antiplatelet effect of the plant carotenoid, astaxanthin (ASTX) in rats fed either control or high cholesterol plus cholic acid diet (HCCD) and possible underlying mechanisms. Adult male Wistar rats were divided into four groups (n = 8/each), namely, control (fed normal diet), control + ASTX (10 mg/kg/day), HCCD-fed rats, and HCCD + ASTX-treated rats. Diets and treatments were orally administered daily for 30 days. In both control and HCCD-fed rats, ASTX significantly increased fecal levels of triglycerides and cholesterol, reduced platelet count, prolonged bleeding time, and inhibited platelet aggregation. It also reduced platelet levels of reactive oxygen species (ROS) and Bcl-2; thromboxane B2 (TXB2) release; and the expression of P2Y12, P-selectin, and CD36 receptors. Moreover, the activity NF-κB p65 and Akt was inhibited. Concomitantly, it increased the protein levels of cleaved caspase-3 and vasodilator-stimulated phosphoprotein (p-VASP) as well as intracellular levels of cAMP. However, in HCCD-fed rats, the effects of ASTX were associated with reduced serum levels of ox-LDL-c and fasting plasma glucose levels. In conclusion, antiplatelet effects of ASTX involve ROS scavenging, inhibiting NF-κB activity, down-regulating P2Y12 expression, and increasing intracellular levels of cAMP that are attributed to its antioxidant, hypolipidemic, and anti-inflammatory effects.
Collapse
Affiliation(s)
- Huda H Satti
- Department of Pathology, College of Medicine, King Khalid University, Abha, Kingdom of Saudi Arabia.,Department of Pathology, University of Khartoum, Khartoum, Sudan
| | - Eman F Khaleel
- Department of Medical Physiology, College of Medicine, King Khalid University, Abha, Kingdom of Saudi Arabia.,Faculty of Medicine, Department of Medical Physiology, Cairo University, Cairo, Egypt
| | - Rehab M Badi
- Department of Medical Physiology, College of Medicine, King Khalid University, Abha, Kingdom of Saudi Arabia.,Faculty of Medicine, Department of Physiology, University of Khartoum, Khartoum, Sudan
| | - Amany O Elrefaie
- Department of Pathology, College of Medicine, King Khalid University, Abha, Kingdom of Saudi Arabia.,National Liver Institute, Department of Pathology, Menoufyia University, Menoufyia, Egypt
| | - Dalia G Mostafa
- Department of Medical Physiology, College of Medicine, King Khalid University, Abha, Kingdom of Saudi Arabia.,Faculty of Medicine, Department of Medical Physiology, Assiut University, Assiut, Egypt
| |
Collapse
|
49
|
Therapeutic Effect of Seaweed Derived Xanthophyl Carotenoid on Obesity Management; Overview of the Last Decade. Int J Mol Sci 2020; 21:ijms21072502. [PMID: 32260306 PMCID: PMC7177665 DOI: 10.3390/ijms21072502] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 03/26/2020] [Accepted: 04/02/2020] [Indexed: 12/13/2022] Open
Abstract
Present-day lifestyles associated with high calorie-fat intake and accumulation, as well as energy imbalance, have led to the development of obesity and its comorbidities, which have emerged as some of the major health issues globally. To combat the disease, many studies have reported the anti-obesity effects of natural compounds in foods, with some advantages over chemical treatments. Carotenoids, such as xanthophyll derived from seaweeds, have attracted the attention of researchers due to their notable biological activities, which are associated mainly with their antioxidant properties. Their involvement in oxidative stress modulation, the regulation of major transcription factors and enzymes, and their antagonistic effects on various obesity parameters have been examined in both in vitro and in vivo studies. The present review is a collation of published research over the last decade on the antioxidant properties of seaweed xanthophyll carotenoids, with a focus on fucoxanthin and astaxanthin and their mechanisms of action in obesity prevention and treatment.
Collapse
|
50
|
Babin A, Moreau J, Moret Y. Storage of Carotenoids in Crustaceans as an Adaptation to Modulate Immunopathology and Optimize Immunological and Life-History Strategies. Bioessays 2019; 41:e1800254. [PMID: 31566782 DOI: 10.1002/bies.201800254] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 08/11/2019] [Indexed: 12/14/2022]
Abstract
Why do some invertebrates store so much carotenoids in their tissues? Storage of carotenoids may not simply be passive and dependent on their environmental availability, as storage variation exists at various taxonomic scales, including among individuals within species. While the strong antioxidant and sometimes immune-stimulating properties of carotenoids may be beneficial enough to cause the evolution of features improving their assimilation and storage, they may also have fitness downsides explaining why massive carotenoid storage is not universal. Here, the functional and ecological implications of carotenoid storage for the evolution of invertebrate innate immune defenses are examined, especially in crustaceans, which massively store carotenoids for unclear reasons. Three testable hypotheses about the role of carotenoid storage in immunological (resistance and tolerance) and life-history strategies (with a focus on aging) are proposed, which may ultimately explain the storage of large amounts of these pigments in a context of host-pathogen interactions.
Collapse
Affiliation(s)
- Aurélie Babin
- Équipe Écologie Évolutive, UMR CNRS 6282 Biogéosciences, Université Bourgogne Franche-Comté, 6 Boulevard Gabriel, F-21000, Dijon, France
| | - Jérôme Moreau
- Équipe Écologie Évolutive, UMR CNRS 6282 Biogéosciences, Université Bourgogne Franche-Comté, 6 Boulevard Gabriel, F-21000, Dijon, France
| | - Yannick Moret
- Équipe Écologie Évolutive, UMR CNRS 6282 Biogéosciences, Université Bourgogne Franche-Comté, 6 Boulevard Gabriel, F-21000, Dijon, France
| |
Collapse
|