1
|
Ouyang M, Liu T, Yuan X, Xie C, Luo K, Zhou L. Nanomaterials-based aptasensors for rapid detection and early warning of key food contaminants: A review. Food Chem 2025; 462:140990. [PMID: 39208725 DOI: 10.1016/j.foodchem.2024.140990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/04/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
The frequent occurrence of food safety incidents has aroused public concern about food safety and key contaminants. Foodborne pathogen contamination, pesticide residues, heavy metal residues, and other food safety problems will significantly impact human health. Therefore, developing efficient and sensitive detection method to ensure food safety early warning is paramount. The aptamer-based sensor (aptasensor) is a novel analytical tool with strong targeting, high sensitivity, low cost, etc. It has been extensively utilized in the pharmaceutical industry, biomedicine, environmental engineering, food safety detection, and in other diverse fields. This work reviewed the latest research progress of aptasensors for food analysis and detection, mainly introducing their application in detecting various key food contaminants. Subsequently, the sensing mechanism and performance of aptasensors are discussed. Finally, the review will examine the challenges and opportunities related to aptasensors for detecting major contaminants in food, and advance implementation of aptasensors in food safety and detection.
Collapse
Affiliation(s)
- Min Ouyang
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Ting Liu
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Xiaomin Yuan
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Can Xie
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Kun Luo
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Liyi Zhou
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China.
| |
Collapse
|
2
|
Sassano M, Seyyedsalehi MS, Siea AC, Boffetta P. Occupational arsenic exposure and digestive and head and neck cancers: A systematic review and meta-analysis. ENVIRONMENTAL RESEARCH 2024; 260:119643. [PMID: 39053758 DOI: 10.1016/j.envres.2024.119643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/08/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024]
Abstract
Arsenic is a known carcinogen for the lungs, the bladder, and the skin, while systematic evidence on other cancer types is lacking, especially for occupational exposure. Thus, we aimed to systematically summarize current evidence on the association between occupational arsenic exposure and digestive cancers, including head and neck cancer (HNC). We conducted a systematic review on Pubmed, Web of Science, and Embase search engines. We computed pooled relative risks (RRs) and corresponding 95% confidence intervals (CIs) using DerSimonian and Laird random-effects model. Occurrence of publication bias was assessed using contour-enhanced funnel plots and Egger's test. Twenty-two studies on digestive cancers and 11 on HNC were included in the meta-analysis. RRs for the association with occupational exposure to arsenic of 1.23 (95% CI: 1.07-1.40; I2 = 72.3%, p < 0.001) and 1.08 (95% CI: 0.76-1.53; I2 = 76.6%, p < 0.001) for digestive cancer and HNC, respectively, were observed. As for specific cancer types, arsenic was associated with rectal cancer (RR: 1.51; 95% CI: 1.003-2.28; I2 = 37.0%, p = 0.174), but not with other investigated cancer types. No clear evidence of publication bias was found. The results of our study suggest that the observed association between occupational arsenic exposure and digestive cancer might be mainly driven by a positive association for rectal cancer, while arsenic exposure did not appear to be associated with HNC. However, further high-quality studies with detailed assessment of arsenic exposure are warranted to clarify the potential association of arsenic with digestive cancers and HNC.
Collapse
Affiliation(s)
- Michele Sassano
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Monireh Sadat Seyyedsalehi
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy; Cancer Research Center, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Andrei Cosmin Siea
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Paolo Boffetta
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy; Stony Brook Cancer Center, Stony Brooke University, Stony Brook, NY, USA; Department of Family, Population and Preventive Medicine, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA.
| |
Collapse
|
3
|
Godebo TR, Stoner H, Kodsup P, Jeuland M. Metals in Honey from Bees as a Proxy of Environmental Contamination in the United States. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024:125221. [PMID: 39481519 DOI: 10.1016/j.envpol.2024.125221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/26/2024] [Accepted: 10/28/2024] [Indexed: 11/02/2024]
Abstract
This is the first large bio-surveillance study examining the contents and geographic variation of metals of public health concern-arsenic (As), lead (Pb), cadmium (Cd), nickel (Ni), chromium (Cr), and cobalt (Co)-in honey samples collected across the United States. Metal concentrations were measured using ICP-MS, and the spatial distribution pattern of these contaminants was evaluated using statistical and GIS tools. The mean (highest) values (in μg/kg) were 3.8 (170) for As, 8.0 (451) for Pb, and 0.75 (8.1) for Cd. These values, as well as the mean (highest) concentrations of 29.5 (516) for Ni, 14.3 (166) for Co, and 19.6 (11) for Cr, were markedly lower than global averages reported in other countries. The study identified distinct geographic patterns of honey contamination; particularly high As levels were found in northwestern states, while high Co was measured in the southeast. Health risk calculations based on the hazard quotient (HQ) and hazard index (HI) were below 1 for a daily tablespoon (21g) of honey consumption, indicating no adverse health concerns for children and adults, and all samples fell below the 1.0x10-6 threshold for carcinogenic risk. The variation in metal concentrations found in samples from different states may reflect the influence of air, water, or soil pollution, as well as differential accumulation across plant species, and the distinct geographic clustering of As and Co warrants further investigation to determine the sources of these metals and to assess public health risks, particularly for As, a well-known carcinogen. In sum, this initial study provides baseline values of metal concentrations in honey that can be useful for monitoring future pollution trends, identifying target areas where reductions of emissions or remediation efforts are most critical, and facilitating discovery research in environmental exposure and health sciences.
Collapse
Affiliation(s)
- Tewodros Rango Godebo
- Department of Environmental Health Sciences, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70112 USA
| | - Hannah Stoner
- Department of Environmental Health Sciences, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70112 USA
| | - Pornpimol Kodsup
- Department of Environmental Health Sciences, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70112 USA
| | - Marc Jeuland
- Sanford School of Public Policy and Duke Global Health Institute, Duke University, Durham, NC, 27708, USA
| |
Collapse
|
4
|
Zaukuu JLZ, Mensah S, Mensah ET, Akomanin-Mensah F, Wiredu S, Kovacs Z. Combining NIR spectroscopy with chemometrics for discriminating naturally ripened banana and calcium carbide ripened banana. NPJ Sci Food 2024; 8:86. [PMID: 39461960 PMCID: PMC11513051 DOI: 10.1038/s41538-024-00327-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Calcium carbide is prohibited as a fruit ripening agent in many countries due to its harmful effects. Current methods for detecting calcium carbide in fruit involve time-consuming and destructive chemical analysis techniques, necessitating the need for non-destructive and rapid detection techniques. This study combined near infrared (NIR) spectroscopy with chemometrics to detect two banana varieties ripened with calcium carbide in different forms when they are peeled or unpeeled. Sixteen linear discriminant analysis (LDA) models were developed with high average classification accuracies for classifying banana based on the mode used to ripen banana, type of carbide treatment and the duration of soaking banana in carbide solution. Banana colour was predicted with partial least squared regression (PLSR) models with R2CV > 0.74, RMSECV and <5.4 and RPD close to 3. NIR coupled with chemometrics has good potential as a technique for detecting carbide ripened banana even if the banana is peeled or not.
Collapse
Affiliation(s)
- John-Lewis Zinia Zaukuu
- Department of Food Science and Technology, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana.
| | - Sheila Mensah
- Department of Food Science and Technology, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Eric Tetteh Mensah
- Department of Food Science and Technology, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Florence Akomanin-Mensah
- Department of Food Science and Technology, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Solomon Wiredu
- Department of Food Science and Technology, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Zoltan Kovacs
- Department of Measurements and Process Control, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Somlói út 14-16, Budapest, Hungary.
| |
Collapse
|
5
|
Banaeeyeh S, Razavi BM, Hosseinzadeh H. Neuroprotective Effects of Morin Against Cadmium- and Arsenic-Induced Cell Damage in PC12 Neurons. Biol Trace Elem Res 2024:10.1007/s12011-024-04407-x. [PMID: 39436547 DOI: 10.1007/s12011-024-04407-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 10/01/2024] [Indexed: 10/23/2024]
Abstract
Arsenic and cadmium, both toxic metals and widespread environmental pollutants, can trigger apoptosis and oxidative stress in various tissues and cells. Morin, a natural flavonoid with diverse biological properties, has been found to protect neurons from oxidative stress and apoptosis-induced damage. This research aimed to examine the protective properties of morin against neurotoxicity caused by arsenic and cadmium, utilizing PC12 cells as a model for nerve cells. The cells were pre-treated with different concentrations of morin and then exposed to arsenic and cadmium, after which cell viability and reactive oxygen species (ROS) production were assessed. Additionally, western blotting was performed to evaluate the protein levels of the Bax/Bcl-2 ratio and cleaved-caspase-3. Following exposure to arsenic and cadmium, there were significant increases in ROS, Bax/Bcl-2 ratio, and cleaved-caspase-3. However, the results of the study demonstrated the beneficial effects of morin at various concentrations, as it increased cell viability and decreased ROS production. Furthermore, morin at a concentration of 10 µM was found to reduce the elevated levels of cleaved-caspase-3 induced by arsenic and diminish the increased Bax/Bcl-2 ratio after exposure to arsenic and cadmium. The findings of this study suggest that morin can effectively protect cells from arsenic and cadmium-induced neurotoxicity through its antioxidant and anti-apoptotic effects. Thus, morin should be considered a promising agent for treating arsenic and cadmium toxicity.
Collapse
Affiliation(s)
- Sara Banaeeyeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bibi Marjan Razavi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
6
|
Phaenark C, Phankamolsil Y, Sawangproh W. Ecological and health implications of heavy metal bioaccumulation in Thai Fauna: A systematic review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 285:117086. [PMID: 39353378 DOI: 10.1016/j.ecoenv.2024.117086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 10/04/2024]
Abstract
Heavy metals pose significant threats to ecosystems and human health due to their persistence and bioaccumulation. In Thailand, rapid industrialization, extensive agriculture, and urban development have exacerbated heavy metal pollution in both aquatic and terrestrial ecosystems. This systematic review, conducted according to PRISMA guidelines, evaluates study designs and methodologies to assess heavy metal bioaccumulation in Thai fauna, with a focus on ecological and health impacts. The review reveals that fish, particularly from families like Cyprinidae and Cichlidae, account for 42.11 % of studies, with species such as swamp eel, Henicorhynchus siamensis, Arius maculatus, Osteogeneiosus militaris, Puntioplites proctozystron, and Channa striata showing significant bioaccumulation. Molluscs (31.58 %), including Tegillarca granosa and Filopaludina martensi, serve as critical bioindicators of aquatic pollution due to their filter-feeding habits. Amphibians and crustaceans, like Fejervarya limnocharis and Fenneropenaeus merguiensis, also demonstrate vulnerability to heavy metal contamination. Key contamination hotspots include urban waterways in Bangkok, industrial discharges in Songkhla Lake, and mining sites in Loei Province, highlighting widespread environmental and health impacts. Despite extensive research, gaps remain, particularly concerning benthic scavengers and detritivores, which are vital for ecosystem functions. The review underscores the need for targeted monitoring and mitigation, including stricter regulations on industrial discharges, improved waste treatment, and better management of agricultural runoff. While metals like cadmium (Cd), lead (Pb), copper (Cu), and zinc (Zn) are well-studied, further research on less-examined metals and species-specific bioaccumulation patterns is crucial to enhancing environmental management, supporting biodiversity conservation, and improving ecosystem resilience in Thailand.
Collapse
Affiliation(s)
- Chetsada Phaenark
- Conservation Biology Program, Mahidol University, Kanchanaburi Campus, 199 Moo 9 Lumsum, Sai Yok District, Kanchanaburi 71150, Thailand
| | - Yutthana Phankamolsil
- Environmental Engineering and Disaster Management Program, Mahidol University, Kanchanaburi Campus, 199 Moo 9 Lumsum, Sai Yok District, Kanchanaburi 71150, Thailand
| | - Weerachon Sawangproh
- Conservation Biology Program, Mahidol University, Kanchanaburi Campus, 199 Moo 9 Lumsum, Sai Yok District, Kanchanaburi 71150, Thailand.
| |
Collapse
|
7
|
Du N, Chang D, Boisvert J, Hron B, Rosen R, Punshon T, Silvester J. Effect of Adopting a Gluten-Free Diet on Exposure to Arsenic and Other Heavy Metals in Children With Celiac Disease: A Prospective Cohort Study. Am J Gastroenterol 2024:00000434-990000000-01365. [PMID: 39487831 DOI: 10.14309/ajg.0000000000003117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 09/23/2024] [Indexed: 11/04/2024]
Abstract
INTRODUCTION Lifelong adherence to a gluten-free diet (GFD) is the primary treatment of celiac disease (CeD), a gluten-driven enteropathy. Concerns have been raised about increased exposure to arsenic from a GFD because rice, which naturally bioaccumulates arsenic, is commonly used as a substitute for gluten-containing grains such as wheat. We hypothesize that arsenic exposure increases in newly diagnosed children with CeD after they adopt a GFD. METHODS This is a single-center prospective longitudinal cohort study of children (age 2-18 years) with elevated celiac serology who underwent a diagnostic endoscopy before initiation of a GFD between January and May 2022. The primary outcome was change in urinary arsenic concentration between endoscopy and after 6 months on a GFD. RESULTS Of the 67 recruited participants, 50 had a biopsy diagnostic of CeD and were invited to continue the study. Thirty-five participants completed sample collection. Participants were from a middle-class, well-educated population that was predominantly White with presenting symptoms of abdominal pain (51%) and diarrhea (29%). After 6 months on a GFD, there was a significant increase in the median urinary arsenic concentration (3.3 µg/L vs 13.6 µg/L, P = 0.000004). In regression models, family history of CeD and Hispanic ethnicity were associated with having a higher urinary arsenic concentration after 6 months on a GFD. DISCUSSION Children with newly diagnosed CeD have increased arsenic exposure shortly after transitioning to a GFD. While the arsenic levels were well below acutely toxic concentrations, the clinical impact of chronic exposure to mildly elevated arsenic levels is unknown.
Collapse
Affiliation(s)
- Nan Du
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Denis Chang
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Jason Boisvert
- University of Rochester School of Medicine, Rochester, New York, USA
| | - Bridget Hron
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Rachel Rosen
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Tracy Punshon
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire, USA
| | - Jocelyn Silvester
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Boston, Massachusetts, USA
- Division of Gastroenterology, Celiac Center, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| |
Collapse
|
8
|
Demissie S, Mekonen S, Awoke T, Mengistie B. Dynamics of Spatiotemporal Variation of Groundwater Arsenic in Central Rift Vally of Ethiopia: A Serial Cross-Sectional Study. ENVIRONMENTAL HEALTH INSIGHTS 2024; 18:11786302241285391. [PMID: 39391019 PMCID: PMC11465313 DOI: 10.1177/11786302241285391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 09/04/2024] [Indexed: 10/12/2024]
Abstract
Background Arsenic is a well-known, highly poisonous metalloid that affects human health and ecosystems and is widely distributed in the environment. Nevertheless, data on the spatiotemporal distribution of arsenic in groundwater sources in Ethiopia are scarce. Objective The principal aim of this study was to assess the extent of arsenic in groundwater sources and analyze the spatiotemporal variations in the central rift valley of Ethiopia. Methods The study employed a serial cross-sectional study design and census sampling methods. The concentrations of arsenic in the groundwater samples were determined using inductively coupled plasma mass spectrometry (ICP-MS) at the Ethiopian Food and Drug Authority laboratory. Descriptive statistical analyses were performed using IBM SPSS version 29 software. Additionally, ArcGIS software was utilized to map the spatiotemporal distribution of arsenic. Furthermore, Minitab statistical software version 21.4 was employed to assess the correlation between spatiotemporal variations of arsenic concentrations in groundwater sources. Results The mean values of arsenic in the groundwater samples were 11.2 µg/L during the dry season and 10.7 µg/L during the rainy season. The study results showed that 18 wells (42.2%) and 22 wells (48.8%) had higher arsenic concentrations (>10 µg/L) during the dry and rainy seasons, respectively. Thus, arsenic levels in 42.2% and 48.8% of the samples exceeded the maximum threshold limit set by WHO, USEPA, and Ethiopian standards (10 µg/L), respectively, during the dry and rainy seasons. Furthermore, our analysis revealed a significant positive correlation between arsenic in groundwater and well depth (r = .75, P < .001), indicating a strong association between higher arsenic concentrations and deeper wells. Similarly, we observed a substantial positive correlation between arsenic concentration in groundwater and season (r = .9, P < .001), suggesting notable variations in arsenic levels between dry and rainy seasons. Conclusions The majority of the groundwater sources in the studied area are unfit for human consumption because they contain high amounts of arsenic, which poses a significant risk to human health. Moreover, the arsenic concentration varied spatially and temporally. Therefore, special attention is needed to reduce arsenic exposure and associated health risks.
Collapse
Affiliation(s)
- Solomon Demissie
- Department of Water and Public Health, Ethiopian Institute of Water Resources, Addis Ababa University, Addis Ababa, Ethiopia
| | - Seblework Mekonen
- Department of Water and Public Health, Ethiopian Institute of Water Resources, Addis Ababa University, Addis Ababa, Ethiopia
| | - Tadesse Awoke
- Department of Epidemiology and Biostatistics, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Bezatu Mengistie
- Department of Water and Public Health, Ethiopian Institute of Water Resources, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
9
|
Hasan NT, Han D, Xu X, Sansom G, Roh T. Relationship between low-level arsenic exposure in drinking water and kidney cancer risk in Texas. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125097. [PMID: 39389248 DOI: 10.1016/j.envpol.2024.125097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/04/2024] [Accepted: 10/07/2024] [Indexed: 10/12/2024]
Abstract
Kidney cancer rates are increasing in the US and worldwide. Arsenic, a known human carcinogen, is a suspected contributor to this rise, particularly in areas with arsenic-rich groundwater. However, research on the connection between low-level arsenic in drinking water and kidney cancer is limited. In our ecological study, we assessed the association between county-level drinking water arsenic levels and kidney cancer incidences using data from 240 counties in Texas. The analysis included 28,896 cancer cases among adults aged ≥20 years and 101,776,294 person-years during the period 2016-2020. Spatial Poisson regression models estimated the risk ratio (RR) for incident kidney cancer based on drinking water arsenic levels, adjusting for demographic, socioeconomic, and other risk factors, as well as spatial factors. Population-weighted drinking water arsenic levels were calculated using data from water testing for both public water systems and private wells, adjusted for populations served from each source. After adjusting for spatial factors and covariates, we observed 6% and 22% higher incidence of cancer in the medium (1-5 ppb) (RR 1.06, 95% CI 1.01, 1.11) and high arsenic (>5 ppb) group counties (RR 1.22, 95% CI 1.12, 1.34) compared to the low arsenic level ones (<1 ppb), showing a dose-response relationship (p-trend <0.001). Additionally, when arsenic was treated as a continuous variable, the incidence increased by 4% for each doubling of drinking water arsenic level (RR 1.04, 95% CI 1.02, 1.07) when considering drinking water arsenic level as a continuous variable. Our study suggests that exposure to low-level drinking water arsenic may be associated with an increased risk of kidney cancer. Further prospective studies are required to confirm our findings.
Collapse
Affiliation(s)
- Nishat Tasnim Hasan
- Department of Epidemiology and Biostatistics, School of Public Health, Texas A&M University, College Station, TX, 77843, USA
| | - Daikwon Han
- Department of Epidemiology and Biostatistics, School of Public Health, Texas A&M University, College Station, TX, 77843, USA
| | - Xioahui Xu
- Department of Epidemiology and Biostatistics, School of Public Health, Texas A&M University, College Station, TX, 77843, USA
| | - Garett Sansom
- Department of Environmental and Occupational Health, School of Public Health, Texas A&M University, College Station, TX, 77843, USA
| | - Taehyun Roh
- Department of Epidemiology and Biostatistics, School of Public Health, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
10
|
Vera-Espíndola F, Jeison D, Gentina JC, Muñoz J, González E. Reviewing arsenic biomineralization: An upcoming strategy for mining wastewater treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176538. [PMID: 39343396 DOI: 10.1016/j.scitotenv.2024.176538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/11/2024] [Accepted: 09/24/2024] [Indexed: 10/01/2024]
Abstract
Human activities are the main cause of arsenic contamination in the environment and water resources, being the mining industry an important source of arsenic contamination because this element is released into the environment in solid, liquid, and gaseous wastes. Currently, several physical and chemical processes could be used for the removal of arsenic in water, but these alternatives depend on the concentration of arsenic. At low concentrations (nanograms or micrograms per liter) arsenic can be removed by membrane technologies. When arsenic is at high concentrations (milligrams or grams per liter), treatment options are reduced to inefficient processes of high economic cost and poor chemical stability of the precipitate, returning consequently arsenic into the environment. Biomineralization is a biological process where microorganisms induce the formation of minerals. This bioprocess has gained interest in recent years for the removal of contaminants from liquid effluents. This review details the harmful effects of arsenic on the health and exposes the relevance of arsenic contamination related to mining activity, whose effluents contain high concentration of arsenic. It also describes and analyzes advances in arsenic treatment strategies through biomineralization using microorganisms, such as sulfate-reducing bacteria, iron- and manganese-oxidizing microorganisms, and ureolytic microorganisms, detailing aspects of effectiveness, applicability, chemical stability of biominerals and future perspectives in their industrial application. To our knowledge, there are no previous reports compiling, analyzing, and explaining in detail the biomineralization of arsenic as a single element. The importance of this review is to deliver in a summarized and systematized way the main aspects and perspectives on the application of microorganisms to remove toxic elements, such as arsenic, from effluents.
Collapse
Affiliation(s)
- Fernando Vera-Espíndola
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Av. Brasil 2085, Valparaíso 2362803, Chile.
| | - David Jeison
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Av. Brasil 2085, Valparaíso 2362803, Chile
| | - Juan Carlos Gentina
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Av. Brasil 2085, Valparaíso 2362803, Chile
| | - Jesús Muñoz
- Departamento de Ingeniería Química y de Materiales, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Av. Complutense s/n, 28040 Madrid, Spain
| | - Ernesto González
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Av. Brasil 2085, Valparaíso 2362803, Chile; Departamento de Ingeniería Química y de Materiales, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Av. Complutense s/n, 28040 Madrid, Spain
| |
Collapse
|
11
|
Abdelhadi AA, Elarabi NI, Ibrahim SM, Abdel-Maksoud MA, Abdelhaleem HAR, Almutairi S, Malik A, Kiani BH, Henawy AR, Halema AA. Hybrid-genome sequence analysis of Enterobacter cloacae FACU and morphological characterization: insights into a highly arsenic-resistant strain. Funct Integr Genomics 2024; 24:174. [PMID: 39320439 DOI: 10.1007/s10142-024-01441-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/28/2024] [Accepted: 09/03/2024] [Indexed: 09/26/2024]
Abstract
Many organisms have adapted to survive in environments with high levels of arsenic (As), a naturally occurring metalloid with various oxidation states and a common element in human activities. These organisms employ diverse mechanisms to resist the harmful effects of arsenic compounds. Ten arsenic-resistant bacteria were isolated from contaminated wastewater in this study. The most efficient bacterial isolate able to resist 15,000 ppm Na2HAsO4·7H2O was identified using the 16S rRNA gene and whole genome analysis as Enterobacter cloacae FACU. The arsenic E. cloacae FACU biosorption capability was analyzed. To further unravel the genetic determinants of As stress resistance, the whole genome sequence of E. cloacae FACU was performed. The FACU complete genome sequence consists of one chromosome (5.7 Mb) and two plasmids, pENCL 1 and pENCL 2 (755,058 and 1155666 bp, respectively). 7152 CDSs were identified in the E. cloacae FACU genome. The genome consists of 130 genes for tRNA and 21 for rRNAs. The average G + C content was found to be 54%. Sequencing analysis annotated 58 genes related to resistance to many heavy metals, including 16 genes involved in arsenic efflux transporter and arsenic reduction (five arsRDABC genes) and 42 genes related to lead, zinc, mercury, nickel, silver, copper, cadmium and chromium in FACU. Scanning electron microscopy (SEM) confirmed the difference between the morphological responses of the As-treated FACU compared to the control strain. The study highlights the genes involved in the mechanism of As stress resistance, metabolic pathways, and potential activity of E. cloacae FACU at the genetic level.
Collapse
Affiliation(s)
- Abdelhadi A Abdelhadi
- Department of Genetics, Faculty of Agriculture, Cairo University, Giza, 12613, Egypt.
| | - Nagwa I Elarabi
- Department of Genetics, Faculty of Agriculture, Cairo University, Giza, 12613, Egypt.
| | - Saifeldeen M Ibrahim
- Biotechnology Department, Faculty of Agriculture, Al-Azhar University, Cairo, Egypt
- Bioinformatics Department, Agricultural Genetic Engineering Research Institute, ARC, Giza, Egypt
| | - Mostafa A Abdel-Maksoud
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Heba A R Abdelhaleem
- College of Biotechnology, Misr University for Science and Technology (MUST), 6th October City, Egypt
| | - Saeedah Almutairi
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Abdul Malik
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Bushra Hafeez Kiani
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, Massachuesetts, 01609, USA
| | - Ahmed R Henawy
- Department of Microbiology, Faculty of Agriculture, Cairo University, Giza, 12613, Egypt
| | - Asmaa A Halema
- Department of Genetics, Faculty of Agriculture, Cairo University, Giza, 12613, Egypt
| |
Collapse
|
12
|
Sharma G, Verma Y, Lai CW, Naushad M, Iqbal J, Kumar A, Dhiman P. Biochar and biosorbents derived from biomass for arsenic remediation. Heliyon 2024; 10:e36288. [PMID: 39263124 PMCID: PMC11388741 DOI: 10.1016/j.heliyon.2024.e36288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/13/2024] [Accepted: 08/13/2024] [Indexed: 09/13/2024] Open
Abstract
Global groundwater contamination by Arsenic (As) presents a grave danger to the health of living beings and wildlife, demanding comprehensive remediation strategies. This review delves into the complex landscape of arsenic remediation, encompassing its chemical forms, occurrences, sources, and associated health risks. Advanced techniques, notably biomass-derived adsorbents, emerge as promising and cost-effective solutions. The exploration spans preparing and modifying biomass-derived adsorbents, unraveling their adsorption capacity, influencing factors, isotherms, kinetics, and thermodynamics. Noteworthy attention is given to plant-agricultural waste, algal-fungal-bacterial, and iron-modified biomass-derived adsorbents. The comprehensive discussion of the adsorption mechanism highlights the efficacy of low-cost biomass, particularly from plant, animal, and agricultural residues, offering a sustainable remedy for arsenic removal. This insightful review contributes to the understanding of evolving technologies essential for addressing arsenic contamination in wastewater, emphasizing the potential of renewable biomaterials in advancing efficient remediation practices.
Collapse
Affiliation(s)
- Gaurav Sharma
- International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University of Biotechnology and Management Sciences, Solan, 173229, Himachal Pradesh, India
| | - Yaksha Verma
- International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University of Biotechnology and Management Sciences, Solan, 173229, Himachal Pradesh, India
| | - Chin Wei Lai
- Nanotechnology & Catalysis Research Centre (NANOCAT), Institute for Advanced Studies (IAS), University of Malaya (UM), 50603, Kuala Lumpur, Malaysia
| | - Mu Naushad
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Jibran Iqbal
- Department of Environmental Sciences and Sustainability, College of Natural and Health Sciences, Zayed University, Abu Dhabi, 144534, United Arab Emirates
| | - Amit Kumar
- International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University of Biotechnology and Management Sciences, Solan, 173229, Himachal Pradesh, India
| | - Pooja Dhiman
- International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University of Biotechnology and Management Sciences, Solan, 173229, Himachal Pradesh, India
| |
Collapse
|
13
|
Chetia R, Devi S, Shukla N, Hazarika A, Bordoloi S, Pokhrel B, Saikia BK, Gogoi A, Konwer S. Simultaneous Removal of As(iii) and As(v) from Aqueous Solution by Using Iron-Functionalized Polythiophene: A Novel Approach toward Water Treatment. ACS OMEGA 2024; 9:37012-37024. [PMID: 39246476 PMCID: PMC11375809 DOI: 10.1021/acsomega.4c03184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/02/2024] [Accepted: 08/09/2024] [Indexed: 09/10/2024]
Abstract
Arsenic contamination in groundwater poses a significant threat to human health, affecting millions worldwide. This study presents a novel approach for simultaneous remediation of both As(III) and As(V) by using iron-functionalized polythiophene (PTh@Fe) composites. The PTh@Fe composite was synthesized by a reduction process involving FeCl2/FeCl3 byproducts of polymerization, resulting in a highly efficient adsorbent for both As(III) and As(V) species. The investigation systematically examined key parameters influencing arsenic removal, including adsorbent dosage, pH, initial arsenic concentration, and contact time. The composite exhibited exceptional adsorption capacities, with maximum removal percentages of 98.7% for As(III) and 98.8% for As(V) under the optimized conditions. Thermodynamic and kinetic analyses suggested endothermic and spontaneous adsorption processes following a pseudo 2nd-order mechanism. Furthermore, the Langmuir isotherm model provided an excellent fit to the experimental data, with maximum adsorption capacities of 8.62 mg/g for As(V) and 7.57 mg/g for As(III). Density functional theory (DFT) calculations confirmed the feasibility of arsenic adsorption onto iron species in various oxidation states, offering valuable theoretical insights into the process. Furthermore, the composite demonstrated good reusability over multiple adsorption-desorption cycles and tolerance to coexisting anions, highlighting its practical applicability for water purification. This research demonstrates the potential of iron-functionalized polythiophene composites as a promising solution for addressing arsenic contamination in water sources, bridging the gap between innovative materials and theoretical understanding in environmental science and water treatment technologies.
Collapse
Affiliation(s)
- Rupkamal Chetia
- Department of Chemistry, Dibrugarh University, Dibrugarh, 786004, India
| | - Shrutipriya Devi
- Department of Chemistry, Dibrugarh University, Dibrugarh, 786004, India
| | - Nishant Shukla
- Department of Physics, The Assam Kaziranga University, Koraikhowa, Jorhat, Assam 785006, India
| | - Abhishek Hazarika
- Coal & Energy Division, CSIR - North East Institute of Science and Technology (NEIST), Jorhat, Assam 785006, India
| | | | - Binod Pokhrel
- Department of Chemical Sciences, Tezpur University, Tezpur, Assam 784028, India
| | - Binoy K Saikia
- Coal & Energy Division, CSIR - North East Institute of Science and Technology (NEIST), Jorhat, Assam 785006, India
| | - Ankur Gogoi
- Department of Physics, JB College, Jorhat, Assam 785001, India
| | - Surajit Konwer
- Department of Chemistry, Dibrugarh University, Dibrugarh, 786004, India
| |
Collapse
|
14
|
Coimbra JLP, Campolina-Silva G, Lair DF, Guimarães-Ervilha LO, Souza ACF, Oliveira CA, Costa GMJ, Machado-Neves M. Subchronic intake of arsenic at environmentally relevant concentrations causes histological lesions and oxidative stress in the prostate of adult Wistar rats. Reprod Toxicol 2024; 128:108647. [PMID: 38909693 DOI: 10.1016/j.reprotox.2024.108647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/30/2024] [Accepted: 06/15/2024] [Indexed: 06/25/2024]
Abstract
The prostate gland is one of the main sites of hyperplasia and cancer in elderly men. Numerous factors have been demonstrated to disrupt prostate homeostasis, including exposure to environmental pollutants. Arsenic is a metalloid found ubiquitously in soil, air, and water, which favors human poisoning through the involuntary intake of contaminated drinking water and food and has harmful effects by increasing the oxidative stress response. This study aimed to investigate the effects of prolonged exposure to arsenic at environmentally relevant concentrations on the prostate biology of adult Wistar rats. Thirty 80-day-old male rats were divided into three experimental groups. Rats from the control group received filtered water, whereas animals from the arsenic groups ingested 1 mg L-1 and 10 mg L-1 of arsenic, in the form of sodium arsenite, daily. The arsenic solutions were provided ad libitum in the drinking water for eight weeks. Our results showed that 1 mg L-1 and 10 mg L-1 of arsenic made the prostate susceptible to evolving benign and premalignant histopathological changes. While the ingestion of 1 mg L-1 of arsenic reduced SOD activity only, 10 mg L-1 diminished SOD and CAT activity in the prostate tissue, culminating in high MDA production. These doses, however, did not affect the intraprostatic levels of DHT and estradiol. In conclusion, exposure to arsenic at environmentally relevant concentrations through drinking water induces histological and oxidative stress-related changes in the prostate of adult rats, strengthening the between arsenic exposure and prostate disorders.
Collapse
Affiliation(s)
- John L P Coimbra
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil; Department of General Biology, Universidade Federal de Viçosa, Viçosa, MG, Brazil.
| | - Gabriel Campolina-Silva
- Department of Obstetrics, Gynecology, and Reproduction, Université Laval, Québec, QC, Canada; CHU de Quebec Research Center, Université Laval, Québec, QC, Canada
| | - Daniel F Lair
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Ana C F Souza
- Department of Animal Biology, Universidade Federal Rural do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Cleida A Oliveira
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Guilherme M J Costa
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | |
Collapse
|
15
|
Han X, Choi KH, Lim H, Choi J, Bae S, Ha M, Kwon HJ. Cancer Incidence Among Residents Near Coal-Fired Power Plants Based on the Korean National Health Insurance System Data. J Korean Med Sci 2024; 39:e227. [PMID: 39106890 PMCID: PMC11301007 DOI: 10.3346/jkms.2024.39.e227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 06/12/2024] [Indexed: 08/09/2024] Open
Abstract
BACKGROUND Cancer is a leading cause of death worldwide, posing a significant threat to human health and life expectancy. Numerous existing studies explored the correlation between coal-fired power plants and cancer development. Currently, Chungcheongnam-do Province hosts 29 coal-fired power plants, constituting half of the total 58 plants across South Korea. METHODS This study assessed the cancer incidence by proximity to coal-fired power plants in Chungcheongnam-do Province, Korea. In this study, the exposed group comprised individuals residing within a 2-km radius of the coal-fired power plants, whereas the control group comprised individuals who had no prior residency within the 2-km radius of such plants or elsewhere in the province. Standardized incidence ratios were calculated using the cancer incidence cases retrieved from the National Health Insurance System data from 2007 to 2017. RESULTS The study found that exposed men had a 1.11 (95% confidence interval [CI], 1.09-1.21) times higher risk of developing all cancer types and a 1.15 (95% CI, 1.09-1.22) times higher risk of developing cancers excluding thyroid cancer compared with control men. Exposed women had a 1.05 (95% CI, 1.00-1.14) times higher risk of developing all cancer types and a 1.06 (95% CI, 0.98-1.13) times higher risk of developing cancers excluding thyroid cancer than did control women. The colorectal, liver, prostate, and bladder cancer incidence rates were significantly higher in exposed men than that in all control groups. The incidence of esophageal, stomach, liver, and lung cancers were significantly higher in exposed women compared with all control groups. CONCLUSION The residents near coal-fired power plants had a higher risk of developing cancer than did those living in other areas. In the future, long-term follow-up investigations in residents living in the vicinity of power plants are warranted.
Collapse
Affiliation(s)
- Xue Han
- Department of Preventive Medicine, Dankook University College of Medicine, Cheonan, Korea
- Research Institute of Healthcare Bigdata, College of Medicine, Dankook University, Cheonan, Korea
| | - Kyung-Hwa Choi
- Department of Preventive Medicine, Dankook University College of Medicine, Cheonan, Korea
- Research Institute of Healthcare Bigdata, College of Medicine, Dankook University, Cheonan, Korea
| | - Hyungryul Lim
- Department of Preventive Medicine and Public Health, Ajou University School of Medicine, Suwon, Korea
| | - Jonghyuk Choi
- Department of Preventive Medicine, Dankook University College of Medicine, Cheonan, Korea
- Research Institute of Healthcare Bigdata, College of Medicine, Dankook University, Cheonan, Korea
| | - Sanghyuk Bae
- Department of Preventive Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Mina Ha
- Department of Preventive Medicine, Dankook University College of Medicine, Cheonan, Korea
- Research Institute of Healthcare Bigdata, College of Medicine, Dankook University, Cheonan, Korea
| | - Ho-Jang Kwon
- Department of Preventive Medicine, Dankook University College of Medicine, Cheonan, Korea
- Research Institute of Healthcare Bigdata, College of Medicine, Dankook University, Cheonan, Korea.
| |
Collapse
|
16
|
Yan X, Chen X, Zhang X, Qureshi A, Wang Y, Tang X, Hu T, Zhuang H, Ran X, Ma G, Luo P, Shen L. Proteomic analysis of the effects of Dictyophora polysaccharide on arsenic-induced hepatotoxicity in rats. Exp Mol Pathol 2024; 138:104910. [PMID: 38876078 DOI: 10.1016/j.yexmp.2024.104910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 05/21/2024] [Accepted: 06/03/2024] [Indexed: 06/16/2024]
Abstract
Arsenic (As) is a highly toxic environmental toxicant and a known human carcinogen. Long-term exposure to As can cause liver injury. Dictyophora polysaccharide (DIP) is a biologically active natural compound found in the Dictyophora with excellent antioxidation, anti-inflammation, and immune protection properties. In this study, the Sprague-Dawley (SD) rat model of As toxicity was established using a feeding method, followed by DIP treatment in rats with As-induced liver injury. The molecular mechanisms of As toxicity to the rat liver and the protective effect of DIP were investigated by proteomic studies. The results showed that 172, 328 and 191 differentially expressed proteins (DEPs) were identified between the As-exposed rats versus control rats (As/Ctrl), DIP treated rats versus As-exposed rats (DIP+As/As), and DIP treated rats versus control rats (DIP+As /Ctrl), respectively. Among them, the expression of 90 DEPs in the As/Ctrl groups was reversed by DIP treatment. As exposure caused dysregulation of metabolic pathways, mitochondria, oxidative stress, and apoptosis-related proteins in the rat liver. However, DIP treatment changed or restored the levels of these proteins, which attenuated the damage to the livers of rats caused by As exposure. The results provide new insights into the mechanisms of liver injury induced by As exposure and the treatment of DIP in As poisoning.
Collapse
Affiliation(s)
- Xi Yan
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, PR China
| | - Xiaolu Chen
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, PR China
| | - Xinglai Zhang
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, PR China
| | - Ayesha Qureshi
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| | - Yi Wang
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, PR China
| | - Xiaoxiao Tang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| | - Ting Hu
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, PR China
| | - Hongbin Zhuang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| | - Xiaoqian Ran
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, PR China
| | - Guanwei Ma
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, PR China
| | - Peng Luo
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, PR China.
| | - Liming Shen
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, PR China; College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, PR China.
| |
Collapse
|
17
|
Coradduzza D, Congiargiu A, Azara E, Mammani IMA, De Miglio MR, Zinellu A, Carru C, Medici S. Heavy metals in biological samples of cancer patients: a systematic literature review. Biometals 2024; 37:803-817. [PMID: 38347295 PMCID: PMC11254964 DOI: 10.1007/s10534-024-00583-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 01/07/2024] [Indexed: 07/18/2024]
Abstract
The majority of the so-called heavy metals are suspected to be involved in a number of pathologies and play a role in human carcinogenesis. Some of them (i.e. arsenic (As), cadmium (Cd), chromium (Cr), lead (Pb), mercury (Hg) and nickel (Ni)) have been defined as carcinogens, increasing the susceptibility of tumor development and progression in humans. Moreover, Ni, Cr, Cd, Hg, and Pb together with zinc (Zn) and iron (Fe), may be capable of stimulating the progression of breast cancer and reducing a patient's sensitivity to treatment through alterations to DNA methylation. In patients with gastric cancers, levels of various heavy metals are augmented and hypothesized to amplify the expression of the human epidermal growth factor receptor type 2 gene. Cd may increase the risk of lung cancer development and have a negative impact on the overall survival of lung cancer patients. To investigate the relation between heavy metals in biological samples and risk, occurrence and survival cancer individuals, a comprehensive review work was performed, with a focus on breast, lung, prostate and gastric cancers. An extensive search strategy was devised to ensure relevant literature could be identified, with the PECO framework being adopted to facilitate this and identify key search terms. As evidenced in this review, there is substantial data to support the hypothesis that heavy metals influence tumor development and progression. Unluckily the number of papers dealing with the determination of metals directly in samples from cancer tissues is still rather limited, so we decided to expand the scope of this review also to analyses carried out on other biological samples, as urine, plasma, hair, nail, etc. The studies reviewed showed that several limitations and current knowledge gaps are present in the literature that require further investigation to improve our comprehension of the impact of different heavy metals on tumorigenesis.
Collapse
Affiliation(s)
- Donatella Coradduzza
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100, Sassari, Italy.
| | - Antonella Congiargiu
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100, Sassari, Italy
| | - Emanuela Azara
- Institute of Biomolecular Chemistry, National Research Council, Sassari, Italy
| | | | - Maria Rosaria De Miglio
- Department of Medical, Surgery and Experimental Sciences, University of Sassari, Sassari, Italy
| | - Angelo Zinellu
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100, Sassari, Italy
| | - Ciriaco Carru
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100, Sassari, Italy.
| | - Serenella Medici
- Department of Chemistry and Pharmacy, University of Sassari, Vienna 2, 07100, Sassari, Italy
| |
Collapse
|
18
|
Zhang J, Li W, Liu Y, He Y, Cheng Z, Li X, Chen Y, Zhang A, Peng Y, Zheng J. Arsenite-Induced Drug-Drug Interactions in Rats. Drug Metab Dispos 2024; 52:911-918. [PMID: 38849209 DOI: 10.1124/dmd.124.001772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 06/09/2024] Open
Abstract
Arsenite is an important heavy metal. Some Chinese traditional medicines contain significant amounts of arsenite. The aim of this study was to investigate subacute exposure of arsenite on activities of cytochrome P450 enzymes and pharmacokinetic behaviors of drugs in rats. Midazolam, tolbutamide, metoprolol, omeprazole, caffeine, and chlorzoxazone, the probe substrates for cytochrome P450 (CYP) s3A, 2C6, 2D, 2C11, 1A, and 2E, were selected as probe drugs for the pharmacokinetic study. Significant decreases in areas under the curves of probe substrates were observed in rats after consecutive 30-day exposure to As at 12 mg/kg. Microsomal incubation study showed that the subacute exposure to arsenite resulted in little change in effects on the activities of P450 enzymes examined. However, everted gut sac study demonstrated that such exposure induced significant decreases in intestinal absorption of these drugs by both passive diffusion and carrier-mediated transport. In addition, in vivo study showed that the arsenite exposure decreased the rate of peristaltic propulsion. The decreases in intestinal permeability of the probe drugs and peristaltic propulsion rate most likely resulted in the observed decreases in the internal exposure of the probe drugs. Exposure to arsenite may lead to the reduction of the efficiencies of pharmaceutical agents coadministered resulting from the observed drug-drug interactions. SIGNIFICANCE STATEMENT: Exposure to arsenite may lead to the reduction of the efficiencies of pharmaceutical agents coadministered resulting from the observed drug-drug interactions. The present study, we found that P450 enzyme probe drug exposure was reduced in arsenic-exposed animals (areas under the curve) and the intestinal absorption of the drug was reduced in the animals. Subacute arsenic exposure tends to cause damage to intestinal function, which leads to reduced drug absorption.
Collapse
Affiliation(s)
- Jingyu Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics (J.Z., W.L., Y.L., Y.H., Z.C., X.L., Y.C., A.Z., J.Z.), School of Pharmacy (J.Z., W.L., Y.L., Y.H., Z.C., X.L., Y.C., A.Z., J.Z.), Guizhou Medical University, Guiyang, Guizhou, P. R. China; State Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, Guizhou, P. R. China (A.Z.); and Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, P. R. China (Y.P., J.Z.)
| | - Weiwei Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics (J.Z., W.L., Y.L., Y.H., Z.C., X.L., Y.C., A.Z., J.Z.), School of Pharmacy (J.Z., W.L., Y.L., Y.H., Z.C., X.L., Y.C., A.Z., J.Z.), Guizhou Medical University, Guiyang, Guizhou, P. R. China; State Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, Guizhou, P. R. China (A.Z.); and Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, P. R. China (Y.P., J.Z.)
| | - Ying Liu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics (J.Z., W.L., Y.L., Y.H., Z.C., X.L., Y.C., A.Z., J.Z.), School of Pharmacy (J.Z., W.L., Y.L., Y.H., Z.C., X.L., Y.C., A.Z., J.Z.), Guizhou Medical University, Guiyang, Guizhou, P. R. China; State Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, Guizhou, P. R. China (A.Z.); and Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, P. R. China (Y.P., J.Z.)
| | - Yan He
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics (J.Z., W.L., Y.L., Y.H., Z.C., X.L., Y.C., A.Z., J.Z.), School of Pharmacy (J.Z., W.L., Y.L., Y.H., Z.C., X.L., Y.C., A.Z., J.Z.), Guizhou Medical University, Guiyang, Guizhou, P. R. China; State Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, Guizhou, P. R. China (A.Z.); and Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, P. R. China (Y.P., J.Z.)
| | - Zihao Cheng
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics (J.Z., W.L., Y.L., Y.H., Z.C., X.L., Y.C., A.Z., J.Z.), School of Pharmacy (J.Z., W.L., Y.L., Y.H., Z.C., X.L., Y.C., A.Z., J.Z.), Guizhou Medical University, Guiyang, Guizhou, P. R. China; State Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, Guizhou, P. R. China (A.Z.); and Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, P. R. China (Y.P., J.Z.)
| | - Ximei Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics (J.Z., W.L., Y.L., Y.H., Z.C., X.L., Y.C., A.Z., J.Z.), School of Pharmacy (J.Z., W.L., Y.L., Y.H., Z.C., X.L., Y.C., A.Z., J.Z.), Guizhou Medical University, Guiyang, Guizhou, P. R. China; State Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, Guizhou, P. R. China (A.Z.); and Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, P. R. China (Y.P., J.Z.)
| | - Yu Chen
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics (J.Z., W.L., Y.L., Y.H., Z.C., X.L., Y.C., A.Z., J.Z.), School of Pharmacy (J.Z., W.L., Y.L., Y.H., Z.C., X.L., Y.C., A.Z., J.Z.), Guizhou Medical University, Guiyang, Guizhou, P. R. China; State Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, Guizhou, P. R. China (A.Z.); and Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, P. R. China (Y.P., J.Z.)
| | - Aihua Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics (J.Z., W.L., Y.L., Y.H., Z.C., X.L., Y.C., A.Z., J.Z.), School of Pharmacy (J.Z., W.L., Y.L., Y.H., Z.C., X.L., Y.C., A.Z., J.Z.), Guizhou Medical University, Guiyang, Guizhou, P. R. China; State Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, Guizhou, P. R. China (A.Z.); and Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, P. R. China (Y.P., J.Z.)
| | - Ying Peng
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics (J.Z., W.L., Y.L., Y.H., Z.C., X.L., Y.C., A.Z., J.Z.), School of Pharmacy (J.Z., W.L., Y.L., Y.H., Z.C., X.L., Y.C., A.Z., J.Z.), Guizhou Medical University, Guiyang, Guizhou, P. R. China; State Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, Guizhou, P. R. China (A.Z.); and Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, P. R. China (Y.P., J.Z.)
| | - Jiang Zheng
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics (J.Z., W.L., Y.L., Y.H., Z.C., X.L., Y.C., A.Z., J.Z.), School of Pharmacy (J.Z., W.L., Y.L., Y.H., Z.C., X.L., Y.C., A.Z., J.Z.), Guizhou Medical University, Guiyang, Guizhou, P. R. China; State Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, Guizhou, P. R. China (A.Z.); and Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, P. R. China (Y.P., J.Z.)
| |
Collapse
|
19
|
Bhat A, Tian F, Singh B. Advances in Nanomaterials and Colorimetric Detection of Arsenic in Water: Review and Future Perspectives. SENSORS (BASEL, SWITZERLAND) 2024; 24:3889. [PMID: 38931673 PMCID: PMC11207815 DOI: 10.3390/s24123889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/06/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024]
Abstract
Arsenic, existing in various chemical forms such as arsenate (As(V)) and arsenite (As(III)), demands serious attention in water and environmental contexts due to its significant health risks. It is classified as "carcinogenic to humans" by the International Agency for Research on Cancer (IARC) and is listed by the World Health Organization (WHO) as one of the top 10 chemicals posing major public health concerns. This widespread contamination results in millions of people globally being exposed to dangerous levels of arsenic, making it a top priority for the WHO. Chronic arsenic toxicity, known as arsenicosis, presents with specific skin lesions like pigmentation and keratosis, along with systemic manifestations including chronic lung diseases, liver issues, vascular problems, hypertension, diabetes mellitus, and cancer, often leading to fatal outcomes. Therefore, it is crucial to explore novel, cost-effective, and reliable methods with rapid response and improved sensitivities (detection limits). Most of the traditional detection techniques often face limitations in terms of complexity, cost, and the need for sophisticated equipment requiring skilled analysts and procedures, which thereby impedes their practical use, particularly in resource-constrained settings. Colorimetric methods leverage colour changes which are observable and quantifiable using simple instrumentation or even visual inspection. This review explores the colorimetric techniques designed to detect arsenite and arsenate in water. It covers recent developments in colorimetric techniques, and advancements in the role of nanomaterials in colorimetric arsenic detection, followed by discussion on current challenges and future prospects. The review emphasizes efforts to improve sensitivity, selectivity, cost, and portability, as well as the role of advanced materials/nanomaterials to boost the performance of colorimetric assays/sensors towards combatting this pervasive global health concern.
Collapse
Affiliation(s)
- Abhijnan Bhat
- School of Food Science & Environmental Health, Grangegorman, Technological University Dublin (TU Dublin), D07 ADY7 Dublin, Ireland; (A.B.)
- Health, Engineering & Materials Science (HEMS) Research Hub, Technological University Dublin (TU Dublin), D24 FKT9 Dublin, Ireland
- Nanolab Research Centre, Physical to Life sciences Hub, Technological University Dublin (TU Dublin), D08 CKP1 Dublin, Ireland
| | - Furong Tian
- School of Food Science & Environmental Health, Grangegorman, Technological University Dublin (TU Dublin), D07 ADY7 Dublin, Ireland; (A.B.)
- Nanolab Research Centre, Physical to Life sciences Hub, Technological University Dublin (TU Dublin), D08 CKP1 Dublin, Ireland
| | - Baljit Singh
- School of Food Science & Environmental Health, Grangegorman, Technological University Dublin (TU Dublin), D07 ADY7 Dublin, Ireland; (A.B.)
- Health, Engineering & Materials Science (HEMS) Research Hub, Technological University Dublin (TU Dublin), D24 FKT9 Dublin, Ireland
- Nanolab Research Centre, Physical to Life sciences Hub, Technological University Dublin (TU Dublin), D08 CKP1 Dublin, Ireland
- MiCRA Biodiagnostics Technology Gateway, Technological University Dublin (TU Dublin), D24 FKT9 Dublin, Ireland
| |
Collapse
|
20
|
Demissie S, Mekonen S, Awoke T, Teshome B, Mengistie B. Examining carcinogenic and noncarcinogenic health risks related to arsenic exposure in Ethiopia: A longitudinal study. Toxicol Rep 2024; 12:100-110. [PMID: 38229921 PMCID: PMC10789645 DOI: 10.1016/j.toxrep.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/30/2023] [Accepted: 01/02/2024] [Indexed: 01/18/2024] Open
Abstract
Background The carcinogenic properties of arsenic make it one of the most hazardous chemicals globally. Nevertheless, the exact level of human exposure to arsenic and the associated risks of cancer and non-cancer effects through different pathways in Ethiopia are still uncertain. Objective The primary aim of this study was to evaluate the risk of both cancer and non-cancer outcomes among children and adults who have been exposed to arsenic through drinking water in the Adami Tulu Jido Kombolcha district of Ethiopia. Methods For this study, a longitudinal study design was employed. A total of 45 groundwater sources were sampled using the census sampling method. The concentrations of total arsenic were measured using Agilent 7900 series inductively coupled plasma mass spectrometry. Carcinogenic and noncarcinogenic risk assessments were conducted by calculating lifetime cancer risk and hazard quotients. Microsoft Office Excel was utilized to calculate human health risk indices, and descriptive statistical analysis were performed using SPSS software. Results Our findings revealed that during the dry season, the mean arsenic concentration in the groundwater samples was 11.15 ± 9.38 µg/L, while during the rainy season, it was 10.67 ± 8.16 µg/L. The total cancer risk for children, resulting from oral ingestion and skin contact, was 1.15 × 10-2 and 1.07 × 10-2 during the dry and rainy seasons, respectively. For adults, the total cancer risk from oral ingestion and skin contact during the dry and rainy seasons was 4.95 × 10-3 and 4.59 × 10-3, respectively. Furthermore, the total hazard quotients for children via oral ingestion and skin absorption were 25.9 and 24.0 during the dry and rainy seasons, respectively. For adults, the total hazard quotients from ingestion and dermal contact during the dry and rainy seasons were 11 and 10, respectively. Conclusions The findings indicate that the risks of cancer and non-cancer effects resulting from arsenic exposure through ingestion and dermal exposure were found to exceed the acceptable thresholds in both seasons. These results emphasize the urgent need for focused attention on the study population in the study area due to the high likelihood of experiencing adverse health outcomes.
Collapse
Affiliation(s)
- Solomon Demissie
- Department of Water and Public Health, Ethiopian Institute of Water Resources, Addis Ababa University, Ethiopia
| | - Seblework Mekonen
- Department of Water and Public Health, Ethiopian Institute of Water Resources, Addis Ababa University, Ethiopia
| | - Tadesse Awoke
- Department of Epidemiology and Biostatistics, University of Gondar, Ethiopia
| | - Birhanu Teshome
- Division of Epidemiology and Biostatistics, Stellenbosch University, South Africa
| | - Bezatu Mengistie
- Department of Water and Public Health, Ethiopian Institute of Water Resources, Addis Ababa University, Ethiopia
| |
Collapse
|
21
|
Demissie S, Mekonen S, Awoke T, Mengistie B. Assessing Acute and Chronic Risks of Human Exposure to Arsenic: A Cross-Sectional Study in Ethiopia Employing Body Biomarkers. ENVIRONMENTAL HEALTH INSIGHTS 2024; 18:11786302241257365. [PMID: 38828044 PMCID: PMC11141224 DOI: 10.1177/11786302241257365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/09/2024] [Indexed: 06/05/2024]
Abstract
Background Arsenic, a widely recognized and highly toxic carcinogen, is regarded as one of the most hazardous metalloids globally. However, the precise assessment of acute and chronic human exposure to arsenic and its contributing factors remains unclear in Ethiopia. Objective The primary goal of this study was to assess the levels of acute and chronic arsenic exposure, as well as the contributing factors, using urine and nail biomarkers. Methods A community-based analytical cross-sectional study design was employed for this study. Agilent 7900 series inductively coupled plasma mass spectrometry was used to measure the concentrations of arsenic in urine and nail samples. We performed a multiple linear regression analysis to assess the relationships between multiple predictors and outcome variables. Results The concentration of arsenic in the urine samples ranged from undetectable (<0.01) to 126.13, with a mean and median concentration of 16.02 and 13.5 μg/L, respectively. However, the mean and median concentration of arsenic in the nails was 1.01, ranging from undetectable (<0.01 μg/g) to 2.54 μg/g. Furthermore, Pearson's correlation coefficient analysis showed a significant positive correlation between arsenic concentrations in urine and nail samples (r = 0.432, P < .001). Also, a positive correlation was observed between urinary (r = 0.21, P = .007) and nail (r = 0.14, P = .044) arsenic concentrations and the arsenic concentration in groundwater. Groundwater sources and smoking cigarettes were significantly associated with acute arsenic exposure. In contrast, groundwater sources, cigarette smoking, and the frequency of showers were significantly associated with chronic arsenic exposure. Conclusions The study's findings unveiled the widespread occurrence of both acute and chronic arsenic exposure in the study area. Consequently, it is crucial to prioritize the residents in the study area and take further measures to prevent both acute and chronic arsenic exposure.
Collapse
Affiliation(s)
- Solomon Demissie
- Department of Water and Public Health, Ethiopian Institute of Water Resources, Addis Ababa University, Addis Abeba, Ethiopia
| | - Seblework Mekonen
- Department of Water and Public Health, Ethiopian Institute of Water Resources, Addis Ababa University, Addis Abeba, Ethiopia
| | - Tadesse Awoke
- Department of Epidemiology and Biostatistics, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Bezatu Mengistie
- Department of Water and Public Health, Ethiopian Institute of Water Resources, Addis Ababa University, Addis Abeba, Ethiopia
| |
Collapse
|
22
|
Liu Y, Zhu FM, Xu J, Deng YP, Sun J, He QY, Cheng ZY, Tang MM, Yang J, Fu L, Zhao H. Arsenic exposure and pulmonary function decline: Potential mediating role of TRAIL in chronic obstructive pulmonary disease patients. J Trace Elem Med Biol 2024; 83:127415. [PMID: 38377659 DOI: 10.1016/j.jtemb.2024.127415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/08/2024] [Accepted: 02/16/2024] [Indexed: 02/22/2024]
Abstract
BACKGROUND Environmental arsenic (As) exposure is strongly related to the progression of chronic obstructive pulmonary disease (COPD). Pulmonary epithelial cells apoptosis is implicated in the pathophysiological mechanisms of COPD. However, the role of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), one biomarker of apoptosis, remains unclear in As-mediated pulmonary function alternations in COPD patients. METHODS This study included 239 COPD patients. The serum level of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) was measured by enzyme-linked immunosorbent assay (ELISA). The blood As level was determined through inductively coupled plasma mass spectrometry (ICP-MS). RESULTS Blood As levels exhibited a negative and dose-dependent correlation with pulmonary function. Per unit elevation of blood arsenic concentrations was related to reductions of 0.339 L in FEV1, 0.311 L in FVC, 1.171% in FEV1/FVC%, and 7.999% in FEV1% in COPD subjects. Additionally, a positive dose-response correlation of blood As with serum TRAIL was found in COPD subjects. Additionally, the level of serum TRAIL was negatively linked to lung function. Elevated TRAIL significantly mediated As-induced decreases of 11.05%, 13.35%, and 31.78% in FVC, FEV1, and FEV1%, respectively among the COPD patients. CONCLUSION Blood As level is positively correlated with pulmonary function decline and serum TRAIL increase in individuals with COPD. Our findings suggest that elevated TRAIL levels may serve as a mediating mechanism through which As contributes to declining lung function in COPD patients.
Collapse
Affiliation(s)
- Ying Liu
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China; Institute of Respiratory Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China; Center for Big Data and Population Health of IHM, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China
| | - Feng-Min Zhu
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China; Institute of Respiratory Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China
| | - Juan Xu
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China; Institute of Respiratory Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China
| | - You-Peng Deng
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China; Institute of Respiratory Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China
| | - Jing Sun
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China; Institute of Respiratory Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China
| | - Qi-Yuan He
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China; Institute of Respiratory Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China
| | - Zhen-Yu Cheng
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China; Institute of Respiratory Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China
| | - Min-Min Tang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China; Institute of Respiratory Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China
| | - Jin Yang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China; Institute of Respiratory Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China
| | - Lin Fu
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China; Institute of Respiratory Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China
| | - Hui Zhao
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China; Institute of Respiratory Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China; Center for Big Data and Population Health of IHM, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China.
| |
Collapse
|
23
|
Lin Q, Cai B, Ke R, Chen L, Ni X, Liu H, Lin X, Wang B, Shan X. Integrative bioinformatics and experimental validation of hub genetic markers in acne vulgaris: Toward personalized diagnostic and therapeutic strategies. J Cosmet Dermatol 2024; 23:1777-1799. [PMID: 38268224 DOI: 10.1111/jocd.16152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/10/2023] [Indexed: 01/26/2024]
Abstract
BACKGROUND Acne vulgaris is a widespread chronic inflammatory dermatological condition. The precise molecular and genetic mechanisms of its pathogenesis remain incompletely understood. This research synthesizes existing databases, targeting a comprehensive exploration of core genetic markers. METHODS Gene expression datasets (GSE6475, GSE108110, and GSE53795) were retrieved from the GEO. Differentially expressed genes (DEGs) were identified using the limma package. Enrichment analyses were conducted using GSVA for pathway assessment and clusterProfiler for GO and KEGG analyses. PPI networks and immune cell infiltration were analyzed using the STRING database and ssGSEA, respectively. We investigated the correlation between hub gene biomarkers and immune cell infiltration using Spearman's rank analysis. ROC curve analysis validated the hub genes' diagnostic accuracy. miRNet, TarBase v8.0, and ChEA3 identified miRNA/transcription factor-gene interactions, while DrugBank delineated drug-gene interactions. Experiments utilized HaCaT cells stimulated with Propionibacterium acnes, treated with retinoic acid and methotrexate, and evaluated using RT-qPCR, ELISA, western blot, lentiviral transduction, CCK-8, wound-healing, and transwell assays. RESULTS There were 104 genes with consistent differences across the three datasets of paired acne and normal skin. Functional analyses emphasized the significant enrichment of these DEGs in immune-related pathways. PPI network analysis pinpointed hub genes PTPRC, CXCL8, ITGB2, and MMP9 as central players in acne pathogenesis. Elevated levels of specific immune cell infiltration in acne lesions corroborated the inflammatory nature of the disease. ROC curve analysis identified the acne diagnostic potential of four hub genes. Key miRNAs, particularly hsa-mir-124-3p, and central transcription factors like TFEC were noted as significant regulators. In vitro validation using HaCaT cells confirmed the upregulation of hub genes following Propionibacterium acnes exposure, while CXCL8 knockdown reduced pro-inflammatory cytokines, cell proliferation, and migration. DrugBank insights led to the exploration of retinoic acid and methotrexate, both of which mitigated gene expression upsurge and inflammatory mediator secretion. CONCLUSION This comprehensive study elucidated pivotal genes associated with acne pathogenesis, notably PTPRC, CXCL8, ITGB2, and MMP9. The findings underscore potential biomarkers, therapeutic targets, and the therapeutic potential of agents like retinoic acid and methotrexate. The congruence between bioinformatics and experimental validations suggests promising avenues for personalized acne treatments.
Collapse
Affiliation(s)
- Qian Lin
- Department of Plastic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Department of Plastic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China
| | - Beichen Cai
- Department of Plastic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Department of Plastic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China
| | - Ruonan Ke
- Department of Plastic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Department of Plastic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, Fujian, China
| | - Lu Chen
- Department of Plastic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Department of Plastic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Xuejun Ni
- Department of Plastic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Department of Plastic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Hekun Liu
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China
| | - Xinjian Lin
- Department of Plastic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Department of Plastic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, Fujian, China
| | - Biao Wang
- Department of Plastic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Department of Plastic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China
| | - Xiuying Shan
- Department of Plastic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Department of Plastic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
| |
Collapse
|
24
|
Caggìa V, Wälchli J, Deslandes-Hérold G, Mateo P, Robert CAM, Guan H, Bigalke M, Spielvogel S, Mestrot A, Schlaeppi K, Erb M. Root-exuded specialized metabolites reduce arsenic toxicity in maize. Proc Natl Acad Sci U S A 2024; 121:e2314261121. [PMID: 38513094 PMCID: PMC10990099 DOI: 10.1073/pnas.2314261121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 01/19/2024] [Indexed: 03/23/2024] Open
Abstract
By releasing specialized metabolites, plants modify their environment. Whether and how specialized metabolites protect plants against toxic levels of trace elements is not well understood. We evaluated whether benzoxazinoids, which are released into the soil by major cereals, can confer protection against arsenic toxicity. Benzoxazinoid-producing maize plants performed better in arsenic-contaminated soils than benzoxazinoid-deficient mutants in the greenhouse and the field. Adding benzoxazinoids to the soil restored the protective effect, and the effect persisted to the next crop generation via positive plant-soil feedback. Arsenate levels in the soil and total arsenic levels in the roots were lower in the presence of benzoxazinoids. Thus, the protective effect of benzoxazinoids is likely soil-mediated and includes changes in soil arsenic speciation and root accumulation. We conclude that exuded specialized metabolites can enhance protection against toxic trace elements via soil-mediated processes and may thereby stabilize crop productivity in polluted agroecosystems.
Collapse
Affiliation(s)
- Veronica Caggìa
- Institute of Plant Sciences, University of Bern, BernCH-3013, Switzerland
- Department of Environmental Sciences, University of Basel, Basel4056, Switzerland
| | - Jan Wälchli
- Department of Environmental Sciences, University of Basel, Basel4056, Switzerland
| | | | - Pierre Mateo
- Institute of Plant Sciences, University of Bern, BernCH-3013, Switzerland
| | | | - Hang Guan
- Institute of Geography, University of Bern, BernCH-3012, Switzerland
| | - Moritz Bigalke
- Institute of Geography, University of Bern, BernCH-3012, Switzerland
- Institute of Applied Geoscience, Technical University Darmstadt, DarmstadtD-64287, Germany
| | - Sandra Spielvogel
- Institute of Plant Nutrition and Soil Science, Christian-Albrechts-Universität, Kiel24118, Germany
- Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, Jülich52425, Germany
| | - Adrien Mestrot
- Institute of Geography, University of Bern, BernCH-3012, Switzerland
| | - Klaus Schlaeppi
- Institute of Plant Sciences, University of Bern, BernCH-3013, Switzerland
- Department of Environmental Sciences, University of Basel, Basel4056, Switzerland
| | - Matthias Erb
- Institute of Plant Sciences, University of Bern, BernCH-3013, Switzerland
| |
Collapse
|
25
|
Geng A, Lian W, Wang Y, Liu M, Zhang Y, Wang X, Chen G. The Molecular Mechanism of the Response of Rice to Arsenic Stress and Effective Strategies to Reduce the Accumulation of Arsenic in Grain. Int J Mol Sci 2024; 25:2861. [PMID: 38474107 DOI: 10.3390/ijms25052861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/18/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
Rice (Oryza sativa L.) is the staple food for more than 50% of the world's population. Owing to its growth characteristics, rice has more than 10-fold the ability to enrich the carcinogen arsenic (As) than other crops, which seriously affects world food security. The consumption of rice is one of the primary ways for humans to intake As, and it endangers human health. Effective measures to control As pollution need to be studied and promoted. Currently, there have been many studies on reducing the accumulation of As in rice. They are generally divided into agronomic practices and biotechnological approaches, but simultaneously, the problem of using the same measures to obtain the opposite results may be due to the different species of As or soil environments. There is a lack of systematic discussion on measures to reduce As in rice based on its mechanism of action. Therefore, an in-depth understanding of the molecular mechanism of the accumulation of As in rice could result in accurate measures to reduce the content of As based on local conditions. Different species of As have different toxicity and metabolic pathways. This review comprehensively summarizes and reviews the molecular mechanisms of toxicity, absorption, transport and redistribution of different species of As in rice in recent years, and the agronomic measures to effectively reduce the accumulation of As in rice and the genetic resources that can be used to breed for rice that only accumulates low levels of As. The goal of this review is to provide theoretical support for the prevention and control of As pollution in rice, facilitate the creation of new types of germplasm aiming to develop without arsenic accumulation or within an acceptable limit to prevent the health consequences associated with heavy metal As as described here.
Collapse
Affiliation(s)
- Anjing Geng
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| | - Wenli Lian
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| | - Yihan Wang
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| | - Minghao Liu
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| | - Yue Zhang
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| | - Xu Wang
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| | - Guang Chen
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| |
Collapse
|
26
|
Meselhy AG, Mosa K, Chhikara S, Kumar K, Musante C, White JC, Dhankher OP. Plasma membrane intrinsic protein OsPIP2;6 is involved in root-to-shoot arsenic translocation in rice (Oryza sativa L.). PLANT CELL REPORTS 2024; 43:64. [PMID: 38340214 DOI: 10.1007/s00299-024-03157-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 01/11/2024] [Indexed: 02/12/2024]
Abstract
KEY MESSAGE This study demonstrates the crucial role of OsPIP2;6 for translocation of arsenic from roots to shoots, which can decrease arsenic accumulation in rice for improved food safety. Arsenic (As) contamination in food and water, primarily through rice consumption, poses a significant health risk due to its natural tendency to accumulate inorganic arsenic (iAs). Understanding As transport mechanisms is vital for producing As-free rice. This study investigates the role of rice plasma membrane intrinsic protein, OsPIP2;6, for AsIII tolerance and accumulation. RNAi-mediated suppression of OsPIP2;6 expression resulted in a substantial (35-65%) reduction in As accumulation in rice shoots, while root arsenic levels remained largely unaffected. Conversely, OsPIP2;6 overexpression led to 15-76% higher arsenic accumulation in shoots, with no significant change in root As content. In mature plants, RNAi suppression caused (19-26%) decrease in shoot As, with flag leaves and grains showing a 16% reduction. OsPIP2;6 expression was detected in both roots and shoots, with higher transcript levels in shoots. Localization studies revealed its presence in vascular tissues of both roots and shoots. Overall, our findings highlight OsPIP2;6's role in root-to-shoot As translocation, attributed to its specific localization in the vascular tissue of roots and leaves. This knowledge can facilitate the development of breeding programs to mitigate As accumulation in rice and other food crops for improved food safety and increasing productivity on As-contaminated soils.
Collapse
Affiliation(s)
- Ahmed G Meselhy
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, USA
- Department of Biotechnology, Faculty of Agriculture, Al-Azhar University, Cairo, Egypt
| | - Kareem Mosa
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, USA
- Department of Biotechnology, Faculty of Agriculture, Al-Azhar University, Cairo, Egypt
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Sudesh Chhikara
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, USA
| | - Kundan Kumar
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, USA
- Department of Biological Sciences, Birla Institute of Technology & Science, Pilani, K. K. Birla Goa Campus, Zuarinagar, Goa, India
| | - Craig Musante
- Connecticut Agricultural Experiment Station, New Haven, CT, USA
| | - Jason C White
- Connecticut Agricultural Experiment Station, New Haven, CT, USA
| | - Om Parkash Dhankher
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, USA.
| |
Collapse
|
27
|
Mukherjee AG, Gopalakrishnan AV. Arsenic-induced prostate cancer: an enigma. Med Oncol 2024; 41:50. [PMID: 38184511 DOI: 10.1007/s12032-023-02266-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 11/21/2023] [Indexed: 01/08/2024]
Abstract
Arsenic exhibits varying degrees of toxicity depending on its many chemical forms. The carcinogenic properties of arsenic have already been established. However, the precise processes underlying the development of diseases following acute or chronic exposure to arsenic remain poorly known. Most of the existing investigation has focused on studying the occurrence of cancer following significant exposure to elevated levels of arsenic. Nevertheless, multiple investigations have documented diverse health consequences from prolonged exposure to low levels of arsenic. Inorganic arsenic commonly causes lung, bladder, and skin cancer. Some investigations have shown an association between arsenic in drinking water and prostate cancer, but few investigations have focused on exploring this connection. There is currently a lack of relevant animal models demonstrating a clear link between inorganic arsenic exposure and the development of prostate cancer. Nevertheless, studies using cellular model systems have demonstrated that arsenic can potentially promote the malignant transformation of human prostate epithelial cells in vitro. The administration of elevated levels of arsenic has been demonstrated to elicit cell death in instances of acute experimental exposure. Conversely, in cases of chronic exposure, arsenic prompts cellular proliferation and sustains cellular viability, thereby circumventing the constraints imposed by telomere shortening and apoptosis. Furthermore, cells consistently exposed to the stimulus exhibit an augmented ability to invade surrounding tissues and an enhanced potential to form tumors. This review aims to portray mechanistic insights into arsenic-induced prostate cancer.
Collapse
Affiliation(s)
- Anirban Goutam Mukherjee
- Department of Biomedical Sciences, School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
28
|
Speer RM, Nandi SP, Cooper KL, Zhou X, Yu H, Guo Y, Hudson LG, Alexandrov LB, Liu KJ. Arsenic is a potent co-mutagen of ultraviolet light. Commun Biol 2023; 6:1273. [PMID: 38104187 PMCID: PMC10725444 DOI: 10.1038/s42003-023-05659-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 12/01/2023] [Indexed: 12/19/2023] Open
Abstract
Arsenic enhances the carcinogenicity of ultraviolet radiation (UVR). However, the mechanisms of arsenic-driven oncogenesis are not well understood. Here, we utilize experimental systems to investigate the carcinogenic and mutagenic properties of co-exposure to arsenic and UVR. In vitro and in vivo exposures indicate that, by itself, arsenic is not mutagenic. However, in combination with UVR, arsenic exposure has a synergistic effect leading to an accelerated mouse skin carcinogenesis and to more than 2-fold enrichment of UVR mutational burden. Notably, mutational signature ID13, previously found only in UVR-associated human skin cancers, is observed exclusively in mouse skin tumors and cell lines jointly exposed to arsenic and UVR. This signature was not observed in any model system exposed purely to arsenic or purely to UVR, making ID13, to the best of our knowledge, the first co-exposure signature to be reported using controlled experimental conditions. Analysis of existing skin cancer genomics data reveals that only a subset of cancers harbor ID13 and these exhibit an elevated UVR mutagenesis. Our results report a unique mutational signature caused by a co-exposure to two environmental carcinogens and provide comprehensive evidence that arsenic is a potent co-mutagen and co-carcinogen of UVR.
Collapse
Affiliation(s)
- Rachel M Speer
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM, 87106, USA
| | - Shuvro P Nandi
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA, 92093, USA
- Moores Cancer Center, UC San Diego, La Jolla, CA, 92037, USA
- Department of Bioengineering, UC San Diego, La Jolla, CA, 92093, USA
| | - Karen L Cooper
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM, 87106, USA
| | - Xixi Zhou
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM, 87106, USA
| | - Hui Yu
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, 33136, USA
| | - Yan Guo
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, 33136, USA
| | - Laurie G Hudson
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM, 87106, USA
| | - Ludmil B Alexandrov
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA, 92093, USA.
- Moores Cancer Center, UC San Diego, La Jolla, CA, 92037, USA.
- Department of Bioengineering, UC San Diego, La Jolla, CA, 92093, USA.
| | - Ke Jian Liu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM, 87106, USA.
- Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY, 11794, USA.
- Department of Pathology, Stony Brook University School of Medicine, Stony Brook, NY, 11794, USA.
| |
Collapse
|
29
|
Umeoguaju FU, Akaninwor JO, Essien EB, Amadi BA, Igboekwe CO, Ononamadu CJ, Ikimi CG. Heavy metals contamination of seafood from the crude oil-impacted Niger Delta Region of Nigeria: A systematic review and meta-analysis. Toxicol Rep 2023; 11:58-82. [PMID: 37416859 PMCID: PMC10320387 DOI: 10.1016/j.toxrep.2023.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/07/2023] [Accepted: 06/19/2023] [Indexed: 07/08/2023] Open
Abstract
This study aims at computing the pooled mean estimate (PME) and health risks of heavy metals in seafood obtained from the Niger Delta Region of Nigeria (NDRN), using data from existing literatures. Pubmed, Scopus and Google Scholar were searched to retrieve articles that investigated the heavy metal contents of edible seafood from the NDRN. Search hits were screened against predetermined criteria following which relevant data were extracted from eligible articles. The PME for each metal was computed by performing a maximum likelihood random effect model meta-analysis using the R Studio Software. Outcome from the meta-analysis involving 58 studies and a total of 2983 seafood samples revealed the following PMEs (mg/kg dry wt seafood) for the investigated heavy metals: As (0.777), Cd (0.985), Co (4.039), Cr (2.26), Cu (11.45), Fe (143.39), Hg (0.0058), Mn (13.56), Ni (5.26), Pb (4.35), and Zn (29.32). The health risk assessment suggests that seafood from this region poses considerable carcinogenic and non-carcinogenic risks to human consumers. Our finding calls for urgent actions aimed at identifying and eliminating point sources of heavy metals pollution of the NDRN marine environment. Inhabitants of NDRN are encouraged to reduce seafood consumption while diversifying their protein sources to include non-seafood options.
Collapse
Affiliation(s)
- Francis Uchenna Umeoguaju
- World Bank Africa Centre of Excellence in Public Health and Toxicological Research (PUTOR), University of Port Harcourt, PMB, Port Harcourt 5323, Rivers State, Nigeria
| | - Joyce Oronne Akaninwor
- World Bank Africa Centre of Excellence in Public Health and Toxicological Research (PUTOR), University of Port Harcourt, PMB, Port Harcourt 5323, Rivers State, Nigeria
- Department of Biochemistry, Faculty of Science, University of Port Harcourt, Port Harcourt, Rivers State, Nigeria
| | - Eka Bassey Essien
- World Bank Africa Centre of Excellence in Public Health and Toxicological Research (PUTOR), University of Port Harcourt, PMB, Port Harcourt 5323, Rivers State, Nigeria
- Department of Biochemistry, Faculty of Science, University of Port Harcourt, Port Harcourt, Rivers State, Nigeria
| | - Benjamin Achor Amadi
- World Bank Africa Centre of Excellence in Public Health and Toxicological Research (PUTOR), University of Port Harcourt, PMB, Port Harcourt 5323, Rivers State, Nigeria
- Department of Biochemistry, Faculty of Science, University of Port Harcourt, Port Harcourt, Rivers State, Nigeria
| | - Chukwunonso Onyedika Igboekwe
- World Bank Africa Centre of Excellence in Public Health and Toxicological Research (PUTOR), University of Port Harcourt, PMB, Port Harcourt 5323, Rivers State, Nigeria
| | - Chimaobi James Ononamadu
- Department of Biochemistry and Forensic Science, Nigeria Police Academy, Maiduguri Road, P.M.B 3474, Wudil, Kano State, Nigeria
| | - Charles German Ikimi
- Department of Biochemistry, Federal University Otuoke, Otuoke, Bayelsa State, Nigeria
| |
Collapse
|
30
|
Urama DC, Amadi CC, Ozokolie CB, Andong FA, Olabode MP, Ezerike AV, Amujiri AN. Assessment of Trace Metal Contaminants and Consumer Preference in Tomato Varieties Produced in Two Mining Communities of Nigeria. J Food Prot 2023; 86:100166. [PMID: 37777114 DOI: 10.1016/j.jfp.2023.100166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/02/2023]
Abstract
Tomato varieties (Solanum lycopersicum L) produced in areas prominent for mining activities contribute more deposits of metal contaminants. In turn, affects the quality and value of the products. Highlighting the level of metal contaminant in consumer's most preferred tomato variety is also necessary for health and well-being. This study specifically aimed to investigate, i) the variability between six metal contaminants in UTC, Yowlings, and Derica tomatoes; ii) we also explored the relationship between the metal contaminants and tomato quality, and lastly, we ascertained which socioeconomic factor specifically determined preference for a particular variety of the tomatoes. The metal contaminants examined and found present using ICP-OES were nickel (Ni), chromium (Cr), lead (Pb), arsenic (As), cadmium (Cd), and mercury (Hg). We found a good agreement between most of the analyte and the National Institute of Standards and Technology (NIST) Certified Reference Material 1573a (CRM 1573a) values. Although this study's recovery for the analyte was between 83.22% and 111.00%, we also found contrary to our prediction that Cr, Ni, and Cd concentrations were higher in Derica, UTC, and the Yowlings varieties during the rainy season. A two-way ANOVA between tomatoes and planting seasons was not statistically significant (P > 0.05) in contrast to the mixed model (GLMMs) analysis that indicated a significant (P < 0.05) relationship between lycopene concentration, size of tomatoes, and concentration of metals screened. We also found using a principle component analysis (PCA) and correlation matrix that the concentration of Pb in the tomato varieties was significantly related to the As level. Despite As and Cr concentrations being higher in the Derica tomato variety, most consumers preferred it. Derica tomato contained metal contaminants that could be harmful to human health. Therefore, there is need to monitor the production procedures involved prior to supply of the tomato product.
Collapse
Affiliation(s)
- Dilibe Clifford Urama
- Department of Plant Science and Biotechnology, Faculty of Biological Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Chibugo Chinedu Amadi
- Department of Plant Science and Biotechnology, Faculty of Biological Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Chinenye Benita Ozokolie
- Department of Plant Science and Biotechnology, Faculty of Biological Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Felix Atawal Andong
- Department of Zoology and Environmental Biology, Faculty of Biological Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria; AP Leventis Ornithological Research Institute, Faculty of Natural Sciences, University of Jos, Plateau State, Nigeria.
| | - Mayowa Peter Olabode
- Department of Veterinary Public Health and Preventive Medicine, NVRI, Vom, Jos-South, Plateau State, Nigeria
| | - Amaka Victoria Ezerike
- Department of Zoology and Environmental Biology, Faculty of Biological Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Angela Nkechi Amujiri
- Department of Plant Science and Biotechnology, Faculty of Biological Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria.
| |
Collapse
|
31
|
Mondal R, Shanmughan A, Murugeswari A, Shanmugaraju S. Recent advances in fluorescence-based chemosensing of organoarsenic feed additives using luminescence MOFs, COFs, HOFs, and QDs. Chem Commun (Camb) 2023; 59:11456-11468. [PMID: 37674461 DOI: 10.1039/d3cc03125j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Organoarsenics are low-toxicity compounds that are used widely as feed additives to promote livestock growth, enhance meat pigmentation, and fight against intestinal parasites. The organoarsenic compounds are commonly found in poultry waste and the degradation of organoarsenic produces the toxic carcinogen inorganic arsenic such as As(V) and As(III), which results in severe arsenic pollution of soil and groundwater. As a consequence, there exists a high necessity to develop suitable sensing methods for the trace detection and quantification of organoarsenic feed additives in wastewater. Among various detection methods, in particular, fluorescence-based sensing has become a popular and efficient method used extensively for sensing water contaminants and environmental contaminants. In the recent past, a wide variety of fluorescence chemosensors have been designed and employed for the efficient sensing and quantification of the concentration of organoarsenic feed additives in different environmental samples. This review article systematically highlights various fluorescence chemosensors reported to date for fluorescence-based sensing of organoarsenic feed additives. The fluorescence sensors discussed in this review are classified and grouped according to their structures and functions, and in each section, we provide a detailed report on the structure, photophysics, and fluorescence sensing properties of different chemosensors. Lastly, the future perspectives on the design and development of practically useful sensor systems for selective and discriminative sensing of organoarsenic compounds have been stated.
Collapse
Affiliation(s)
- Rajdeep Mondal
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad 678557, Kerala, India.
| | - Ananthu Shanmughan
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad 678557, Kerala, India.
| | - A Murugeswari
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad 678557, Kerala, India.
- Department of Physics, Anna University, Chennai 600025, India.
| | | |
Collapse
|
32
|
Chan KH, Gowidjaja JAP, Urera MQ, Wainwright BJ. Analysis of Toxic Metals Found in Shark Fins Collected from a Global Trade Hub. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:12620-12631. [PMID: 37582282 DOI: 10.1021/acs.est.3c02585] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
As human activities release increasingly more fossil fuel-derived emissions directly into the atmosphere, terrestrial, aquatic, or marine ecosystems, the biomagnification and bioaccumulation of toxic metals in seafood is an ever more pressing concern. As apex predators, sharks are particularly susceptible to biomagnification and bioaccumulation. The consumption of shark fin is frequent throughout Asia, and their ingestion represents a pathway through which human exposure to potentially unsafe levels of toxic metals can occur. Shark fins processed for sale are difficult, if not impossible to identify to the species level by visual methods alone. Here, we DNA-barcoded 208 dried and processed fins and in doing so, identified fourteen species of shark. Using these identifications, we determined the habitat of the shark that the fin came from and the concentrations of four toxic metals (mercury, arsenic, cadmium, and lead) in all 208 samples via inductively coupled plasma mass spectrometry. We further analyzed these concentrations by habitat type, either coastal or pelagic, and show that toxic metal concentrations vary significantly between species and habitat. Pelagic species have significantly higher concentrations of mercury in comparison to coastal species, whereas coastal species have significantly higher concentrations of arsenic. No significant differences in cadmium or lead concentrations were detected between pelagic or coastal species. Our results indicate that a number of analyzed samples contain toxic metal concentrations above safe human consumption levels.
Collapse
Affiliation(s)
- Kiat Hwa Chan
- Yale-NUS College, National University of Singapore, 16 College Avenue West, Singapore 138527, Singapore
- NUS College, National University of Singapore, 18 College Avenue East, Singapore 138593, Singapore
| | | | - Mariana Quesada Urera
- Yale-NUS College, National University of Singapore, 16 College Avenue West, Singapore 138527, Singapore
| | - Benjamin J Wainwright
- Yale-NUS College, National University of Singapore, 16 College Avenue West, Singapore 138527, Singapore
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore 117558, Singapore
| |
Collapse
|
33
|
Wu YH, Lai KH, Chen CC, Lai TM, Huang PW. Effect of Arsenate and p-Phenylenediamine on the Expression of Aquaporins in Cultured Human Urothelial Cells. Cureus 2023; 15:e43606. [PMID: 37719549 PMCID: PMC10504450 DOI: 10.7759/cureus.43606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2023] [Indexed: 09/19/2023] Open
Abstract
BACKGROUND Exposure to arsenic (As) or p‑phenylenediamine (PPD) can lead to dysfunction, or even cancer, in various types of organs, including the urinary bladder, yet the underlying mechanisms remain unclear. Aquaporins (AQPs) are widely expressed small water channel proteins that provide the major route for the transport of water and other small molecules across plasma membranes in diverse cell types. Altered expression of AQPs has been associated with pathologies in all major organs, including the urinary bladder. OBJECTIVE The present in vitro study was performed as a first step towards exploring the possible involvement of AQPs in As- and PPD‑induced bladder diseases. METHODS An immortalized normal human urothelial cell line was employed. Cells were exposed to different concentrations of sodium arsenate (0‑20 μM) or PPD (0‑200 μM) for 48 h. Cell viability was subsequently assessed. The mRNA and protein expression levels of AQPs (specifically, AQP3, 4, 7, 9, and 11) were analyzed using reverse transcription‑quantitative polymerase chain reaction and Western blot analyses, respectively. RESULTS The viability of the cells was decreased in a concentration-dependent manner upon exposure to arsenate. The mRNA and protein expression levels of AQP3, 4, 7, and 9 were substantially reduced, whereas the expression of AQP11 was largely unchanged. As for the experiments with PPD, treatment with increasing concentrations of PPD induced a gradual decrease in cell viability. The mRNA and protein expression levels of AQP3, 4, and 11 were generally unaltered; however, a marked reduction in the expression levels of AQP7 was observed, contrasting with a gradual concentration-dependent decrease in the expression of AQP9. CONCLUSION The importance of the differential expression profiles of the AQPs induced by arsenate and PPD requires further investigation; nevertheless, the findings of the present study suggest that AQPs have a role in As‑ and PPD‑induced bladder diseases.
Collapse
Affiliation(s)
- Yi-Hsiao Wu
- Division of Cardiovascular Surgery, Department of Surgery, Zuoying Branch of Kaohsiung Armed Forces General Hospital, Kaohsiung, TWN
| | - Kuan-Hung Lai
- Division of Plastic Surgery, Department of Surgery, Zuoying Branch of Kaohsiung Armed Forces General Hospital, Kaohsiung, TWN
| | | | - Tung-Mao Lai
- Department of Plastic Surgery, E-Da Hospital, Kaohsiung, TWN
| | - Po-Wei Huang
- Center of General Education, Shu Zen Junior College of Medicine and Management, Kaohsiung, TWN
- Division of Urology, Department of Surgery, Zuoying Branch of Kaohsiung Armed Forces General Hospital, Kaohsiung, TWN
| |
Collapse
|
34
|
Zhao T, Sun D, Long K, Lemos B, Zhang Q, Man J, Zhao M, Zhang Z. N 6-methyladenosine upregulates ribosome biogenesis in environmental carcinogenesis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 881:163428. [PMID: 37061066 DOI: 10.1016/j.scitotenv.2023.163428] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/20/2023] [Accepted: 04/06/2023] [Indexed: 06/01/2023]
Abstract
Many trace metal pollutants in surface water, the atmosphere, and soil are carcinogenic, and ribosome biogenesis plays an important role in the carcinogenicity of heavy metals. However, the contradiction between upregulated ribosome biogenesis and decreased ribosomal DNA copy number in environmental carcinogenesis is not fully understood. Here, from a perspective of the most predominant and abundant RNA epigenetic modification, N6-methyladenosine (m6A), we explored the reason behind this contradiction at the post-transcriptional level using arsenite-induced skin carcinogenesis models both in vitro and in vivo. Based on the m6A microarray assay and a series of experiments, we found for the first time that the elevated m6A in arsenite-induced transformation is mainly enriched in the genes regulating ribosome biogenesis. m6A upregulates ribosome biogenesis post-transcriptionally by stabilizing ribosomal proteins and modulating non-coding RNAs targeting ribosomal RNAs and proteins, leading to arsenite-induced skin carcinogenesis. Using multi-omics analysis of human subjects and experimental validation, we identified an unconventional role of a well-known key proliferative signaling node AKT1 as a vital mediator between m6A and ribosome biogenesis in arsenic carcinogenesis. m6A activates AKT1 and transmits proliferative signals to ribosome biogenesis, exacerbating the upregulation of ribosome biogenesis in arsenite-transformed keratinocytes. Similarly, m6A promotes cell proliferation by upregulating ribosome biogenesis in cell transformation induced by carcinogenic heavy metals (chromium and nickel). Importantly, inhibiting m6A reduces ribosome biogenesis. Targeted inhibition of m6A-upregulated ribosome biogenesis effectively prevents cell transformation induced by trace metals (arsenic, chromium, and nickel). Our results reveal the mechanism of ribosome biogenesis upregulated by m6A in the carcinogenesis of trace metal pollutants. From the perspective of RNA epigenetics, our study improves our understanding of the contradiction between upregulated ribosome biogenesis and decreased ribosomal DNA copy number in the carcinogenesis of environmental carcinogens.
Collapse
Affiliation(s)
- Tianhe Zhao
- Department of Environmental and Occupational Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610000, Sichuan, China
| | - Donglei Sun
- Department of Environmental and Occupational Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610000, Sichuan, China
| | - Keyan Long
- Department of Environmental and Occupational Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610000, Sichuan, China
| | - Bernardo Lemos
- Department of Environmental Health & Molecular and Integrative Physiological Sciences Program, Harvard T.H. Chan School of Public Health, Boston 02108, MA, USA
| | - Qian Zhang
- Department of Environmental and Occupational Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610000, Sichuan, China
| | - Jin Man
- Department of Environmental and Occupational Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610000, Sichuan, China
| | - Manyu Zhao
- Department of Environmental and Occupational Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610000, Sichuan, China
| | - Zunzhen Zhang
- Department of Environmental and Occupational Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610000, Sichuan, China.
| |
Collapse
|
35
|
Ding B, Ma X, Liu Y, Ni B, Lu S, Chen Y, Liu X, Zhang W. Arsenic-Induced, Mitochondria-Mediated Apoptosis Is Associated with Decreased Peroxisome Proliferator-Activated Receptor γ Coactivator α in Rat Brains. TOXICS 2023; 11:576. [PMID: 37505542 PMCID: PMC10384476 DOI: 10.3390/toxics11070576] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/18/2023] [Accepted: 06/23/2023] [Indexed: 07/29/2023]
Abstract
Chronic exposure to arsenic in drinking water damages cognitive function, and nerve cell apoptosis is one of the primary characteristics. The damage to mitochondrial structure and/or function is one of the main characteristics of apoptosis. Peroxisome proliferator-activated receptor γ coactivator α (PGC-1α) is involved in the regulation of mitochondrial biogenesis, energy metabolism, and apoptosis. In this study, we aimed to study the role of PGC-1α in sodium arsenite (NaAsO2)-induced mitochondrial apoptosis in rat hippocampal cells. We discovered that increased arsenic-induced apoptosis in rat hippocampus increased with NaAsO2 (0, 2, 10, and 50 mg/L, orally via drinking water for 12 weeks) exposure by TUNEL assay, and the structure of mitochondria was incomplete and swollen and had increased lysosomes, lipofuscins, and nuclear membrane shrinkage observed via transmission electron microscopy. Furthermore, NaAsO2 reduced the levels of Bcl-2 and PGC-1α and increased the levels of Bax and cytochrome C expression. Moreover, correlation analysis showed that brain arsenic content was negatively correlated with PGC-1α levels and brain ATP content; PGC-1α levels were negatively correlated with apoptosis rate; and brain ATP content was positively correlated with PGC-1α levels, but no significant correlation between ATP content and apoptosis has been observed in this study. Taken together, the results of this study indicate that NaAsO2-induced mitochondrial pathway apoptosis is related to the reduction of PGC-1α, accompanied by ATP depletion.
Collapse
Affiliation(s)
- Bo Ding
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin 150081, China
| | - Xinbo Ma
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin 150081, China
| | - Yang Liu
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin 150081, China
| | - Bangyao Ni
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin 150081, China
| | - Siqi Lu
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin 150081, China
| | - Yuting Chen
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin 150081, China
| | - Xiaona Liu
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin 150081, China
| | - Wei Zhang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin 150081, China
| |
Collapse
|
36
|
Mazarji M, Bayero MT, Minkina T, Sushkova S, Mandzhieva S, Bauer TV, Soldatov A, Sillanpää M, Wong MH. Nanomaterials in biochar: Review of their effectiveness in remediating heavy metal-contaminated soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 880:163330. [PMID: 37023818 DOI: 10.1016/j.scitotenv.2023.163330] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/29/2023] [Accepted: 04/02/2023] [Indexed: 05/27/2023]
Abstract
Biochar can be used for soil remediation in environmentally beneficial manner, especially when combined with nanomaterials. After a decade of research, still, no comprehensive review was conducted on the effectiveness of biochar-based nanocomposites in controlling heavy metal immobilization at soil interfaces. In this paper, the recent progress in immobilizing heavy metals using biochar-based nanocomposite materials were reviewed and compared their efficacy against that of biochar alone. In details, an overview of results on the immobilization of Pb, Cd, Cu, Zn, Cr, and As was presented by different nanocomposites made by various biochars derived from kenaf bar, green tea, residual bark, cornstalk, wheat straw, sawdust, palm fiber, and bagasse. Biochar nanocomposite was found to be most effective when combined with metallic nanoparticles (Fe3O4 and FeS) and carbonaceous nanomaterials (graphene oxide and chitosan). This study also devoted special consideration to different remediation mechanisms by which the nanomaterials affect the effectiveness of the immobilization process. The effects of nanocomposites on soil characteristics related to pollution migration, phytotoxicity, and soil microbial composition were assessed. A future perspective on nanocomposites' use in contaminated soils was presented.
Collapse
Affiliation(s)
- Mahmoud Mazarji
- Southern Federal University, Rostov-on-Don 344006, Russian Federation; State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Muhammad Tukur Bayero
- Department of Soil Science and Plant Nutrition, Faculty of Agriculture, Ondokuz Mayıs University, Samsun 55080, Turkey
| | - Tatiana Minkina
- Southern Federal University, Rostov-on-Don 344006, Russian Federation
| | - Svetlana Sushkova
- Southern Federal University, Rostov-on-Don 344006, Russian Federation
| | | | - Tatiana V Bauer
- Southern Federal University, Rostov-on-Don 344006, Russian Federation
| | | | - Mika Sillanpää
- Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, P. O. Box 17011, Doornfontein 2028, South Africa; Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia; Zhejiang Rongsheng Environmental Protection Paper Co. LTD, NO.588 East Zhennan Road, Pinghu Economic Development Zone, Zhejiang 314213, China; Department of Civil Engineering, University Center for Research & Development, Chandigarh University, Gharuan, Mohali, Punjab, India
| | - Ming Hung Wong
- Southern Federal University, Rostov-on-Don 344006, Russian Federation; Consortium on Health, Environment, Education, and Research (CHEER), Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, Hong Kong, China
| |
Collapse
|
37
|
Sassano M, Seyyedsalehi MS, Siea AC, Boffetta P. Occupational arsenic exposure and genitourinary cancer: systematic review and meta-analysis. Occup Med (Lond) 2023; 73:275-284. [PMID: 37262320 DOI: 10.1093/occmed/kqad066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023] Open
Abstract
BACKGROUND Existing evidence suggests that ingestion of high doses of arsenic through drinking water is associated with an increased risk of genitourinary cancers, while systematic evidence on workers exposed to arsenic is lacking. AIMS The aim of this study is to systematically review the evidence on the association between occupational exposure to arsenic and genitourinary cancer risk and mortality. METHODS A systematic literature search was carried out on Pubmed, Web of Science and Embase by including cohort and case-control studies. Study-specific relative risks (RRs) and the corresponding 95% confidence intervals (CIs) were pooled using Mandel-Paule random-effects model. Contour-enhanced funnel plot and Egger's test were used to assess the occurrence of publication bias. RESULTS A total of 17 studies were included in the meta-analysis, 7 on cancer incidence (n = 161,244 individuals) and 10 on cancer mortality (n = 91,868). Most of them were cohort (71%) and industry-based studies (59%). The meta-analysis failed to detect an increased risk of genitourinary cancers among workers exposed to arsenic, except for a suggestive but not significant positive association for bladder cancer incidence (RR: 1.26, 95% CI: 0.89, 1.80), although this estimate was based on only three studies. No compelling evidence of publication bias was found (P = 0.885). CONCLUSIONS Our findings did not show an association between occupational exposure to arsenic and genitourinary cancers, although further high-quality studies with detailed exposure assessment at the individual level are needed to clarify this relationship.
Collapse
Affiliation(s)
- M Sassano
- Department of Medical and Surgical Sciences, University of Bologna, Bologna 40138, Italy
| | - M S Seyyedsalehi
- Department of Medical and Surgical Sciences, University of Bologna, Bologna 40138, Italy
- Cancer Research Center, Cancer Institute, Tehran University of Medical Sciences, Tehran 5166614711, Iran
| | - A C Siea
- Department of Medical and Surgical Sciences, University of Bologna, Bologna 40138, Italy
| | - P Boffetta
- Department of Medical and Surgical Sciences, University of Bologna, Bologna 40138, Italy
- Stony Brook Cancer Center, Stony Brook University, Stony Brook, New York 11794, USA
| |
Collapse
|
38
|
Li X, Wang F, Feng X, Xiao Q, Zheng Q, Xu J, Ma J, Ji J, Lu S. A nationwide investigation of trace elements in rice and wheat flour in China: Levels, spatial distributions and implications for human exposure. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27753-0. [PMID: 37213009 DOI: 10.1007/s11356-023-27753-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 05/15/2023] [Indexed: 05/23/2023]
Abstract
Rises in trace element contents in rice and wheat flour, which are staple foods for almost all the Chinese population, associated with rapid economic development have raised major concerns. This study aimed to assess trace element concentrations in these foods nationwide in China and associated human exposure risks. For these purposes, nine trace elements were measured in 260 rice samples and 181 wheat flour samples with 17 and 12 widely scattered geographical origins in China, respectively. Mean concentrations (mg kg-1) of the trace elements declined in the following orders: Zn > Cu > Ni > Pb > As > Cr > Cd > Se > Co in rice, and Zn > Cu > Ni > Se > Pb > Cr > Cd > As > Co in wheat flour. Significant regional differences in levels of trace elements in both rice and wheat flour were detected (p < 0.05), which may be related to local economic indicators. The hazard index (HI) of trace elements in rice samples from all origins exceeded 1, mainly due to the contribution of As, suggesting a potential non-carcinogenic risk. The total carcinogenic risk (TCR) for rice and wheat flour of all origins exceeded the safe level.
Collapse
Affiliation(s)
- Xiangyu Li
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Fu Wang
- Longhua District Center for Disease Control and Prevention, Shenzhen, 518054, China
| | - Xiaoling Feng
- School of Public Health, Guangdong Medical University, Dongguan, 523808, China
| | - Qinru Xiao
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Quanzhi Zheng
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Jiayi Xu
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Jiaojiao Ma
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Jiajia Ji
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Shaoyou Lu
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China.
| |
Collapse
|
39
|
Patel B, Gundaliya R, Desai B, Shah M, Shingala J, Kaul D, Kandya A. Groundwater arsenic contamination: impacts on human health and agriculture, ex situ treatment techniques and alleviation. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:1331-1358. [PMID: 35962925 DOI: 10.1007/s10653-022-01334-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
Groundwater is consumed by a large number of people as their primary source of drinking water globally. Among all the countries worldwide, nations in South Asia, particularly India and Bangladesh, have severe problem of groundwater arsenic (As) contamination so are on our primary focus in this study. The objective of this review study is to provide a viewpoint about the source of As, the effect of As on human health and agriculture, and available treatment technologies for the removal of As from water. The source of As can be either natural or anthropogenic and exposure mediums can either be air, drinking water, or food. As-polluted groundwater may lead to a reduction in crop yield and quality as As enters the food chain and disrupts it. Chronic As exposure through drinking water is highly associated with the disruption of many internal systems and organs in the human body including cardiovascular, respiratory, nervous, and endocrine systems, soft organs, and skin. We have critically reviewed a complete spectrum of the available ex situ technologies for As removal including oxidation, coagulation-flocculation, adsorption, ion exchange, and membrane process. Along with that, pros and cons of different techniques have also been scrutinized on the basis of past literatures reported. Among all the conventional techniques, coagulation is the most efficient technique, and considering the advanced and emerging techniques, electrocoagulation is the most prominent option to be adopted. At last, we have proposed some mitigation strategies to be followed with few long and short-term ideas which can be adopted to overcome this epidemic.
Collapse
Affiliation(s)
- Bhavi Patel
- Department of Civil Engineering, School of Technology, Pandit Deendayal Energy University, Gandhinagar, Gujarat, India
| | - Rohan Gundaliya
- Department of Civil Engineering, School of Technology, Pandit Deendayal Energy University, Gandhinagar, Gujarat, India
| | - Bhavya Desai
- Department of Civil Engineering, School of Technology, Pandit Deendayal Energy University, Gandhinagar, Gujarat, India
| | - Manan Shah
- Department of Chemical Engineering School of Technology, Pandit Deendayal Energy University, Gandhinagar, Gujarat, India.
| | - Jainish Shingala
- School of Petroleum Technology, Pandit Deendayal Energy University, Gandhinagar, Gujarat, India
| | - Daya Kaul
- Department of Civil Engineering, School of Technology, Pandit Deendayal Energy University, Gandhinagar, Gujarat, India
| | - Anurag Kandya
- Department of Civil Engineering, School of Technology, Pandit Deendayal Energy University, Gandhinagar, Gujarat, India
| |
Collapse
|
40
|
Aki T, Kukita M, Takata M, Funakoshi T, Unuma K, Uemura K. Induction of filamin-C and its involvement in the regulation of cellular senescence and apoptosis in Huh-7 hepatoma cells during arsenic trioxide exposure. Biochem Biophys Res Commun 2023; 651:92-97. [PMID: 36801614 DOI: 10.1016/j.bbrc.2023.02.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/05/2023] [Accepted: 02/09/2023] [Indexed: 02/11/2023]
Abstract
Arsenic trioxide (ATO) is one of the most toxic inorganic arsenic compounds. In this study, we examined the effects of long-term (7 days) exposure to low dose (5 μM) ATO on a human hepatocellular carcinoma cell line, Huh-7. Along with apoptosis accompanied by secondary necrosis though GSDME cleavage, we observed enlarged and flattened cells adhering to the culture dish and surviving even after exposure to ATO. An increase in cyclin-dependent kinase inhibitor p21 levels as well as positive staining for senescence-associated β-galactosidase activity were observed in ATO-treated cells, indicating cellular senescence. Screening for both ATO-inducible proteins by MALDI-TOF-MS analysis and ATO-inducible genes by DNA microarray analysis showed a marked increase in filamin-C (FLNC), an actin cross-linking protein. Interestingly, the increase in FLNC was observed in both dead and surviving cells, suggesting that the upregulation of FLNC by ATO occurs in both apoptotic and senescent cells. Small interference RNA-mediated knock down of FLNC resulted in not only a reduction of senescence-associated enlarged morphology of the cells, but also an exacerbation of cell death. Taken together, these results suggest a regulatory role of FLNC in the execution of senescence as well as apoptosis during ATO exposure.
Collapse
Affiliation(s)
- Toshihiko Aki
- Department of Forensic Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.
| | - Mitsuki Kukita
- Department of Forensic Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Mao Takata
- Department of Forensic Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takeshi Funakoshi
- Department of Forensic Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kana Unuma
- Department of Forensic Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Koichi Uemura
- Department of Forensic Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
41
|
Wang J, Zheng Y, Li Y, Wang Y. Potential risks, source apportionment, and health risk assessment of dissolved heavy metals in Zhoushan fishing ground, China. MARINE POLLUTION BULLETIN 2023; 189:114751. [PMID: 36967682 DOI: 10.1016/j.marpolbul.2023.114751] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 02/09/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Dissolved heavy metal pollution in the ocean is one of the most severe environmental concerns; however, the potential sources of heavy metals and the resulting health risks are not fully understood. To explore the distribution characteristics, source apportionment, and health risks of dissolved heavy metals (As, Cd, Cu, Hg, Pb, and Zn) in the Zhoushan fishing ground, this study analyzed heavy metals in surface seawater during the wet and dry seasons. The concentrations of heavy metals varied greatly between seasons, and the mean concentration in the wet season was generally higher than that in the dry season. A positive matrix factorization model coupled with correlation analysis was applied to identify promising sources of heavy metals. Four potential sources (agricultural, industrial, traffic, atmospheric deposition, and natural sources) were identified as the determinants of the accumulation of heavy metals. The health risk assessment results revealed that non-carcinogenic risk (NCR) for adults and children were acceptable (HI < 1), and carcinogenic risk (CR) were at a low level (1 × 10-6 < TCR ≤ 1 × 10-4). The source-oriented risk assessment indicated that industrial and traffic sources were the main sources of pollution, contributing 40.7 % of NCR and 27.4 % of CR, respectively. This study proposes forming reasonable, effective policies to control industrial pollution and improve the ecological environment of Zhoushan fishing grounds.
Collapse
Affiliation(s)
- Jing Wang
- Fishery College, Zhejiang Ocean University, Zhoushan 316022, China
| | - Yijia Zheng
- Fishery College, Zhejiang Ocean University, Zhoushan 316022, China
| | - Yi Li
- Fishery College, Zhejiang Ocean University, Zhoushan 316022, China
| | - Yingbin Wang
- Fishery College, Zhejiang Ocean University, Zhoushan 316022, China.
| |
Collapse
|
42
|
Wahyuni TS, Khoiriyah N, Tumewu L, Ekasari W, Fuad A, Widyawaruyanti A. Microscopic and physicochemical evaluation of <em>Ruta angustifolia</em> leaves. J Public Health Afr 2023. [PMID: 37492534 PMCID: PMC10365675 DOI: 10.4081/jphia.2023.2520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
Abstract
Background: There are thousands of species of known medicinal plants in the world. Ruta angustifolia L. has been widely used in traditional medication for jaundice and liver disease. Previous studies have shown that R. angustifolia leaves can inhibit the hepatitis C virus in Huhit culture cells, reduce the value of NS3 protein, and possess a synergistic effect in combination with antiviral drugs. Therefore, this plant is potential to be developed as a drug candidate. Characteristics of plants including microscopic, physicochemical properties, and phytochemical profiles are necessary information to ensure the quality of raw material in drug development.
Objective: This study was carried out to examine the microscopic and physicochemical including the standardized parameter of R. angustifolia leaves to fulfil the quality raw materials as traditional medicine.
Methods: Simplicia of R. angustifolia leaves obtained from Jombang, East Java, were observed under a microscope and determined its physicochemical properties referred to the Materia Medica Indonesia V. The TLC and HPLC profiles of extract were determined as well.
Results: Microscopic analysis were conducted by transfection sections and the presence of epidermis cells, palisade, mesophyll with stomata, and Ca-oxalate crystal were found. The standard parameter obtained value of loss of drying, extractive value in water and ethanol, and ash value. The TLC and HPLC profiles of leaves extract demonstrated to contain with flavonoid, terpenoids, and alkaloids.
Conclusion: Ruta angustifolia obtained from Jombang, east Java, has a specific character in microscopic analysis. The physicochemical properties analysis of R. angustifolia leaves as a raw material met the requirements according to Materia Medica Indonesia V.
Collapse
|
43
|
Patel KS, Pandey PK, Martín-Ramos P, Corns WT, Varol S, Bhattacharya P, Zhu Y. A review on arsenic in the environment: contamination, mobility, sources, and exposure. RSC Adv 2023; 13:8803-8821. [PMID: 36936841 PMCID: PMC10020839 DOI: 10.1039/d3ra00789h] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/09/2023] [Indexed: 03/19/2023] Open
Abstract
Arsenic is one of the regulated hazard materials in the environment and a persistent pollutant creating environmental, agricultural and health issues and posing a serious risk to humans. In the present review, sources and mobility of As in various compartments of the environment (air, water, soil and sediment) around the World are comprehensively investigated, along with measures of health hazards. Multiple atomic spectrometric approaches have been applied for total and speciation analysis of As chemical species. The LoD values are basically under 1 μg L-1, which is sufficient for the analysis of As or its chemical species in environmental samples. Both natural and anthropogenic sources contributed to As in air, while fine particulate matter tends to have higher concentrations of arsenic and results in high concentrations of As up to a maximum of 1660 ng m-3 in urban areas. Sources for As in natural waters (as dissolved or in particulate form) can be attributed to natural deposits, agricultural and industrial effluents, for which the maximum concentration of 2000 μg L-1 was found in groundwater. Sources for As in soil can be the initial contents, fossil fuel burning products, industrial effluents, pesticides, and so on, with a maximum reported concentration up to 4600 mg kg-1. Sources for As in sediments can be attributed to their reservoirs, with a maximum reported concentration up to 2500 mg kg-1. It is notable that some reported concentrations of As in the environment are several times higher than permissible limits. However, many aspects of arsenic environmental chemistry including contamination of the environment, quantification, mobility, removal and health hazards are still unclear.
Collapse
Affiliation(s)
- Khageshwar Singh Patel
- Department of Applied Sciences, Amity University Manth (Kharora), State Highway 9 Raipur-493225 CG India
| | - Piyush Kant Pandey
- Amity University Manth (Kharora), State Highway 9 Raipur-493225 CG India
| | - Pablo Martín-Ramos
- Department of Agricultural and Environmental Sciences, EPS, Instituto de Investigación en Ciencias Ambientales de Aragón (IUCA), University of Zaragoza Carretera de Cuarte, s/n 22071 Huesca Spain
| | - Warren T Corns
- PS Analytical Ltd, Arthur House Unit 11 Cray fields Industrial Estate Orpington Kent BR5 3HP UK
| | - Simge Varol
- Department of Geological Engineering, Faculty of Engineering, Suleyman Demirel University Çünür Isparta-32260 Turkey
| | - Prosun Bhattacharya
- KTH-International Groundwater Arsenic Research Group, Department of Sustainable Development, Environmental Science and Engineering, KTH Royal Institute of Technology Teknikringen 10B SE-100 44 Stockholm Sweden
| | - Yanbei Zhu
- Environmental Standards Research Group, Research Institute for Material and Chemical Measurement, National Metrology Institute of Japan (NMIJ), National Institute of Advanced Industrial Science and Technology (AIST) 1-1-1 Umezono, Tsukuba Ibaraki 305-8563 Japan
| |
Collapse
|
44
|
Zhao T, Sun D, Xiong W, Man J, Zhang Q, Zhao M, Zhang Z. N 6-methyladenosine plays a dual role in arsenic carcinogenesis by temporal-specific control of core target AKT1. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130468. [PMID: 36444808 DOI: 10.1016/j.jhazmat.2022.130468] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/11/2022] [Accepted: 11/23/2022] [Indexed: 06/16/2023]
Abstract
High-profile RNA epigenetic modification N6-methyladenosine (m6A), as a double-edged sword for cancer, can either promote or inhibit arsenic-induced skin carcinogenesis. However, the core m6A-target gene determining the duality of m6A and the regulatory mechanism of m6A on the core gene are still poorly understood. Based on m6A microarray detection, integrated multi-omics analysis, and further experiments in vitro and in vivo, we explored the molecular basis for the dual role of m6A in cancer induced by environmental pollutants using models in different stages of arsenic carcinogenesis, including As-treated, As-transformed, and As-tumorigenic cell models. We found that the key proliferative signaling node AKT1 is in the center of the m6A-regulatory network in arsenic carcinogenicity. The m6A level on AKT1 mRNA (3'UTR, CDS, and 5'UTR) dynamically changed in different stages of arsenic carcinogenesis. The m6A writer METTL3-catalyzed upregulation of m6A promotes AKT1 expression by elevating m6A reader YTHDF1-mediated AKT1 mRNA stability in As-treated and As-transformed cells, while the m6A eraser FTO-catalyzed downregulation of m6A promotes AKT1 expression mainly by inhibiting m6A reader YTHDF2-mediated AKT1 mRNA degradation in As-tumorigenic cells. Furthermore, upregulation of m6A inhibits the expression of AKT1 negative regulator PHLPP2 and promotes the expression of AKT1 positive regulator PDK1. These changes in AKT1 regulators result in AKT1 activation by upregulating AKT1 phosphorylation at S473 and T308. Interestingly, the FTO-catalyzed decrease in m6A prevents AKT upregulation in As-treated cells but promotes AKT upregulation in As-tumorigenic cells. Both inhibitors targeting the m6A writer and eraser can inhibit the AKT1-mediated proliferation of As-tumorigenic cells by breaking the balance of m6A regulators. Our results demonstrated that AKT1 is the core hub determining m6A as a double-edged sword. Changed m6A dynamically upregulates the expression and activity of AKT1 in different stages of arsenic carcinogenesis. This study can advance our understanding of the dual role and precise time-specific mechanism of RNA epigenetics involved in the carcinogenesis of hazardous materials.
Collapse
Affiliation(s)
- Tianhe Zhao
- Department of Environmental and Occupational Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Donglei Sun
- Department of Environmental and Occupational Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Wenxiao Xiong
- Department of Environmental and Occupational Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jin Man
- Department of Environmental and Occupational Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qian Zhang
- Department of Environmental and Occupational Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Manyu Zhao
- Department of Environmental and Occupational Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zunzhen Zhang
- Department of Environmental and Occupational Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
45
|
Nkansah MA, Korankye M, Darko G, Dodd M, Opoku F. Potential health risk and bio-accessibility of metal and minerals in saltpetre (a food additive). Heliyon 2023; 9:e13174. [PMID: 36873498 PMCID: PMC9976209 DOI: 10.1016/j.heliyon.2023.e13174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
Food additives are used to enhance freshness, safety, appearance, flavour, and texture of food. Depending on the absorbed dose, exposure method, and length of exposure, heavy metals in diet may have a negative impact on human health. The X-Ray Fluorescence (XRF) Analyzer from Niton Thermo Scientific (Mobile Test S, NDTr-XL3t-86956, com 24) was used in this work to measure the heavy metal content in saltpetre, a food additive that mostly contains potassium nitrate. The average essential metal concentrations in the samples were determined to be 27044.27 ± 10905.18 mg kg-1, 24521.10 ± 6564.28 mg kg-1, 2418.33 ± 461.50 mg kg-1, and 4.615 ± 3.59 mg kg-1 for Ca, K, Fe and Zn respectively. Toxic metals (As, Pb) were present in the saltpetre samples at 4.13 ± 2.47 mg kg-1 and 2.11 ± 1.87 mg kg-1 average concentrations. No traces of mercury or cadmium were detected. Studies on exposure, health risks, and bio-accessibility identified arsenic as a significant risk factor for potential illnesses. The need to monitor heavy metal content of saltpetre and any potential health effects on consumers is brought to light by this study.
Collapse
Affiliation(s)
| | - Mavis Korankye
- Department of Chemistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Godfred Darko
- Department of Chemistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Matt Dodd
- School of Environment and Sustainability, Royal Roads University, Victoria, Canada
| | - Francis Opoku
- Department of Chemistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| |
Collapse
|
46
|
Dye CK, Domingo-Relloso A, Kupsco A, Tinkelman NE, Spratlen MJ, Bozack AK, Tellez-Plaza M, Goessler W, Haack K, Umans JG, Baccarelli AA, Cole SA, Navas-Acien A. Maternal DNA methylation signatures of arsenic exposure is associated with adult offspring insulin resistance in the Strong Heart Study. ENVIRONMENT INTERNATIONAL 2023; 173:107774. [PMID: 36805808 PMCID: PMC10166110 DOI: 10.1016/j.envint.2023.107774] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 12/16/2022] [Accepted: 01/20/2023] [Indexed: 05/10/2023]
Abstract
Exposure to low to moderate arsenic (As) levels has been associated with type 2 diabetes (T2D) and other chronic diseases in American Indian communities. Prenatal exposure to As may also increase the risk for T2D in adulthood, and maternal As has been associated with adult offspring metabolic health measurements. We hypothesized that T2D-related outcomes in adult offspring born to women exposed to low to moderate As can be evaluated utilizing a maternally-derived molecular biosignature of As exposure. Herein, we evaluated the association of maternal DNA methylation with incident T2D and insulin resistance (Homeostatic model assessment of insulin resistance [HOMA2-IR]) in adult offspring. For DNA methylation, we used 20 differentially methylated cytosine-guanine dinucleotides (CpG) previously associated with the sum of inorganic and methylated As species (ΣAs) in urine in the Strong Heart Study (SHS). Of these 20 CpGs, we found six CpGs nominally associated (p < 0.05) with HOMA2-IR in a fully adjusted model that included clinically relevant covariates and offspring adiposity measurements; a similar model that adjusted instead for maternal adiposity measurements found three CpGs nominally associated with HOMA2-IR, two of which overlapped the offspring adiposity model. After adjusting for multiple comparisons, cg03036214 remained associated with HOMA2-IR (q < 0.10) in the offspring adiposity model. The odds ratio of incident T2D increased with an increase in maternal DNA methylation at one HOMA2-IR associated CpG in the model adjusting for offspring adiposity, cg12116137, whereas adjusting for maternal adiposity had a minimal effect on the association. Our data suggests offspring adiposity, rather than maternal adiposity, potentially influences the effects of maternal DNAm signatures on offspring metabolic health parameters. Here, we have presented evidence supporting a role for epigenetic biosignatures of maternal As exposure as a potential biomarker for evaluating risk of T2D-related outcomes in offspring later in life.
Collapse
Affiliation(s)
- Christian K Dye
- Department of Environmental Health Sciences, Columbia University, New York, New York, USA.
| | - Arce Domingo-Relloso
- Department of Environmental Health Sciences, Columbia University, New York, New York, USA; Department of Chronic Diseases Epidemiology, National Center for Epidemiology, Carlos III Health Institutes, Madrid, Spain
| | - Allison Kupsco
- Department of Environmental Health Sciences, Columbia University, New York, New York, USA
| | - Naomi E Tinkelman
- Department of Environmental Health Sciences, Columbia University, New York, New York, USA
| | - Miranda J Spratlen
- Department of Environmental Health Sciences, Columbia University, New York, New York, USA
| | - Anne K Bozack
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Maria Tellez-Plaza
- Department of Chronic Diseases Epidemiology, National Center for Epidemiology, Carlos III Health Institutes, Madrid, Spain
| | | | - Karin Haack
- Population Health Program, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Jason G Umans
- MedStar Health Research Institute, Washington, DC, USA; Center for Clinical and Translational Sciences, Georgetown-Howard Universities, Washington, DC, USA
| | - Andrea A Baccarelli
- Department of Environmental Health Sciences, Columbia University, New York, New York, USA
| | - Shelley A Cole
- Population Health Program, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Ana Navas-Acien
- Department of Environmental Health Sciences, Columbia University, New York, New York, USA
| |
Collapse
|
47
|
Shiek SS, Sajai ST, Dsouza HS. Arsenic-induced toxicity and the ameliorative role of antioxidants and natural compounds. J Biochem Mol Toxicol 2023; 37:e23281. [PMID: 36550698 DOI: 10.1002/jbt.23281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 11/04/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022]
Abstract
Arsenic (As) poisoning has proven to be a major threat worldwide because of its toxic effects on the human body. As toxicity through drinking water is a global health concern. The toxicity of As is known to affect the liver, kidney, lungs, muscles, cardiovascular system, and nervous system and can even induce diabetes. Further As can cause skin lesions leading to notable diseases in the skin like Bowen's disease. Chronic exposure to As has caused many tragedies in Eastern, and several Southeast Asian and Latin American countries. Long-term exposure to As makes it an immediate threat that should be dealt with as a priority, and one of the ways to handle it may be with the use of antioxidants. In this review, we have discussed the natural and anthropogenic sources of As, its metabolism, pathophysiology, and mechanism of toxicity. Besides, we have also discussed some of the synthetic chelators and the ameliorative role of antioxidants and natural compounds in reducing As toxicity.
Collapse
Affiliation(s)
- Sadiya S Shiek
- Department of Biology, College of Science, United Arab Emirates University, United Arab Emirates
| | - Sanai T Sajai
- Manipal School of Life Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
| | - Herman S Dsouza
- Department of Radiation Biology and Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
| |
Collapse
|
48
|
Speer RM, Nandi SP, Cooper KL, Zhou X, Yu H, Guo Y, Hudson LG, Alexandrov LB, Liu KJ. Arsenic is a potent co-mutagen of ultraviolet light. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.22.529578. [PMID: 36865271 PMCID: PMC9980120 DOI: 10.1101/2023.02.22.529578] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Environmental co-exposures are widespread and are major contributors to carcinogenic mechanisms. Two well-established environmental agents causing skin cancer are ultraviolet radiation (UVR) and arsenic. Arsenic is a known co-carcinogen that enhances UVR's carcinogenicity. However, the mechanisms of arsenic co-carcinogenesis are not well understood. In this study, we utilized primary human keratinocytes and a hairless mouse model to investigate the carcinogenic and mutagenic properties of co-exposure to arsenic and UVR. In vitro and in vivo exposures revealed that, on its own, arsenic is neither mutagenic nor carcinogenic. However, in combination with UVR, arsenic exposure has a synergistic effect leading to an accelerated mouse skin carcinogenesis as well as to more than 2-fold enrichment of UVR mutational burden. Notably, mutational signature ID13, previously found only in UVR-associated human skin cancers, was observed exclusively in mouse skin tumors and cell lines jointly exposed to arsenic and UVR. This signature was not observed in any model system exposed purely to arsenic or purely to UVR, making ID13 the first co-exposure signature to be reported using controlled experimental conditions. Analysis of existing genomics data from basal cell carcinomas and melanomas revealed that only a subset of human skin cancers harbor ID13 and, consistent with our experimental observations, these cancers exhibited an elevated UVR mutagenesis. Our results provide the first report of a unique mutational signature caused by a co-exposure to two environmental carcinogens and the first comprehensive evidence that arsenic is a potent co-mutagen and co-carcinogen of UVR. Importantly, our findings suggest that a large proportion of human skin cancers are not formed purely due to UVR exposure but rather due to a co-exposure of UVR and other co-mutagens such as arsenic.
Collapse
Affiliation(s)
- Rachel M. Speer
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM 87106, USA
| | - Shuvro P. Nandi
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA, 92093, USA
- Moores Cancer Center, UC San Diego, La Jolla, CA, 92037, USA
| | - Karen L. Cooper
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM 87106, USA
| | - Xixi Zhou
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM 87106, USA
| | - Hui Yu
- Department of Internal Medicine, Division of Molecular Medicine, University of New Mexico, Albuquerque, NM 87106, USA
| | - Yan Guo
- Department of Internal Medicine, Division of Molecular Medicine, University of New Mexico, Albuquerque, NM 87106, USA
| | - Laurie G. Hudson
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM 87106, USA
| | - Ludmil B. Alexandrov
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA, 92093, USA
- Moores Cancer Center, UC San Diego, La Jolla, CA, 92037, USA
- Department of Bioengineering, UC San Diego, La Jolla, CA, 92093, USA
| | - Ke Jian Liu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM 87106, USA
- Stony Brook Cancer Center, Stony Brook University, Stony Brook NY 11794, USA
- Department of Pathology, Stony Brook University School of Medicine, Stony Brook, NY 11794, USA
| |
Collapse
|
49
|
Inorganic arsenic alters the development of dopaminergic neurons but not serotonergic neurons and induces motor neuron development via Sonic hedgehog pathway in zebrafish. Neurosci Lett 2023; 795:137042. [PMID: 36587726 DOI: 10.1016/j.neulet.2022.137042] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/15/2022] [Accepted: 12/27/2022] [Indexed: 12/30/2022]
Abstract
The mechanism of inorganic arsenic-induced neurotoxicity at the cellular level is not known. In zebrafish, teratological effects of inorganic arsenic have been shown at various concentrations. Here, we used similar concentrations of inorganic arsenic to evaluate the effects on specific neuron types. Exposure of zebrafish embryos at 5 h post fertilization (hpf) to sodium arsenite induced developmental toxicity (reduced body length) in 72 hpf larvae, beginning at a concentration of 300 mg/L concentration. Mortality or overt morphological deformity was detected at 500 mg/L sodium arsenite. While 200 mg/L sodium arsenite induced development of tyrosine hydroxylase-positive (dopaminergic) neurons, there was no significant effect on the development of 5-hydroxytryptamine (serotonergic) neurons. Sodium arsenite reduced acetylcholinesterase activity. In the hb9-GFP transgenic larvae, both 200 and 400 mg/L sodium arsenite produced supernumerary motor neurons in the spinal cord. Inhibition of the Sonic hedgehog (Shh) pathway that is essential for motor neuron development, by Gant61, prevented sodium arsenite-induced supernumerary motor neuron development. Inductively coupled plasma mass spectrometry (ICP-MS) revealed that with 200 mg/L and 400 mg/L sodium arsenite treatment, each larva had an average of 387.8 pg and 847.5 pg arsenic, respectively. The data show for the first time that inorganic arsenic alters the development of dopaminergic and motor neurons in the zebrafish larvae and the latter occurs through the Shh pathway. These results may help understand why arsenic-exposed populations suffer from psychiatric disorders and motor neuron disease and Shh may, potentially, serve as a plasma biomarker of arsenic toxicity.
Collapse
|
50
|
Mahlknecht J, Aguilar-Barajas I, Farias P, Knappett PSK, Torres-Martínez JA, Hoogesteger J, Lara RH, Ramírez-Mendoza RA, Mora A. Hydrochemical controls on arsenic contamination and its health risks in the Comarca Lagunera region (Mexico): Implications of the scientific evidence for public health policy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159347. [PMID: 36228788 DOI: 10.1016/j.scitotenv.2022.159347] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/30/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
Nearly half of the world's urban population depends on aquifers for drinking water. These are increasingly vulnerable to pollution and overexploitation. Besides anthropogenic sources, pollutants such as arsenic (As) are also geogenic and their concentrations have, in some cases, been increased by groundwater pumping. Almost 40 % of Mexico's population relies on groundwater for drinking water purposes; much the aquifers in semi-arid and arid central and northern Mexico is contaminated by As. These are agricultural regions where irrigation water is primarily provided from intenstive pumping of the aquifers leading to long-standing declines in the water table. The focus of this study is the main aquifer within the Comarca Lagunera region in Northern Mexico. Although the scientific evidence demonstrates that health effects are associated with long-term exposure to elevated As concentrations, this knowledge has not yielded effective groundwater development and public health policy. A multidisciplinary approach - including the evaluation of geochemistry, human health risk and development and public health policy - was used to provide a current account of these links. The dissolved As concentrations measured exceeded the corresponding World Health Organization guideline for drinking water in 90 % of the sampled wells; for the population drinking this water, the estimated probability of presenting non-carcinogenic health effects was >90 %, and the lifetime risk of developing cancer ranged from 0.5 to 61 cases in 10,000 children and 0.2 to 33 cases in 10,000 adults. The results suggest that insufficient policy responses are due to a complex and dysfunctional groundwater governance framework that compromises the economic, social and environmental sustainability of this region. These findings may valuable to other regions with similar settings that need to design and enact better informed, science-based policies that recognize the value of a more sustainable use of groundwater resources and a healthier population.
Collapse
Affiliation(s)
- Jürgen Mahlknecht
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterrey, Eugenio Garza Sada 2501, Monterrey 64849, Mexico
| | - Ismael Aguilar-Barajas
- Departamento de Economía, Escuela de Ciencias Sociales y Gobierno, Tecnologico de Monterrey, Campus Monterrey, Monterrey 64849, Mexico
| | - Paulina Farias
- Instituto Nacional de Salud Pública, Universidad No. 655, Colonia Santa María Ahuacatitlán, Cuernavaca 62100, Mexico
| | - Peter S K Knappett
- Department of Geology & Geophysics, Texas A&M University, College Station 77843, USA
| | - Juan Antonio Torres-Martínez
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterrey, Eugenio Garza Sada 2501, Monterrey 64849, Mexico
| | - Jaime Hoogesteger
- Water Resources Management Group, Wageningen University & Research, Droevendaalsesteeg 3a, 6708 PB Wageningen, the Netherlands
| | - René H Lara
- Facultad de Ciencias Químicas, Departamento de Ciencia de Materiales, Universidad Juárez del Estado de Durango (UJED), Av. Veterinaria S/N, Circuito Universitario, Col. Valle del Sur, 34120 Durango, DGO, Mexico
| | - Ricardo A Ramírez-Mendoza
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterrey, Eugenio Garza Sada 2501, Monterrey 64849, Mexico
| | - Abrahan Mora
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Puebla, Atlixcáyotl 5718, Puebla de Zaragoza 72453, Mexico.
| |
Collapse
|