1
|
Hrdy O, Vrbica K, Duba J, Slezak M, Strazevska E, Agalarev V, Duba M, Stepanova R, Svobodnik A, Gal R. Intermittent enteral nutrition shortens the time to achieve nutritional goals in critically ill patients. Sci Rep 2025; 15:2242. [PMID: 39833529 PMCID: PMC11747090 DOI: 10.1038/s41598-025-86633-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 01/13/2025] [Indexed: 01/22/2025] Open
Abstract
Nutritional support is associated with improved clinical outcomes in critically ill patients; however, loss of muscle mass during critical illness leads to weakness, delayed return to work, and increased healthcare consumption. Animal data have suggested that intermittent feeding decreases protein catabolism. This study was aimed at determining whether the mode of enteral nutrition administration might lead to differences in meeting nutritional goals, tolerance, and complications. A prospective, randomized, single-center clinical trial was conducted in four intensive care units in the Czech Republic. Critically ill adult patients with high nutritional risk were randomized to continuous or intermittent enteral nutrition administration through a tolerance-driven protocol. The primary outcome was the time to reach the energetic target. Secondary outcomes included assessment of tolerance (high gastric residual volume, vomitus, and diarrhea), complications (aspiration or ventilator-associated pneumonia), and 28-day mortality. A total of 300 patients were randomized, and 294 were analyzed: 148 in the continuous arm and 146 in the intermittent arm. Regarding the primary outcome, log-rank test indicated that the intermittent group, compared with continuous group, had a statistically significantly shorter time (p = 0.009) and greater diarrhea occurrence (7 (4.7%) vs. 16 (11%), p = 0.049). No statistically significant differences in ventilator-associated pneumonia incidence (18 (12.2%) vs. 18 (12.3%), p = 0.965), 28-day mortality (46 (31.1%) vs. 40 (27.4%), p = 0.488), and other secondary outcomes were observed between groups. Thus, intermittent enteral nutrition was superior to continuous enteral nutrition in terms of time to reach the energetic target with the tolerance-driven administration protocol but was associated with higher diarrhea incidence. No statistically significant differences in the other secondary outcomes were observed.
Collapse
Affiliation(s)
- Ondrej Hrdy
- Department of Anaesthesiology and Intensive Care Medicine, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital, Brno, Czech Republic
| | - Kamil Vrbica
- Department of Anaesthesiology and Intensive Care Medicine, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital, Brno, Czech Republic
| | - Jaroslav Duba
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital, Brno, Czech Republic
| | - Martin Slezak
- Department of Anaesthesiology and Intensive Care Medicine, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital, Brno, Czech Republic
| | - Eva Strazevska
- Department of Anaesthesiology and Intensive Care Medicine, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital, Brno, Czech Republic
| | - Viktor Agalarev
- Department of Anaesthesiology and Intensive Care Medicine, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital, Brno, Czech Republic
| | - Milos Duba
- Department of Neurosurgery, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Department of Neurosurgery, University Hospital Brno, Brno, Czech Republic
| | - Radka Stepanova
- Department of Pharmacology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Adam Svobodnik
- Department of Pharmacology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Roman Gal
- Department of Anaesthesiology and Intensive Care Medicine, Faculty of Medicine, Masaryk University, Brno, Czech Republic.
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital, Brno, Czech Republic.
- , Jihlavska 20, Brno, 625 00, Czech Republic.
| |
Collapse
|
2
|
Reignier J, Rice TW, Arabi YM, Casaer M. Nutritional Support in the ICU. BMJ 2025; 388:e077979. [PMID: 39746713 DOI: 10.1136/bmj-2023-077979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Critical illness is a complex condition that can have a devastating impact on health and quality of life. Nutritional support is a crucial component of critical care that aims to maintain or restore nutritional status and muscle function. A one-size-fits-all approach to the components of nutritional support has not proven beneficial. Recent randomized controlled trials challenge the conventional strategy and support the safety and potential benefits of below-usual calorie and protein intakes at the early, acute phase of critical illness. Further research is needed to define optimal nutritional support throughout the intensive care unit stay. Individualized nutritional strategies relying on risk assessment tools or biomarkers deserve further investigation in rigorously designed, large, multicenter, randomized, controlled trials. Importantly, although nutritional support is crucial, it might not be sufficient to enhance the recovery of critically ill patients. Thus, achieving the greatest efficacy may require individualized nutritional support combined with early, prolonged physical rehabilitation within a multimodal, holistic care program throughout the patient's recovery journey.
Collapse
Affiliation(s)
- Jean Reignier
- Nantes University, CHU Nantes, Movement - Interactions - Performance (MIP), UR 4334; and Nantes University Hospital, Medical Intensive Care Unit; Nantes, France
| | - Todd W Rice
- Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Yaseen M Arabi
- Intensive Care Department, College of Medicine, King Saud bin Abdulaziz University for Health Sciences, King Abdullah International Medical Research Centre, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Michael Casaer
- Laboratory and Clinical Department of Intensive Care Medicine, KU Leuven, Leuven, Belgium
| |
Collapse
|
3
|
Formisano E, Schiavetti I, Gradaschi R, Gardella P, Romeo C, Pisciotta L, Sukkar SG. The Real-Life Use of a Protein-Sparing Modified Fast Diet by Nasogastric Tube (ProMoFasT) in Adults with Obesity: An Open-Label Randomized Controlled Trial. Nutrients 2023; 15:4822. [PMID: 38004217 PMCID: PMC10674249 DOI: 10.3390/nu15224822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/14/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
BACKGROUND Protein-sparing modified fast (PSMF) diet is a very-low-carbohydrate ketogenic diet administered to patients with obesity, which preserves lean mass and suppresses appetite as well as continuous enteral feeding. Thus, we aim to evaluate the effect of the PSMF diet administered continuously by nasogastric tube (NGT) or orally. METHODS Patients with a body mass index (BMI) > 34.9 kg/m2 were randomly assigned to receive a whey protein PSMF formula through NGT (ProMoFasT) or orally. Data were collected at baseline and after 150 days. The endpoints were assessed in the intention-to-treat population. RESULTS We enrolled 20 patients in the ProMoFasT group and 24 in the oral group. No differences in body weight, BMI or waist circumference between the two groups were found after 150 days. At follow-up, FFM (%) and MM (%) results were higher in the ProMoFasT group than the oral group (63.1% vs. 52.9%, p = 0.012 and 45.0% vs. 36.1%, p = 0.009, respectively) and FM (kg) and FM (%) were significantly lower in the ProMoFasT group (36.9 kg vs. 44.0 kg, p = 0.033 and 37.4% vs. 44.9%, p = 0.012, respectively). Insulin levels were lower in the ProMoFasT group than the oral group at follow-up (11.8 mU/L vs. 28.0 mU/L, p = 0.001, respectively). CONCLUSION The ProMoFasT is more effective in improving body composition and glucometabolic markers than the same diet administered orally.
Collapse
Affiliation(s)
- Elena Formisano
- Department of Internal Medicine, University of Genoa, 16132 Genoa, Italy (P.G.)
- Dietetics and Clinical Nutrition Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Irene Schiavetti
- Department of Health Sciences, Section of Biostatistics, University of Genova, 16132 Genova, Italy
| | - Raffaella Gradaschi
- Dietetics and Clinical Nutrition Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Paolo Gardella
- Department of Internal Medicine, University of Genoa, 16132 Genoa, Italy (P.G.)
| | - Carlotta Romeo
- Department of Internal Medicine, University of Genoa, 16132 Genoa, Italy (P.G.)
| | - Livia Pisciotta
- Department of Internal Medicine, University of Genoa, 16132 Genoa, Italy (P.G.)
- Dietetics and Clinical Nutrition Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Samir Giuseppe Sukkar
- Dietetics and Clinical Nutrition Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| |
Collapse
|
4
|
Guarnido-Lopez P, Ortigues-Marty I, David J, Polakof S, Cantalapiedra-Hijar G. Comparative analysis of signalling pathways in tissue protein metabolism in efficient and non-efficient beef cattle: acute response to an identical single meal size. Animal 2023; 17:101017. [PMID: 37948891 DOI: 10.1016/j.animal.2023.101017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 11/12/2023] Open
Abstract
Protein turnover has been associated to residual feed intake (RFI) in beef cattle. However, this relationship may be confounded by feeding level and affected by the composition of the diet being fed. Our aim was to assess postmortem the protein metabolism signalling pathways in skeletal muscle and liver of 32 Charolais young bulls with extreme RFI phenotypes. Bulls were fed two contrasting diets during the whole fattening period but were subjected to a similar and single nutritional stimulus, induced by their respective concentrate, just prior to slaughter. The key targets were protein degradation (autophagy and ubiquitin) and synthesis signalling pathways through western-blot analysis, as well as hepatic transaminase activity. To ensure a precise assessment of all animals at the same postprandial time, they were provided with a test meal (2.5 kg of either a high-starch and high-protein concentrate or high-fibre and low-protein concentrate) 3 hours prior to slaughter, irrespective of their RFI grouping. Blood and tissues were sampled at the slaughterhouse (3 h and 3 h30 postprandially, respectively). In response to an identical single meal size, efficient RFI animals showed higher (P < 0.05) postprandial plasma β-hydroxybutyrate concentrations and insulinemia (only with the high-starch concentrate) than non-efficient animals. Moreover, efficient RFI bulls had lower muscle (P = 0.04) and liver (P = 0.08) ubiquitin protein abundance (degradation pathway) and tended to have lower alanine transaminase activity in the liver (P = 0.06) compared to non-efficient bulls, regardless of diet. A positive correlation between protein degradation potential and amino acid catabolism was identified in this study (r = 0.52, P = 0.004), which was interpreted as being biologically linked to the RFI phenotype. Efficient RFI bulls also had a faster potential for protein synthesis in the muscle, as indicated by their greater ratio of phosphorylated to total form of ribosomal protein S6 kinase (P = 0.05), regardless of diet. Results on protein synthesis pathway in muscle and plasma metabolite concentrations suggested that efficient RFI cattle may have a faster nutrient absorption and insulin responsiveness after feeding than inefficient cattle. We did not find significant differences in hepatic protein synthesis pathways between the two RFI groups (P > 0.05). Our findings suggest that, in response to an identical single meal size, efficient RFI animals exhibited lower activation of tissue protein degradation pathways and faster muscle protein synthesis activation compared to their inefficient counterparts. This pattern was observed regardless of the composition of the tested meals.
Collapse
Affiliation(s)
- P Guarnido-Lopez
- INRAE, VetAgro Sup, UMR Herbivores, Université Clermont Auvergne, F-63122 Saint-Genès-Champanelle, France
| | - I Ortigues-Marty
- INRAE, VetAgro Sup, UMR Herbivores, Université Clermont Auvergne, F-63122 Saint-Genès-Champanelle, France
| | - J David
- Université Clermont-Auvergne, INRAE, UMR1019, Unité Nutrition Humaine, Clermont-Ferrand, France
| | - S Polakof
- Université Clermont-Auvergne, INRAE, UMR1019, Unité Nutrition Humaine, Clermont-Ferrand, France
| | - G Cantalapiedra-Hijar
- INRAE, VetAgro Sup, UMR Herbivores, Université Clermont Auvergne, F-63122 Saint-Genès-Champanelle, France.
| |
Collapse
|
5
|
Yavanoglu Atay F, Bozkurt O, Sahin S, Bidev D, Sari FN, Uras N. A Comparison of Slow Infusion Intermittent Feeding versus Gravity Feeding in Preterm Infants: A Randomized Controlled Trial. CHILDREN (BASEL, SWITZERLAND) 2023; 10:1389. [PMID: 37628387 PMCID: PMC10453490 DOI: 10.3390/children10081389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/01/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023]
Abstract
BACKGROUND The transition to full enteral feeding is important for ensuring adequate growth in preterm infants. AIMS The aim of this study was to investigate the effects of two different intermittent feeding methods on the transition to full enteral feeding in preterm infants. STUDY DESIGN A prospective, randomized controlled study was conducted in a neonatology and perinatology center. SUBJECTS Preterm infants with a gestational age between 24 + 0/7 and 31 + 6/7 were included in this study. They were divided into two groups: the SIF (slow infusion feeding) group and the IBF (intermittent bolus feeding) group. In the SIF group, feed volumes were administered over one hour using an infusion pump through an orogastric tube, with feeding occurring every three hours. The IBF group received enteral feeding using a gravity-based technique with a syringe through an orogastric tube, completed within 10 to 30 min. OUTCOME MEASURES The primary outcome was the achievement of full enteral feeding and the occurrence of feeding intolerance. RESULTS A total of 103 infants were enrolled in the study (50 in SIF and 53 in IBF). The time to achieve full enteral feeding did not differ significantly between the two groups (p = 0.20). The SIF group had significantly fewer occurrences in which gastric residual volume exceeded 50% (p = 0.01). Moreover, the SIF group had a significantly shorter duration of non-per-oral (NPO) status than the IBF group (p = 0.03). CONCLUSIONS It is our contention that the use of the SIF method as an alternative feeding method is appropriate for infants with feeding intolerance and those at high risk of feeding intolerance.
Collapse
Affiliation(s)
- Funda Yavanoglu Atay
- Department of Pediatrics, Division of Neonatology, Umraniye Training and Research Hospital, 34764 Istanbul, Türkiye
| | - Ozlem Bozkurt
- Department of Pediatrics, Division of Neonatology, Faculty of Medicine, Kocaeli University, 41380 Izmit, Türkiye
| | - Suzan Sahin
- Department of Pediatrics, Division of Neonatology, Buca Seyfi Demirsoy Training and Research Hospital, Izmir Democracy University, 35140 Izmir, Türkiye
| | - Duygu Bidev
- Neonatal Care Intensive Unit, Koru Sincan Hospital, 06934 Ankara, Türkiye
| | - Fatma Nur Sari
- Department of Pediatrics, Division of Neonatology, Ankara City Hospital, 06800 Ankara, Türkiye
| | - Nurdan Uras
- Department of Pediatrics, Division of Neonatology, Faculty of Medicine, Istinye University, 34517 Istanbul, Türkiye
| |
Collapse
|
6
|
Posey EA, Davis TA. Review: Nutritional regulation of muscle growth in neonatal swine. Animal 2023; 17 Suppl 3:100831. [PMID: 37263816 PMCID: PMC10621894 DOI: 10.1016/j.animal.2023.100831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/31/2022] [Accepted: 01/06/2023] [Indexed: 06/03/2023] Open
Abstract
Despite advances in the nutritional support of low birth weight and early-weaned piglets, most experience reduced extrauterine growth performance. To further optimize nutritional support and develop targeted intervention strategies, the mechanisms that regulate the anabolic response to nutrition must be fully understood. Knowledge gained in these studies represents a valuable intersection of agriculture and biomedical research, as low birth weight and early-weaned piglets face many of the same morbidities as preterm and low birth weight infants, including extrauterine growth faltering and reduced lean growth. While the reasons for poor growth performance are multifaceted, recent studies have increased our understanding of the role of nutrition in the regulation of skeletal muscle growth in the piglet. The purpose of this review is to summarize the published literature surrounding advances in the current understanding of the anabolic signaling that occurs after a meal and how this response is developmentally regulated in the neonatal pig. It will focus on the regulation of protein synthesis, and especially the upstream and downstream effectors surrounding the master protein kinase, mechanistic target of rapamycin complex 1 (mTORC1) that controls translation initiation. It also will examine the regulatory pathways associated with the postprandial anabolic agents, insulin and specific amino acids, that are upstream of mTORC1 and lead to its activation. Lastly, the integration of upstream signaling cascades by mTORC1 leading to the activation of translation initiation factors that regulate protein synthesis will be discussed. This review concludes that anabolic signaling cascades are stimulated by both insulin and amino acids, especially leucine, through separate pathways upstream of mTORC1, and that these stimulatory pathways result in mTORC1 activation and subsequent activation of downstream effectors that regulate translation initiation Additionally, it is concluded that this anabolic response is unique to the skeletal muscle of the neonate, resulting from increased sensitivity to the rise in both insulin and amino acid after a meal. However, this response is dampened in skeletal muscle of the low birth weight pig, indicative of anabolic resistance. Elucidation of the pathways and regulatory mechanisms surrounding protein synthesis and lean growth allow for the development of potential targeted therapeutics and intervention strategies both in livestock production and neonatal care.
Collapse
Affiliation(s)
- E A Posey
- United States Department of Agriculture/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - T A Davis
- United States Department of Agriculture/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
7
|
Rudar M, Suryawan A, Nguyen HV, Chacko SK, Vonderohe C, Stoll B, Burrin DG, Fiorotto ML, Davis TA. Regulation of skeletal muscle protein synthesis in the preterm pig by intermittent leucine pulses during continuous parenteral feeding. JPEN J Parenter Enteral Nutr 2023; 47:276-286. [PMID: 36128996 PMCID: PMC10621874 DOI: 10.1002/jpen.2450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/31/2022] [Accepted: 09/15/2022] [Indexed: 11/10/2022]
Abstract
BACKGROUND Extrauterine growth restriction is a common complication of preterm birth. Leucine (Leu) is an agonist for the mechanistic target of rapamycin (mTOR) complex 1 (mTORC1) signaling pathway that regulates translation initiation and protein synthesis in skeletal muscle. Previously, we showed that intermittent intravenous pulses of Leu to neonatal pigs born at term receiving continuous enteral nutrition increases muscle protein synthesis and lean mass accretion. Our objective was to determine the impact of intermittent intravenous pulses of Leu on muscle protein anabolism in preterm neonatal pigs administered continuous parenteral nutrition. METHODS Following preterm delivery (on day 105 of 115 gestation), pigs were fitted with umbilical artery and jugular vein catheters and provided continuous parenteral nutrition. Four days after birth, pigs were assigned to receive intermittent Leu (1600 µmol kg-1 h-1 ; n = 8) or alanine (1600 µmol kg-1 h-1 ; n = 8) parenteral pulses every 4 h for 28 h. Anabolic signaling and fractional protein synthesis were determined in skeletal muscle. RESULTS Leu concentration in the longissimus dorsi and gastrocnemius muscles increased in the leucine (LEU) group compared with the alanine (ALA) group (P < 0.0001). Despite the Leu-induced disruption of the Sestrin2·GATOR2 complex, which inhibits mTORC1 activation, in these muscles (P < 0.01), the abundance of mTOR·RagA and mTOR·RagC was not different. Accordingly, mTORC1-dependent activation of 4EBP1, S6K1, eIF4E·eIF4G, and protein synthesis were not different in any muscle between the LEU and ALA groups. CONCLUSION Intermittent pulses of Leu do not enhance muscle protein anabolism in preterm pigs supplied continuous parenteral nutrition.
Collapse
Affiliation(s)
- Marko Rudar
- Department of Animal Sciences, Auburn University, Auburn, Alabama, USA
| | - Agus Suryawan
- USDA/ARS Children’s Nutrition Research Center, Baylor College of Medicine, Houston, Texas, USA
| | - Hanh V. Nguyen
- USDA/ARS Children’s Nutrition Research Center, Baylor College of Medicine, Houston, Texas, USA
| | - Shaji K. Chacko
- USDA/ARS Children’s Nutrition Research Center, Baylor College of Medicine, Houston, Texas, USA
| | - Caitlin Vonderohe
- USDA/ARS Children’s Nutrition Research Center, Baylor College of Medicine, Houston, Texas, USA
| | - Barbara Stoll
- USDA/ARS Children’s Nutrition Research Center, Baylor College of Medicine, Houston, Texas, USA
| | - Douglas G. Burrin
- USDA/ARS Children’s Nutrition Research Center, Baylor College of Medicine, Houston, Texas, USA
| | - Marta L. Fiorotto
- USDA/ARS Children’s Nutrition Research Center, Baylor College of Medicine, Houston, Texas, USA
| | - Teresa A. Davis
- USDA/ARS Children’s Nutrition Research Center, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
8
|
Heffernan AJ, Talekar C, Henain M, Purcell L, Palmer M, White H. Comparison of continuous versus intermittent enteral feeding in critically ill patients: a systematic review and meta-analysis. Crit Care 2022; 26:325. [PMID: 36284334 PMCID: PMC9594889 DOI: 10.1186/s13054-022-04140-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 06/16/2022] [Indexed: 11/06/2022] Open
Abstract
Background The enteral route is commonly utilised to support the nutritional requirements of critically ill patients. However, there is paucity of data guiding clinicians regarding the appropriate method of delivering the prescribed dose. Continuous enteral feeding is commonly used; however, a bolus or intermittent method of administration may provide several advantages such as minimising interruptions. The purpose of this meta-analysis is to compare a continuous versus an intermittent or bolus enteral nutrition administration method. Methods A systematic review and meta-analysis were performed with studies identified from the PubMed, EMBASE, Cochrane Library and Web of Science databases. Studies were included if they compared a continuous with either an intermittent or bolus administration method of enteral nutrition in adult patients admitted to the intensive care unit. Study quality was assessed using the PEDro and Newcastle–Ottawa scoring systems. Review Manager was used for performing the random-effects meta-analysis on the outcomes of mortality, constipation, diarrhoea, increased gastric residuals, pneumonia, and bacterial colonisation. Results A total of 5546 articles were identified, and 133 were included for full text review. Fourteen were included in the final analysis. There was an increased risk of constipation with patients receiving continuous enteral nutrition (relative risk 2.24, 95% confidence interval 1.01–4.97, p = 0.05). No difference was identified in other outcome measures. No appreciable bias was identified. Conclusion The current meta-analysis has not identified any clinically relevant difference in most outcome measures relevant to the care of critically ill patients. However, there is a paucity of high-quality randomised controlled clinical trials to guide this decision. Therefore, clinicians may consider either dosing regimen in the context of the patient’s care requirements.
Collapse
Affiliation(s)
- Aaron J. Heffernan
- grid.460757.70000 0004 0421 3476Department of Intensive Care Medicine, Logan Hospital, MetroSouth Hospital and Health Service, Meadowbrook, QLD Australia ,grid.1022.10000 0004 0437 5432School of Medicine and Dentistry, Griffith University, Southport, QLD Australia
| | - C. Talekar
- grid.460757.70000 0004 0421 3476Department of Intensive Care Medicine, Logan Hospital, MetroSouth Hospital and Health Service, Meadowbrook, QLD Australia ,grid.1022.10000 0004 0437 5432School of Medicine and Dentistry, Griffith University, Southport, QLD Australia
| | - M. Henain
- grid.460757.70000 0004 0421 3476Department of Intensive Care Medicine, Logan Hospital, MetroSouth Hospital and Health Service, Meadowbrook, QLD Australia ,grid.416100.20000 0001 0688 4634Royal Brisbane and Women’s Hospital, Brisbane, QLD Australia ,grid.1003.20000 0000 9320 7537Faculty of Medicine, University of Queensland, Brisbane, QLD Australia
| | - L. Purcell
- grid.460757.70000 0004 0421 3476Department of Intensive Care Medicine, Logan Hospital, MetroSouth Hospital and Health Service, Meadowbrook, QLD Australia
| | - M. Palmer
- grid.460757.70000 0004 0421 3476Department of Intensive Care Medicine, Logan Hospital, MetroSouth Hospital and Health Service, Meadowbrook, QLD Australia
| | - H. White
- grid.460757.70000 0004 0421 3476Department of Intensive Care Medicine, Logan Hospital, MetroSouth Hospital and Health Service, Meadowbrook, QLD Australia ,grid.1022.10000 0004 0437 5432School of Medicine and Dentistry, Griffith University, Southport, QLD Australia
| |
Collapse
|
9
|
Yang G, Deng A, Zheng B, Li J, Yu Y, Ouyang H, Huang X, Chen H. Effect of different feeding methods on gastrointestinal function in critical patients (DFM-GFC): study protocol for a randomized controlled trial. Trials 2022; 23:882. [PMID: 36266668 PMCID: PMC9583505 DOI: 10.1186/s13063-022-06807-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 09/15/2022] [Indexed: 11/30/2022] Open
Abstract
Background Enteral nutrition is a major pathway of nutrition for patients requiring critical care. However, it remains unclear whether intermittent or continuous feeding is the better approach, especially after nasogastric enteral nutrition via a gastric tube. Therefore, this randomized controlled clinical study was designed to observe the effects of different methods on critically ill patients. Methods Different Feeding Methods on Gastrointestinal Function of Critical patients (DFM-GFC) is a randomized clinical study that will be performed to assess the effects of three feeding methods on critically ill patients. A total of 90 critically ill patients will be equally randomized into three groups: continuous feeding, cyclic feeding, and intermittent feeding. The patients will be administered a gastrointestinal nutrition preparation over 24 h via a gastric tube or over 16 h via an intermittent pump. The primary outcome is the mean duration (days) to reach the caloric goal in each group. Secondary outcomes include the rate of onset of gastric residual, abdominal pressure, the rate of onset pneumonia, and the proportion of individuals achieving the caloric goal. Additionally, the length of intensive care unit (ICU) stay and mortality rate at 28 days post-enrolment will be evaluated. Discussion This study will observe the effects of different feeding methods on various parameters, such as the energy target and gastrointestinal motility, in critically ill patients to improve quality of life and reduce the case fatality rate. The purpose of this study is to explore whether there is a more effective, safer and cost-efficient feeding method for the clinical treatment of critically ill patients. Trial registration ID: NCT04224883, ClinicalTrials.gov, registered January 9, 2020 Supplementary Information The online version contains supplementary material available at 10.1186/s13063-022-06807-7.
Collapse
Affiliation(s)
- Guang Yang
- Department of Intensive Care Unit, Second Clinical College of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, 111 Dade Road, Yuexiu District, Guangzhou, Guangdong Province, China.
| | - Aijing Deng
- Medical Record Department, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, 111 Dade Road, Yuexiu District, Guangzhou, Guangdong Province, China
| | - Bojun Zheng
- Department of Intensive Care Unit, Second Clinical College of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, 111 Dade Road, Yuexiu District, Guangzhou, Guangdong Province, China
| | - Jian Li
- Department of Intensive Care Unit, Second Clinical College of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, 111 Dade Road, Yuexiu District, Guangzhou, Guangdong Province, China
| | - Yi Yu
- Department of Intensive Care Unit, Second Clinical College of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, 111 Dade Road, Yuexiu District, Guangzhou, Guangdong Province, China
| | - Honglian Ouyang
- Department of Intensive Care Unit, Second Clinical College of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, 111 Dade Road, Yuexiu District, Guangzhou, Guangdong Province, China
| | - Xin Huang
- Intensive Care Research Team of Traditional Chinese Medicine, Second Clinical College of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, 55 Neihuan West Road, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou, Guangdong Province, China
| | - Hong Chen
- Department of Intensive Care Unit, Second Clinical College of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, 111 Dade Road, Yuexiu District, Guangzhou, Guangdong Province, China
| |
Collapse
|
10
|
Kouw IW, Heilbronn LK, van Zanten AR. Intermittent feeding and circadian rhythm in critical illness. Curr Opin Crit Care 2022; 28:381-388. [PMID: 35797531 PMCID: PMC9594144 DOI: 10.1097/mcc.0000000000000960] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Circadian rhythms, i.e., periodic oscillations in internal biological processes, modulate metabolic processes such as hormonal signalling, nutrient absorption, and xenobiotic detoxification. Meal timing is a strong entraining cue for peripheral clocks in various organs, and eating out of circadian phases can impair glucose, gastrointestinal, and muscle metabolism. Sleep/wake cycles and circadian rhythms are extremely disrupted during critical illness. Timing of nutritional support may help preserve circadian rhythms and improve post-Intensive Care Unit (ICU) recovery. This review summarises circadian disruptors during ICU admission and evaluates the potential benefits of intermittent feeding on metabolism and circadian rhythms. RECENT FINDINGS Rhythmic expression of core clock genes becomes rapidly disturbed during critical illness and remains disturbed for weeks. Intermittent, bolus, and cyclic enteral feeding have been directly compared to routine continuous feeding, yet no benefits on glycaemic control, gastrointestinal tolerance, and muscle mass have been observed and impacts of circadian clocks remain untested. SUMMARY Aligning timing of nutritional intake, physical activity, and/or medication with circadian rhythms are potential strategies to reset peripheral circadian rhythms and may enhance ICU recovery but is not proven beneficial yet. Therefore, selecting intermittent feeding over continuous feeding must be balanced against the pros and cons of clinical practice.
Collapse
Affiliation(s)
- Imre W.K. Kouw
- Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, The Netherlands
- Intensive Care Unit, Royal Adelaide Hospital, Adelaide, South Australia, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
- Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, South Australia, Australia
| | - Leonie K. Heilbronn
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
- Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, South Australia, Australia
- Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Arthur R.H. van Zanten
- Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, The Netherlands
- Department of Intensive Care Medicine, Gelderse Vallei Hospital, Ede, The Netherlands
| |
Collapse
|
11
|
Abstract
Appropriate nutrition is essential for optimal development and growth of preterm infants. Infants less than 25 weeks corrected gestational age are frequently the most difficult group for which to provide adequate nutrition due to minimal energy stores and high fluid losses. Nutrient delivery becomes an integral, but also very challenging part in their management. Early administration of intravenous nutrients provides a critical bridge to full enteral nutrition. However, enteral feeding is challenging due to immaturities of the intestinal tract, feeding intolerance and the risk of catastrophic gastrointestinal disease such as necrotizing enterocolitis (NEC). Decreased gastric acid production, increased gut permeability, reduced immunoglobulins, immature intestinal epithelia and a decreased mucin barrier all contribute to weakness to gastrointestinal insult. This review aims to illustrate the importance of enteral feeding and the common challenges and approaches in the nutrition of infants born at this age.
Collapse
Affiliation(s)
- Laura Patton
- Department of Pediatrics, Division of Neonatology, University of Florida College of Medicine, 1600 SW Archer Road, Gainesville, FL 32610, USA
| | - Diomel de la Cruz
- Department of Pediatrics, Division of Neonatology, University of Florida College of Medicine, 1600 SW Archer Road, Gainesville, FL 32610, USA.
| | - Josef Neu
- Department of Pediatrics, Division of Neonatology, University of Florida College of Medicine, 1600 SW Archer Road, Gainesville, FL 32610, USA
| |
Collapse
|
12
|
De Lazzaro F, Alessandri F, Tarsitano MG, Bilotta F, Pugliese F. Safety and Efficacy of Continuous or Intermittent Enteral Nutrition in ICU Patients: Systematic Review of Clinical Evidence. JPEN J Parenter Enteral Nutr 2022; 46:486-498. [PMID: 34981842 DOI: 10.1002/jpen.2316] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The best mode of delivering enteral nutrition (EN) in ICU is still debated: several consensus guidelines (ASPEN and ESPEN) suggest that EN in ICU should be preferably delivered continuously rather intermittently but some authors highlight that the first is unphysiological. The aim of this systematic review (SR) is to summarize available clinical evidence related to safety and efficacy of continuous enteral nutrition (C-EN) or intermittent enteral nutrition (I-EN) in ICU patients, in relation to appropriated supply on nutritional status, gastrointestinal symptoms or tolerance, risks on respiratory tract infections. A literature search of Pubmed, EMBASE and Google Scholar was performed comparing C-EN vs I-EN and 4196 published studies were screened. Nineteen studies were selected for this SR reporting types of ICU, nutritional protocols and study period. Effects of C-EN vs I-EN were presented according to the impact on: nutritional status, digestive tract and respiratory tract. The contrasting results confirmed that the optimal delivering mode of EN remains controversial. Future studies dedicated to identify the benefits and limitations of C-EN or I-EN should be realized. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Francesco De Lazzaro
- Department of Anesthesiology, Critical Care and Pain Medicine, "Sapienza" University of Rome, Policlicnico Umberto I, Rome, Italy
| | - Francesco Alessandri
- Department of Anesthesiology, Critical Care and Pain Medicine, "Sapienza" University of Rome, Policlicnico Umberto I, Rome, Italy
| | | | - Federico Bilotta
- Department of Anesthesiology, Critical Care and Pain Medicine, "Sapienza" University of Rome, Policlicnico Umberto I, Rome, Italy
| | - Francesco Pugliese
- Department of Anesthesiology, Critical Care and Pain Medicine, "Sapienza" University of Rome, Policlicnico Umberto I, Rome, Italy
| |
Collapse
|
13
|
Thong D, Halim Z, Chia J, Chua F, Wong A. A Systematic Review and Meta-Analysis of the effectiveness of continuous versus intermittent enteral nutrition in critically ill adults. JPEN J Parenter Enteral Nutr 2021; 46:1243-1257. [PMID: 34965317 DOI: 10.1002/jpen.2324] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/09/2021] [Accepted: 12/21/2021] [Indexed: 11/10/2022]
Abstract
BACKGROUND Continuous Enteral Nutrition (CEN) remains standard practice in Intensive Care Units (ICUs) worldwide. Intermittent Enteral Nutrition (IEN) may be a suitable alternative method. This meta-analysis aims to investigate the safety, tolerance, and effectiveness of IEN compared to CEN in critically ill adults in the ICU. METHODS Medline, CINAHL, Scopus, Embase and Google Scholar were searched for studies published up until 30th April 2020, along with manual searches in bibliographies. Eligible studies were trials that compared CEN versus IEN feeding in the ICU, and reported on at least one of the relevant outcomes - nutritional intake, gastric residual volume (GRV), aspiration pneumonia, vomiting, diarrhea, abdominal distension, glycemic variability. Secondary outcomes were ICU length of stay (LOS) and mortality. The Cochrane risk-of-bias tool for randomized trials was used to assess methodological quality. RESULTS Ten studies with 664 participants were included in the meta-analysis. The majority of studies had an overall 'High' risk of bias. Incidence of vomiting was significantly higher in CEN as compared to IEN groups (Risk Ratio 2.76; 95% CI, 1.23 - 6.23). There were no significant differences between CEN and IEN groups for nutritional intake, GRV, the incidence of aspiration pneumonia, diarrhea, abdominal distension, ICU LOS, and mortality. Definition and reporting of outcome measures were not standardized across studies, hence this heterogeneity limits generalisability of results. CONCLUSION Overall, the safety, tolerance, and effectiveness of CEN and IEN were found to be comparable. Future studies should explore monitoring larger sample sizes to determine best feeding practices in ICU. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Debbie Thong
- Dietetic and Food Services, Changi General Hospital, Singapore, Singapore
| | - Zakiah Halim
- Dietetic and Food Services, Changi General Hospital, Singapore, Singapore
| | - Joel Chia
- Dietetic and Food Services, Changi General Hospital, Singapore, Singapore
| | - Fionn Chua
- Dietetic and Food Services, Changi General Hospital, Singapore, Singapore
| | - Alvin Wong
- Dietetic and Food Services, Changi General Hospital, Singapore, Singapore
| |
Collapse
|
14
|
Rudar M, Naberhuis JK, Suryawan A, Nguyen HV, Stoll B, Style CC, Verla MA, Olutoye OO, Burrin DG, Fiorotto ML, Davis TA. Intermittent bolus feeding does not enhance protein synthesis, myonuclear accretion, or lean growth more than continuous feeding in a premature piglet model. Am J Physiol Endocrinol Metab 2021; 321:E737-E752. [PMID: 34719946 PMCID: PMC8714968 DOI: 10.1152/ajpendo.00236.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Optimizing enteral nutrition for premature infants may help mitigate extrauterine growth restriction and adverse chronic health outcomes. Previously, we showed in neonatal pigs born at term that lean growth is enhanced by intermittent bolus compared with continuous feeding. The objective was to determine if prematurity impacts how body composition, muscle protein synthesis, and myonuclear accretion respond to feeding modality. Following preterm delivery, pigs were fed equivalent amounts of formula delivered either as intermittent boluses (INT; n = 30) or continuously (CONT; n = 14) for 21 days. Body composition was measured by dual-energy X-ray absorptiometry (DXA) and muscle growth was assessed by morphometry, myonuclear accretion, and satellite cell abundance. Tissue anabolic signaling and fractional protein synthesis rates were determined in INT pigs in postabsorptive (INT-PA) and postprandial (INT-PP) states and in CONT pigs. Body weight gain and composition did not differ between INT and CONT pigs. Longissimus dorsi (LD) protein synthesis was 34% greater in INT-PP than INT-PA pigs (P < 0.05) but was not different between INT-PP and CONT pigs. Phosphorylation of 4EBP1 and S6K1 and eIF4E·eIF4G abundance in LD paralleled changes in LD protein synthesis. Satellite cell abundance, myonuclear accretion, and fiber cross-sectional area in LD did not differ between groups. These results suggest that, unlike pigs born at term, intermittent bolus feeding does not enhance lean growth more than continuous feeding in pigs born preterm. Premature birth attenuates the capacity of skeletal muscle to respond to cyclical surges in insulin and amino acids with intermittent feeding in early postnatal life.NEW & NOTEWORTHY Extrauterine growth restriction often occurs in premature infants but may be mitigated by optimizing enteral feeding strategies. We show that intermittent bolus feeding does not increase skeletal muscle protein synthesis, myonuclear accretion, or lean growth more than continuous feeding in preterm pigs. This attenuated anabolic response of muscle to intermittent bolus feeding, compared with previous observations in pigs born at term, may contribute to deficits in lean mass that many premature infants exhibit into adulthood.
Collapse
Affiliation(s)
- Marko Rudar
- United States Department of Agriculture/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
- Department of Animal Sciences, Auburn University, Auburn, Alabama
| | - Jane K Naberhuis
- United States Department of Agriculture/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Agus Suryawan
- United States Department of Agriculture/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Hanh V Nguyen
- United States Department of Agriculture/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Barbara Stoll
- United States Department of Agriculture/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Candace C Style
- The Department of Pediatric Surgery, Nationwide Children's Hospital, Columbus, Ohio
| | - Mariatu A Verla
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas
| | - Oluyinka O Olutoye
- The Department of Pediatric Surgery, Nationwide Children's Hospital, Columbus, Ohio
| | - Douglas G Burrin
- United States Department of Agriculture/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Marta L Fiorotto
- United States Department of Agriculture/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Teresa A Davis
- United States Department of Agriculture/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
15
|
Comparison of sequential feeding and continuous feeding on the blood glucose of critically ill patients: a non-inferiority randomized controlled trial. Chin Med J (Engl) 2021; 134:1695-1700. [PMID: 34397596 PMCID: PMC8318659 DOI: 10.1097/cm9.0000000000001684] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Background: Glucose control is an important aspect in managing critically ill patients. The goal of this study was to compare the effects of sequential feeding (SF) and continuous feeding (CF) on the blood glucose of critically ill patients. Methods: A non-inferiority randomized controlled trial was adopted in this study. A total of 62 patients who were fed enteral nutritional suspension through gastric tubes were enrolled. After achieving 80% of the nutrition target calories (25 kcal·kg−1·day−1) through CF, the patients were then randomly assigned into SF and CF groups. In the SF group, the feeding/fasting time was reasonably determined according to the circadian rhythm of the human body as laid out in traditional Chinese medicine theory. The total daily dosage of the enteral nutritional suspension was equally distributed among three time periods of 7 to 9 o’clock, 11 to 13 o’clock, and 17 to 19 o’clock. The enteral nutritional suspension in each time period was pumped at a uniform rate within 2 h by an enteral feeding pump. In the CF group, patients received CF at a constant velocity by an enteral feeding pump throughout the study. Blood glucose values at five points (6:00/11:00/15:00/21:00/1:00) were monitored and recorded for seven consecutive days after randomization. Enteral feeding intolerance was also recorded. Non-inferiority testing was adopted in this study, the chi-square test or Fisher test was used for qualitative data, and the Mann-Whitney U test was used for quantitative data to determine differences between groups. In particular, a repeated measure one-way analysis of variance was used to identify whether changes in glucose value variables across the time points were different between the two groups. Results: There were no significant demographic or physiological differences between the SF and CF groups (P > 0.050). The average glucose level in SF was not higher than that in CF (8.8 [7.3–10.3] vs. 10.7 [9.1–12.1] mmol/L, Z = −2.079, P for non-inferiority = 0.019). Hyperglycemia incidence of each patient was more common in the CF group than that in the SF group (38.4 [19.1–63.7]% vs. 11.8 [3.0–36.7]%, Z = −2.213, P = 0.027). Hypoglycemia was not found in either group. Moreover, there was no significant difference during the 7 days in the incidence of feeding intolerance (P > 0.050). Conclusions: In this non-inferiority study, the average blood glucose in SF was not inferior to that in CF. The feeding intolerance in SF was similar to that in CF. SF may be as safe as CF for critically ill patients. Trial Registration ClinicalTrials.gov, NCT03439618; https://clinicaltrials.gov/ct2/show/record/NCT03439618
Collapse
|
16
|
Hua L, Zhao L, Mao Z, Li W, Li J, Jiang X, Che L, Xu S, Lin Y, Fang Z, Feng B, Wu D, Zhuo Y. Beneficial effects of a decreased meal frequency on nutrient utilization, secretion of luteinizing hormones and ovarian follicular development in gilts. J Anim Sci Biotechnol 2021; 12:41. [PMID: 33820556 PMCID: PMC8022406 DOI: 10.1186/s40104-021-00564-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 01/26/2021] [Indexed: 12/15/2022] Open
Abstract
Background Replacement gilts are typically fed ad libitum, whereas emerging evidence from human and rodent studies has revealed that time-restricted access to food has health benefits. The objective of this study was to investigate the effect of meal frequency on the metabolic status and ovarian follicular development in gilts. Methods A total of 36 gilts (Landrace × Yorkshire) with an age of 150±3 d and a body weight of 77.6±3.8 kg were randomly allocated into one of three groups (n = 12 in each group), and based on the group allocation, the gilts were fed at a frequency of one meal (T1), two meals (T2), or six meals per day (T6) for 14 consecutive weeks. The effects of the meal frequency on growth preference, nutrient utilization, short-chain fatty acid production by gut microbial, the post-meal dynamics in the metabolic status, reproductive hormone secretions, and ovarian follicular development in the gilts were measured. Results The gilts in the T1 group presented a higher average daily gain (+ 48 g/d, P < 0.05) and a higher body weight (+ 4.9 kg, P < 0.05) than those in the T6 group. The meal frequency had no effect on the apparent digestibility of dry matter, crude protein, ether extract, ash, and gross energy, with the exception that the T1 gilts exhibited a greater NDF digestibility than the T6 gilts (P < 0.05). The nitrogen balance analysis revealed that the T1 gilts presented decreased urine excretion of nitrogen (− 8.17 g/d, P < 0.05) and higher nitrogen retention (+ 9.81 g/d, P < 0.05), and thus exhibited higher nitrogen utilization than the T6 gilts. The time-course dynamics of glucose, α-amino nitrogen, urea, lactate, and insulin levels in serum revealed that the T1 group exhibited higher utilization of nutrients after a meal than the T2 or T6 gilts. The T1 gilts also had a higher acetate content and SCFAs in feces than the T6 gilts (P < 0.05). The age, body weight and backfat thickness of the gilts at first estrous expression were not affected by the meal frequency, but the gilts in the T1 group had higher levels of serum luteinizing hormone on the 18th day of the 3rd estrus cycle and 17β-estradiol, a larger number of growing follicles and corpora lutea, and higher mRNA expression levels of genes related to follicular development on the 19th day of the 3rd estrus cycle. Conclusions The current findings revealed the benefits of a lower meal frequency equal feed intake on nutrient utilization and reproductive function in replacement gilts, and thus provide new insights into the nutritional strategy for replacement gilts, and the dietary pattern for other mammals, such as humans.
Collapse
Affiliation(s)
- Lun Hua
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China.,Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China.,Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, People's Republic of China
| | - Lianpeng Zhao
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China.,Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China.,Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, People's Republic of China
| | - Zhengyu Mao
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China.,Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China.,Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, People's Republic of China
| | - Wentao Li
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China.,Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China.,Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, People's Republic of China
| | - Jing Li
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China.,Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China.,Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, People's Republic of China
| | - Xuemei Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China.,Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China.,Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, People's Republic of China
| | - Lianqiang Che
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China.,Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China.,Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, People's Republic of China
| | - Shengyu Xu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China.,Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China.,Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, People's Republic of China
| | - Yan Lin
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China.,Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China.,Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, People's Republic of China
| | - Zhengfeng Fang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China.,Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China.,Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, People's Republic of China
| | - Bin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China.,Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China.,Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, People's Republic of China
| | - De Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China. .,Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China. .,Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, People's Republic of China.
| | - Yong Zhuo
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China. .,Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China. .,Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, People's Republic of China.
| |
Collapse
|
17
|
Filippi J, Rubio A, Lasserre V, Maccario J, Walrand S, Neveux N, Plénier SL, Hébuterne X, Cynober L, Moinard C. Dose-dependent beneficial effects of citrulline supplementation in short bowel syndrome in rats. Nutrition 2021; 85:111118. [PMID: 33545544 DOI: 10.1016/j.nut.2020.111118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 12/14/2022]
Abstract
OBJECTIVES Supplementing diet with citrulline has proved an efficient means of preserving nitrogen balance and improving nutritional status after massive intestinal resection. The aim of this study was to model the action of citrulline in gut-resected rats using a dose-ranging study focused on skeletal muscle nitrogen homeostasis. METHODS Forty-six rats were randomly assigned to one of the following groups: citrulline 0.5 g·kg·d-1 (n = 9), citrulline 1 g·kg·d-1 (n = 7), citrulline 2.5 g·kg·d-1 (n = 8), citrulline 5 g·kg·d-1 (n = 8), control (n = 6), and sham (n = 8). The sham group underwent transection and the other groups underwent resection of 80% of the small intestine. All rats were then fed enteral nutrition (EN; all diets were isocaloric and isonitrogenous). After 10 d, the rats were sacrificed to measure and analyze animal weight; duodenum, jejunum, and ileum weight; and muscle trophicity. Protein fractional synthesis rate (FSR) and mammalian target of rapamycin complex (mTORC)1 activation were measured in the tibialis muscle. RESULTS There was a significant dose-dependent association between rat weight and citrulline dose up to 2.5 g·kg·d-1 (P = 0.004). There was a significant improvement in tibialis weight correlated to plasma citrulline. Net protein FSR in the tibialis tended to be greater after resection and tended to return to baseline after citrulline supplementation. Citrulline supplementation significantly decreased the activated phosphorylated forms of S6 K1 (P = 0.003) and S6 RP (P = 0.003), with a significant positive association between myofibrillar FSR and activation of S6 K1 (r = 0.614; P = 0.02) and S6 RP (r = 0.601; P = 0.023). Jejunum weight was significantly positively correlated with plasma citrulline (r = 0.319; P = 0.0345). CONCLUSION Citrulline promotes body weight gain, preserves muscle trophicity, and enhances intestinal adaptation in a dose-dependent manner in a model of resected rats.
Collapse
Affiliation(s)
- Jerome Filippi
- Laboratoire de Biologie de la Nutrition, Faculté de Pharmacie, Université Paris-Descartes, Paris, France; Département de Gastroentérologie et Nutrition, Hôpital L'Archet, Nice, France
| | - Amandine Rubio
- Université Grenoble Alpes, Laboratoire Bioénergétique Fondamental et Appliqué, Grenoble, France; Département de Pédiatrie, Hôpital Couple Enfant, CHU Grenoble Alpes, Grenoble, France
| | - Virgine Lasserre
- Laboratoire de Biomathématiques, Faculté de Pharmacie, Université Paris-Descartes, Paris, France
| | - Jean Maccario
- Laboratoire de Biomathématiques, Faculté de Pharmacie, Université Paris-Descartes, Paris, France
| | - Stephanie Walrand
- Université Clermont Auvergne, INRA, UNH, Unité de Nutrition Humaine, CRNH Auvergne, Clermont-Ferrand, France; Service de Biochimie, Hôtel-Dieu Cochin, APHP, Paris, France
| | - Nathalie Neveux
- Laboratoire de Biologie de la Nutrition, Faculté de Pharmacie, Université Paris-Descartes, Paris, France; Service de Biochimie, Hôtel-Dieu Cochin, APHP, Paris, France
| | - Servane Le Plénier
- Laboratoire de Biologie de la Nutrition, Faculté de Pharmacie, Université Paris-Descartes, Paris, France
| | - Xavier Hébuterne
- Département de Gastroentérologie et Nutrition, Hôpital L'Archet, Nice, France
| | - Luc Cynober
- Laboratoire de Biologie de la Nutrition, Faculté de Pharmacie, Université Paris-Descartes, Paris, France; Service de Biochimie, Hôtel-Dieu Cochin, APHP, Paris, France
| | - Christophe Moinard
- Laboratoire de Biologie de la Nutrition, Faculté de Pharmacie, Université Paris-Descartes, Paris, France; Université Grenoble Alpes, Laboratoire Bioénergétique Fondamental et Appliqué, Grenoble, France.
| |
Collapse
|
18
|
Takegaki J, Ogasawara R, Kouzaki K, Fujita S, Nakazato K, Ishii N. The distribution of eukaryotic initiation factor 4E after bouts of resistance exercise is altered by shortening of recovery periods. J Physiol Sci 2020; 70:54. [PMID: 33148163 PMCID: PMC10717013 DOI: 10.1186/s12576-020-00781-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 10/22/2020] [Indexed: 11/10/2022]
Abstract
Insufficient duration of recovery between resistance exercise bouts reduces the effects of exercise training, but the influence on muscle anabolic responses is not fully understood. Here, we investigated the changes in the distribution of eukaryotic initiation factor (eIF) 4E, a key regulator of translation initiation, and related factors in mouse skeletal muscle after three successive bouts of resistance exercise with three durations of recovery periods (72 h: conventional, 24 h: shorter, and 8 h: excessively shorter). Bouts of resistance exercise dissociated eIF4E from eIF4E binding protein 1, with the magnitude increasing with shorter recovery. Whereas bouts of resistance exercise with 72 h recovery increased the association of eIF4E and eIF4G, those with shorter recovery did not. Similar results were observed in muscle protein synthesis. These results suggest that insufficient recovery inhibited the association of eIF4E and eIF4G, which might cause attenuation of protein synthesis activation after bouts of resistance exercise.
Collapse
Affiliation(s)
- Junya Takegaki
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan.
- Ritsumeikan Global Innovation Research Organization, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga, 525-8577, Japan.
| | - Riki Ogasawara
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Nagoya, Japan
| | - Karina Kouzaki
- Graduate School of Health and Sport Science, Nippon Sport Science University, Tokyo, Japan
| | - Satoshi Fujita
- Faculty of Sport and Health Science, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Koichi Nakazato
- Graduate School of Health and Sport Science, Nippon Sport Science University, Tokyo, Japan
| | - Naokata Ishii
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
19
|
Sjulin TJ, Strilka RJ, Huprikar NA, Cameron LA, Woody PW, Armen SB. Intermittent gastric feeds lower insulin requirements without worsening dysglycemia: A pilot randomized crossover trial. Int J Crit Illn Inj Sci 2020; 10:200-205. [PMID: 33850829 PMCID: PMC8033209 DOI: 10.4103/ijciis.ijciis_112_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 04/01/2020] [Accepted: 04/23/2020] [Indexed: 11/11/2022] Open
Abstract
INTRODUCTION We hypothesized that critically ill medical patients would require less insulin when fed intermittently. METHODS First, 26 patients were randomized to receive intermittent or continuous gastric feeds. Once at goal nutrition, data were collected for the first 4-hr data collection period. Next, the enteral feed type was switched, goal nutrition was repeated, and a second 4-h data collection period was completed. The primary endpoint was the total amount of insulin infused; secondary endpoints were glucose concentration mean, maximum, minimum, and standard deviation, as well as episodes of hypoglycemia. RESULTS Sixteen of the 26 patients successfully completed the protocol. One patient experienced a large, rapid, and sustained decline in insulin requirement from liver failure, creating a bias of lesser insulin in the intermittent arm; this patient was removed from the analysis. For the remaining 15 patients, the average total amount of insulin infused was 1.4 U/patient/h less following intermittent feeds: P =0.027, 95% confidence interval (0.02, 11.17), and effect size 0.6. Secondary endpoints were statistically similar. CONCLUSIONS Critically ill medical patients who require an insulin infusion have a reduced insulin requirement when fed intermittently, whereas dysglycemia metrics are not adversely affected. A larger clinical study is required to confirm these findings.
Collapse
Affiliation(s)
- Tyson J. Sjulin
- Department of Pulmonary Medicine, San Antonio Military Medical Center, San Antonio, TX, USA
| | - Richard J. Strilka
- Division of Trauma, Critical Care, and Acute Care Surgery, University of Cincinnati Medical Center, Cincinnati, OH, USA
| | - Nikhil A. Huprikar
- Department of Pulmonary Medicine, San Antonio Military Medical Center, San Antonio, TX, USA
| | - Lisa A. Cameron
- Department of Nutritional Medicine, San Antonio Military Medical Center, San Antonio, TX, USA
| | - Parker W. Woody
- Department of Internal Medicine, San Antonio Military Medical Center, San Antonio, TX, USA
| | - Scott B. Armen
- Division of Trauma, Acute Care and Critical Care Surgery, Pennsylvania State College of Medicine, Hershey, PA, USA
| |
Collapse
|
20
|
Camara A, Verbrugghe A, Cargo-Froom C, Hogan K, DeVries TJ, Sanchez A, Robinson LE, Shoveller AK. The daytime feeding frequency affects appetite-regulating hormones, amino acids, physical activity, and respiratory quotient, but not energy expenditure, in adult cats fed regimens for 21 days. PLoS One 2020; 15:e0238522. [PMID: 32946478 PMCID: PMC7500645 DOI: 10.1371/journal.pone.0238522] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 08/18/2020] [Indexed: 11/24/2022] Open
Abstract
The effects of feeding frequency on postprandial response of circulating appetite-regulating hormones, insulin, glucose and amino acids, and on physical activity, energy expenditure, and respiratory quotient were studied in healthy adult cats. Two experiments were designed as a 2 x 3 replicated incomplete Latin square design. Eight cats, with an average body weight (BW) of 4.34 kg ± 0.04 and body condition score (BCS) of 5.4 ± 1.4 (9 point scale), were fed isocaloric amounts of a commercial adult maintenance canned cat food either once (0800 h) or four times daily (0800 h, 1130 h, 1500 h, 1830 h). Study 1 consisted of three 21-d periods. On day 14, two fasted and 11 postprandial blood samples were collected over 24 hours to measure plasma concentrations of ghrelin, GLP-1, GIP, leptin, PYY, insulin and amino acids, and whole blood glucose. Physical activity was monitored from day 15 to 21 of each period. In Study 2 indirect calorimetry was performed on the last day of each period. Body weight was measured weekly and feed intake recorded daily in both experiments. No effect of feeding regimen on BW was detected. Cats eating four times daily had lesser plasma concentrations of GIP and GLP-1 (P<0.05) and tended to have lesser plasma PYY concentrations (P<0.1). Plasma leptin and whole blood glucose concentrations did not differ between regimens (P>0.1). Cats fed once daily had a greater postprandial plasma amino acid response, and greater plasma ghrelin and insulin concentrations (P<0.05). Physical activity was greater in cats fed four times (P<0.05), though energy expenditure was similar between treatments at fasting and in postprandial phases. Finally, cats eating one meal had a lower fasting respiratory quotient (P<0.05). Overall, these data indicate that feeding once a day may be a beneficial feeding management strategy for indoor cats to promote satiation and lean body mass.
Collapse
Affiliation(s)
- Alexandra Camara
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Adronie Verbrugghe
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Cara Cargo-Froom
- Centre for Nutrition Modelling, Department of Animal Biosciences, Ontario Agricultural College, University of Guelph, Guelph, Ontario, Canada
| | - Kylie Hogan
- Centre for Nutrition Modelling, Department of Animal Biosciences, Ontario Agricultural College, University of Guelph, Guelph, Ontario, Canada
| | - Trevor J. DeVries
- Centre for Nutrition Modelling, Department of Animal Biosciences, Ontario Agricultural College, University of Guelph, Guelph, Ontario, Canada
| | - Andrea Sanchez
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Lindsay E. Robinson
- Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Anna K. Shoveller
- Centre for Nutrition Modelling, Department of Animal Biosciences, Ontario Agricultural College, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
21
|
Protein delivery in intermittent and continuous enteral nutrition with a protein-rich formula in critically ill patients-a protocol for the prospective randomized controlled proof-of-concept Protein Bolus Nutrition (Pro BoNo) study. Trials 2020; 21:740. [PMID: 32843075 PMCID: PMC7449093 DOI: 10.1186/s13063-020-04635-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 07/27/2020] [Indexed: 01/03/2023] Open
Abstract
Background Critically ill patients rapidly develop muscle wasting resulting in sarcopenia, long-term disability and higher mortality. Bolus nutrition (30–60 min period), whilst having a similar incidence of aspiration as continuous feeding, seems to provide metabolic benefits through increased muscle protein synthesis due to higher leucine peaks. To date, clinical evidence on achievement of nutritional goals and influence of bolus nutrition on skeletal muscle metabolism in ICU patients is lacking. The aim of the Pro BoNo study (Protein Bolus Nutrition) is to compare intermittent and continuous enteral feeding with a specific high-protein formula. We hypothesise that target quantity of protein is reached earlier (within 36 h) by an intermittent feeding protocol with a favourable influence on muscle protein synthesis. Methods Pro BoNo is a prospective randomised controlled study aiming to compare the impact of intermittent and continuous enteral feeding on preventing muscle wasting in 60 critically ill patients recruited during the first 48 h after ICU admission. The primary outcome measure is the time until the daily protein target (≥ 1.5 g protein/kg bodyweight/24 h) is achieved. Secondary outcome measures include tolerance of enteral feeding and evolution of glucose, urea and IGF-1. Ultrasound and muscle biopsy of the quadriceps will be performed. Discussion The Basel Pro BoNo study aims to collect innovative data on the effect of intermittent enteral feeding of critically ill patients on muscle wasting. Trial registration ClinicalTrials.gov NCT03587870. Registered on July 16, 2018. Swiss National Clinical Trials Portal SNCTP000003234. Last updated on July 24, 2019.
Collapse
|
22
|
Intermittent versus continuous tube feeding in patients with hemorrhagic stroke: a randomized controlled clinical trial. Eur J Clin Nutr 2020; 74:1420-1427. [DOI: 10.1038/s41430-020-0579-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 01/21/2020] [Accepted: 01/29/2020] [Indexed: 01/15/2023]
|
23
|
Wang Y, Zhu W, Luo BR. Continuous feeding versus intermittent bolus feeding for premature infants with low birth weight: a meta-analysis of randomized controlled trials. Eur J Clin Nutr 2019; 74:775-783. [PMID: 31659243 PMCID: PMC7222868 DOI: 10.1038/s41430-019-0522-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 10/07/2019] [Accepted: 10/14/2019] [Indexed: 11/09/2022]
Abstract
Background/objectives Clinical risks and advantages of both continuous feeding and intermittent feeding for preterm infants have been presented in previous studies. To determine the most appropriate feeding method for low-birth-weight infants, a meta-analysis was conducted. Subjects/methods Articles related to this topic were searched in PubMed, EMBASE, and Cochrane Library electronic database from the onset to May 2019. Heterogeneity analysis was performed with Chi-square and I2 test. Pooled analysis was based on fixed effects model, if heterogeneity between the eligible studies was negligible (I2 < 50%, P > 0.05). In contrast, a random effects model was carried out. The quality of including studies were evaluated by Cochrane assessment tool. Results A total of 1030 articles identified. Altogether, eight articles including 707 infants were included in final analysis based on eligibility criteria. In continuous feeding infants, time to achieving full feeds was longer (weight mean difference 0.98 (95% CI 0.26–1.71, P = 0.008) days) compared with intermittent feeding infants. Pooled analysis indicated there were no significant difference in other variables such as feeding intolerance, duration of hospitalization, days to regain birth weight, days to first successful oral feeding, duration of parenteral feeding, weight growth, length increment, head circumference growth, proven necrotizing enterocolitis, and probable necrotizing enterocolitis. In subgroup analysis for birth weight (<1000 g and >1000 g), we did not identify significant difference in time to full feeds, time to regain birth weight, and duration of hospitalization. Conclusions Intermittent feeding may be more beneficial for low-birth weight infants, However, well-designed studies and evidenced-based clinical practice are required to determine the most appropriate feeding method for premature infants with low birth weight.
Collapse
Affiliation(s)
- Yan Wang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China.,West China School of Nursing, Sichuan University, Chengdu, China
| | - Wei Zhu
- West China School of Nursing, Sichuan University, Chengdu, China
| | - Bi-Ru Luo
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
24
|
Pardo E, Lescot T. Nutrition entérale intermittente en réanimation. NUTR CLIN METAB 2019. [DOI: 10.1016/j.nupar.2019.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
25
|
Dirks ML, Smeets JSJ, Holwerda AM, Kouw IWK, Marzuca-Nassr GN, Gijsen AP, Holloway GP, Verdijk LB, van Loon LJC. Dietary feeding pattern does not modulate the loss of muscle mass or the decline in metabolic health during short-term bed rest. Am J Physiol Endocrinol Metab 2019; 316:E536-E545. [PMID: 30645176 DOI: 10.1152/ajpendo.00378.2018] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Short periods of bed rest lead to the loss of muscle mass and quality. It has been speculated that dietary feeding pattern may have an impact upon muscle protein synthesis rates and, therefore, modulate the loss of muscle mass and quality. We subjected 20 healthy men (age: 25 ± 1 yr, body mass index: 23.8 ± 0.8 kg/m2) to 1 wk of strict bed rest with intermittent (4 meals/day) or continuous (24 h/day) enteral tube feeding. Participants consumed deuterium oxide for 7 days before bed rest and throughout the 7-day bed rest period. Prior to and immediately after bed rest, lean body mass (dual energy X-ray absorptiometry), quadriceps cross-sectional area (CSA; CT), maximal oxygen uptake capacity (V̇o2peak), and whole body insulin sensitivity (hyperinsulinemic-euglycemic clamp) were assessed. Muscle biopsies were collected 7 days before, 1 day before, and immediately after bed rest to assess muscle tracer incorporation. Bed rest resulted in 0.3 ± 0.3 vs. 0.7 ± 0.4 kg lean tissue loss and a 1.1 ± 0.6 vs. 0.8 ± 0.5% decline in quadriceps CSA in the intermittent vs. continuous feeding group, respectively (both P < 0.05), with no differences between groups (both P > 0.05). Moreover, feeding pattern did not modulate the bed rest-induced decline in insulin sensitivity (-46 ± 3% vs. 39 ± 3%; P < 0.001) or V̇o2peak (-2.5 ± 2.2 vs. -8.6 ± 2.2%; P < 0.010) (both P > 0.05). Myofibrillar protein synthesis rates during bed rest did not differ between the intermittent and continuous feeding group (1.33 ± 0.07 vs. 1.50 ± 0.13%/day, respectively; P > 0.05). In conclusion, dietary feeding pattern does not modulate the loss of muscle mass or the decline in metabolic health during 1 wk of bed rest in healthy men.
Collapse
Affiliation(s)
- Marlou L Dirks
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+ , The Netherlands
| | - Joey S J Smeets
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+ , The Netherlands
| | - Andrew M Holwerda
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+ , The Netherlands
| | - Imre W K Kouw
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+ , The Netherlands
| | - Gabriel N Marzuca-Nassr
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+ , The Netherlands
| | - Annemie P Gijsen
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+ , The Netherlands
| | - Graham P Holloway
- Human Health and Nutritional Sciences, University of Guelph , Guelph, Ontario , Canada
| | - Lex B Verdijk
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+ , The Netherlands
| | - Luc J C van Loon
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+ , The Netherlands
| |
Collapse
|
26
|
Rudar M, Fiorotto ML, Davis TA. Regulation of Muscle Growth in Early Postnatal Life in a Swine Model. Annu Rev Anim Biosci 2018; 7:309-335. [PMID: 30388025 DOI: 10.1146/annurev-animal-020518-115130] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Skeletal muscle growth during the early postnatal period is rapid in the pig and dependent on the capacity of muscle to respond to anabolic and catabolic stimuli. Muscle mass is driven by the balance between protein synthesis and degradation. Among these processes, muscle protein synthesis in the piglet is exceptionally sensitive to the feeding-induced postprandial changes in insulin and amino acids, whereas muscle protein degradation is affected only during specific catabolic states. The developmental decline in the response of muscle to feeding is associated with changes in the signaling pathways located upstream and downstream of the mechanistic target of rapamycin protein complex. Additionally, muscle growth is supported by an accretion of nuclei derived from satellite cells. Activated satellite cells undergo proliferation, differentiation, and fusion with adjacent growing muscle fibers. Enhancing early muscle growth through modifying protein synthesis, degradation, and satellite cell activity is key to maximizing performance, productivity, and lifelong pig health.
Collapse
Affiliation(s)
- Marko Rudar
- USDA/ARS Children's Nutrition Research Center, Baylor College of Medicine, Houston, Texas 77030, USA; , ,
| | - Marta L Fiorotto
- USDA/ARS Children's Nutrition Research Center, Baylor College of Medicine, Houston, Texas 77030, USA; , ,
| | - Teresa A Davis
- USDA/ARS Children's Nutrition Research Center, Baylor College of Medicine, Houston, Texas 77030, USA; , ,
| |
Collapse
|
27
|
El-Kadi SW, Boutry C, Suryawan A, Gazzaneo MC, Orellana RA, Srivastava N, Nguyen HV, Kimball SR, Fiorotto ML, Davis TA. Intermittent bolus feeding promotes greater lean growth than continuous feeding in a neonatal piglet model. Am J Clin Nutr 2018; 108:830-841. [PMID: 30239549 PMCID: PMC6186212 DOI: 10.1093/ajcn/nqy133] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 05/18/2018] [Indexed: 12/21/2022] Open
Abstract
Background Orogastric tube feeding is indicated in neonates with an impaired ability to ingest food normally and can be administered with an intermittent bolus or continuous feeding schedule. Objectives The objectives were to 1) compare the long-term effect of continuous with intermittent feeding on growth using the newborn pig as a model, 2) determine whether feeding frequency alters lean tissue and fat mass gain, and 3) identify the signaling mechanisms by which protein deposition is controlled in skeletal muscle in response to feeding frequency. Design Neonatal pigs were fed the same amount of a balanced formula by orogastric tube either as an intermittent bolus meal every 4 h (INT) or as a continuous infusion (CON). Body composition was assessed at the start and end of the study by dual-energy X-ray absorptiometry, and hormone and substrate profiles, muscle mass, protein synthesis, and indexes of nutrient and insulin signaling were measured after 21 d. Results Body weight, lean mass, spine length, and skeletal muscle mass were greater in the INT group than in the CON group. Skeletal muscle fractional protein synthesis rates were greater in the INT group after a meal than in the CON group and were associated with higher circulating branched-chain amino acid and insulin concentrations. Skeletal muscle protein kinase B (PKB) and ribosomal protein S6 kinase phosphorylation and eukaryotic initiation factor (eIF) 4E-eIF4G complex formation were higher, whereas eIF2α phosphorylation was lower in the INT group than in the CON group, indicating enhanced activation of insulin and amino acid signaling to translation initiation. Conclusions These results suggest that when neonates are fed the same amounts of nutrients as intermittent meals rather than continuously there is greater lean growth. This response can be ascribed, in part, to the pulsatile pattern of amino acids, insulin, or both induced by INT, which enables the responsiveness of anabolic pathways to feeding to be sustained chronically in skeletal muscle.
Collapse
Affiliation(s)
- Samer W El-Kadi
- USDA–Agricultural Research Service, Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX,Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA
| | - Claire Boutry
- USDA–Agricultural Research Service, Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX
| | - Agus Suryawan
- USDA–Agricultural Research Service, Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX
| | - Maria C Gazzaneo
- USDA–Agricultural Research Service, Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX
| | - Renán A Orellana
- USDA–Agricultural Research Service, Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX
| | - Neeraj Srivastava
- USDA–Agricultural Research Service, Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX
| | - Hanh V Nguyen
- USDA–Agricultural Research Service, Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX
| | - Scot R Kimball
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA
| | - Marta L Fiorotto
- USDA–Agricultural Research Service, Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX
| | - Teresa A Davis
- USDA–Agricultural Research Service, Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX,Address correspondence to TAD (e-mail: )
| |
Collapse
|
28
|
Ichimaru S. Methods of Enteral Nutrition Administration in Critically Ill Patients: Continuous, Cyclic, Intermittent, and Bolus Feeding. Nutr Clin Pract 2018; 33:790-795. [PMID: 29924423 DOI: 10.1002/ncp.10105] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
There are several methods of enteral nutrition (EN) administration, including continuous, cyclic, intermittent, and bolus techniques, which can be used either alone or in combination. Continuous feeding involves hourly administration of EN over 24 hours assisted by a feeding pump; cyclic feeding involves administration of EN over a time period of <24 hours generally assisted by a feeding pump; intermittent feeding involves administration of EN over 20-60 minutes every 4-6 hours via pump assist or gravity assist; and bolus feeding involves administration of EN over a 4- to 10-minute period using a syringe or gravity drip. In practice, pump-assisted continuous feeding is generally acceptable for critically ill patients to prevent EN-related complications. However, a limited number of studies have been conducted to support this practice. In addition, regarding muscle protein synthesis and gastrointestinal hormone secretion, intermittent or bolus feeding may be more beneficial than continuous EN feeding for critically ill patients. For medically stable patients with feeding tubes terminating in the stomach, bolus feeding is favored with respect to practical factors, such as cost, convenience, and patient mobility. However, few studies have shown whether intermittent or bolus feeding is beneficial in a critical care setting at present. Additional randomized controlled studies comparing intermittent with bolus feeding are required.
Collapse
Affiliation(s)
- Satomi Ichimaru
- Department of Nutrition Management, Osaka Saiseikai Nakatsu Hospital, Osaka, Japan
| |
Collapse
|
29
|
Patel JJ, Rosenthal MD, Heyland DK. Intermittent versus continuous feeding in critically ill adults. Curr Opin Clin Nutr Metab Care 2018; 21:116-120. [PMID: 29232262 DOI: 10.1097/mco.0000000000000447] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
PURPOSE OF REVIEW Early enteral nutrition is recommended in critically ill adult patients. The optimal method of administering enteral nutrition remains unknown. Continuous enteral nutrition administration in critically ill patients remains the most common practice worldwide; however, its practice has recently been called into question in favor of intermittent enteral nutrition administration, where volume is infused multiple times per day. This review will outline the key differences between continuous and intermittent enteral nutrition, describe the metabolic responses to continuous and intermittent enteral nutrition administration and outline recent studies comparing continuous with intermittent enteral nutrition administration on outcomes in critically ill adults. RECENT FINDINGS In separate studies, healthy humans and critically ill patients receiving intermittent nutrition (infused over 3 h) had improved whole body protein balance from negative to positive. These studies did not have an isonitrogenous control group. A randomized controlled trial of intermittent bolus versus continuous enteral nutrition in healthy humans found that intermittent bolus feeding increased mesenteric arterial blood flow, increased insulin and peptide YY and reduced blood glucose concentration. A randomized controlled trial comparing intermittent bolus to continuous enteral nutrition in critically ill patients did not demonstrate clinically relevant differences in glycemic variability, insulin use or tube feeding volume or caloric intake between the two groups. SUMMARY Studies in healthy humans suggest that intermittent nutrient administration, as opposed to continuous, improves whole body protein synthesis. Unfortunately, similarly designed studies are lacking for critically ill patients. Future studies evaluating the impact of intermittent versus continuous nutrition administration on critical care outcomes should take into account factors such as protein quantity, protein quality and delivery route (enteral and/or parenteral). Until further studies are conducted in critically ill patients, a recommendation for or against intermittent nutrition delivery cannot be made.
Collapse
Affiliation(s)
- Jayshil J Patel
- Division of Pulmonary and Critical Care Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Martin D Rosenthal
- Division of Acute Care Surgery, University of Florida, Gainesville, Florida, USA
| | - Daren K Heyland
- Division of Critical Care Medicine, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
30
|
Abstract
Infants born with low birth weights (<2500 g, LBW), accounting for about 15 % of newborns, have a high risk for postnatal growth failure and developing the metabolic syndromes such as type 2 diabetes, CVD and obesity later in life. Improper nutrition provision during critical stages, such as undernutrition during the fetal period or overnutrition during the neonatal period, has been an important mediator of these metabolic diseases. Considering the specific physiological status of LBW infants, nutritional intervention and optimisation during early life merit further attention. In this review, the physiological and metabolic defects of LBW infants were summarised from a nutritional perspective. Available strategies for nutritional interventions and optimisation of LBW infants, including patterns of nutrition supply, macronutrient proportion, supplementation of amino acids and their derivatives, fatty acids, nucleotides, vitamins, minerals as well as hormone and microbiota manipulators, were reviewed with an aim to provide new insights into the advancements of formulas and human-milk fortifiers.
Collapse
|
31
|
The intensive care medicine research agenda in nutrition and metabolism. Intensive Care Med 2017; 43:1239-1256. [PMID: 28374096 PMCID: PMC5569654 DOI: 10.1007/s00134-017-4711-6] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 02/02/2017] [Indexed: 01/04/2023]
Abstract
Purpose The objectives of this review are to summarize the current practices and major recent advances in critical care nutrition and metabolism, review common beliefs that have been contradicted by recent trials, highlight key remaining areas of uncertainty, and suggest recommendations for the top 10 studies/trials to be done in the next 10 years. Methods Recent literature was reviewed and developments and knowledge gaps were summarized. The panel identified candidate topics for future trials in critical care nutrition and metabolism. Then, members of the panel rated each one of the topics using a grading system (0–4). Potential studies were ranked on the basis of average score. Results Recent randomized controlled trials (RCTs) have challenged several concepts, including the notion that energy expenditure must be met universally in all critically ill patients during the acute phase of critical illness, the routine monitoring of gastric residual volume, and the value of immune-modulating nutrition. The optimal protein dose combined with standardized active and passive mobilization during the acute phase and post-acute phase of critical illness were the top ranked studies for the next 10 years. Nutritional assessment, nutritional strategies in critically obese patients, and the effects of continuous versus intermittent enteral nutrition were also among the highest-ranking studies. Conclusions Priorities for clinical research in the field of nutritional management of critically ill patients were suggested, with the prospect that different nutritional interventions targeted to the appropriate patient population will be examined for their effect on facilitating recovery and improving survival in adequately powered and properly designed studies, probably in conjunction with physical activity. Electronic supplementary material The online version of this article (doi:10.1007/s00134-017-4711-6) contains supplementary material, which is available to authorized users.
Collapse
|
32
|
Anthony TG. Mechanisms of protein balance in skeletal muscle. Domest Anim Endocrinol 2016; 56 Suppl:S23-32. [PMID: 27345321 PMCID: PMC4926040 DOI: 10.1016/j.domaniend.2016.02.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 02/23/2016] [Accepted: 02/29/2016] [Indexed: 01/07/2023]
Abstract
Increased global demand for adequate protein nutrition against a backdrop of climate change and concern for animal agriculture sustainability necessitates new and more efficient approaches to livestock growth and production. Anabolic growth is achieved when rates of new synthesis exceed turnover, producing a positive net protein balance. Conversely, deterioration or atrophy of lean mass is a consequence of a net negative protein balance. During early life and periods of growth, muscle mass is driven by increases in protein synthesis at the level of mRNA translation. Throughout life, muscle mass is further influenced by degradative processes such as autophagy and the ubiquitin proteasome pathway. Multiple signal transduction networks guide and coordinate these processes alongside quality control mechanisms to maintain protein homeostasis (proteostasis). Genetics, hormones, and environmental stimuli each influence proteostasis control, altering capacity and/or efficiency of muscle growth. An overview of recent findings and current methods to assess muscle protein balance and proteostasis is presented. Current efforts to identify novel control points have the potential through selective breeding design or development of hormetic strategies to better promote growth and health span during environmental stress.
Collapse
Affiliation(s)
- T G Anthony
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ 08901, USA.
| |
Collapse
|
33
|
Boutry C, El-Kadi SW, Suryawan A, Steinhoff-Wagner J, Stoll B, Orellana RA, Nguyen HV, Kimball SR, Fiorotto ML, Davis TA. Pulsatile delivery of a leucine supplement during long-term continuous enteral feeding enhances lean growth in term neonatal pigs. Am J Physiol Endocrinol Metab 2016; 310:E699-E713. [PMID: 26884386 PMCID: PMC4835946 DOI: 10.1152/ajpendo.00479.2015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 02/09/2016] [Indexed: 01/06/2023]
Abstract
Neonatal pigs are used as a model to study and optimize the clinical treatment of infants who are unable to maintain oral feeding. Using this model, we have shown previously that pulsatile administration of leucine during continuous feeding over 24 h via orogastric tube enhanced protein synthesis in skeletal muscle compared with continuous feeding alone. To determine the long-term effects of leucine pulses, neonatal piglets (n = 11-12/group) were continuously fed formula via orogastric tube for 21 days, with an additional parenteral infusion of either leucine (CON + LEU; 800 μmol·kg-1·h-1) or alanine (CON + ALA) for 1 h every 4 h. The results show that body and muscle weights and lean gain were ∼25% greater, and fat gain was 48% lower in CON + LEU than CON + ALA; weights of other tissues were unaffected by treatment. Fractional protein synthesis rates in longissimus dorsi, gastrocnemius, and soleus muscles were ∼30% higher in CON + LEU compared with CON + ALA and were associated with decreased Deptor abundance and increased mTORC1, mTORC2, 4E-BP1, and S6K1 phosphorylation, SNAT2 abundance, and association of eIF4E with eIF4G and RagC with mTOR. There were no treatment effects on PKB, eIF2α, eEF2, or PRAS40 phosphorylation, Rheb, SLC38A9, v-ATPase, LAMTOR1, LAMTOR2, RagA, RagC, and LAT1 abundance, the proportion of polysomes to nonpolysomes, or the proportion of mRNAs encoding rpS4 or rpS8 associated with polysomes. Our results demonstrate that pulsatile delivery of a leucine supplement during 21 days of continuous enteral feeding enhances lean growth by stimulating the mTORC1-dependent translation initiation pathway, leading to protein synthesis in skeletal muscle of neonates.
Collapse
Affiliation(s)
- Claire Boutry
- United States Department of Agriculture/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas; and
| | - Samer W El-Kadi
- United States Department of Agriculture/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas; and
| | - Agus Suryawan
- United States Department of Agriculture/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas; and
| | - Julia Steinhoff-Wagner
- United States Department of Agriculture/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas; and
| | - Barbara Stoll
- United States Department of Agriculture/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas; and
| | - Renán A Orellana
- United States Department of Agriculture/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas; and
| | - Hanh V Nguyen
- United States Department of Agriculture/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas; and
| | - Scot R Kimball
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Marta L Fiorotto
- United States Department of Agriculture/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas; and
| | - Teresa A Davis
- United States Department of Agriculture/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas; and
| |
Collapse
|
34
|
Marik PE, Hooper MH. Normocaloric versus hypocaloric feeding on the outcomes of ICU patients: a systematic review and meta-analysis. Intensive Care Med 2015; 42:316-323. [PMID: 26556615 DOI: 10.1007/s00134-015-4131-4] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Accepted: 10/29/2015] [Indexed: 01/16/2023]
Abstract
INTRODUCTION Current clinical practice guidelines recommend providing ICU patients a daily caloric intake estimated to match 80-100 % of energy expenditure (normocaloric goals). However, recent clinical trials of intentional hypocaloric feeding question this approach. METHODS We performed a systematic review and meta-analysis to compare the outcomes of ICU patients randomized to intentional hypocaloric or normocaloric goals. We included randomized controlled trials that enrolled ICU patients and compared intentional hypocaloric with normocaloric nutritional goals. We included studies that evaluated both trophic feeding as well as permissive underfeeding. Data sources included MEDLINE, Cochrane Register of Controlled Trials and citation review of relevant primary and review articles. The outcomes of interest included hospital acquired infection, hospital mortality, ICU length of stay (LOS) and ventilator-free days (VFDs). RESULTS Six studies which enrolled 2517 patients met our inclusion criteria. The mean age and body mass index (BMI) across the studies were 53 ± 5 years and 29.1 ± 1.5 kg/m(2), respectively. Two studies compared normocaloric feeding (77% of goal) with trophic feeding (20% of goal), while four studies compared normocaloric feeding (72% of goal) with permissive underfeeding (49% of goal). Overall, there was no significant difference in the risk of infectious complications (OR 1.03; 95% CI 0.84-1.27, I(2) = 16%), hospital mortality (OR 0.91; 95% CI 0.75-1.11, I(2) = 8%) or ICU LOS (mean difference 0.05 days; 95% CI 1.33-1.44 days; I(2) = 37%) between groups. VFDs were reported in three studies with no significant difference between the normocaloric and intentional hypocaloric groups (data not pooled). CONCLUSION This meta-analysis demonstrated no difference in the risk of acquired infections, hospital mortality, ICU length of stay or ventilator-free days between patients receiving intentional hypocaloric as compared to normocaloric nutritional goals.
Collapse
Affiliation(s)
- Paul E Marik
- Division of Pulmonary and Critical Care Medicine, Eastern Virginia Medical School, 825 Fairfax Av, Suite 410, Norfolk, VA, 23507, USA.
| | - Michael H Hooper
- Division of Pulmonary and Critical Care Medicine, Eastern Virginia Medical School, 825 Fairfax Av, Suite 410, Norfolk, VA, 23507, USA
| |
Collapse
|
35
|
Layman DK, Anthony TG, Rasmussen BB, Adams SH, Lynch CJ, Brinkworth GD, Davis TA. Defining meal requirements for protein to optimize metabolic roles of amino acids. Am J Clin Nutr 2015; 101:1330S-1338S. [PMID: 25926513 PMCID: PMC5278948 DOI: 10.3945/ajcn.114.084053] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Dietary protein provides essential amino acids (EAAs) for the synthesis of new proteins plus an array of other metabolic functions; many of these functions are sensitive to postprandial plasma and intracellular amino acid concentrations. Recent research has focused on amino acids as metabolic signals that influence the rate of protein synthesis, inflammation responses, mitochondrial activity, and satiety, exerting their influence through signaling systems including mammalian/mechanistic target of rapamycin complex 1 (mTORC1), general control nonrepressed 2 (GCN2), glucagon-like peptide 1 (GLP-1), peptide YY (PYY), serotonin, and insulin. These signals represent meal-based responses to dietary protein. The best characterized of these signals is the leucine-induced activation of mTORC1, which leads to the stimulation of skeletal muscle protein synthesis after ingestion of a meal that contains protein. The response of this metabolic pathway to dietary protein (i.e., meal threshold) declines with advancing age or reduced physical activity. Current dietary recommendations for protein are focused on total daily intake of 0.8 g/kg body weight, but new research suggests daily needs for older adults of ≥1.0 g/kg and identifies anabolic and metabolic benefits to consuming at least 20-30 g protein at a given meal. Resistance exercise appears to increase the efficiency of EAA use for muscle anabolism and to lower the meal threshold for stimulation of protein synthesis. Applying this information to a typical 3-meal-a-day dietary plan results in protein intakes that are well within the guidelines of the Dietary Reference Intakes for acceptable macronutrient intakes. The meal threshold concept for dietary protein emphasizes a need for redistribution of dietary protein for optimum metabolic health.
Collapse
Affiliation(s)
- Donald K Layman
- From the Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL (DKL); the Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ (TGA); the Department of Nutrition and Metabolism, Division of Rehabilitation Science, and Sealy Center on Aging, University of Texas Medical Branch, Galveston, TX (BBR); Arkansas Children's Nutrition Center and Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR (SHA); the Department of Cellular and Molecular Physiology, the Pennsylvania State University College of Medicine, Hershey, PA (CJL); the Commonwealth Scientific and Industrial Research Organization–Food and Nutritional Sciences, Adelaide, Australia (GDB); and the USDA–Agricultural Research Service Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX (TAD)
| | - Tracy G Anthony
- From the Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL (DKL); the Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ (TGA); the Department of Nutrition and Metabolism, Division of Rehabilitation Science, and Sealy Center on Aging, University of Texas Medical Branch, Galveston, TX (BBR); Arkansas Children's Nutrition Center and Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR (SHA); the Department of Cellular and Molecular Physiology, the Pennsylvania State University College of Medicine, Hershey, PA (CJL); the Commonwealth Scientific and Industrial Research Organization–Food and Nutritional Sciences, Adelaide, Australia (GDB); and the USDA–Agricultural Research Service Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX (TAD)
| | - Blake B Rasmussen
- From the Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL (DKL); the Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ (TGA); the Department of Nutrition and Metabolism, Division of Rehabilitation Science, and Sealy Center on Aging, University of Texas Medical Branch, Galveston, TX (BBR); Arkansas Children's Nutrition Center and Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR (SHA); the Department of Cellular and Molecular Physiology, the Pennsylvania State University College of Medicine, Hershey, PA (CJL); the Commonwealth Scientific and Industrial Research Organization–Food and Nutritional Sciences, Adelaide, Australia (GDB); and the USDA–Agricultural Research Service Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX (TAD)
| | - Sean H Adams
- From the Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL (DKL); the Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ (TGA); the Department of Nutrition and Metabolism, Division of Rehabilitation Science, and Sealy Center on Aging, University of Texas Medical Branch, Galveston, TX (BBR); Arkansas Children's Nutrition Center and Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR (SHA); the Department of Cellular and Molecular Physiology, the Pennsylvania State University College of Medicine, Hershey, PA (CJL); the Commonwealth Scientific and Industrial Research Organization–Food and Nutritional Sciences, Adelaide, Australia (GDB); and the USDA–Agricultural Research Service Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX (TAD)
| | - Christopher J Lynch
- From the Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL (DKL); the Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ (TGA); the Department of Nutrition and Metabolism, Division of Rehabilitation Science, and Sealy Center on Aging, University of Texas Medical Branch, Galveston, TX (BBR); Arkansas Children's Nutrition Center and Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR (SHA); the Department of Cellular and Molecular Physiology, the Pennsylvania State University College of Medicine, Hershey, PA (CJL); the Commonwealth Scientific and Industrial Research Organization–Food and Nutritional Sciences, Adelaide, Australia (GDB); and the USDA–Agricultural Research Service Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX (TAD)
| | - Grant D Brinkworth
- From the Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL (DKL); the Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ (TGA); the Department of Nutrition and Metabolism, Division of Rehabilitation Science, and Sealy Center on Aging, University of Texas Medical Branch, Galveston, TX (BBR); Arkansas Children's Nutrition Center and Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR (SHA); the Department of Cellular and Molecular Physiology, the Pennsylvania State University College of Medicine, Hershey, PA (CJL); the Commonwealth Scientific and Industrial Research Organization–Food and Nutritional Sciences, Adelaide, Australia (GDB); and the USDA–Agricultural Research Service Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX (TAD)
| | - Teresa A Davis
- From the Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL (DKL); the Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ (TGA); the Department of Nutrition and Metabolism, Division of Rehabilitation Science, and Sealy Center on Aging, University of Texas Medical Branch, Galveston, TX (BBR); Arkansas Children's Nutrition Center and Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR (SHA); the Department of Cellular and Molecular Physiology, the Pennsylvania State University College of Medicine, Hershey, PA (CJL); the Commonwealth Scientific and Industrial Research Organization–Food and Nutritional Sciences, Adelaide, Australia (GDB); and the USDA–Agricultural Research Service Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX (TAD)
| |
Collapse
|
36
|
Marik PE. Feeding critically ill patients the right 'whey': thinking outside of the box. A personal view. Ann Intensive Care 2015; 5:51. [PMID: 26055186 PMCID: PMC4460184 DOI: 10.1186/s13613-015-0051-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 05/15/2015] [Indexed: 01/02/2023] Open
Abstract
Atrophy of skeletal muscle mass is an almost universal problem in survivors of critical illness and is associated with significant short- and long-term morbidity. Contrary to common practice, the provision of protein/amino acids as a continuous infusion significantly limits protein synthesis whereas intermittent feeding maximally stimulates skeletal muscle synthesis. Furthermore, whey-based protein (high in leucine) increases muscle synthesis compared to soy or casein-based protein. In addition to its adverse effects on skeletal muscle synthesis, continuous feeding is unphysiological and has adverse effects on glucose and lipid metabolism and gastrointestinal function. I propose that critically ill patients' be fed intermittently with a whey-based formula and that such an approach is likely to be associated with better glycemic control, less hepatic steatosis and greater preservation of muscle mass. This paper provides the scientific basis for my approach to intermittent feeding of critically ill patients.
Collapse
Affiliation(s)
- Paul E Marik
- Division of Pulmonary and Critical Care Medicine, Eastern Virginia Medical School, 825 Fairfax Av, Suite 410, Norfolk, VA, 23507, USA,
| |
Collapse
|
37
|
Mitchell WK, Phillips BE, Williams JP, Rankin D, Lund JN, Smith K, Atherton PJ. A dose- rather than delivery profile-dependent mechanism regulates the "muscle-full" effect in response to oral essential amino acid intake in young men. J Nutr 2015; 145:207-14. [PMID: 25644339 PMCID: PMC4304023 DOI: 10.3945/jn.114.199604] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND The anabolic response of skeletal muscle to essential amino acids (EAAs) is dose dependent, maximal at modest doses, and short lived, even with continued EAA availability, a phenomenon termed "muscle-full." However, the effect of EAA ingestion profile on muscle metabolism remains undefined. OBJECTIVE We determined the effect of Bolus vs. Spread EAA feeding in young men and hypothesized that muscle-full is regulated by a dose-, not delivery profile-, dependent mechanism. METHODS We provided 16 young healthy men with 15 g mixed-EAA, either as a single dose ("Bolus"; n = 8) or in 4 fractions at 45-min intervals ("Spread"; n = 8). Plasma insulin and EAA concentrations were assayed by ELISA and ion-exchange chromatography, respectively. Limb blood flow by was determined by Doppler ultrasound, muscle microvascular flow by Sonovue (Bracco) contrast-enhanced ultrasound, and phosphorylation of mammalian target of rapamycin complex 1 substrates by immunoblotting. Intermittent muscle biopsies were taken to quantify myofibrillar-bound (13)C6-phenylalanine to determine muscle protein synthesis (MPS). RESULTS Bolus feeding achieved rapid insulinemia (13.6 μIU · mL(-1), 25 min after commencement of feeding), aminoacidemia (∼2500 μM at 45 min), and capillary recruitment (+45% at 45 min), whereas Spread feeding achieved attenuated insulin responses, gradual low-amplitude aminoacidemia (peak: ∼1500 μM at 135 min), and no detectable capillary recruitment (all P < 0.01 vs. Bolus). Despite these differences, identical anabolic responses were observed; fasting fractional synthetic rates of 0.054% · h(-1) (Bolus) and 0.066% · h(-1) (Spread) increased to 0.095% and 0.104% · h(-1) (no difference in increment or final values between regimens). With both Spread and Bolus feeding strategies, a latency of at least 90 min was observed before an upswing in MPS was evident. Similarly with both feeding strategies, MPS returned to fasting rates by 180 min despite elevated circulating EAAs. CONCLUSION These data do not support EAA delivery profile as an important determinant of anabolism in young men at rest, nor rapid aminoacidemia/leucinemia as being a key factor in maximizing MPS. This trial was registered at clinicaltrials.gov as NCT01735539.
Collapse
Affiliation(s)
- William Kyle Mitchell
- Clinical, Metabolic, and Molecular Physiology, MRC–Arthritis Research UK Centre of Excellence for Musculoskeletal Ageing Research, School of Medicine, University of Nottingham, Derby, United Kingdom; and,Departments of Surgery and
| | - Beth E Phillips
- Clinical, Metabolic, and Molecular Physiology, MRC–Arthritis Research UK Centre of Excellence for Musculoskeletal Ageing Research, School of Medicine, University of Nottingham, Derby, United Kingdom; and
| | - John P Williams
- Clinical, Metabolic, and Molecular Physiology, MRC–Arthritis Research UK Centre of Excellence for Musculoskeletal Ageing Research, School of Medicine, University of Nottingham, Derby, United Kingdom; and,Anaesthesia, Royal Derby Hospital, Derby, United Kingdom
| | - Debbie Rankin
- Clinical, Metabolic, and Molecular Physiology, MRC–Arthritis Research UK Centre of Excellence for Musculoskeletal Ageing Research, School of Medicine, University of Nottingham, Derby, United Kingdom; and
| | - Jonathan N Lund
- Clinical, Metabolic, and Molecular Physiology, MRC–Arthritis Research UK Centre of Excellence for Musculoskeletal Ageing Research, School of Medicine, University of Nottingham, Derby, United Kingdom; and,Departments of Surgery and
| | - Kenneth Smith
- Clinical, Metabolic, and Molecular Physiology, MRC–Arthritis Research UK Centre of Excellence for Musculoskeletal Ageing Research, School of Medicine, University of Nottingham, Derby, United Kingdom; and
| | - Philip J Atherton
- Clinical, Metabolic, and Molecular Physiology, MRC-Arthritis Research UK Centre of Excellence for Musculoskeletal Ageing Research, School of Medicine, University of Nottingham, Derby, United Kingdom; and
| |
Collapse
|
38
|
Columbus DA, Fiorotto ML, Davis TA. Leucine is a major regulator of muscle protein synthesis in neonates. Amino Acids 2015; 47:259-70. [PMID: 25408462 PMCID: PMC4304911 DOI: 10.1007/s00726-014-1866-0] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Accepted: 10/29/2014] [Indexed: 11/25/2022]
Abstract
Approximately 10% of infants born in the United States are of low birth weight. Growth failure during the neonatal period is a common occurrence in low birth weight infants due to their inability to tolerate full feeds, concerns about advancing protein supply, and high nutrient requirements for growth. An improved understanding of the nutritional regulation of growth during this critical period of postnatal growth is vital for the development of strategies to improve lean gain. Past studies with animal models have demonstrated that muscle protein synthesis is increased substantially following a meal and that this increase is due to the postprandial rise in amino acids as well as insulin. Both amino acids and insulin act independently to stimulate protein synthesis in a mammalian target of rapamycin-dependent manner. Further studies have elucidated that leucine, in particular, and its metabolites, α-ketoisocaproic acid and β-hydroxy-β-methylbutyrate, have unique anabolic properties. Supplementation with leucine, provided either parenterally or enterally, has been shown to enhance muscle protein synthesis in neonatal pigs, making it an ideal candidate for stimulating growth of low birth weight infants.
Collapse
Affiliation(s)
- Daniel A Columbus
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA, 77030
| | - Marta L Fiorotto
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA, 77030
| | - Teresa A Davis
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA, 77030
| |
Collapse
|
39
|
Abstract
PURPOSE OF REVIEW Neonates with feeding difficulties can be fed by orogastric tube, using either continuous or bolus delivery. This review reports on recent findings that bolus is advantageous compared to continuous feeding in supporting optimal protein anabolism. RECENT FINDINGS Whether bolus or continuous feeding is more beneficial has been controversial, largely due to limitations inherent in clinical studies, such as the presence of confounding variables and the inability to use invasive approaches. Recent studies using the piglet as a model of the human neonate showed that, compared to continuous feeding, bolus feeding enhances protein synthesis and promotes greater protein deposition. The increase in protein synthesis occurs in muscles of varying fiber type and in visceral tissues whereas muscle protein degradation is largely insensitive to feeding pattern. This higher protein synthesis rate is enabled by the rapid and profound increases in circulating amino acids and insulin that occur following a bolus feed, which activate the intracellular signaling pathways leading to mRNA translation. SUMMARY Recent findings indicate that bolus feeding enhances protein synthesis more than continuous feeding and promotes greater protein anabolism. The difference in response is attributable to the pulsatile pattern of amino acid-induced and insulin-induced translation initiation induced only by bolus feeding.
Collapse
Affiliation(s)
- Teresa A. Davis
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA, 77030
| | - Marta L. Fiorotto
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA, 77030
| | - Agus Suryawan
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA, 77030
| |
Collapse
|
40
|
Sunderram J, Sofou S, Kamisoglu K, Karantza V, Androulakis IP. Time-restricted feeding and the realignment of biological rhythms: translational opportunities and challenges. J Transl Med 2014; 12:79. [PMID: 24674294 PMCID: PMC3973614 DOI: 10.1186/1479-5876-12-79] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Accepted: 03/10/2014] [Indexed: 12/15/2022] Open
Abstract
It has been argued that circadian dysregulation is not only a critical inducer and promoter of adverse health effects, exacerbating symptom burden, but also hampers recovery. Therefore understanding the health-promoting roles of regulating (i.e., restoring) circadian rhythms, thus suppressing harmful effects of circadian dysregulation, would likely improve treatment. At a critical care setting it has been argued that studies are warranted to determine whether there is any use in restoring circadian rhythms in critically ill patients, what therapeutic goals should be targeted, and how these could be achieved. Particularly interesting are interventional approaches aiming at optimizing the time of feeding in relation to individualized day-night cycles for patients receiving enteral nutrition, in an attempt to re-establish circadian patterns of molecular expression. In this short review we wish to explore the idea of transiently imposing (appropriate, but yet to be determined) circadian rhythmicity via regulation of food intake as a means of exploring rhythm-setting properties of metabolic cues in the context of improving immune response. We highlight some of the key elements associated with his complex question particularly as they relate to: a) stress and rhythmic variability; and b) metabolic entrainment of peripheral tissues as a possible intervention strategy through time-restricted feeding. Finally, we discuss the challenges and opportunities for translating these ideas to the bedside.
Collapse
Affiliation(s)
- Jag Sunderram
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Rutgers - Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| | - Stavroula Sofou
- Biomedical Engineering Department, Rutgers University, Piscataway, NJ 08854, USA
- Chemical & Biochemical Engineering Department, Rutgers University, Piscataway, NJ 08854, USA
| | - Kubra Kamisoglu
- Chemical & Biochemical Engineering Department, Rutgers University, Piscataway, NJ 08854, USA
| | - Vassiliki Karantza
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick 08901, USA
| | - Ioannis P Androulakis
- Biomedical Engineering Department, Rutgers University, Piscataway, NJ 08854, USA
- Chemical & Biochemical Engineering Department, Rutgers University, Piscataway, NJ 08854, USA
| |
Collapse
|
41
|
Wagner AL, Urschel KL, Betancourt A, Adams AA, Horohov DW. Effects of advanced age on whole-body protein synthesis and skeletal muscle mechanistic target of rapamycin signaling in horses. Am J Vet Res 2013; 74:1433-42. [DOI: 10.2460/ajvr.74.11.1433] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
42
|
Boutry C, El-Kadi SW, Suryawan A, Wheatley SM, Orellana RA, Kimball SR, Nguyen HV, Davis TA. Leucine pulses enhance skeletal muscle protein synthesis during continuous feeding in neonatal pigs. Am J Physiol Endocrinol Metab 2013; 305:E620-31. [PMID: 23839523 PMCID: PMC3761169 DOI: 10.1152/ajpendo.00135.2013] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Infants unable to maintain oral feeding can be nourished by orogastric tube. We have shown that orogastric continuous feeding restricts muscle protein synthesis compared with intermittent bolus feeding in neonatal pigs. To determine whether leucine infusion can be used to enhance protein synthesis during continuous feeding, neonatal piglets received the same amount of formula enterally by orogastric tube for 25.25 h continuously (CON) with or without LEU or intermittently by bolus every 4 h (BOL). For the CON+LEU group, leucine pulses were administered parenterally (800 μmol·kg(-1)·h(-1)) every 4 h. Insulin and glucose concentrations increased after the BOL meal and were unchanged in groups fed continuously. LEU infusion during CON feeding increased plasma leucine after the leucine pulse and decreased essential amino acids compared with CON feeding. Protein synthesis in longissimus dorsi (LD), gastrocnemius, and soleus muscles, but not liver or heart, were greater in CON+LEU and BOL than in the CON group. BOL feeding increased protein synthesis in the small intestine. Muscle S6K1 and 4E-BP1 phosphorylation and active eIF4E·eIF4G complex formation were higher in CON+LEU and BOL than in CON but AMPKα, eIF2α, and eEF2 phosphorylation were unchanged. LC3-II-to-total LC3 ratio was lower in CON+LEU and BOL than in CON, but there were no differences in atrogin-1 and MuRF-1 abundance and FoxO3 phosphorylation. In conclusion, administration of leucine pulses during continuous orogastric feeding in neonates increases muscle protein synthesis by stimulating translation initiation and may reduce protein degradation via the autophagy-lysosome, but not the ubiquitin-proteasome pathway.
Collapse
Affiliation(s)
- Claire Boutry
- United States Department of Agriculture/Agricultural Research Service, Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston Texas; and
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Viscera and muscle protein synthesis in neonatal pigs is increased more by intermittent bolus than by continuous feeding. Pediatr Res 2013; 74:154-62. [PMID: 23736770 PMCID: PMC4183190 DOI: 10.1038/pr.2013.89] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Accepted: 01/05/2013] [Indexed: 11/09/2022]
Abstract
BACKGROUND Continuous and intermittent bolus orogastric feedings are strategies used in infants unable to tolerate normal feeds. METHODS To determine the effects of feeding modality on protein synthesis in different tissues, neonatal pigs received a balanced formula by orogastric tube as an intermittent bolus feed every 4 h or as a continuous infusion, or were fasted overnight. RESULTS As compared with fasting, protein synthesis in gastrocnemius, masseter, and soleus muscles; left ventricle; liver; pancreas; jejunum; and kidney increased in bolus- and continuously fed pigs, but the greatest increase occurred after a bolus meal. Tuberous sclerosis complex (TSC2), the proline-rich AKT substrate of 40 kDa (PRAS40), eukaryotic initiation factor (eIF) 4E binding protein (4EBP1), and ribosomal protein S6 kinase 1 (S6K1) phosphorylation in all tissues, and the proportion of ribosomal protein S4 in liver polysomes were enhanced 90 min following the bolus meal but not immediately before the meal or during continuous feeding. Eukaryotic elongation factor 2 (eEF2) and eIF2α phosphorylation were unaffected by feeding. CONCLUSION These results suggest that intermittent bolus feeding increases protein synthesis in muscles of different fiber types and visceral tissues to a greater extent than continuous feeding by stimulating translation initiation.
Collapse
|
44
|
Dillon EL. Nutritionally essential amino acids and metabolic signaling in aging. Amino Acids 2012; 45:431-41. [PMID: 23239011 DOI: 10.1007/s00726-012-1438-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2012] [Accepted: 11/28/2012] [Indexed: 02/07/2023]
Abstract
Aging is associated with a gradual decline in skeletal muscle mass and strength leading to increased risk for functional impairments. Although basal rates of protein synthesis and degradation are largely unaffected with age, the sensitivity of older muscle cells to the anabolic actions of essential amino acids appears to decline. The major pathway through which essential amino acids induce anabolic responses involves the mammalian target of rapamycin (mTOR) Complex 1, a signaling pathway that is especially sensitive to regulation by the branched chain amino acid leucine. Recent evidence suggests that muscle of older individuals require increasing concentrations of leucine to maintain robust anabolic responses through the mTOR pathway. While the exact mechanisms for the age-related alterations in nutritional signaling through the mTOR pathway remain elusive, there is increasing evidence that decreased sensitivity to insulin action, reductions in endothelial function, and increased oxidative stress may be underlying factors in this decrease in anabolic sensitivity. Ensuring adequate nutrition, including sources of high quality protein, and promoting regular physical activity will remain among the frontline defenses against the onset of sarcopenia in older individuals.
Collapse
Affiliation(s)
- E Lichar Dillon
- Division of Endocrinology and Metabolism, Department of Internal Medicine, The University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA.
| |
Collapse
|
45
|
Zanchi NE, Guimarães-Ferreira L, Siqueira-Filho MA, Gabriel Camporez JP, Nicastro H, Seixas Chaves DF, Campos-Ferraz P, Lancha AH, de Oliveira Carvalho CR. The possible role of leucine in modulating glucose homeostasis under distinct catabolic conditions. Med Hypotheses 2012; 79:883-8. [DOI: 10.1016/j.mehy.2012.09.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 09/24/2012] [Indexed: 10/27/2022]
|
46
|
Stoll B, Puiman PJ, Cui L, Chang X, Benight NM, Bauchart-Thevret C, Hartmann B, Holst JJ, Burrin DG. Continuous parenteral and enteral nutrition induces metabolic dysfunction in neonatal pigs. JPEN J Parenter Enteral Nutr 2012; 36:538-50. [PMID: 22549765 DOI: 10.1177/0148607112444756] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
BACKGROUND We previously showed that parenteral nutrition (PN) compared with formula feeding results in hepatic insulin resistance and steatosis in neonatal pigs. The current aim was to test whether the route of feeding (intravenous [IV] vs enteral) rather than other feeding modalities (diet, pattern) had contributed to the outcome. METHODS Neonatal pigs were fed enterally or parenterally for 14 days with 1 of 4 feeding modalities as follows: (1) enteral polymeric formula intermittently (FORM), (2) enteral elemental diet (ED) intermittently (IEN), (3) enteral ED continuously (CEN), and (4) parenteral ED continuously (PN). Subgroups of pigs underwent IV glucose tolerance tests (IVGTT) and hyperinsulinemic-euglycemic clamps (CLAMP). Following CLAMP, pigs were euthanized and tissues collected for further analysis. RESULTS Insulin secretion during IVGTT was significantly higher and glucose infusion rates during CLAMP were lower in CEN and PN than in FORM and IEN. Endogenous glucose production rate was suppressed to zero in all groups during CLAMP. In the fed state, plasma glucose-dependent insulinotropic polypeptide (GIP), glucagon-like peptide (GLP)-1, and GLP-2 were different between feeding modalities. Insulin receptor phosphorylation in liver and muscle was decreased in IEN, CEN, and PN compared with FORM. Liver weight was highest in PN. Steatosis and myeloperoxidase (MPO) activity tended to be highest in PN and CEN. Enterally fed groups had higher plasma GLP-2 and jejunum weight compared with PN. CONCLUSIONS PN and enteral nutrition (EN) when given continuously as an elemental diet reduces insulin sensitivity and the secretion of key gut incretins. The intermittent vs continuous pattern of EN produced the optimal effect on metabolic function.
Collapse
Affiliation(s)
- Barbara Stoll
- USDA/ARS Children's Nutrition Research Center, Houston, Texas 77030, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
El-Kadi SW, Suryawan A, Gazzaneo MC, Srivastava N, Orellana RA, Nguyen HV, Lobley GE, Davis TA. Anabolic signaling and protein deposition are enhanced by intermittent compared with continuous feeding in skeletal muscle of neonates. Am J Physiol Endocrinol Metab 2012; 302:E674-86. [PMID: 22215651 PMCID: PMC3311296 DOI: 10.1152/ajpendo.00516.2011] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Orogastric tube feeding is indicated for neonates with impaired ability to ingest and can be administered by intermittent bolus or continuous schedule. Our aim was to determine whether feeding modalities affect muscle protein deposition and to identify mechanisms involved. Neonatal pigs were overnight fasted (FAS) or fed the same amount of food continuously (CON) or intermittently (INT; 7 × 4 h meals) for 29 h. For 8 h, between hours 20 and 28, pigs were infused with [(2)H(5)]phenylalanine and [(2)H(2)]tyrosine, and amino acid (AA) net balances were measured across the hindquarters. Insulin, branched-chain AA, phenylalanine, and tyrosine arterial concentrations and whole body phenylalanine and tyrosine fluxes were greater for INT after the meal than for CON or FAS. The activation of signaling proteins leading to initiation of mRNA translation, including eukaryotic initiation factor (eIF)4E·eIF4G complex formation in muscle, was enhanced by INT compared with CON feeding or FAS. Signaling proteins of protein degradation were not affected by feeding modalities except for microtubule-associated protein light chain 3-II, which was highest in the FAS. Across the hindquarters, AA net removal increased for INT but not for CON or FAS, with protein deposition greater for INT. This was because protein synthesis increased following feeding for INT but remained unchanged for CON and FAS, whereas there was no change in protein degradation across any dietary treatment. These results suggest that muscle protein accretion in neonates is enhanced with intermittent bolus to a greater extent than continuous feeding, mainly by increased protein synthesis.
Collapse
Affiliation(s)
- Samer W El-Kadi
- USDA/ARS Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|