1
|
Liu F, Su Y, Wu J, Zhou Q, Wang M. Exploring the sensory acceptance, physicochemical properties, and phenolamide leaching characteristics of rose tea. Food Chem 2025; 463:141164. [PMID: 39265303 DOI: 10.1016/j.foodchem.2024.141164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/03/2024] [Accepted: 09/05/2024] [Indexed: 09/14/2024]
Abstract
The consumption of rose tea has gained popularity due to its unique flavor and health benefits. In particular, previous data exemplified the protective role of N1, N5, N10-(E)-tri-p-coumaroylspermidine (ETCS; a phenolamide) against alcohol-induced hepatic injuries. This study evaluated the customer acceptance and physicochemical properties of eight rose tea varieties that available in the market. In general, Qianye rose (Rosa centifolia) exhibits better flavor and taste, while Hetian rose (Rosa damascena Mill.) has the highest ETCS level. Moreover, a negative correlation between ETCS content and both vitamin C and anthocyanins content in rose is observed. Additionally, the optimal brewing conditions for rose tea is 95 °C mineral water for 5 min in a thermos bottle, based on ETCS level in the infusion. And rose tea can be brewed for at least three times. Collectively, our findings provide valuable insights for rose tea drinkers and individuals interested in the dietary hepatic-protective benefits.
Collapse
Affiliation(s)
- Fangzhou Liu
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Biological Sciences, The University of Hong Kong, Hong Kong 999077, China
| | - Yao Su
- School of Biological Sciences, The University of Hong Kong, Hong Kong 999077, China
| | - Jun Wu
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Qian Zhou
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Mingfu Wang
- Shenzhen Key Laboratory of Food Nutrition and Health, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
2
|
Hu Y, Zhou P, Deng K, Zhou Y, Hu K. Targeting the gut microbiota: a new strategy for colorectal cancer treatment. J Transl Med 2024; 22:915. [PMID: 39379983 PMCID: PMC11460241 DOI: 10.1186/s12967-024-05671-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 09/04/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND How to reduce the high incidence rate and mortality of colorectal cancer (CRC) effectively is the focus of current research. Endoscopic treatment of early-stage CRC and colorectal adenomas (CAC) has a high success rate, but although several treatments are available for advanced CRC, such as surgery, radiotherapy, chemotherapy, and immunotherapy, the 5-year survival rate remains low. In view of the high incidence rate and mortality of CRC, early rational drug prevention for high-risk groups and exploration of alternative treatment modalities are particularly warranted. Gut microbiota is the target of and interacts with probiotics, prebiotics, aspirin, metformin, and various Chinese herbal medicines (CHMs) for the prevention of CRC. In addition, the anti-cancer mechanisms of probiotics differ widely among bacterial strains, and both bacterial strains and their derivatives and metabolites have been found to have anti-cancer effects. Gut microbiota plays a significant role in early drug prevention of CRC and treatment of CRC in its middle and late stages, targeting gut microbiota may be a new strategy for colorectal cancer treatment.
Collapse
Affiliation(s)
- Yue Hu
- Health Science Center, Ningbo University, Ningbo, China
| | - Peng Zhou
- Health Science Center, Ningbo University, Ningbo, China
| | - Kaili Deng
- Health Science Center, Ningbo University, Ningbo, China
| | - Yuping Zhou
- Department of Gastroenterology, The First Affiliated Hospital of Ningbo University, Ningbo, China.
- Institute of Digestive Disease of Ningbo University, Ningbo, China.
- Ningbo Key Laboratory of Translational Medicine Research on Gastroenterology and Hepatology, Ningbo, China.
| | - Kefeng Hu
- Department of Gastroenterology, The First Affiliated Hospital of Ningbo University, Ningbo, China.
| |
Collapse
|
3
|
Guan Y, Wu D, Wang H, Liu N. Microbiome-driven anticancer therapy: A step forward from natural products. MLIFE 2024; 3:219-230. [PMID: 38948147 PMCID: PMC11211674 DOI: 10.1002/mlf2.12118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 12/25/2023] [Accepted: 01/25/2024] [Indexed: 07/02/2024]
Abstract
Human microbiomes, considered as a new emerging and enabling cancer hallmark, are increasingly recognized as critical effectors in cancer development and progression. Manipulation of microbiome revitalizing anticancer therapy from natural products shows promise toward improving cancer outcomes. Herein, we summarize our current understanding of the human microbiome-driven molecular mechanisms impacting cancer progression and anticancer therapy. We highlight the potential translational and clinical implications of natural products for cancer prevention and treatment by developing targeted therapeutic strategies as adjuvants for chemotherapy and immunotherapy against tumorigenesis. The challenges and opportunities for future investigations using modulation of the microbiome for cancer treatment are further discussed in this review.
Collapse
Affiliation(s)
- Yunxuan Guan
- State Key Laboratory of Systems Medicine for Cancer, Center for Single‐Cell Omics, School of Public HealthShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Di Wu
- State Key Laboratory of Systems Medicine for Cancer, Center for Single‐Cell Omics, School of Public HealthShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Hui Wang
- State Key Laboratory of Systems Medicine for Cancer, Center for Single‐Cell Omics, School of Public HealthShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Ning‐Ning Liu
- State Key Laboratory of Systems Medicine for Cancer, Center for Single‐Cell Omics, School of Public HealthShanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
4
|
Gade A, Kumar MS. Gut microbial metabolites of dietary polyphenols and their potential role in human health and diseases. J Physiol Biochem 2023; 79:695-718. [PMID: 37653220 DOI: 10.1007/s13105-023-00981-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 08/15/2023] [Indexed: 09/02/2023]
Abstract
Polyphenols contribute as one of the largest groups of compounds among all the phytochemicals. Common sources of dietary polyphenols are vegetables, fruits, berries, cereals, whole grains, etc. Owing to their original form, they are difficult to get absorbed. Dietary polyphenols after undergoing gut microbial metabolism form bioaccessible and effective metabolites. Polyphenols and derived metabolites are all together a diversified group of compounds exhibiting pharmacological activities against cardiovascular, cancer, oxidative stress, inflammatory, and bacterial diseases. The formed metabolites are sometimes even more bioavailable and efficacious than the parent polyphenols. Studies on gut microbial metabolism of dietary polyphenols have introduced new approach for the use of polyphenol-rich food in the form of supplementary diet. This review provides insights on various aspects including classification of polyphenols, gut microbiota-mediated metabolism of polyphenols, chemistry of polyphenol metabolism, and pharmacological actions of gut microbial metabolites of polyphenols. It also suggests the use of polyphenols from marine source for the microbial metabolism studies. Till date, gut microbial metabolism of polyphenols from terrestrial sources is extensively studied as compared to marine polyphenols. Marine ecosystem is a profound but partially explored source of phytoconstituents. Among them, edible seaweeds contain high concentration of polyphenols, especially phlorotannins. Hence, microbial metabolism studies of seaweeds can unravel the pharmacological potential of marine polyphenol-derived metabolites.
Collapse
Affiliation(s)
- Anushree Gade
- Somaiya Institute for Research and Consultancy, Somaiya Vidyavihar University, Vidya Vihar East, Mumbai, 400077, India
| | - Maushmi S Kumar
- Somaiya Institute for Research and Consultancy, Somaiya Vidyavihar University, Vidya Vihar East, Mumbai, 400077, India.
| |
Collapse
|
5
|
Vingrys K, Mathai ML, McAinch AJ, Bassett JK, de Courten M, Stojanovska L, Millar L, Giles GG, Hodge AM, Apostolopoulos V. Intake of polyphenols from cereal foods and colorectal cancer risk in the Melbourne Collaborative Cohort Study. Cancer Med 2023; 12:19188-19202. [PMID: 37702114 PMCID: PMC10557875 DOI: 10.1002/cam4.6514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/16/2023] [Accepted: 08/29/2023] [Indexed: 09/14/2023] Open
Abstract
BACKGROUND Cereal-derived polyphenols have demonstrated protective mechanisms in colorectal cancer (CRC) models; however, confirmation in human studies is lacking. Therefore, this study examined the association between cereal polyphenol intakes and CRC risk in the Melbourne Collaborative Cohort Study (MCCS), a prospective cohort study in Melbourne, Australia that recruited participants between 1990 and 1994 to investigate diet-disease relationships. METHODS Using food frequency questionnaire diet data matched to polyphenol data, dietary intakes of alkylresorcinols, phenolic acids, lignans, and total polyphenols from cereals were estimated. Hazard ratios (HRs) and 95% confidence intervals for CRC risk were estimated for quintiles of intake with the lowest quintile as the comparison category, using multivariable adjusted Cox proportional hazards models with age as the time axis adjusted for sex, socio-economic status, alcohol consumption, fibre intake, country of birth, total energy intake, physical activity and smoking status. RESULTS From 35,245 eligible adults, mean (SD) age 54.7 (8.6) years, mostly female (61%) and Australian-born (69%), there were 1394 incident cases of CRC (946 colon cancers and 448 rectal cancers). Results for total cereal polyphenol intake showed reduced HRs in Q2 (HR: 0.80; 95% CI, 0.68-0.95) and Q4 (HR: 0.75; 95% CI, 0.62-0.90), and similar for phenolic acids. Alkylresorcinol intake showed reduced HR in Q3 (HR: 0.80; 95% CI, 0.67-0.95) and Q4 (HR: 0.79; 95% CI, 0.66-0.95). CONCLUSIONS Overall, the present study showed little evidence of association between intakes of cereal polyphenols and CRC risk. Future investigations may be useful to understand associations between cereal-derived polyphenols and additional cancers in different populations.
Collapse
Affiliation(s)
- Kristina Vingrys
- Institute for Health and SportVictoria UniversityMelbourneVictoriaAustralia
- VU First Year College®Victoria UniversityMelbourneVictoriaAustralia
| | - Michael L. Mathai
- Institute for Health and SportVictoria UniversityMelbourneVictoriaAustralia
| | - Andrew J. McAinch
- Institute for Health and SportVictoria UniversityMelbourneVictoriaAustralia
- Australian Institute for Musculoskeletal Science (AIMSS)Victoria UniversityMelbourneVictoriaAustralia
| | - Julie K. Bassett
- Cancer Epidemiology DivisionCancer Council VictoriaMelbourneVictoriaAustralia
| | - Maximilian de Courten
- Institute for Health and SportVictoria UniversityMelbourneVictoriaAustralia
- Mitchell Institute for Education and Health PolicyVictoria UniversityMelbourneVictoriaAustralia
| | - Lily Stojanovska
- Institute for Health and SportVictoria UniversityMelbourneVictoriaAustralia
- Department of Nutrition and Health, College of Medicine and Health SciencesUnited Arab Emirates UniversityAl AinUnited Arab Emirates
| | - Lynne Millar
- Institute for Health and SportVictoria UniversityMelbourneVictoriaAustralia
- Telethon Kids InstituteNedlandsWAAustralia
| | - Graham G. Giles
- Cancer Epidemiology DivisionCancer Council VictoriaMelbourneVictoriaAustralia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global HealthThe University of MelbourneParkvilleVictoriaAustralia
- Precision Medicine, School of Clinical Sciences at Monash HealthMonash UniversityClaytonVictoriaAustralia
| | - Allison M. Hodge
- Cancer Epidemiology DivisionCancer Council VictoriaMelbourneVictoriaAustralia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global HealthThe University of MelbourneParkvilleVictoriaAustralia
| | - Vasso Apostolopoulos
- Institute for Health and SportVictoria UniversityMelbourneVictoriaAustralia
- Australian Institute for Musculoskeletal Science (AIMSS)Victoria UniversityMelbourneVictoriaAustralia
| |
Collapse
|
6
|
Pandey H, Tang DWT, Wong SH, Lal D. Gut Microbiota in Colorectal Cancer: Biological Role and Therapeutic Opportunities. Cancers (Basel) 2023; 15:cancers15030866. [PMID: 36765824 PMCID: PMC9913759 DOI: 10.3390/cancers15030866] [Citation(s) in RCA: 36] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 02/03/2023] Open
Abstract
Colorectal cancer (CRC) is the second-leading cause of cancer-related deaths worldwide. While CRC is thought to be an interplay between genetic and environmental factors, several lines of evidence suggest the involvement of gut microbiota in promoting inflammation and tumor progression. Gut microbiota refer to the ~40 trillion microorganisms that inhabit the human gut. Advances in next-generation sequencing technologies and metagenomics have provided new insights into the gut microbial ecology and have helped in linking gut microbiota to CRC. Many studies carried out in humans and animal models have emphasized the role of certain gut bacteria, such as Fusobacterium nucleatum, enterotoxigenic Bacteroides fragilis, and colibactin-producing Escherichia coli, in the onset and progression of CRC. Metagenomic studies have opened up new avenues for the application of gut microbiota in the diagnosis, prevention, and treatment of CRC. This review article summarizes the role of gut microbiota in CRC development and its use as a biomarker to predict the disease and its potential therapeutic applications.
Collapse
Affiliation(s)
- Himani Pandey
- Redcliffe Labs, Electronic City, Noida 201301, India
| | - Daryl W. T. Tang
- School of Biological Sciences, Nanyang Technological University, Singapore 308232, Singapore
| | - Sunny H. Wong
- Centre for Microbiome Medicine, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
- Correspondence: (S.H.W.); (D.L.)
| | - Devi Lal
- Department of Zoology, Ramjas College, University of Delhi, Delhi 110007, India
- Correspondence: (S.H.W.); (D.L.)
| |
Collapse
|
7
|
Zhao Y, Zhong X, Yan J, Sun C, Zhao X, Wang X. Potential roles of gut microbes in biotransformation of natural products: An overview. Front Microbiol 2022; 13:956378. [PMID: 36246222 PMCID: PMC9560768 DOI: 10.3389/fmicb.2022.956378] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/29/2022] [Indexed: 11/23/2022] Open
Abstract
Natural products have been extensively applied in clinical practice, characterized by multi-component and multi-target, many pharmacodynamic substances, complex action mechanisms, and various physiological activities. For the oral administration of natural products, the gut microbiota and clinical efficacy are closely related, but this relationship remains unclear. Gut microbes play an important role in the transformation and utilization of natural products caused by the diversity of enzyme systems. Effective components such as flavonoids, alkaloids, lignans, and phenols cannot be metabolized directly through human digestive enzymes but can be transformed by enzymes produced by gut microorganisms and then utilized. Therefore, the focus is paid to the metabolism of natural products through the gut microbiota. In the present study, we systematically reviewed the studies about gut microbiota and their effect on the biotransformation of various components of natural products and highlighted the involved common bacteria, reaction types, pharmacological actions, and research methods. This study aims to provide theoretical support for the clinical application in the prevention and treatment of diseases and provide new ideas for studying natural products based on gut biotransformation.
Collapse
Affiliation(s)
- Yucui Zhao
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xinqin Zhong
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Junyuan Yan
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Congying Sun
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xin Zhao
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- *Correspondence: Xin Zhao,
| | - Xiaoying Wang
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Xiaoying Wang,
| |
Collapse
|
8
|
Wang W, Sang S. Biotransformation of Barley Phenolamide by Mice and the Human Gut Microbiota and Quantitative Analysis of the Major Metabolites in Mice. Mol Nutr Food Res 2022; 66:e2200134. [PMID: 35532207 DOI: 10.1002/mnfr.202200134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/31/2022] [Indexed: 11/06/2022]
Abstract
SCOPE This study investigates the metabolism of p-coumaroylagmatine (pCAA), one of the phenolamides in barley, in mice, and by human gut microbiota, and measures the concentrations of its main metabolites in mice. METHODS AND RESULTS Nine major metabolites are identified from fecal and urinary samples collected from pCAA treated mice via analysis of their LC chromatograms and tandem mass spectra compared to the commercial and synthesized standards. These nine metabolites are generated through four different biotransformation pathways: double bond reduction, amide bond hydrolyzation, cleavage of guanidine, and oxidation of guanidine. Furthermore, interindividual differences in the formation of dihydro-pCAA (M3), high and low metabolizers, are observed in human in vitro intestinal microbial conversion. Moreover, significant amount of pCAA is detected in mice (29.33 ± 1.58 µmol g-1 in feces and 2020.44 ± 130.07 µM in urine), and the concentrations of agmatine (M1) are increased to 177.6 times and 3.2 times in mouse feces and urine, respectively. CONCLUSION This study demonstrates that pCAA is metabolized in mice and by human gut microbiota to generate potential bioactive metabolites through four major metabolic pathways. pCAA and its metabolites have the potential to be used as the exposure biomarkers to reflect the intake of whole grain barley.
Collapse
Affiliation(s)
- Weixin Wang
- Laboratory for Functional Foods and Human Health, Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University, North Carolina Research Campus, 500 Laureate Way, Kannapolis, NC, 28081, USA
| | - Shengmin Sang
- Laboratory for Functional Foods and Human Health, Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University, North Carolina Research Campus, 500 Laureate Way, Kannapolis, NC, 28081, USA
| |
Collapse
|
9
|
Vong CI, Rathinasabapathy T, Moncada M, Komarnytsky S. All Polyphenols Are Not Created Equal: Exploring the Diversity of Phenolic Metabolites. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:2077-2091. [PMID: 35147422 DOI: 10.1021/acs.jafc.1c07179] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Dietary intake of plant polyphenols is significant, and many of them enter a human body as a highly diverse pool of ring-fission phenolic metabolites arising from digestion and microbial catabolism of the parental structures. Difficulty in designing the uniform intervention studies and limited tools calibrated to detect and quantify the inherent complexity of phenolic metabolites hindered efforts to establish and validate protective health effects of these molecules. Here, we highlight the recent findings that describe novel complex downstream metabolite profiles with a particular focus on dihydrophenolic (phenylpropanoic) acids of microbial origin, ingested and phase II-transformed methylated phenolic metabolites (methylated sinks), and small phenolic metabolites derived from the breakdown of different classes of flavonoids, stilbenoids, and tannins. There is a critical need for precise identification of the individual phenolic metabolite signatures originating from different polyphenol groups to enable future translation of these findings into break-through nutritional interventions and dietary guidelines.
Collapse
Affiliation(s)
- Chi In Vong
- Plants for Human Health Institute, North Carolina State University, North Carolina Research Campus, 600 Laureate Way, Kannapolis, North Carolina 28081, United States
- Department of Food, Bioprocessing, and Nutrition Sciences, North Carolina State University, 400 Dan Allen Drive, Raleigh, North Carolina 27695, United States
| | - Thirumurugan Rathinasabapathy
- Plants for Human Health Institute, North Carolina State University, North Carolina Research Campus, 600 Laureate Way, Kannapolis, North Carolina 28081, United States
- Department of Food, Bioprocessing, and Nutrition Sciences, North Carolina State University, 400 Dan Allen Drive, Raleigh, North Carolina 27695, United States
| | - Marvin Moncada
- Plants for Human Health Institute, North Carolina State University, North Carolina Research Campus, 600 Laureate Way, Kannapolis, North Carolina 28081, United States
- Department of Food, Bioprocessing, and Nutrition Sciences, North Carolina State University, 400 Dan Allen Drive, Raleigh, North Carolina 27695, United States
| | - Slavko Komarnytsky
- Plants for Human Health Institute, North Carolina State University, North Carolina Research Campus, 600 Laureate Way, Kannapolis, North Carolina 28081, United States
- Department of Food, Bioprocessing, and Nutrition Sciences, North Carolina State University, 400 Dan Allen Drive, Raleigh, North Carolina 27695, United States
| |
Collapse
|
10
|
Yu Y, Zhou L, Li X, Liu J, Li H, Gong L, Zhang J, Wang J, Sun B. The Progress of Nomenclature, Structure, Metabolism, and Bioactivities of Oat Novel Phytochemical: Avenanthramides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:446-457. [PMID: 34994561 DOI: 10.1021/acs.jafc.1c05704] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Oats are among the most commonly consumed whole grains and are widely grown worldwide, and they contain numerous nutrients, including proteins, lipids, vitamins, minerals, β-glucan, and unique phytochemical polyphenol avenanthramides (Avns). Recent studies have indicated that Avns play essential roles in mediating the health benefits of oats. This review systemically summarized the nomenclature and structures of Avns, effect of germination on promoting Avns production, and in vivo metabolites produced after Avns consumption. The classical functions and novel potential bioactivities of Avns were further elucidated. The classical functions of Avns in cancer prevention, antioxidative response, anti-inflammatory reaction, and maintaining muscle health were expounded, and the internal mechanisms of these functions were analyzed. The potential novel bioactivities of Avns in modulating gut microbiota, alleviating obesity, and preventing chronic diseases, such as atherosclerosis and osteoporosis, were further revealed. This review may provide new prospects and directions for the development and utilization of oat Avns.
Collapse
Affiliation(s)
- Yonghui Yu
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
| | - Linyue Zhou
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
| | - Xinping Li
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
| | - Jie Liu
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
| | - Hongyan Li
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
| | - Lingxiao Gong
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
| | - Jingjie Zhang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
| | - Jing Wang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
| | - Baoguo Sun
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
11
|
Paudel D, Dhungana B, Caffe M, Krishnan P. A Review of Health-Beneficial Properties of Oats. Foods 2021; 10:2591. [PMID: 34828872 PMCID: PMC8625765 DOI: 10.3390/foods10112591] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/28/2021] [Accepted: 10/23/2021] [Indexed: 12/31/2022] Open
Abstract
Oat is among the food crops and ancient grains cultivated and consumed worldwide. It is gaining in popularity owing to its nutritional composition and multifunctional benefits of select bioactive compounds. Beta-glucan is an important component of dietary fiber found in oat grains. It is the major active compound in oats with proven cholesterol-lowering and antidiabetic effects. Oats also provide substantial levels of other bioactive compounds such as phenolic acids, tocols, sterols, avenacosides, and avenanthramides. The consumption of oats has been determined to be beneficial for human health by promoting immunomodulation and improving gut microbiota. In addition, oat consumption assists in preventing diseases such as atherosclerosis, dermatitis, and some forms of cancer. While much has been published in relation to oat nutrients and oat fibers and their impact on major diseases, the oat industries and consumers may benefit from greater knowledge and understanding of clinical effects, range of occurrence, distribution, therapeutic doses and food functional attributes of other oat bioactives such as avenanthramides and saponins as well as other anti-inflammatory agents found in the cereal. This review focuses on the various studies relevant to the contribution of the consumption of oats and oat-based products in preventing human diseases and promoting human health.
Collapse
Affiliation(s)
- Devendra Paudel
- Dairy and Food Science Department, South Dakota State University, Brookings, SD 57007, USA;
| | - Bandana Dhungana
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD 57007, USA; (B.D.); (M.C.)
| | - Melanie Caffe
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD 57007, USA; (B.D.); (M.C.)
| | - Padmanaban Krishnan
- Dairy and Food Science Department, South Dakota State University, Brookings, SD 57007, USA;
| |
Collapse
|
12
|
Kolodziejczyk-Czepas J, Kozachok S, Pecio Ł, Marchyshyn S, Oleszek W. Determination of phenolic profiles of Herniaria polygama and Herniaria incana fractions and their in vitro antioxidant and anti-inflammatory effects. PHYTOCHEMISTRY 2021; 190:112861. [PMID: 34325241 DOI: 10.1016/j.phytochem.2021.112861] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/21/2021] [Accepted: 06/28/2021] [Indexed: 06/13/2023]
Abstract
The study is based on phytochemical profiling and in vitro evaluation of biological effects of phenolic acid derivatives-rich Herniaria fractions, isolated from two rupturewort (Herniaria L.) species, i.e. Herniaria incana Lam. (syn. H. besseri Fisch. ex Hornem) and H. polygama J. Gay (syn. H. odorata). For the first time, the composition of phenolic compounds of these species was extensively evaluated by both LC-HR-QTOF-ESI-MS and Nuclear Magnetic Resonance spectroscopy (NMR). LC-MS analyses of H. polygama revealed 72 tentatively identified compounds, while H. incana - 63. Only 8% of the metabolites reported in this work have been previously described for Herniaria spp. Most of the identified specialized metabolites were cinnamic and benzoic acid derivatives. Phenolic fraction of H. incana herb contained flavonoids as well. A multi-step chromatographic separation of phenolic fractions from H. polygama yielded three known cinnamic and one benzoic acid derivates, and from H. incana - 4 known flavonoids and one previously undescribed, i.e. rhamnocitrin-3-O-[3-hydroxy-3-methylglutaryl-(1 → 6'')]-[α-rhamnopyranosyl-(1 → 2'')]-β-glucopyranoside. Antioxidant properties of the examined fractions (1-50 μg/ml) were assessed in human blood plasma under the conditions of peroxynitrite-induced oxidative stress. Measurements of well-known biomarkers such as 3-nitrotyrosine, protein thiol groups, thiobarbituric acid-reactive substances and the ferric reducing ability of blood plasma revealed the protective effect of Herniaria fractions against oxidative damage to blood plasma components. Furthermore, the examined fractions effectively ameliorated the inflammatory response of the concanavalin A-stimulated human peripheral blood mononuclear cells (PBMCs). Additionally, cellular safety of the fractions was confirmed in PBMCs.
Collapse
Affiliation(s)
- Joanna Kolodziejczyk-Czepas
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236, Lodz, Poland.
| | - Solomiia Kozachok
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation, State Research Institute, Czartoryskich 8, 24-100, Puławy, Poland; Department of Pharmacognosy with Medical Botany, I Horbachevsky Ternopil National Medical University, Maidan Voli 1, 46001, Ternopil, Ukraine.
| | - Łukasz Pecio
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation, State Research Institute, Czartoryskich 8, 24-100, Puławy, Poland
| | - Svitlana Marchyshyn
- Department of Pharmacognosy with Medical Botany, I Horbachevsky Ternopil National Medical University, Maidan Voli 1, 46001, Ternopil, Ukraine
| | - Wiesław Oleszek
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation, State Research Institute, Czartoryskich 8, 24-100, Puławy, Poland
| |
Collapse
|
13
|
Ed Nignpense B, Francis N, Blanchard C, Santhakumar AB. Bioaccessibility and Bioactivity of Cereal Polyphenols: A Review. Foods 2021; 10:foods10071595. [PMID: 34359469 PMCID: PMC8307242 DOI: 10.3390/foods10071595] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 12/12/2022] Open
Abstract
Cereal bioactive compounds, especially polyphenols, are known to possess a wide range of disease preventive properties that are attributed to their antioxidant and anti-inflammatory activity. However, due to their low plasma concentrations after oral intake, there is controversy regarding their therapeutic benefits in vivo. Within the gastrointestinal tract, some cereal polyphenols are absorbed in the small intestine, with the majority accumulating and metabolised by the colonic microbiota. Chemical and enzymatic processes occurring during gastrointestinal digestion modulate the bioactivity and bioaccessibility of phenolic compounds. The interactions between the cereal polyphenols and the intestinal epithelium allow the modulation of intestinal barrier function through antioxidant, anti-inflammatory activity and mucin production thereby improving intestinal health. The intestinal microbiota is believed to have a reciprocal interaction with polyphenols, wherein the microbiome produces bioactive and bioaccessible phenolic metabolites and the phenolic compound, in turn, modifies the microbiome composition favourably. Thus, the microbiome presents a key link between polyphenol consumption and the health benefits observed in metabolic conditions in numerous studies. This review will explore the therapeutic value of cereal polyphenols in conjunction with their bioaccessibility, impact on intestinal barrier function and interaction with the microbiome coupled with plasma anti-inflammatory effects.
Collapse
Affiliation(s)
- Borkwei Ed Nignpense
- School of Biomedical Sciences, Charles Sturt University, Locked Bag 588, Wagga Wagga, NSW 2678, Australia; (B.E.N.); (N.F.); (C.B.)
| | - Nidhish Francis
- School of Biomedical Sciences, Charles Sturt University, Locked Bag 588, Wagga Wagga, NSW 2678, Australia; (B.E.N.); (N.F.); (C.B.)
- School of Animal and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW 2650, Australia
| | - Christopher Blanchard
- School of Biomedical Sciences, Charles Sturt University, Locked Bag 588, Wagga Wagga, NSW 2678, Australia; (B.E.N.); (N.F.); (C.B.)
- Australian Research Council (ARC), Industrial Transformation Training Centre (ITTC) for Functional Grains, Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, NSW 2650, Australia
| | - Abishek Bommannan Santhakumar
- School of Biomedical Sciences, Charles Sturt University, Locked Bag 588, Wagga Wagga, NSW 2678, Australia; (B.E.N.); (N.F.); (C.B.)
- Australian Research Council (ARC), Industrial Transformation Training Centre (ITTC) for Functional Grains, Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, NSW 2650, Australia
- Correspondence: ; Tel.: +61-2-6933-2678
| |
Collapse
|
14
|
Wang P, Zhang S, Yerke A, Ohland CL, Gharaibeh RZ, Fouladi F, Fodor AA, Jobin C, Sang S. Avenanthramide Metabotype from Whole-Grain Oat Intake is Influenced by Faecalibacterium prausnitzii in Healthy Adults. J Nutr 2021; 151:1426-1435. [PMID: 33694368 DOI: 10.1093/jn/nxab006] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/09/2020] [Accepted: 01/07/2021] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Oat has been widely accepted as a key food for human health. It is becoming increasingly evident that individual differences in metabolism determine how different individuals benefit from diet. Both host genetics and the gut microbiota play important roles on the metabolism and function of dietary compounds. OBJECTIVES To investigate the mechanism of individual variations in response to whole-grain (WG) oat intake. METHODS We used the combination of in vitro incubation assays with human gut microbiota, mouse and human S9 fractions, chemical analyses, germ-free (GF) mice, 16S rRNA sequencing, gnotobiotic techniques, and a human feeding study. RESULTS Avenanthramides (AVAs), the signature bioactive polyphenols of WG oat, were not metabolized into their dihydro forms, dihydro-AVAs (DH-AVAs), by both human and mouse S9 fractions. DH-AVAs were detected in the colon and the distal regions but not in the proximal and middle regions of the perfused mouse intestine, and were in specific pathogen-free (SPF) mice but not in GF mice. A kinetic study of humans fed oat bran showed that DH-AVAs reached their maximal concentrations at much later time points than their corresponding AVAs (10.0-15.0 hours vs. 4.0-4.5 hours, respectively). We observed interindividual variations in the metabolism of AVAs to DH-AVAs in humans. Faecalibacterium prausnitzii was identified as the individual bacterium to metabolize AVAs to DH-AVAs by 16S rRNA sequencing analysis. Moreover, as opposed to GF mice, F. prausnitzii-monocolonized mice were able to metabolize AVAs to DH-AVAs. CONCLUSIONS These findings demonstrate that the presence of intestinal F. prausnitzii is indispensable for proper metabolism of AVAs in both humans and mice. We propose that the abundance of F. prausnitzii can be used to subcategorize individuals into AVA metabolizers and nonmetabolizers after WG oat intake. This study was registered at clinicaltrials.gov as NCT04335435.
Collapse
Affiliation(s)
- Pei Wang
- Laboratory for Functional Foods and Human Health, Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University, North Carolina Research Campus, Kannapolis, NC, USA
| | - Shuwei Zhang
- Laboratory for Functional Foods and Human Health, Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University, North Carolina Research Campus, Kannapolis, NC, USA
| | - Aaron Yerke
- Laboratory for Functional Foods and Human Health, Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University, North Carolina Research Campus, Kannapolis, NC, USA.,Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC, USA
| | | | - Raad Z Gharaibeh
- Department of Medicine, University of Florida, Gainesville, FL, USA
| | - Farnaz Fouladi
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Anthony A Fodor
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Christian Jobin
- Department of Medicine, University of Florida, Gainesville, FL, USA
| | - Shengmin Sang
- Laboratory for Functional Foods and Human Health, Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University, North Carolina Research Campus, Kannapolis, NC, USA
| |
Collapse
|
15
|
Campbell SC. Faecalibacterium prausnitzii Abundance in Mouse and Human Gut Can Predict Metabolism of Oat Avenanthramides. J Nutr 2021; 151:1369-1370. [PMID: 33847340 DOI: 10.1093/jn/nxab086] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/01/2021] [Accepted: 03/05/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Sara C Campbell
- Department of Kinesiology and Health, Rutgers University, New Brunswick, NJ, USA.,Center for Nutrition, Microbiome, and Health, Rutgers Center for Lipid Research, Institute for Food, Nutrition and Health, Rutgers University, New Brunswick, NJ, USA.,Center for Human Nutrition, Exercise, and Metabolism, Rutgers Center for Lipid Research, Institute for Food, Nutrition and Health, Rutgers University, New Brunswick, NJ, USA
| |
Collapse
|
16
|
Guo H, Wu H, Sajid A, Li Z. Whole grain cereals: the potential roles of functional components in human health. Crit Rev Food Sci Nutr 2021; 62:8388-8402. [PMID: 34014123 DOI: 10.1080/10408398.2021.1928596] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Whole grain cereals have been the basis of human diet since ancient times. Due to rich in a variety of unique bioactive ingredients, they play an important role in human health. This review highlights the contents and distribution of primary functional components and their health effects in commonly consumed whole grain cereals, especially dietary fiber, protein, polyphenols, and alkaloids. In general, cereals exert positive effects in the following ways: 1) Restoring intestinal flora diversity and increasing intestinal short-chain fatty acids. 2) Regulating plasma glucose and lipid metabolism, thereby the improvement of obesity, cardiovascular and cerebrovascular diseases, diabetes, and other chronic metabolic diseases. 3) Exhibiting antioxidant activity by scavenging free radicals. 4) Preventing gastrointestinal cancer via the regulation of classical signaling pathways. In summary, this review provides a scientific basis for the formulation of whole-grain cereals-related dietary guidelines, and guides people to form scientific dietary habits, so as to promote the development and utilization of whole-grain cereals.
Collapse
Affiliation(s)
- Huiqin Guo
- Institute of Biotechnology, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, PR China
| | - Haili Wu
- College of Life Science, Shanxi University, Taiyuan, PR China
| | - Amin Sajid
- Institute of Biotechnology, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, PR China
| | - Zhuoyu Li
- Institute of Biotechnology, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, PR China;,College of Life Science, Shanxi University, Taiyuan, PR China
| |
Collapse
|
17
|
Bocchi S, Rocchetti G, Elli M, Lucini L, Lim CY, Morelli L. The combined effect of fermentation of lactic acid bacteria and in vitro digestion on metabolomic and oligosaccharide profile of oat beverage. Food Res Int 2021; 142:110216. [PMID: 33773694 DOI: 10.1016/j.foodres.2021.110216] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 02/06/2023]
Abstract
Oat (Avena sativa L.) is widely appreciated for its beneficial properties for human health, which have led to the introduction of more food products on the market, including oat beverages. The fibre components found in the oat are recognized for their beneficial effects, despite other bioactive compounds with healthy properties being present. This work aimed to evaluate the metabolites profile of a commercial oat beverage, either fermented with lactic bacteria or not, following in vitro gastro-intestinal digestion. UHPLC-QTOF untargeted metabolomics allowed investigation of the bioaccessibility of health-related metabolites from the oat beverage at the intestinal level. The results identified flavonoids, phenolic acids (avenanthramides), amino acids and steroids as the major classes of compounds. In particular, after in vitro digestion, amino acids, peptides, and phenolic acids showed the highest increases. The co-fermentation of oat milk by Lactobacillus spp. and Bifidobacterium spp. strains decreased the levels of both lignans and phytic acid, while increased the levels of some polyphenols like avenanthramides. Furthermore, fermentation by microorganisms increased the bioaccessibility of specific amino acids, vitamins, and polyphenols (flavonoids and phenolic acids). Interestingly, despite lacking a significant part of beta-glucans, the HPAEC-PAD profiling of our oat beverage evidenced that the fermentation process did not alter the oligosaccharides profile, thus preserving its prebiotic potential. The phytochemical profile of oat milk was shown to have a functional potential. Nonetheless, the fermentation by bacterial strains changed the profile of metabolites during in vitro digestion, thus offering an interesting option in the future development of cereal-based beverages.
Collapse
Affiliation(s)
- Serena Bocchi
- Coree S.r.l., Piazza San Babila 5, 20122 Milan, Italy; Department for Sustainable Food Processes, Università Cattolica del Sacro Cuore, Via Emilia Parmense, 84, 29122 Piacenza, Italy.
| | - Gabriele Rocchetti
- Department for Sustainable Food Processes, Università Cattolica del Sacro Cuore, Via Emilia Parmense, 84, 29122 Piacenza, Italy.
| | - Marina Elli
- Coree S.r.l., Piazza San Babila 5, 20122 Milan, Italy; AAT-Advanced Analytical Technologies S.r.l., Via P. Majavacca, 12, 29017 Fiorenzuola d'Arda (Piacenza), Italy.
| | - Luigi Lucini
- Department for Sustainable Food Processes, Università Cattolica del Sacro Cuore, Via Emilia Parmense, 84, 29122 Piacenza, Italy.
| | | | - Lorenzo Morelli
- Department for Sustainable Food Processes, Università Cattolica del Sacro Cuore, Via Emilia Parmense, 84, 29122 Piacenza, Italy.
| |
Collapse
|
18
|
Schlörmann W, Atanasov J, Lorkowski S, Dawczynski C, Glei M. Thermal Processing has no Impact on Chemopreventive Effects of Oat and Barley Kernels in LT97 Colon Adenoma Cells. Nutr Cancer 2020; 73:2708-2719. [PMID: 33305613 DOI: 10.1080/01635581.2020.1856892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The unique dietary fiber composition with high contents of β-glucan contributes to the health-promoting properties of oat and barley and may mediate a reduction of colon cancer risk. In the present study, chemopreventive effects of oat and barley (beta®barley) kernels were investigated. In order to address the impact of thermal processing on these effects, kernels were roasted (150-180 °C, approx. 20 min), digested and fermented using an In Vitro human digestion model. Concentrations of short-chain fatty acids (SCFA) and ammonia were determined in fermentation supernatants (FS). Growth inhibition, apoptosis, DNA integrity and gene expression of catalase were analyzed in LT97 colon adenoma cells. Concentrations of SCFA, particularly butyrate, were higher in oat/barley FS (2.2-fold, on average), while ammonia levels were significantly lower (0.7-fold, on average) than in the fermentation control. Treatment of LT97 cells with FS of oat/barley kernels led to a significant time- and dose-dependent growth reduction, a significant increase in caspase-3 activity and enhanced levels of catalase mRNA, without exhibiting genotoxic effects. In general, the results indicate a chemopreventive potential of In Vitro fermented oat and waxy winter barley mediated mainly by growth inhibitory and apoptotic effects, which are preserved after thermal processing.
Collapse
Affiliation(s)
- Wiebke Schlörmann
- Department of Nutritional Toxicology, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Jena, Germany.,Competence Cluster for Nutrition, Cardiovascular Health (nutriCARD) Halle-Jena-Leipzig, Germany
| | - Julia Atanasov
- Department of Nutritional Toxicology, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Jena, Germany
| | - Stefan Lorkowski
- Competence Cluster for Nutrition, Cardiovascular Health (nutriCARD) Halle-Jena-Leipzig, Germany.,Department of Nutritional Biochemistry and Physiology, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Jena, Germany
| | - Christine Dawczynski
- Competence Cluster for Nutrition, Cardiovascular Health (nutriCARD) Halle-Jena-Leipzig, Germany.,Junior Research Group Nutritional Concepts, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Jena, Germany
| | - Michael Glei
- Department of Nutritional Toxicology, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Jena, Germany.,Competence Cluster for Nutrition, Cardiovascular Health (nutriCARD) Halle-Jena-Leipzig, Germany
| |
Collapse
|
19
|
Gong L, Wen T, Wang J. Role of the Microbiome in Mediating Health Effects of Dietary Components. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:12820-12835. [PMID: 32131598 DOI: 10.1021/acs.jafc.9b08231] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Numerous recent observation and intervention studies suggest that the microbiota in the gut and oral cavity play important roles in host physiology, including disease development and progression. Of the many environmental factors involved, dietary components play a pivotal role in shaping the microbiota community and function, thus eliciting beneficial or detrimental consequences on host health. The microbiota affect human physiology by altering the chemical structures of dietary components, thus creating new biological properties and modifying their lifetime and bioavailability. This review will describe the causal mechanisms between the microbiota and some specific bacterial species and diet components providing health benefits and how this knowledge could be incorporated in dietary strategies for improving human health.
Collapse
Affiliation(s)
- Lingxiao Gong
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU), Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing 100048, People's Republic of China
| | - Tingting Wen
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU), Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing 100048, People's Republic of China
| | - Jing Wang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU), Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing 100048, People's Republic of China
| |
Collapse
|
20
|
Hu C, Tang Y, Zhao Y, Sang S. Quantitative Analysis and Anti-inflammatory Activity Evaluation of the A-Type Avenanthramides in Commercial Sprouted Oat Products. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:13068-13075. [PMID: 31841331 DOI: 10.1021/acs.jafc.9b06812] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Avenanthramides (AVAs) are unique phytochemicals in oat that contain two distinct groups of compounds. The first group is constituted by N-cinnamoylanthranilic acids with a single double bond (referred to as C type), and the other group is constituted by N-avenalumoylanthranilic acids with two double bonds (referred to as A type). C-type AVAs have been reported with their chemical profiles and levels in commercial oat products as well as their bioactivities. However, the accurate levels of A-type AVAs in commercial sprouted oat products and their bioactivity are still unknown. In this study, we purified seven A-type AVAs from sprouted oat bran and characterized their structures with corresponding mass spectrometry and nuclear magnetic resonance data. Among them, five compounds were isolated from oat bran for the first time. The purified A-type AVAs were used as authentic standards to establish the chemical profile of A-type AVAs in oat and to quantify the levels of all individual A-type AVAs in six commercial sprouted oat products using ultra-high-performance liquid chromatography with tandem mass spectrometry. The total A-type AVA contents in the various oat products ranged from 7.85 to 133.3 μg/g. Furthermore, the inhibition of lipopolysaccharide-induced nitric oxide production and inducible nitric oxide synthase expression by A- and C-type AVAs in macrophages were compared. The most abundant A-type AVAs (2pd, 2cd, and 2fd) have similar anti-inflammatory activity to the major C-type AVAs (2p, 2c, and 2f). To the best of our knowledge, this is the first report on the bioactivity of A-type AVAs.
Collapse
Affiliation(s)
- Changling Hu
- Laboratory for Functional Foods and Human Health, Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University, North Carolina Research Campus, 500 Laureate Way, Kannapolis, North Carolina 28081, United States
| | - Yao Tang
- Laboratory for Functional Foods and Human Health, Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University, North Carolina Research Campus, 500 Laureate Way, Kannapolis, North Carolina 28081, United States
| | - Yantao Zhao
- Laboratory for Functional Foods and Human Health, Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University, North Carolina Research Campus, 500 Laureate Way, Kannapolis, North Carolina 28081, United States
| | - Shengmin Sang
- Laboratory for Functional Foods and Human Health, Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University, North Carolina Research Campus, 500 Laureate Way, Kannapolis, North Carolina 28081, United States
| |
Collapse
|
21
|
Hernandez-Hernandez O, Pereira-Caro G, Borges G, Crozier A, Olsson O. Characterization and antioxidant activity of avenanthramides from selected oat lines developed by mutagenesis technique. Food Chem 2020; 343:128408. [PMID: 33158678 DOI: 10.1016/j.foodchem.2020.128408] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/12/2020] [Accepted: 10/13/2020] [Indexed: 12/22/2022]
Abstract
From a mutagenized oat population, produced by ethyl methanesulfonate mutagenesis, hulled grains from 17 lines with elevated avenanthramide (AVN) content were selected and their AVN structures, concentrations and antioxidant potentials were determined by HPLC-MS2 and HPLC equipped with an on-line ABTS+ antioxidant detection system. The data obtained showed qualitative and quantitative differences in the synthesis of AVNs in the different lines, with a total AVN concentration up to 227.5 µg/g oat seed flour in the highest line, compared with 78.2 µg/g seed in the commercial line, SW Belinda. In total, 25 different AVNs were identified with avenanthramide B structures being among the most abundant, and AVN C structures having the highest antioxidant activity. The findings indicate the potential of oat mutagenesis in combination with a high precision biochemical selection method for the generation of stable mutagenized lines with a high concentration of total and/or individual AVNs in the oat seed grain.
Collapse
Affiliation(s)
| | - Gema Pereira-Caro
- Department of Food and Health, IFAPA-Alameda del Obispo, Córdoba, Spain
| | - Gina Borges
- Polyphenol Bio Ltd., 9/47, Partickhill Road, Glasgow G11 5AB, United Kingdom
| | - Alan Crozier
- Department of Chemistry, King Saud University, Riyadh 11451, Saudi Arabia; Department of Nutrition, University of California, Davis, CA 95616-5270, United States
| | - Olof Olsson
- Department of Pure and Applied Biochemistry, Lund University, Box 124, SE 22100 Lund, Sweden; CropTailorAB, c/o Department of Pure and Applied Biochemistry, Lund University, Box 124, SE 22100 Lund, Sweden
| |
Collapse
|
22
|
Raj P, Ames N, Joseph Thandapilly S, Yu L, Netticadan T. The effects of oat ingredients on blood pressure in spontaneously hypertensive rats. J Food Biochem 2020; 44:e13402. [PMID: 32713035 DOI: 10.1111/jfbc.13402] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/04/2020] [Accepted: 06/28/2020] [Indexed: 12/12/2022]
Abstract
This study investigated the blood pressure (BP) lowering and cardioprotective effects of oat avenanthramide C and beta-glucan alone or in combination in spontaneously hypertensive rats (SHR). Five-weeks-old male SHR and Wistar-Kyoto rats received vehicle, avenanthramide C and beta-glucan alone or a combination of avenanthramide C and beta-glucan via gavage for 15 weeks. BP was measured at 0, 10, and 15 weeks of treatment. Echocardiography was performed at 15 weeks of treatment. Oxidative stress and inflammation were also measured. Beta-glucan alone prevented the increase in systolic and diastolic BP in SHR, but avenanthramide C alone or the combination did not prevent the increase in systolic and diastolic BP. SHRs treated with beta-glucan and not avenanthramide C or the combination reduced isovolumetric relaxation time when compared to SHR treated with vehicle. Beta-glucan and avenanthramide C decreased the levels of malondialdehyde, a marker of oxidative stress in SHR. In conclusion, beta-glucan is a potential antihypertensive agent that may alleviate cardiovascular abnormalities. PRACTICAL APPLICATIONS: Oats products are believed to contain many bioactives that possess potential beneficial properties against chronic diseases. Specifically, oats beta-glucan has been well-established for its efficacy in positively modulating the risk factor for dyslipidemia. This preliminary in vivo study shows that beta-glucan is a potential antihypertensive agent that may alleviate cardiac dysfunction as well. In light of the current findings, further human studies may establish the efficacy of oats beta-glucan in hypertensive patients alongside the current antihypertensive medications. This novel attribute established via rigorous studies may provide an impetus for oats products and oats industry. Last but not least, it will also help improve the cardiovascular disease burden in a cost-effective way.
Collapse
Affiliation(s)
- Pema Raj
- Agriculture and Agri-Food Canada, Winnipeg, MB, Canada
- Canadian Centre for Agri-Food Research in Health and Medicine, Winnipeg, MB, Canada
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB, Canada
| | - Nancy Ames
- Agriculture and Agri-Food Canada, Winnipeg, MB, Canada
- Department of Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, Canada
- Richardson Center for Functional Foods and Nutraceuticals, Winnipeg, MB, Canada
| | - Sijo Joseph Thandapilly
- Agriculture and Agri-Food Canada, Winnipeg, MB, Canada
- Department of Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, Canada
- Richardson Center for Functional Foods and Nutraceuticals, Winnipeg, MB, Canada
| | - Liping Yu
- Agriculture and Agri-Food Canada, Winnipeg, MB, Canada
- Canadian Centre for Agri-Food Research in Health and Medicine, Winnipeg, MB, Canada
| | - Thomas Netticadan
- Agriculture and Agri-Food Canada, Winnipeg, MB, Canada
- Canadian Centre for Agri-Food Research in Health and Medicine, Winnipeg, MB, Canada
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
23
|
Roumani M, Duval RE, Ropars A, Risler A, Robin C, Larbat R. Phenolamides: Plant specialized metabolites with a wide range of promising pharmacological and health-promoting interests. Biomed Pharmacother 2020; 131:110762. [PMID: 33152925 DOI: 10.1016/j.biopha.2020.110762] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 09/14/2020] [Accepted: 09/16/2020] [Indexed: 12/12/2022] Open
Abstract
Phenolamides constitute a family of metabolites, widely represented in the plant kingdom, that can be found in all plant organs with a predominance in flowers and pollen grains. They represent a large and structurally diverse family, resulting from the association of phenolic acids with aliphatic or aromatic amines. Initially revealed as active compounds in several medicinal plant extracts, phenolamides have been extensively studied for their health-promoting and pharmacological properties. Indeed, phenolamides have been shown to exhibit antioxidant, anti-inflammatory, anti-cancer and antimicrobial properties, but also protective effects against metabolic syndrome and neurodegenerative diseases. The purpose of this review is to summarise this large body of literature, including in vitro and in vivo studies, by describing the diversity of their biological properties and our actual knowledge of the molecular mechanisms behind them. With regard to their considerable pharmacological interest, the question of industrial production is also tackled through chemical and biological syntheses in engineered microorganisms. The diversity of biological activities already described, together with the active discovery of the broad structural diversity of this metabolite family, make phenolamides a promising source of new active compounds on which future studies should be focused.
Collapse
Affiliation(s)
- Marwa Roumani
- UMR 1121, Laboratoire Agronomie et Environnement (LAE), Université de Lorraine- INRAe, Nancy, France
| | | | - Armelle Ropars
- Stress Immunity Pathogens Université de Lorraine, Nancy, France
| | - Arnaud Risler
- Université de Lorraine, CNRS, L2CM, F-54000, Nancy, France
| | - Christophe Robin
- UMR 1121, Laboratoire Agronomie et Environnement (LAE), Université de Lorraine- INRAe, Nancy, France
| | - Romain Larbat
- UMR 1121, Laboratoire Agronomie et Environnement (LAE), Université de Lorraine- INRAe, Nancy, France.
| |
Collapse
|
24
|
Lim JS, Lee DY, Kim HS, Park SC, Park JT, Kim HS, Oh WK, Cho KA. Identification of a novel senomorphic agent, avenanthramide C, via the suppression of the senescence-associated secretory phenotype. Mech Ageing Dev 2020; 192:111355. [PMID: 32941937 DOI: 10.1016/j.mad.2020.111355] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 07/14/2020] [Accepted: 09/07/2020] [Indexed: 01/07/2023]
Abstract
Senescent cells are deeply involved in the induction of tissue damage and aging-related diseases. The identification of factors that eliminate senescent cells or inhibit the senescence-associated secretory phenotype (SASP) in these cells is necessary. Here, we report an avenanthramice C (Avn C) extracted from oat as a new SASP modulator. Treatment with Avn C led to a significant reduction in the levels of markers of senescent cells, with no toxicity observed. The SASP was also inhibited by Avn C treatment, similar to non-senescent cells, and the suppression of cell division by autocrine signals associated with SASP was restored. To investigate the mechanism underlying SASP inhibition by Avn C, we analyzed the effect of Avn C in lipopolysaccharide (LPS)-induced inflammation in non-senescent cells. Avn C inhibited nuclear factor κB (NF-κB) activity and the secretion of inflammatory cytokines before or after LPS treatment. Although the activity of MAP kinases, which are NF-κB upstream signals, was inhibited by Avn C in LPS-induced inflammation, only p38 activity was specifically inhibited in senescent cells. Interestingly, the inhibition of p38 in senescent cells was observed through Avn C-induced 5'-adenosine monophosphate-activated protein kinase (AMPK) activity. Avn C-induced inhibition of the SASP is triggered by senescence-related stress.
Collapse
Affiliation(s)
- Jae Sung Lim
- Department of Biochemistry, Chonanm National University Medical School, 264 Seoyang-ro, Hwasun-gun, Jeonnam-do, 58128, Republic of Korea; Combinatorial Tumor Immunotherapy Medical Research Center, Chonnam National University Medical School, 264 Seoyang-ro, Hwasun-gun, Jeonnam-do, 58128, Republic of Korea
| | - Da Young Lee
- Department of Biochemistry, Chonanm National University Medical School, 264 Seoyang-ro, Hwasun-gun, Jeonnam-do, 58128, Republic of Korea; Center for Creative Biomedical Scientists, Chonnam National University Medical School, 264 Seoyang-ro, Hwasun-gun, Jeonnam-do, 58128, Republic of Korea
| | - Hyung Seok Kim
- Center for Creative Biomedical Scientists, Chonnam National University Medical School, 264 Seoyang-ro, Hwasun-gun, Jeonnam-do, 58128, Republic of Korea; Department of Forensic Science, Chonnam National University Medical School, 264 Seoyang-ro, Hwasun-gun, Jeonnam-do, 58128, Republic of Korea
| | - Sang Chul Park
- Future Life and Society Research Center, Chonnam National University Medical School, 264 Seoyang-ro, Hwasun-gun, Jeonnam-do, 58128, Republic of Korea
| | - Joon Tae Park
- Department of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Hyeon Sik Kim
- Medical Photonic Research Center, Korea Photonics Technology Institute, Gwangju, 61007, Republic of Korea
| | - Won Keun Oh
- Korea Bioactive Natural Material Bank, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kyung A Cho
- Department of Biochemistry, Chonanm National University Medical School, 264 Seoyang-ro, Hwasun-gun, Jeonnam-do, 58128, Republic of Korea; Center for Creative Biomedical Scientists, Chonnam National University Medical School, 264 Seoyang-ro, Hwasun-gun, Jeonnam-do, 58128, Republic of Korea; Future Life and Society Research Center, Chonnam National University Medical School, 264 Seoyang-ro, Hwasun-gun, Jeonnam-do, 58128, Republic of Korea.
| |
Collapse
|
25
|
Wang W, Snooks HD, Sang S. The Chemistry and Health Benefits of Dietary Phenolamides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:6248-6267. [PMID: 32422049 DOI: 10.1021/acs.jafc.0c02605] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Phenolamides, also known as hydroxycinnamic acid amides or phenylamides, have been reported throughout the plant kingdom, while a few of these amine-conjugated hydroxycinnamic acids are unique in foods. The current knowledge of their specific functions in plant development and defense is readily available as is their biosynthesis; however, their functionality in humans is still largely unknown. Of the currently known phenolamides, the most common are avenanthramides, which are unique in oats and similar to the well-known drug Tranilast, which possess anti-inflammatory, antioxidant, anti-itch, and antiatherogenic activities. While recent data have brought to light more information regarding the other known phenolamides, such as hordatines, dimers of agmatine conjugated to hydroxycinnamic acid, and kukoamines, spermine-derived phenolamides, the information is still severely limited, leaving their potential health benefits to speculation. Herein, to highlight the importance of dietary phenolamides to human health, we review and summarize the four major subgroups of phenolamides, including their chemical structures, dietary sources, and reported health benefits. We believe that the studies on phenolamides are still in the infancy stage and additional health benefits of these phenolamides may yet be identified.
Collapse
Affiliation(s)
- Weixin Wang
- Laboratory for Functional Foods and Human Health, Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University, North Carolina Research Campus, 500 Laureate Way, Kannapolis, North Carolina 28081, United States
| | - Hunter D Snooks
- Laboratory for Functional Foods and Human Health, Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University, North Carolina Research Campus, 500 Laureate Way, Kannapolis, North Carolina 28081, United States
| | - Shengmin Sang
- Laboratory for Functional Foods and Human Health, Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University, North Carolina Research Campus, 500 Laureate Way, Kannapolis, North Carolina 28081, United States
| |
Collapse
|
26
|
Glei M, Zetzmann S, Lorkowski S, Dawczynski C, Schlörmann W. Chemopreventive effects of raw and roasted oat flakes after in vitro fermentation with human faecal microbiota. Int J Food Sci Nutr 2020; 72:57-69. [PMID: 32482126 DOI: 10.1080/09637486.2020.1772205] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The aim of the present study was to analyse chemopreventive effects of oat flakes under consideration of processing. Thin and thick flakes were roasted and subjected to an in vitro digestion and fermentation. Fermentation supernatants (FS) were characterised and chemopreventive effects were analysed in LT97 colon adenoma cells. Compared to the fermentation control, pH values were decreased (from pH 6.3 to pH 5.0) and concentrations of SCFA, in particular butyrate, were increased in oat FS (2.6-fold, on average). Ammonia levels were not altered. Oat FS significantly decreased cell growth time- and dose-dependently. Caspase 3 activity was significantly increased (9.7-fold, on average). Oat FS slightly increased the mRNA expression of CAT (2.0-fold), SOD2 (1.7-fold) and GSTP1 (2.8-fold), on average, while GPX1 mRNA (0.3-fold) was decreased. The results indicate a chemopreventive potential of in vitro digested oat flakes regarding colon cancer development mediated mostly by growth inhibition and apoptosis, unaffected by roasting.
Collapse
Affiliation(s)
- Michael Glei
- Department of Nutritional Toxicology, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Jena, Germany.,Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD) Halle-Jena-Leipzig, Jena, Germany
| | - Silvana Zetzmann
- Department of Nutritional Toxicology, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Jena, Germany
| | - Stefan Lorkowski
- Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD) Halle-Jena-Leipzig, Jena, Germany.,Department of Nutritional Biochemistry and Physiology, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Jena, Germany
| | - Christine Dawczynski
- Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD) Halle-Jena-Leipzig, Jena, Germany.,Junior Research Group Nutritional Concepts, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Jena, Germany
| | - Wiebke Schlörmann
- Department of Nutritional Toxicology, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Jena, Germany.,Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD) Halle-Jena-Leipzig, Jena, Germany
| |
Collapse
|
27
|
Leonova S, Gnutikov A, Loskutov I, Blinova E, Gustafsson KE, Olsson O. Diversity of avenanthramide content in wild and cultivated oats. PROCEEDINGS ON APPLIED BOTANY, GENETICS AND BREEDING 2020. [DOI: 10.30901/2227-8834-2020-1-30-47] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Background. Oat grains accumulate substantial amounts of various phenolic compounds that possess biological activity and have a potential to considerably increase health benefits of oats as a food. Avenanthramides (AVA) is an important group of these compounds due to their antioxidant, anti-itching, anti-inflammatory, antiproliferative activities.Materials and methods. Using combined HPLC and LC-MS analyses, we provide the first comprehensive review of the total avenanthramide content and composition in cultivated and wild oats. The AVA content was measured in 32 wild and 120 cultivated oat accessions obtained from the global collection of the N.I. Vavilov Institute of Plant Genetic Resources (VIR), St. Petersburg, Russia.Results and conclusion. The wild hexaploid A. sterilis L. had the highest total AVA content, reaching 1825 mg kg–1. Among cultivated accessions, naked oat cv. ‘Numbat’ (Australia) had the highest AVA content, 586 mg kg–1. The AVA composition exhibited a wide diversity among the analyzed samples. Accessions were identified where AVAs A, B and C, which are generally considered as major AVA, had a low percentage, and instead other AVAs prevailed. The AVA content in eight oat cultivars revealed significant annual changes in both the total AVA content and the proportions of individual AVAs. Using HPLC analyses, 22 distinguishable peaks in AVA extracts of oat seeds were detected and quantified. Several of these peaks, which have not been previously documented, presumably represent different AVAs. Further analyses are needed to detail these findings and to determine the specific AVA structures in oat grains.
Collapse
Affiliation(s)
| | - A. Gnutikov
- N.I. Vavilov All-Russian Institute of Plant Genetic Resources
| | - I. Loskutov
- N.I. Vavilov All-Russian Institute of Plant Genetic Resources
| | - E. Blinova
- N.I. Vavilov All-Russian Institute of Plant Genetic Resources
| | | | - O. Olsson
- Lund University; CropTailor AB, Lund University
| |
Collapse
|
28
|
Chen C, Li T, Chen Z, Wang L, Luo X. Absorption Rates and Mechanisms of Avenanthramides in a Caco-2 Cell Model and Their Antioxidant Activity during Absorption. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:2347-2356. [PMID: 32026690 DOI: 10.1021/acs.jafc.9b06576] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Avenanthramides (AVNs) are a unique kind of polyphenols that were only detected in the oats and have been demonstrated to exhibit strong antioxidant activities but low bioavailability. The purpose of the present research was to evaluate the absorption rates and mechanisms of AVNs (AVN 2c, AVN 2f, and AVN 2p) using a human colon adenocarcinoma cell line (Caco-2) cell model and clarify the influence of the absorption process on the antioxidant capacities of AVNs. Furthermore, the absorption rates and antioxidant activities of ferulic acid and caffeic acid were compared with those of AVNs. Results showed that the apparent absorption rates (Papp) of AVN 2c, AVN 2f, and AVN 2p were 0.65 ± 0.05 × 10-6, 1.18 ± 0.16 × 10-6, and 1.44 ± 0.09 × 10-6 cm/s, respectively, which were significantly lower than those of caffeic acid (3.76 ± 0.31 × 10-6 cm/s) and ferulic acid (1.69 ± 0.13 × 10-5 cm/s). Moreover, the metabolites (caffeic acid, ferulic acid, and AVN 2f) of AVNs after absorption were detected and quantified by high-performance liquid chromatography-mass spectrometry. Before absorption, although the antioxidant capacities of AVNs were significantly stronger than those of ferulic acid and caffeic acid, there was an opposite result after absorption. In addition, AVNs transported the Caco-2 monolayer by paracellular diffusion and were affected by monoamine oxidase and efflux transporters (P-gp, MRP2) during absorption. The co-administration of quercetin could significantly improve the absorption rates of AVNs.
Collapse
Affiliation(s)
- Chao Chen
- State Key Laboratory of Food Science and Technology , Jiangnan University , Wuxi 214122 , China
- National Engineering Laboratory for Cereal Fermentation Technology , Jiangnan University , Wuxi 214122 , China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology , Jiangnan University , Wuxi 214122 , China
- School of Food Science and Technology , Jiangnan University , Wuxi 214122 , China
| | - Ting Li
- State Key Laboratory of Food Science and Technology , Jiangnan University , Wuxi 214122 , China
- National Engineering Laboratory for Cereal Fermentation Technology , Jiangnan University , Wuxi 214122 , China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology , Jiangnan University , Wuxi 214122 , China
- School of Food Science and Technology , Jiangnan University , Wuxi 214122 , China
| | - Zhengxing Chen
- State Key Laboratory of Food Science and Technology , Jiangnan University , Wuxi 214122 , China
- National Engineering Laboratory for Cereal Fermentation Technology , Jiangnan University , Wuxi 214122 , China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology , Jiangnan University , Wuxi 214122 , China
- School of Food Science and Technology , Jiangnan University , Wuxi 214122 , China
| | - Li Wang
- State Key Laboratory of Food Science and Technology , Jiangnan University , Wuxi 214122 , China
- National Engineering Laboratory for Cereal Fermentation Technology , Jiangnan University , Wuxi 214122 , China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology , Jiangnan University , Wuxi 214122 , China
- School of Food Science and Technology , Jiangnan University , Wuxi 214122 , China
| | - Xiaohu Luo
- State Key Laboratory of Food Science and Technology , Jiangnan University , Wuxi 214122 , China
- National Engineering Laboratory for Cereal Fermentation Technology , Jiangnan University , Wuxi 214122 , China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology , Jiangnan University , Wuxi 214122 , China
- School of Food Science and Technology , Jiangnan University , Wuxi 214122 , China
| |
Collapse
|
29
|
Chemopreventive Effect of the Germinated Oat and its Phenolic-AVA Extract in Azoxymethane/Dextran Sulfate Sodium (AOM/DSS) Model of Colon Carcinogenesis in Mice. Foods 2020; 9:foods9020169. [PMID: 32050698 PMCID: PMC7074527 DOI: 10.3390/foods9020169] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/06/2020] [Accepted: 02/06/2020] [Indexed: 12/11/2022] Open
Abstract
The consumption of fruits, vegetables, nuts, legumes, and whole grains has been associated with a lower risk of colorectal cancer (CRC) due to the content of natural compounds with antioxidant and anticancer activities. The oat (Avena sativa L.) is a unique source of avenanthramides (AVAs), among other compounds, with chemopreventive effects. In addition, oat germination has shown enhanced nutraceutical and phytochemical properties. Therefore, our objective was to evaluate the chemopreventive effect of the sprouted oat (SO) and its phenolic-AVA extract (AVA) in azoxymethane (AOM)/dextran sulfate sodium (DSS)-induced CRC mouse model. Turquesa oat seeds were germinated (five days at 25 °C and 60% relative humidity) and, after 16 weeks of administration, animals in the SO- and AVA-treated groups had a significantly lower inflammation grade and tumor (38–50%) and adenocarcinoma (38–63%) incidence compared to those of the AOM+DSS group (80%). Although both treatments normalized colonic GST and NQO1 activities as well as erythrocyte GSH levels, and significantly reduced cecal and colonic β-GA, thus indicating an improvement in the intestinal parameters, the inflammatory states, and the redox states of the animals, SO exerted a superior chemopreventive effect, probably due to the synergistic effects of multiple compounds. Our results indicate that oats retain their biological properties even after the germination process.
Collapse
|
30
|
Overview of the Anticancer Profile of Avenanthramides from Oat. Int J Mol Sci 2019; 20:ijms20184536. [PMID: 31540249 PMCID: PMC6770293 DOI: 10.3390/ijms20184536] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/06/2019] [Accepted: 09/10/2019] [Indexed: 12/12/2022] Open
Abstract
Cancer represents one of the leading causes of death worldwide. Progresses in treatment of cancer have continued at a rapid pace. However, undesirable side effects and drug resistance remain major challenges for therapeutic success. Natural products represent a valuable starting point to develop new anticancer strategies. Polyphenols, well-known as antioxidant, exert anticancer effects through the modulation of multiple pathways and mechanisms. Oat (Avena sativa L., Poaceae) is a unique source of avenanthramides (AVAs), a group of polyphenolic alkaloids, considered as its signature compounds. The present review aims to offer a comprehensive and critical perspective on the chemopreventive and chemotherapeutic potential of AVAs. AVAs prevent cancer mainly by blocking reactive species. Moreover, they exhibit potential therapeutic activity through the modulation of different pathways including the activation of apoptosis and senescence, the block of cell proliferation, and the inhibition of epithelial mesenchymal transition and metastatization. AVAs are promising chemopreventive and anticancer phytochemicals, which need further clinical trials and toxicological studies to define their efficacy in preventing and reducing the burden of cancer diseases.
Collapse
|
31
|
Li Z, Chen Y, Meesapyodsuk D, Qiu X. The Biosynthetic Pathway of Major Avenanthramides in Oat. Metabolites 2019; 9:metabo9080163. [PMID: 31394723 PMCID: PMC6724135 DOI: 10.3390/metabo9080163] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 07/17/2019] [Accepted: 08/02/2019] [Indexed: 11/16/2022] Open
Abstract
Avenanthramides are a group of N-cinnamoylanthranilic acids, with health-promoting properties mainly found in oat (Avena sativa L.). However, the biosynthetic mechanism for the main three types of avenanthramides (Avn-A, Avn-B and Avn-C) is not completely understood. In the present study, we report molecular identification and functional characterization of three different types of genes from oat encoding 4-coumarate-CoA ligase (4CL), hydroxycinnamoyl-CoA:hydroxyanthranilate N-hydroxycinnamoyl transferase (HHT) and a caffeoyl-CoA O-methyltransferase (CCoAOMT) enzymes, all involved in the biosynthesis of these avenanthramides. In vitro enzymatic assays using the proteins expressed in Escherichia coli showed that oat 4CL could convert p-coumaric acid, caffeic acid and ferulic acid to their CoA thioesters. Oat HHTs were only responsible for the biosynthesis of Avn-A and Avn-C using hydroxyanthranilic acid as an acyl acceptor and p-coumaroyl-CoA and caffeoyl-CoA as an acyl donor, respectively. Avn-B was synthesized by a CCoAOMT enzyme through the methylation of Avn-C. Collectively, these results have elucidated the molecular mechanisms for the biosynthesis of three major avenanthramides in vitro and paved the way for metabolic engineering of the biosynthetic pathway in heterologous systems to produce nutraceutically important compounds and make possible genetic improvement of this nutritional trait in oat through marker-assisted breeding.
Collapse
Affiliation(s)
- Zhiyong Li
- Department of Food & Bioproduct Sciences, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
| | - Yi Chen
- Department of Food & Bioproduct Sciences, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
| | - Dauenpen Meesapyodsuk
- Department of Food & Bioproduct Sciences, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
| | - Xiao Qiu
- Department of Food & Bioproduct Sciences, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada.
| |
Collapse
|
32
|
Gut microbial transformation, a potential improving factor in the therapeutic activities of four groups of natural compounds isolated from herbal medicines. Fitoterapia 2019; 138:104293. [PMID: 31398447 DOI: 10.1016/j.fitote.2019.104293] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/04/2019] [Accepted: 08/05/2019] [Indexed: 12/19/2022]
Abstract
Herbal medicines (HMs) have attracted widespread attention because of their significant contributions to the prevention and treatment of many human diseases. Recently, gut microbiota has become an important frontier to understand the therapeutic mechanisms of medicines. Gut microbiota-mediated transformation is a microbial metabolic form after oral administrations of HMs compounds. A great number of studies showed that gut microbiota could transform some HMs compounds by the variation of chemical structures into several active metabolites, which exerted better bioavailabilities and therapeutic activities than their parent compounds. Among these HMs compounds, alkaloids, flavonoids, polyphenols and terpenoids were the representative ones. However, there is no systemic review focusing on the potential improved therapeutic activities of these natural compounds caused by gut microbial transformation. Here, this review summarizes the therapeutic activities that are more potent in microbial transformed metabolites than in their parent compounds (alkaloids, flavonoids, polyphenols and terpenoids) from HMs. We hope this review will be conducive to deepening the understanding of the relationship between gut microbial transformation and therapeutic activities of HMs compounds.
Collapse
|
33
|
Flanagan E, Müller M, Hornberger M, Vauzour D. Impact of Flavonoids on Cellular and Molecular Mechanisms Underlying Age-Related Cognitive Decline and Neurodegeneration. Curr Nutr Rep 2019; 7:49-57. [PMID: 29892788 PMCID: PMC5960493 DOI: 10.1007/s13668-018-0226-1] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Purpose of Review This review summarises the most recent evidence regarding the effects of dietary flavonoids on age-related cognitive decline and neurodegenerative diseases. Recent Findings Recent evidence indicates that plant-derived flavonoids may exert powerful actions on mammalian cognition and protect against the development of age-related cognitive decline and pathological neurodegeneration. The neuroprotective effects of flavonoids have been suggested to be due to interactions with the cellular and molecular architecture of brain regions responsible for memory. Summary Mechanisms for the beneficial effects of flavonoids on age-related cognitive decline and dementia are discussed, including modulating signalling pathways critical in controlling synaptic plasticity, reducing neuroinflammation, promoting vascular effects capable of stimulating new nerve cell growth in the hippocampus, bidirectional interactions with gut microbiota and attenuating the extracellular accumulation of pathological proteins. These processes are known to be important in maintaining optimal neuronal function and preventing age-related cognitive decline and neurodegeneration.
Collapse
Affiliation(s)
- Emma Flanagan
- Norwich Medical School, Faculty of Medicine and Health Sciences, University of East Anglia, Norwich, NR4 7UQ, UK
| | - Michael Müller
- Norwich Medical School, Faculty of Medicine and Health Sciences, University of East Anglia, Norwich, NR4 7UQ, UK
| | - Michael Hornberger
- Norwich Medical School, Faculty of Medicine and Health Sciences, University of East Anglia, Norwich, NR4 7UQ, UK
| | - David Vauzour
- Norwich Medical School, Faculty of Medicine and Health Sciences, University of East Anglia, Norwich, NR4 7UQ, UK.
| |
Collapse
|
34
|
Dhakal H, Yang EJ, Lee S, Kim MJ, Baek MC, Lee B, Park PH, Kwon TK, Khang D, Song KS, Kim SH. Avenanthramide C from germinated oats exhibits anti-allergic inflammatory effects in mast cells. Sci Rep 2019; 9:6884. [PMID: 31053741 PMCID: PMC6499795 DOI: 10.1038/s41598-019-43412-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 01/21/2019] [Indexed: 12/19/2022] Open
Abstract
Mast cells play a crucial role in allergic diseases via the release of inflammatory mediators, particularly histamine and pro-inflammatory cytokines. Avenanthramide (Avn) C, a polyphenol found mainly in oats, is known to exhibit various biological properties. In this study, we aimed to evaluate the effectiveness of Avn C from germinated oats against mast cell-mediated allergic inflammation. For the in vitro study, RBL-2H3, mouse bone marrow-derived mast cells and rat peritoneal mast cells were used. Avn C (1–100 nM) inhibited the immunoglobulin (Ig)E-stimulated mast cells degranulation by suppressing phosphorylation of phosphoinositide 3-kinase and phospholipase Cγ1 and decreasing intracellular calcium levels. It inhibited IgE-stimulated secretion of inflammatory cytokines via suppression of FcεRI-mediated signaling proteins Lyn, Syk, Akt, and nuclear factor-κB. To verify the effects of Avn C in vivo, ovalbumin-induced active systemic anaphylaxis (ASA) and IgE-mediated passive cutaneous anaphylaxis (PCA) models were used. Oral administration of Avn C dose-dependently attenuated the ASA reactions, as evidenced by the inhibition of hypothermia and reduction of elevated serum histamine, IgE, and interleukin-4 levels. Avn C also inhibited the PCA reactions, such as ear swelling and plasma extravasation. Our results suggested that Avn C from germinated oats might be a possible therapeutic candidate for mast cell-mediated allergic inflammation.
Collapse
Affiliation(s)
- Hima Dhakal
- Cell & Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.,Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Eun-Ju Yang
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, Daegu, Republic of Korea
| | - Soyoung Lee
- Immunoregulatory Materials Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup, Republic of Korea
| | - Min-Jong Kim
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Moon-Chang Baek
- Department of Molecular Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Byungheon Lee
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Pil-Hoon Park
- College of Pharmacy, Yeungnam University, Gyeongsan, Republic of Korea
| | - Taeg Kyu Kwon
- Department of Immunology, School of Medicine, Keimyung University, Daegu, Republic of Korea
| | - Dongwoo Khang
- Department of Physiology, School of Medicine, Gachon University, Incheon, Republic of Korea.
| | - Kyung-Sik Song
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, Daegu, Republic of Korea. .,GHAM BioPharm Co. Ltd., College of Pharmacy, Kyungpook National University, Daegu, Republic of Korea.
| | - Sang-Hyun Kim
- Cell & Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, Republic of Korea. .,Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.
| |
Collapse
|
35
|
Fu Y, Deng Y, Yu Q, Meng X, Wang D, Wang P, Wang P. Identification of In Vivo Metabolites of Dictamnine in Mice Using HPLC-LTQ-Orbitrap Mass Spectrometry. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2018; 2018:3567647. [PMID: 30662787 PMCID: PMC6312604 DOI: 10.1155/2018/3567647] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 11/28/2018] [Indexed: 06/09/2023]
Abstract
Dictamnine (4-methoxyfuro[2,3-b]quinolone, DIC), a common furoquinoline alkaloid in the family of Rutaceae, showed diverse biological activities. To investigate the in vivo metabolic pathways of DIC, metabolism of DIC in mice was studied using a high-performance liquid chromatography coupled to electrospray ionization of hybrid linear trap quadrupole orbitrap (HPLC-LTQ-Orbitrap) mass spectrometer. Nine metabolites were identified in the DIC-treated mouse urine, plasma, and fecal samples, of which two were identified as new metabolites. The major metabolic pathways of DIC in animal and human liver microsomes were confirmed in the present study, including o-demethylation, monohydroxylation, N-oxidation, and 2,3-olefinic epoxidation pathways. For the first time, a mono-acetylcysteine conjugate of DIC (M9) was detected from DIC-treated mouse urine and plasma samples, and 4-methoxy-2-oxo-1,2-dihydroquinoline-3-carboxylic acid (M10) and 2-(2,8-dihydroxy-4-methoxyquinolin-3-yl)acetaldehyde (M11) were identified as new metabolites of DIC; furthermore, using an in vitro human fecal incubation model, furo[2,3-b]quinolin-4-ol (M1) was verified to be a microbial demethylated metabolite of DIC. Collectively, the present study provided new information on the in vivo metabolic fate of DIC.
Collapse
Affiliation(s)
- Yudong Fu
- Department of Endocrinology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao 266071, China
| | - Yujie Deng
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao 266071, China
| | - Qing Yu
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao 266071, China
| | - Xuxia Meng
- Department of Endocrinology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao 266071, China
| | - Dabo Wang
- Department of Endocrinology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao 266071, China
| | - Pei Wang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Ping Wang
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao 266071, China
| |
Collapse
|
36
|
QIAN H, YU FJ, LU DY, WU BJ, ZHANG XW, WANG H, MA ZG. Identification of poliumoside metabolites in rat plasma, urine, bile, and intestinal bacteria with UPLC/Q-TOF-MS. Chin J Nat Med 2018; 16:871-880. [DOI: 10.1016/s1875-5364(18)30129-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Indexed: 01/14/2023]
|
37
|
Abstract
There is growing evidence that whole grain (WG) intake may prevent many chronic diseases. However, there are mixed results on this topic in human studies as a result of a lack of accurate tools to assess the intake of WGs and individual metabolic variation. To better understand the effects of WGs on health maintenance and the risk of chronic disease, there is an urgent need to identify the biomarkers for WG intake. The molecular signatures of WG intake remain undefined. This perspective gives an overview of the current knowledge, challenges, and future directions on the biomarkers of WG intake.
Collapse
Affiliation(s)
- Shengmin Sang
- Laboratory for Functional Foods and Human Health, Center for Excellence in Post-Harvest Technologies , North Carolina Agricultural and Technical State University , North Carolina Research Campus, 500 Laureate Way , Kannapolis , North Carolina 28081 , United States
| |
Collapse
|
38
|
Pridal AA, Böttger W, Ross AB. Analysis of avenanthramides in oat products and estimation of avenanthramide intake in humans. Food Chem 2018; 253:93-100. [PMID: 29502849 DOI: 10.1016/j.foodchem.2018.01.138] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 12/06/2017] [Accepted: 01/22/2018] [Indexed: 12/20/2022]
Abstract
Avenanthramides are phenolic compounds found only in oats, and are of interest due to suggested bioactivities, including anti-inflammatory effects and induction of apoptosis. The objective of this work was to optimise a high performance liquid chromatography (HPLC) method for analysis of avenanthramides in food, and analyse the avenanthramide content in 45 oat fractions and products. The optimised HPLC method was based on triplicate extraction of 100 mg sample with 1 ml 80% ethanol in phosphate buffer (pH 2.8) and used gallacetophenone as an internal standard. Avenalumic acid-derived avenanthramide homologues 2fd and 2pd were also present, making up to 20% of the total avenanthramides detected in oats. The amounts of avenanthramides detected in oat products was 2-82 µg/g. It was estimated that mean avenanthramide intake among oat consumers ranges from 0.3 to 2.1 mg/day, considerably lower than the amount used in studies that have investigated biological effects of avenanthramides in humans.
Collapse
Affiliation(s)
- Angela A Pridal
- Division of Food and Nutrition Science, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden.
| | - Wiebke Böttger
- Division of Food and Nutrition Science, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden.
| | - Alastair B Ross
- Division of Food and Nutrition Science, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden.
| |
Collapse
|
39
|
Mendonça LABM, Dos Santos Ferreira R, de Cássia Avellaneda Guimarães R, de Castro AP, Franco OL, Matias R, Carvalho CME. The Complex Puzzle of Interactions Among Functional Food, Gut Microbiota, and Colorectal Cancer. Front Oncol 2018; 8:325. [PMID: 30234008 PMCID: PMC6133950 DOI: 10.3389/fonc.2018.00325] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 07/30/2018] [Indexed: 12/18/2022] Open
Abstract
Colorectal cancer exerts a strong influence on the epidemiological panorama worldwide, and it is directly correlated to etiologic factors that are substantiated by genetic and environmental elements. This complex mixture of factors also has a relationship involving the structural dependence and composition of the gut microbiome, leading to a dysbacteriosis process that may evolve to serious modifications in the intestinal lining, eventually causing the development of a neoplasm. The gastrointestinal tract presents defense strategies and immunological properties that interfere in intestinal permeability, inhibiting the bacterial translocation, thus maintaining the integrity of intestinal homeostasis. The modulation of the intestinal microbiome and the extinction of risk factors associated with intestinal balance losses, especially of environmental factors, make cell and defense alterations impossible. This modulation may be conducted by means of functional foods in the diet, especially soluble fibers, polyunsaturated fatty acids, antioxidants and prebiotics that signal immunomodulatory effects in the intestinal microbiota, with preventive and therapeutic action for colorectal cancer. In summary, this review focuses on the importance of dietary modulation of the intestinal microbiota as an instrument for dysbacteriosis and, consequently, for the prevention of colorectal cancer, suggesting anticarcinogenic, and antiangiogenic properties. Among the intestinal modulating agents considered here are functional foods, especially flaxseed, oat and soy, composing a Bioactive Food Compound.
Collapse
Affiliation(s)
- Lígia A B M Mendonça
- S-Inova Biotech Post Graduate Program in Biotechnology, Catholic University Dom Bosco, Campo Grande, Brazil
| | - Rosângela Dos Santos Ferreira
- Post Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul, Campo Grande, Brazil
| | - Rita de Cássia Avellaneda Guimarães
- Post Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul, Campo Grande, Brazil
| | - Alinne P de Castro
- S-Inova Biotech Post Graduate Program in Biotechnology, Catholic University Dom Bosco, Campo Grande, Brazil
| | - Octávio L Franco
- S-Inova Biotech Post Graduate Program in Biotechnology, Catholic University Dom Bosco, Campo Grande, Brazil.,Center of Proteomic and Biochemical Analysis, Post Graduate Program in Genomic Sciences and Biotechnology, Catholic University of Brasilia, Brasilia, Brazil
| | - Rosemary Matias
- Post Graduate Program in Environmental Sciences and Agricultural Sustainability, Catholic University Dom Bosco, Campo Grande, Brazil.,Post Graduate Program in Environment and Regional Development, University Anhanguera Uniderp, Campo Grande, Brazil
| | - Cristiano M E Carvalho
- S-Inova Biotech Post Graduate Program in Biotechnology, Catholic University Dom Bosco, Campo Grande, Brazil.,Post Graduate Program in Environment and Regional Development, University Anhanguera Uniderp, Campo Grande, Brazil
| |
Collapse
|
40
|
Yeast-Derived Recombinant Avenanthramides Inhibit Proliferation, Migration and Epithelial Mesenchymal Transition of Colon Cancer Cells. Nutrients 2018; 10:nu10091159. [PMID: 30149546 PMCID: PMC6165333 DOI: 10.3390/nu10091159] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 08/20/2018] [Accepted: 08/22/2018] [Indexed: 12/16/2022] Open
Abstract
Avenanthramides (Avns), polyphenols found exclusively in oats, are emerging as promising therapeutic candidates for the treatment of several human diseases, including colon cancer. By engineering a Saccharomyces cerevisiae strain, we previously produced two novel phenolic compounds, N-(E)-p-coumaroyl-3-hydroxyanthranilic acid (Yeast avenanthramide I, YAvnI) and N-(E)-caffeoyl-3-hydroxyanthranilic acid (Yeast avenanthramide II, YAvnII), which are endowed with a structural similarity to bioactive oat avenanthramides and stronger antioxidant properties. In this study, we evaluated the ability of these yeast-derived recombinant avenanthramides to inhibit major hallmarks of colon cancer cells, including sustained proliferation, migration and epithelial-mesenchymal transition (EMT). Using the human colon adenocarcinoma cell line HT29, we compared the impact of YAvns and natural Avns, including Avn-A and Avn-C, on colon cancer cells by performing MTT, clonogenic, adhesion, migration, and anchorage-independent growth assays, and analyzing the expression of EMT markers. We found that both YAvns and Avns were able to inhibit colon cancer cell growth by increasing the expression of p21, p27 and p53 proteins. However, YAvns resulted more effective than natural compounds in inhibiting cancer cell migration and reverting major molecular features of the EMT process, including the down-regulation of E-cadherin mRNA and protein levels.
Collapse
|
41
|
Wu W, Tang Y, Yang J, Idehen E, Sang S. Avenanthramide Aglycones and Glucosides in Oat Bran: Chemical Profile, Levels in Commercial Oat Products, and Cytotoxicity to Human Colon Cancer Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:8005-8014. [PMID: 29985603 DOI: 10.1021/acs.jafc.8b02767] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Avenanthramides (AVAs), unique phytochemicals in oat, have attracted an increasing amount of attention due to their outstanding health benefits. However, the chemical profile and the levels of AVAs in commercial oat products as well as their health benefits have not been examined in detail. In the present study, a total of 29 AVA aglycones and AVA glucosides were identified and characterized from oat bran using NMR (1D and 2D NMR) and LC-MS techniques. Among them, 17 novel AVA glucosides were reported in oat bran for the first time. The most abundant AVA glucoside, 2c-3'- O-glc, had a similar growth inhibitory activity with the major AVA, 2c, against HCT-116 and HT-29 human colon cancer cells, indicating glucosylation does not affect the growth inhibitory effects of AVAs. Furthermore, the levels of all individual AVAs in 13 commercial oat products were analyzed using HPLC-MS/MS. The total AVAs contents in various oat products ranged from 9.22 to 61.77 mg/kg (fresh weight).
Collapse
Affiliation(s)
- Wenbin Wu
- Laboratory for Functional Foods and Human Health, Center for Excellence in Post-Harvest Technologies , North Carolina Agricultural and Technical State University , North Carolina Research Campus, 500 Laureate Way , Kannapolis , North Carolina 28081 , United States
| | - Yao Tang
- Laboratory for Functional Foods and Human Health, Center for Excellence in Post-Harvest Technologies , North Carolina Agricultural and Technical State University , North Carolina Research Campus, 500 Laureate Way , Kannapolis , North Carolina 28081 , United States
| | - Junli Yang
- Laboratory for Functional Foods and Human Health, Center for Excellence in Post-Harvest Technologies , North Carolina Agricultural and Technical State University , North Carolina Research Campus, 500 Laureate Way , Kannapolis , North Carolina 28081 , United States
| | - Emmanuel Idehen
- Laboratory for Functional Foods and Human Health, Center for Excellence in Post-Harvest Technologies , North Carolina Agricultural and Technical State University , North Carolina Research Campus, 500 Laureate Way , Kannapolis , North Carolina 28081 , United States
| | - Shengmin Sang
- Laboratory for Functional Foods and Human Health, Center for Excellence in Post-Harvest Technologies , North Carolina Agricultural and Technical State University , North Carolina Research Campus, 500 Laureate Way , Kannapolis , North Carolina 28081 , United States
| |
Collapse
|
42
|
Meng C, Bai C, Brown TD, Hood LE, Tian Q. Human Gut Microbiota and Gastrointestinal Cancer. GENOMICS PROTEOMICS & BIOINFORMATICS 2018. [PMID: 29474889 DOI: 10.1016/j.gpb.2017.06.002.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Human gut microbiota play an essential role in both healthy and diseased states of humans. In the past decade, the interactions between microorganisms and tumors have attracted much attention in the efforts to understand various features of the complex microbial communities, as well as the possible mechanisms through which the microbiota are involved in cancer prevention, carcinogenesis, and anti-cancer therapy. A large number of studies have indicated that microbial dysbiosis contributes to cancer susceptibility via multiple pathways. Further studies have suggested that the microbiota and their associated metabolites are not only closely related to carcinogenesis by inducing inflammation and immune dysregulation, which lead to genetic instability, but also interfere with the pharmacodynamics of anticancer agents. In this article, we mainly reviewed the influence of gut microbiota on cancers in the gastrointestinal (GI) tract (including esophageal, gastric, colorectal, liver, and pancreatic cancers) and the regulation of microbiota by diet, prebiotics, probiotics, synbiotics, antibiotics, or the Traditional Chinese Medicine. We also proposed some new strategies in the prevention and treatment of GI cancers that could be explored in the future. We hope that this review could provide a comprehensive overview of the studies on the interactions between the gut microbiota and GI cancers, which are likely to yield translational opportunities to reduce cancer morbidity and mortality by improving prevention, diagnosis, and treatment.
Collapse
Affiliation(s)
- Changting Meng
- Institute for Systems Biology, Seattle, WA 98109, USA; Department of Oncology, Peking Union Medical College Hospital, Beijing 100730, China
| | - Chunmei Bai
- Department of Oncology, Peking Union Medical College Hospital, Beijing 100730, China
| | | | - Leroy E Hood
- Institute for Systems Biology, Seattle, WA 98109, USA; Swedish Cancer Institute, Seattle, WA 98104, USA
| | - Qiang Tian
- Institute for Systems Biology, Seattle, WA 98109, USA; P4 Medicine Institute, Seattle, WA 98109, USA.
| |
Collapse
|
43
|
Meng C, Bai C, Brown TD, Hood LE, Tian Q. Human Gut Microbiota and Gastrointestinal Cancer. GENOMICS, PROTEOMICS & BIOINFORMATICS 2018; 16:33-49. [PMID: 29474889 PMCID: PMC6000254 DOI: 10.1016/j.gpb.2017.06.002] [Citation(s) in RCA: 241] [Impact Index Per Article: 40.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 06/08/2017] [Accepted: 07/04/2017] [Indexed: 02/06/2023]
Abstract
Human gut microbiota play an essential role in both healthy and diseased states of humans. In the past decade, the interactions between microorganisms and tumors have attracted much attention in the efforts to understand various features of the complex microbial communities, as well as the possible mechanisms through which the microbiota are involved in cancer prevention, carcinogenesis, and anti-cancer therapy. A large number of studies have indicated that microbial dysbiosis contributes to cancer susceptibility via multiple pathways. Further studies have suggested that the microbiota and their associated metabolites are not only closely related to carcinogenesis by inducing inflammation and immune dysregulation, which lead to genetic instability, but also interfere with the pharmacodynamics of anticancer agents. In this article, we mainly reviewed the influence of gut microbiota on cancers in the gastrointestinal (GI) tract (including esophageal, gastric, colorectal, liver, and pancreatic cancers) and the regulation of microbiota by diet, prebiotics, probiotics, synbiotics, antibiotics, or the Traditional Chinese Medicine. We also proposed some new strategies in the prevention and treatment of GI cancers that could be explored in the future. We hope that this review could provide a comprehensive overview of the studies on the interactions between the gut microbiota and GI cancers, which are likely to yield translational opportunities to reduce cancer morbidity and mortality by improving prevention, diagnosis, and treatment.
Collapse
Affiliation(s)
- Changting Meng
- Institute for Systems Biology, Seattle, WA 98109, USA; Department of Oncology, Peking Union Medical College Hospital, Beijing 100730, China
| | - Chunmei Bai
- Department of Oncology, Peking Union Medical College Hospital, Beijing 100730, China
| | | | - Leroy E Hood
- Institute for Systems Biology, Seattle, WA 98109, USA; Swedish Cancer Institute, Seattle, WA 98104, USA
| | - Qiang Tian
- Institute for Systems Biology, Seattle, WA 98109, USA; P4 Medicine Institute, Seattle, WA 98109, USA.
| |
Collapse
|
44
|
Thomas M, Kim S, Guo W, Collins FW, Wise ML, Meydani M. High Levels of Avenanthramides in Oat-Based Diet Further Suppress High Fat Diet-Induced Atherosclerosis in Ldlr -/- Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:498-504. [PMID: 29298067 DOI: 10.1021/acs.jafc.7b04860] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Oats, in addition to cholesterol-lowering properties, contain unique antioxidants called avenanthramides (Avns), which inhibit both inflammatory cytokines and adhesion molecules in endothelial cells in culture. This study evaluated the effects of Avns of oats on atherosclerosis in Ldlr-/- mice, one of the most commonly used atherosclerosis mouse models with their similar cholesterol distributions to humans. The Ldlr-/- mice were fed a low fat, high fat, high fat containing regular oat brans with low levels of Avns (HFLA), or high fat containing regular oat brans with high levels of Avns (HFHA) diet. After 16 weeks of intervention, blood cholesterol and extent of aortic lesions were evaluated. We found that both oat-based diets reduced high fat diet-induced atheroma lesions in the aortic valve (p < 0.01). Furthermore, the effects of oat-based diets are more profound in HFHA mice than mice fed HFLA. Total plasma cholesterol levels were similarly reduced in both oat-supplemented mice. We concluded that oat bran diets reduce atheroma lesions and higher levels of Avns further reduce aortic lesions compared to regular oat bran. These preliminary in vivo data indicate that consumption of oats bran, with high Avns, has demonstrable beneficial effects on prevention of cardiovascular disease.
Collapse
Affiliation(s)
- Michael Thomas
- Vascular Biology Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University , 711 Washington Street, Boston, Massachusetts 02111, United States
| | - Sharon Kim
- Vascular Biology Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University , 711 Washington Street, Boston, Massachusetts 02111, United States
| | - Weimin Guo
- Vascular Biology Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University , 711 Washington Street, Boston, Massachusetts 02111, United States
| | - F William Collins
- Bioproducts and Bioprocesses, Ottawa Research and Development Centre, Agriculture and Agri-Food Canada , 960 Carling Avenue, Central Experimental Farm, Ottawa, Ontario K1A 0C6, Canada
| | - Mitchell L Wise
- USDA-Cereal Crops Research Unit, 502 Walnut Street, Madison, Wisconsin 53726, United States
| | - Mohsen Meydani
- Vascular Biology Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University , 711 Washington Street, Boston, Massachusetts 02111, United States
| |
Collapse
|
45
|
Schär MY, Corona G, Soycan G, Dine C, Kristek A, Alsharif SNS, Behrends V, Lovegrove A, Shewry PR, Spencer JPE. Excretion of Avenanthramides, Phenolic Acids and their Major Metabolites Following Intake of Oat Bran. Mol Nutr Food Res 2017; 62. [PMID: 29024323 PMCID: PMC5836716 DOI: 10.1002/mnfr.201700499] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 09/08/2017] [Indexed: 12/11/2022]
Abstract
SCOPE Wholegrain has been associated with reduced chronic disease mortality, with oat intake particularly notable for lowering blood cholesterol and glycemia. To better understand the complex nutrient profile of oats, we studied urinary excretion of phenolic acids and avenanthramides after ingestion of oat bran in humans. METHODS AND RESULTS After a 2-d (poly)phenol-low diet, seven healthy men provided urine 12 h before and 48 h after consuming 60 g oat bran (7.8 μmol avenanthramides, 139.2 μmol phenolic acids) or a phenolic-low (traces of phenolics) control in a crossover design. Analysis by ultra-high performance liquid chromatography (UPLC)-MS/MS showed that oat bran intake resulted in an elevation in urinary excretion of 30 phenolics relative to the control, suggesting that they are oat bran-derived. Mean excretion levels were elevated between 0-2 and 4-8 h, following oat bran intake, and amounted to a total of 33.7 ± 7.3 μmol total excretion (mean recovery: 22.9 ± 5.0%), relative to control. The predominant metabolites included: vanillic acid, 4- and 3-hydroxyhippuric acids, and sulfate-conjugates of benzoic and ferulic acids, which accounted collectively for two thirds of total excretion. CONCLUSION Oat bran phenolics follow a relatively rapid urinary excretion, with 30 metabolites excreted within 8 h of intake. These levels of excretion suggest that bound phenolics are, in part, rapidly released by the microbiota.
Collapse
Affiliation(s)
- Manuel Y Schär
- Department of Food and Nutritional Sciences, School of Chemistry, Food and Pharmacy, University of Reading, Reading, UK
| | - Giulia Corona
- Health Sciences Research Centre, University of Roehampton, London, UK
| | - Gulten Soycan
- Department of Food and Nutritional Sciences, School of Chemistry, Food and Pharmacy, University of Reading, Reading, UK
| | - Clemence Dine
- Health Sciences Research Centre, University of Roehampton, London, UK
| | - Angelika Kristek
- Department of Food and Nutritional Sciences, School of Chemistry, Food and Pharmacy, University of Reading, Reading, UK
| | - Sarah N S Alsharif
- Department of Food and Nutritional Sciences, School of Chemistry, Food and Pharmacy, University of Reading, Reading, UK
| | - Volker Behrends
- Health Sciences Research Centre, University of Roehampton, London, UK
| | | | | | - Jeremy P E Spencer
- Department of Food and Nutritional Sciences, School of Chemistry, Food and Pharmacy, University of Reading, Reading, UK
| |
Collapse
|
46
|
Absorption and Elimination of Oat Avenanthramides in Humans after Acute Consumption of Oat Cookies. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:2056705. [PMID: 29430278 PMCID: PMC5752969 DOI: 10.1155/2017/2056705] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 10/06/2017] [Accepted: 10/25/2017] [Indexed: 01/14/2023]
Abstract
Background Avenanthramides (AVA) are a group of diphenolic acids found only in oats that have anti-inflammatory and antioxidant effects. Absorption of AVAs in humans after oral consumption of natural oat flour is unknown. Objective To examine the appearance of AVAs in plasma after oral ingestion of oat cookies and estimate key pharmacokinetic parameters. Methods Male and female nonobese participants (n = 16) consumed three cookies made with oat flour containing high (229.6 mg/kg, H-AVA) or low (32.7 mg/kg, L-AVA) amounts of AVAs, including AVA-A, AVA-B, and AVA-C. Blood samples were collected at 0, 0.5, 1, 2, 3, 5, and 10 h after ingestion. Plasma total (conjugated and free) AVA concentrations were quantified using UPLC-MS, and pharmacokinetic parameters for each AVA were estimated. Results AVAs reached peak concentrations in plasma between 2 and 3 h for the H-AVA group and between 1 and 2 h for the L-AVA group. Maximal plasma concentrations for AVAs were higher in the H-AVA than in the L-AVA group. AVA-B demonstrated a longer half-life and slower elimination rate than AVA-A and AVA-C. Conclusions AVAs found naturally in oats are absorbed in the plasma after oral administration in humans. AVA-B has the slowest elimination rate and the longest half-life compared to AVA-A and AVA-C, while AVA-C demonstrated the lowest plasma concentrations. This study is registered with ClinicalTrials.gov identifier NCT02415374.
Collapse
|
47
|
Marmouzi I, Karym EM, Saidi N, Meddah B, Kharbach M, Masrar A, Bouabdellah M, Chabraoui L, El Allali K, Cherrah Y, Faouzi MEA. In Vitro and In Vivo Antioxidant and Anti-Hyperglycemic Activities of Moroccan Oat Cultivars. Antioxidants (Basel) 2017; 6:antiox6040102. [PMID: 29211033 PMCID: PMC5745512 DOI: 10.3390/antiox6040102] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 10/24/2017] [Accepted: 10/24/2017] [Indexed: 12/13/2022] Open
Abstract
Improvement of oat lines via introgression is an important process for food biochemical functionality. This work aims to evaluate the protective effect of phenolic compounds from hybrid Oat line (F11-5) and its parent (Amlal) on hyperglycemia-induced oxidative stress and to establish the possible mechanisms of antidiabetic activity by digestive enzyme inhibition. Eight phenolic acids were quantified in our samples including ferulic, p-hydroxybenzoic, caffeic, salicylic, syringic, sinapic, p-coumaric and chlorogenic acids. The Oat extract (2000 mg/kg) ameliorated the glucose tolerance, decreased Fasting Blood Glucose (FBG) and oxidative stress markers, including Superoxide dismutase (SOD), Catalase (CAT), Glutathione peroxidase (GPx), Glutathione (GSH) and Malondialdehyde (MDA) in rat liver and kidney. Furthermore, Metformin and Oat intake prevented anxiety, hypercholesterolemia and atherosclerosis in diabetic rats. In vivo anti-hyperglycemic effect of Oat extracts has been confirmed by their inhibitory activities on α-amylase (723.91 μg/mL and 1027.14 μg/mL) and α-glucosidase (1548.12 μg/mL & 1803.52 μg/mL) enzymes by mean of a mixed inhibition.
Collapse
Affiliation(s)
- Ilias Marmouzi
- Laboratoire de Pharmacologie et Toxicologie, équipe de Pharmacocinétique, Faculté de Médicine et Pharmacie, University Mohammed V in Rabat, BP 6203, Rabat Instituts, Rabat 10100, Morocco.
| | - El Mostafa Karym
- Laboratoire de Biochimie et Neurosciences, FST, Université Hassan I, BP 577, Settat 26000, Morocco.
| | - Nezha Saidi
- Regional Office of Rabat, National Institute for Agricultural Research, P.O. Box 6570, Rabat Institutes, Rabat 10101, Morocco.
| | - Bouchra Meddah
- Laboratoire de Pharmacologie et Toxicologie, équipe de Pharmacocinétique, Faculté de Médicine et Pharmacie, University Mohammed V in Rabat, BP 6203, Rabat Instituts, Rabat 10100, Morocco.
| | - Mourad Kharbach
- Pharmaceutical and Toxicological Analysis Research Team, Laboratory of Pharmacology and Toxicology, Faculty of Medicine and Pharmacy, University Mohammed V, Rabat 10100, Morocco.
- Department of Analytical Chemistry, Applied Chemometrics and Molecular Modelling, CePhaR, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, B-1090 Brussels, Belgium.
| | - Azlarab Masrar
- Central Laboratory of Biochemistry, Ibn Sina Hospital, Rabat 10100, Morocco.
| | - Mounya Bouabdellah
- Central Laboratory of Biochemistry, Ibn Sina Hospital, Rabat 10100, Morocco.
| | - Layachi Chabraoui
- Central Laboratory of Biochemistry, Ibn Sina Hospital, Rabat 10100, Morocco.
| | - Khalid El Allali
- Comparative Anatomy Unit-URAC-49, Hassan II Agronomy and Veterinary Institute, Rabat 10101, Morocco.
| | - Yahia Cherrah
- Laboratoire de Pharmacologie et Toxicologie, équipe de Pharmacocinétique, Faculté de Médicine et Pharmacie, University Mohammed V in Rabat, BP 6203, Rabat Instituts, Rabat 10100, Morocco.
| | - My El Abbes Faouzi
- Laboratoire de Pharmacologie et Toxicologie, équipe de Pharmacocinétique, Faculté de Médicine et Pharmacie, University Mohammed V in Rabat, BP 6203, Rabat Instituts, Rabat 10100, Morocco.
| |
Collapse
|
48
|
Wang P, Wang R, Zhu Y, Sang S. Interindividual Variability in Metabolism of [6]-Shogaol by Gut Microbiota. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:9618-9625. [PMID: 29019244 DOI: 10.1021/acs.jafc.7b02850] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
[6]-Shogaol (6S), one of the major bioactive components in dry ginger, is attracting considerable attention because of its wide spectrum of biological activities, but its metabolic fate is still not fully understood. In the present study, the microbial metabolism of 6S was examined for the first time in in vitro batch fecal fermentation system and in mice. Two major microbial metabolites were detected and identified as 1-(4'-hydroxy-3'-methoxyphenyl)-decan-3-ol (M9) and 1-(4'-hydroxy-3'-methoxyphenyl)-decan-3-one (M11). Our results indicated that reductions of the double bond and the ketone group are the major metabolic pathways of 6S by the human gut microbiota. We also observed the interindividual variability in the metabolism of M11 to M9 by human gut microbiota. In addition, we demonstrated that the glucuronidated form of 6S and its metabolites could be rapidly deconjugated by human gut microbiota and in mice, which can be regarded as a reactive process taking place in the intestinal tract. To our knowledge, this is the first report involving the identification of the microbial metabolites of 6S in an in vitro fermentation system, and the first demonstration of the critical role of gut microbiota in producing the bioactive free form of 6S and its metabolites in the intestinal tract in mice.
Collapse
Affiliation(s)
- Pei Wang
- Laboratory for Functional Foods and Human Health, Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University, North Carolina Research Campus , Kannapolis, North Carolina 28081, United States
| | - Ronghui Wang
- Laboratory for Functional Foods and Human Health, Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University, North Carolina Research Campus , Kannapolis, North Carolina 28081, United States
| | - Yingdong Zhu
- Laboratory for Functional Foods and Human Health, Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University, North Carolina Research Campus , Kannapolis, North Carolina 28081, United States
| | - Shengmin Sang
- Laboratory for Functional Foods and Human Health, Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University, North Carolina Research Campus , Kannapolis, North Carolina 28081, United States
| |
Collapse
|
49
|
Gong L, Cao W, Chi H, Wang J, Zhang H, Liu J, Sun B. Whole cereal grains and potential health effects: Involvement of the gut microbiota. Food Res Int 2017; 103:84-102. [PMID: 29389647 DOI: 10.1016/j.foodres.2017.10.025] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 10/11/2017] [Accepted: 10/12/2017] [Indexed: 12/13/2022]
Abstract
The intakes of whole cereal grains (WCGs) have long been linked to decreased risks of metabolic syndromes (MetS) and several chronic diseases. Owing to the complex range of components of cereals, which may show synergistic activities to mediate these protective effects, the mechanisms by which the benefits of whole cereals arise are not fully understood. The gut microbiota has recently become a new focus of research at the intersection of diet and metabolic health. Moreover, cereals contain various ingredients known as microbiota-accessible substrates that resist digestion in the upper gastrointestinal tract, including resistant starch and non-starch polysaccharides such as β-glucan and arabinoxylans, making them an important fuel for the microbiota. Thus, WCGs may manipulate the ecophysiology of gut microbiota. In this review, the scientific evidence supporting the hypothesis that WCGs prevent MetS by modulating gut microbiota composition and functions are discussed, with focuses on cereal intake-related mechanisms by which gut microbiota contributes to human health and scientific evidences for the effects of WCGs on modulating gut microbiota. Once strong support for the association among WCGs, gut microbiota and host metabolic health can be demonstrated, particular cereals, their processing technologies, or cereal-based foods might be better utilized to prevent and possibly even treat metabolic disease.
Collapse
Affiliation(s)
- Lingxiao Gong
- Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU), Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Wenyan Cao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU), Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Hailin Chi
- Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU), Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Jing Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU), Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing 100048, China.
| | - Huijuan Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU), Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Jie Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU), Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Baoguo Sun
- Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU), Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing 100048, China
| |
Collapse
|
50
|
Dietary teasaponin ameliorates alteration of gut microbiota and cognitive decline in diet-induced obese mice. Sci Rep 2017; 7:12203. [PMID: 28939875 PMCID: PMC5610180 DOI: 10.1038/s41598-017-12156-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 08/30/2017] [Indexed: 12/14/2022] Open
Abstract
A high-fat (HF) diet alters gut microbiota and promotes obesity related inflammation and cognitive impairment. Teasaponin is the major active component of tea, and has been associated with anti-inflammatory effects and improved microbiota composition. However, the potential protective effects of teasaponin, against HF diet-induced obesity and its associated alteration of gut microbiota, inflammation and cognitive decline have not been studied. In this study, obesity was induced in C57BL/6 J male mice by feeding a HF diet for 8 weeks, followed by treatment with oral teasaponin (0.5%) mixed in HF diet for a further 6 weeks. Teasaponin treatment prevented the HF diet-induced recognition memory impairment and improved neuroinflammation, gliosis and brain-derived neurotrophic factor (BDNF) deficits in the hippocampus. Furthermore, teasaponin attenuated the HF diet-induced endotoxemia, pro-inflammatory macrophage accumulation in the colon and gut microbiota alterations. Teasaponin also improved glucose tolerance and reduced body weight gain in HF diet-induced obese mice. The behavioral and neurochemical improvements suggest that teasaponin could limit unfavorable gut microbiota alterations and cognitive decline in HF diet-induced obesity.
Collapse
|