1
|
Li X, Fang Y, Zhou R, Xu H, Ou Q, Tu K, Wang Y, Chen Y, Zhou R, Zhang C. High prediagnostic dietary intake of vitamin B 2 and vitamin B 6 is associated with favorable prognosis of colorectal cancer among Chinese colorectal cancer patients. Nutr Res 2024; 134:24-38. [PMID: 39847818 DOI: 10.1016/j.nutres.2024.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 12/24/2024] [Accepted: 12/24/2024] [Indexed: 01/25/2025]
Abstract
The potential impact of one-carbon metabolism (OCM)-related B vitamins (vitamin B2, B6, B12, and folate) on colorectal cancer survival warrants investigation but research is sparse. This cohort study examined the association between the prediagnostic dietary intakes of OCM-related B vitamins and colorectal cancer survival. A total of 2799 colorectal cancer patients from the Guangdong Colorectal Cancer Cohort, enrolled at baseline in 2010, were followed for mortality outcomes through 2023. Dietary data were collected from patients using a food frequency questionnaire for the year prior to their diagnosis. Multivariable Cox proportional hazards regression models were applied to calculate hazard ratios (HR) and 95% confidence intervals (95% CI) to examine the association between OCM-related B vitamins and colorectal cancer survival. Restricted cubic spline analyses and stratified analysis were performed. During the follow-up period of approximately 60.33 months, 639 deaths were documented, of which 574 were colorectal cancer-specific deaths. Dietary vitamin B2 and B6 intake was significantly associated with survivals. The adjusted HRs in the highest versus the lowest quartile of vitamin B2 intake were 0.77 (0.62-0.97) for overall survival and 0.71 (0.55-0.90) for colorectal cancer-specific survival, and vitamin B6 intake were 0.79 (0.64-0.99) for overall survival and 0.75 (0.59-0.94) for colorectal cancer-specific survival. Nonlinear associations were observed between vitamin B6 intake and both overall survival and colorectal cancer-specific survival. However, no significant association was found between vitamin B12 or folate intake and survivals. These results suggest that high prediagnostic intake of vitamin B2 and B6 may be associated with improved survivals in colorectal cancer patients.
Collapse
Affiliation(s)
- Xue Li
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Yujing Fang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ruolin Zhou
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Huan Xu
- Chronic Noncommunicable Disease Prevention and Control Department, Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| | - Qingjian Ou
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Kexin Tu
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Yifan Wang
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Yuanyuan Chen
- Chronic Noncommunicable Disease Prevention and Control Department, Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| | - Ruhua Zhou
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Caixia Zhang
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
2
|
Hood RB, Nelson J, Minguez-Alarcon L, Ford JB, Hauser R, Jones D, Liang D, Gaskins AJ. The associations between pre-conception urinary phthalate concentrations, the serum metabolome, and live birth among women undergoing assisted reproduction. ENVIRONMENTAL RESEARCH 2024; 252:119149. [PMID: 38754604 PMCID: PMC11219194 DOI: 10.1016/j.envres.2024.119149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 05/18/2024]
Abstract
BACKGROUND Phthalates are ubiquitous endocrine disruptors. Past studies have shown an association between higher preconception urinary concentrations of phthalate metabolites and lower fertility in women; however, the biological mechanisms remain unclear. Our exploratory study aimed to understand the metabolites and pathways associated with maternal preconception phthalate exposure and examine if any may underline the association between phthalate exposure and live birth using untargeted metabolomics. METHODS Participants (n = 183) were part of the Environment and Reproductive Health (EARTH) study, a prospective cohort that followed women undergoing in vitro fertilization (IVF) at the Massachusetts General Hospital Fertility Center (2005-2016). On the same day, women provided a serum sample during controlled ovarian stimulation, which was analyzed for metabolomics using liquid chromatography coupled with high-resolution mass spectrometry and two chromatography columns, and a urine sample, which was analyzed for 11 phthalate metabolites using targeted approaches. We used multivariable generalized linear models to identified metabolic features associated with urinary phthalate metabolite concentrations and live birth, followed by enriched pathway analysis. We then used a meet-in-the-middle approach to identify overlapping pathways and features. RESULTS Metabolic pathway enrichment analysis revealed 43 pathways in the C18 negative and 32 pathways in the HILIC positive columns that were significantly associated (p < 0.05) with at least one of the 11 urinary phthalate metabolites or molar sum of di-2-ethylhexyl phthalate metabolites. Lipid, amino acid, and carbohydrate metabolism were the most common pathways associated with phthalate exposure. Five pathways, tryptophan metabolism, tyrosine metabolism, biopterin metabolism, carnitine shuttle, and vitamin B6 metabolism, were also identified as being associated with at least one phthalate metabolite and live birth following IVF. CONCLUSION Our study provides further insight into the metabolites and metabolomics pathways, including amino acid, lipid, and vitamin metabolism that may underlie the observed associations between phthalate exposures and lower fertility in women.
Collapse
Affiliation(s)
- Robert B Hood
- Department of Epidemiology, Emory University Rollins School of Public Health, Atlanta, GA, USA.
| | - Jillian Nelson
- Department of Epidemiology, Emory University Rollins School of Public Health, Atlanta, GA, USA
| | - Lidia Minguez-Alarcon
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Jennifer B Ford
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Russ Hauser
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Dean Jones
- Division of Pulmonary, Allergy, & Critical Care Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Donghai Liang
- Gangarosa Department of Environmental Health, Emory University Rollins School of Public Health, Atlanta, GA, USA
| | - Audrey J Gaskins
- Department of Epidemiology, Emory University Rollins School of Public Health, Atlanta, GA, USA
| |
Collapse
|
3
|
Denniss RJ, Barker LA. Brain Trauma and the Secondary Cascade in Humans: Review of the Potential Role of Vitamins in Reparative Processes and Functional Outcome. Behav Sci (Basel) 2023; 13:bs13050388. [PMID: 37232626 DOI: 10.3390/bs13050388] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/24/2023] [Accepted: 05/06/2023] [Indexed: 05/27/2023] Open
Abstract
An estimated sixty-nine million people sustain a traumatic brain injury each year. Trauma to the brain causes the primary insult and initiates a secondary biochemical cascade as part of the immune and reparative response to injury. The secondary cascade, although a normal physiological response, may also contribute to ongoing neuroinflammation, oxidative stress and axonal injury, continuing in some cases years after the initial insult. In this review, we explain some of the biochemical mechanisms of the secondary cascade and their potential deleterious effects on healthy neurons including secondary cell death. The second part of the review focuses on the role of micronutrients to neural mechanisms and their potential reparative effects with regards to the secondary cascade after brain injury. The biochemical response to injury, hypermetabolism and excessive renal clearance of nutrients after injury increases the demand for most vitamins. Currently, most research in the area has shown positive outcomes of vitamin supplementation after brain injury, although predominantly in animal (murine) models. There is a pressing need for more research in this area with human participants because vitamin supplementation post-trauma is a potential cost-effective adjunct to other clinical and therapeutic treatments. Importantly, traumatic brain injury should be considered a lifelong process and better evaluated across the lifespan of individuals who experience brain injury.
Collapse
Affiliation(s)
- Rebecca J Denniss
- Department of Psychology, The University of Sheffield, Sheffield S10 2TN, UK
| | - Lynne A Barker
- Centre for Behavioural Science and Applied Psychology, Department of Psychology, Sociology and Politics, Sheffield Hallam University, Sheffield S1 1WB, UK
| |
Collapse
|
4
|
Integrative interactomics applied to bovine fescue toxicosis. Sci Rep 2022; 12:4899. [PMID: 35318361 PMCID: PMC8941056 DOI: 10.1038/s41598-022-08540-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 02/28/2022] [Indexed: 11/09/2022] Open
Abstract
Bovine fescue toxicosis (FT) is caused by grazing ergot alkaloid-producing endophyte (Epichloë coenophiala)-infected tall fescue. Endophyte’s effects on the animal’s microbiota and metabolism were investigated recently, but its effects in planta or on the plant–animal interactions have not been considered. We examined multi-compartment microbiota–metabolome perturbations using multi-‘omics (16S and ITS2 sequencing, plus untargeted metabolomics) in Angus steers grazing non-toxic (Max-Q) or toxic (E+) tall fescue for 28 days and in E+ plants. E+ altered the plant/animal microbiota, decreasing most ruminal fungi, with mixed effects on rumen bacteria and fecal microbiota. Metabolic perturbations occurred in all matrices, with some plant-animal overlap (e.g., Vitamin B6 metabolism). Integrative interactomics revealed unique E+ network constituents. Only E+ had ruminal solids OTUs within the network and fecal fungal OTUs in E+ had unique taxa (e.g., Anaeromyces). Three E+-unique urinary metabolites that could be potential biomarkers of FT and targeted therapeutically were identified.
Collapse
|
5
|
Gomez-Gomez A, Olesti E, Montero-San-Martin B, Soldevila A, Deschamps T, Pizarro N, de la Torre R, Pozo OJ. Determination of up to twenty carboxylic acid containing compounds in clinically relevant matrices by o-benzylhydroxylamine derivatization and liquid chromatography-tandem mass spectrometry. J Pharm Biomed Anal 2022; 208:114450. [PMID: 34798391 DOI: 10.1016/j.jpba.2021.114450] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/14/2021] [Accepted: 10/27/2021] [Indexed: 11/15/2022]
Abstract
Carboxylic acid containing compounds (R-COOH) are involved in a large number of biological processes and they are relevant for several pathological processes such as neurodegeneration or cancer. Comprehensive methodologies for the quantitative determination of R-COOH in biological samples are required. In this study we have developed a LC-MS/MS method for the quantification of 20 endogenous R-COOH belonging to different pathways such as kynurenine metabolism, serotoninergic pathway, glycolysis, tricarboxylic acid cycle, dopaminergic pathway, short chain fatty acids and glycine metabolism. The approach included derivatization with o-benzylhydroxylamine (reaction time 1 h), liquid-liquid extraction with ethyl acetate and LC-MS/MS detection (run time 10 min). The method was optimized and validated in 5 different matrices (urine, plasma, saliva, brain and liver) following two different approaches: (i) using surrogate matrices and (ii) using actual human samples by standard additions. A suitable linearity was obtained in the endogenous range of the analytes. Adequate intra and inter-assay accuracies (80-120%) and intra- and inter-assay precisions (<20%) were achieved for almost all analytes in all studied matrices. The method was applied in several scenarios to confirm (i) human urinary changes produced in glycolysis after exercise, (ii) metabolic changes produced in rat brain and plasma by methamphetamine administration and (iii) metabolic alterations in human plasma caused by vitamin B6 deficiency. Additionally, the application of the method allowed for establishing previously unreported alterations in R-COOH metabolites under these conditions. Due to the comprehensive analyte and matrix coverage and the wide applicability of the developed methodology, it can be considered as a suitable tool for the study of R-COOH status in health and disease by targeted metabolomics.
Collapse
Affiliation(s)
- Alex Gomez-Gomez
- Applied Metabolomics Research Group, IMIM (Hospital del Mar Medical Research Institute), Doctor Aiguader 88, Barcelona, Spain; Integrative Pharmacology & Systems Neuroscience Group, IMIM (Hospital del Mar Medical Research Institute), Doctor Aiguader 88, Barcelona, Spain; Universitat Pompeu Fabra (CEXS-UPF), Doctor Aiguader 88, Barcelona, Spain
| | - Eulàlia Olesti
- Applied Metabolomics Research Group, IMIM (Hospital del Mar Medical Research Institute), Doctor Aiguader 88, Barcelona, Spain; Integrative Pharmacology & Systems Neuroscience Group, IMIM (Hospital del Mar Medical Research Institute), Doctor Aiguader 88, Barcelona, Spain
| | | | - Angie Soldevila
- Applied Metabolomics Research Group, IMIM (Hospital del Mar Medical Research Institute), Doctor Aiguader 88, Barcelona, Spain
| | - Tessa Deschamps
- Applied Metabolomics Research Group, IMIM (Hospital del Mar Medical Research Institute), Doctor Aiguader 88, Barcelona, Spain
| | - Nieves Pizarro
- Integrative Pharmacology & Systems Neuroscience Group, IMIM (Hospital del Mar Medical Research Institute), Doctor Aiguader 88, Barcelona, Spain
| | - Rafael de la Torre
- Applied Metabolomics Research Group, IMIM (Hospital del Mar Medical Research Institute), Doctor Aiguader 88, Barcelona, Spain; Integrative Pharmacology & Systems Neuroscience Group, IMIM (Hospital del Mar Medical Research Institute), Doctor Aiguader 88, Barcelona, Spain; Universitat Pompeu Fabra (CEXS-UPF), Doctor Aiguader 88, Barcelona, Spain; CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN, CB06/03/028), 15706 Santiago de Compostela, Spain
| | - Oscar J Pozo
- Applied Metabolomics Research Group, IMIM (Hospital del Mar Medical Research Institute), Doctor Aiguader 88, Barcelona, Spain; Integrative Pharmacology & Systems Neuroscience Group, IMIM (Hospital del Mar Medical Research Institute), Doctor Aiguader 88, Barcelona, Spain.
| |
Collapse
|
6
|
Gaskins AJ, Tang Z, Hood RB, Ford J, Schwartz JD, Jones DP, Laden F, Liang D. Periconception air pollution, metabolomic biomarkers, and fertility among women undergoing assisted reproduction. ENVIRONMENT INTERNATIONAL 2021; 155:106666. [PMID: 34116378 PMCID: PMC8292230 DOI: 10.1016/j.envint.2021.106666] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/06/2021] [Accepted: 05/24/2021] [Indexed: 05/05/2023]
Abstract
BACKGROUND Air pollution exposure has been linked with diminished fertility. Identifying the metabolic changes induced by periconception air pollution exposure among women could enhance our understanding of the potential biological pathways underlying air pollution's reproductive toxicity. OBJECTIVE To identify serum metabolites associated with periconception air pollution exposure and evaluate the extent to which these metabolites mediate the association between air pollution and live birth. METHODS We included 200 women undergoing a fresh assisted reproductive technology (ART) cycle at Massachusetts General Hospital Fertility Center (2005-2015). A serum sample was collected during stimulation, and untargeted metabolic profiling was conducted using liquid chromatography with ultra-high-resolution mass spectrometry. Exposure to nitrogen dioxide (NO2), ozone (O3), fine particulate matter <2.5 µm (PM2.5), and black carbon (BC) was estimated using validated spatiotemporal models. Multivariable linear regression models were used to evaluate the associations between the air pollutants, live birth, and metabolic feature intensities. A meet in the middle approach was used to identify overlapping features and metabolic pathways. RESULTS From the C18 and HILIC chromatography columns, 10,803 and 12,968 metabolic features were extracted. There were 190 metabolic features and 18 pathways that were significantly associated with both air pollution and live birth (P < 0.05) across chromatography columns. Eight features were confirmed metabolites implicated in amino acid and nutrient metabolism with downstream effects on oxidative stress and inflammation. Six confirmed metabolites fell into two intuitive clusters - "antioxidants" and "oxidants"- which could potentially mediate some of the association between air pollution and lower odds of live birth. Tryptophan and vitamin B3 metabolism were common pathways linking air pollution exposure to decreased probability of live birth. CONCLUSION Higher periconception air pollution exposure was associated with metabolites and biologic pathways involved in inflammation and oxidative stress that may mediate the observed associations with lower probability of live birth following ART.
Collapse
Affiliation(s)
- Audrey J Gaskins
- Department of Epidemiology, Emory University Rollins School of Public Health, Atlanta, GA, United States.
| | - Ziyin Tang
- Department of Environmental Health, Emory University Rollins School of Public Health, Atlanta, GA, United States
| | - Robert B Hood
- Department of Epidemiology, Emory University Rollins School of Public Health, Atlanta, GA, United States
| | - Jennifer Ford
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Joel D Schwartz
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, United States; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, United States; Channing Division of Network Medicine, Brigham & Women's Hospital & Harvard Medical School, Boston, MA, United States
| | - Dean P Jones
- Division of Pulmonary, Allergy, & Critical Care Medicine, Emory University School of Medicine, Atlanta, GA, United States
| | - Francine Laden
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, United States; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, United States; Channing Division of Network Medicine, Brigham & Women's Hospital & Harvard Medical School, Boston, MA, United States
| | - Donghai Liang
- Department of Environmental Health, Emory University Rollins School of Public Health, Atlanta, GA, United States
| |
Collapse
|
7
|
Williams BA, Mayer C, McCartney H, Devlin AM, Lamers Y, Vercauteren SM, Wu JK, Karakochuk CD. Detectable Unmetabolized Folic Acid and Elevated Folate Concentrations in Folic Acid-Supplemented Canadian Children With Sickle Cell Disease. Front Nutr 2021; 8:642306. [PMID: 33968971 PMCID: PMC8096995 DOI: 10.3389/fnut.2021.642306] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/26/2021] [Indexed: 11/13/2022] Open
Abstract
Sickle cell disease (SCD) is an inherited hemoglobinopathy caused by a variant (rs344) in the HBB gene encoding the β-globin subunit of hemoglobin. Chronic hemolytic anemia and increased erythropoiesis and RBC turnover in individuals with SCD can result in increased needs for folate and other B-vitamins. We assessed B-vitamin status, and the distribution of folate forms, including unmetabolized folic acid (UMFA), in Canadian children with SCD supplemented with 1 mg/d folic acid (current routine practice). Non-fasted serum and plasma samples were analyzed for concentrations of folate, and vitamins B-2, B-6, and B-12. Eleven individuals (45% male; SCD type: HbSS n = 8, HbSC n = 2, HbSβ0-Thal n = 1), with a median (IQR) age of 14 (7, 18) years, were included. Total folate concentrations were 3-27 times above the deficiency cut-off (10 nmol/L), and 64% of children had elevated folate levels (>45.3 nmol/L). UMFA (>0.23 nmol/L) was detected in all children, and 36% of participants had elevated levels of UMFA (>5.4 nmol/L). All children were vitamin B-12 sufficient (>150 pmol/L), and the majority (55%) had sufficient B-6 status (>30 nmol/L). Among this sample of Canadian children with SCD, there was limited evidence of B-vitamin deficiencies, but UMFA was detectable in all children.
Collapse
Affiliation(s)
- Brock A Williams
- Food, Nutrition, and Health, The University of British Columbia, Vancouver, BC, Canada.,BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Cara Mayer
- Food, Nutrition, and Health, The University of British Columbia, Vancouver, BC, Canada.,BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Heather McCartney
- Department of Pediatrics, Faculty of Medicine, The University of British Columbia, Vancouver, BC, Canada
| | - Angela M Devlin
- BC Children's Hospital Research Institute, Vancouver, BC, Canada.,Department of Pediatrics, Faculty of Medicine, The University of British Columbia, Vancouver, BC, Canada
| | - Yvonne Lamers
- Food, Nutrition, and Health, The University of British Columbia, Vancouver, BC, Canada.,BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Suzanne M Vercauteren
- BC Children's Hospital Research Institute, Vancouver, BC, Canada.,Division of Hematopathology, Department of Pathology and Laboratory Medicine, BC Children's Hospital, Vancouver, BC, Canada
| | - John K Wu
- BC Children's Hospital Research Institute, Vancouver, BC, Canada.,Department of Pediatrics, Faculty of Medicine, The University of British Columbia, Vancouver, BC, Canada
| | - Crystal D Karakochuk
- Food, Nutrition, and Health, The University of British Columbia, Vancouver, BC, Canada.,BC Children's Hospital Research Institute, Vancouver, BC, Canada
| |
Collapse
|
8
|
Kvestad I, McCann A, Chandyo RK, Giil LM, Shrestha M, Ulak M, Hysing M, Ueland PM, Strand TA. One-Carbon Metabolism in Nepalese Infant-Mother Pairs and Child Cognition at 5 Years Old. J Nutr 2021; 151:883-891. [PMID: 33484134 DOI: 10.1093/jn/nxaa403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/04/2020] [Accepted: 11/20/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND One-carbon metabolism (OCM) refers to the transfer of methyl groups central to DNA methylation and histone modification. Insufficient access to methyl donors and B-vitamin cofactors affects epigenetic maintenance and stability, and when occurring in early life may impact future health and neurodevelopment. OBJECTIVE The objective of this study was to examine the relative associations between one-carbon metabolites in Nepalese mother-infant pairs and child cognition measured at 5 y of age. METHODS This is a cross-sectional study from Bhaktapur, Nepal, in a population at high risk of subclinical B-vitamin deficiencies and cumulative infection burden. Venous blood samples from 500 mother-infant pairs were collected when the infants were 2 to 12 mo old, and metabolite concentrations measured by microbiological assays and GC-tandem MS. We re-enrolled 321 of these children at 5 y and assessed cognition by the Ages and Stages Questionnaire, 3rd edition, and subtests from the Developmental Neuropsychological Assessment, 2nd edition (NEPSY-II). The associations of the independent metabolites or unobserved metabolic phenotypes (identified by latent class analysis) with the cognitive outcomes were estimated by seemingly unrelated regression. We explored direct and indirect relations between the OCM pathway and the cognitive outcomes using path analysis. RESULTS Infant cystathionine concentration was inversely associated with 4 cognitive outcomes (standardized βs ranging from -0.22 to -0.11, P values from <0.001 to 0.034). Infants with a metabolic phenotype indicating impaired OCM and low vitamin B-12 status had poorer cognitive outcomes compared with infants with normal OCM activity and adequate vitamin B-12 status (standardized βs ranging from -0.80 to -0.40, P < 0.001 and 0.05). In the path analysis, we found several OCM biomarkers were associated with affect recognition through infant plasma cystathionine. CONCLUSIONS Elevated plasma cystathionine during infancy reflects a metabolic phenotype of impaired OCM and low vitamin B-12 status and is associated with poorer cognitive function when the children are 5 y old.
Collapse
Affiliation(s)
- Ingrid Kvestad
- Regional Centre for Child and Youth Mental Health and Child Welfare, NORCE Norwegian Research Centre, Bergen, Norway
| | | | - Ram K Chandyo
- Department of Community Medicine, Kathmandu Medical College, Kathmandu, Nepal
| | - Lasse M Giil
- Department of Internal Medicine, Haraldsplass Deaconess Hospital, Bergen, Norway
| | - Merina Shrestha
- Child Health Research Project, Department of Child Health, Institute of Medicine, Tribhuvan University, Kathmandu, Nepal
| | - Manjeswori Ulak
- Child Health Research Project, Department of Child Health, Institute of Medicine, Tribhuvan University, Kathmandu, Nepal.,Center for International Health, University of Bergen, Bergen, Norway
| | - Mari Hysing
- Department of Psychosocial Science, University of Bergen, Bergen, Norway
| | | | - Tor A Strand
- Center for International Health, University of Bergen, Bergen, Norway.,Innlandet Hospital Trust, Lillehammer, Norway
| |
Collapse
|
9
|
Gillies NA, Milan AM, Chia PHP, Sharma P, Mitchell SM, Zeng N, Ramzan F, D'Souza RF, Mitchell CJ, Knowles SO, Andraos S, Sjödin A, Wagner KH, Roy NC, Cameron-Smith D. Responsiveness of one-carbon metabolites to a high-protein diet in older men: Results from a 10-wk randomized controlled trial. Nutrition 2021; 89:111231. [PMID: 33930787 DOI: 10.1016/j.nut.2021.111231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 01/22/2021] [Accepted: 03/01/2021] [Indexed: 12/29/2022]
Abstract
OBJECTIVES Dietary strategies to promote successful aging are divergent. Higher-protein diets are recommended to preserve skeletal muscle mass and physical function. Conversely, increased B-vitamin intake, supporting one-carbon (1C) metabolism, reduces the risk of cognitive decline and cardiovascular disease. On the hypothesis that higher protein intake through animal-based sources will benefit 1C regulation by the supply of B vitamins (folate, riboflavin, and vitamins B6 and B12) and methyl donors (choline) despite higher methionine intake, this study explored the effect of a higher-protein diet on 1C metabolite status in older men compared to current protein recommendations. METHODS Older men (age, 74 ± 3 y) were randomized to receive a diet for 10 wk containing either the recommended dietary allowance (RDA) of protein (0.8 g/kg body weight/d, n = 14), or double that amount (2RDA, n = 15), with differences in protein accounted for by modifying carbohydrate intake. Intervention diets were matched to each individual's energy requirements based on the Harris-Benedict equation and adjusted fortnightly as required depending on physical activity and satiety. Fasting plasma 1C metabolite concentrations were quantified by liquid chromatography coupled with mass spectrometry at baseline and after 10 wk of intervention. RESULTS Plasma homocysteine concentrations were reduced from baseline to follow-up with both diets. Changes in metabolite ratios reflective of betaine-dependent homocysteine remethylation were specific to the RDA diet, with an increase in the betaine-to-choline ratio and a decrease in the dimethylglycine-to-betaine ratio. Comparatively, increasing folate intake was positively associated with a change in choline concentration and inversely with the betaine-to-choline ratio for the 2RDA group. CONCLUSIONS Adding to the known benefits of higher protein intake in older people, this study supports a reduction of homocysteine with increased consumption of animal-based protein, although the health effects of differential response of choline metabolites to a higher-protein diet remain uncertain.
Collapse
Affiliation(s)
- Nicola A Gillies
- Liggins Institute, University of Auckland, Auckland, New Zealand; Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Amber M Milan
- Liggins Institute, University of Auckland, Auckland, New Zealand; Food Nutrition & Health, AgResearch Ltd, Palmerston North, New Zealand; The High-Value Nutrition National Science Challenge, Auckland, New Zealand
| | - Pamela H P Chia
- Liggins Institute, University of Auckland, Auckland, New Zealand; Discipline of Nutrition, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Pankaja Sharma
- Liggins Institute, University of Auckland, Auckland, New Zealand; Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Sarah M Mitchell
- Liggins Institute, University of Auckland, Auckland, New Zealand; Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Nina Zeng
- Liggins Institute, University of Auckland, Auckland, New Zealand; Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Farha Ramzan
- Liggins Institute, University of Auckland, Auckland, New Zealand; Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Randall F D'Souza
- Liggins Institute, University of Auckland, Auckland, New Zealand; Discipline of Nutrition, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | - Cameron J Mitchell
- Liggins Institute, University of Auckland, Auckland, New Zealand; School of Kinesiology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Scott O Knowles
- Food Nutrition & Health, AgResearch Ltd, Palmerston North, New Zealand
| | | | - Anders Sjödin
- Department of Nutrition Exercise and Sports, University of Copenhagen, Copenhagen,Denmark
| | - Karl-Heinz Wagner
- Department of Nutritional Sciences and Research Platform Active Ageing, University of Vienna, Vienna, Austria
| | - Nicole C Roy
- Liggins Institute, University of Auckland, Auckland, New Zealand; Riddet Institute, Massey University, Palmerston North, New Zealand; Food Nutrition & Health, AgResearch Ltd, Palmerston North, New Zealand; The High-Value Nutrition National Science Challenge, Auckland, New Zealand; Department of Human Nutrition, University of Otago, Dunedin, New Zealand
| | - David Cameron-Smith
- Liggins Institute, University of Auckland, Auckland, New Zealand; Riddet Institute, Massey University, Palmerston North, New Zealand; Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore, Sinapore.
| |
Collapse
|
10
|
Jungert A, Linseisen J, Wagner KH, Richter M. Revised D-A-CH Reference Values for the Intake of Vitamin B6. ANNALS OF NUTRITION AND METABOLISM 2020; 76:213-222. [PMID: 32690847 DOI: 10.1159/000508618] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 05/11/2020] [Indexed: 11/19/2022]
Abstract
BACKGROUND The Nutrition Societies of Germany, Austria, and Switzerland as the joint editors of the "D-A-CH reference values for nutrient intake" have revised the reference values for vitamin B6 in summer 2019. SUMMARY For women, the average requirement (AR) for vitamin B6 intake was derived on the basis of balance studies using a pyridoxal-5'-phosphate (PLP) plasma concentration of ≥30 nmol/L as a biomarker of an adequate vitamin B6 status. The recommended intake (RI) was derived considering a coefficient of variation of 10%. The RIs of vitamin B6 for men, children, and adolescents were extrapolated from the vitamin B6 requirement for women considering differences in body weight, an allometric exponent, growth factors as appropriate, and a coefficient of variation. For infants aged 0 to under 4 months, an estimated value was set based on the vitamin B6 intake via breast feeding. The reference value for infants aged 4 to under 12 months was extrapolated from the estimated value for infants under 4 months of age and the average vitamin B6 requirement for adults. The reference values for pregnant and lactating women consider the requirements for the foetus and the loss via breast milk. Key Messages: According to the combined analysis of 5 balance studies, the AR for vitamin B6 to ensure a plasma PLP concentration of ≥30 nmol/L is 1.2 mg/day for adult females and the extrapolated AR for adult males is 1.3 mg/day. The corresponding RIs of vitamin B6 are 1.4 mg/day for adult females and 1.6 mg/day for adult males, independent of age. For infants, the estimated value is 0.1 mg/day and 0.3 mg/day, depending on age. The AR of vitamin B6 for children and adolescents ranges between 0.5 and 1.5 mg/day, and the RI is between 0.6 mg/day and 1.6 mg/day. During pregnancy, the AR is 1.3 mg/day in the first trimester and 1.5 mg/day in the second and third trimesters; the RI is 1.5 mg/day in the first trimester and 1.8 mg/day in the second and third trimesters. For lactating women, the AR is 1.3 mg/day and the RI is 1.6 mg/day.
Collapse
Affiliation(s)
- Alexandra Jungert
- Interdisciplinary Research Center for Biosystems, Land Use and Nutrition (IFZ), Biometry and Population Genetics, Justus Liebig University, Giessen, Germany
| | - Jakob Linseisen
- Chair of Epidemiology, Ludwig-Maximilians University of Munich, Augsburg, Germany.,Clinical Epidemiology, Helmholtz Zentrum München (HMGU), Neuherberg, Germany
| | - Karl-Heinz Wagner
- Department of Nutritional Sciences, University of Vienna, Vienna, Austria
| | - Margrit Richter
- Department of Science, German Nutrition Society (DGE), Bonn, Germany,
| | | |
Collapse
|
11
|
Gilley SP, Weaver NE, Sticca EL, Jambal P, Palacios A, Kerns ME, Anand P, Kemp JF, Westcott JE, Figueroa L, Garcés AL, Ali SA, Pasha O, Saleem S, Hambidge KM, Hendricks AE, Krebs NF, Borengasser SJ. Longitudinal Changes of One-Carbon Metabolites and Amino Acid Concentrations during Pregnancy in the Women First Maternal Nutrition Trial. Curr Dev Nutr 2020; 4:nzz132. [PMID: 32175519 PMCID: PMC7064164 DOI: 10.1093/cdn/nzz132] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 10/09/2019] [Accepted: 11/15/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Maternal dietary restriction and supplementation of one-carbon (1C) metabolites can impact offspring growth and DNA methylation. However, longitudinal research of 1C metabolite and amino acid (AA) concentrations over the reproductive cycle of human pregnancy is limited. OBJECTIVE To investigate longitudinal 1C metabolite and AA concentrations prior to and during pregnancy and the effects of a small-quantity lipid-based nutrition supplement (LNS) containing >20 micronutrients and prepregnancy BMI (ppBMI). METHODS This study was an ancillary study of the Women First Trial (NCT01883193, clinicaltrials.gov) focused on a subset of Guatemalan women (n = 134), 49% of whom entered pregnancy with a BMI ≥25 kg/m2. Ninety-five women received LNS during pregnancy (+LNS group), while the remainder did not (-LNS group). A subset of women from the Pakistan study site (n = 179) were used as a replication cohort, 124 of whom received LNS. Maternal blood was longitudinally collected on dried blood spot (DBS) cards at preconception, and at 12 and 34 wk gestation. A targeted metabolomics assay was performed on DBS samples at each time point using LC-MS/MS. Longitudinal analyses were performed using linear mixed modeling to investigate the influence of time, LNS, and ppBMI. RESULTS Concentrations of 23 of 27 metabolites, including betaine, choline, and serine, changed from preconception across gestation after application of a Bonferroni multiple testing correction (P < 0.00185). Sixteen of those metabolites showed similar changes in the replication cohort. Asymmetric and symmetric dimethylarginine were decreased by LNS in the participants from Guatemala. Only tyrosine was statistically associated with ppBMI at both study sites. CONCLUSIONS Time influenced most 1C metabolite and AA concentrations with a high degree of similarity between the 2 diverse study populations. These patterns were not significantly altered by LNS consumption or ppBMI. Future investigations will focus on 1C metabolite changes associated with infant outcomes, including DNA methylation. This trial was registered at clinicaltrials.gov as NCT01883193.
Collapse
Affiliation(s)
- Stephanie P Gilley
- Department of Pediatrics, Section of Nutrition, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Nicholas E Weaver
- Mathematical and Statistical Sciences, University of Colorado Denver, Denver, CO, USA
| | - Evan L Sticca
- Human Medical Genetics and Genomics Program, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Purevsuren Jambal
- Department of Pediatrics, Section of Nutrition, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Alexandra Palacios
- Department of Pediatrics, Section of Nutrition, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Mattie E Kerns
- Department of Pediatrics, Section of Nutrition, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Pratibha Anand
- Department of Pediatrics, Section of Nutrition, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jennifer F Kemp
- Department of Pediatrics, Section of Nutrition, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jamie E Westcott
- Department of Pediatrics, Section of Nutrition, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Lester Figueroa
- Institute of Nutrition in Central America and Panama, Guatemala City, Guatemala
| | - Ana Lucía Garcés
- Institute of Nutrition in Central America and Panama, Guatemala City, Guatemala
| | - Sumera A Ali
- Aga Khan University, Department of Community Health Sciences, Karachi, Pakistan
| | - Omrana Pasha
- Aga Khan University, Department of Community Health Sciences, Karachi, Pakistan
- Department of Population, Family and Reproductive Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Sarah Saleem
- Aga Khan University, Department of Community Health Sciences, Karachi, Pakistan
| | - K Michael Hambidge
- Department of Pediatrics, Section of Nutrition, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Audrey E Hendricks
- Mathematical and Statistical Sciences, University of Colorado Denver, Denver, CO, USA
- Human Medical Genetics and Genomics Program, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Nancy F Krebs
- Department of Pediatrics, Section of Nutrition, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Sarah J Borengasser
- Department of Pediatrics, Section of Nutrition, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
12
|
Mujica-Coopman MF, Farias DR, Franco-Sena AB, Vaz JS, Kac G, Lamers Y. Maternal Plasma Pyridoxal 5'-Phosphate Concentration Is Inversely Associated with Plasma Cystathionine Concentration across All Trimesters in Healthy Pregnant Women. J Nutr 2019; 149:1354-1362. [PMID: 31098628 DOI: 10.1093/jn/nxz082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 03/05/2019] [Accepted: 04/02/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Vitamin B-6 (B-6), in the form of pyridoxal 5'phosphate (PLP), is critical for one-carbon metabolism reactions and cellular function. Plasma PLP concentration decreases throughout pregnancy, but the functional consequences of this have not been studied. Plasma cystathionine is a sensitive indicator of suboptimal B-6 status in healthy adults. OBJECTIVES The aim of this study was to determine the relation between plasma PLP and cystathionine concentrations, and to assess longitudinal changes in plasma concentrations of metabolites of one-carbon metabolism, including total homocysteine (tHcy), cysteine, methionine, glycine, serine, and glutathione, over the course of pregnancy. DESIGN This was a prospective cohort study of 186 healthy Brazilian pregnant women (20-40 y). Plasma PLP and metabolite concentrations were quantified in fasting maternal blood samples collected between 5-13, 20-26, and 30-36 weeks of gestation. Linear mixed regression models were used to determine the association of 1) first-trimester PLP tertiles, and 2) the variation of PLP concentration throughout pregnancy, with related metabolite concentrations across weeks of gestation. RESULTS Median (IQR) PLP concentration decreased from 36.2 (29.2-44.5) to 21.0 (15.9-26.0) to 16.8 (12.9-21.4) nmol/L in the first, second, and third trimester, respectively, whereas cystathionine concentration increased from 63.2 (49.7-78.9) to 122 (98.0-167) to 143 (114-193) nmol/L, respectively (both P < 0.001). The variation of PLP throughout pregnancy was inversely associated with cystathionine concentration across weeks of gestation, after adjusting for confounding factors; β (95% CI) = -0.387 (-0.752, -0.219), P = 0.04. This association significantly differed by trimester and was strongest in the third trimester. Plasma concentrations of glycine, serine, methionine, cysteine, and tHcy decreased, and that of glutathione increased, between the first and second trimesters (all P < 0.05). CONCLUSIONS The variation of PLP concentration predicted cystathionine concentration throughout pregnancy. Increases in plasma cystathionine across trimesters may reflect maternal intracellular B-6 deficiency.
Collapse
Affiliation(s)
- Maria F Mujica-Coopman
- Food, Nutrition, and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, British Columbia, Canada.,British Columbia Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Dayana R Farias
- Nutrition Institute, Federal University Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana B Franco-Sena
- Nutrition Institute, Federal University Rio de Janeiro, Rio de Janeiro, Brazil.,Emília de Jesus Ferreiro Nutrition School, Fluminense Federal University, Rio de Janeiro, Brazil
| | - Juliana S Vaz
- Nutrition Institute, Federal University Rio de Janeiro, Rio de Janeiro, Brazil.,Faculty of Nutrition, Federal University of Pelotas, Rio Grande do Sul, Brazil
| | - Gilberto Kac
- Nutrition Institute, Federal University Rio de Janeiro, Rio de Janeiro, Brazil
| | - Yvonne Lamers
- Food, Nutrition, and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, British Columbia, Canada.,British Columbia Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| |
Collapse
|
13
|
Zhang C, Skamagki M, Liu Z, Ananthanarayanan A, Zhao R, Li H, Kim K. Biological Significance of the Suppression of Oxidative Phosphorylation in Induced Pluripotent Stem Cells. Cell Rep 2018; 21:2058-2065. [PMID: 29166598 PMCID: PMC5841608 DOI: 10.1016/j.celrep.2017.10.098] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 08/31/2017] [Accepted: 10/25/2017] [Indexed: 12/15/2022] Open
Abstract
We discovered that induced pluripotent stem cell (iPSC) clones generated from aged tissue donors (A-iPSCs) fail to suppress oxidative phosphorylation. Compared to embryonic stem cells (ESCs) and iPSCs generated from young donors (Y-iPSCs), A-iPSCs show poor expression of the pluripotent stem cell-specific glucose transporter 3 (GLUT3) and impaired glucose uptake, making them unable to support the high glucose demands of glycolysis. Persistent oxidative phosphorylation in A-iPSCs generates higher levels of reactive oxygen species (ROS), which leads to excessive elevation of glutathione (a ROS-scavenging metabolite) and a blunted DNA damage response. These phenotypes were recapitulated in Y-iPSCs by inhibiting pyruvate dehydrogenase kinase (PDK) or supplying citrate to activate oxidative phosphorylation. In addition, oxidative phosphorylation in A-iPSC clones depletes citrate, a nuclear source of acetyl group donors for histone acetylation; this consequently alters histone acetylation status. Expression of GLUT3 in A-iPSCs recovers the metabolic defect, DNA damage response, and histone acetylation status.
Collapse
Affiliation(s)
- Cheng Zhang
- Department of Molecular Pharmacology & Experimental Therapeutics, Center for Individualized Medicine, Mayo Clinic College of Medicine, Rochester, MN 55902, USA
| | - Maria Skamagki
- Cancer Biology and Genetics Program, The Center for Cell Engineering, The Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA; Department of Cell and Developmental Biology, Weill Medical College of Cornell University, New York, NY 10065, USA
| | - Zhong Liu
- Department of Biochemistry and Molecular Genetics, Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Aparna Ananthanarayanan
- Cancer Biology and Genetics Program, The Center for Cell Engineering, The Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA; Department of Cell and Developmental Biology, Weill Medical College of Cornell University, New York, NY 10065, USA
| | - Rui Zhao
- Department of Biochemistry and Molecular Genetics, Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Hu Li
- Department of Molecular Pharmacology & Experimental Therapeutics, Center for Individualized Medicine, Mayo Clinic College of Medicine, Rochester, MN 55902, USA.
| | - Kitai Kim
- Cancer Biology and Genetics Program, The Center for Cell Engineering, The Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA; Department of Cell and Developmental Biology, Weill Medical College of Cornell University, New York, NY 10065, USA.
| |
Collapse
|
14
|
Pajares MA, Pérez-Sala D. Mammalian Sulfur Amino Acid Metabolism: A Nexus Between Redox Regulation, Nutrition, Epigenetics, and Detoxification. Antioxid Redox Signal 2018; 29:408-452. [PMID: 29186975 DOI: 10.1089/ars.2017.7237] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
SIGNIFICANCE Transsulfuration allows conversion of methionine into cysteine using homocysteine (Hcy) as an intermediate. This pathway produces S-adenosylmethionine (AdoMet), a key metabolite for cell function, and provides 50% of the cysteine needed for hepatic glutathione synthesis. The route requires the intake of essential nutrients (e.g., methionine and vitamins) and is regulated by their availability. Transsulfuration presents multiple interconnections with epigenetics, adenosine triphosphate (ATP), and glutathione synthesis, polyol and pentose phosphate pathways, and detoxification that rely mostly in the exchange of substrates or products. Major hepatic diseases, rare diseases, and sensorineural disorders, among others that concur with oxidative stress, present impaired transsulfuration. Recent Advances: In contrast to the classical view, a nuclear branch of the pathway, potentiated under oxidative stress, is emerging. Several transsulfuration proteins regulate gene expression, suggesting moonlighting activities. In addition, abnormalities in Hcy metabolism link nutrition and hearing loss. CRITICAL ISSUES Knowledge about the crossregulation between pathways is mostly limited to the hepatic availability/removal of substrates and inhibitors. However, advances regarding protein-protein interactions involving oncogenes, identification of several post-translational modifications (PTMs), and putative moonlighting activities expand the potential impact of transsulfuration beyond methylations and Hcy. FUTURE DIRECTIONS Increasing the knowledge on transsulfuration outside the liver, understanding the protein-protein interaction networks involving these enzymes, the functional role of their PTMs, or the mechanisms controlling their nucleocytoplasmic shuttling may provide further insights into the pathophysiological implications of this pathway, allowing design of new therapeutic interventions. Antioxid. Redox Signal. 29, 408-452.
Collapse
Affiliation(s)
- María A Pajares
- 1 Department of Chemical and Physical Biology, Centro de Investigaciones Biológicas (CSIC) , Madrid, Spain .,2 Molecular Hepatology Group, Instituto de Investigación Sanitaria La Paz (IdiPAZ) , Madrid, Spain
| | - Dolores Pérez-Sala
- 1 Department of Chemical and Physical Biology, Centro de Investigaciones Biológicas (CSIC) , Madrid, Spain
| |
Collapse
|
15
|
A prospective evaluation of serum kynurenine metabolites and risk of pancreatic cancer. PLoS One 2018; 13:e0196465. [PMID: 29734388 PMCID: PMC5937773 DOI: 10.1371/journal.pone.0196465] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 04/15/2018] [Indexed: 01/12/2023] Open
Abstract
Background Serum pyridoxal 5’-phosphate (PLP), the active form of vitamin B6, is associated with reduced risk of pancreatic cancer. Data on functional measures of vitamin B6 status and risk of pancreatic cancer is lacking. Methods A nested case-control study involving 187 incident cases of pancreatic cancer and 362 individually matched controls were conducted within two prospective cohorts to evaluate the associations between kynurenine metabolites in pre-diagnostic serum samples and risk of pancreatic cancer. Results Higher serum concentrations of 3-hydroxyanthranilic acid (HAA) and the HAA:3-hydroxykynurenine (HK) ratio (a measure for in vivo functional status of PLP) were significantly associated with reduced risk of pancreatic cancer. Compared with the lowest tertile, odds ratios (95% confidence intervals) of pancreatic cancer for the highest tertile was 0.62 (0.39, 1.01) for HAA, and 0.59 (0.35–0.98) for the HAA:HK ratio, after adjustment for potential confounders and serum PLP (both Ps for trend<0.05). The kynurenine:tryptophan ratio or neopterin was not significantly associated with pancreatic cancer risk. Conclusions The inverse association between HAA or the HAA:HK ratio and risk of pancreatic cancer supports the notion that functional status of PLP may be a more important measure than circulating PLP alone for the development of pancreatic cancer.
Collapse
|
16
|
Wu P, Zheng X, Zhou XQ, Jiang WD, Liu Y, Jiang J, Kuang SY, Tang L, Zhang YA, Feng L. Deficiency of dietary pyridoxine disturbed the intestinal physical barrier function of young grass carp (Ctenopharyngodon idella). FISH & SHELLFISH IMMUNOLOGY 2018; 74:459-473. [PMID: 29339045 DOI: 10.1016/j.fsi.2018.01.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 01/03/2018] [Accepted: 01/11/2018] [Indexed: 06/07/2023]
Abstract
The aim of this study was to assess the effects of dietary pyridoxine (PN) deficiency on intestinal antioxidant capacity, cell apoptosis and intercellular tight junction in young grass carp (Ctenopharyngodon idella). A total of 540 young grass carp (231.85 ± 0.63 g) were fed six diets containing graded levels of PN (0.12-7.48 mg/kg diet) for 10 weeks. At the end of the feeding trial, the fish were challenged with Aeromonas hydrophila for 2 weeks. The results showed that compared with the optimal PN level, PN deficiency (1) increased the contents of reactive oxygen species (ROS), malondialdehyde (MDA) and protein carbonyl (PC), decreased the activities and mRNA levels of antioxidant enzymes such as copper, zinc superoxide dismutase (CuZnSOD), catalase (CAT), glutathione peroxidase (GPx), glutathione-S-transferase (GST) and glutathione reductase (GR) (P < .05); (2) up-regulated the mRNA levels of cysteinyl aspartic acid-protease-3 (caspase-3), caspase-7, caspase-8, caspase-9, Bcl-2 associated X protein (Bax), apoptotic protease activating factor-1 (Apaf-1) and Fas ligand (FasL), and down-regulated the mRNA levels of inhibitor of apoptosis proteins (IAP), B-cell lymphoma protein-2 (Bcl-2) and myeloid cell leukaemia-1 (Mcl-1) (P < .05); (3) down-regulated the mRNA levels of ZO-1, occludin [only in middle intestine (MI)], claudin-b, claudin-c, claudin-f, claudin-3c, claudin-7a, claudin-7b and claudin-11, and up-regulated the mRNA levels of claudin-12 and claudin-15a (P < .05), which might be partly linked to Kelch-like-ECH-associated protein 1a (Keap1a)/NF-E2-related factor 2 (Nrf2), p38 mitogen-activated protein kinase (p38MAPK) and myosin light chain kinase (MLCK) signalling in the intestines of fish. However, the activities and mRNA levels of MnSOD, the mRNA levels of Keap1b, c-Jun N-terminal protein kinase (JNK) and claudin-15b in three intestinal segments, and the mRNA levels of occludin in the proximal intestine (PI) and distal intestine (DI) were not affected by graded levels of PN. These data indicate that PN deficiency could disturb the intestinal physical barrier function of fish. Additionally, based on the quadratic regression analysis for MDA content and GST activity, the dietary PN requirements for young grass carp were estimated as 4.85 and 5.02 mg/kg diet, respectively.
Collapse
Affiliation(s)
- Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Xin Zheng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Jun Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Sheng-Yao Kuang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, 610066, China
| | - Ling Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, 610066, China
| | - Yong-An Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| |
Collapse
|
17
|
Ramos RJ, Pras-Raves ML, Gerrits J, van der Ham M, Willemsen M, Prinsen H, Burgering B, Jans JJ, Verhoeven-Duif NM. Vitamin B6 is essential for serine de novo biosynthesis. J Inherit Metab Dis 2017; 40:883-891. [PMID: 28801717 DOI: 10.1007/s10545-017-0061-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 05/29/2017] [Accepted: 05/31/2017] [Indexed: 11/30/2022]
Abstract
Pyridoxal 5'-phosphate (PLP), the metabolically active form of vitamin B6, plays an essential role in brain metabolism as a cofactor in numerous enzyme reactions. PLP deficiency in brain, either genetic or acquired, results in severe drug-resistant seizures that respond to vitamin B6 supplementation. The pathogenesis of vitamin B6 deficiency is largely unknown. To shed more light on the metabolic consequences of vitamin B6 deficiency in brain, we performed untargeted metabolomics in vitamin B6-deprived Neuro-2a cells. Significant alterations were observed in a range of metabolites. The most surprising observation was a decrease of serine and glycine, two amino acids that are known to be elevated in the plasma of vitamin B6 deficient patients. To investigate the cause of the low concentrations of serine and glycine, a metabolic flux analysis on serine biosynthesis was performed. The metabolic flux results showed that the de novo synthesis of serine was significantly reduced in vitamin B6-deprived cells. In addition, formation of glycine and 5-methyltetrahydrofolate was decreased. Thus, vitamin B6 is essential for serine de novo biosynthesis in neuronal cells, and serine de novo synthesis is critical to maintain intracellular serine and glycine. These findings suggest that serine and glycine concentrations in brain may be deficient in patients with vitamin B6 responsive epilepsy. The low intracellular 5-mTHF concentrations observed in vitro may explain the favourable but so far unexplained response of some patients with pyridoxine-dependent epilepsy to folinic acid supplementation.
Collapse
Affiliation(s)
- Rúben J Ramos
- Section Metabolic Diagnostics, Department of Genetics, University Medical Center Utrecht, KC02.069.1, Lundlaan 6, 3584 EA, Utrecht, The Netherlands
| | - Mia L Pras-Raves
- Section Metabolic Diagnostics, Department of Genetics, University Medical Center Utrecht, KC02.069.1, Lundlaan 6, 3584 EA, Utrecht, The Netherlands
| | - Johan Gerrits
- Section Metabolic Diagnostics, Department of Genetics, University Medical Center Utrecht, KC02.069.1, Lundlaan 6, 3584 EA, Utrecht, The Netherlands
| | - Maria van der Ham
- Section Metabolic Diagnostics, Department of Genetics, University Medical Center Utrecht, KC02.069.1, Lundlaan 6, 3584 EA, Utrecht, The Netherlands
| | - Marcel Willemsen
- Section Metabolic Diagnostics, Department of Genetics, University Medical Center Utrecht, KC02.069.1, Lundlaan 6, 3584 EA, Utrecht, The Netherlands
| | - Hubertus Prinsen
- Section Metabolic Diagnostics, Department of Genetics, University Medical Center Utrecht, KC02.069.1, Lundlaan 6, 3584 EA, Utrecht, The Netherlands
| | - Boudewijn Burgering
- Department of Molecular Cancer Research and Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, 3584 EA, The Netherlands
| | - Judith J Jans
- Section Metabolic Diagnostics, Department of Genetics, University Medical Center Utrecht, KC02.069.1, Lundlaan 6, 3584 EA, Utrecht, The Netherlands.
| | - Nanda M Verhoeven-Duif
- Section Metabolic Diagnostics, Department of Genetics, University Medical Center Utrecht, KC02.069.1, Lundlaan 6, 3584 EA, Utrecht, The Netherlands
| |
Collapse
|
18
|
Zheng X, Feng L, Jiang WD, Wu P, Liu Y, Jiang J, Kuang SY, Tang L, Tang WN, Zhang YA, Zhou XQ. Dietary pyridoxine deficiency reduced growth performance and impaired intestinal immune function associated with TOR and NF-κB signalling of young grass carp (Ctenopharyngodon idella). FISH & SHELLFISH IMMUNOLOGY 2017; 70:682-700. [PMID: 28951222 DOI: 10.1016/j.fsi.2017.09.055] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 09/15/2017] [Accepted: 09/22/2017] [Indexed: 06/07/2023]
Abstract
The objective of this study was to evaluate the effects of dietary pyridoxine (PN) deficiency on growth performance, intestinal immune function and the potential regulation mechanisms in young grass carp (Ctenopharyngodon idella). Fish were fed six diets containing graded levels of PN (0.12-7.48 mg/kg) for 70 days. After that, a challenge test was conducted by infection of Aeromonas hydrophila for 14 days. The results showed that compared with the optimal PN level, PN deficiency: (1) reduced the production of innate immune components such as lysozyme (LZ), acid phosphatase (ACP), complements and antimicrobial peptides and adaptive immune components such as immunoglobulins in three intestinal segments of young grass carp (P < 0.05); (2) down-regulated the mRNA levels of anti-inflammatory cytokines such as transforming growth factor β (TGF-β), interleukin 4/13A (IL-4/13A) (rather than IL-4/13B), IL-10 and IL-11 partly relating to target of rapamycin (TOR) signalling [TOR/ribosomal protein S6 kinases 1 (S6K1) and eIF4E-binding proteins (4E-BP)] in three intestinal segments of young grass carp; (3) up-regulated the mRNA levels of pro-inflammatory cytokines such as tumour necrosis factor α (TNF-α) [not in the proximal intestine (PI) and distal intestine (DI)], IL-1β, IL-6, IL-8, IL-12p35, IL-12p40, IL-15 and IL-17D [(rather than interferon γ2 (IFN-γ2)] partly relating to nuclear factor kappa B (NF-κB) signalling [IκB kinase β (IKKβ) and IKKγ/inhibitor of κBα (IκBα)/NF-κB (p65 and c-Rel)] in three intestinal segments of young grass carp. These results suggest that PN deficiency could impair the intestinal immune function, and the potential regulation mechanisms were partly associated with TOR and NF-κB signalling pathways. In addition, based on percent weight gain (PWG), the ability against enteritis and LZ activity, the dietary PN requirements for young grass carp were estimated to be 4.43, 4.75 and 5.07 mg/kg diet, respectively.
Collapse
Affiliation(s)
- Xin Zheng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Jun Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Sheng-Yao Kuang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Ling Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Wu-Neng Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Yong-An Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan 611130, China.
| |
Collapse
|
19
|
DeRatt BN, Ralat MA, Lysne V, Tayyari F, Dhar I, Edison AS, Garrett TJ, Midttun Ø, Ueland PM, Nygård OK, Gregory JF. Metabolomic Evaluation of the Consequences of Plasma Cystathionine Elevation in Adults with Stable Angina Pectoris. J Nutr 2017; 147:1658-1668. [PMID: 28794210 PMCID: PMC5572496 DOI: 10.3945/jn.117.254029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 05/30/2017] [Accepted: 06/29/2017] [Indexed: 02/02/2023] Open
Abstract
Background: An elevated circulating cystathionine concentration, which arises in part from insufficiencies of vitamin B-6, B-12, or folate, has been shown to be associated with cardiovascular disease (CVD) risk. Hydrogen sulfide (H2S) is a gasotransmitter involved in vasodilation, neuromodulation, and inflammation. Most endogenously produced H2S is formed by pyridoxal phosphate (PLP)-dependent enzymes by noncanonical reactions of the transsulfuration pathway that yield H2S concurrently form lanthionine and homolanthionine. Thus, plasma lanthionine and homolanthionine concentrations can provide relative information about H2S production in vivo.Objective: To determine the metabolic consequences of an elevated plasma cystathionine concentration in adults with stable angina pectoris (SAP), we conducted both targeted and untargeted metabolomic analyses.Methods: We conducted NMR and LC-mass spectrometry (MS) metabolomic analyses on a subset of 80 plasma samples from the Western Norway Coronary Angiography Cohort and selected, based on plasma cystathionine concentrations, a group with high cystathionine concentrations [1.32 ± 0.60 μmol/L (mean ± SD); n = 40] and a group with low cystathionine concentrations [0.137 ± 0.011 μmol/L (mean ± SD); n = 40]. Targeted and untargeted metabolomic analyses were performed and assessed with the use of Student's t tests corrected for multiple testing. Overall differences between the cystathionine groups were assessed by untargeted NMR and LC-MS metabolomic methods and evaluated by partial least squares discriminant analysis (PLS-DA) with significant discriminating metabolites identified with 99% confidence.Results: Subjects with high cystathionine concentrations had 75% higher plasma lanthionine concentrations (0.12 ± 0.044 μmol/L) than subjects with low cystathionine concentrations [0.032 ± 0.013 μmol/L (P < 0.001)]. Although plasma homolanthionine concentrations were notably higher than lanthionine concentrations, they were not different between the groups (P = 0.47). PLS-DA results showed that a high plasma cystathionine concentration in SAP was associated with higher glucose, branched-chain amino acids, and phenylalanine concentrations, lower kidney function, and lower glutathione and plasma PLP concentrations due to greater catabolism. The high-cystathionine group had a greater proportion of subjects in the postprandial state.Conclusion: These data suggest that metabolic perturbations consistent with higher CVD risk exist in SAP patients with elevated plasma cystathionine concentrations.
Collapse
Affiliation(s)
| | | | - Vegard Lysne
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Fariba Tayyari
- Departments of Biochemistry and,Genetics, Institute of Bioinformatics, and Complex Carbohydrate Research Center, University of Georgia, Athens, GA
| | - Indu Dhar
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Arthur S Edison
- Departments of Biochemistry and,Genetics, Institute of Bioinformatics, and Complex Carbohydrate Research Center, University of Georgia, Athens, GA
| | - Timothy J Garrett
- Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL
| | | | - Per Magne Ueland
- Department of Clinical Science, University of Bergen, Bergen, Norway;,Laboratory of Clinical Biochemistry and
| | - Ottar Kjell Nygård
- Department of Clinical Science, University of Bergen, Bergen, Norway;,Department of Heart Disease, Haukeland University Hospital, Bergen, Norway
| | | |
Collapse
|
20
|
Susiarjo M, Xin F, Stefaniak M, Mesaros C, Simmons RA, Bartolomei MS. Bile Acids and Tryptophan Metabolism Are Novel Pathways Involved in Metabolic Abnormalities in BPA-Exposed Pregnant Mice and Male Offspring. Endocrinology 2017; 158:2533-2542. [PMID: 28549143 PMCID: PMC5551548 DOI: 10.1210/en.2017-00046] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 05/22/2017] [Indexed: 01/18/2023]
Abstract
Increasing evidence has demonstrated that exposure to endocrine-disrupting chemicals impacts maternal and fetal health, but the underlying mechanisms are still unclear. We previously showed that dietary exposure to 10 µg/kg body weight (bw)/d and 10 mg/kg bw/d of bisphenol A (BPA) during pregnancy induced metabolic abnormalities in F1 male offspring and gestational glucose intolerance in F0 pregnant mice. The aim of this study was to elucidate the underlying etiologies of BPA exposure-induced metabolic disease by analyzing the male fetal liver metabolome. Using the Metabolon Discover HD4 Platform, our laboratory identified metabolic pathways that were altered by BPA exposure, including biochemicals in lipid and amino acid metabolism. Specifically, primary and secondary bile acids were increased in liver from BPA-exposed embryonic day 18.5 male fetuses. We subsequently showed that increased bile acid was associated with a defective farnesoid X receptor-dependent negative feedback mechanism in BPA-exposed fetuses. In addition, through metabolomics, we observed that BPA-exposed fetuses had elevated tryptophan levels. Independent liquid chromatography and mass spectrometry measurement revealed that BPA-exposed dams also had increased tryptophan levels relative to those of controls. Because several key enzymes in tryptophan catabolism are vitamin B6 dependent and vitamin B6 deficiencies have been linked to gestational diabetes, we tested the impact of vitamin B6 supplementation and showed that it rescued gestational glucose intolerance in BPA-exposed pregnant mice. Our study has therefore identified two pathways (bile acid and tryptophan metabolism) that potentially underlie BPA-induced maternal and fetal metabolic disease.
Collapse
Affiliation(s)
- Martha Susiarjo
- Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
- Center for Excellence in Environmental Toxicology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Frances Xin
- Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
- Center for Excellence in Environmental Toxicology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Martha Stefaniak
- Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
- Center for Excellence in Environmental Toxicology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Clementina Mesaros
- Center for Excellence in Environmental Toxicology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
- Center for Cancer Pharmacology, Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Rebecca A. Simmons
- Center for Excellence in Environmental Toxicology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Marisa S. Bartolomei
- Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
- Center for Excellence in Environmental Toxicology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| |
Collapse
|
21
|
Midttun Ø, Theofylaktopoulou D, McCann A, Fanidi A, Muller DC, Meyer K, Ulvik A, Zheng W, Shu XO, Xiang YB, Prentice R, Thomson CA, Pettinger M, Giles GG, Hodge A, Cai Q, Blot WJ, Wu J, Johansson M, Hultdin J, Grankvist K, Stevens VL, McCullough ML, Weinstein SJ, Albanes D, Langhammer A, Hveem K, Næss M, Sesso HD, Gaziano JM, Buring JE, Lee IM, Severi G, Zhang X, Han J, Stampfer MJ, Smith-Warner SA, Zeleniuch-Jacquotte A, le Marchand L, Yuan JM, Butler LM, Koh WP, Wang R, Gao YT, Ericson U, Sonestedt E, Ziegler RG, Freedman ND, Visvanathan K, Jones MR, Relton C, Brennan P, Johansson M, Ueland PM. Circulating concentrations of biomarkers and metabolites related to vitamin status, one-carbon and the kynurenine pathways in US, Nordic, Asian, and Australian populations. Am J Clin Nutr 2017; 105:1314-1326. [PMID: 28424186 PMCID: PMC5445679 DOI: 10.3945/ajcn.116.151241] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 03/16/2017] [Indexed: 12/21/2022] Open
Abstract
Background: Circulating concentrations of biomarkers that are related to vitamin status vary by factors such as diet, fortification, and supplement use. Published biomarker concentrations have also been influenced by the variation across laboratories, which complicates a comparison of results from different studies.Objective: We robustly and comprehensively assessed differences in biomarkers that are related to vitamin status across geographic regions.Design: The trial was a cross-sectional study in which we investigated 38 biomarkers that are related to vitamin status and one-carbon and tryptophan metabolism in serum and plasma from 5314 healthy control subjects representing 20 cohorts recruited from the United States, Nordic countries, Asia, and Australia, participating in the Lung Cancer Cohort Consortium. All samples were analyzed in a centralized laboratory.Results: Circulating concentrations of riboflavin, pyridoxal 5'-phosphate, folate, vitamin B-12, all-trans retinol, 25-hydroxyvitamin D, and α-tocopherol as well as combined vitamin scores that were based on these nutrients showed that the general B-vitamin concentration was highest in the United States and that the B vitamins and lipid soluble vitamins were low in Asians. Conversely, circulating concentrations of metabolites that are inversely related to B vitamins involved in the one-carbon and kynurenine pathways were high in Asians. The high B-vitamin concentration in the United States appears to be driven mainly by multivitamin-supplement users.Conclusions: The observed differences likely reflect the variation in intake of vitamins and, in particular, the widespread multivitamin-supplement use in the United States. The results provide valuable information about the differences in biomarker concentrations in populations across continents.
Collapse
Affiliation(s)
| | | | | | - Anouar Fanidi
- Genetic Epidemiology Group, International Agency for Research on Cancer, Lyon, France
| | - David C Muller
- Genetic Epidemiology Group, International Agency for Research on Cancer, Lyon, France
- Department of Epidemiology and Biostatistics, Imperial College London, London, United Kingdom
| | | | | | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN
| | - Xiao-Ou Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN
| | - Yong-Bing Xiang
- Department of Epidemiology, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ross Prentice
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Cynthia A Thomson
- Health Promotion Sciences, Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ
| | - Mary Pettinger
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Graham G Giles
- Cancer Epidemiology Center, Cancer Council Victoria, Melbourne, Victoria, Australia
- Center for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Victoria, Australia
| | - Allison Hodge
- Cancer Epidemiology Center, Cancer Council Victoria, Melbourne, Victoria, Australia
- Center for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Victoria, Australia
| | - Qiuyin Cai
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN
| | - William J Blot
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN
- International Epidemiology Institute, Rockville, MD
| | - Jie Wu
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN
| | | | - Johan Hultdin
- Department of Medical Biosciences, Clinical Chemistry, Umeå University, Umeå, Sweden
| | - Kjell Grankvist
- Department of Medical Biosciences, Clinical Chemistry, Umeå University, Umeå, Sweden
| | | | | | - Stephanie J Weinstein
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD
| | - Demetrius Albanes
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD
| | - Arnulf Langhammer
- Nord-Trøndelag Health Study Research Center, Department of Public Health and Nursing, Faculty of Medicine and Health Science, Norwegian University of Science and Technology, Levanger, Norway
| | - Kristian Hveem
- Nord-Trøndelag Health Study Research Center, Department of Public Health and Nursing, Faculty of Medicine and Health Science, Norwegian University of Science and Technology, Levanger, Norway
| | - Marit Næss
- Nord-Trøndelag Health Study Research Center, Department of Public Health and Nursing, Faculty of Medicine and Health Science, Norwegian University of Science and Technology, Levanger, Norway
| | - Howard D Sesso
- Divisions of Preventive Medicine and
- Aging, Brigham and Women's Hospital, Boston, MA
- Departments of Epidemiology and
| | - J Michael Gaziano
- Aging, Brigham and Women's Hospital, Boston, MA
- VA Boston Healthcare System, Boston, MA
| | - Julie E Buring
- Divisions of Preventive Medicine and
- Departments of Epidemiology and
| | - I-Min Lee
- Divisions of Preventive Medicine and
- Departments of Epidemiology and
| | - Gianluca Severi
- Human Genetics Foundation, Turin, Italy
- Centre for Research in Epidemiology and Population Health (U1018 French National Institute of Health and Medical Research), Facultés de Médecine Université Paris-Sud, Université de Versailles Saint-Quentin-en-Yvelines, Université Paris-Saclay, Villejuif, France
| | - Xuehong Zhang
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | | | - Meir J Stampfer
- Departments of Epidemiology and
- Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | | | | | - Loic le Marchand
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI
| | - Jian-Min Yuan
- Division of Cancer Control and Population Sciences, University of Pittsburgh Cancer Institute, Pittsburgh, PA
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA
| | - Lesley M Butler
- Division of Cancer Control and Population Sciences, University of Pittsburgh Cancer Institute, Pittsburgh, PA
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA
| | - Woon-Puay Koh
- Duke-National University of Singapore (NSU) Medical School, Singapore, and Saw Swee Hock School of Public Health, NSU, Singapore, Singapore
| | - Renwei Wang
- Division of Cancer Control and Population Sciences, University of Pittsburgh Cancer Institute, Pittsburgh, PA
| | - Yu-Tang Gao
- Department of Epidemiology, Shanghai Cancer Institute, Shanghai Jiaotong University, Shanghai, China
| | - Ulrika Ericson
- Department of clinical sciences Malmö, Lund University, Lund, Sweden
| | - Emily Sonestedt
- Department of clinical sciences Malmö, Lund University, Lund, Sweden
| | - Regina G Ziegler
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD
| | - Neal D Freedman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD
| | - Kala Visvanathan
- Johns Hopkins Bloomberg School of Public Health and Johns Hopkins Sidney Kimmel Comprehensive Center, School of Medicine, Baltimore, MD
| | - Miranda R Jones
- Johns Hopkins Bloomberg School of Public Health and Johns Hopkins Sidney Kimmel Comprehensive Center, School of Medicine, Baltimore, MD
| | - Caroline Relton
- Institute of Genetic Medicine, Newcastle University, Newcastle, United Kingdom
- Medical Research Council Integrative Epidemiology Unit, School of Social and Community Medicine, University of Bristol, Bristol, United Kingdom; and
| | - Paul Brennan
- Genetic Epidemiology Group, International Agency for Research on Cancer, Lyon, France
| | - Mattias Johansson
- Genetic Epidemiology Group, International Agency for Research on Cancer, Lyon, France
| | - Per M Ueland
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Laboratory of Clinical Biochemistry, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
22
|
Nutrient Intake Is Associated with Longevity Characterization by Metabolites and Element Profiles of Healthy Centenarians. Nutrients 2016; 8:nu8090564. [PMID: 27657115 PMCID: PMC5037549 DOI: 10.3390/nu8090564] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 09/03/2016] [Accepted: 09/07/2016] [Indexed: 12/21/2022] Open
Abstract
The relationships between diet and metabolites as well as element profiles in healthy centenarians are important but remain inconclusive. Therefore, to test the interesting hypothesis that there would be distinctive features of metabolites and element profiles in healthy centenarians, and that these would be associated with nutrient intake; the short chain fatty acids (SCFAs), total bile acids and ammonia in feces, phenol, p-cresol, uric acid, urea, creatinine and ammonia in urine, and element profiles in fingernails were determined in 90 healthy elderly people, including centenarians from Bama county (China)—a famous longevous region—and elderly people aged 80–99 from the longevous region and a non-longevous region. The partial least squares-discriminant analysis was used for pattern recognition. As a result, the centenarians showed a distinct metabolic pattern. Seven characteristic components closely related to the centenarians were identified, including acetic acid, total SCFA, Mn, Co, propionic acid, butyric acid and valeric acid. Their concentrations were significantly higher in the centenarians group (p < 0.05). Additionally, the dietary fiber intake was positively associated with butyric acid contents in feces (r = 0.896, p < 0.01), and negatively associated with phenol in urine (r = −0.326, p < 0.01). The results suggest that the specific metabolic pattern of centenarians may have an important and positive influence on the formation of the longevity phenomenon. Elevated dietary fiber intake should be a path toward health and longevity.
Collapse
|
23
|
Ueland PM, McCann A, Midttun Ø, Ulvik A. Inflammation, vitamin B6 and related pathways. Mol Aspects Med 2016; 53:10-27. [PMID: 27593095 DOI: 10.1016/j.mam.2016.08.001] [Citation(s) in RCA: 216] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 08/27/2016] [Indexed: 12/11/2022]
Abstract
The active form of vitamin B6, pyridoxal 5'-phosphate (PLP), serves as a co-factor in more than 150 enzymatic reactions. Plasma PLP has consistently been shown to be low in inflammatory conditions; there is a parallel reduction in liver PLP, but minor changes in erythrocyte and muscle PLP and in functional vitamin B6 biomarkers. Plasma PLP also predicts the risk of chronic diseases like cardiovascular disease and some cancers, and is inversely associated with numerous inflammatory markers in clinical and population-based studies. Vitamin B6 intake and supplementation improve some immune functions in vitamin B6-deficient humans and experimental animals. A possible mechanism involved is mobilization of vitamin B6 to the sites of inflammation where it may serve as a co-factor in pathways producing metabolites with immunomodulating effects. Relevant vitamin B6-dependent inflammatory pathways include vitamin B6 catabolism, the kynurenine pathway, sphingosine 1-phosphate metabolism, the transsulfuration pathway, and serine and glycine metabolism.
Collapse
Affiliation(s)
- Per Magne Ueland
- Department of Clinical Science, University of Bergen, 5021 Bergen, Norway; Laboratory of Clinical Biochemistry, Haukeland University Hospital, 5021 Bergen, Norway.
| | | | | | - Arve Ulvik
- Bevital A/S, Laboratoriebygget, 5021 Bergen, Norway
| |
Collapse
|
24
|
Badawy AAB, Dougherty DM. Assessment of the Human Kynurenine Pathway: Comparisons and Clinical Implications of Ethnic and Gender Differences in Plasma Tryptophan, Kynurenine Metabolites, and Enzyme Expressions at Baseline and After Acute Tryptophan Loading and Depletion. Int J Tryptophan Res 2016; 9:31-49. [PMID: 27547036 PMCID: PMC4981220 DOI: 10.4137/ijtr.s38189] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 07/17/2016] [Accepted: 07/19/2016] [Indexed: 12/24/2022] Open
Abstract
Tryptophan (Trp) metabolism via the kynurenine pathway (KP) was assessed in normal healthy US volunteers at baseline and after acute Trp depletion (ATD) and acute Trp loading (ATL) using amino acid formulations. The hepatic KP accounts for ~90% of overall Trp degradation. Liver Trp 2,3-dioxygenase (TDO) contributes ~70% toward Trp oxidation, with the remainder achieved by subsequent rate-limiting enzymes in the KP. TDO is not influenced by a 1.15 g Trp load, but is maximally activated by a 5.15 g dose. We recommend a 30 mg/kg dose for future ATL studies. ATD activates TDO and enhances the Trp flux down the KP via its leucine component. Higher plasma free [Trp] and lower total [Trp] are observed in women, with no gender differences in kynurenines. Kynurenic acid is lower in female Caucasians, which may explain their lower incidence of schizophrenia. African-American and Hispanic women have a lower TDO and Trp oxidation relative to free Trp than the corresponding men. African-American women have a potentially higher 3-hydroxyanthranilic acid/anthranilic acid ratio, which may protect them against osteoporosis. Future studies of the KP in relation to health and disease should focus on gender and ethnic differences.
Collapse
Affiliation(s)
- Abdulla A-B Badawy
- School of Health Sciences, Cardiff Metropolitan University, Cardiff, Wales, UK
| | - Donald M Dougherty
- Department of Psychiatry, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| |
Collapse
|
25
|
|
26
|
DeRatt BN, Ralat MA, Gregory JF. Short-Term Vitamin B-6 Restriction Does Not Affect Plasma Concentrations of Hydrogen Sulfide Biomarkers Lanthionine and Homolanthionine in Healthy Men and Women. J Nutr 2016; 146:714-719. [PMID: 26962179 PMCID: PMC4807651 DOI: 10.3945/jn.115.227819] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 01/11/2016] [Accepted: 02/11/2016] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Suboptimal vitamin B-6 status is associated with increased cardiovascular disease risk, although the mechanism is unknown. The synthesis of the vasodilator hydrogen sulfide occurs through side reactions of the transsulfuration enzymes cystathionine β-synthase and cystathionine γ-lyase, with pyridoxal 5'-phosphate as a coenzyme. Two proposed hydrogen sulfide biomarkers, lanthionine and homolanthionine, are produced concurrently. OBJECTIVE To determine whether hydrogen sulfide production is reduced by vitamin B-6 deficiency, we examined the relations between plasma concentrations of lanthionine and homolanthionine, along with other components of the transsulfuration pathway (homocysteine, cystathionine, and Cys), in a secondary analysis of samples from 2 vitamin B-6 restriction studies in healthy men and women. METHODS Metabolite concentrations were measured in plasma from 23 healthy adults (12 men and 11 women) before and after 28-d controlled dietary vitamin B-6 restriction (0.37 ± 0.04 mg/d). Vitamin B-6 restriction effects on lanthionine and homolanthionine concentrations were assessed. Associations between hydrogen sulfide biomarkers, transsulfuration metabolites, and functional indicators of vitamin B-6 deficiency were analyzed by linear regression. RESULTS Preprandial plasma lanthionine and homolanthionine concentrations ranged from 89.0 to 372 nmol/L and 5.75 to 32.3 nmol/L, respectively, in healthy adults. Mean lanthionine and homolanthionine concentrations were not affected by vitamin B-6 restriction (P < 0.66), with marked heterogeneity of individual responses. After restriction, homolanthionine was positively associated with functional indicators of vitamin B-6 deficiency, which differed from hypothesized negative associations. Plasma lanthionine was positively correlated with the concentration of its precursor, Cys, before (R2 = 0.36; P = 0.002) and after (R2 = 0.37; P = 0.002) restriction. Likewise, homolanthionine concentration was positively correlated with its precursor homocysteine, but only in vitamin B-6 adequacy (R2 = 0.41; P < 0.001). CONCLUSIONS The resiliency of plasma lanthionine and homolanthionine concentrations after short-term vitamin B-6 restriction suggests a minimal effect of moderate vitamin B-6 deficiency on hydrogen sulfide production. Additional research is needed to better understand the metabolism and disposal of these biomarkers in humans. This study was registered at clinicaltrials.gov as NCT00877812.
Collapse
|
27
|
Gregory JF, DeRatt BN, Rios-Avila L, Ralat M, Stacpoole PW. Vitamin B6 nutritional status and cellular availability of pyridoxal 5'-phosphate govern the function of the transsulfuration pathway's canonical reactions and hydrogen sulfide production via side reactions. Biochimie 2016; 126:21-6. [PMID: 26765812 DOI: 10.1016/j.biochi.2015.12.020] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 12/30/2015] [Indexed: 02/08/2023]
Abstract
The transsulfuration pathway (TS) acts in sulfur amino acid metabolism by contributing to the regulation of cellular homocysteine, cysteine production, and the generation of H2S for signaling functions. Regulation of TS pathway kinetics involves stimulation of cystathionine β-synthase (CBS) by S-adenosylmethionine (SAM) and oxidants such as H2O2, and by Michaelis-Menten principles whereby substrate concentrations affect reaction rates. Although pyridoxal phosphate (PLP) serves as coenzyme for both CBS and cystathionine γ-lyase (CSE), CSE exhibits much greater loss of activity than CBS during PLP insufficiency. Thus, cellular and plasma cystathionine concentrations increase in vitamin B6 deficiency mainly due to the bottleneck caused by reduced CSE activity. Because of the increase in cystathionine, the canonical production of cysteine (homocysteine → cystathionine → cysteine) is largely maintained even during vitamin B6 deficiency. Typical whole body transsulfuration flux in humans is 3-7 μmol/h per kg body weight. The in vivo kinetics of H2S production via side reactions of CBS and CSE in humans are unknown but they have been reported for cultured HepG2 cells. In these studies, cells exhibit a pronounced reduction in H2S production capacity and rates of lanthionine and homolanthionine synthesis in deficiency. In humans, plasma concentrations of lanthionine and homolanthionine exhibit little or no mean change due to 4-wk vitamin B6 restriction, nor do they respond to pyridoxine supplementation of subjects in chronically low-vitamin B6 status. Wide individual variation in responses of the H2S biomarkers to such perturbations of human vitamin B6 status suggests that the resulting modulation of H2S production may have physiological consequences in a subset of people. Supported by NIH grant DK072398. This paper refers to data from studies registered at clinicaltrials.gov as NCT01128244 and NCT00877812.
Collapse
Affiliation(s)
- Jesse F Gregory
- Food Science and Human Nutrition Department, University of Florida, Gainesville, FL 32611-0370, USA.
| | - Barbara N DeRatt
- Food Science and Human Nutrition Department, University of Florida, Gainesville, FL 32611-0370, USA
| | - Luisa Rios-Avila
- Food Science and Human Nutrition Department, University of Florida, Gainesville, FL 32611-0370, USA
| | - Maria Ralat
- Food Science and Human Nutrition Department, University of Florida, Gainesville, FL 32611-0370, USA
| | - Peter W Stacpoole
- Division of Endocrinology and Metabolism, Departments of Biochemistry and Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| |
Collapse
|
28
|
Mayengbam S, Raposo S, Aliani M, House JD. A Vitamin B-6 Antagonist from Flaxseed Perturbs Amino Acid Metabolism in Moderately Vitamin B-6-Deficient Male Rats. J Nutr 2016; 146:14-20. [PMID: 26581680 DOI: 10.3945/jn.115.219378] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 10/22/2015] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Pyridoxal 5'-phosphate (PLP) plays a crucial role as a cofactor in amino acid metabolism. There is a prevalence of moderate vitamin B-6 deficiency in the population that may be exacerbated through the ingestion of 1-amino d-proline (1ADP), a vitamin B-6 antagonist found in flaxseed. OBJECTIVE Given prior evidence of the impact of synthetic 1ADP on indexes of pyridoxine metabolism, the current study was designed to investigate the effects of 1ADP derived from flaxseed on amino acid metabolism in moderately vitamin B-6-deficient rats. METHODS Male weanling rats (n = 8/treatment) consumed a semipurified diet containing either 7 mg pyridoxine hydrochloride/kg diet [optimum vitamin B-6 (OB)] or 0.7 mg pyridoxine hydrochloride/kg diet [moderately vitamin B-6 deficient (MB)], each with 0 or 10 mg vitamin B-6 antagonist/kg diet, in either a synthetic form (1ADP) or as a flaxseed extract (FE), for 5 wk. At the end of the experiment, plasma vitamin B-6 and amino acid concentrations and the activities of hepatic PLP-dependent enzymes were analyzed. RESULTS Compared with the MB control group, plasma PLP concentrations were 26% and 69% lower, respectively, in the MB+FE and MB+1ADP rats (P ≤ 0.001). In the MB+FE group, the plasma cystathionine concentration was 100% greater and the plasma α-aminobutyric acid and glutamic acid concentrations were 59% and 30% lower, respectively, than in the MB control group. Both synthetic 1ADP and FE significantly (P < 0.001) inhibited the in vitro hepatic activities of 2 PLP-dependent enzymes, cystathionine β-synthase (up to 44%) and cystathionine γ-lyase (up to 60%), irrespective of vitamin B-6 concentrations. Because of vitamin B-6 antagonist exposure, observed perturbations in plasma biomarkers and hepatic enzyme activities were not evident or of lesser magnitude in rats consuming adequate vitamin B-6. CONCLUSION The current data from a rat model provide evidence that a vitamin B-6 antagonist now prevalent in the human food supply may pose challenges to individuals of moderate vitamin B-6 status.
Collapse
Affiliation(s)
| | - Sara Raposo
- Department of Human Nutritional Sciences and
| | - Michel Aliani
- Department of Human Nutritional Sciences and St-Boniface Hospital Research Centre, Winnipeg, Canada
| | - James D House
- Department of Human Nutritional Sciences and Department of Animal Science, University of Manitoba, Winnipeg, Canada; and St-Boniface Hospital Research Centre, Winnipeg, Canada
| |
Collapse
|
29
|
Huang JY, Butler LM, Wang R, Jin A, Koh WP, Yuan JM. Dietary Intake of One-Carbon Metabolism-Related Nutrients and Pancreatic Cancer Risk: The Singapore Chinese Health Study. Cancer Epidemiol Biomarkers Prev 2015; 25:417-24. [PMID: 26711329 DOI: 10.1158/1055-9965.epi-15-0594] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 12/06/2015] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Nutrients involved in one-carbon metabolism are hypothesized to protect against pancreatic cancer development. METHODS The Singapore Chinese Health Study database was used to prospectively examine the association between intake of one-carbon metabolism-related nutrients and pancreatic cancer risk. Between 1993 and 1998, 63,257 men and women ages 45 to 74 years were enrolled into the cohort. The daily intakes of the following one-carbon metabolism-related nutrients were assessed at enrollment using a 165-item food frequency questionnaire: betaine, choline, folate, and vitamins B2, B6, and B12. Multivariable HRs and 95% confidence intervals (CI) for pancreatic cancer risk associated with dietary intakes of one-carbon metabolism-related nutrients were calculated. RESULTS As of December 2013, 271 incident pancreatic cancer cases were identified during an average of 16.3 years of follow-up. Higher intakes of vitamin B6 and choline were associated with statistically significant decreases in the risk of developing pancreatic cancer. Compared with the lowest quartile, HRs (95% CIs) for the highest quartiles of vitamin B6 and choline were 0.52 (0.36-0.74; P trend = 0.001) and 0.67 (0.48-0.93; P trend = 0.04), respectively. There were no clear associations between the other one-carbon metabolism-related nutrients and pancreatic cancer risk. CONCLUSION Our study suggests that higher intake of vitamin B6 and choline may lower the risk of pancreatic cancer. IMPACT Our prospective findings are consistent with the in vivo evidence for protective roles of vitamin B6 and choline on pancreatic cancer development.
Collapse
Affiliation(s)
- Joyce Y Huang
- Cancer Control and Population Sciences, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania. Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Lesley M Butler
- Cancer Control and Population Sciences, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania. Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania.
| | - Renwei Wang
- Cancer Control and Population Sciences, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania
| | - Aizhen Jin
- National Registry of Diseases Office, Health Promotion Board, Singapore
| | - Woon-Puay Koh
- Duke-NUS Graduate Medical School Singapore, Singapore. Saw Swee Hock School of Public Health, National University of Singapore, Singapore
| | - Jian-Min Yuan
- Cancer Control and Population Sciences, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania. Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
30
|
Hanhineva K. Application of Metabolomics to Assess Effects of Controlled Dietary Interventions. Curr Nutr Rep 2015. [DOI: 10.1007/s13668-015-0148-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
31
|
Rios-Avila L, Coats B, Ralat M, Chi YY, Midttun Ø, Ueland PM, Stacpoole PW, Gregory JF. Pyridoxine supplementation does not alter in vivo kinetics of one-carbon metabolism but modifies patterns of one-carbon and tryptophan metabolites in vitamin B-6-insufficient oral contraceptive users. Am J Clin Nutr 2015; 102:616-25. [PMID: 26201817 PMCID: PMC4548178 DOI: 10.3945/ajcn.115.113159] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 07/01/2015] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Low chronic vitamin B-6 status can occur in a subset of women who use oral contraceptives (OCs) with uncertain metabolic consequences. An insufficiency of cellular pyridoxal 5'-phosphate (PLP), which is the coenzyme form of vitamin B-6, may impair many metabolic processes including one-carbon and tryptophan metabolism. OBJECTIVE We investigated the effects of vitamin B-6 supplementation on the in vivo kinetics of one-carbon metabolism and the concentration of one-carbon and tryptophan metabolites in vitamin B-6-deficient OC users. DESIGN A primed, constant infusion of [(13)C5]methionine, [3-(13)C]serine, and [(2)H3]leucine was performed on 10 OC users (20-40 y old; plasma PLP concentrations <30 nmol/L) before and after 28 d of supplementation with 10 mg pyridoxine hydrochloric acid/d. In vivo fluxes of total homocysteine remethylation, the remethylation of homocysteine from serine, and rates of homocysteine and cystathionine production were assessed. Targeted metabolite profiling was performed, and data were analyzed by using orthogonal partial least-squares-discriminant analysis and paired t tests adjusted for multiple testing. RESULTS Pyridoxine supplementation increased the mean ± SD plasma PLP concentration from 25.8 ± 3.6 to 143 ± 58 nmol/L (P < 0.001) and decreased the leucine concentration from 103 ± 17 to 90 ± 20 nmol/L (P = 0.007) and glycine concentration from 317 ± 63 to 267 ± 58 nmol/L (P = 0.03). Supplementation did not affect in vivo rates of homocysteine remethylation or the appearance of homocysteine and cystathionine. A multivariate analysis showed a clear overall effect on metabolite profiles resulting from supplementation. Leucine, glycine, choline, cysteine, glutathione, trimethylamine N-oxide, and the ratios glycine:serine, 3-hydroxykynurenine:kynurenine, 3-hydroxykynurenine:3-hydroxyanthranilic acid, and 3-hydroxykynurenine:anthranilic acid were significant discriminating variables. CONCLUSIONS Consistent with previous vitamin B-6-restriction studies, fluxes of one-carbon metabolic processes exhibited little or no change after supplementation in low-vitamin B-6 subjects. In contrast, changes in the metabolic profiles after supplementation indicated perturbations in metabolism, suggesting functional vitamin B-6 deficiency. This study was registered at clinicaltrials.gov as NCT01128244.
Collapse
Affiliation(s)
| | - Bonnie Coats
- Department of Medicine, Division of Endocrinology and Metabolism, College of Medicine
| | | | | | | | - Per M Ueland
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Peter W Stacpoole
- Department of Medicine, Division of Endocrinology and Metabolism, College of Medicine, Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL
| | | |
Collapse
|
32
|
Mondloch S, Gannon BM, Davis CR, Chileshe J, Kaliwile C, Masi C, Rios-Avila L, Gregory JF, Tanumihardjo SA. High provitamin A carotenoid serum concentrations, elevated retinyl esters, and saturated retinol-binding protein in Zambian preschool children are consistent with the presence of high liver vitamin A stores. Am J Clin Nutr 2015; 102:497-504. [PMID: 26178727 PMCID: PMC6546228 DOI: 10.3945/ajcn.115.112383] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 06/10/2015] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Biomarkers of micronutrient status are needed to best define deficiencies and excesses of essential nutrients. OBJECTIVE We evaluated several supporting biomarkers of vitamin A status in Zambian children to determine whether any of the biomarkers were consistent with high liver retinol stores determined by using retinol isotope dilution (RID). DESIGN A randomized, placebo-controlled, biofortified maize efficacy trial was conducted in 140 rural Zambian children from 4 villages. A series of biomarkers were investigated to better define the vitamin A status of these children. In addition to the assessment of total-body retinol stores (TBSs) by using RID, tests included analyses of serum carotenoids, retinyl esters, and pyridoxal-5'-phosphate (PLP) by using high-pressure liquid chromatography, retinol-binding protein by using ELISA, and alanine aminotransferase (ALT) activity by using a colorimetric assay. RESULTS Children (n = 133) were analyzed quantitatively for TBSs by using RID. TBSs, retinyl esters, some carotenoids, and PLP differed by village site. Serum carotenoids were elevated above most nonintervened reference values for children. α-Carotene, β-carotene, and lutein values were >95th percentile from children in the US NHANES III, and 13% of children had hypercarotenemia (defined as total carotenoid concentration >3.7 μmol/L). Although only 2% of children had serum retinyl esters >10% of total retinol plus retinyl esters, 16% of children had >5% as esters, which was consistent with high liver retinol stores. Ratios of serum retinol to retinol-binding protein did not deviate from 1.0, which indicated full saturation. ALT activity was low, which was likely due to underlying vitamin B-6 deficiency, which was confirmed by very low serum PLP concentrations. CONCLUSIONS The finding of hypervitaminosis A in Zambian children was supported by high circulating concentrations of carotenoids and mildly elevated serum retinyl esters. ALT-activity assays may be compromised with co-existing vitamin B-6 deficiency. Nutrition education to improve intakes of whole grains and animal-source foods may enhance vitamin B-6 status in Zambians.
Collapse
Affiliation(s)
- Stephanie Mondloch
- Interdepartmental Graduate Program in Nutritional Sciences, University of Wisconsin-Madison, Madison, WI
| | - Bryan M Gannon
- Interdepartmental Graduate Program in Nutritional Sciences, University of Wisconsin-Madison, Madison, WI
| | - Christopher R Davis
- Interdepartmental Graduate Program in Nutritional Sciences, University of Wisconsin-Madison, Madison, WI
| | | | - Chisela Kaliwile
- National Food and Nutrition Commission of Zambia, Lusaka, Zambia; and
| | - Cassim Masi
- National Food and Nutrition Commission of Zambia, Lusaka, Zambia; and
| | | | | | - Sherry A Tanumihardjo
- Interdepartmental Graduate Program in Nutritional Sciences, University of Wisconsin-Madison, Madison, WI;
| |
Collapse
|
33
|
Abstract
Type 2 diabetes (T2D) has become an increasingly challenging health burden due to its high morbidity, mortality, and heightened prevalence worldwide. Although dietary and nutritional imbalances have long been recognized as key risk factors for T2D, the underlying mechanisms remain unclear. The advent of nutritional systems biology, a field that aims to elucidate the interactions between dietary nutrients and endogenous molecular entities in disease-related tissues, offers unique opportunities to unravel the complex mechanisms underlying the health-modifying capacities of nutritional molecules. The recent revolutionary advances in omics technologies have particularly empowered this incipient field. In this review, we discuss the applications of multi-omics approaches toward a systems-level understanding of how dietary patterns and particular nutrients modulate the risk of T2D. We focus on nutritional studies utilizing transcriptomics, epigenomomics, proteomics, metabolomics, and microbiomics, and integration of diverse omics technologies. We also summarize the potential molecular mechanisms through which nutritional imbalances contribute to T2D pathogenesis based on these studies. Finally, we discuss the remaining challenges of nutritional systems biology and how the field can be optimized to further our understanding of T2D and guide disease management via nutritional interventions.
Collapse
Affiliation(s)
- Yuqi Zhao
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095 USA
| | - Rio Elizabeth Barrere-Cain
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095 USA
| | - Xia Yang
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095 USA
| |
Collapse
|
34
|
Abstract
Measures of B6 status are categorized as direct biomarkers and as functional biomarkers. Direct biomarkers measure B6 vitamers in plasma/serum, urine and erythrocytes, and among these plasma pyridoxal 5'-phosphate (PLP) is most commonly used. Functional biomarkers include erythrocyte transaminase activities and, more recently, plasma levels of metabolites involved in PLP-dependent reactions, such as the kynurenine pathway, one-carbon metabolism, transsulfuration (cystathionine), and glycine decarboxylation (serine and glycine). Vitamin B6 status is best assessed by using a combination of biomarkers because of the influence of potential confounders, such as inflammation, alkaline phosphatase activity, low serum albumin, renal function, and inorganic phosphate. Ratios between substrate-products pairs have recently been investigated as a strategy to attenuate such influence. These efforts have provided promising new markers such as the PAr index, the 3-hydroxykynurenine:xanthurenic acid ratio, and the oxoglutarate:glutamate ratio. Targeted metabolic profiling or untargeted metabolomics based on mass spectrometry allow the simultaneous quantification of a large number of metabolites, which are currently evaluated as functional biomarkers, using data reduction statistics.
Collapse
Affiliation(s)
- Per Magne Ueland
- Department of Clinical Science, University of Bergen, and the Laboratory of Clinical Biochemistry, Haukeland University Hospital, 5021 Bergen, Norway;
| | | | | | | | | |
Collapse
|
35
|
Gostner JM, Becker K, Kurz K, Fuchs D. Disturbed Amino Acid Metabolism in HIV: Association with Neuropsychiatric Symptoms. Front Psychiatry 2015; 6:97. [PMID: 26236243 PMCID: PMC4500866 DOI: 10.3389/fpsyt.2015.00097] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Accepted: 06/17/2015] [Indexed: 12/31/2022] Open
Abstract
Blood levels of the amino acid phenylalanine, as well as of the tryptophan breakdown product kynurenine, are found to be elevated in human immunodeficiency virus type 1 (HIV-1)-infected patients. Both essential amino acids, tryptophan and phenylalanine, are important precursor molecules for neurotransmitter biosynthesis. Thus, dysregulated amino acid metabolism may be related to disease-associated neuropsychiatric symptoms, such as development of depression, fatigue, and cognitive impairment. Increased phenylalanine/tyrosine and kynurenine/tryptophan ratios are associated with immune activation in patients with HIV-1 infection and decrease upon effective antiretroviral therapy. Recent large-scale metabolic studies have confirmed the crucial involvement of tryptophan and phenylalanine metabolism in HIV-associated disease. Herein, we summarize the current status of the role of tryptophan and phenylalanine metabolism in HIV disease and discuss how inflammatory stress-associated dysregulation of amino acid metabolism may be part of the pathophysiology of common HIV-associated neuropsychiatric conditions.
Collapse
Affiliation(s)
- Johanna M Gostner
- Division of Medical Biochemistry, Biocenter, Medical University of Innsbruck , Innsbruck , Austria
| | - Kathrin Becker
- Division of Biological Chemistry, Biocenter, Medical University of Innsbruck , Innsbruck , Austria
| | - Katharina Kurz
- Department of Internal Medicine VI, Medical University of Innsbruck , Innsbruck , Austria
| | - Dietmar Fuchs
- Division of Biological Chemistry, Biocenter, Medical University of Innsbruck , Innsbruck , Austria
| |
Collapse
|
36
|
Rios-Avila L, Coats B, Chi YY, Midttun Ø, Ueland PM, Stacpoole PW, Gregory JF. Metabolite profile analysis reveals association of vitamin B-6 with metabolites related to one-carbon metabolism and tryptophan catabolism but not with biomarkers of inflammation in oral contraceptive users and reveals the effects of oral contraceptives on these processes. J Nutr 2015; 145:87-95. [PMID: 25527663 PMCID: PMC4264024 DOI: 10.3945/jn.114.201095] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The use of oral contraceptives (OCs) has been associated with low plasma pyridoxal 5'-phosphate (PLP). The functional consequences are unclear. OBJECTIVES To determine whether functional vitamin B-6 insufficiency occurs in OC users and is attributable to OCs, we investigated the associations of PLP with metabolites of one-carbon metabolism, tryptophan catabolism, and inflammation in OC users, and evaluated the effects of OCs on these metabolites. METHODS Plasma metabolite concentrations were measured in 157 OC users (20-40 y of age). Associations between PLP and the metabolites were analyzed through use of generalized additive models and partial least squares-discriminant analysis (PLS-DA). Additionally, data from 111 of the 157 OC users were compared to previously reported data from 11 nonusers, at adequate and low vitamin B-6 status, with use of multivariate ANOVA. RESULTS PLP showed significant (P < 0.05) negative nonlinear association with homocysteine, glutathione, and ratios of asymmetric dimethylarginine to arginine, 3-hydroxykynurenine to 3-hydroxyanthranilic acid, and 3-hydroxykynurenine to kynurenic acid. PLS-DA supported these conclusions and identified 3-hydroxykynurenine and the 3-hydroxykynurenine-to-kynurenine ratio as discriminating biomarkers in women with PLP ≤30 nmol/L. Among the many differences, OC users had significantly higher plasma pyridoxal (157% at adequate and 195% at low vitamin B-6 status), 4-pyridoxic acid (154% at adequate and 300% at low vitamin B-6 status), xanthurenic acid (218% at low vitamin B-6 status), 3-hydroxyanthranilic acid (176% at adequate and 166% at low vitamin B-6 status), quinolinic acid (127% at low vitamin B-6 status), and nicotinamide (197% at low vitamin B-6 status). Biomarkers of inflammation were not associated with PLP, and no differences were found between the 2 groups. CONCLUSIONS PLP is associated with biomarkers of one-carbon metabolism and tryptophan catabolism but not with biomarkers of inflammation in OC users. Independent of vitamin B-6 status, OCs have effects on metabolites and ratios of one-carbon metabolism and tryptophan catabolism but not on biomarkers of inflammation. This study was registered at clinicaltrials.gov as NCT01128244. The study from which data for nonusers was derived was registered as NCT00877812.
Collapse
Affiliation(s)
| | - Bonnie Coats
- Division of Endocrinology and Metabolism, Department of Medicine, College of Medicine
| | | | | | - Per M Ueland
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Peter W Stacpoole
- Division of Endocrinology and Metabolism, Department of Medicine, College of Medicine,Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL
| | | |
Collapse
|
37
|
Mayengbam S, Raposo S, Aliani M, House JD. Oral exposure to the anti-pyridoxine compound 1-amino D-proline further perturbs homocysteine metabolism through the transsulfuration pathway in moderately vitamin B₆ deficient rats. J Nutr Biochem 2014; 26:241-9. [PMID: 25524630 DOI: 10.1016/j.jnutbio.2014.10.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 10/03/2014] [Accepted: 10/21/2014] [Indexed: 12/11/2022]
Abstract
Pyridoxal 5'-phosphate (PLP; a B₆ vitamer) serves as an important cofactor in a myriad of metabolic reactions, including the transsulfuration (TS) pathway, which converts homocysteine (Hcy) to cysteine. While overt vitamin B₆ deficiency is rare, moderate deficiency is common and may be exacerbated by anti-pyridoxine factors in the food supply. To this end, we developed a model of moderate B₆ deficiency and a study was conducted to examine the in vivo effect of 1-amino D-proline (1ADP), an anti-pyridoxine factor found in flaxseed, on indices of Hcy metabolism through the TS pathway in moderately B₆ deficient rats. Male weaning rats received a semi-purified diet containing either 7 mg/kg (control; CD) or 0.7 mg/kg (moderately deficient; MD) diet of pyridoxine·hydrochloride (PN∙HCl), each with 1 of 4 levels of 1ADP, viz. 0, 0.1, 1 and 10 mg/kg diet for 5 weeks. Perturbations in vitamin B₆ biomarkers were more pronounced in the MD group. Plasma PLP was significantly reduced, while plasma Hcy (8-fold) and cystathionine (11-fold) were increased in rats consuming the highest amount of 1ADP in the MD group. The activities of hepatic cystathionine β-synthase and cystathionine γ-lyase enzymes were significantly reduced in rats consuming the highest 1ADP compared to the lowest, for both levels of PN∙HCl. Dilation of hepatic central veins and sinusoids, mild steatosis and increased liver triglycerides were present in MD rats consuming the highest 1ADP level. The current data provide evidence that the consumption of an anti-pyridoxine factor linked to flaxseed may pose a risk for subjects who are moderate/severe vitamin B₆ deficient.
Collapse
Affiliation(s)
- Shyamchand Mayengbam
- Department of Human Nutritional Sciences, University of Manitoba, Winnipeg R3T2N2, Canada
| | - Sara Raposo
- Department of Human Nutritional Sciences, University of Manitoba, Winnipeg R3T2N2, Canada
| | - Michel Aliani
- Department of Human Nutritional Sciences, University of Manitoba, Winnipeg R3T2N2, Canada
| | - James D House
- Department of Human Nutritional Sciences, University of Manitoba, Winnipeg R3T2N2, Canada; Department of Animal Science, University of Manitoba, Winnipeg R3T2N2, Canada.
| |
Collapse
|
38
|
|
39
|
DeRatt BN, Ralat MA, Kabil O, Chi YY, Banerjee R, Gregory JF. Vitamin B-6 restriction reduces the production of hydrogen sulfide and its biomarkers by the transsulfuration pathway in cultured human hepatoma cells. J Nutr 2014; 144:1501-8. [PMID: 25165392 PMCID: PMC4162474 DOI: 10.3945/jn.114.196808] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Pyridoxal 5'-phosphate (PLP) functions as a coenzyme in many cellular processes including one-carbon metabolism and the interconversion and catabolism of amino acids. PLP-dependent enzymes, cystathionine β-synthase and cystathionine γ-lyase, function in transsulfuration but also have been implicated in the production of the endogenous gaseous signaling molecule hydrogen sulfide (H2S) concurrent with the formation of the biomarkers lanthionine and homolanthionine. OBJECTIVE Our objective was to determine if H2S production and concurrent biomarker production is affected by vitamin B-6 restriction in a cell culture model. METHODS We used cultured human hepatoma cells and evaluated static intracellular profiles of amino acids and in vivo kinetics of H2S biomarker formation. Cells were cultured for 6 wk in media containing concentrations of pyridoxal that represented severe vitamin B-6 deficiency (15 nmol/L pyridoxal), marginal deficiency (56 nmol/L pyridoxal), adequacy (210 nmol/L pyridoxal), and standard medium formulation providing a supraphysiologic pyridoxal concentration (1800 nmol/L pyridoxal). RESULTS Intracellular concentrations of lanthionine and homolanthionine in cells cultured at 15 nmol/L pyridoxal were 50% lower (P < 0.002) and 47% lower (P < 0.0255), respectively, than observed in cells cultured at 1800 nmol/L pyridoxal. Extracellular homocysteine and cysteine were 58% and 46% higher, respectively, in severely deficient cells than in adequate cells (P < 0.002). Fractional synthesis rates of lanthionine (P < 0.01) and homolanthionine (P < 0.006) were lower at 15 and 56 nmol/L pyridoxal than at both higher pyridoxal concentrations. The rate of homocysteine remethylation and the fractional rate of homocysteine production from methionine were not affected by vitamin B-6 restriction. In vitro studies of cell lysates using direct measurement of H2S also had a reduced extent of H2S production in the 2 lower vitamin B-6 conditions. CONCLUSION In view of the physiologic roles of H2S, these results suggest a mechanism that may be involved in the association between human vitamin B-6 inadequacy and its effects on human health.
Collapse
Affiliation(s)
- Barbara N. DeRatt
- Department of Food Science and Human Nutrition, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL
| | - Maria A. Ralat
- Department of Food Science and Human Nutrition, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL
| | - Omer Kabil
- Department of Biological Chemistry, University of Michigan Medical Center, Ann Arbor, MI; and
| | - Yueh-Yun Chi
- Department of Biostatistics, University of Florida, Gainesville, FL
| | - Ruma Banerjee
- Department of Biological Chemistry, University of Michigan Medical Center, Ann Arbor, MI; and
| | - Jesse F. Gregory
- Department of Food Science and Human Nutrition, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL,To whom correspondence should be addressed. E-mail:
| |
Collapse
|
40
|
da Silva VR, Ralat MA, Quinlivan EP, DeRatt BN, Garrett TJ, Chi YY, Frederik Nijhout H, Reed MC, Gregory JF. Targeted metabolomics and mathematical modeling demonstrate that vitamin B-6 restriction alters one-carbon metabolism in cultured HepG2 cells. Am J Physiol Endocrinol Metab 2014; 307:E93-101. [PMID: 24824655 PMCID: PMC4080146 DOI: 10.1152/ajpendo.00697.2013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Low vitamin B-6 nutritional status is associated with increased risk for cardiovascular disease and certain cancers. Pyridoxal 5'-phosphate (PLP) serves as a coenzyme in many cellular processes, including several reactions in one-carbon (1C) metabolism and the transsulfuration pathway of homocysteine catabolism. To assess the effect of vitamin B-6 deficiency on these processes and associated pathways, we conducted quantitative analysis of 1C metabolites including tetrahydrofolate species in HepG2 cells cultured in various concentrations of pyridoxal. These results were compared with predictions of a mathematical model of 1C metabolism simulating effects of vitamin B-6 deficiency. In cells cultured in vitamin B-6-deficient medium (25 or 35 nmol/l pyridoxal), we observed >200% higher concentrations of betaine (P < 0.05) and creatinine (P < 0.05) and >60% lower concentrations of creatine (P < 0.05) and 5,10-methenyltetrahydrofolate (P < 0.05) compared with cells cultured in medium containing intermediate (65 nmol/l) or the supraphysiological 2,015 nmol/l pyridoxal. Cystathionine, cysteine, glutathione, and cysteinylglycine, which are components of the transsulfuration pathway and subsequent reactions, exhibited greater concentrations at the two lower vitamin B-6 concentrations. Partial least squares discriminant analysis showed differences in overall profiles between cells cultured in 25 and 35 nmol/l pyridoxal vs. those in 65 and 2,015 nmol/l pyridoxal. Mathematical model predictions aligned with analytically derived results. These data reveal pronounced effects of vitamin B-6 deficiency on 1C-related metabolites, including previously unexpected secondary effects on creatine. These results complement metabolomic studies in humans demonstrating extended metabolic effects of vitamin B-6 insufficiency.
Collapse
Affiliation(s)
- Vanessa R da Silva
- Food Science and Human Nutrition Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida
| | - Maria A Ralat
- Food Science and Human Nutrition Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida
| | - Eoin P Quinlivan
- Biomedical Mass Spectrometry Laboratory, Clinical and Translational Science Institute, University of Florida, Gainesville, Florida
| | - Barbara N DeRatt
- Food Science and Human Nutrition Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida
| | - Timothy J Garrett
- Biomedical Mass Spectrometry Laboratory, Clinical and Translational Science Institute, University of Florida, Gainesville, Florida
| | - Yueh-Yun Chi
- Department of Biostatistics, University of Florida, Gainesville, Florida
| | | | - Michael C Reed
- Department of Mathematics, Duke University, Durham, North Carolina
| | - Jesse F Gregory
- Food Science and Human Nutrition Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida;
| |
Collapse
|
41
|
Yadav AP, Chaturvedi S, Mishra KP, Pal S, Ganju L, Singh SB. Evidence for altered metabolic pathways during environmental stress: (1)H-NMR spectroscopy based metabolomics and clinical studies on subjects of sea-voyage and Antarctic-stay. Physiol Behav 2014; 135:81-90. [PMID: 24910139 DOI: 10.1016/j.physbeh.2014.05.045] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 04/25/2014] [Accepted: 05/30/2014] [Indexed: 12/27/2022]
Abstract
The Antarctic context is an analogue of space travel, with close similarity in ambience of extreme climate, isolation, constrained living spaces, disrupted sleep cycles, and environmental stress. The present study examined the impact of the harsh habitat of Antarctica on human physiology and its metabolic pathways, by analyzing human serum samples, using (1)H-NMR spectroscopy for identification of metabolites; and quantifying other physiological and clinical parameters for correlation between expression data and metabolite data. Sera from seven adult males (of median age 36years) who participated in this study, from the 28th Indian Expeditionary group to the Antarctica station Maitri, were collected in chronological sequence. These included: i) baseline control; ii) during ship journey; iii) at Antarctica, in the months of March, May, August and November; to enable study of temporal evolution of monitored physiological states. 29 metabolites in serum were identified from the 400MHz (1)H-NMR spectra. Out of these, 19 metabolites showed significant variations in levels, during the ship journey and the stay at Maitri, compared to the base-line levels. Further biochemical analysis also supported these results, indicating that the ship journey, and the long-term Antarctic exposure, affected kidney and liver functioning. Our metabolite data highlights for the first time the effect of environmental stress on the patho-physiology of the human system. Multivariate analysis tools were employed for this metabonomics study, using (1)H-NMR spectroscopy.
Collapse
Affiliation(s)
- Anand Prakash Yadav
- Immunomodulation Laboratory, Defence Institute of Physiology & Allied Sciences, Lucknow Road, Timarpur, Delhi 110054, India
| | - Shubhra Chaturvedi
- Cyclotron & Radiopharmaceutical Sciences Division, Institute of Nuclear Medicine & Allied Sciences, Lucknow Road, Timarpur, Delhi 110054, India
| | - Kamla Prasad Mishra
- Immunomodulation Laboratory, Defence Institute of Physiology & Allied Sciences, Lucknow Road, Timarpur, Delhi 110054, India
| | - Sunil Pal
- Cyclotron & Radiopharmaceutical Sciences Division, Institute of Nuclear Medicine & Allied Sciences, Lucknow Road, Timarpur, Delhi 110054, India
| | - Lilly Ganju
- Immunomodulation Laboratory, Defence Institute of Physiology & Allied Sciences, Lucknow Road, Timarpur, Delhi 110054, India.
| | - Shashi Bala Singh
- Immunomodulation Laboratory, Defence Institute of Physiology & Allied Sciences, Lucknow Road, Timarpur, Delhi 110054, India
| |
Collapse
|