1
|
Ferriere F, Aasi N, Flouriot G, Pakdel F. Exploring the Complex Mechanisms of Isoflavones: From Cell Bioavailability, to Cell Dynamics and Breast Cancer. Phytother Res 2024. [PMID: 39707600 DOI: 10.1002/ptr.8417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 11/29/2024] [Accepted: 12/07/2024] [Indexed: 12/23/2024]
Abstract
In Western countries, the increase in the consumption of soy-derived products raises the population's exposure to isoflavones. These molecules, present in many foods, have numerous effects on the body's cells, including regulation of the transcription and epigenetics, cell signaling, cell cycle, cell growth, apoptosis, and oxidative stress. However, despite the multitude of studies conducted, on these compounds, it remains difficult to draw definitive conclusions regarding their safety or dangerousness in the diet. Indeed, some epidemiological studies highlight health benefits in consuming isoflavone-rich foods, notably by reducing the risk of certain cancers. However, several studies conducted on cell models show that these molecules can have negative effects on cell fate, particularly with regard to proliferation and survival of mammary tumor cells. Isoflavones are mainly genistein, daidzein, formononetin, and biochanin A. These molecules belong to the family of phytoestrogens, which are capable of interacting with both nuclear estrogen receptor, ERα and ERβ, to trigger agonistic and antagonistic effects. Due to their estrogenic properties, isoflavones are suspected to promote hormone-dependent cancers such as breast cancer. This suspicion is based primarily on their ability to bind to ERα in breast cells, thereby altering the signaling pathways that control cell growth. However, study results are sometimes contradictory. Some studies suggest that isoflavones may protect against breast cancer by acting as selective estrogen receptor modulators, while others highlight their potential role in stimulating tumor growth. This review explores the literature on the effects of isoflavones, focusing on their influence on ERα-dependent signaling in breast tumor cells.
Collapse
Affiliation(s)
- François Ferriere
- Université de Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, Rennes, France
| | - Nagham Aasi
- Université de Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, Rennes, France
| | - Gilles Flouriot
- Université de Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, Rennes, France
| | - Farzad Pakdel
- Université de Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, Rennes, France
| |
Collapse
|
2
|
Noda K, Hattori Y, Murata H, Kokubo Y, Higashiyama A, Ihara M. Equol Nonproducing Status as an Independent Risk Factor for Acute Cardioembolic Stroke and Poor Functional Outcome. Nutrients 2024; 16:3377. [PMID: 39408343 PMCID: PMC11479244 DOI: 10.3390/nu16193377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/26/2024] [Accepted: 10/02/2024] [Indexed: 10/20/2024] Open
Abstract
Background/Objectives: Equol has protective effects against coronary artery disease and dementia by strongly binding to estrogen receptor beta, whereas the intake of soy isoflavone alone does not always confer such protective effects. Equol production is completely dependent on the existence of equol-producing gut microbiota. The effects of equol-producing status on the cerebrovascular diseases remain unclear. The current study was aimed to investigate the association of equol-producing status with the development of stroke and its neurological prognosis. Methods: Frequencies of equol producers were compared between healthy subjects (HS) registered in the Suita Study and patients with acute stroke admitted to our stroke center from September 2019 to October 2021 in a retrospective cohort study. Results: The proportion of HSs and patients with ischemic stroke who were equol producers did not significantly differ (50/103 [48.5%] vs. 60/140 [42.9%], p = 0.38). However, cardioembolic stroke was significantly associated with low a prevalence of equol producers (adjusted odds ratio [aOR] 0.46, 95% confidence interval [CI] 0.21-0.99, p = 0.05). A higher left atrial volume index was observed in equol nonproducers (46.3 ± 23.8 vs. 36.0 ± 11.6 mL/m2, p = 0.06). The equol nonproducers had a significantly higher prevalence of atrial fibrillation than the equol producers (27.5% vs. 13.3%, p = 0.04). Furthermore, the equol producers exhibited a significantly favorable functional outcome upon discharge (aOR 2.84, 95% CI 1.20-6.75, p = 0.02). Conclusions: Equol is a promising candidate for interventions aiming to reduce the risk of CES and atrial dysfunction, such as atrial fibrillation and improve neurological prognosis after ischemic stroke.
Collapse
Affiliation(s)
- Kotaro Noda
- Department of Neurology, National Cerebral and Cardiovascular Center, 6-1, Kishibe-shimmachi, Suita 564-8565, Japan
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Yorito Hattori
- Department of Neurology, Department of Preemptive Medicine for Dementia, National Cerebral and Cardiovascular Center, 6-1, Kishibe-shimmachi, Suita 564-8565, Japan
| | - Hiroaki Murata
- Department of Neurology, National Cerebral and Cardiovascular Center, 6-1, Kishibe-shimmachi, Suita 564-8565, Japan
| | - Yoshihiro Kokubo
- Department of Preventive Cardiology, National Cerebral and Cardiovascular Center, 6-1, Kishibe-shimmachi, Suita 564-8565, Japan
| | - Aya Higashiyama
- Department of Preventive Cardiology, National Cerebral and Cardiovascular Center, 6-1, Kishibe-shimmachi, Suita 564-8565, Japan
| | - Masafumi Ihara
- Department of Neurology, National Cerebral and Cardiovascular Center, 6-1, Kishibe-shimmachi, Suita 564-8565, Japan
| |
Collapse
|
3
|
Ruiz de la Bastida A, Langa S, Curiel JA, Peirotén Á, Landete JM. Effect of Fermented Soy Beverage on Equol Production by Fecal Microbiota. Foods 2024; 13:2758. [PMID: 39272523 PMCID: PMC11394804 DOI: 10.3390/foods13172758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/22/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024] Open
Abstract
Soy consumption is associated with health benefits, mainly linked to the ability of the intestinal microbiota to metabolize the glycosylated isoflavones into more bioactive compounds, such as equol. Because Bifidobacterium pseudocatenulatum INIA P815 is able to efficiently deglycosylate daidzin into daidzein, the aim of this work was to confirm the influence of soy beverages fermented by B. pseudocatenulatum INIA P815 for enhancing equol production by fecal microbiota. Firstly, fecal samples from 17 participants were characterized in vitro, and we observed that 35.3% of them were able to produce equol from daidzein. In addition, the kinetics of equol production and degradation by fecal microbiota were evaluated, determining that 30-85% of equol is degraded after 24 h of incubation. Finally, the influence of fermented soy beverage on improving the production of equol by selected equol-producing fecal samples and by the equol-producing strain Slackia isoflavoniconvertens was analyzed through a colonic model. Fermented soy beverage enhanced the equol production from S. isoflavoniconvertens as well as the fecal samples whose microbiota showed high rates of equol degradation. The results obtained confirm that the fermentation of soy beverages with selected bacterial strains improves the functional properties of these beverages in terms of isoflavone metabolism and equol production.
Collapse
Affiliation(s)
- Ana Ruiz de la Bastida
- Departamento de Tecnología de Alimentos, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Carretera de La Coruña Km 7.5, 28040 Madrid, Spain
| | - Susana Langa
- Departamento de Tecnología de Alimentos, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Carretera de La Coruña Km 7.5, 28040 Madrid, Spain
| | - José Antonio Curiel
- Departamento de Tecnología de Alimentos, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Carretera de La Coruña Km 7.5, 28040 Madrid, Spain
| | - Ángela Peirotén
- Departamento de Tecnología de Alimentos, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Carretera de La Coruña Km 7.5, 28040 Madrid, Spain
| | - José María Landete
- Departamento de Tecnología de Alimentos, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Carretera de La Coruña Km 7.5, 28040 Madrid, Spain
| |
Collapse
|
4
|
Natale A, Fiori F, Parpinel M, Pelucchi C, Negri E, La Vecchia C, Rossi M. Dietary Isoflavones Intake and Gastric Cancer. Nutrients 2024; 16:2771. [PMID: 39203907 PMCID: PMC11356980 DOI: 10.3390/nu16162771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 09/03/2024] Open
Abstract
Dietary isoflavones have been associated with a lower risk of gastric cancer (GC), but the evidence for this association is still limited. We investigated the association between isoflavone intake and GC risk using data from a case-control study including 230 incident, histologically confirmed GC cases and 547 controls with acute, non-neoplastic conditions. Dietary information was collected through a validated food frequency questionnaire (FFQ) and isoflavone intake was estimated using ad hoc databases. We estimated the odds ratios (OR) and the corresponding 95% confidence intervals (CI) of GC using logistic regression models, including terms for total energy intake and other major confounders. The OR for the highest versus the lowest tertile of intake was 0.65 (95%CI = 0.44-0.97, p for trend = 0.04) for daidzein, 0.75 (95%CI = 0.54-1.11, p for trend = 0.15) for genistein, and 0.66 (95%CI = 0.45-0.99, p for trend = 0.05) for total isoflavones. Stratified analyses by sex, age, education, and smoking showed no heterogeneity. These findings indicate a favorable effect of dietary isoflavones on GC.
Collapse
Affiliation(s)
- Arianna Natale
- Department of Clinical Sciences and Community Health, Dipartimento di Eccellenza 2023–2027, University of Milan, 20133 Milan, Italy; (A.N.); (M.R.)
| | - Federica Fiori
- Department of Medicine-DAME, University of Udine, 33100 Udine, Italy; (F.F.); (M.P.)
| | - Maria Parpinel
- Department of Medicine-DAME, University of Udine, 33100 Udine, Italy; (F.F.); (M.P.)
| | - Claudio Pelucchi
- Department of Clinical Sciences and Community Health, Dipartimento di Eccellenza 2023–2027, University of Milan, 20133 Milan, Italy; (A.N.); (M.R.)
| | - Eva Negri
- Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy;
| | - Carlo La Vecchia
- Department of Clinical Sciences and Community Health, Dipartimento di Eccellenza 2023–2027, University of Milan, 20133 Milan, Italy; (A.N.); (M.R.)
| | - Marta Rossi
- Department of Clinical Sciences and Community Health, Dipartimento di Eccellenza 2023–2027, University of Milan, 20133 Milan, Italy; (A.N.); (M.R.)
| |
Collapse
|
5
|
Favari C, Rinaldi de Alvarenga JF, Sánchez-Martínez L, Tosi N, Mignogna C, Cremonini E, Manach C, Bresciani L, Del Rio D, Mena P. Factors driving the inter-individual variability in the metabolism and bioavailability of (poly)phenolic metabolites: A systematic review of human studies. Redox Biol 2024; 71:103095. [PMID: 38428187 PMCID: PMC10912651 DOI: 10.1016/j.redox.2024.103095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/16/2024] [Accepted: 02/18/2024] [Indexed: 03/03/2024] Open
Abstract
This systematic review provides an overview of the available evidence on the inter-individual variability (IIV) in the absorption, distribution, metabolism, and excretion (ADME) of phenolic metabolites and its determinants. Human studies were included investigating the metabolism and bioavailability of (poly)phenols and reporting IIV. One hundred fifty-three studies met the inclusion criteria. Inter-individual differences were mainly related to gut microbiota composition and activity but also to genetic polymorphisms, age, sex, ethnicity, BMI, (patho)physiological status, and physical activity, depending on the (poly)phenol sub-class considered. Most of the IIV has been poorly characterised. Two major types of IIV were observed. One resulted in metabolite gradients that can be further classified into high and low excretors, as seen for all flavonoids, phenolic acids, prenylflavonoids, alkylresorcinols, and hydroxytyrosol. The other type of IIV is based on clusters of individuals defined by qualitative differences (producers vs. non-producers), as for ellagitannins (urolithins), isoflavones (equol and O-DMA), resveratrol (lunularin), and preliminarily for avenanthramides (dihydro-avenanthramides), or by quali-quantitative metabotypes characterized by different proportions of specific metabolites, as for flavan-3-ols, flavanones, and even isoflavones. Future works are needed to shed light on current open issues limiting our understanding of this phenomenon that likely conditions the health effects of dietary (poly)phenols.
Collapse
Affiliation(s)
- Claudia Favari
- Human Nutrition Unit, Department of Food and Drugs, University of Parma, Parma, Italy.
| | | | - Lorena Sánchez-Martínez
- Human Nutrition Unit, Department of Food and Drugs, University of Parma, Parma, Italy; Department of Food Technology, Food Science and Nutrition, Faculty of Veterinary Sciences, Regional Campus of International Excellence 'Campus Mare Nostrum', Biomedical Research Institute of Murcia (IMIB-Arrixaca-UMU), University Clinical Hospital 'Virgen de La Arrixaca', Universidad de Murcia, Espinardo, Murcia, Spain
| | - Nicole Tosi
- Human Nutrition Unit, Department of Food and Drugs, University of Parma, Parma, Italy
| | - Cristiana Mignogna
- Human Nutrition Unit, Department of Food and Drugs, University of Parma, Parma, Italy
| | - Eleonora Cremonini
- Department of Nutrition, University of California, Davis, CA, USA; Department of Environmental Toxicology, University of California, Davis, CA, USA
| | - Claudine Manach
- Université Clermont Auvergne, INRAE, Human Nutrition Unit, Clermont-Ferrand, France
| | - Letizia Bresciani
- Human Nutrition Unit, Department of Food and Drugs, University of Parma, Parma, Italy
| | - Daniele Del Rio
- Human Nutrition Unit, Department of Food and Drugs, University of Parma, Parma, Italy; Microbiome Research Hub, University of Parma, 43124, Parma, Italy
| | - Pedro Mena
- Human Nutrition Unit, Department of Food and Drugs, University of Parma, Parma, Italy; Microbiome Research Hub, University of Parma, 43124, Parma, Italy
| |
Collapse
|
6
|
Abstract
OBJECTIVE Postmenopausal vasomotor symptoms disrupt quality of life. This study tested the effects of a dietary intervention on vasomotor symptoms and menopause-related quality of life. METHODS Postmenopausal women (n = 84) reporting at least two moderate-to-severe hot flashes daily were randomly assigned, in two successive cohorts, to an intervention including a low-fat, vegan diet and cooked soybeans (½ cup [86 g] daily) or to a control group making no dietary changes. During a 12-week period, a mobile application was used to record hot flashes (frequency and severity), and vasomotor, psychosocial, physical, and sexual symptoms were assessed with the Menopause-Specific Quality of Life questionnaire. Between-group differences were assessed for continuous ( t tests) and binary ( χ2 /McNemar tests) outcomes. In a study subsample, urinary equol was measured after the consumption of ½ cup (86 g) of cooked whole soybeans twice daily for 3 days. RESULTS In the intervention group, moderate-to-severe hot flashes decreased by 88% ( P < 0.001) compared with 34% for the control group ( P < 0.001; between-group P < 0.001). At 12 weeks, 50% of completers in the intervention group reported no moderate-to-severe hot flashes at all. Among controls, there was no change in this variable from baseline ( χ2 test, P < 0.001). Neither seasonality nor equol production status was associated with the degree of improvement. The intervention group reported greater reductions in the Menopause-Specific Quality of Life questionnaire vasomotor ( P = 0.004), physical ( P = 0.01), and sexual ( P = 0.03) domains. CONCLUSIONS A dietary intervention consisting of a plant-based diet, minimizing oils, and daily soybeans significantly reduced the frequency and severity of postmenopausal hot flashes and associated symptoms.
Collapse
|
7
|
Setchell KDR, Mourvaki E, Clerici C, Mattioli S, Brecchia G, Castellini C. Dietary Isoflavone Aglycons from Soy Germ Pasta Improves Reproductive Performance of Aging Hens and Lowers Cholesterol Levels of Egg Yolk. Metabolites 2022; 12:1112. [PMID: 36422252 PMCID: PMC9693069 DOI: 10.3390/metabo12111112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/09/2022] [Accepted: 11/14/2022] [Indexed: 07/30/2023] Open
Abstract
This study compared dietary isoflavone aglycones with the glycoside conjugates in a novel model of postmenopausal status, the aging domestic hen (Gallus gallus domesticus), to determine the effects on reproductive performance, cholesterol levels, and nutritional quality of eggs laid. Hens, 18 mo old, were randomized into four groups (n = 10/group) and fed for 28 d a conventional poultry corn/soymeal diet (Control), or diets supplemented with isoflavone glycosides from soy germ (diet A), isoflavone aglycons from a soy germ pasta (diet B), or conventional pasta lacking isoflavones (diet C). The egg-laying rate was recorded daily, plasma isoflavones and cholesterol were measured, and the nutritional composition of the eggs was determined. Egg-laying declined over a 4-week period in hens in the Control group and those fed isoflavone glycosides (diets A and C), whereas hens fed isoflavone aglycons (diet B) significantly increased their egg-laying efficiency. The total egg count and egg yield were significantly higher in hens fed isoflavone aglycons, and their plasma cholesterol concentrations were lower and the eggs laid had a 30% lower yolk cholesterol content. None of these effects were observed with diets containing similar levels of isoflavone glycosides. These studies recapitulate the clinical effects of soy germ pasta enriched with isoflavone aglycons and lend support to the greater efficacy of a diet rich in isoflavone aglycons.
Collapse
Affiliation(s)
- Kenneth D. R. Setchell
- Department of Pathology and Laboratory Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
- Department of Clinical and Experimental Medicine, Gastroenterology and Hepatology Section, University of Perugia, S. Andrea delle Fratte, 06156 Perugia, Italy
| | - Evangelia Mourvaki
- Department of Agricultural, Environmental and Food Science, University of Perugia, Borgo XX Giugno 74, 06124 Perugia, Italy
| | - Carlo Clerici
- Department of Clinical and Experimental Medicine, Gastroenterology and Hepatology Section, University of Perugia, S. Andrea delle Fratte, 06156 Perugia, Italy
| | - Simona Mattioli
- Department of Agricultural, Environmental and Food Science, University of Perugia, Borgo XX Giugno 74, 06124 Perugia, Italy
| | - Gabriele Brecchia
- Department of Veterinary Medicine, University of Milano, Via dell’Università, 6, 26900 Lodi, Italy
| | - Cesare Castellini
- Department of Agricultural, Environmental and Food Science, University of Perugia, Borgo XX Giugno 74, 06124 Perugia, Italy
| |
Collapse
|
8
|
Chibisov S, Kharlitskaya E, Singh RB, Itharat A, On-Saard E, Park HR, Chaudhury J, Chakravorty S, Gupta OK, Smail MM. Polyphenolics and flavonoids in health and diseases. FUNCTIONAL FOODS AND NUTRACEUTICALS IN METABOLIC AND NON-COMMUNICABLE DISEASES 2022:671-689. [DOI: 10.1016/b978-0-12-819815-5.00016-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/19/2023]
|
9
|
Makkliang F, Siriwarin B, Yusakul G, Phaisan S, Sakdamas A, Chuphol N, Putalun W, Sakamoto S. Biocompatible natural deep eutectic solvent-based extraction and cellulolytic enzyme-mediated transformation of Pueraria mirifica isoflavones: a sustainable approach for increasing health-bioactive constituents. BIORESOUR BIOPROCESS 2021; 8:76. [PMID: 38650188 PMCID: PMC10992110 DOI: 10.1186/s40643-021-00428-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 08/07/2021] [Indexed: 11/10/2022] Open
Abstract
The presence of specific gut microflora limits the biotransformation of Pueraria mirifica isoflavone (PMI) glycosides into absorbable aglycones, thus limiting their health benefits. Cellulolytic enzyme-assisted extraction (CAE) potentially solves this issue; however, solvent extraction requires recovery of the hydrophobic products. Here, we established the simultaneous transformation and extraction of PMIs using cellulolytic enzymes and natural deep eutectic solvents (NADESs). The NADES compositions were optimized to allow the use of NADESs as CAE media, and the extraction parameters were optimized using response surface methodology (RSM). The optimal conditions were 14.7% (v/v) choline chloride:propylene glycol (1:2 mol ratio, ChCl:PG) at 56.1 °C for the cellulolytic enzyme (262 mU/mL) reaction in which daidzin and genistin were extracted and wholly transformed to their aglycones daidzein and genistein. The extraction of PMIs using ChCl:PG is more efficient than that using conventional solvents; additionally, biocompatible ChCl:PG enhances cellulolytic enzyme activity, catalyzing the transformation of PMIs into compounds with higher estrogenicity and absorbability.
Collapse
Affiliation(s)
- Fonthip Makkliang
- School of Languages and General Education, Walailak University, Nakhon Si Thammarat, Thailand
| | - Boondaree Siriwarin
- Faculty of Pharmaceutical Sciences, Huachiew Chalermprakiet University, Samut Prakan, Thailand
| | - Gorawit Yusakul
- School of Pharmacy, Walailak University, Nakhon Si Thammarat, 80160, Thailand.
- Biomass and Oil Palm Center of Excellence, Walailak University, Nakhon Si Thammarat, Thailand.
| | - Suppalak Phaisan
- School of Pharmacy, Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Attapon Sakdamas
- School of Pharmacy, Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Natthapon Chuphol
- Faculty of Pharmaceutical Sciences, Prince of Songkla University, Songkhla, Thailand
| | - Waraporn Putalun
- Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Seiichi Sakamoto
- Graduate School of Pharmaceutical Sciences, Kyushu University, Higashi-ku, Fukuoka, Japan
| |
Collapse
|
10
|
Yokosuka K, Rutledge C, Kamio Y, Kuwabara A, Sato H, Rahmani R, Purcell J, Eguchi S, Baranoski JF, Margaryan T, Tovmasyan A, Ai J, Lawton MT, Hashimoto T. Roles of Phytoestrogen in the Pathophysiology of Intracranial Aneurysm. Stroke 2021; 52:2661-2670. [PMID: 34157864 DOI: 10.1161/strokeaha.120.032042] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Kimihiko Yokosuka
- Barrow Aneurysm and AVM Research Center (K.Y., Y.K., A.K., H.S., R.R., J.P., J.F.B., J.A., M.T.L., T.H.), Barrow Neurological Institute, Phoenix, AZ
| | - Caleb Rutledge
- Department of Neurological Surgery, University of California, San Francisco (C.R.)
| | - Yoshinobu Kamio
- Barrow Aneurysm and AVM Research Center (K.Y., Y.K., A.K., H.S., R.R., J.P., J.F.B., J.A., M.T.L., T.H.), Barrow Neurological Institute, Phoenix, AZ
| | - Atsushi Kuwabara
- Barrow Aneurysm and AVM Research Center (K.Y., Y.K., A.K., H.S., R.R., J.P., J.F.B., J.A., M.T.L., T.H.), Barrow Neurological Institute, Phoenix, AZ
| | - Hiroki Sato
- Barrow Aneurysm and AVM Research Center (K.Y., Y.K., A.K., H.S., R.R., J.P., J.F.B., J.A., M.T.L., T.H.), Barrow Neurological Institute, Phoenix, AZ
| | - Redi Rahmani
- Barrow Aneurysm and AVM Research Center (K.Y., Y.K., A.K., H.S., R.R., J.P., J.F.B., J.A., M.T.L., T.H.), Barrow Neurological Institute, Phoenix, AZ
- Department of Neurosurgery, University of Rochester Medical Center, NY (R.R.)
| | - James Purcell
- Barrow Aneurysm and AVM Research Center (K.Y., Y.K., A.K., H.S., R.R., J.P., J.F.B., J.A., M.T.L., T.H.), Barrow Neurological Institute, Phoenix, AZ
| | - Satoru Eguchi
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA (S.E.)
| | - Jacob F Baranoski
- Barrow Aneurysm and AVM Research Center (K.Y., Y.K., A.K., H.S., R.R., J.P., J.F.B., J.A., M.T.L., T.H.), Barrow Neurological Institute, Phoenix, AZ
| | - Tigran Margaryan
- Division of Neurobiology, Ivy Brain Tumor Center (T.M., A.T.), Barrow Neurological Institute, Phoenix, AZ
| | - Artak Tovmasyan
- Division of Neurobiology, Ivy Brain Tumor Center (T.M., A.T.), Barrow Neurological Institute, Phoenix, AZ
| | - Jinglu Ai
- Barrow Aneurysm and AVM Research Center (K.Y., Y.K., A.K., H.S., R.R., J.P., J.F.B., J.A., M.T.L., T.H.), Barrow Neurological Institute, Phoenix, AZ
| | - Michael T Lawton
- Barrow Aneurysm and AVM Research Center (K.Y., Y.K., A.K., H.S., R.R., J.P., J.F.B., J.A., M.T.L., T.H.), Barrow Neurological Institute, Phoenix, AZ
- Department of Neurosurgery (M.T.L.), Barrow Neurological Institute, Phoenix, AZ
| | - Tomoki Hashimoto
- Barrow Aneurysm and AVM Research Center (K.Y., Y.K., A.K., H.S., R.R., J.P., J.F.B., J.A., M.T.L., T.H.), Barrow Neurological Institute, Phoenix, AZ
| |
Collapse
|
11
|
Sekikawa A, Higashiyama A, Lopresti BJ, Ihara M, Aizenstein H, Watanabe M, Chang Y, Kakuta C, Yu Z, Mathis C, Kokubo Y, Klunk W, Lopez OL, Kuller LH, Miyamoto Y, Cui C. Associations of equol-producing status with white matter lesion and amyloid-β deposition in cognitively normal elderly Japanese. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2020; 6:e12089. [PMID: 33117881 PMCID: PMC7580022 DOI: 10.1002/trc2.12089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 08/10/2020] [Accepted: 08/17/2020] [Indexed: 11/09/2022]
Abstract
INTRODUCTION Equol, a metabolite of a soy isoflavone transformed by the gut microbiome, is anti-oxidant and anti-amyloidogenic. We assessed the associations of equol with white matter lesion normalized to total brain volume (WML%) and amyloid beta (Aβ) deposition. METHODS From 2016 to 2018, 91 cognitively normal elderly Japanese aged 75 to 89 underwent brain magnetic resonance imaging and positron emission tomography using 11C-Pittsburgh compound-B. Serum equol was measured using stored samples from 2008 to 2012. Equol producers were defined as individuals with serum levels >0. Producers were further divided into high (> the median) and low (≤ the median) producers. RESULTS The median (interquartile range) WML% was 1.10 (0.59 to 1.61); 24.2% were Aβ positive, and 51% were equol producers. Equol-producing status (non-producers, low and high) was significantly inversely associated with WML%: 1.19, 0.89, and 0.58, respectively (trend P < .01). Equol-producing status was not associated with Aβ status. DISCUSSION A randomized-controlled trial of equol targeting WML volume is warranted.
Collapse
Affiliation(s)
- Akira Sekikawa
- Department of EpidemiologyGraduate School of Public HealthUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Aya Higashiyama
- Department of Preventive CardiologyNational Cerebral and Cardiovascular CenterSuitaOsakaJapan
| | - Brian J Lopresti
- Department of RadiologyUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Masafumi Ihara
- Department of NeurologyNational Cerebral and Cardiovascular CenterSuitaOsakaJapan
| | - Howard Aizenstein
- Department of PsychiatryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Makoto Watanabe
- Department of Preventive CardiologyNational Cerebral and Cardiovascular CenterSuitaOsakaJapan
| | - Yuefang Chang
- Department of Neurological SurgeryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Chikage Kakuta
- Department of NeurologyNational Cerebral and Cardiovascular CenterSuitaOsakaJapan
| | - Zheming Yu
- Department of RadiologyUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Chester Mathis
- Department of RadiologyUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Yoshihioro Kokubo
- Department of Preventive CardiologyNational Cerebral and Cardiovascular CenterSuitaOsakaJapan
| | - William Klunk
- Department of PsychiatryUniversity of PittsburghPittsburghPennsylvaniaUSA
- Department of NeurologyUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Oscar L. Lopez
- Department of NeurologyUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Lewis H. Kuller
- Department of EpidemiologyGraduate School of Public HealthUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Yoshihiro Miyamoto
- Department of Preventive CardiologyNational Cerebral and Cardiovascular CenterSuitaOsakaJapan
- Open Innovation CenterNational Cerebral and Cardiovascular CenterSuitaOsakaJapan
| | - Chendi Cui
- Department of EpidemiologyGraduate School of Public HealthUniversity of PittsburghPittsburghPennsylvaniaUSA
| |
Collapse
|
12
|
George KS, Muñoz J, Akhavan NS, Foley EM, Siebert SC, Tenenbaum G, Khalil DA, Chai SC, Arjmandi BH. Is soy protein effective in reducing cholesterol and improving bone health? Food Funct 2020; 11:544-551. [PMID: 31848551 DOI: 10.1039/c9fo01081e] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Hyperlipidemia associated with cardiovascular health, and bone loss with regard to osteoporosis contribute to increased morbidity and mortality and are influenced by diet. Soy protein has been shown to reduce cholesterol levels, and its isoflavones may improve bone health. The objective of this study was to determine the effects of soy protein on lipid profiles and biomarkers of bone metabolism and inflammation. Ninety men and women (aged 27-87) were randomly assigned to consume 40 g of soy or casein protein daily for three months. Both soy and casein consumption significantly reduced bone alkaline phosphatase (P = 0.011) and body fat % (P < 0.001), tended to decrease tartrate-resistant acid phosphatase (P = 0.066), and significantly increased serum insulin-like growth factor-I (IGF-1) (P < 0.001), yet soy increased IGF-1 to a greater extent (P = 0.01) than casein. Neither treatment affected total cholesterol, HDL cholesterol, LDL cholesterol, or C-reactive protein. These results demonstrate that daily supplementation of soy and casein protein may have positive effects on indices of bone metabolism and body composition, with soy protein being more effective at increasing IGF-1, an anabolic factor, which may be due to soy isoflavones' role in upregulating Runx2 gene expression, while having little effect on lipid profiles and markers of inflammation.
Collapse
Affiliation(s)
- Kelli S George
- Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, FL, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Koudoufio M, Desjardins Y, Feldman F, Spahis S, Delvin E, Levy E. Insight into Polyphenol and Gut Microbiota Crosstalk: Are Their Metabolites the Key to Understand Protective Effects against Metabolic Disorders? Antioxidants (Basel) 2020; 9:E982. [PMID: 33066106 PMCID: PMC7601951 DOI: 10.3390/antiox9100982] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 09/30/2020] [Accepted: 09/30/2020] [Indexed: 12/12/2022] Open
Abstract
Lifestyle factors, especially diet and nutrition, are currently regarded as essential avenues to decrease modern-day cardiometabolic disorders (CMD), including obesity, metabolic syndrome, type 2 diabetes, and atherosclerosis. Many groups around the world attribute these trends, at least partially, to bioactive plant polyphenols given their anti-oxidant and anti-inflammatory actions. In fact, polyphenols can prevent or reverse the progression of disease processes through many distinct mechanisms. In particular, the crosstalk between polyphenols and gut microbiota, recently unveiled thanks to DNA-based tools and next generation sequencing, unravelled the central regulatory role of dietary polyphenols and their intestinal micro-ecology metabolites on the host energy metabolism and related illnesses. The objectives of this review are to: (1) provide an understanding of classification, structure, and bioavailability of dietary polyphenols; (2) underline their metabolism by gut microbiota; (3) highlight their prebiotic effects on microflora; (4) discuss the multifaceted roles of their metabolites in CMD while shedding light on the mechanisms of action; and (5) underscore their ability to initiate host epigenetic regulation. In sum, the review clearly documents whether dietary polyphenols and micro-ecology favorably interact to promote multiple physiological functions on human organism.
Collapse
Affiliation(s)
- Mireille Koudoufio
- Research Centre, Sainte-Justine University Health Center, Montreal, QC H3T 1C5, Canada; (M.K.); (F.F.); (S.S.); (E.D.)
- Department of Nutrition, Université de Montréal, Montreal, QC H3T 1J4, Canada
- Institute of Nutrition and Functional Foods, Laval University, Quebec City, QC G1V 0A6, Canada;
| | - Yves Desjardins
- Institute of Nutrition and Functional Foods, Laval University, Quebec City, QC G1V 0A6, Canada;
| | - Francis Feldman
- Research Centre, Sainte-Justine University Health Center, Montreal, QC H3T 1C5, Canada; (M.K.); (F.F.); (S.S.); (E.D.)
- Department of Nutrition, Université de Montréal, Montreal, QC H3T 1J4, Canada
- Institute of Nutrition and Functional Foods, Laval University, Quebec City, QC G1V 0A6, Canada;
| | - Schohraya Spahis
- Research Centre, Sainte-Justine University Health Center, Montreal, QC H3T 1C5, Canada; (M.K.); (F.F.); (S.S.); (E.D.)
- Department of Nutrition, Université de Montréal, Montreal, QC H3T 1J4, Canada
- Institute of Nutrition and Functional Foods, Laval University, Quebec City, QC G1V 0A6, Canada;
| | - Edgard Delvin
- Research Centre, Sainte-Justine University Health Center, Montreal, QC H3T 1C5, Canada; (M.K.); (F.F.); (S.S.); (E.D.)
- Department of Biochemistry, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Emile Levy
- Research Centre, Sainte-Justine University Health Center, Montreal, QC H3T 1C5, Canada; (M.K.); (F.F.); (S.S.); (E.D.)
- Department of Nutrition, Université de Montréal, Montreal, QC H3T 1J4, Canada
- Institute of Nutrition and Functional Foods, Laval University, Quebec City, QC G1V 0A6, Canada;
- Department of Pediatrics, Université de Montréal, Montreal, QC H3T 1J4, Canada
| |
Collapse
|
14
|
Metabolism of Soy Isoflavones by Intestinal Bacteria: Genome Analysis of an Adlercreutzia Equolifaciens Strain That Does Not Produce Equol. Biomolecules 2020; 10:biom10060950. [PMID: 32586036 PMCID: PMC7355428 DOI: 10.3390/biom10060950] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/05/2020] [Accepted: 06/20/2020] [Indexed: 12/16/2022] Open
Abstract
Isoflavones are transformed in the gut into more estrogen-like compounds or into inactive molecules. However, neither the intestinal microbes nor the pathways leading to the synthesis of isoflavone-derived metabolites are fully known. In the present work, 73 fecal isolates from three women with an equol-producing phenotype were considered to harbor equol-related genes by qPCR. After typing, 57 different strains of different taxa were tested for their ability to act on the isoflavones daidzein and genistein. Strains producing small to moderate amounts of dihydrodaidzein and/or O-desmethylangolensin (O-DMA) from daidzein and dihydrogenistein from genistein were recorded. However, either alone or in several strain combinations, equol producers were not found, even though one of the strains, W18.34a (also known as IPLA37004), was identified as Adlercreutzia equolifaciens, a well-described equol-producing species. Analysis and comparison of A. equolifaciens W18.34a and A. equolifaciens DSM19450T (an equol producer bacterium) genome sequences suggested a deletion in the former involving a large part of the equol operon. Furthermore, genome comparison of A. equolifaciens and Asaccharobacter celatus (other equol-producing species) strains from databases indicated many of these also showed deletions within the equol operon. The present results contribute to our knowledge to the activity of gut bacteria on soy isoflavones.
Collapse
|
15
|
Xia Y. Correlation and association analyses in microbiome study integrating multiomics in health and disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 171:309-491. [PMID: 32475527 DOI: 10.1016/bs.pmbts.2020.04.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Correlation and association analyses are one of the most widely used statistical methods in research fields, including microbiome and integrative multiomics studies. Correlation and association have two implications: dependence and co-occurrence. Microbiome data are structured as phylogenetic tree and have several unique characteristics, including high dimensionality, compositionality, sparsity with excess zeros, and heterogeneity. These unique characteristics cause several statistical issues when analyzing microbiome data and integrating multiomics data, such as large p and small n, dependency, overdispersion, and zero-inflation. In microbiome research, on the one hand, classic correlation and association methods are still applied in real studies and used for the development of new methods; on the other hand, new methods have been developed to target statistical issues arising from unique characteristics of microbiome data. Here, we first provide a comprehensive view of classic and newly developed univariate correlation and association-based methods. We discuss the appropriateness and limitations of using classic methods and demonstrate how the newly developed methods mitigate the issues of microbiome data. Second, we emphasize that concepts of correlation and association analyses have been shifted by introducing network analysis, microbe-metabolite interactions, functional analysis, etc. Third, we introduce multivariate correlation and association-based methods, which are organized by the categories of exploratory, interpretive, and discriminatory analyses and classification methods. Fourth, we focus on the hypothesis testing of univariate and multivariate regression-based association methods, including alpha and beta diversities-based, count-based, and relative abundance (or compositional)-based association analyses. We demonstrate the characteristics and limitations of each approaches. Fifth, we introduce two specific microbiome-based methods: phylogenetic tree-based association analysis and testing for survival outcomes. Sixth, we provide an overall view of longitudinal methods in analysis of microbiome and omics data, which cover standard, static, regression-based time series methods, principal trend analysis, and newly developed univariate overdispersed and zero-inflated as well as multivariate distance/kernel-based longitudinal models. Finally, we comment on current association analysis and future direction of association analysis in microbiome and multiomics studies.
Collapse
Affiliation(s)
- Yinglin Xia
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States.
| |
Collapse
|
16
|
Inter-relationship between diet, lifestyle habits, gut microflora, and the equol-producer phenotype: baseline findings from a placebo-controlled intervention trial. Menopause 2020; 26:273-285. [PMID: 30188331 DOI: 10.1097/gme.0000000000001202] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Equol is an active metabolite of isoflavones produced by gut microbiota. It is beneficial to health; however, equol-producing ability varies greatly among individuals. These variations depend on the host's gut microbiota and lifestyle habits including diet. We investigated the relationship between the gut microbiota, lifestyle habits including diet, and equol-producing ability in postmenopausal Japanese women. METHODS We studied 58 postmenopausal Japanese women aged 48 to 69 years who visited the Sendai Medical Center in January, 2018. Self-administered questionnaires assessed their recent and remote food intake histories and lifestyle habits. Fecal microbiome analysis was performed using a next-generation sequencer. Urinary equol was measured using an immunochromatographic strip test. Women with urinary equol concentration >1.0 μM were defined as equol producers. RESULTS Equol-producing bacteria were identified in 97% (56) of women; however, only 13 (22%) were equol producers. Equol producers showed significantly higher microflora diversity (P = 0.002), and significantly different recent and remote food intake patterns compared with equol nonproducers. Higher consumption of foods such as meat, fish, soy, vegetables, and Japanese snacks positively affected microbial diversity and equol production, whereas a high intake of Ramen and smoking showed negative effects. CONCLUSION Equol production might not depend on the quantity, but on the quality of equol-producing bacteria. High microbial diversity might enhance equol production. Increasing microbial diversity through healthy lifestyle habits and habitual consumption of a wide variety of foods might be useful to maintain a healthy gut environment for equol production.
Collapse
|
17
|
Ma L, Liu G, Ding M, Zong G, Hu FB, Willett WC, Rimm EB, Manson JE, Sun Q. Isoflavone Intake and the Risk of Coronary Heart Disease in US Men and Women: Results From 3 Prospective Cohort Studies. Circulation 2020; 141:1127-1137. [PMID: 32200662 DOI: 10.1161/circulationaha.119.041306] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Whether soy products confer health benefits related to coronary heart disease (CHD) remains controversial because of inconsistent evidence. METHODS A total of 74 241 women from the NHS (Nurses' Health Study; 1984-2012), 94 233 women from the NHSII (Nurses' Health Study II; 1991-2013), and 42 226 men from the Health Professionals Follow-Up Study (1986-2012), who were free of cardiovascular disease and cancer at baseline, were included in the present analysis. Dietary data were updated every 2 to 4 years using a validated food frequency questionnaire. Nonfatal myocardial infarction and CHD deaths were adjudicated through reviewing medical records, death certificates, and other medical documents. RESULTS In these cohorts, 8359 incident CHD cases were documented during 4 826 122 person-years of follow-up. In multivariable-adjusted analyses, isoflavone intake was inversely associated with CHD (pooled hazard ratio [HR] comparing the extreme quintiles: 0.87 [95% CI, 0.81-0.94]; P=0.008). Consumption of tofu, but not soy milk, was inversely associated with the risk of CHD, with pooled HRs (95% CIs) of 0.82 (0.70-0.95; P=0.005) and 0.87 (0.69-1.10; P=0.41), respectively, comparing ≥1 serving/week with <1 serving/month. Further analyses showed that, in women, the favorable association of tofu was primarily driven by stronger inverse association of tofu intake observed in younger women before menopause and postmenopausal women without hormone use (Pinteraction=0.002). CONCLUSIONS Higher intake of isoflavones and tofu was associated with a moderately lower risk of developing CHD, and in women the favorable association of tofu were more pronounced in young women or postmenopausal women without hormone use.
Collapse
Affiliation(s)
- Le Ma
- School of Public Health, Xi'an Jiaotong University Health Science Center, China (L.M.).,Department of Nutrition (L.M., M.D., G.Z., F.B.H., W.C.W., E.B.R., Q.S.), Harvard T.H. Chan School of Public Health, Boston, MA.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China (L.M.)
| | - Gang Liu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (G.L.)
| | - Ming Ding
- Department of Nutrition (L.M., M.D., G.Z., F.B.H., W.C.W., E.B.R., Q.S.), Harvard T.H. Chan School of Public Health, Boston, MA
| | - Geng Zong
- Department of Nutrition (L.M., M.D., G.Z., F.B.H., W.C.W., E.B.R., Q.S.), Harvard T.H. Chan School of Public Health, Boston, MA
| | - Frank B Hu
- Department of Epidemiology (F.B.H., W.C.W., E.B.R., J.E.M.), Harvard T.H. Chan School of Public Health, Boston, MA.,Department of Nutrition (L.M., M.D., G.Z., F.B.H., W.C.W., E.B.R., Q.S.), Harvard T.H. Chan School of Public Health, Boston, MA.,Channing Division of Network Medicine (F.B.H., W.C.W., E.B.R., J.E.M., Q.S.)Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Walter C Willett
- Department of Epidemiology (F.B.H., W.C.W., E.B.R., J.E.M.), Harvard T.H. Chan School of Public Health, Boston, MA.,Department of Nutrition (L.M., M.D., G.Z., F.B.H., W.C.W., E.B.R., Q.S.), Harvard T.H. Chan School of Public Health, Boston, MA.,Channing Division of Network Medicine (F.B.H., W.C.W., E.B.R., J.E.M., Q.S.)Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Eric B Rimm
- Department of Epidemiology (F.B.H., W.C.W., E.B.R., J.E.M.), Harvard T.H. Chan School of Public Health, Boston, MA.,Department of Nutrition (L.M., M.D., G.Z., F.B.H., W.C.W., E.B.R., Q.S.), Harvard T.H. Chan School of Public Health, Boston, MA.,Channing Division of Network Medicine (F.B.H., W.C.W., E.B.R., J.E.M., Q.S.)Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - JoAnn E Manson
- Department of Epidemiology (F.B.H., W.C.W., E.B.R., J.E.M.), Harvard T.H. Chan School of Public Health, Boston, MA.,Channing Division of Network Medicine (F.B.H., W.C.W., E.B.R., J.E.M., Q.S.)Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA.,Division of Preventive Medicine (J.E.M.), Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Qi Sun
- Department of Nutrition (L.M., M.D., G.Z., F.B.H., W.C.W., E.B.R., Q.S.), Harvard T.H. Chan School of Public Health, Boston, MA.,Channing Division of Network Medicine (F.B.H., W.C.W., E.B.R., J.E.M., Q.S.)Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| |
Collapse
|
18
|
Modulation of equol production via different dietary regimens in an artificial model of the human colon. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.103819] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
19
|
Mickelson B, Herfel TM, Booth J, Wilson RP. Nutrition. THE LABORATORY RAT 2020:243-347. [DOI: 10.1016/b978-0-12-814338-4.00009-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
20
|
Mena P, Bresciani L, Brindani N, Ludwig IA, Pereira-Caro G, Angelino D, Llorach R, Calani L, Brighenti F, Clifford MN, Gill CIR, Crozier A, Curti C, Del Rio D. Phenyl-γ-valerolactones and phenylvaleric acids, the main colonic metabolites of flavan-3-ols: synthesis, analysis, bioavailability, and bioactivity. Nat Prod Rep 2019; 36:714-752. [PMID: 30468210 DOI: 10.1039/c8np00062j] [Citation(s) in RCA: 161] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Covering: 1958 to June 2018 Phenyl-γ-valerolactones (PVLs) and their related phenylvaleric acids (PVAs) are the main metabolites of flavan-3-ols, the major class of flavonoids in the human diet. Despite their presumed importance, these gut microbiota-derived compounds have, to date, in terms of biological activity, been considered subordinate to their parent dietary compounds, the flavan-3-ol monomers and proanthocyanidins. In this review, the role and prospects of PVLs and PVAs as key metabolites in the understanding of the health features of flavan-3-ols have been critically assessed. Among the topics covered, are proposals for a standardised nomenclature for PVLs and PVAs. The formation, bioavailability and pharmacokinetics of PVLs and PVAs from different types of flavan-3-ols are discussed, taking into account in vitro and animal studies, as well as inter-individual differences and the existence of putative flavan-3-ol metabotypes. Synthetic strategies used for the preparation of PVLs are considered and the methodologies for their identification and quantification assessed. Metabolomic approaches unravelling the role of PVLs and PVAs as biomarkers of intake are also described. Finally, the biological activity of these microbial catabolites in different experimental models is summarised. Knowledge gaps and future research are considered in this key area of dietary (poly)phenol research.
Collapse
Affiliation(s)
- Pedro Mena
- Department of Food & Drugs, University of Parma, Via Volturno 39, 43125 Parma, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Nikolic M, Konic Ristic A, González-Sarrías A, Istas G, Urpi-Sarda M, Dall'Asta M, Monfoulet LE, Cloetens L, Bayram B, Tumolo MR, Chervenkov M, Scoditti E, Massaro M, Tejera N, Abadjieva D, Chambers K, Krga I, Tomás-Barberán FA, Morand C, Feliciano R, García-Villalba R, Garcia-Aloy M, Mena P. Improving the reporting quality of intervention trials addressing the inter-individual variability in response to the consumption of plant bioactives: quality index and recommendations. Eur J Nutr 2019; 58:49-64. [PMID: 31492976 PMCID: PMC6851030 DOI: 10.1007/s00394-019-02069-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 07/23/2019] [Indexed: 02/06/2023]
Abstract
PURPOSE The quality of the study design and data reporting in human trials dealing with the inter-individual variability in response to the consumption of plant bioactives is, in general, low. There is a lack of recommendations supporting the scientific community on this topic. This study aimed at developing a quality index to assist the assessment of the reporting quality of intervention trials addressing the inter-individual variability in response to plant bioactive consumption. Recommendations for better designing and reporting studies were discussed. METHODS The selection of the parameters used for the development of the quality index was carried out in agreement with the scientific community through a survey. Parameters were defined, grouped into categories, and scored for different quality levels. The applicability of the scoring system was tested in terms of consistency and effort, and its validity was assessed by comparison with a simultaneous evaluation by experts' criteria. RESULTS The "POSITIVe quality index" included 11 reporting criteria grouped into four categories (Statistics, Reporting, Data presentation, and Individual data availability). It was supported by detailed definitions and guidance for their scoring. The quality index score was tested, and the index demonstrated to be valid, reliable, and responsive. CONCLUSIONS The evaluation of the reporting quality of studies addressing inter-individual variability in response to plant bioactives highlighted the aspects requiring major improvements. Specific tools and recommendations favoring a complete and transparent reporting on inter-individual variability have been provided to support the scientific community on this field.
Collapse
Affiliation(s)
- Marina Nikolic
- Institute for Medical Research, University of Belgrade, Belgrade, Serbia
| | - Aleksandra Konic Ristic
- Institute for Medical Research, University of Belgrade, Belgrade, Serbia.
- UCD Institute of Food and Health, University College Dublin, Belfield, Dublin, Ireland.
| | - Antonio González-Sarrías
- Laboratory of Food and Health, Research Group on Quality, Safety and Bioactivity of Plant Foods, CEBAS-CSIC, Murcia, Spain
| | - Geoffrey Istas
- Department of Nutritional Sciences, Faculty of Life Sciences and Medicine, School of Life Course Sciences, King's College London, London, UK
| | - Mireia Urpi-Sarda
- Biomarkers and Nutrimetabolomic Laboratory, Department of Nutrition, Food Sciences and Gastronomy, XaRTA, INSA, Faculty of Pharmacy and Food Sciences, University of Barcelona, Santa Coloma De Gramenet, Spain
- CIBER de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Barcelona, Spain
| | - Margherita Dall'Asta
- Human Nutrition Unit, Department of Food and Drugs, University of Parma, Medical School Building C, Via Volturno, 39, 43125, Parma, Italy
| | - Laurent-Emmanuel Monfoulet
- Unité de Nutrition Humaine (UNH), Institut National de la Recherche Agronomique (INRA), Université Clermont Auvergne, CRNH Auvergne, Clermont-Ferrand, France
| | - Lieselotte Cloetens
- Biomedical Nutrition, Pure and Applied Biochemistry, Lund University, Lund, Sweden
| | - Banu Bayram
- Department of Nutrition and Dietetics, University of Health Sciences, Istanbul, Turkey
| | - Maria Rosaria Tumolo
- Research Unit of Brindisi, Institute for Research on Population and Social Policies, National Research Council, Brindisi, Italy
| | - Mihail Chervenkov
- Faculty of Veterinary Medicine, University of Forestry, Sofia, Bulgaria
- Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Egeria Scoditti
- Institute of Clinical Physiology (IFC), National Research Council (CNR), Lecce, Italy
| | - Marika Massaro
- Institute of Clinical Physiology (IFC), National Research Council (CNR), Lecce, Italy
| | - Noemi Tejera
- Department of Nutrition and Preventive Medicine, Norwich Medical School, University of East Anglia, Norwich, UK
| | - Desislava Abadjieva
- Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Karen Chambers
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Irena Krga
- Institute for Medical Research, University of Belgrade, Belgrade, Serbia
| | - Francisco A Tomás-Barberán
- Laboratory of Food and Health, Research Group on Quality, Safety and Bioactivity of Plant Foods, CEBAS-CSIC, Murcia, Spain
| | - Christine Morand
- Unité de Nutrition Humaine (UNH), Institut National de la Recherche Agronomique (INRA), Université Clermont Auvergne, CRNH Auvergne, Clermont-Ferrand, France
| | - Rodrigo Feliciano
- Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, University of Duesseldorf, Dusseldorf, Germany
| | - Rocío García-Villalba
- Laboratory of Food and Health, Research Group on Quality, Safety and Bioactivity of Plant Foods, CEBAS-CSIC, Murcia, Spain
| | - Mar Garcia-Aloy
- Biomarkers and Nutrimetabolomic Laboratory, Department of Nutrition, Food Sciences and Gastronomy, XaRTA, INSA, Faculty of Pharmacy and Food Sciences, University of Barcelona, Santa Coloma De Gramenet, Spain
- CIBER de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Barcelona, Spain
| | - Pedro Mena
- Human Nutrition Unit, Department of Food and Drugs, University of Parma, Medical School Building C, Via Volturno, 39, 43125, Parma, Italy.
| |
Collapse
|
22
|
Anesi A, Mena P, Bub A, Ulaszewska M, Del Rio D, Kulling SE, Mattivi F. Quantification of Urinary Phenyl-γ-Valerolactones and Related Valeric Acids in Human Urine on Consumption of Apples. Metabolites 2019; 9:E254. [PMID: 31671768 PMCID: PMC6918130 DOI: 10.3390/metabo9110254] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 10/23/2019] [Accepted: 10/24/2019] [Indexed: 12/22/2022] Open
Abstract
Flavan-3-ols are dietary bioactive molecules that have beneficial effects on human health and reduce the risk of various diseases. Monomeric flavan-3-ols are rapidly absorbed in the small intestine and released in the blood stream as phase II conjugates. Polymeric flavan-3-ols are extensively metabolized by colonic gut microbiota into phenyl-γ-valerolactones and their related phenylvaleric acids. These molecules are the main circulating metabolites in humans after the ingestion of flavan-3-ol rich-products; nevertheless, they have received less attention and their role is not understood yet. Here, we describe the quantification of 8 phenyl-γ-valerolactones and 3 phenylvaleric acids in the urine of 11 subjects on consumption of apples by using UHPLC-ESI-Triple Quad-MS with pure reference compounds. Phenyl-γ-valerolactones, mainly as sulfate and glucuronic acid conjugates, reached maximum excretion between 6 and 12 after apple consumption, with a decline thereafter. Significant differences were detected in the cumulative excretion rates within subjects and in the ratio of dihydroxyphenyl-γ-valerolactone sulfate to glucuronide conjugates. This work observed for the first time the presence of two distinct metabotypes with regards to the excretion of phenyl-γ-valerolactone phase II conjugates.
Collapse
Affiliation(s)
- Andrea Anesi
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach (FEM), 38010 San Michele all'Adige, Italy.
| | - Pedro Mena
- Human Nutrition Unit, Department of Food & Drug, University of Parma, 43121 Parma, Italy.
| | - Achim Bub
- Department of Physiology and Biochemistry of Nutrition, Max Rubner-Institut, 76131 Karlsruhe, Germany.
| | - Marynka Ulaszewska
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach (FEM), 38010 San Michele all'Adige, Italy.
| | - Daniele Del Rio
- School of Advanced Studies on Food and Nutrition, and Microbiome Research Hub, University of Parma, 43121 Parma, Italy.
- Human Nutrition Unit, Department of Veterinary Medicine, University of Parma, 43121 Parma, Italy.
| | - Sabine E Kulling
- Department of Safety and Quality of Fruit and Vegetables, Max Rubner-Institut, 76131 Karlsruhe, Germany.
| | - Fulvio Mattivi
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach (FEM), 38010 San Michele all'Adige, Italy.
- Bioorganic Chemistry Laboratory, Department of Physics, University of Trento, 38123 Povo, Italy.
| |
Collapse
|
23
|
Dai S, Pan M, El-Nezami HS, Wan JMF, Wang MF, Habimana O, Lee JCY, Louie JCY, Shah NP. Effects of Lactic Acid Bacteria-Fermented Soymilk on Isoflavone Metabolites and Short-Chain Fatty Acids Excretion and Their Modulating Effects on Gut Microbiota. J Food Sci 2019; 84:1854-1863. [PMID: 31206699 DOI: 10.1111/1750-3841.14661] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 04/13/2019] [Accepted: 04/28/2019] [Indexed: 12/26/2022]
Abstract
Lactobacillus rhamnosus strain ASCC 1520 with high soy isoflavone transformation ability was used to ferment soymilk and added to the diet of mice. The impact of L. rhamnosus fermentation on soy isoflavone metabolites and intestinal bacterial community, in conjunction with fecal enzyme activity and short-chain fatty acids (SCFA) excretion was evaluated. Antibiotics intervention resulted in a decrease in fecal enzyme activities and SCFA. Although long-term intake of soymilk or L. rhamnosus-fermented soymilk did not affect the fecal β-glucuronidase and β-galactosidase activities, it improved the β-glucosidase activity when antibiotics were concomitantly administered. Soymilk or fermented soymilk administration increased the isoflavone metabolites (O-DMA and equol) excreted in urine. Antibiotics decreased the daidzein excretion and its metabolites but showed little effect on glycitein and genistein excretion. Principal coordinates analysis (PCoA) of the 16s rRNA gene sequencing data found a remarkable shift in gut microbiota after soymilk administration and antibiotics treatment. Matastats test of the relative abundance of bacterial taxa revealed Odoribacter (Bacteroidales family), Lactobacillus (Lactobacillales order), and Alistipes (Rikenellaceae family) were enriched in soymilk while bacterial taxa from Bacteroides and Lactobacillus were enriched in L. rhamnosus-fermented soymilk. Furthermore, there was less decrease in bacterial taxa with fermented soymilk group even when antibiotics were concomitantly administered. Overall, this study revealed that the gut microbiota of a healthy host is enough for the whole isoflavone metabolism under normal conditions. Feeding mice with L. rhamnosus-fermented soymilk improved fecal enzyme activity and kept the balance of the gut mirobiota when antibiotics were used. PRACTICAL APPLICATION: Feeding mice with L. rhamnosus-fermented soymilk improved fecal enzyme activity and kept the balance of the gut mirobiota when antibiotics were used.
Collapse
Affiliation(s)
- Shuhong Dai
- Dept. of Non-communicable Disease Prevention and Control, Shenzhen Nanshan Center for Chronic Disease Control, Shenzhen, Guangdong, P. R. China, 518054.,Food and Nutritional Sciences, School of Biological Sciences, The Univ. of Hong Kong, Pokfulam Road, Hong Kong
| | - Mingfang Pan
- Food and Nutritional Sciences, School of Biological Sciences, The Univ. of Hong Kong, Pokfulam Road, Hong Kong
| | - Hani S El-Nezami
- Food and Nutritional Sciences, School of Biological Sciences, The Univ. of Hong Kong, Pokfulam Road, Hong Kong
| | - Jennifer M F Wan
- Food and Nutritional Sciences, School of Biological Sciences, The Univ. of Hong Kong, Pokfulam Road, Hong Kong
| | - M F Wang
- Food and Nutritional Sciences, School of Biological Sciences, The Univ. of Hong Kong, Pokfulam Road, Hong Kong
| | - Olivier Habimana
- Food and Nutritional Sciences, School of Biological Sciences, The Univ. of Hong Kong, Pokfulam Road, Hong Kong
| | - Jetty C Y Lee
- Food and Nutritional Sciences, School of Biological Sciences, The Univ. of Hong Kong, Pokfulam Road, Hong Kong
| | - Jimmy C Y Louie
- Food and Nutritional Sciences, School of Biological Sciences, The Univ. of Hong Kong, Pokfulam Road, Hong Kong
| | - Nagendra P Shah
- Food and Nutritional Sciences, School of Biological Sciences, The Univ. of Hong Kong, Pokfulam Road, Hong Kong
| |
Collapse
|
24
|
Šošić-Jurjević B, Lütjohann D, Renko K, Filipović B, Radulović N, Ajdžanović V, Trifunović S, Nestorović N, Živanović J, Manojlović Stojanoski M, Kӧhrle J, Milošević V. The isoflavones genistein and daidzein increase hepatic concentration of thyroid hormones and affect cholesterol metabolism in middle-aged male rats. J Steroid Biochem Mol Biol 2019; 190:1-10. [PMID: 30885834 DOI: 10.1016/j.jsbmb.2019.03.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 03/06/2019] [Accepted: 03/13/2019] [Indexed: 01/05/2023]
Abstract
We examined whether isoflavones interfere with thyroid homeostasis, increase hepatic thyroid hormone concentrations and affect cholesterol metabolism in middle-aged (MA) male rats. Thirteen-month-old Wistar rats were injected subcutaneously with 35 mg/kg b.w./day of genistein, daidzein or vehicle (controls) for four weeks. Hepatic Dio1 gene expression was up-regulated by 70% (p < 0.001 for both) and Dio1 enzyme activity increased by 64% after genistein (p < 0.001) and 73% after daidzein treatment (p < 0.0001). Hepatic T3 was 75% higher (p < 0.05 for both), while T4 increased only after genistein treatment. Serum T4 concentrations were 31% lower in genistein- and 49% lower in dadzein-treated rats (p < 0.001 for both) compared with controls. Hepatic Cyp7a1 gene expression was up-regulated by 40% after genistein and 32% after daidzein treatment (p < 0.05 for both), in agreement with a 7α-hydroxycholesterol increase of 50% (p < 0.01) and 88% (p < 0.001), respectively. Serum 24- and 27-hydroxycholesterol were 30% lower (p < 0.05 for both), while only 24-hydroxycholesterol was decreased in the liver by 45% after genistein (p < 0.05) and 39% (p < 0.01) after dadzein treatment. Serum concentration of the cholesterol precursor desmosterol was 32% (p < 0.05) lower only after dadzein treatment alone, while both isoflavones elevated this parameter in the liver by 45% (p < 0.01). In conclusion, isoflavones increased T3 availability in the liver of MA males, despite decreasing serum T4. Hepatic increase of T3 possibly contributes to activation of the neutral pathway of cholesterol degradation into bile acids in the liver. While isoflavones obviously have the potential to trigger multiple mechanisms involved in cholesterol metabolism and oxysterol production, they failed to induce any hypocholesterolemic effect.
Collapse
Affiliation(s)
- B Šošić-Jurjević
- Institute for Biological Research, "Siniša Stanković", University of Belgrade, Despot Stefan Blvd. 142, 11000 Belgrade, Serbia.
| | - D Lütjohann
- Institut für Klinische Chemie und Klinische Pharmakologie, Universitätsklinikum Bonn, Sigmund-Freud-Str. 25, D-53127 Bonn, Germany
| | - K Renko
- Institut für Experimentelle Endokrinologie, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, D-13353 Berlin, Germany
| | - B Filipović
- Institute for Biological Research, "Siniša Stanković", University of Belgrade, Despot Stefan Blvd. 142, 11000 Belgrade, Serbia
| | - N Radulović
- Department of Chemistry, Faculty of Science and Mathematics, University of Niš, Višegradska 33, 18000 Niš, Serbia
| | - V Ajdžanović
- Institute for Biological Research, "Siniša Stanković", University of Belgrade, Despot Stefan Blvd. 142, 11000 Belgrade, Serbia
| | - S Trifunović
- Institut für Klinische Chemie und Klinische Pharmakologie, Universitätsklinikum Bonn, Sigmund-Freud-Str. 25, D-53127 Bonn, Germany
| | - N Nestorović
- Institute for Biological Research, "Siniša Stanković", University of Belgrade, Despot Stefan Blvd. 142, 11000 Belgrade, Serbia
| | - J Živanović
- Institute for Biological Research, "Siniša Stanković", University of Belgrade, Despot Stefan Blvd. 142, 11000 Belgrade, Serbia
| | - M Manojlović Stojanoski
- Institute for Biological Research, "Siniša Stanković", University of Belgrade, Despot Stefan Blvd. 142, 11000 Belgrade, Serbia
| | - J Kӧhrle
- Institut für Experimentelle Endokrinologie, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, D-13353 Berlin, Germany
| | - V Milošević
- Institute for Biological Research, "Siniša Stanković", University of Belgrade, Despot Stefan Blvd. 142, 11000 Belgrade, Serbia
| |
Collapse
|
25
|
Zheng W, Ma Y, Zhao A, He T, Lyu N, Pan Z, Mao G, Liu Y, Li J, Wang P, Wang J, Zhu B, Zhang Y. Compositional and functional differences in human gut microbiome with respect to equol production and its association with blood lipid level: a cross-sectional study. Gut Pathog 2019; 11:20. [PMID: 31168326 PMCID: PMC6509798 DOI: 10.1186/s13099-019-0297-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 04/05/2019] [Indexed: 12/24/2022] Open
Abstract
Background Gut microbiota affects lipid metabolism interactively with diet. Equol, a metabolite of isoflavones produced by gut bacteria, may contribute substantially in beneficial lipid-lowering effects. This study aimed to examine equol production-related gut microbiota differences among humans and its consequent association with blood lipid levels. Results Characterization of the gut microbiota by deep shotgun sequencing and serum lipid profiles were compared between equol producers and non-producers. Gut microbiota differed significantly at the community level between equol producers and non-producers (P = 0.0062). At the individual level, 32 species associated with equol production were identified. Previously reported equol-producing related species Adlercreutzia equolifaciens and Bifidobacterium bifidum showed relatively higher abundance in this study in equol producers compared to non-producers (77.5% vs. 22.5%; 72.0% vs. 28.0%, respectively). Metabolic pathways also showed significant dissimilarity between equol producers and non-producers (P = 0.001), and seven metabolic pathways were identified to be associated with the equol concentration in urine. Previously reported equol production-related gene sequences in A. equolifaciens 19450T showed higher relative abundance in equol producers than in non-producers. Additionally, we found that equol production was significantly associated with the prevalence of dyslipidemia, including a marginal increase in serum lipids (27.1% vs. 50.0%, P = 0.02). Furthermore, equol production was not determined by intake of soy isoflavones, which suggested that gut microbiota is critical in the equol production process. Conclusion Both content and functioning of the microbial gut community significantly differed between equol producers and non-producers. Further, equol producers showed lower prevalences of dyslipidemia, which suggests the important role that equol might play in lipid metabolism by gut microbiota. Electronic supplementary material The online version of this article (10.1186/s13099-019-0297-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wei Zheng
- 1Division of Endocrinology and Metabolism, Department of Obstetrics, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China.,2Department of Social Medicine and Health Education, School of Public Health, Peking University Health Science Center, Beijing, China
| | - Yue Ma
- 3CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Science, Beichen West Road 1, Haidian District, Beijing, 100101 China.,4University of Chinese Academy of Science, Beijing, China.,Beijing Key Laboratory of Microbial Drug Resistance and Resistome, Beijing, China
| | - Ai Zhao
- 2Department of Social Medicine and Health Education, School of Public Health, Peking University Health Science Center, Beijing, China
| | - Tingchao He
- 6Department of Nutrition and Food Hygiene, School of Public Health, Peking University Health Science Center, Xueyuan Road 38, Haidian District, Beijing, 100191 China
| | - Na Lyu
- 3CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Science, Beichen West Road 1, Haidian District, Beijing, 100101 China.,Beijing Key Laboratory of Microbial Drug Resistance and Resistome, Beijing, China
| | - Ziqi Pan
- 6Department of Nutrition and Food Hygiene, School of Public Health, Peking University Health Science Center, Xueyuan Road 38, Haidian District, Beijing, 100191 China
| | - Geqi Mao
- 6Department of Nutrition and Food Hygiene, School of Public Health, Peking University Health Science Center, Xueyuan Road 38, Haidian District, Beijing, 100191 China
| | - Yan Liu
- 6Department of Nutrition and Food Hygiene, School of Public Health, Peking University Health Science Center, Xueyuan Road 38, Haidian District, Beijing, 100191 China
| | - Jing Li
- 3CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Science, Beichen West Road 1, Haidian District, Beijing, 100101 China.,Beijing Key Laboratory of Microbial Drug Resistance and Resistome, Beijing, China
| | - Peiyu Wang
- 2Department of Social Medicine and Health Education, School of Public Health, Peking University Health Science Center, Beijing, China
| | - Jun Wang
- 3CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Science, Beichen West Road 1, Haidian District, Beijing, 100101 China
| | - Baoli Zhu
- 3CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Science, Beichen West Road 1, Haidian District, Beijing, 100101 China.,4University of Chinese Academy of Science, Beijing, China.,Beijing Key Laboratory of Microbial Drug Resistance and Resistome, Beijing, China.,7Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,8Department of Pathogenic Biology, School of Basic Medical Sciences, Southwest Medical University, Zhongshan Road, Luzhou, Sichuan China
| | - Yumei Zhang
- 6Department of Nutrition and Food Hygiene, School of Public Health, Peking University Health Science Center, Xueyuan Road 38, Haidian District, Beijing, 100191 China.,Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, China
| |
Collapse
|
26
|
Sekikawa A, Ihara M, Lopez O, Kakuta C, Lopresti B, Higashiyama A, Aizenstein H, Chang YF, Mathis C, Miyamoto Y, Kuller L, Cui C. Effect of S-equol and Soy Isoflavones on Heart and Brain. Curr Cardiol Rev 2019; 15:114-135. [PMID: 30516108 PMCID: PMC6520578 DOI: 10.2174/1573403x15666181205104717] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 11/26/2018] [Accepted: 11/26/2018] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Observational studies in Asia show that dietary intake of soy isoflavones had a significant inverse association with coronary heart disease (CHD). A recent randomized controlled trial (RCT) of soy isoflavones on atherosclerosis in the US, however, failed to show their benefit. The discrepancy may be due to the much lower prevalence of S-equol producers in Westerners: Only 20-30% of Westerners produce S-equol in contrast to 50-70% in Asians. S-equol is a metabolite of dietary soy isoflavone daidzein by gut microbiome and possesses the most antiatherogenic properties among all isoflavones. Several short-duration RCTs documented that soy isoflavones improves arterial stiffness. Accumulating evidence shows that both atherosclerosis and arterial stiffness are positively associated with cognitive decline/dementia. Therefore, potentially, soy isoflavones, especially S-equol, are protective against cognitive decline/dementia. METHODS/RESULTS This narrative review of clinical and epidemiological studies provides an overview of the health benefits of soy isoflavones and introduces S-equol. Second, we review recent evidence on the association of soy isoflavones and S-equol with CHD, atherosclerosis, and arterial stiffness as well as the association of atherosclerosis and arterial stiffness with cognitive decline/ dementia. Third, we highlight recent studies that report the association of soy isoflavones and S-equol with cognitive decline/dementia. Lastly, we discuss the future directions of clinical and epidemiological research on the relationship of S-equol and CHD and dementia. CONCLUSIONS Evidence from observational studies and short-term RCTs suggests that S-equol is anti-atherogenic and improves arterial stiffness and may prevent CHD and cognitive impairment/ dementia. Well-designed long-term (≥ 2years) RCTs should be pursued.
Collapse
Affiliation(s)
- Akira Sekikawa
- Address correspondence to this author at the Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, 130 North Bellefield Avenue, Suite 336, Pittsburgh, PA 15213, USA; Tel: 412-383-1063; Fax: 412-648-4401;
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Sri Harsha PSC, Wahab RA, Garcia-Aloy M, Madrid-Gambin F, Estruel-Amades S, Watzl B, Andrés-Lacueva C, Brennan L. Biomarkers of legume intake in human intervention and observational studies: a systematic review. GENES AND NUTRITION 2018; 13:25. [PMID: 30214640 PMCID: PMC6131749 DOI: 10.1186/s12263-018-0614-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 08/14/2018] [Indexed: 11/10/2022]
Abstract
There is a growing interest in assessing dietary intake more accurately across different population groups, and biomarkers have emerged as a complementary tool to replace traditional dietary assessment methods. The purpose of this study was to conduct a systematic review of the literature available and evaluate the applicability and validity of biomarkers of legume intake reported across various observational and intervention studies. A systematic search in PubMed, Scopus, and ISI Web of Knowledge identified 44 studies which met the inclusion criteria for the review. Results from observational studies focused on soy or soy-based foods and demonstrated positive correlations between soy intake and urinary, plasma or serum isoflavonoid levels in different population groups. Similarly, intervention studies demonstrated increased genistein and daidzein levels in urine and plasma following soy intake. Both genistein and daidzein exhibited dose-response relationships. Other isoflavonoid levels such as O-desmethylangolensin (O-DMA) and equol were also reported to increase following soy consumption. Using a developed scoring system, genistein and daidzein can be considered as promising candidate markers for soy consumption. Furthermore, genistein and daidzein also served as good estimates of soy intake as evidenced from long-term exposure studies marking their status as validated biomarkers. On the contrary, only few studies indicated proposed biomarkers for pulses intake, with pipecolic acid and S-methylcysteine reported as markers reflecting dry bean consumption, unsaturated aliphatic, hydroxyl-dicarboxylic acid related to green beans intake and trigonelline reported as marker of peas consumption. However, data regarding criteria such as specificity, dose-response and time-response relationship, reliability, and feasibility to evaluate the validity of these markers is lacking. In conclusion, despite many studies suggesting proposed biomarkers for soy, there is a lack of information on markers of other different subtypes of legumes. Further discovery and validation studies are needed in order to identify reliable biomarkers of legume intake.
Collapse
Affiliation(s)
- Pedapati S C Sri Harsha
- 1UCD School of Agriculture and Food Science, UCD Institute of Food and Health, UCD, Belfield, Dublin 4, Ireland
| | - Roshaida Abdul Wahab
- 1UCD School of Agriculture and Food Science, UCD Institute of Food and Health, UCD, Belfield, Dublin 4, Ireland
| | - Mar Garcia-Aloy
- 2Biomarkers and Nutrimetabolomic Laboratory, Department of Nutrition, Food Sciences and Gastronomy, XaRTA, INSA, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain.,3CIBER de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Barcelona, Spain
| | - Francisco Madrid-Gambin
- 2Biomarkers and Nutrimetabolomic Laboratory, Department of Nutrition, Food Sciences and Gastronomy, XaRTA, INSA, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain.,3CIBER de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Barcelona, Spain
| | - Sheila Estruel-Amades
- 2Biomarkers and Nutrimetabolomic Laboratory, Department of Nutrition, Food Sciences and Gastronomy, XaRTA, INSA, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Bernhard Watzl
- 4Department of Physiology and Biochemistry of Nutrition, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Karlsruhe, Germany
| | - Cristina Andrés-Lacueva
- 2Biomarkers and Nutrimetabolomic Laboratory, Department of Nutrition, Food Sciences and Gastronomy, XaRTA, INSA, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain.,3CIBER de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Barcelona, Spain
| | - Lorraine Brennan
- 1UCD School of Agriculture and Food Science, UCD Institute of Food and Health, UCD, Belfield, Dublin 4, Ireland
| |
Collapse
|
28
|
Monteiro NE, Queirós LD, Lopes DB, Pedro AO, Macedo GA. Impact of microbiota on the use and effects of isoflavones in the relief of climacteric symptoms in menopausal women – A review. J Funct Foods 2018. [DOI: 10.1016/j.jff.2017.12.043] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
29
|
de Souza EL, de Albuquerque TMR, Dos Santos AS, Massa NML, de Brito Alves JL. Potential interactions among phenolic compounds and probiotics for mutual boosting of their health-promoting properties and food functionalities - A review. Crit Rev Food Sci Nutr 2018; 59:1645-1659. [PMID: 29377718 DOI: 10.1080/10408398.2018.1425285] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Several foods are rich sources of phenolic compounds (PC) and their beneficial effects on human health may be increased through the action of probiotics. Additionally, probiotics may use PC as substrates, increasing their survival and functionality. This review presents available studies on the effects of PC on probiotics, including their physiological functionalities, interactions and capability of surviving during exposure to gastrointestinal conditions and when incorporated into food matrices. Studies have shown that PC can improve the adhesion capacity and survival of probiotics during exposure to conditions that mimic the gastrointestinal tract. There is strong evidence that PC can modulate the composition of the gut microbiota in hosts, improving a variety of biochemical markers and risk factors for chronic diseases. Available literature also indicates that metabolites of PC formed by intestinal microorganisms, including probiotics, exert a variety of benefits on host health. These metabolites are typically more active than parental dietary PC. The presence of PC commonly enhances probiotic survival in different foods. Finally, further clinical studies need to be developed to confirm in vitro and experimental findings concerning the beneficial interactions among different PC and probiotics.
Collapse
Affiliation(s)
- Evandro Leite de Souza
- a Department of Nutrition , Health Sciences Center, Federal University of Paraíba , João Pessoa , Paraíba , Brazil
| | | | - Aldeir Sabino Dos Santos
- a Department of Nutrition , Health Sciences Center, Federal University of Paraíba , João Pessoa , Paraíba , Brazil
| | - Nayara Moreira Lacerda Massa
- a Department of Nutrition , Health Sciences Center, Federal University of Paraíba , João Pessoa , Paraíba , Brazil
| | - José Luiz de Brito Alves
- a Department of Nutrition , Health Sciences Center, Federal University of Paraíba , João Pessoa , Paraíba , Brazil
| |
Collapse
|
30
|
Jarić I, Živanović J, Miler M, Ajdžanović V, Blagojević D, Ristić N, Milošević V, Nestorović N. Genistein and daidzein treatments differently affect uterine homeostasis in the ovary-intact middle-aged rats. Toxicol Appl Pharmacol 2018; 339:73-84. [DOI: 10.1016/j.taap.2017.12.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 11/07/2017] [Accepted: 12/02/2017] [Indexed: 01/16/2023]
|
31
|
Abstract
This review summarizes the 2016 NAMS/Pfizer-Wulf H. Utian Endowed Lecture that focused on the history and basic science of soy isoflavones. Described is a personal perspective of the background and history that led to the current interest in soy and isoflavones with a specific focus on the role that soy isoflavones play in the health of postmenopausal women. This overview covers the metabolism and physiological behavior of isoflavones, their biological properties that are of potential relevance to aging, issues related to the safety of soy isoflavones, and the role of the important intestinally derived metabolite S-(-)equol.
Collapse
Affiliation(s)
- Kenneth D R Setchell
- Department of Pathology and Laboratory Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| |
Collapse
|
32
|
Šošić-Jurjević B, Lütjohann D, Jarić I, Miler M, Vojnović Milutinović D, Filipović B, Ajdžanović V, Renko K, Wirth EK, Janković S, Kӧhrle J, Milošević V. Effects of age and soybean isoflavones on hepatic cholesterol metabolism and thyroid hormone availability in acyclic female rats. Exp Gerontol 2017; 92:74-81. [PMID: 28336316 DOI: 10.1016/j.exger.2017.03.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 02/13/2017] [Accepted: 03/13/2017] [Indexed: 11/23/2022]
Abstract
Soy-food and its isoflavones, genistein (G) and daidzein (D), were reported to exert mild cholesterol-lowering effect, but the underlying mechanism is still unclear. In this research, first we studied age-related alterations in hepatic cholesterol metabolism of acyclic middle-aged (MA) female rats. Then we tested if purified isoflavones may prevent or reverse these changes, and whether putative changes in hepatic thyroid hormone availability may be associated with this effect. Serum and hepatic total cholesterol (TChol), bile acid and cholesterol precursors, as well as serum TSH and T4 concentrations, hepatic deiodinase (Dio) 1 enzyme activity and MCT8 protein expression were determined by comparing data obtained for MA with young adult (YA) intact (IC) females. Effects of subcutaneously administered G or D (35mg/kg) to MA rats were evaluated versus vehicle-treated MA females. MA IC females were characterized by: higher (p<0.05) serum TChol, lower (p<0.05) hepatic TChol and its biosynthetic precursors, lower (p<0.05) hepatic 7α-hydroxycholesterol but elevated (p<0.05) 27- and 24-hydroxycholesterol in comparison to YA IC. Both isoflavone treatments decreased (p<0.05) hepatic 27-hydroxycholesterol, G being more effective than D, without affecting any other parameter of Chol metabolism. Only G elevated hepatic Dio1 activity (p<0.05). In conclusion, age-related hypercholesteremia was associated with lower hepatic Chol synthesis and shift from main neutral (lower 7α-hydroxycholesterol) to alternative acidic pathway (higher 27-hydroxycholesterol) of Chol degradation to bile acid. Both isoflavones lowered hepatic 27-hydroxycholesterol, which may be considered beneficial. Only G treatment increased hepatic Dio1 activity, thus indicating local increase in thyroid hormones, obviously insufficient to induce prominent cholesterol-lowering effect.
Collapse
Affiliation(s)
- Branka Šošić-Jurjević
- Institute for Biological Research "Siniša Stanković", University of Belgrade, Despot Stefan Blvd. 142, 11000 Belgrade, Serbia.
| | - Dieter Lütjohann
- Institut für Klinische Chemie und Klinische Pharmakologie Universitätsklinikum Bonn, Sigmund-Freud-Str. 25, D-53127 Bonn, Germany
| | - Ivana Jarić
- Institute for Biological Research "Siniša Stanković", University of Belgrade, Despot Stefan Blvd. 142, 11000 Belgrade, Serbia
| | - Marko Miler
- Institute for Biological Research "Siniša Stanković", University of Belgrade, Despot Stefan Blvd. 142, 11000 Belgrade, Serbia
| | - Danijela Vojnović Milutinović
- Institute for Biological Research "Siniša Stanković", University of Belgrade, Despot Stefan Blvd. 142, 11000 Belgrade, Serbia
| | - Branko Filipović
- Institute for Biological Research "Siniša Stanković", University of Belgrade, Despot Stefan Blvd. 142, 11000 Belgrade, Serbia
| | - Vladimir Ajdžanović
- Institute for Biological Research "Siniša Stanković", University of Belgrade, Despot Stefan Blvd. 142, 11000 Belgrade, Serbia
| | - Kostja Renko
- Institut für Experimentelle Endokrinologie, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, D-13353 Berlin, Germany
| | - Eva Katrin Wirth
- Institut für Experimentelle Endokrinologie, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, D-13353 Berlin, Germany
| | - Snežana Janković
- Institute for Science Application in Agriculture, University of Belgrade, Despot Stefan Blvd. 68b, 11000 Belgrade, Serbia
| | - Josef Kӧhrle
- Institut für Experimentelle Endokrinologie, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, D-13353 Berlin, Germany
| | - Verica Milošević
- Institute for Biological Research "Siniša Stanković", University of Belgrade, Despot Stefan Blvd. 142, 11000 Belgrade, Serbia
| |
Collapse
|
33
|
Manach C, Milenkovic D, Van de Wiele T, Rodriguez‐Mateos A, de Roos B, Garcia‐Conesa MT, Landberg R, Gibney ER, Heinonen M, Tomás‐Barberán F, Morand C. Addressing the inter-individual variation in response to consumption of plant food bioactives: Towards a better understanding of their role in healthy aging and cardiometabolic risk reduction. Mol Nutr Food Res 2017; 61:1600557. [PMID: 27687784 PMCID: PMC5484307 DOI: 10.1002/mnfr.201600557] [Citation(s) in RCA: 148] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Revised: 09/08/2016] [Accepted: 09/13/2016] [Indexed: 12/21/2022]
Abstract
Bioactive compounds in plant-based foods have health properties that contribute to the prevention of age-related chronic diseases, particularly cardiometabolic disorders. Conclusive proof and understanding of these benefits in humans is essential in order to provide effective dietary recommendations but, so far, the evidence obtained from human intervention trials is limited and contradictory. This is partly due to differences between individuals in the absorption, distribution, metabolism and excretion of bioactive compounds, as well as to heterogeneity in their biological response regarding cardiometabolic health outcomes. Identifying the main factors underlying inter-individual differences, as well as developing new and innovative methodologies to account for such variability constitute an overarching goal to ultimately optimize the beneficial health effects of plant food bioactives for each and every one of us. In this respect, this position paper from the COST Action FA1403-POSITIVe examines the main factors likely to affect the individual responses to consumption of plant food bioactives and presents perspectives for assessment and consideration of inter-individual variability.
Collapse
Affiliation(s)
- Claudine Manach
- INRA, UMR 1019, UNH, CRNH Auvergne, F‐63000 Clermont‐Ferrand; Clermont UniversitéUniversité d'AuvergneUnité de Nutrition HumaineBP 10448F‐63000Clermont‐FerrandFrance
| | - Dragan Milenkovic
- INRA, UMR 1019, UNH, CRNH Auvergne, F‐63000 Clermont‐Ferrand; Clermont UniversitéUniversité d'AuvergneUnité de Nutrition HumaineBP 10448F‐63000Clermont‐FerrandFrance
| | - Tom Van de Wiele
- Center for Microbial Ecology and Technology (CMET)Ghent UniversityGhentBelgium
| | - Ana Rodriguez‐Mateos
- Division of Cardiology, Pulmonology and Vascular MedicineMedical FacultyUniversity of DüsseldorfGermany
| | - Baukje de Roos
- Rowett Institute of Nutrition and HealthUniversity of AberdeenAberdeenUK
| | - Maria Teresa Garcia‐Conesa
- Research Group on Quality, Safety and Bioactivity of Plant FoodsCEBAS‐CSICCampus de EspinardoMurciaSpain
| | - Rikard Landberg
- Department of Food ScienceSwedish University of Agricultural SciencesUppsalaSweden
- Nutritional Epidemiology UnitInstitute of Environmental MedicineKarolinska InstitutetSolnaSweden
| | - Eileen R. Gibney
- UCD Institute of Food and HealthUniversity College DublinDublinRepublic of Ireland
| | - Marina Heinonen
- Department of Food and Environmental SciencesFood ChemistryUniversity of HelsinkiFinland
| | - Francisco Tomás‐Barberán
- Research Group on Quality, Safety and Bioactivity of Plant FoodsCEBAS‐CSICCampus de EspinardoMurciaSpain
| | - Christine Morand
- INRA, UMR 1019, UNH, CRNH Auvergne, F‐63000 Clermont‐Ferrand; Clermont UniversitéUniversité d'AuvergneUnité de Nutrition HumaineBP 10448F‐63000Clermont‐FerrandFrance
| |
Collapse
|
34
|
Igase M, Igase K, Tabara Y, Ohyagi Y, Kohara K. Cross-sectional study of equol producer status and cognitive impairment in older adults. Geriatr Gerontol Int 2017; 17:2103-2108. [PMID: 28345266 DOI: 10.1111/ggi.13029] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 01/12/2017] [Accepted: 01/25/2017] [Indexed: 11/30/2022]
Abstract
AIM It is well known that consumption of isoflavones reduces the risk of cardiovascular disease. However, the effectiveness of isoflavones in preventing dementia is controversial. A number of intervention studies have produced conflicting results. One possible reason is that the ability to produce equol, a metabolite of a soy isoflavone, differs greatly in individuals. In addition to existing data, we sought to confirm whether an apparent beneficial effect in cognitive function is observed after soy consumption in equol producers compared with non-producers. METHODS The present study was a cross-sectional, observational study of 152 (male/female = 61/91, mean age 69.2 ± 9.2 years) individuals. Participants were divided into two groups according to equol production status, which was determined using urine samples collected after a soy challenge test. Cognitive function was assessed using two computer-based questionnaires (touch panel-type dementia assessment scale [TDAS] and mild cognitive impairment [MCI] screen). RESULTS Overall, 60 (40%) of 152 participants were equol producers. Both TDAS and prevalence of MCI were significantly higher in the equol producer group than in the non-producer group. In univariate analyses, TDAS significantly correlated with age, serum creatinine, estimated glomerular filtration rate and low-density lipoprotein cholesterol. In multiple regression analysis using TDAS as a dependent variable, equol producer (β = 0.236, P = 0.005) was selected as an independent variable. In addition, multiple logistic regression analysis to assess the presence of MCI showed that being an equol producer was an independent risk factor for MCI (odds ratio 3.961). CONCLUSIONS Compared with equol non-producers, equol producers showed an apparent beneficial effect in cognitive function after soy intake. Geriatr Gerontol Int 2017; 17: 2103-2108.
Collapse
Affiliation(s)
- Michiya Igase
- Department of Geriatric Medicine and Neurology, Ehime University Graduate School of Medicine, Japan
| | - Keiji Igase
- Department of Neurosurgery, Washokai Sadamoto Hospital, Japan
| | - Yasuharu Tabara
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Japan
| | - Yasumasa Ohyagi
- Department of Geriatric Medicine and Neurology, Ehime University Graduate School of Medicine, Japan
| | - Katsuhiko Kohara
- The Faculty of Collaborative Regional Innovation, Ehime University, Japan
| |
Collapse
|
35
|
Being overweight or obese is associated with harboring a gut microbial community not capable of metabolizing the soy isoflavone daidzein to O-desmethylangolensin in peri- and post-menopausal women. Maturitas 2017; 99:37-42. [PMID: 28364866 DOI: 10.1016/j.maturitas.2017.02.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 01/18/2017] [Accepted: 02/06/2017] [Indexed: 01/15/2023]
Abstract
OBJECTIVE Obesity can be a considerable health concern for peri- and post-menopausal women. Evidence suggests an association between the gut microbiome and obesity. The study objective was to evaluate the association between being overweight or obese and phenotypic markers of having an overall gut microbial environment not capable of metabolizing the isoflavone daidzein to equol or O-desmethylangolensin (ODMA). STUDY DESIGN Cross-sectional study of 137 peri- and 218 post-menopausal women, aged 44-55 years, who consumed at least three servings per week of soy (source of daidzein). Equol and ODMA producers and non-producers were identified based on urinary concentrations of daidzein, equol and ODMA in a 24-h urine sample. MAIN OUTCOME MEASURES Mean body mass index (BMI) and odds of obesity. RESULTS Fifty-one women were ODMA non-producers and 226 were equol non-producers. The ODMA non-producer phenotype was positively associated with obesity (OR: 3.33, 95% CI: 1.53, 7.23), and mean BMI was significantly higher in non-producers (28.9kg/m2) than in producers (26.7kg/m2), after adjusting for age, ethnicity, and menopausal status. Positive associations with being obese were observed in both peri-menopausal (OR=3.92, 95% CI: 0.90, 17.0) and post-menopausal (OR=3.00, 95% CI: 1.22, 7.70) women. The equol non-producer phenotype was not associated with obesity (OR=1.13, 95% CI: 0.64, 1.98), and mean BMI was not significantly different between equol producers (27.3kg/m2) and non-producers (26.5kg/m2). CONCLUSIONS These results suggest that the ODMA non-producer phenotype is associated with obesity in peri- and post-menopausal women. Further work is needed to confirm these observations in additional populations and to evaluate possible mechanisms.
Collapse
|
36
|
Relationship between equol producer status and metabolic parameters in 743 Japanese women: equol producer status is associated with antiatherosclerotic conditions in women around menopause and early postmenopause. Menopause 2017; 24:216-224. [DOI: 10.1097/gme.0000000000000743] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
37
|
Reverri EJ, Slupsky CM, Mishchuk DO, Steinberg FM. Metabolomics reveals differences between three daidzein metabolizing phenotypes in adults with cardiometabolic risk factors. Mol Nutr Food Res 2017; 61. [PMID: 27364093 DOI: 10.1002/mnfr.201600132] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 06/09/2016] [Accepted: 06/10/2016] [Indexed: 01/04/2023]
Abstract
SCOPE The soy isoflavone, daidzein, is metabolized by gut microbiota to O-desmethylangolensin (ODMA) and/or equol. Producing equol is postulated as a contributing factor for the beneficial effects of soy. METHODS AND RESULTS This randomized, controlled, cross-over design used an untargeted metabolomic approach to assess the metabolic profile of different daidzein metabolizers. Adults (n = 17) with cardiometabolic risk factors received soy nuts or control food for 4 weeks, separated by a 2-week washout. No significant differences were detected pre- and postintervention and between interventions. Examination of the ability to metabolize daidzein revealed three groups: ODMA only producers (n = 4), equol + ODMA producers (n = 8), and nonproducers (n = 5). Analysis of the serum metabolome revealed nonproducers could be distinguished from ODMA-only and equol + ODMA producers. Differences between these phenotypes were related to obesity and metabolic risk (methionine, asparagine, and trimethylamine) with equol + ODMA producers having lower concentrations, yet paradoxically higher pro-inflammatory cytokines. In urine, nonproducers clustered with ODMA producers and were distinct from equol + ODMA producers. Urinary metabolite profiles revealed significantly higher excretion of fumarate and 2-oxoglutarate, as well as pyroglutamate, alanine, and the gut microbial metabolite dimethylamine in equol + ODMA producers. CONCLUSION These results emphasize that the serum and urine metabolomes are distinct based on the ability to metabolize isoflavones.
Collapse
Affiliation(s)
| | - Carolyn M Slupsky
- Department of Nutrition, University of California, Davis, CA, USA
- Department of Food Science and Technology, University of California, Davis, CA, USA
| | - Darya O Mishchuk
- Department of Food Science and Technology, University of California, Davis, CA, USA
| | | |
Collapse
|
38
|
Cassidy A, Minihane AM. The role of metabolism (and the microbiome) in defining the clinical efficacy of dietary flavonoids. Am J Clin Nutr 2017; 105:10-22. [PMID: 27881391 PMCID: PMC5183723 DOI: 10.3945/ajcn.116.136051] [Citation(s) in RCA: 327] [Impact Index Per Article: 40.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 10/13/2016] [Indexed: 01/10/2023] Open
Abstract
At a population level, there is growing evidence of the beneficial effects of dietary flavonoids on health. However, there is extensive heterogeneity in the response to increased intake, which is likely mediated via wide interindividual variability in flavonoid absorption and metabolism. Flavonoids are extensively metabolized by phase I and phase II metabolism (which occur predominantly in the gastrointestinal tract and liver) and colonic microbial metabolism. A number of factors, including age, sex, and genotype, may affect these metabolic processes. In addition, food composition and flavonoid source are likely to affect bioavailability, and emerging data suggest a critical role for the microbiome. This review will focus on the current knowledge for the main subclasses of flavonoids, including anthocyanins, flavonols, flavan-3-ols, and flavanones, for which there is growing evidence from prospective studies of beneficial effects on health. The identification of key factors that govern metabolism and an understanding of how the differential capacity to metabolize these bioactive compounds affect health outcomes will help establish how to optimize intakes of flavonoids for health benefits and in specific subgroups. We identify research areas that need to be addressed to further understand important determinants of flavonoid bioavailability and metabolism and to advance the knowledge base that is required to move toward the development of dietary guidelines and recommendations for flavonoids and flavonoid-rich foods.
Collapse
Affiliation(s)
- Aedín Cassidy
- Department of Nutrition and Preventive Medicine, Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| | | |
Collapse
|
39
|
Abstract
With the growth of age, the amount of estrogens produced by the human body will get less and less. Studies have shown that estrogen deficiency may cause many kinds of diseases, such as cardiovascular diseases, osteoporosis, and syndrome of menopause. Estrogens are also distributed extensively in numerous types of plants. Since there is a trace amount of natural estrogen in plants, our body can achieve continuous phytoestrogen supplementation while our health will not be influenced or damaged by the absorbed phytoestrogens in diets. After being absorbed, the phytoestrogens in diets may be converted by intestinal microflora to different metabolites with higher estrogenic activity. This review summarizes the types and distributions of phytoestrogens in diets, their metabolism, metabolites and bioactivities, with an aim to provide some guidelines for further study and utilization of microbial biotransforming metabolites of phytoestrogens.
Collapse
|
40
|
Davinelli S, Scapagnini G, Marzatico F, Nobile V, Ferrara N, Corbi G. Influence of equol and resveratrol supplementation on health-related quality of life in menopausal women: A randomized, placebo-controlled study. Maturitas 2016; 96:77-83. [PMID: 28041599 DOI: 10.1016/j.maturitas.2016.11.016] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 10/26/2016] [Accepted: 11/25/2016] [Indexed: 12/12/2022]
Abstract
OBJECTIVE This study was designed to evaluate the effects of equol and resveratrol supplementation on health-related quality of life (HRQoL) in otherwise healthy menopausal women with hot flashes, anxiety and depressive symptoms. METHODS Sixty recently menopausal women aged 50-55 years were randomized in a 12-week, placebo-controlled trial to receive 200mg of fermented soy containing 10mg of equol and 25mg of resveratrol (1 tablet/day). The primary outcome was the change in score on the Menopause Rating Scale (MRS), used to evaluate the severity of age-/menopause-related complaints. Additional outcome measures included the subject-reported score on the Hamilton Rating Scale for Depression (HAM-D) and Nottingham Health Profile (NHP), which was used specifically to assess sleep quality. RESULTS The symptoms assessed by the MRS improved during treatment in the active group. Comparison between placebo and treatment groups revealed statistically significant improvement in particular for dryness of vagina (-85.7%) (p<0.001), heart discomfort (-78.8%; p<0.001) and sexual problems (-73.3%; p<0.001). On the HAM-D significant improvements at week 12 were seen in work and activities (-94.1%) (p<0.001). Subjects treated with equol and resveratrol also had significant differences in the sleep domain of the NHP (p<0.001). CONCLUSION These findings provide evidence that 12 weeks of dietary supplementation with equol and resveratrol may improve menopause-related quality of life in healthy women.
Collapse
Affiliation(s)
- Sergio Davinelli
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy.
| | - Giovanni Scapagnini
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Fulvio Marzatico
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | | | - Nicola Ferrara
- Department of Translational Medical Sciences, University of Naples "Federico II", Naples, Italy
| | - Graziamaria Corbi
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| |
Collapse
|
41
|
Saraf MK, Jeng YJ, Watson CS. R-equol, a synthetic metabolite of the dietary estrogen daidzein, modulates the nongenomic estrogenic effects of 17β-estradiol in pituitary tumor cells. ACTA ACUST UNITED AC 2016. [DOI: 10.1080/23273747.2016.1226697] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
42
|
Frankenfeld CL. Cardiometabolic risk and gut microbial phytoestrogen metabolite phenotypes. Mol Nutr Food Res 2016; 61. [DOI: 10.1002/mnfr.201500900] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 06/18/2016] [Accepted: 07/14/2016] [Indexed: 12/18/2022]
Affiliation(s)
- Cara L. Frankenfeld
- Department of Global and Community Health; George Mason University; Fairfax VA USA
| |
Collapse
|
43
|
Tamura M, Hori S, Nakagawa H, Yamauchi S, Sugahara T. Effects of an equol-producing bacterium isolated from human faeces on isoflavone and lignan metabolism in mice. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2016; 96:3126-3132. [PMID: 26455424 DOI: 10.1002/jsfa.7490] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 09/14/2015] [Accepted: 10/02/2015] [Indexed: 06/05/2023]
Abstract
BACKGROUND Equol is a metabolite of daidzein that is produced by intestinal microbiota. The oestrogenic activity of equol is stronger than daidzein. Equol-producing bacteria are believed to play an important role in the gut. The rod-shaped and Gram-positive anaerobic equol-producing intestinal bacterium Slackia TM-30 was isolated from healthy human faeces and its effects on urinary phyto-oestrogen, plasma and faecal lipids were assessed in adult mice. RESULTS The urinary amounts of equol in urine were significantly higher in mice receiving the equol-producing bacterium TM-30 (BAC) group than in the control (CO) group (P < 0.05). However, no significant differences were observed between the urinary amounts of daidzein, dihydrodaidzein, enterodiol, and enterolactone between the BAC and CO groups. No significant differences in the plasma lipids were observed between the two groups. The lipid content (% dry weight) in the faeces sampled on the final day of the experiment tended to be higher in the BAC group than in the CO group (P = 0.07). CONCLUSION Administration of equol-producing bacterium TM-30 affected the urinary amounts of phyto-oestrogens and the faecal lipid contents of mice. The equol-producing bacterium TM-30 likely influences the metabolism of phyto-oestrogen via changes in the gastrointestinal environment. © 2015 Society of Chemical Industry.
Collapse
Affiliation(s)
- Motoi Tamura
- National Food Research Institute of the National Agriculture and Food Research Organization, Tsukuba, Ibaraki, 305-8642, Japan
| | - Sachiko Hori
- National Food Research Institute of the National Agriculture and Food Research Organization, Tsukuba, Ibaraki, 305-8642, Japan
| | - Hiroyuki Nakagawa
- National Food Research Institute of the National Agriculture and Food Research Organization, Tsukuba, Ibaraki, 305-8642, Japan
| | - Satoshi Yamauchi
- Faculty of Agriculture, Ehime University, Matsuyama, Ehime, 790-8566, Japan
- Food and Health Sciences Research Center, Ehime University, Matsuyama, Ehime, 790-8566, Japan
| | - Takuya Sugahara
- Faculty of Agriculture, Ehime University, Matsuyama, Ehime, 790-8566, Japan
- Food and Health Sciences Research Center, Ehime University, Matsuyama, Ehime, 790-8566, Japan
| |
Collapse
|
44
|
Tracking isoflavones in whole soy flour, soy muffins and the plasma of hypercholesterolaemic adults. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.04.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
45
|
Atkinson C, Ray RM, Li W, Lin MG, Gao DL, Shannon J, Stalsberg H, Porter PL, Frankenfeld CL, Wähälä K, Thomas DB, Lampe JW. Plasma equol concentration is not associated with breast cancer and fibrocystic breast conditions among women in Shanghai, China. Nutr Res 2016; 36:863-71. [PMID: 27440541 DOI: 10.1016/j.nutres.2016.03.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 03/22/2016] [Accepted: 03/23/2016] [Indexed: 01/12/2023]
Abstract
Equol (a bacterial metabolite of the soy isoflavone daidzein) is produced by 30% to 50% of humans and may be associated with health outcomes. We hypothesized that plasma equol would be inversely associated with risks of fibrocystic breast conditions (FBC) and breast cancer (BC). Plasma from women in a breast self-examination trial in Shanghai with BC (n=269) or FBC (n=443), and age-matched controls (n=1027) was analyzed for isoflavones. Equol was grouped into categories (<20, 20-<45, and ≥45nmol/L) and, among women with daidzein ≥20nmol/L, the log10 equol:daidzein ratio was grouped into tertiles. Where available, non-cancerous tissue (NCT) adjacent to the carcinomas from women with BC were classified as non-proliferative or proliferative (n=130 and 172, respectively). The lesions from women with FBC were similarly classified (n=99 and 92, respectively). Odds ratios (OR) and 95% confidence intervals (CI) were calculated across equol categories and tertiles of log10 equol:daidzein ratio. Equol categories were not associated with FBC or BC (P>.05). For log10 equol:daidzein, compared to controls there were positive associations in the mid tertile for proliferative FBC (OR 2.06, 95% CI 1.08-3.93), BC with proliferative NCT (OR 2.95, 95% CI 1.37-6.35), and all BC regardless of histology (OR 2.37, 95% CI 1.43-3.95). However, trends in ORs with increasing plasma equol values or equol:daidzein ratios were not observed (P>.05). The results of this study do not provide evidence that equol plays a role in the etiology of these breast conditions. However, further work is needed to confirm or refute this conclusion.
Collapse
Affiliation(s)
- Charlotte Atkinson
- Bristol Dental School, University of Bristol, Bristol, UK; NIHR Biomedical Research Unit in Nutrition, Diet, and Lifestyle, University Hospitals Bristol NHS Foundation Trust and University of Bristol, Bristol, UK.
| | - Roberta M Ray
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Wenjin Li
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Ming-Gang Lin
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Dao Li Gao
- Zhong Shan Hospital Cancer Center, Shanghai, China
| | | | | | - Peggy L Porter
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | | | | - David B Thomas
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | |
Collapse
|
46
|
Equalizing equol for hot flash relief? Still more questions than answers. Menopause 2015; 22:480-2. [DOI: 10.1097/gme.0000000000000469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
47
|
Brown NM, Galandi SL, Summer SS, Zhao X, Heubi JE, King EC, Setchell KDR. S-(-)equol production is developmentally regulated and related to early diet composition. Nutr Res 2014; 34:401-9. [PMID: 24916553 DOI: 10.1016/j.nutres.2014.03.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 03/26/2014] [Accepted: 03/31/2014] [Indexed: 10/25/2022]
Abstract
S-(-)7-hydroxy-3-(4'-hydroxyphenyl)-chroman, or S-(-)equol, a biologically active intestinally derived bacterial metabolite of the soy isoflavones daidzin/daidzein, is not produced in neonatal life. Because its synthesis is dependent on equol-producing bacteria, we hypothesized that early nutrition may influence equol production. This prospective 2.5-year study determined the frequency of S-(-)equol production in healthy infants (n = 90) fed breast milk, soy infant formula, or cow's milk formula in their first year. Urinary S-(-)equol and daidzein were quantified by mass spectrometry after a standardized 3.5-day soy isoflavone challenge. Infants were tested at 6, 9, 12, 18, 24, and 36 months of age, and 3-day diet records were obtained at each visit to explore the effect of early and postweaning (>12 months) macronutrient and micronutrient dietary composition and S-(-)equol production. Use of antibiotics was also recorded. At age 6 months, none of the breast-fed infants produced S-(-)equol, whereas 3.8% and 6.0%, respectively, of soy and cow's milk formula-fed infants were equol producers. By age 3 years, 50% of the formula-fed infants were equol producers, compared with 25% of breast-fed infants. Use of antibiotics was prevalent among infants and may have impacted the stability of S-(-)equol production. No significant differences among the groups were observed in postweaning dietary intakes of total energy, carbohydrate, fiber, protein, fat, saturated fatty acids, or polyunsaturated fatty acids and the propensity to make S-(-)equol. In conclusion, S-(-)equol production is developmentally regulated and initially related to diet composition with the proportion of equol producers increasing over the first 3 years of life, with a trend for formula feeding favoring S-(-)equol production.
Collapse
Affiliation(s)
- Nadine M Brown
- Division of Clinical Mass Spectrometry, Department of Pathology and Laboratory Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Stephanie L Galandi
- Division of Clinical Mass Spectrometry, Department of Pathology and Laboratory Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Suzanne S Summer
- Center for Clinical and Translational Science and Training, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Xueheng Zhao
- Division of Clinical Mass Spectrometry, Department of Pathology and Laboratory Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - James E Heubi
- Center for Clinical and Translational Science and Training, Cincinnati Children's Hospital Medical Center, Cincinnati, OH; Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Eileen C King
- Department of Biostatistics & Epidemiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Kenneth D R Setchell
- Division of Clinical Mass Spectrometry, Department of Pathology and Laboratory Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH.
| |
Collapse
|
48
|
de Lorgeril M, Salen P. Helping women to good health: breast cancer, omega-3/omega-6 lipids, and related lifestyle factors. BMC Med 2014; 12:54. [PMID: 24669767 PMCID: PMC3987049 DOI: 10.1186/1741-7015-12-54] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 02/26/2014] [Indexed: 01/11/2023] Open
Abstract
In addition to genetic predisposition and sex hormone exposure, physical activity and a healthy diet play important roles in breast cancer (BC). Increased intake of omega-3 fatty acids (n-3) associated with decreased omega-6 (n-6), resulting in a higher n-3/n-6 ratio compared with the western diet, are inversely associated with BC risk, as shown by Yang et al. in their meta-analysis in BMC Cancer. High consumption of polyphenols and organic foods increase the n-3/n-6 ratio, and in turn may decrease BC risk. Intake of high fiber foods and foods with low glycemic index decreases insulin resistance and diabetes risk, and in turn may decrease BC risk. The modernized Mediterranean diet is an effective strategy for combining these recommendations, and this dietary pattern reduces overall cancer risk and specifically BC risk. High-risk women should also eliminate environmental endocrine disruptors, including those from foods. Drugs that decrease the n-3/n-6 ratio or that are suspected of increasing BC or diabetes risk should be used with great caution by high-risk women and women wishing to decrease their BC risk.Please see related article: http://www.biomedcentral.com/1471-2407/14/105/abstract.
Collapse
Affiliation(s)
- Michel de Lorgeril
- Laboratoire TIMC-IMAG, CNRS UMR 5525, PRETA Cœur and Nutrition, and Faculté de Médecine, Université Joseph Fourier, Grenoble, France.
| | | |
Collapse
|