1
|
Chen L, Mei W, Song J, Chen K, Ni W, Wang L, Li Z, Ge X, Su L, Jiang C, Liu B, Dai C. CD163 protein inhibits lipopolysaccharide-induced macrophage transformation from M2 to M1 involved in disruption of the TWEAK-Fn14 interaction. Heliyon 2024; 10:e23223. [PMID: 38148798 PMCID: PMC10750081 DOI: 10.1016/j.heliyon.2023.e23223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 11/21/2023] [Accepted: 11/29/2023] [Indexed: 12/28/2023] Open
Abstract
Macrophages play a crucial role in regulating inflammation and innate immune responses, and their polarization into distinct phenotypes, such as M1 and M2, is involved in various diseases. However, the specific role of CD163, a scavenger receptor expressed by macrophages, in the transformation of M2 to M1 macrophages remains unclear. Here, dexamethasone-induced M2 macrophages were treated with lipopolysaccharide (LPS) to induce the transformation of M2 to M1 macrophages. We found that treatment with lipopolysaccharide (LPS) induced the transformation of M2-like macrophages to an M1-like phenotype, as evidenced by increased mRNA levels of Il1b and Tnf, decreased mRNA levels of Cd206 and Il10, and increased TNF-α secretion. Knockdown of CD163 enhanced the phenotypic features of M1 macrophages, while treatment with recombinant CD163 protein (rmCD163) inhibited the LPS-induced M2-to-M1 transformation. Furthermore, LPS stimulation resulted in the activation of P38, ERK, JNK, and NF-κB P65 signaling pathways, and this activation was increased after CD163 knockdown and suppressed after rmCD163 treatment during macrophage transformation. Additionally, we observed that LPS treatment reduced the expression of CD163 in dexamethasone-induced M2 macrophages, leading to a decrease in the CD163-TWEAK complex and an increase in the interaction between TWEAK and Fn14. Overall, our findings suggest that rmCD163 can inhibit the LPS-induced transformation of M2 macrophages to M1 by disrupting the TWEAK-Fn14 interaction and modulating the MAPK-NF-κB pathway.
Collapse
Affiliation(s)
- Linjian Chen
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Jinshan Road 2999, Xiamen, 361015, China
| | - Wanchun Mei
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Jinshan Road 2999, Xiamen, 361015, China
| | - Juan Song
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Jinshan Road 2999, Xiamen, 361015, China
| | - Kuncheng Chen
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Jinshan Road 2999, Xiamen, 361015, China
| | - Wei Ni
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Jinshan Road 2999, Xiamen, 361015, China
| | - Lin Wang
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Jinshan Road 2999, Xiamen, 361015, China
| | - Zhaokai Li
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Jinshan Road 2999, Xiamen, 361015, China
| | - Xiaofeng Ge
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Jinshan Road 2999, Xiamen, 361015, China
| | - Liuhang Su
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Jinshan Road 2999, Xiamen, 361015, China
| | - Chenlu Jiang
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Jinshan Road 2999, Xiamen, 361015, China
| | - Binbin Liu
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Jinshan Road 2999, Xiamen, 361015, China
| | - Cuilian Dai
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Jinshan Road 2999, Xiamen, 361015, China
| |
Collapse
|
2
|
Bridges SL, Sun D, Graham ZA, McAdam JS, Mayo ED, Bamman MM. Muscle Inflammation Susceptibility: A Potential Phenotype for Guiding Precision Rehabilitation After Total Hip Arthroplasty in End-Stage Osteoarthritis. HSS J 2023; 19:453-458. [PMID: 37937084 PMCID: PMC10626939 DOI: 10.1177/15563316231190402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 11/09/2023]
Abstract
The progression of osteoarthritis of the hip to its end stage and ultimately to total hip arthroplasty (THA) is complex; the multifactorial pathophysiology involves myriad collaborating tissues in and around the diseased joint. We have named the heightened state of periarticular muscle inflammation at the time of surgery "muscle inflammation susceptibility" (MuIS) because it is distinct from systemic inflammation. In this review article, we discuss how MuIS and heightened atrophy-associated signaling in the periarticular skeletal muscles may contribute to reduced muscle mass, impaired muscle quality (ie, through fibrosis), and a muscle microenvironment that challenges regenerative capacity and thus functional recovery from THA. We also review directions for future research that should advance understanding of the key determinants of precision for optimized success of THA for each individual.
Collapse
Affiliation(s)
- S Louis Bridges
- Division of Rheumatology, Department of Medicine, Hospital for Special Surgery, New York, NY, USA
| | - Dongmei Sun
- Division of Rheumatology, Department of Medicine, Hospital for Special Surgery, New York, NY, USA
| | - Zachary A Graham
- Healthspan, Resilience, and Performance Research, Florida Institute for Human & Machine Cognition (IHMC), Pensacola, FL, USA
- Birmingham Veterans' Affairs Health Care System, Birmingham, AL, USA
| | - Jeremy S McAdam
- Healthspan, Resilience, and Performance Research, Florida Institute for Human & Machine Cognition (IHMC), Pensacola, FL, USA
| | - Elijah D Mayo
- Healthspan, Resilience, and Performance Research, Florida Institute for Human & Machine Cognition (IHMC), Pensacola, FL, USA
| | - Marcas M Bamman
- Healthspan, Resilience, and Performance Research, Florida Institute for Human & Machine Cognition (IHMC), Pensacola, FL, USA
| |
Collapse
|
3
|
Roy A, Narkar VA, Kumar A. Emerging role of TAK1 in the regulation of skeletal muscle mass. Bioessays 2023; 45:e2300003. [PMID: 36789559 PMCID: PMC10023406 DOI: 10.1002/bies.202300003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/02/2023] [Accepted: 02/02/2023] [Indexed: 02/16/2023]
Abstract
Maintenance of skeletal muscle mass and strength throughout life is crucial for heathy living and longevity. Several signaling pathways have been implicated in the regulation of skeletal muscle mass in adults. TGF-β-activated kinase 1 (TAK1) is a key protein, which coordinates the activation of multiple signaling pathways. Recently, it was discovered that TAK1 is essential for the maintenance of skeletal muscle mass and myofiber hypertrophy following mechanical overload. Forced activation of TAK1 in skeletal muscle causes hypertrophy and attenuates denervation-induced muscle atrophy. TAK1-mediated signaling in skeletal muscle promotes protein synthesis, redox homeostasis, mitochondrial health, and integrity of neuromuscular junctions. In this article, we have reviewed the role and potential mechanisms through which TAK1 regulates skeletal muscle mass and growth. We have also proposed future areas of research that could be instrumental in exploring TAK1 as therapeutic target for improving muscle mass in various catabolic conditions and diseases.
Collapse
Affiliation(s)
- Anirban Roy
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston College of Pharmacy, Houston, TX 77204, USA
| | - Vihang A. Narkar
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center, Houston, Texas, USA
| | - Ashok Kumar
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston College of Pharmacy, Houston, TX 77204, USA
| |
Collapse
|
4
|
Zaitseva O, Hoffmann A, Otto C, Wajant H. Targeting fibroblast growth factor (FGF)-inducible 14 (Fn14) for tumor therapy. Front Pharmacol 2022; 13:935086. [PMID: 36339601 PMCID: PMC9634131 DOI: 10.3389/fphar.2022.935086] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 10/10/2022] [Indexed: 11/25/2022] Open
Abstract
Fibroblast growth factor-inducible 14 (Fn14) is a member of the tumor necrosis factor (TNF) receptor superfamily (TNFRSF) and is activated by its ligand TNF-like weak inducer of apoptosis (TWEAK). The latter occurs as a homotrimeric molecule in a soluble and a membrane-bound form. Soluble TWEAK (sTWEAK) activates the weakly inflammatory alternative NF-κB pathway and sensitizes for TNF-induced cell death while membrane TWEAK (memTWEAK) triggers additionally robust activation of the classical NF-κB pathway and various MAP kinase cascades. Fn14 expression is limited in adult organisms but becomes strongly induced in non-hematopoietic cells by a variety of growth factors, cytokines and physical stressors (e.g., hypoxia, irradiation). Since all these Fn14-inducing factors are frequently also present in the tumor microenvironment, Fn14 is regularly found to be expressed by non-hematopoietic cells of the tumor microenvironment and most solid tumor cells. In general, there are three possibilities how the tumor-Fn14 linkage could be taken into consideration for tumor therapy. First, by exploitation of the cancer associated expression of Fn14 to direct cytotoxic activities (antibody-dependent cell-mediated cytotoxicity (ADCC), cytotoxic payloads, CAR T-cells) to the tumor, second by blockade of potential protumoral activities of the TWEAK/Fn14 system, and third, by stimulation of Fn14 which not only triggers proinflammtory activities but also sensitizes cells for apoptotic and necroptotic cell death. Based on a brief description of the biology of the TWEAK/Fn14 system and Fn14 signaling, we discuss the features of the most relevant Fn14-targeting biologicals and review the preclinical data obtained with these reagents. In particular, we address problems and limitations which became evident in the preclinical studies with Fn14-targeting biologicals and debate possibilities how they could be overcome.
Collapse
Affiliation(s)
- Olena Zaitseva
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Annett Hoffmann
- Department of General, Visceral, Transplantation,Vascular and Pediatric Surgery, University Hospital Würzburg, Würzburg, Germany
| | - Christoph Otto
- Department of General, Visceral, Transplantation,Vascular and Pediatric Surgery, University Hospital Würzburg, Würzburg, Germany
| | - Harald Wajant
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
- *Correspondence: Harald Wajant,
| |
Collapse
|
5
|
Need for a Paradigm Shift in the Treatment of Ischemic Stroke: The Blood-Brain Barrier. Int J Mol Sci 2022; 23:ijms23169486. [PMID: 36012745 PMCID: PMC9409167 DOI: 10.3390/ijms23169486] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/04/2022] [Accepted: 08/18/2022] [Indexed: 11/17/2022] Open
Abstract
Blood-brain barrier (BBB) integrity is essential to maintaining brain health. Aging-related alterations could lead to chronic progressive leakiness of the BBB, which is directly correlated with cerebrovascular diseases. Indeed, the BBB breakdown during acute ischemic stroke is critical. It remains unclear, however, whether BBB dysfunction is one of the first events that leads to brain disease or a down-stream consequence. This review will focus on the BBB dysfunction associated with cerebrovascular disease. An added difficulty is its association with the deleterious or reparative effect, which depends on the stroke phase. We will first outline the BBB structure and function. Then, we will focus on the spatiotemporal chronic, slow, and progressive BBB alteration related to ischemic stroke. Finally, we will propose a new perspective on preventive therapeutic strategies associated with brain aging based on targeting specific components of the BBB. Understanding BBB age-evolutions will be beneficial for new drug development and the identification of the best performance window times. This could have a direct impact on clinical translation and personalised medicine.
Collapse
|
6
|
El-Esawy FM, Ahmed IA, El-Fallah AA, Salem RM. Methotrexate Mechanism of Action in Plaque Psoriasis: Something New in the Old View. THE JOURNAL OF CLINICAL AND AESTHETIC DERMATOLOGY 2022; 15:42-46. [PMID: 36061481 PMCID: PMC9436225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
BACKGROUND Despite the era of biologic therapy in the management of psoriasis, methotrexate, the traditional backbone of psoriasis treatment, does not stop surprising us with what it can offer. OBJECTIVE In this study, we aimed to evaluate the peripheral expression and the serum levels of TWEAK in patients with psoriasis vulgaris before and after receiving methotrexate treatment. METHODS The study included 58 patients with moderate to severe psoriasis vulgaris, and 90 apparently healthy individuals as a control group. Before starting the treatment course, all patients were evaluated clinically using Psoriasis Area Severity Index (PASI) score and were subjected to TWEAK serum levels and peripheral expression measurement using ELISA and qRT-PCR techniques, respectively. After 12 weeks of treatment with methotrexate (intramuscular methotrexate; up to 30mg per week) the patients were re-evaluated both clinically and in the laboratory. RESULTS The baseline serum TWEAK levels and its peripheral mRNA expression in the patients group were significantly lower than those in the control group. After 12 weeks of treatment with methotrexate, the PASI scores were reduced significantly while the serum TWEAK levels and its peripheral expression were significantly elevated. CONCLUSION Enhancing TWEAK expression and elevating its serum levels in psoriasis patients seems to be a newly observed mechanism of action of methotrexate.
Collapse
Affiliation(s)
- Fatma Mohamed El-Esawy
- Drs. Salem and El-Esawy are with the Dermatology Department and Faculty of Medicine at Benha University, in Banha, Egypt
| | - Inas A. Ahmed
- Dr. Ahmed is with Medical Biochemistry and Molecular Biology, Faculty of Medicine at Benha University in Banha, Egypt
| | - Asmaa Adel El-Fallah
- Dr. El-Fallah is Assistant Professor of Clinical and Chemical Pathology with the Faculty of Medicine at Benha University in Banha, Egypt
| | - Rehab Mohammed Salem
- Drs. Salem and El-Esawy are with the Dermatology Department and Faculty of Medicine at Benha University, in Banha, Egypt
| |
Collapse
|
7
|
Machuka EM, Juma J, Muigai AWT, Amimo JO, Pelle R, Abworo EO. Transcriptome profile of spleen tissues from locally-adapted Kenyan pigs (Sus scrofa) experimentally infected with three varying doses of a highly virulent African swine fever virus genotype IX isolate: Ken12/busia.1 (ken-1033). BMC Genomics 2022; 23:522. [PMID: 35854219 PMCID: PMC9294756 DOI: 10.1186/s12864-022-08754-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 07/08/2022] [Indexed: 11/10/2022] Open
Abstract
Background African swine fever (ASF) is a lethal hemorrhagic disease affecting domestic pigs resulting in up to 100% mortality rates caused by the ASF virus (ASFV). The locally-adapted pigs in South-western Kenya have been reported to be resilient to disease and harsh climatic conditions and tolerate ASF; however, the mechanisms by which this tolerance is sustained remain largely unknown. We evaluated the gene expression patterns in spleen tissues of these locally-adapted pigs in response to varying infective doses of ASFV to elucidate the virus-host interaction dynamics. Methods Locally adapted pigs (n = 14) were experimentally infected with a high dose (1x106HAD50), medium dose (1x104HAD50), and low dose (1x102HAD50) of the highly virulent genotype IX ASFV Ken12/busia.1 (Ken-1033) isolate diluted in PBS and followed through the course of infection for 29 days. The in vivo pig host and ASFV pathogen gene expression in spleen tissues from 10 pigs (including three from each infective group and one uninfected control) were analyzed in a dual-RNASeq fashion. We compared gene expression between three varying doses in the host and pathogen by contrasting experiment groups against the naïve control. Results A total of 4954 differentially expressed genes (DEGs) were detected after ASFV Ken12/1 infection, including 3055, 1771, and 128 DEGs in the high, medium, and low doses, respectively. Gene ontology and KEGG pathway analysis showed that the DEGs were enriched for genes involved in the innate immune response, inflammatory response, autophagy, and apoptosis in lethal dose groups. The surviving low dose group suppressed genes in pathways of physiopathological importance. We found a strong association between severe ASF pathogenesis in the high and medium dose groups with upregulation of proinflammatory cytokines and immunomodulation of cytokine expression possibly induced by overproduction of prostaglandin E synthase (4-fold; p < 0.05) or through downregulation of expression of M1-activating receptors, signal transductors, and transcription factors. The host-pathogen interaction resulted in induction of expression of immune-suppressive cytokines (IL-27), inactivation of autophagy and apoptosis through up-regulation of NUPR1 [5.7-fold (high dose) and 5.1-fold (medium dose) [p < 0.05] and IL7R expression. We detected repression of genes involved in MHC class II antigen processing and presentation, such as cathepsins, SLA-DQB1, SLA-DOB, SLA-DMB, SLA-DRA, and SLA-DQA in the medium and high dose groups. Additionally, the host-pathogen interaction activated the CD8+ cytotoxicity and neutrophil machinery by increasing the expression of neutrophils/CD8+ T effector cell-recruiting chemokines (CCL2, CXCL2, CXCL10, CCL23, CCL4, CXCL8, and CXCL13) in the lethal high and medium dose groups. The recovered pigs infected with ASFV at a low dose significantly repressed the expression of CXCL10, averting induction of T lymphocyte apoptosis and FUNDC1 that suppressed neutrophilia. Conclusions We provide the first in vivo gene expression profile data from locally-adapted pigs from south-western Kenya following experimental infection with a highly virulent ASFV genotype IX isolate at varying doses that mimic acute and mild disease. Our study showed that the locally-adapted pigs induced the expression of genes associated with tolerance to infection and repression of genes involved in inflammation at varying levels depending upon the ASFV dose administered. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08754-8.
Collapse
Affiliation(s)
- Eunice Magoma Machuka
- Animal and Human Health Program, International Livestock Research Institute (ILRI), P.O. Box 30709-00100, Nairobi, Kenya. .,Pan African University Institute for Basic Sciences Technology and Innovation (PAUSTI), P.O Box 62000-00200, Nairobi, Kenya.
| | - John Juma
- Animal and Human Health Program, International Livestock Research Institute (ILRI), P.O. Box 30709-00100, Nairobi, Kenya
| | | | - Joshua Oluoch Amimo
- Center for Food Animal Health, Department of Animal Sciences, The Ohio State University, 1680 Madison Avenue, Wooster, OH, 44691, USA
| | - Roger Pelle
- Biosciences eastern and central Africa, International Livestock Research Institute (BecA-ILRI) Hub, P.O. Box 30709-00100, Nairobi, Kenya.
| | - Edward Okoth Abworo
- Animal and Human Health Program, International Livestock Research Institute (ILRI), P.O. Box 30709-00100, Nairobi, Kenya
| |
Collapse
|
8
|
Aubin RG, Troisi EC, Montelongo J, Alghalith AN, Nasrallah MP, Santi M, Camara PG. Pro-inflammatory cytokines mediate the epithelial-to-mesenchymal-like transition of pediatric posterior fossa ependymoma. Nat Commun 2022; 13:3936. [PMID: 35803925 PMCID: PMC9270322 DOI: 10.1038/s41467-022-31683-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 06/28/2022] [Indexed: 12/13/2022] Open
Abstract
Pediatric ependymoma is a devastating brain cancer marked by its relapsing pattern and lack of effective chemotherapies. This shortage of treatments is due to limited knowledge about ependymoma tumorigenic mechanisms. By means of single-nucleus chromatin accessibility and gene expression profiling of posterior fossa primary tumors and distal metastases, we reveal key transcription factors and enhancers associated with the differentiation of ependymoma tumor cells into tumor-derived cell lineages and their transition into a mesenchymal-like state. We identify NFκB, AP-1, and MYC as mediators of this transition, and show that the gene expression profiles of tumor cells and infiltrating microglia are consistent with abundant pro-inflammatory signaling between these populations. In line with these results, both TGF-β1 and TNF-α induce the expression of mesenchymal genes on a patient-derived cell model, and TGF-β1 leads to an invasive phenotype. Altogether, these data suggest that tumor gliosis induced by inflammatory cytokines and oxidative stress underlies the mesenchymal phenotype of posterior fossa ependymoma.
Collapse
Affiliation(s)
- Rachael G Aubin
- Department of Genetics and Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Emma C Troisi
- Department of Genetics and Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Javier Montelongo
- Department of Genetics and Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Adam N Alghalith
- Department of Genetics and Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Maclean P Nasrallah
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Mariarita Santi
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Pathology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Pablo G Camara
- Department of Genetics and Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
9
|
Abstract
TWEAK (tumor necrosis factor-like weak inducer of apoptosis) is a member of the TNF superfamily that controls a multitude of cellular events including proliferation, migration, differentiation, apoptosis, angiogenesis, and inflammation. TWEAK control of these events is via an expanding list of intracellular signalling pathways which include NF-κB, ERK/MAPK, Notch, EGFR and AP-1. Two receptors have been identified for TWEAK - Fn14, which targets the membrane bound form of TWEAK, and CD163, which scavenges the soluble form of TWEAK. TWEAK appears to elicit specific events based on the receptor to which it binds, tissue type in which it is expressed, specific extrinsic conditions, and the presence of other cytokines. TWEAK signalling is protective in healthy tissues, but in chronic inflammatory states become detrimental to the tissue. Consistent data show a role for the TWEAK/FN14/CD163 axis in metabolic disease, chronic autoimmune diseases, and acute ischaemic stroke. Low circulating concentrations of soluble TWEAK are predictive of poor cardiovascular outcomes in those with and without diabetes. This review details the current understanding of the TWEAK/Fn14/CD163 axis as one of the chief regulators of immune signalling and its cell-specific role in metabolic disease development and progression.
Collapse
Affiliation(s)
- Wiktoria Ratajczak
- Northern Ireland Centre for Stratified Medicine, School of Biomedical Sciences, Ulster University, Altnagelvin Hospital Campus, C-TRIC Building Glenshane Road, Derry/Londonderry, Northern Ireland, UK
| | - Sarah D Atkinson
- Northern Ireland Centre for Stratified Medicine, School of Biomedical Sciences, Ulster University, Altnagelvin Hospital Campus, C-TRIC Building Glenshane Road, Derry/Londonderry, Northern Ireland, UK
| | - Catriona Kelly
- Northern Ireland Centre for Stratified Medicine, School of Biomedical Sciences, Ulster University, Altnagelvin Hospital Campus, C-TRIC Building Glenshane Road, Derry/Londonderry, Northern Ireland, UK.
| |
Collapse
|
10
|
Shao Y, Cornwell W, Xu K, Kirchhoff A, Saasoud F, Lu Y, Jiang X, Criner GJ, Wang H, Rogers TJ, Yang X. Chronic Exposure to the Combination of Cigarette Smoke and Morphine Decreases CD4 + Regulatory T Cell Numbers by Reprogramming the Treg Cell Transcriptome. Front Immunol 2022; 13:887681. [PMID: 35514978 PMCID: PMC9065607 DOI: 10.3389/fimmu.2022.887681] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 03/24/2022] [Indexed: 11/13/2022] Open
Abstract
There is a high incidence of tobacco use among intravenous opioid drug users. It is well established that opioids and tobacco smoke induce a degree of immune activation, and recent work suggests that the combination of these drugs promotes further activation of the immune system. Our approach involved the treatment of wild-type mice with cigarette smoke (SM) for a period of eight weeks, and the chronic continuous administration of morphine (M) via mini-pumps for the final four weeks. In an effort to examine the responses of CD4+CD25highCD127low regulatory T (Treg) cells, the major immune suppressive cell type, to the combined chronic administration of SM and M, we determined the frequency of these cells in the spleen, lymph nodes and lungs. Flow cytometric analyses showed that SM and M individually, and the combination (SM + M) have differential effects on the numbers of Treg in the spleen, lymph node, and lung. Either SM or M alone increased Treg cell numbers in the spleen, but SM+M did not. Furthermore, SM + M decreased Treg cell numbers in the lymph node and lung. We then performed RNA-Seq on Treg cells from mice treated with SM, M, or SM + M, and we found that the S + M induced a number of significant changes in the transcriptome, that were not as apparent following treatment with either SM or M alone. This included an activation of TWEAK, PI3K/AKT and OXPHOS pathways and a shift to Th17 immunity. Our results have provided novel insights on tissue Treg cell changes, which we suggest are the result of transcriptomic reprogramming induced by SM, M, and SM + M, respectively. We believe these results may lead to the identification of novel therapeutic targets for suppressing smoke and opioid induced Treg cell impairment.
Collapse
Affiliation(s)
- Ying Shao
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - William Cornwell
- Center for Inflammation and Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Keman Xu
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Aaron Kirchhoff
- Center for Inflammation and Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Fatma Saasoud
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Yifan Lu
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Xiaohua Jiang
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
- Center for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Gerard J. Criner
- Center for Inflammation and Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
- Department of Thoracic Medicine and Surgery, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Hong Wang
- Center for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Thomas J. Rogers
- Center for Inflammation and Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Xiaofeng Yang
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
- Center for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| |
Collapse
|
11
|
Yadav A, Singh A, Phogat J, Dahuja A, Dabur R. Magnoflorine prevent the skeletal muscle atrophy via Akt/mTOR/FoxO signal pathway and increase slow-MyHC production in streptozotocin-induced diabetic rats. JOURNAL OF ETHNOPHARMACOLOGY 2021; 267:113510. [PMID: 33141056 DOI: 10.1016/j.jep.2020.113510] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 09/24/2020] [Accepted: 10/20/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Tinospora cordifolia (TC) is being used as a blood purifier in Ayurveda since ancient time. It is a very popular immunomodulator and holds anti-inflammatory and anti-oxidative potential, hence anti-aging properties. Therefore, it is also known as 'Amrita' in Ayurveda and is widely used to treat diabetes mellitus type II (T2DM) and its secondary complications; however, its underlying mechanism was not expedited to date. AIM-: To explore the in vivo therapeutic efficiency and mechanism of action of TC and its secondary constitute magnoflorine on the skeletal muscle atrophy in the rat model of T2DM. METHOD Animal model of T2DM was developed using streptozotocin (STZ) injection followed by intervention with TC, metformin, and magnoflorine for three weeks. Confirmation of T2DM and abrogation of atrophic markers and possible mechanisms on supplementation of TC and magnoflorine were explored using histology, bio-assays, Western blotting, and q-PCR. RESULT TC and Magnoflorine supplementations significantly (p ≤ 0.05) decreased the fasting blood glucose (FBG) levels in T2DM rats. Both treatments prevented the lean body, individual skeletal muscle mass, and myotubes diameter loss (p ≤ 0.05). Magnoflorine significantly reduced the degradation of the protein indicated by biochemical markers of atrophy i.e. decreased serum creatine kinase (CK) levels and increased myosin heavy chain-β (MyHC-β) levels in muscles. Q-PCR and western blotting supported the findings that magnoflorine significantly increased the mRNA and protein abundances (~3 fold) of MyHC-β.TC and magnoflorine efficiently decreased the expression of ubiquitin-proteasomal E3-ligases (Fn-14/TWEAK, MuRF1, and Atrogin 1), autophagy (Bcl-2/LC3B), and caspase related genes along with calpains activities in T2DM rats. Both TC and magnoflorine also increased the activity of superoxide dismutase, GSH-Px, decreased the activities of β-glucuronidase, LPO, and prevented any alteration in the catalase activity. In contrast, magnoflorine increased expression of TNF-α and IL-6 whereas TC and metformin efficiently decreased the levels of these pro-inflammatory cytokines (p ≤ 0.05). However, magnoflorine was found to increase phosphorylation of Akt more efficiently than TC and metformin. CONCLUSION TC, and magnoflorine are found to be effective to control fasting blood glucose levels significantly in T2DM rats. It also promoted the Akt phosphorylation, suppressed autophagy and proteolysis that might be related to blood glucose-lowering efficacy of magnoflorine and TC. However, increased muscle weight, specifically of the soleus muscle, expression of IL-6, and slow MyHC indicated the increased myogenesis in response to magnoflorine and independent from its hypoglycemic activity.
Collapse
MESH Headings
- Animals
- Anti-Inflammatory Agents/pharmacology
- Aporphines/pharmacology
- Autophagy/drug effects
- Blood Glucose/drug effects
- Blood Glucose/metabolism
- Diabetes Mellitus, Experimental/chemically induced
- Diabetes Mellitus, Experimental/drug therapy
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Type 2/chemically induced
- Diabetes Mellitus, Type 2/drug therapy
- Diabetes Mellitus, Type 2/metabolism
- Forkhead Transcription Factors/metabolism
- Hypoglycemic Agents/pharmacology
- Inflammation Mediators/metabolism
- Male
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/enzymology
- Muscle, Skeletal/pathology
- Muscular Atrophy/enzymology
- Muscular Atrophy/etiology
- Muscular Atrophy/pathology
- Muscular Atrophy/prevention & control
- Myosin Heavy Chains/genetics
- Myosin Heavy Chains/metabolism
- Oxidative Stress/drug effects
- Phosphorylation
- Proto-Oncogene Proteins c-akt/metabolism
- Rats, Wistar
- Signal Transduction
- Streptozocin
- TOR Serine-Threonine Kinases/metabolism
- Rats
Collapse
Affiliation(s)
- Aarti Yadav
- Clinical Research Laboratory, Department of Biochemistry, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Ajay Singh
- Clinical Research Laboratory, Department of Biochemistry, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Jatin Phogat
- Clinical Research Laboratory, Department of Biochemistry, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Anil Dahuja
- Division of Biochemistry, Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Rajesh Dabur
- Clinical Research Laboratory, Department of Biochemistry, Maharshi Dayanand University, Rohtak, 124001, Haryana, India.
| |
Collapse
|
12
|
Huang M, Cai G, Baugh LM, Liu Z, Smith A, Watson M, Popovich D, Zhang T, Stawski LS, Trojanowska M, Georgakoudi I, Black LD, Pioli PA, Whitfield ML, Garlick J. Systemic Sclerosis Dermal Fibroblasts Induce Cutaneous Fibrosis Through Lysyl Oxidase-like 4: New Evidence From Three-Dimensional Skin-like Tissues. Arthritis Rheumatol 2020; 72:791-801. [PMID: 31705627 DOI: 10.1002/art.41163] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 11/05/2019] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Systemic sclerosis (SSc) is a clinically heterogeneous disease characterized by increased collagen accumulation and skin stiffness. Our previous work has demonstrated that transforming growth factor β (TGFβ) induces extracellular matrix (ECM) modifications through lysyl oxidase-like 4 (LOXL-4), a collagen crosslinking enzyme, in bioengineered human skin equivalents (HSEs) and self-assembled stromal tissues (SAS). We undertook this study to investigate cutaneous fibrosis and the role of LOXL-4 in SSc pathogenesis using HSEs and SAS. METHODS SSc-derived dermal fibroblasts (SScDFs; n = 8) and normal dermal fibroblasts (NDFs; n = 6) were incorporated into HSEs and SAS. These 3-dimensional skin-like microenvironments were used to study the effects of dysregulated LOXL-4 on ECM remodeling, fibroblast activation, and response to TGFβ stimulation. RESULTS SScDF-containing SAS showed increased stromal thickness, collagen deposition, and interleukin-6 secretion compared to NDF-containing SAS (P < 0.05). In HSE, SScDFs altered collagen as seen by a more mature and aligned fibrillar structure (P < 0.05). With SScDFs, enhanced stromal rigidity with increased collagen crosslinking (P < 0.05), up-regulation of LOXL4 expression (P < 0.01), and innate immune signaling genes were observed in both tissue models. Conversely, knockdown of LOXL4 suppressed rigidity, contraction, and α-smooth muscle actin expression in SScDFs in HSE, and TGFβ-induced ECM aggregation and collagen crosslinking in SAS. CONCLUSION A limitation to the development of effective therapeutics in SSc is the lack of in vitro human model systems that replicate human skin. Our findings demonstrate that SAS and HSE can serve as complementary in vitro skin-like models for investigation of the mechanisms and mediators that drive fibrosis in SSc and implicate a pivotal role for LOXL-4 in SSc pathogenesis.
Collapse
Affiliation(s)
- Mengqi Huang
- Tufts University School of Dental Medicine and Boston University School of Medicine, Boston, Massachusetts, and Geisel School of Medicine at Dartmouth, Hanover, New Hampshire
| | - Guoshuai Cai
- Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, and University of South Carolina Arnold School of Public Health, Columbia
| | | | - Zhiyi Liu
- Tufts University, Medford, Massachusetts, and Zhejiang University College of Optical Science and Engineering, Hangzhou, China
| | - Avi Smith
- Tufts University School of Dental Medicine, Boston, Massachusetts
| | | | - Dillon Popovich
- Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire
| | - Tianyue Zhang
- Tufts University School of Dental Medicine, Boston, Massachusetts
| | | | | | | | - Lauren D Black
- Tufts University School of Medicine Sackler School for Graduate Biomedical Sciences, Boston, Massachusetts
| | | | | | - Jonathan Garlick
- Tufts University School of Dental Medicine, Boston, Massachusetts
| |
Collapse
|
13
|
Nash M, McGrath JP, Cartland SP, Patel S, Kavurma MM. Tumour necrosis factor superfamily members in ischaemic vascular diseases. Cardiovasc Res 2020; 115:713-720. [PMID: 30816914 DOI: 10.1093/cvr/cvz042] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 09/25/2018] [Accepted: 02/26/2019] [Indexed: 12/20/2022] Open
Abstract
Current treatment of ischaemic vascular diseases such as coronary and peripheral artery disease includes angioplasty and bypass grafting, as well as lipid lowering therapies and control of other cardiovascular risk factors. Numerous members of the tumour necrosis factor superfamily (TNFSF) have recently shown emerging roles in both the protection and progression of such diseases. Understanding the role TNFSF members play in ischaemic vascular disease may provide insight into the development of novel therapeutics to prevent or treat diseases relating to atherosclerosis and ischaemia. This review summarizes the most recent findings relating to TNFSF members and the mechanisms that precede ischaemic vascular disease progression, particularly endothelial dysfunction, chronic inflammation, and atherosclerotic plaque development. This review also explores recent translational research on the role of TNFSF therapies in cardiovascular disease.
Collapse
Affiliation(s)
- Megan Nash
- Heart Research Institute, 7 Eliza Street, Newtown, Sydney NSW, Australia.,School of Medical Sciences, University of Sydney, Camperdown, NSW, Australia.,Department of Biochemistry, University of Bath, Bath, UK
| | - Jordan P McGrath
- Department of Cardiology, Royal Prince Alfred Hospital, Missenden Rd Camperdown, NSW, Australia
| | - Siân P Cartland
- Heart Research Institute, 7 Eliza Street, Newtown, Sydney NSW, Australia.,School of Medical Sciences, University of Sydney, Camperdown, NSW, Australia
| | - Sanjay Patel
- Heart Research Institute, 7 Eliza Street, Newtown, Sydney NSW, Australia.,School of Medical Sciences, University of Sydney, Camperdown, NSW, Australia.,Department of Cardiology, Royal Prince Alfred Hospital, Missenden Rd Camperdown, NSW, Australia
| | - Mary M Kavurma
- Heart Research Institute, 7 Eliza Street, Newtown, Sydney NSW, Australia.,School of Medical Sciences, University of Sydney, Camperdown, NSW, Australia
| |
Collapse
|
14
|
Tumor Necrosis Factor-Like Weak Inducer of Apoptosis (TWEAK)/Fibroblast Growth Factor-Inducible 14 (Fn14) Axis in Cardiovascular Diseases: Progress and Challenges. Cells 2020; 9:cells9020405. [PMID: 32053869 PMCID: PMC7072601 DOI: 10.3390/cells9020405] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/06/2020] [Accepted: 02/07/2020] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular diseases (CVD) are the leading cause of mortality in Western countries. CVD include several pathologies, such as coronary artery disease, stroke, peripheral artery disease, and aortic aneurysm, among others. All of them are characterized by a pathological vascular remodeling in which inflammation plays a key role. Interaction between different members of the tumor necrosis factor superfamily and their cognate receptors induce several biological actions that may participate in CVD. The cytokine tumor necrosis factor-like weak inducer of apoptosis (TWEAK) and its functional receptor, fibroblast growth factor-inducible 14 (Fn14), are abundantly expressed during pathological cardiovascular remodeling. The TWEAK/Fn14 axis controls a variety of cellular functions, such as proliferation, differentiation, and apoptosis, and has several biological functions, such as inflammation and fibrosis that are linked to CVD. It has been demonstrated that persistent TWEAK/Fn14 activation is involved in both vessel and heart remodeling associated with acute and chronic CVD. In this review, we summarized the role of the TWEAK/Fn14 axis during pathological cardiovascular remodeling, highlighting the cellular components and the signaling pathways that are involved in these processes.
Collapse
|
15
|
Wu G, Chen M, Wang X, Kong E, Yu W, Sun Y, Wu F. Effect of remote ischemic preconditioning on hepatic ischemia-reperfusion injury in patients undergoing liver resection: a randomized controlled trial. Minerva Anestesiol 2019; 86:252-260. [PMID: 31808659 DOI: 10.23736/s0375-9393.19.13838-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Studies in animal models have shown that remote ischemic preconditioning (RIPC) could protect the liver from hepatic ischemia-reperfusion injury (HIRI). The aim of this study was to examine whether RIPC could reduce HIRI in patients undergoing liver resection. METHODS A total of 120 patients were randomly assigned to three groups: a control group receiving no conditioning, an ischemic preconditioning (IPC) group, and an RIPC group. In the IPC group, the hepatoduodenal ligament was blocked for 10 min followed by 10 min of reperfusion prior to hepatic resection. Patients in the RIPC group received three cycles of 5-min ischemia followed by 5-min reperfusion to the right arm. Alanine transaminase (ALT), aspartate transaminase (AST), and tumor necrosis factor-like weak inducer of apoptosis (TWEAK) were examined before and after surgery. RESULTS A total of 105 patients completed the trial: 39 in the control group, 32 in the IPC group, and 34 in the RIPC group. In comparison to the control, serum ALT and AST levels significantly decreased in the IPC (ALT: 507.0±401.3 vs. 1040.7±649.5 IU/L, P<0.001; AST: 495.8±369.4 vs. 935.9±640.7 IU/L, P=0.001) and RIPC (ALT: 680.8±291.5 vs. 1040.7±649.5 IU/L, P=0.002; AST: 661.7±290.6 vs. 935.9±640.7 IU/L, P=0.014) groups on the first postoperative day. In comparison to the control, TWEAK significantly decreased in the IPC group (IPC 57.99±17.8 vs. control 76.13±12.4 ng/L, P=0.025) after surgery. TWEAK did not differ between the RIPC and IPC groups (RIPC 64.84±14.2 vs. IPC 57.99±17.8 ng/L, P=0.385). CONCLUSIONS RIPC could reduce hepatic ischemia-reperfusion injury after liver resection.
Collapse
Affiliation(s)
- Guilin Wu
- Department of Anesthesiology and Intensive Care, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China.,Department of Anesthesiology, No. 303 Hospital of Chinese People's Liberation Army, Nanning, China
| | - Mo Chen
- Department of Anesthesiology and Intensive Care, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Xiaoqiang Wang
- Department of Anesthesiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Erliang Kong
- Department of Anesthesiology and Intensive Care, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Weifeng Yu
- Department of Anesthesiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yuming Sun
- Department of Anesthesiology and Intensive Care, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Feixiang Wu
- Department of Anesthesiology and Intensive Care, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China -
| |
Collapse
|
16
|
Hao L, Ren M, Rong B, Xie F, Lin MJ, Zhao YC, Yue X, Han WQ, Zhong JQ. TWEAK/Fn14 mediates atrial-derived HL-1 myocytes hypertrophy via JAK2/STAT3 signalling pathway. J Cell Mol Med 2018; 22:4344-4353. [PMID: 29971943 PMCID: PMC6111870 DOI: 10.1111/jcmm.13724] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 05/13/2018] [Indexed: 12/11/2022] Open
Abstract
Atrial myocyte hypertrophy is one of the most important substrates in the development of atrial fibrillation (AF). The TWEAK/Fn14 axis is a positive regulator of cardiac hypertrophy in cardiomyopathy. This study therefore investigated the effects of Fn14 on atrial hypertrophy and underlying cellular mechanisms using HL‐1 atrial myocytes. In patients with AF, Fn14 protein levels were higher in atrial myocytes from atrial appendages, and expression of TWEAK was increased in peripheral blood mononuclear cells, while TWEAK serum levels were decreased. In vitro, Fn14 expression was up‐regulated in response to TWEAK treatment in HL‐1 atrial myocytes. TWEAK increased the expression of ANP and Troponin T, and Fn14 knockdown counteracted the effect. Inhibition of JAK2, STAT3 by specific siRNA attenuated TWEAK‐induced HL‐1 atrial myocytes hypertrophy. In conclusion, TWEAK/Fn14 axis mediates HL‐1 atrial myocytes hypertrophy partly through activation of the JAK2/STAT3 pathway.
Collapse
Affiliation(s)
- Li Hao
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health, Qilu Hospital, Shandong University, Jinan, China
| | - Manyi Ren
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health, Qilu Hospital, Shandong University, Jinan, China.,Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Bing Rong
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health, Qilu Hospital, Shandong University, Jinan, China
| | - Fei Xie
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health, Qilu Hospital, Shandong University, Jinan, China
| | - Ming-Jie Lin
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health, Qilu Hospital, Shandong University, Jinan, China
| | - Ya-Chao Zhao
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health, Qilu Hospital, Shandong University, Jinan, China
| | - Xin Yue
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health, Qilu Hospital, Shandong University, Jinan, China
| | - Wen-Qiang Han
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health, Qilu Hospital, Shandong University, Jinan, China
| | - Jing-Quan Zhong
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health, Qilu Hospital, Shandong University, Jinan, China
| |
Collapse
|
17
|
Chauhan A, Hudobenko J, Al Mamun A, Koellhoffer EC, Patrizz A, Ritzel RM, Ganesh BP, McCullough LD. Myeloid-specific TAK1 deletion results in reduced brain monocyte infiltration and improved outcomes after stroke. J Neuroinflammation 2018; 15:148. [PMID: 29776451 PMCID: PMC5960093 DOI: 10.1186/s12974-018-1188-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 05/03/2018] [Indexed: 12/16/2022] Open
Abstract
Background Activation of transforming growth factor-β-activated kinase 1 (TAK1) occurs after stroke and leads to an exacerbation of brain injury. TAK1 is involved in innate and adaptive immune responses, but it has divergent inflammatory effects that are dependent on the cell type in which it is activated. There is a robust infiltration of myeloid cells after stroke; however, the contribution of myeloid TAK1 to cerebral ischemia is currently unknown. We hypothesized that myeloid-specific deletion of TAK1 would protect against ischemic brain injury. Methods Myeloid TAK1ΔM and wild-type (WT) mice were subjected to middle cerebral artery occlusion (MCAo). Brain-infiltrating and splenic immune cells were evaluated at 3 days after stroke. Assessment of infarct size and behavioral deficits were performed on days 3 and 7 post-stroke. Results Infarcts were significantly smaller in TAK1ΔM mice (p < 0.01), and behavioral deficits were less severe despite equivalent reduction in cerebral blood flow. Flow cytometry demonstrated an increase in the frequency of splenic monocytes and neutrophils (p < 0.05) and a decrease in splenic CD3+ T (p < 0.01) and CD19+ B (p = 0.06) cells in TAK1ΔM mice compared to WT at baseline. Three days after stroke, a significant increase in the number of brain-infiltrating immune cell was observed in both TAK1ΔM (p < 0.05) and WT (p < 0.001) mice compared to their respective shams. However, there was a significant decrease in the infiltrating CD45hi immune cell counts (p < 0.05), with a pronounced reduction in infiltrating monocytes (p < 0.001) in TAK1ΔM after stroke compared to WT stroke mice. Additionally, a significant reduction in CD49d+ monocytes was seen in the brains of TAK1ΔM stroke mice compared to wild-type mice. Importantly, TAK1ΔM MCAo mice had smaller infarcts and improved behavioral outcomes at day 7 post-stroke. Conclusion Our results showed that deletion of myeloid TAK1 resulted in smaller infarcts and improved functional outcomes at the peak of inflammation (day 3) and a reduction in brain-infiltrating immune cells that were primarily monocytes. Myeloid TAK1 deletion was also protective at 7 days post MCAo, reflecting a detrimental role of myeloid TAK1 in the progression of ischemic injury. Electronic supplementary material The online version of this article (10.1186/s12974-018-1188-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anjali Chauhan
- Department of Neurology, University of Texas McGovern Medical School at Houston, Houston, TX, 77030, USA
| | - Jacob Hudobenko
- Department of Neurology, University of Texas McGovern Medical School at Houston, Houston, TX, 77030, USA
| | - Abdullah Al Mamun
- Department of Neurology, University of Texas McGovern Medical School at Houston, Houston, TX, 77030, USA
| | - Edward C Koellhoffer
- Department of Neurology, University of Texas McGovern Medical School at Houston, Houston, TX, 77030, USA
| | - Anthony Patrizz
- Department of Neurology, University of Texas McGovern Medical School at Houston, Houston, TX, 77030, USA
| | - Rodney M Ritzel
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | | | - Louise D McCullough
- Department of Neurology, University of Texas McGovern Medical School at Houston, Houston, TX, 77030, USA. .,Memorial Hermann Hospital-Texas Medical Center, Houston, TX, 77030, USA.
| |
Collapse
|
18
|
Keller CW, Schmidt J, Lünemann JD. Immune and myodegenerative pathomechanisms in inclusion body myositis. Ann Clin Transl Neurol 2017; 4:422-445. [PMID: 28589170 PMCID: PMC5454400 DOI: 10.1002/acn3.419] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 04/09/2017] [Accepted: 04/10/2017] [Indexed: 12/17/2022] Open
Abstract
Inclusion Body Myositis (IBM) is a relatively common acquired inflammatory myopathy in patients above 50 years of age. Pathological hallmarks of IBM are intramyofiber protein inclusions and endomysial inflammation, indicating that both myodegenerative and inflammatory mechanisms contribute to its pathogenesis. Impaired protein degradation by the autophagic machinery, which regulates innate and adaptive immune responses, in skeletal muscle fibers has recently been identified as a potential key pathomechanism in IBM. Immunotherapies, which are successfully used for treating other inflammatory myopathies lack efficacy in IBM and so far no effective treatment is available. Thus, a better understanding of the mechanistic pathways underlying progressive muscle weakness and atrophy in IBM is crucial in identifying novel promising targets for therapeutic intervention. Here, we discuss recent insights into the pathomechanistic network of mutually dependent inflammatory and degenerative events during IBM.
Collapse
Affiliation(s)
- Christian W. Keller
- Institute of Experimental ImmunologyLaboratory of NeuroinflammationUniversity of ZürichZürichSwitzerland
| | - Jens Schmidt
- Department of NeurologyUniversity Medical Center GöttingenGöttingenGermany
| | - Jan D. Lünemann
- Institute of Experimental ImmunologyLaboratory of NeuroinflammationUniversity of ZürichZürichSwitzerland
- Department of NeurologyUniversity Hospital ZürichZürichSwitzerland
| |
Collapse
|
19
|
Sequera C, Vázquez-Carballo A, Arechederra M, Fernández-Veledo S, Porras A. TWEAK promotes migration and invasion in MEFs through a mechanism dependent on ERKs activation and Fibulin 3 down-regulation. J Cell Physiol 2017; 233:968-978. [PMID: 28383766 DOI: 10.1002/jcp.25942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 03/30/2017] [Indexed: 11/10/2022]
Abstract
TWEAK regulates multiple physio-pathological processes in fibroblasts such as fibrosis. It also induces migration and invasion in tumors and it can activate p38 MAPK in various cell types. Moreover, p38α MAPK promotes migration and invasion in several cancer cells types and in mouse embryonic fibroblasts (MEFs). However, it remains unknown if TWEAK could promote migration in fibroblasts and whether p38α MAPK might play a role. Our results reveal that TWEAK activates ERKs, Akt, and p38α/β MAPKs and reduces secreted Fibulin 3 in MEFs. TWEAK also increases migration and invasion in wt and p38α deficient MEFs, which indicates that p38α MAPK is not required to mediate these effects. In contrast, ERKs inhibition significantly decreases TWEAK-induced migration and Fibulin 3 knock-down mimics TWEAK effect. These results indicate that both ERKs activation and Fibulin 3 down-regulation would contribute to mediate TWEAK pro-migratory effect. In fact, the additional regulation of ERKs and/or p38β as a consequence of Fibulin 3 decrease might be also involved in the pro-migratory effect of TWEAK in MEFs. In conclusion, our studies uncover novel mechanisms by which TWEAK would favor tissue repair by promoting fibroblasts migration.
Collapse
Affiliation(s)
- Celia Sequera
- Facultad de Farmacia, Departamento de Bioquímica y Biología Molecular II, Universidad Complutense de Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Ana Vázquez-Carballo
- Facultad de Farmacia, Departamento de Bioquímica y Biología Molecular II, Universidad Complutense de Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - María Arechederra
- Facultad de Farmacia, Departamento de Bioquímica y Biología Molecular II, Universidad Complutense de Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Sonia Fernández-Veledo
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain.,Hospital Universitari de Tarragona Joan XXIII, IISPV, Universitat Rovira i Virgili, Tarragona, Spain
| | - Almudena Porras
- Facultad de Farmacia, Departamento de Bioquímica y Biología Molecular II, Universidad Complutense de Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| |
Collapse
|
20
|
Li Z, Shen Z, Du L, He J, Chen S, Zhang J, Luan Y, Fu G. Fn14 is regulated via the RhoA pathway and mediates nuclear factor-kappaB activation by Angiotensin II. Am J Transl Res 2016; 8:5386-5398. [PMID: 28078010 PMCID: PMC5209490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 03/06/2016] [Indexed: 06/06/2023]
Abstract
Angiotesin II (Ang II) plays an important role in cardiac remodeling. Fibroblast growth factor inducible-14 (Fn14) is the smallest member of the tumor necrosis factor superfamily of receptors. Currently, little is known about the functional role of Fn14 in the heart. Chiefly, we observe the up-regulation of extracellular matrix in in vivo model. We therefore assess the expression and regulation of Fn14 in cardiomyocytes and in vivo models induced by Ang II. In order to study the regulation of Fn14, cardiac remodeling was established in rats and neonatal cardiomyocytes were used in in vitro model. As well, Ang II is able to strongly induce Fn14 expression in in vivo and in vitro models. Fn14 is mediated via RhoA pathways, since siRNA against RhoA prevented the expression of Fn14 in cardiomyocytes. Pretreatment of cardiomyoctes with siRNA against NF-κB and IκBα also decreased Fn14 expression induced by Ang II. We here describe for the first time Ang II regulation of Fn14 in in vivo and in vitro models via RhoA, NF-κB and NF-κB driven gene signaling pathway. In conclusion, Fn14 may be important in regulating the process of cardiac remodeling induced by Ang II.
Collapse
Affiliation(s)
- Zhengwei Li
- Department of Cardiology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University No. 3 East Qingchun Road, Hangzhou 310016, Zhejiang Province, PR China
| | - Zhida Shen
- Department of Cardiology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University No. 3 East Qingchun Road, Hangzhou 310016, Zhejiang Province, PR China
| | - Lailing Du
- Department of Cardiology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University No. 3 East Qingchun Road, Hangzhou 310016, Zhejiang Province, PR China
| | - Jialin He
- Department of Cardiology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University No. 3 East Qingchun Road, Hangzhou 310016, Zhejiang Province, PR China
| | - Shengyu Chen
- Department of Cardiology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University No. 3 East Qingchun Road, Hangzhou 310016, Zhejiang Province, PR China
| | - Jiefang Zhang
- Department of Cardiology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University No. 3 East Qingchun Road, Hangzhou 310016, Zhejiang Province, PR China
| | - Yi Luan
- Department of Cardiology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University No. 3 East Qingchun Road, Hangzhou 310016, Zhejiang Province, PR China
| | - Guosheng Fu
- Department of Cardiology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University No. 3 East Qingchun Road, Hangzhou 310016, Zhejiang Province, PR China
| |
Collapse
|
21
|
Armstrong CL, Galisteo R, Brown SA, Winkles JA. TWEAK activation of the non-canonical NF-κB signaling pathway differentially regulates melanoma and prostate cancer cell invasion. Oncotarget 2016; 7:81474-81492. [PMID: 27821799 PMCID: PMC5348407 DOI: 10.18632/oncotarget.13034] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 10/14/2016] [Indexed: 12/22/2022] Open
Abstract
Tumor necrosis factor-like weak inducer of apoptosis (TWEAK) is a multifunctional cytokine that binds with high affinity to a plasma membrane-anchored receptor named Fn14. Both TWEAK and Fn14 expression has been detected in human cancer tissue, and studies have shown that TWEAK/Fn14 signaling can promote either "pro-cancer" or "anti-cancer" cellular effects in vitro, depending on the cancer cell line under investigation. In this study, we engineered murine B16 melanoma cells to secrete high levels of soluble TWEAK and examined their properties. TWEAK production by B16 cells preferentially activated the non-canonical NF-κB signaling pathway and increased the expression of several previously described TWEAK-inducible genes, including Fn14. TWEAK overexpression in B16 cells inhibited both cell growth and invasion in vitro. The TWEAK-mediated reduction in B16 cell invasive capacity was dependent on activation of the non-canonical NF-κB signaling pathway. Finally, we found that this same signaling pathway was also important for TWEAK-stimulated human DU145 prostate cancer cell invasion. Therefore, even though TWEAK:Fn14 binding activates non-canonical NF-κB signaling in both melanoma and prostate cancer cells, this shared cellular response can trigger a very different downstream outcome (inhibition or stimulation of cell invasiveness, respectively).
Collapse
Affiliation(s)
- Cheryl L. Armstrong
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, USA
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Rebeca Galisteo
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, USA
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Sharron A.N. Brown
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, USA
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jeffrey A. Winkles
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, USA
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
22
|
Yadava RS, Foff EP, Yu Q, Gladman JT, Zheng TS, Mahadevan MS. TWEAK Regulates Muscle Functions in a Mouse Model of RNA Toxicity. PLoS One 2016; 11:e0150192. [PMID: 26901467 PMCID: PMC4762946 DOI: 10.1371/journal.pone.0150192] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 02/09/2016] [Indexed: 12/31/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1), the most common form of muscular dystrophy in adults, is caused by toxic RNAs produced from the mutant DM protein kinase (DMPK) gene. DM1 is characterized by progressive muscle wasting and weakness. Therapeutic strategies have mainly focused on targeting the toxic RNA. Previously, we found that fibroblast growth factor-inducible 14 (Fn14), the receptor for TWEAK, is induced in skeletal muscles and hearts of mouse models of RNA toxicity and that blocking TWEAK/Fn14 signaling improves muscle function and histology. Here, we studied the effect of Tweak deficiency in a RNA toxicity mouse model. The genetic deletion of Tweak in these mice significantly reduced muscle damage and improved muscle function. In contrast, administration of TWEAK in the RNA toxicity mice impaired functional outcomes and worsened muscle histopathology. These studies show that signaling via TWEAK is deleterious to muscle in RNA toxicity and support the demonstrated utility of anti-TWEAK therapeutics.
Collapse
Affiliation(s)
- Ramesh S. Yadava
- Department of Pathology, University of Virginia, Charlottesville, VA, United States of America
| | - Erin P. Foff
- Department of Neurology, University of Virginia, Charlottesville, VA, United States of America
| | - Qing Yu
- Department of Pathology, University of Virginia, Charlottesville, VA, United States of America
| | - Jordan T. Gladman
- Department of Pathology, University of Virginia, Charlottesville, VA, United States of America
| | - Timothy S. Zheng
- Department of Immunology, Biogen Idec, Cambridge, MA, United States of America
| | - Mani S. Mahadevan
- Department of Pathology, University of Virginia, Charlottesville, VA, United States of America
- * E-mail:
| |
Collapse
|
23
|
Lei MZ, Qin LJ, Zhao DD, Wang AH, Zhao XJ, Jin YP, Qi XF. Tumor necrosis factor-like weak inducer of apoptosis regulates the phenotype and cytotoxic activity of goat uterine natural killer cells. J Anim Sci 2016; 93:589-97. [PMID: 26020747 DOI: 10.2527/jas.2014-7942] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Tumor necrosis factor-like weak inducer of apoptosis (TWEAK) has an important role in the promotion of cell proliferation, migration, and differentiation. However, very little is known about the role of TWEAK in modulating uterine natural killer (uNK) cells' comprehensive functions in ruminants. In the present study, the effects of TWEAK on goat uNK cells were investigated by measuring their cytotoxic function and phenotype as well as cytokine expression in vitro. The results showed that TWEAK protein could be detected in the goat endometrium during estrous cycle and pregnancy. However, a significant increase in ( < 0.05) TWEAK protein levels was observed during very early pregnancy when compared with that during mid pregnancy and later pregnancy as well as during different phases of estrous cycle. Tumor necrosis factor-like weak inducer of apoptosis did not affect proliferation but did decrease ( < 0.05) the cytotoxic activity of uNK cells in vitro. Furthermore, the percentage of CD56/NKp46 uNK cells incubated with TWEAK-containing medium was greater ( < 0.05) compared with those treated with control medium. In addition, uNK cells incubated with TWEAK medium were associated with lesser ( < 0.05) secretion levels and protein expression of interferon-γ (IFN-γ) compared to those incubated with control medium. However, no differences ( > 0.05) could be observed for the secretion levels and protein expression of vascular endothelial growth factor (VEGF) in the uNK cells incubated with TWEAK-containing medium compared with those incubated with control medium. The present preliminary observations indicate that TWEAK has a biological effect on phenotype of uNK cells as well as the secretion and expression of IFN-γ by uNK cells in goats. Moreover, TWEAK decreases the cytotoxicity of goat uNK cells in vitro.
Collapse
|
24
|
|
25
|
Yadava RS, Foff EP, Yu Q, Gladman JT, Kim YK, Bhatt KS, Thornton CA, Zheng TS, Mahadevan MS. TWEAK/Fn14, a pathway and novel therapeutic target in myotonic dystrophy. Hum Mol Genet 2014; 24:2035-48. [PMID: 25504044 DOI: 10.1093/hmg/ddu617] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Myotonic dystrophy type 1 (DM1), the most prevalent muscular dystrophy in adults, is characterized by progressive muscle wasting and multi-systemic complications. DM1 is the prototype for disorders caused by RNA toxicity. Currently, no therapies exist. Here, we identify that fibroblast growth factor-inducible 14 (Fn14), a member of the tumor necrosis factor receptor super-family, is induced in skeletal muscles and hearts of mouse models of RNA toxicity and in tissues from DM1 patients, and that its expression correlates with severity of muscle pathology. This is associated with downstream signaling through the NF-κB pathways. In mice with RNA toxicity, genetic deletion of Fn14 results in reduced muscle pathology and better function. Importantly, blocking TWEAK/Fn14 signaling with an anti-TWEAK antibody likewise improves muscle histopathology and functional outcomes in affected mice. These results reveal new avenues for therapeutic development and provide proof of concept for a novel therapeutic target for which clinically available therapy exists to potentially treat muscular dystrophy in DM1.
Collapse
Affiliation(s)
| | - Erin P Foff
- Department of Neurology, University of Virginia, Charlottesville, VA 22908, USA
| | | | | | | | - Kirti S Bhatt
- Department of Neurology, University of Rochester, Rochester, NY 14642, USA and
| | - Charles A Thornton
- Department of Neurology, University of Rochester, Rochester, NY 14642, USA and
| | - Timothy S Zheng
- Department of Immunology, Biogen Idec, Cambridge, MA 02142, USA
| | | |
Collapse
|
26
|
Lei M, Qin L, Wang A, Jin Y, Zhao X, Qi X. Fn14 receptor appears as a modulator of ovarian steroid-related regulation of goat endometrial epithelial cell IL-18 expression. Am J Reprod Immunol 2014; 73:428-36. [PMID: 25421447 DOI: 10.1111/aji.12343] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 11/04/2014] [Indexed: 12/11/2022] Open
Abstract
PROBLEM Tumor necrosis factor-like weak inducer of apoptosis (TWEAK)/fibroblast growth factor-inducible 14 (Fn14) interactions affect the regulation of cytotoxic/immunotrophic pathways that are themselves under control of IL-18. The effect of Fn14 on regulation of endometrium IL-18 expression, however, remains unclear. METHOD AND STUDY The aim was to determine the mode of ovarian steroid action in regulating Fn14 expression by goat endometrial epithelial cells (EECs) in the presence and absence of endometrial stromal cells (ESCs). The possible role of Fn14 on the expression of IL-18 by EECs was also evaluated. RESULTS Opposite effects of E2 and/or P4 on the regulation of both Fn14 mRNA and protein expression by EECs were observed in the presence and absence of ESCs. Fn14 knockdown by blocking antibody or siRNA resulted in a decrease of IL-18 mRNA and protein levels in EECs cocultured with ESCs, and no significant difference of the IL-18 mRNA and protein levels in the EECs was observed between steroid treatment group and control group. CONCLUSION These findings confirm the importance of steroids in controlling Fn14 expression in goat EECs. Furthermore, Fn14 appears as a novel modulator of the steroid-related IL-18 expression in EECs in the presence of ESCs.
Collapse
Affiliation(s)
- Mingzhu Lei
- College of Veterinary Medicine of Northwest A&F University, Yangling, Shaanxi, China
| | | | | | | | | | | |
Collapse
|
27
|
Lerner N, Beit-Yannai E. Cross-talk between ciliary epithelium and trabecular meshwork cells in-vitro: a new insight into glaucoma. PLoS One 2014; 9:e112259. [PMID: 25389776 PMCID: PMC4229184 DOI: 10.1371/journal.pone.0112259] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 10/06/2014] [Indexed: 12/17/2022] Open
Abstract
PURPOSE It is assumed that the non-pigmented ciliary epithelium plays a role in regulating intraocular pressure via its neuroendocrine activities. To test this hypothesis, we investigated the effect on a human trabecular meshwork (TM) cell line (NTM) of co-culture with a human non-pigmented ciliary epithelium cell line (ODM-2). METHODS The cellular cross-talk between ODM-2 and NTM cells was studied in a co-culture system in which the two cell types were co-cultured for 5 to 60 min or 2, 4 and 8h and then removed from the co-culture and analyzed. Analyses of the ERK and p38 mitogen-activated protein kinase (MAPK) pathways and of the activity of TM phosphatases and matrix metalloproteins (MMPs) were performed. Acid and alkaline phosphatase activity was determined by the DiFMUP (6, 8-difluoro-4-methylumbelliferyl phosphate) assay. MMP levels were determined by gelatin zymography. RESULTS Exposure of NTM cells to ODM-2 cells led to the activation of the MAPK signal transduction pathways in NTM cells within 5 min of co-culture. Phosphorylation of ERK1/ERK2 and p38 peaked at 10 and 15 min and then decreased over time. Interaction between ODM-2 and NTM cells promoted the expression of MMP-9 in the NTM cells after 4h of co-culture. CONCLUSIONS Our findings provide support for the hypothesis that crosstalk does indeed take place between ODM-2 and NTM cells. Future studies should be designed to determine the relationship between the MMP system, MAPK kinases and phosphatases. Manipulation of these signaling molecules and the related NTM signal transduction pathways may provide targets for developing improved treatments for glaucoma.
Collapse
Affiliation(s)
- Natalie Lerner
- Department of Clinical Biochemistry and Pharmacology, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Elie Beit-Yannai
- Department of Clinical Biochemistry and Pharmacology, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
28
|
Wajant H. The TWEAK-Fn14 system as a potential drug target. Br J Pharmacol 2014; 170:748-64. [PMID: 23957828 DOI: 10.1111/bph.12337] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 07/29/2013] [Accepted: 08/12/2013] [Indexed: 12/27/2022] Open
Abstract
Fibroblast growth factor-inducible 14 (Fn14) is a member of the tumour necrosis factor (TNF) receptor family that is induced in a variety of cell types in situations of tissue injury. Fn14 becomes activated by TNF-like weak inducer of apoptosis (TWEAK), a typical member of the TNF ligand family. TWEAK is constitutively expressed by monocytes and some tumour cell lines and also shows cytokine inducible expression in various other cell types. Fn14 activation results in stimulation of signalling pathways culminating in the activation of NFκB transcription factors and various MAPKs but might also trigger the PI3K/Akt pathway and GTPases of the Rho family. In accordance with its tissue damage-associated expression pattern and its pleiotropic proinflammatory signalling capabilities, the TWEAK-Fn14 system has been implicated in a huge number of pathologies. The use of TWEAK- and Fn14-knockout mice identified the TWEAK-Fn14 system as a crucial player in muscle atrophy, cerebral ischaemia, kidney injury, atherosclerosis and infarction as well as in various autoimmune scenarios including experimental autoimmune encephalitis, rheumatoid arthritis and inflammatory bowel disease. Moreover, there is increasing preclinical evidence that Fn14 targeting is a useful option in tumour therapy. Based on a discussion of the signalling capabilities of TWEAK and Fn14, this review is focused on two major issues. On the one hand, on the molecular and cellular basis of the TWEAK/Fn14-related pathological outcomes in the aforementioned diseases and on the other hand, on the preclinical experience that have been made so far with TWEAK and Fn14 targeting drugs.
Collapse
Affiliation(s)
- Harald Wajant
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
29
|
Song Z, Zhu X, Jin R, Wang C, Yan J, Zheng Q, Nanda A, Granger DN, Li G. Roles of the kinase TAK1 in CD40-mediated effects on vascular oxidative stress and neointima formation after vascular injury. PLoS One 2014; 9:e101671. [PMID: 25050617 PMCID: PMC4106789 DOI: 10.1371/journal.pone.0101671] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 05/29/2014] [Indexed: 12/18/2022] Open
Abstract
Although TAK1 has been implicated in inflammation and oxidative stress, its roles in vascular smooth muscle cells (VSMCs) and in response to vascular injury have not been investigated. The present study aimed to investigate the role of TAK1 in modulating oxidative stress in VSMCs and its involvement in neointima formation after vascular injury. Double immunostaining reveals that vascular injury induces a robust phosphorylation of TAK1 (Thr187) in the medial VSMCs of injured arteries in wildtype mice, but this effect is blocked in CD40-deficient mice. Upregulation of TAK1 in VSMCs is functionally important, as it is critically involved in pro-oxidative and pro-inflammatory effects on VSMCs and eventual neointima formation. In vivo, pharmacological inhibition of TAK1 with 5Z-7-oxozeaenol blocked the injury-induced phosphorylation of both TAK1 (Thr187) and NF-kB/p65 (Ser536), associated with marked inhibition of superoxide production, 3-nitrotyrosine, and MCP-1 in the injured arteries. Cell culture experiments demonstrated that either siRNA knockdown or 5Z-7-oxozeaenol inhibition of TAK1 significantly attenuated NADPH oxidase activation and superoxide production induced by CD40L/CD40 stimulation. Co-immunoprecipitation experiments indicate that blockade of TAK1 disrupted the CD40L-induced complex formation of p22phox with p47phox, p67phox, or Nox4. Blockade of TAK1 also inhibited CD40L-induced NF-kB activation by modulating IKKα/β and NF-kB p65 phosphorylation and this was related to reduced expression of proinflammatory genes (IL-6, MCP-1 and ICAM-1) in VSMCs. Lastly, treatment with 5Z-7-oxozeaenol attenuated neointimal formation in wire-injured femoral arteries. Our findings demonstrate previously uncharacterized roles of TAK1 in vascular oxidative stress and the contribution to neointima formation after vascular injury.
Collapse
Affiliation(s)
- Zifang Song
- Vascular Biology and Stroke Research Laboratory, Department of Neurosurgery, LSU Health Science Center in Shreveport, Shreveport, Louisiana, United States of America
- Department of General Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaolei Zhu
- Vascular Biology and Stroke Research Laboratory, Department of Neurosurgery, LSU Health Science Center in Shreveport, Shreveport, Louisiana, United States of America
| | - Rong Jin
- Vascular Biology and Stroke Research Laboratory, Department of Neurosurgery, LSU Health Science Center in Shreveport, Shreveport, Louisiana, United States of America
| | - Cuiping Wang
- Vascular Biology and Stroke Research Laboratory, Department of Neurosurgery, LSU Health Science Center in Shreveport, Shreveport, Louisiana, United States of America
- Department of Cardiology, The Affiliated Hospital of Jiangsu University, Jiangsu, Zhenjiang, China
| | - Jinchuan Yan
- Department of Cardiology, The Affiliated Hospital of Jiangsu University, Jiangsu, Zhenjiang, China
| | - Qichang Zheng
- Department of General Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Anil Nanda
- Vascular Biology and Stroke Research Laboratory, Department of Neurosurgery, LSU Health Science Center in Shreveport, Shreveport, Louisiana, United States of America
| | - D. Neil Granger
- Department of Physiology, LSU Health Science Center in Shreveport, Shreveport, Louisiana, United States of America
| | - Guohong Li
- Vascular Biology and Stroke Research Laboratory, Department of Neurosurgery, LSU Health Science Center in Shreveport, Shreveport, Louisiana, United States of America
- Department of Physiology, LSU Health Science Center in Shreveport, Shreveport, Louisiana, United States of America
- * E-mail:
| |
Collapse
|
30
|
Martín P, Mora I, Cortes MA, Calleros L, García-Jerez A, Ortiz A, Rodríguez-Puyol M, Rodríguez-Puyol D, Olmos G. Relevant role of PKG in the progression of fibrosis induced by TNF-like weak inducer of apoptosis. Am J Physiol Renal Physiol 2014; 307:F75-85. [DOI: 10.1152/ajprenal.00398.2013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
TNF-like weak inducer of apoptosis (TWEAK) is an inflammatory cytokine that activates the FGF-inducible 14 receptor. Both TWEAK and the FGF-inducible 14 receptor are constitutively expressed in the kidney. TWEAK has been shown to modulate several biological responses, such as inflammation, proliferation, differentiation, and apoptosis, that contribute to kidney injury. However, the role of TWEAK in fibrosis and TWEAK-activated intracellular signaling pathways remain poorly understood. We tested the hypothesis that TWEAK can be a potent inducer of renal fibrosis by increasing transforming growth factor (TGF)-β1 expression (a well-known switch in the fibrosis process) through PKG-I downregulation. We showed that in human mesangial cells, TWEAK increased TGF-β1 expression and activity, leading to higher levels of the extracellular matrix protein fibronectin and decreased PKG-I expression and activity via the Ras pathway. PKG-I activation with 8-bromo-cGMP, Ras inactivation with dominant negative Ras, or Ras pathway inhibition with the ERK1/2 inhibitor PD-98059 resulted in the prevention of TWEAK-induced TGF-β1 upregulation. In vivo, exogenous administration of TWEAK to wild-type mice downregulated kidney PKG-I and increased kidney TGF-β1 expression. These effects were blunted in H-Ras knockout mice. Together, these data demonstrate, for the first time, the key role of PKG-I in TGF-β1 induction by TWEAK in kidney cells.
Collapse
Affiliation(s)
- Paloma Martín
- Department of System Biology, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
- REDinREN (Instituto de Salud Carlos III), Madrid, Spain
- Instituto Reina Sofía de Investigaciones Nefrológicas, Madrid, Spain
| | - Inés Mora
- REDinREN (Instituto de Salud Carlos III), Madrid, Spain
- Instituto Reina Sofía de Investigaciones Nefrológicas, Madrid, Spain
| | - M. Alicia Cortes
- Department of System Biology, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
- REDinREN (Instituto de Salud Carlos III), Madrid, Spain
- Instituto Reina Sofía de Investigaciones Nefrológicas, Madrid, Spain
| | - Laura Calleros
- Department of System Biology, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
- REDinREN (Instituto de Salud Carlos III), Madrid, Spain
- Instituto Reina Sofía de Investigaciones Nefrológicas, Madrid, Spain
| | - Andrea García-Jerez
- Department of System Biology, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
- REDinREN (Instituto de Salud Carlos III), Madrid, Spain
- Instituto Reina Sofía de Investigaciones Nefrológicas, Madrid, Spain
| | - Alberto Ortiz
- REDinREN (Instituto de Salud Carlos III), Madrid, Spain
- IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Madrid, Spain
| | - Manuel Rodríguez-Puyol
- Department of System Biology, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
- REDinREN (Instituto de Salud Carlos III), Madrid, Spain
- Instituto Reina Sofía de Investigaciones Nefrológicas, Madrid, Spain
| | - Diego Rodríguez-Puyol
- REDinREN (Instituto de Salud Carlos III), Madrid, Spain
- Instituto Reina Sofía de Investigaciones Nefrológicas, Madrid, Spain
- Department of Medicine, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
- Nephrology Section and Research Unit, Hospital Príncipe de Asturias, Alcalá de Henares, Madrid, Spain; and
| | - Gemma Olmos
- Department of System Biology, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
- REDinREN (Instituto de Salud Carlos III), Madrid, Spain
- Instituto Reina Sofía de Investigaciones Nefrológicas, Madrid, Spain
| |
Collapse
|
31
|
Increased expression of atrogenes and TWEAK family members after severe burn injury in nonburned human skeletal muscle. J Burn Care Res 2014; 34:e297-304. [PMID: 23816995 DOI: 10.1097/bcr.0b013e31827a2a9c] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Severe burn induces rapid skeletal muscle proteolysis after the injury, which persists for up to 1 year and results in skeletal muscle atrophy despite dietary and rehabilitative interventions. The purpose of this research was to determine acute changes in gene expression of skeletal muscle mass regulators postburn injury. Specimens were obtained for biopsy from the vastus lateralis of a nonburned leg of eight burned subjects (6M, 2F: 34.8 ± 2.7 years: 29.9 ± 3.1% TBSA burn) at 5.1 ± 1.1 days postburn injury and from matched controls. mRNA expression of cytokines and receptors in the tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) families, and the ubiquitin proteasome E3 ligases, atrogin-1 and MuRF-1, was determined. TNF receptor 1A was over 3.5-fold higher in burn. Expression of TNF-like weak inducer of apoptosis and its receptor were over 1.6 and 6.0-fold higher in burn. IL-6, IL-6 receptor, and glycoprotein 130 were elevated in burned subjects with IL-6 receptor over 13-fold higher. The level of suppressor of cytokine signaling-3 was also increased nearly 6-fold in burn. Atrogin-1 and MuRF-1 were more than 4- and 3-fold higher in burn. These results demonstrate for the first time that severe burn in humans has a remarkable impact on gene expression in skeletal muscle of a nonburned limb of genes that promote inflammation and proteolysis. Because these changes likely contribute to the acute skeletal muscle atrophy in areas not directly affected by the burn, in the future it will be important to determine the responsible systemic cues.
Collapse
|
32
|
Carmona Arana JA, Seher A, Neumann M, Lang I, Siegmund D, Wajant H. TNF Receptor-Associated Factor 1 is a Major Target of Soluble TWEAK. Front Immunol 2014; 5:63. [PMID: 24600451 PMCID: PMC3927163 DOI: 10.3389/fimmu.2014.00063] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 02/03/2014] [Indexed: 12/18/2022] Open
Abstract
Soluble tumor necrosis factor (TNF)-like weak inducer of apoptosis (TWEAK), in contrast to membrane TWEAK and TNF, is only a weak activator of the classical NFκB pathway. We observed that soluble TWEAK was regularly more potent than TNF with respect to the induction of TNF receptor-associated factor 1 (TRAF1), a NFκB-controlled signaling protein involved in the regulation of inflammatory signaling pathways. TNF-induced TRAF1 expression was efficiently blocked by inhibition of the classical NFκB pathway using the IKK2 inhibitor, TPCA1. In contrast, in some cell lines, TWEAK-induced TRAF1 production was only partly inhibited by TPCA1. The NEDD8-activating enzyme inhibitor MLN4924, however, which inhibits classical and alternative NFκB signaling, blocked TNF- and TWEAK-induced TRAF1 expression. This suggests that TRAF1 induction by soluble TWEAK is based on the cooperative activity of the two NFκB signaling pathways. We have previously shown that oligomerization of soluble TWEAK results in ligand complexes with membrane TWEAK-like activity. Oligomerization of soluble TWEAK showed no effect on the dose response of TRAF1 induction, but potentiated the ability of soluble TWEAK to trigger production of the classical NFκB-regulated cytokine IL8. Transfectants expressing soluble TWEAK and membrane TWEAK showed similar induction of TRAF1 while only the membrane TWEAK expressing cells robustly stimulated IL8 production. These data indicate that soluble TWEAK may efficiently induce a distinct subset of the membrane TWEAK-targeted genes and argue again for a crucial role of classical NFκB pathway-independent signaling in TWEAK-induced TRAF1 expression. Other TWEAK targets, which can be equally well induced by soluble and membrane TWEAK, remain to be identified and the relevance of the ability of soluble TWEAK to induce such a distinct subset of membrane TWEAK-targeted genes for TWEAK biology will have to be clarified in future studies.
Collapse
Affiliation(s)
- José Antonio Carmona Arana
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg , Würzburg , Germany
| | - Axel Seher
- Department of Oral and Maxillofacial Plastic Surgery, University Hospital Würzburg , Würzburg , Germany
| | - Manfred Neumann
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg , Würzburg , Germany
| | - Isabell Lang
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg , Würzburg , Germany
| | - Daniela Siegmund
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg , Würzburg , Germany
| | - Harald Wajant
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg , Würzburg , Germany
| |
Collapse
|
33
|
Peng QL, Shu XM, Tian XL, Lu X, Wang GC. Expression of tumor necrosis factor-like weak inducer of apoptosis and fibroblast growth factor-inducible 14 in patients with polymyositis and dermatomyositis. Arthritis Res Ther 2014; 16:R26. [PMID: 24467773 PMCID: PMC3978894 DOI: 10.1186/ar4454] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 01/24/2014] [Indexed: 11/10/2022] Open
Abstract
INTRODUCTION The aim of this study was to investigate the expression of tumor necrosis factor-like weak inducer of apoptosis (TWEAK) and its receptor fibroblast growth factor-inducible 14 (Fn14) in patients with polymyositis (PM) and dermatomyositis (DM), and their relation to clinical manifestations. METHODS Serum levels of TWEAK were detected in 98 PM/DM patients and 37 healthy controls by using the ELISA method. Total RNA isolated from fresh-frozen muscle tissue samples of 36 PM/DM patients and 10 healthy controls were used for analyzing the mRNA levels of TWEAK and Fn14 by quantitative reverse transcription polymerase chain reaction (RT-PCR). Immunofluorescence staining of TWEAK and Fn14 was conducted on muscle biopsy specimens from 23 PM/DM patients and seven healthy controls. RESULTS Serum levels of TWEAK were significantly decreased in the PM/DM patients compared to those in the healthy controls (P < 0.001), and serum TWEAK levels negatively correlated with serum CD163 levels in PM/DM patients (r = -0.49, P < 0.001). The expression of Fn14 mRNA was significantly increased in the muscle tissue of PM/DM patients than in the muscle tissue of healthy controls (P < 0.01), whereas the expression of TWEAK mRNA in PM/DM patients was not statistically different from that of the healthy controls (P > 0.05). Fn14 mRNA levels in muscle tissue positively correlated with muscle disease activity (r = 0.512, P < 0.01). Patients with oropharyngeal dysphagia had significantly higher Fn14 mRNA levels than patients without oropharyngeal dysphagia (P < 0.05). The results of immunofluorescence staining showed that 19 out of 23 PM/DM patients were TWEAK-positive, and 20 out of 23 PM/DM patients were Fn14-positive. No detectable expressions of TWEAK or Fn14 were observed in the healthy controls. CONCLUSIONS TWEAK-Fn14 axis may be involved in the pathogenesis of PM/DM. Further understanding of TWEAK-Fn14 function in PM/DM may help to define therapeutic targets for PM/DM.
Collapse
|
34
|
Sato S, Ogura Y, Kumar A. TWEAK/Fn14 Signaling Axis Mediates Skeletal Muscle Atrophy and Metabolic Dysfunction. Front Immunol 2014; 5:18. [PMID: 24478779 PMCID: PMC3902304 DOI: 10.3389/fimmu.2014.00018] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 01/14/2014] [Indexed: 01/07/2023] Open
Abstract
Tumor necrosis factor-like weak inducer of apoptosis (TWEAK) through binding to its receptor fibroblast growth factor inducible 14 (Fn14) has been shown to regulate many cellular responses including proliferation, differentiation, apoptosis, inflammation, and fibrosis, under both physiological and pathological conditions. Emerging evidence suggests that TWEAK is also a major muscle wasting cytokine. TWEAK activates nuclear factor-κB signaling and proteolytic pathways such as ubiquitin–proteasome system, autophagy, and caspases to induce muscle proteolysis in cultured myotubes. Fn14 is dormant or expressed in minimal amounts in normal healthy muscle. However, specific atrophic conditions, such as denervation, immobilization, and starvation stimulate the expression of Fn14 leading to activation of TWEAK/Fn14 signaling and eventually skeletal muscle atrophy. TWEAK also causes slow- to fast-type fiber transition in skeletal muscle. Furthermore, recent studies suggest that TWEAK diminishes mitochondrial content and represses skeletal muscle oxidative phosphorylation capacity. TWEAK mediates these effects through affecting the expression of a number of genes and microRNAs. In this review article, we have discussed the recent advancements toward understanding the role and mechanisms of action of TWEAK/Fn14 signaling in skeletal muscle with particular reference to different models of atrophy and oxidative metabolism.
Collapse
Affiliation(s)
- Shuichi Sato
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine , Louisville, KY , USA
| | - Yuji Ogura
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine , Louisville, KY , USA
| | - Ashok Kumar
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine , Louisville, KY , USA
| |
Collapse
|
35
|
Blanco-Colio LM. TWEAK/Fn14 Axis: A Promising Target for the Treatment of Cardiovascular Diseases. Front Immunol 2014; 5:3. [PMID: 24478772 PMCID: PMC3895871 DOI: 10.3389/fimmu.2014.00003] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 01/03/2014] [Indexed: 11/30/2022] Open
Abstract
Cardiovascular diseases (CVD) are the first cause of mortality in Western countries. CVD include several pathologies such as coronary heart disease, stroke or cerebrovascular accident, congestive heart failure, peripheral arterial disease, and aortic aneurysm, among others. Interaction between members of the tumor necrosis factor (TNF) superfamily and their receptors elicits several biological actions that could participate in CVD. TNF-like weak inducer of apoptosis (TWEAK) and its functional receptor and fibroblast growth factor-inducible molecule 14 (Fn14) are two proteins belonging to the TNF superfamily that activate NF-κB by both canonical and non-canonical pathways and regulate several cell functions such as proliferation, migration, differentiation, cell death, inflammation, and angiogenesis. TWEAK/Fn14 axis plays a beneficial role in tissue repair after acute injury. However, persistent TWEAK/Fn14 activation mediated by blocking experiments or overexpression experiments in animal models has shown an important role of this axis in the pathological remodeling underlying CVD. In this review, we summarize the role of TWEAK/Fn14 pathway in the development of CVD, focusing on atherosclerosis and stroke and the molecular mechanisms by which TWEAK/Fn14 interaction participates in these pathologies. We also review the role of the soluble form of TWEAK as a biomarker for the diagnosis and prognosis of CVD. Finally, we highlight the results obtained with other members of the TNF superfamily that also activate canonical and non-canonical NF-κB pathway.
Collapse
|
36
|
Tajrishi MM, Zheng TS, Burkly LC, Kumar A. The TWEAK-Fn14 pathway: a potent regulator of skeletal muscle biology in health and disease. Cytokine Growth Factor Rev 2013; 25:215-25. [PMID: 24444596 DOI: 10.1016/j.cytogfr.2013.12.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2013] [Accepted: 12/15/2013] [Indexed: 12/24/2022]
Abstract
TNF-like weak inducer of apoptosis (TWEAK), a TNF superfamily ligand, and its bona fide receptor, the TNF receptor superfamily member fibroblast growth factor-inducible 14 (Fn14), represent a pivotal axis for shaping both physiological and pathological tissue responses to acute or chronic injury and disease. In recent years significant advances have been made in delineating the prominent role of TWEAK-Fn14 dyad in regulating skeletal muscle mass and metabolism. Also emerging from the broad study of tissue injury in skeletal muscle and other organs is the role of the TWEAK-Fn14 pathway in promoting fibrosis. This review article highlights recent advancements toward understanding how the TWEAK-Fn14 pathway regulates the response to various skeletal muscle insults and, more broadly, engages multiple mechanisms to drive tissue fibrosis.
Collapse
Affiliation(s)
- Marjan M Tajrishi
- Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY 40202, United States
| | - Timothy S Zheng
- Department of Immunology, Biogen Idec, 12 Cambridge Center, Cambridge, MA 02142, United States
| | - Linda C Burkly
- Department of Immunology, Biogen Idec, 12 Cambridge Center, Cambridge, MA 02142, United States.
| | - Ashok Kumar
- Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY 40202, United States.
| |
Collapse
|
37
|
Kim HJ, Kim JG, Moon MY, Park SH, Park JB. IκB kinase γ/nuclear factor-κB-essential modulator (IKKγ/NEMO) facilitates RhoA GTPase activation, which, in turn, activates Rho-associated KINASE (ROCK) to phosphorylate IKKβ in response to transforming growth factor (TGF)-β1. J Biol Chem 2013; 289:1429-40. [PMID: 24240172 DOI: 10.1074/jbc.m113.520130] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Transforming growth factor (TGF)-β1 plays several roles in a variety of cellular functions. TGF-β1 transmits its signal through Smad transcription factor-dependent and -independent pathways. It was reported that TGF-β1 activates NF-κB and RhoA, and RhoA activates NF-κB in several kinds of cells in a Smad-independent pathway. However, the activation molecular mechanism of NF-κB by RhoA upon TGF-β1 has not been clearly elucidated. We observed that RhoA-GTP level was increased by TGF-β1 in RAW264.7 cells. RhoA-GDP and RhoGDI were bound to N- and C-terminal domains of IKKγ, respectively. Purified IKKγ facilitated GTP binding to RhoA complexed with RhoGDI. Furthermore, Dbs, a guanine nucletotide exchange factor of RhoA much more enhanced GTP binding to RhoA complexed with RhoGDI in the presence of IKKγ. Indeed, si-IKKγ abolished RhoA activation in response to TGF-β1 in cells. However, TGF-β1 stimulated the release of RhoA-GTP from IKKγ and Rho-associated kinase (ROCK), an active RhoA effector protein, directly phosphorylated IKKβ in vitro, whereas TGF-β1-activated kinase 1 activated RhoA upon TGF-β1 stimulation. Taken together, our data indicate that IKKγ facilitates RhoA activation via a guanine nucletotide exchange factor, which in turn activates ROCK to phosphorylate IKKβ, leading to NF-κB activation that induced the chemokine expression and cell migration upon TGF-β1.
Collapse
Affiliation(s)
- Hee-Jun Kim
- From the Department of Biochemistry, Hallym University College of Medicine, Chuncheon, Kangwon-Do 200-702, Korea
| | | | | | | | | |
Collapse
|
38
|
Vázquez-Carballo A, Ceperuelo-Mallafré V, Chacón MR, Maymó-Masip E, Lorenzo M, Porras A, Vendrell J, Fernández-Veledo S. TWEAK prevents TNF-α-induced insulin resistance through PP2A activation in human adipocytes. Am J Physiol Endocrinol Metab 2013; 305:E101-12. [PMID: 23651848 DOI: 10.1152/ajpendo.00589.2012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Visceral fat is strongly associated with insulin resistance. Obesity-associated adipose tissue inflammation and inflammatory cytokine production are considered key mediators of insulin signaling inhibition. TWEAK is a relatively new member of the TNF cytokine superfamily, which can exist as full length membrane-associated (mTWEAK) and soluble (sTWEAK) isoforms. Although TWEAK has been shown to have important functions in chronic inflammatory diseases its physiological role in adipose tissue remains unresolved. In this study, we explore the molecular mechanisms involved in the modulation of TNF-α-induced effects on insulin sensitivity by sTWEAK in a human visceral adipose cell line and also in primary human adipocytes obtained from visceral fat depots. Our data reveal that sTWEAK ameliorates TNF-α-induced insulin resistance on glucose uptake, GLUT4 translocation and insulin signaling without affecting other metabolic effects of TNF-α such as lipolysis or apoptotis. Co-immunoprecipitation experiments in adipose cells revealed that pretreatment with sTWEAK specifically inhibits TRAF2 association with TNFR1, but not with TNFR2, which mediates insulin resistance. However, sTWEAK does not affect other downstream molecules activated by TNF-α, such as TAK1. Rather, sTWEAK abolishes the stimulatory effect of TNF-α on JNK1/2, which is directly involved in the development of insulin resistance. This is associated with an increase in PP2A activity upon sTWEAK treatment. Silencing of the PP2A catalytic subunit gene overcomes the dephosphorylation effect of sTWEAK on JNK1/2, pointing to PP2A as a relevant mediator of sTWEAK-induced JNK inactivation. Overall, our data reveal a protective role of TWEAK in glucose homeostasis and identify PP2A as a new driver in the modulation of TNF-α signaling by sTWEAK.
Collapse
Affiliation(s)
- Ana Vázquez-Carballo
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, Complutense University, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
39
|
So T, Croft M. Regulation of PI-3-Kinase and Akt Signaling in T Lymphocytes and Other Cells by TNFR Family Molecules. Front Immunol 2013; 4:139. [PMID: 23760533 PMCID: PMC3675380 DOI: 10.3389/fimmu.2013.00139] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 05/25/2013] [Indexed: 12/22/2022] Open
Abstract
Activation of phosphoinositide 3-kinase (PI3K) and Akt (protein kinase B) is a common response triggered by a range of membrane-bound receptors on many cell types. In T lymphocytes, the PI3K-Akt pathway promotes clonal expansion, differentiation, and survival of effector cells and suppresses the generation of regulatory T cells. PI3K activation is tightly controlled by signals through the T cell receptor (TCR) and the co-stimulatory receptor CD28, however sustained and periodic signals from additional co-receptors are now being recognized as critical contributors to the activation of this pathway. Accumulating evidence suggests that many members of the Tumor Necrosis Factor receptor (TNFR) superfamily, TNFR2 (TNFRSF1B), OX40 (TNFRSF4), 4-1BB (TNFRSF9), HVEM (TNFRSF14), and DR3 (TNFRSF25), that are constitutive or inducible on T cells, can directly or indirectly promote activity in the PI3K-Akt pathway. We discuss recent data which suggests that ligation of one TNFR family molecule organizes a signalosome, via TNFR-associated factor (TRAF) adapter proteins in T cell membrane lipid microdomains, that results in the subsequent accumulation of highly concentrated depots of PI3K and Akt in close proximity to TCR signaling units. We propose this may be a generalizable mechanism applicable to other TNFR family molecules that will result in a quantitative contribution of these signalosomes to enhancing and sustaining PI3K and Akt activation triggered by the TCR. We also review data that other TNFR molecules, such as CD40 (TNFRSF5), RANK (TNFRSF11A), FN14 (TNFRSF12A), TACI (TNFRSF13B), BAFFR (TNFRSF13C), and NGFR (TNFRSF16), contribute to the activation of this pathway in diverse cell types through a similar ability to recruit PI3K or Akt into their signaling complexes.
Collapse
Affiliation(s)
- Takanori So
- Department of Microbiology and Immunology, Tohoku University Graduate School of Medicine , Sendai , Japan
| | | |
Collapse
|
40
|
TWEAK-independent Fn14 self-association and NF-κB activation is mediated by the C-terminal region of the Fn14 cytoplasmic domain. PLoS One 2013; 8:e65248. [PMID: 23750247 PMCID: PMC3672086 DOI: 10.1371/journal.pone.0065248] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 04/26/2013] [Indexed: 11/25/2022] Open
Abstract
The tumor necrosis factor (TNF) superfamily member TNF-like weak inducer of apoptosis (TWEAK) is a pro-inflammatory and pro-angiogenic cytokine implicated in physiological tissue regeneration and wound repair. TWEAK binds to a 102-amino acid type I transmembrane cell surface receptor named fibroblast growth factor-inducible 14 (Fn14). TWEAK:Fn14 engagement activates several intracellular signaling cascades, including the NF-κB pathway, and sustained Fn14 signaling has been implicated in the pathogenesis of chronic inflammatory diseases and cancer. Although several groups are developing TWEAK- or Fn14-targeted agents for therapeutic use, much more basic science research is required before we fully understand the TWEAK/Fn14 signaling axis. For example, we and others have proposed that TWEAK-independent Fn14 signaling may occur in cells when Fn14 levels are highly elevated, but this idea has never been tested directly. In this report, we first demonstrate TWEAK-independent Fn14 signaling by showing that an Fn14 deletion mutant that is unable to bind TWEAK can activate the NF-κB pathway in transfected cells. We then show that ectopically-expressed, cell surface-localized Fn14 can self-associate into Fn14 dimers, and we show that Fn14 self-association is mediated by an 18-aa region within the Fn14 cytoplasmic domain. Endogenously-expressed Fn14 as well as ectopically-overexpressed Fn14 could also be detected in dimeric form when cell lysates were subjected to SDS-PAGE under non-reducing conditions. Additional experiments revealed that Fn14 dimerization occurs during cell lysis via formation of an intermolecular disulfide bond at cysteine residue 122. These findings provide insight into the Fn14 signaling mechanism and may aid current studies to develop therapeutic agents targeting this small cell surface receptor.
Collapse
|
41
|
Stephan D, Sbai O, Wen J, Couraud PO, Putterman C, Khrestchatisky M, Desplat-Jégo S. TWEAK/Fn14 pathway modulates properties of a human microvascular endothelial cell model of blood brain barrier. J Neuroinflammation 2013; 10:9. [PMID: 23320797 PMCID: PMC3570290 DOI: 10.1186/1742-2094-10-9] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2012] [Accepted: 12/21/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The TNF ligand family member TWEAK exists as membrane and soluble forms and is involved in the regulation of various human inflammatory pathologies, through binding to its main receptor, Fn14. We have shown that the soluble form of TWEAK has a pro-neuroinflammatory effect in an animal model of multiple sclerosis and we further demonstrated that blocking TWEAK activity during the recruitment phase of immune cells across the blood brain barrier (BBB) was protective in this model. It is now well established that endothelial cells in the periphery and astrocytes in the central nervous system (CNS) are targets of TWEAK. Moreover, it has been shown by others that, when injected into mice brains, TWEAK disrupts the architecture of the BBB and induces expression of matrix metalloproteinase-9 (MMP-9) in the brain. Nevertheless, the mechanisms involved in such conditions are complex and remain to be explored, especially because there is a lack of data concerning the TWEAK/Fn14 pathway in microvascular cerebral endothelial cells. METHODS In this study, we used human cerebral microvascular endothelial cell (HCMEC) cultures as an in vitro model of the BBB to study the effects of soluble TWEAK on the properties and the integrity of the BBB model. RESULTS We showed that soluble TWEAK induces an inflammatory profile on HCMECs, especially by promoting secretion of cytokines, by modulating production and activation of MMP-9, and by expression of cell adhesion molecules. We also demonstrated that these effects of TWEAK are associated with increased permeability of the HCMEC monolayer in the in vitro BBB model. CONCLUSIONS Taken together, the data suggest a role for soluble TWEAK in BBB inflammation and in the promotion of BBB interactions with immune cells. These results support the contention that the TWEAK/Fn14 pathway could contribute at least to the endothelial steps of neuroinflammation.
Collapse
|
42
|
Enwere EK, Holbrook J, Lejmi-Mrad R, Vineham J, Timusk K, Sivaraj B, Isaac M, Uehling D, Al-awar R, LaCasse E, Korneluk RG. TWEAK and cIAP1 regulate myoblast fusion through the noncanonical NF-κB signaling pathway. Sci Signal 2012; 5:ra75. [PMID: 23074266 DOI: 10.1126/scisignal.2003086] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The fusion of mononucleated muscle progenitor cells (myoblasts) into multinucleated muscle fibers is a critical aspect of muscle development and regeneration. We identified the noncanonical nuclear factor κB (NF-κB) pathway as a signaling axis that drives the recruitment of myoblasts into new muscle fibers. Loss of cellular inhibitor of apoptosis 1 (cIAP1) protein led to constitutive activation of the noncanonical NF-κB pathway and an increase in the number of nuclei per myotube. Knockdown of essential mediators of NF-κB signaling, such as p100, RelB, inhibitor of κB kinase α, and NF-κB-inducing kinase, attenuated myoblast fusion in wild-type myoblasts. In contrast, the extent of myoblast fusion was increased when the activity of the noncanonical NF-κB pathway was enhanced by increasing the abundance of p52 and RelB or decreasing the abundance of tumor necrosis factor (TNF) receptor-associated factor 3, an inhibitor of this pathway. Low concentrations of the cytokine TNF-like weak inducer of apoptosis (TWEAK), which preferentially activates the noncanonical NF-κB pathway, also increased myoblast fusion, without causing atrophy or impairing myogenesis. These results identify roles for TWEAK, cIAP1, and noncanonical NF-κB signaling in the regulation of myoblast fusion and highlight a role for cytokine signaling during adult skeletal myogenesis.
Collapse
Affiliation(s)
- Emeka K Enwere
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Rousselet E, Traver S, Monnet Y, Perrin A, Mandjee N, Hild A, Hirsch EC, Zheng TS, Hunot S. Tumor Necrosis Factor-Like Weak Inducer of Apoptosis Induces Astrocyte Proliferation through the Activation of Transforming-Growth Factor-α/Epidermal Growth Factor Receptor Signaling Pathway. Mol Pharmacol 2012; 82:948-57. [DOI: 10.1124/mol.112.079608] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
44
|
Dohi T, Burkly LC. The TWEAK/Fn14 pathway as an aggravating and perpetuating factor in inflammatory diseases; focus on inflammatory bowel diseases. J Leukoc Biol 2012; 92:265-79. [DOI: 10.1189/jlb.0112042] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Taeko Dohi
- Department of Gastroenterology, Research Center for Hepatitis and Immunology, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Linda C. Burkly
- Department of Immunology, Biogen Idec, Cambridge, Massachusetts, USA
| |
Collapse
|
45
|
Liu ZC, Zhou QL. Tumor necrosis factor-like weak inducer of apoptosis and its potential roles in lupus nephritis. Inflamm Res 2012; 61:277-84. [PMID: 22297307 DOI: 10.1007/s00011-011-0420-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Revised: 10/26/2011] [Accepted: 12/14/2011] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION Tumor necrosis factor (TNF)-like weak inducer of apoptosis (TWEAK) is a recently identified proinflammatory cytokine of the TNF superfamily that functions through binding to Fn14 receptor in target cells. TWEAK has multiple biological activities. Studies show that TWEAK plays an important role in immune inflammatory diseases. Recent work has revealed that TWEAK may play an important role in the pathogenesis of kidney damage, including in systemic lupus erythematosus (SLE), where its concentration in urine was correlated with the level of activity of lupus nephritis (LN). OBJECTIVE The major focus of this review is to discuss the recent studies on TWEAK and its possible role in the pathogenesis of LN, and the therapeutic potential of modulating this pathway in LN. RESULTS AND CONCLUSION TWEAK plays a key role in the pathogenesis of LN through activation of multiple down-signaling pathway, inducing proinflammatory cytokines and chemokines, affecting cell proliferation/apoptosis and inducing renal IgG deposition. TWEAK blockade may be a novel therapeutic approach to reducing renal damage in SLE.
Collapse
Affiliation(s)
- Zhi-Chun Liu
- Department of Rheumatology, The Second Affiliated Hospital of Soochow University, Suzhou 215000, Jiangsu, People’s Republic of China
| | | |
Collapse
|
46
|
White BJ, Tarabishy S, Venna VR, Manwani B, Benashski S, McCullough LD, Li J. Protection from cerebral ischemia by inhibition of TGFβ-activated kinase. Exp Neurol 2012; 237:238-45. [PMID: 22683931 DOI: 10.1016/j.expneurol.2012.05.019] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Revised: 04/28/2012] [Accepted: 05/27/2012] [Indexed: 01/09/2023]
Abstract
OBJECTIVE Transforming growth factor-β-activated kinase (TAK1) is a member of the mitogen-activated protein kinase family that plays important roles in apoptosis and inflammatory signaling, both of which are critical components of stroke pathology. TAK1 has recently been identified as a major upstream kinase that phosphorylates and activates adenosine monophosphate-activated protein kinase (AMPK), a major mediator of neuronal injury after experimental cerebral ischemia. We studied the functional role of TAK1 and its mechanistic link with AMPK after stroke. METHODS Male mice were subjected to transient middle cerebral artery occlusion (MCAO). The TAK1 inhibitor 5Z-7-oxozeaenol was injected either intracerebroventricularly or intraperitoneally at various doses and infarct size and functional outcome after long term survival was assessed. Mice with deletion of the AMPK α2 isoform were utilized to assess the contribution of downstream AMPK signaling to stroke outcomes. Levels of pTAK1, pAMPK, and other TAK1 targets including the pro-apoptotic molecule c-Jun-N-terminal kinase (JNK)/c-Jun and the pro-inflammatory protein cyclooxygenase-2 were also examined. RESULTS TAK1 is critical in stroke pathology. Delayed treatment with a TAK1 inhibitor reduced infarct size and improved behavioral outcome even when given several hours after stroke onset. This protective effect may be independent of AMPK activation but was associated with a reduction in JNK and c-Jun signaling. CONCLUSIONS Enhanced TAK1 signaling, via activation of JNK, contributes to cell death in ischemic stroke. TAK1 inhibition is a novel therapeutic approach for stroke as it is neuroprotective with systemic administration, has a delayed therapeutic window, and demonstrates sustained neuroprotective effects.
Collapse
Affiliation(s)
- Benjamin J White
- University of Connecticut School of Medicine, Farmington, CT, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Bhatnagar S, Kumar A. The TWEAK-Fn14 system: breaking the silence of cytokine-induced skeletal muscle wasting. Curr Mol Med 2012; 12:3-13. [PMID: 22082477 PMCID: PMC3257753 DOI: 10.2174/156652412798376107] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Revised: 05/22/2011] [Accepted: 07/30/2011] [Indexed: 01/23/2023]
Abstract
The occurrence of skeletal muscle atrophy, a devastating complication of a large number of disease states and inactivity/disuse conditions, provides a never ending quest to identify novel targets for its therapy. Proinflammatory cytokines are considered the mediators of muscle wasting in chronic diseases; however, their role in disuse atrophy has just begun to be elucidated. An inflammatory cytokine, tumor necrosis factor (TNF)-like weak inducer of apoptosis (TWEAK), has recently been identified as a potent inducer of skeletal muscle wasting. TWEAK activates various proteolytic pathways and stimulates the degradation of myofibril protein both in vitro and in vivo. Moreover, TWEAK mediates the loss of skeletal muscle mass and function in response to denervation, a model of disuse atrophy. Adult skeletal muscle express very low to minimal levels of TWEAK receptor, Fn14. Specific catabolic conditions such as denervation, immobilization, or unloading rapidly increase the expression of Fn14 in skeletal muscle which in turn stimulates the TWEAK activation of various catabolic pathways leading to muscle atrophy. In this article, we have discussed the emerging roles and the mechanisms of action of TWEAK-Fn14 system in skeletal muscle with particular reference to different models of muscle atrophy and injury and its potential to be used as a therapeutic target for prevention of muscle loss.
Collapse
Affiliation(s)
- S Bhatnagar
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | | |
Collapse
|
48
|
A Bioinformatics Resource for TWEAK-Fn14 Signaling Pathway. JOURNAL OF SIGNAL TRANSDUCTION 2012; 2012:376470. [PMID: 22649723 PMCID: PMC3357548 DOI: 10.1155/2012/376470] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 02/03/2012] [Indexed: 01/24/2023]
Abstract
TNF-related weak inducer of apoptosis (TWEAK) is a new member of the TNF superfamily. It signals through TNFRSF12A, commonly known as Fn14. The TWEAK-Fn14 interaction regulates cellular activities including proliferation, migration, differentiation, apoptosis, angiogenesis, tissue remodeling and inflammation. Although TWEAK has been reported to be associated with autoimmune diseases, cancers, stroke, and kidney-related disorders, the downstream molecular events of TWEAK-Fn14 signaling are yet not available in any signaling pathway repository. In this paper, we manually compiled from the literature, in particular those reported in human systems, the downstream reactions stimulated by TWEAK-Fn14 interactions. Our manual amassment of the TWEAK-Fn14 pathway has resulted in cataloging of 46 proteins involved in various biochemical reactions and TWEAK-Fn14 induced expression of 28 genes. We have enabled the availability of data in various standard exchange formats from NetPath, a repository for signaling pathways. We believe that this composite molecular interaction pathway will enable identification of new signaling components in TWEAK signaling pathway. This in turn may lead to the identification of potential therapeutic targets in TWEAK-associated disorders.
Collapse
|
49
|
Abstract
PURPOSE OF REVIEW To discuss the roles and mechanisms of action of tumor necrosis factor-like weak inducer of apoptosis (TWEAK) and tumor necrosis factor receptor-associated factor 6 (TRAF6) in skeletal muscle atrophy. RECENT FINDINGS Proinflammatory cytokines are known to mediate muscle atrophy in many chronic disease states. However, their role in the loss of skeletal muscle mass in disuse conditions has just begun to be elucidated. Further, the initial signaling events leading to the activation of various catabolic pathways in skeletal muscle under different atrophic conditions are also less well understood. The TWEAK-Fn14 system has now been identified as a novel inducer of skeletal muscle wasting. Adult skeletal muscles express minimal levels of Fn14, the bona fide TWEAK receptor. Specific conditions of atrophy such as denervation, immobilization, or unloading rapidly induce the expression of Fn14 leading to TWEAK-induced activation of various proteolytic pathways in skeletal muscle. Recent studies have also demonstrated that the expression and activity of TRAF6 are increased in distinct models of muscle atrophy. Muscle-specific ablation of TRAF6 inhibits the induction of atrophy program in response to starvation, denervation, or cancer cachexia. Moreover, TWEAK also appears to activate some catabolic signaling through TRAF6-dependent mechanisms. SUMMARY Recent findings have uncovered TWEAK and TRAF6 as novel regulators of skeletal muscle atrophy. These proteins should potentially be used as molecular targets for prevention and/or treatment of muscular atrophy in future therapies.
Collapse
Affiliation(s)
- Ashok Kumar
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY 40202, USA.
| | | | | |
Collapse
|
50
|
Burkly LC, Michaelson JS, Zheng TS. TWEAK/Fn14 pathway: an immunological switch for shaping tissue responses. Immunol Rev 2012; 244:99-114. [PMID: 22017434 DOI: 10.1111/j.1600-065x.2011.01054.x] [Citation(s) in RCA: 161] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Our immune system performs the vital function of recognizing and eliminating invading pathogens and malignancies. There is an increasing appreciation that the immune system also actively mediates tissue responses under both physiological and pathological conditions, significantly impacting the inflammatory, fibrogenic, and regenerative components. Likewise, there is a growing understanding of how epithelial, endothelial, and other non-hematopoietic tissue cell types actively contribute to the interplay that shapes tissue responses. While much of the molecular basis underlying the immune regulation of tissue responses remains to be delineated, the tumor necrosis factor (TNF) superfamily ligand/receptor pair of TNF-like weak inducer of apoptosis (TWEAK) and fibroblast growth factor-inducible molecule 14 (Fn14) has now emerged as a key piece of this puzzle. In this review, we first discuss how the usually 'dormant' TWEAK/Fn14 pathway becomes activated specifically in injury and disease contexts. We then summarize how TWEAK-mediated Fn14 signaling triggers a wide range of activities in tissue parenchymal and stromal cells as well as progenitor cells. Finally, we review recent experimental evidence that further supports the functional dichotomy of TWEAK/Fn14 activation in physiological versus pathological tissue responses and its potential therapeutic implications. Whereas transient TWEAK/Fn14 activation promotes productive tissue responses after injury, excessive or persistent TWEAK/Fn14 activation drives pathological tissue responses, leading to progressive damage and degeneration.
Collapse
Affiliation(s)
- Linda C Burkly
- Immunology Discovery Research, Biogen Idec, Inc., Cambridge, MA 02142, USA.
| | | | | |
Collapse
|