1
|
Malamud M, Brown GD. The Dectin-1 and Dectin-2 clusters: C-type lectin receptors with fundamental roles in immunity. EMBO Rep 2024:10.1038/s44319-024-00296-2. [PMID: 39482490 DOI: 10.1038/s44319-024-00296-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/24/2024] [Accepted: 10/14/2024] [Indexed: 11/03/2024] Open
Abstract
The ability of myeloid cells to recognize and differentiate endogenous or exogenous ligands rely on the presence of different transmembrane protein receptors. C-type lectin receptors (CLRs), defined by the presence of a conserved structural motif called C-type lectin-like domain (CTLD), are a crucial family of receptors involved in this process, being able to recognize a diverse range of ligands from glycans to proteins or lipids and capable of initiating an immune response. The Dectin-1 and Dectin-2 clusters involve two groups of CLRs, with genes genomically linked within the natural killer cluster of genes in both humans and mice, and all characterized by the presence of a single extracellular CTLD. Fundamental immune cell functions such as antimicrobial effector mechanisms as well as internalization and presentation of antigens are induced and/or regulated through activatory, or inhibitory signalling pathways triggered by these receptors after ligand binding. In this review, we will discuss the most recent concepts regarding expression, ligands, signaling pathways and functions of each member of the Dectin clusters of CLRs, highlighting the importance and diversity of their functions.
Collapse
Affiliation(s)
- Mariano Malamud
- Medical Research Council (MRC) Centre for Medical Mycology, University of Exeter, Exeter, UK.
| | - Gordon D Brown
- Medical Research Council (MRC) Centre for Medical Mycology, University of Exeter, Exeter, UK.
| |
Collapse
|
2
|
Rynda-Apple A, Reyes Servin J, Lenz J, Roemer J, Benson EE, Hall MN, Shepardson KM. IFN Receptor 2 Regulates TNF-α-Mediated Damaging Inflammation during Aspergillus Pulmonary Infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:1202-1211. [PMID: 39212415 DOI: 10.4049/jimmunol.2200686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 08/09/2024] [Indexed: 09/04/2024]
Abstract
The increased incidence of invasive pulmonary aspergillosis, caused by Aspergillus fumigatus, occurring in patients infected with severe influenza or SARS-CoV-2, suggests that antiviral immune responses create an environment permissive to fungal infection. Our recent evidence suggests that absence of the type I IFN receptor 2 subunit (IFNAR2) of the heterodimeric IFNAR1/2 receptor is allowing for this permissive immune environment of the lung through regulation of damage responses. Because damage is associated with poor outcome to invasive pulmonary aspergillosis, this suggested that IFNAR2 may be involved in A. fumigatus susceptibility. In this study, we determined that absence of IFNAR2 resulted in increased inflammation, morbidity, and damage in the lungs in response to A. fumigatus challenge, whereas absence of IFNAR1 did not. Although the Ifnar2-/- mice had increased morbidity, we found that the Ifnar2-/- mice cleared more conidia compared with both wild-type and Ifnar1-/- mice. However, this early clearance did not prevent invasive disease from developing in the Ifnar2-/- mice as infection progressed. Importantly, by altering the inflamed environment of the Ifnar2-/- mice early during A. fumigatus infection, by neutralizing TNF-α, we were able to reduce the morbidity and fungal clearance in these mice back to wild-type levels. Together, our results establish a distinct role for IFNAR2 in regulating host damage responses to A. fumigatus and contributing to an A. fumigatus-permissive environment through regulation of inflammation. Specifically, our data reveal a role for IFNAR2 in regulating TNF-α-mediated damage and morbidity during A. fumigatus infection.
Collapse
Affiliation(s)
| | - Jazmin Reyes Servin
- Department of Molecular and Cell Biology, University of California, Merced, Merced, CA
| | - Julianna Lenz
- Department of Molecular and Cell Biology, University of California, Merced, Merced, CA
| | - Julia Roemer
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT
| | - Evelyn E Benson
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT
| | - Monica N Hall
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT
| | - Kelly M Shepardson
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT
- Department of Molecular and Cell Biology, University of California, Merced, Merced, CA
| |
Collapse
|
3
|
Wagner AS, Smith FM, Bennin DA, Votava JA, Datta R, Giese MA, Zhao W, Skala MC, Fan J, Keller NP, Huttenlocher A. GATA1-deficient human pluripotent stem cells generate neutrophils with improved antifungal immunity that is mediated by the integrin CD18. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.11.617742. [PMID: 39416161 PMCID: PMC11482877 DOI: 10.1101/2024.10.11.617742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Neutrophils are critical for host defense against fungi. However, the short life span and lack of genetic tractability of primary human neutrophils has limited in vitro analysis of neutrophil-fungal interactions. Human induced pluripotent stem cell (iPSC)-derived neutrophils (iNeutrophils) are a genetically tractable alternative to primary human neutrophils. Here, we show that deletion of the transcription factor GATA1 from human iPSCs results in iNeutrophils with improved antifungal activity against Aspergillus fumigatus. GATA1 knockout (KO) iNeutrophils have increased maturation, antifungal pattern recognition receptor expression and more readily execute neutrophil effector functions compared to wild-type iNeutrophils. iNeutrophils also show a shift in their metabolism following stimulation with fungal β-glucan, including an upregulation of the pentose phosphate pathway (PPP), similar to primary human neutrophils in vitro. Furthermore, we show that deletion of the integrin CD18 attenuates the ability of GATA1-KO iNeutrophils to kill A. fumigatus but is not necessary for the upregulation of PPP. Collectively, these findings support iNeutrophils as a robust system to study human neutrophil antifungal immunity and has identified specific roles for CD18 in the defense response.
Collapse
Affiliation(s)
- Andrew S. Wagner
- Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Frances M. Smith
- Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - David A. Bennin
- Department of Pediatrics, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | | | - Rupsa Datta
- Morgridge Institute for Research, Madison, WI, USA
| | - Morgan A. Giese
- Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Wenxuan Zhao
- Morgridge Institute for Research, Madison, WI, USA
| | | | - Jing Fan
- Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Morgridge Institute for Research, Madison, WI, USA
| | - Nancy P. Keller
- Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Department of Plant Pathology, University of Wisconsin-Madison, WI, USA
| | - Anna Huttenlocher
- Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Department of Pediatrics, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| |
Collapse
|
4
|
Kolostyak Z, Bojcsuk D, Baksa V, Szigeti ZM, Bene K, Czimmerer Z, Boto P, Fadel L, Poliska S, Halasz L, Tzerpos P, Berger WK, Villabona-Rueda A, Varga Z, Kovacs T, Patsalos A, Pap A, Vamosi G, Bai P, Dezso B, Spite M, D’Alessio FR, Szatmari I, Nagy L. EGR2 is an epigenomic regulator of phagocytosis and antifungal immunity in alveolar macrophages. JCI Insight 2024; 9:e164009. [PMID: 39042472 PMCID: PMC11385099 DOI: 10.1172/jci.insight.164009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 07/18/2024] [Indexed: 07/25/2024] Open
Abstract
Alveolar macrophages (AMs) act as gatekeepers of the lung's immune responses, serving essential roles in recognizing and eliminating pathogens. The transcription factor (TF) early growth response 2 (EGR2) has been recently described as required for mature AMs in mice; however, its mechanisms of action have not been explored. Here, we identified EGR2 as an epigenomic regulator and likely direct proximal transcriptional activator in AMs using epigenomic approaches (RNA sequencing, ATAC sequencing, and CUT&RUN). The predicted direct proximal targets of EGR2 included a subset of AM identity genes and ones related to pathogen recognition, phagosome maturation, and adhesion, such as Clec7a, Atp6v0d2, Itgb2, Rhoc, and Tmsb10. We provided evidence that EGR2 deficiency led to impaired zymosan internalization and reduced the capacity to respond to Aspergillus fumigatus. Mechanistically, the lack of EGR2 altered the transcriptional response, secreted cytokines (i.e., CXCL11), and inflammation-resolving lipid mediators (i.e., RvE1) of AMs during in vivo zymosan-induced inflammation, which manifested in impaired resolution. Our findings demonstrated that EGR2 is a key proximal transcriptional activator and epigenomic bookmark in AMs responsible for select, distinct components of cell identity and a protective transcriptional and epigenomic program against fungi.
Collapse
Affiliation(s)
- Zsuzsanna Kolostyak
- Department of Biochemistry and Molecular Biology, Faculty of Medicine
- Doctoral School of Molecular Cell and Immune Biology; and
| | - Dora Bojcsuk
- Department of Biochemistry and Molecular Biology, Faculty of Medicine
| | - Viktoria Baksa
- Department of Molecular Biotechnology and Microbiology, Faculty of Science, University of Debrecen, Debrecen, Hungary
| | - Zsuzsa Mathene Szigeti
- Department of Molecular Biotechnology and Microbiology, Faculty of Science, University of Debrecen, Debrecen, Hungary
| | - Krisztian Bene
- Department of Biochemistry and Molecular Biology, Faculty of Medicine
| | - Zsolt Czimmerer
- Department of Biochemistry and Molecular Biology, Faculty of Medicine
- Institute of Genetics, HUN-REN Biological Research Centre, Szeged, Szeged, Hungary
| | - Pal Boto
- Department of Biochemistry and Molecular Biology, Faculty of Medicine
| | - Lina Fadel
- Department of Biophysics and Cell Biology, and
| | - Szilard Poliska
- Genomic Medicine and Bioinformatic Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Laszlo Halasz
- Departments of Medicine and Biological Chemistry, Johns Hopkins University School of Medicine, Institute for Fundamental Biomedical Research, Johns Hopkins All Children’s Hospital, St. Petersburg, Florida, USA
| | - Petros Tzerpos
- Department of Biochemistry and Molecular Biology, Faculty of Medicine
| | - Wilhelm K. Berger
- Departments of Medicine and Biological Chemistry, Johns Hopkins University School of Medicine, Institute for Fundamental Biomedical Research, Johns Hopkins All Children’s Hospital, St. Petersburg, Florida, USA
| | - Andres Villabona-Rueda
- Division of Pulmonary Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Zsofia Varga
- Department of Biochemistry and Molecular Biology, Faculty of Medicine
- Institute of Genetics, HUN-REN Biological Research Centre, Szeged, Szeged, Hungary
| | | | - Andreas Patsalos
- Departments of Medicine and Biological Chemistry, Johns Hopkins University School of Medicine, Institute for Fundamental Biomedical Research, Johns Hopkins All Children’s Hospital, St. Petersburg, Florida, USA
| | - Attila Pap
- Department of Biochemistry and Molecular Biology, Faculty of Medicine
| | | | - Peter Bai
- Department of Medical Chemistry and
- Research Center for Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- MTA-DE Cell Biology and Signaling Research Group ELKH, Debrecen, Hungary
| | - Balazs Dezso
- Department of Pathology, Faculty of Medicine, and
- Department of Oral Pathology and Microbiology, Faculty of Dentistry, University of Debrecen, Debrecen, Hungary
| | - Matthew Spite
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Franco R. D’Alessio
- Division of Pulmonary Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Istvan Szatmari
- Genomic Medicine and Bioinformatic Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Laszlo Nagy
- Department of Biochemistry and Molecular Biology, Faculty of Medicine
- Departments of Medicine and Biological Chemistry, Johns Hopkins University School of Medicine, Institute for Fundamental Biomedical Research, Johns Hopkins All Children’s Hospital, St. Petersburg, Florida, USA
| |
Collapse
|
5
|
Ellis DA, Jones M, Willems HME, Cheung S, Makullah M, Aimanianda V, Steele C. Fungal chitin is not an independent mediator of allergic fungal asthma severity. Am J Physiol Lung Cell Mol Physiol 2024; 327:L293-L303. [PMID: 38915287 PMCID: PMC11442099 DOI: 10.1152/ajplung.00041.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/28/2024] [Accepted: 06/04/2024] [Indexed: 06/26/2024] Open
Abstract
Chitin, a polysaccharide found in the fungal cell wall and the exoskeletons of house dust mites and cockroaches, has garnered attention as a potential immunoreactive allergen. Mammals have evolved to express chitin-degrading chitinases (acidic mammalian chitinase/AMCase and chitotriosidase) that may modulate immune responses to chitin. We have previously reported that mice deficient in AMCase (Chia-/-) demonstrated better lung function during allergic fungal asthma. As expected, we show that mice overexpressing AMCase (SPAM mice) had worse airway hyperreactivity (AHR) during allergic fungal asthma. We further demonstrate that chitin-positive Aspergillus fumigatus conidia are detectable in the allergic lung during chronic exposure. Lung function in Chia-/- and SPAM mice is directly correlated with the level of chitinase activity during chronic fungal exposure (Chia-/- mice, negligible chitinase activity, lower AHR; SPAM mice, heightened chitinase activity, higher AHR), suggesting that the breakdown of chitin promoted AHR. However, chronic exposure of normal mice to purified A. fumigatus chitin resulted in only moderate inflammatory changes in the lung that were not sufficient to induce AHR. Moreover, despite having dramatic differences in chitinase activity, chronic exposure of Chia-/- and SPAM mice to purified A. fumigatus chitin likewise did not modulate AHR. Collectively, these results indicate that chronic exposure to fungal chitin alone is incapable of driving AHR. Furthermore, our data suggest that the chitinase-mediated degradation of chitin associated with A. fumigatus conidia may facilitate unmasking and/or liberation of other fungal cell wall components that drive inflammatory responses that contribute to AHR.NEW & NOTEWORTHY Humans with asthma sensitized to fungi often have more severe asthma than those who are not fungal-sensitized. Chitin makes up a significant portion of the cell wall of fungi and has been implicated as a pathogenic factor in allergic asthma. Ellis et al. demonstrate that chronic exposure to fungal chitin alone is unable to modulate lung function, even in the presence of differential lung chitinase activity.
Collapse
Affiliation(s)
- Diandra A Ellis
- Department of Microbiology and Immunology, School of Medicine, Tulane University, New Orleans, Louisiana, United States
| | - MaryJane Jones
- Department of Microbiology and Immunology, School of Medicine, Tulane University, New Orleans, Louisiana, United States
| | - Hubertine M E Willems
- Department of Microbiology and Immunology, School of Medicine, Tulane University, New Orleans, Louisiana, United States
| | - Suki Cheung
- Department of Microbiology and Immunology, School of Medicine, Tulane University, New Orleans, Louisiana, United States
| | - Mgayya Makullah
- Department of Microbiology and Immunology, School of Medicine, Tulane University, New Orleans, Louisiana, United States
| | - Vishukumar Aimanianda
- Unité de Mycologie Moléculaire, Institut Pasteur, Université de Paris, CNRS, UMR2000, Paris, France
| | - Chad Steele
- Department of Microbiology and Immunology, School of Medicine, Tulane University, New Orleans, Louisiana, United States
| |
Collapse
|
6
|
Luan J, Zhang Z, Wang Q, Li C, Zhang H, Zhang Y, Peng X, Zhao G, Lin J. The Role of LC3-Associated Phagocytosis Inhibits the Inflammatory Response in Aspergillus fumigatus Keratitis. Invest Ophthalmol Vis Sci 2024; 65:4. [PMID: 38953845 PMCID: PMC11221612 DOI: 10.1167/iovs.65.8.4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 04/18/2024] [Indexed: 07/04/2024] Open
Abstract
Purpose The purpose of this study was to investigate the role and mechanism of microtubule-associated protein light chain-3 (LC3)-associated phagocytosis (LAP) in the immune response to Aspergillus fumigatus (A. fumigatus) keratitis. Methods The formation of single-membrane phagosomes was visualized in the corneas of healthy or A. fumigatus-infected humans and C57BL/6 mice using transmission electron microscopy (TEM). Rubicon siRNA (si-Rubicon) was used to block Rubicon expression. RAW 264.7 cells or mice corneas were infected with A. fumigatus with or without pretreatment of si-Rubicon and scrambled siRNA. RAW 264.7 cells were pretreated with Dectin-1 antibody or Dectin-1 overexpressed plasmid and then stimulated with A. fumigatus. Flow cytometry was used to label macrophages in normal and infected corneas of mice. In mice with A. fumigatus keratitis, the severity of the disease was assessed using clinical scores. We used lentiviral technology to transfer GV348-Ubi-GFP-LC3-II-SV40-Puro Lentivirus into the mouse cornea. The GFP-LC3 fusion protein was visualized in corneal slices using a fluorescence microscope. We detected the mRNA and protein expressions of the inflammatory factors IL-6, IL-1β, and IL-10 using real-time PCR (RT-PCR) and ELISA. We detected the expression of LAP-related proteins Rubicon, ATG-7, Beclin-1, and LC3-II using Western blot or immunofluorescence. Results Accumulation of single-membrane phagosomes within macrophages was observed in the corneas of patients and mice with A. fumigatus keratitis using TEM. Flow cytometry (FCM) analysis results show that the number of macrophages in the cornea of mice significantly increases after infection with A. fumigatus. LAP-related proteins were significantly elevated in the corneas of mice and RAW 264.7 cells after infection with A. fumigatus. The si-Rubicon treatment elevated the clinical score of mice. In A. fumigatus keratitis mice, the si-Rubicon treated group showed significantly higher expression of IL-6 and IL-1β and lower expression of IL-10 and LC3-II compared to the control group. In RAW 264.7 cells, treatment with the Dectin-1 overexpressed plasmid upregulated the expression of LAP-related proteins, a process that was significantly inhibited by the Dectin-1 antibody. Conclusions LAP participates in the anti-inflammatory immune process of fungal keratitis (FK) and exerts an anti-inflammatory effect. LAP is regulated through the Dectin-1 signaling pathway in A. fumigatus keratitis.
Collapse
Affiliation(s)
- Junjie Luan
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Ziyue Zhang
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
- Department of Ophthalmology, Qingdao Central Hospital, Qingdao, Shandong Province, China
| | - Qian Wang
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Cui Li
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Hao Zhang
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Yingxue Zhang
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Xudong Peng
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Guiqiu Zhao
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Jing Lin
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| |
Collapse
|
7
|
Glass E, Robinson SL, Rosowski EE. Zebrafish use conserved CLR and TLR signaling pathways to respond to fungal PAMPs in zymosan. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.24.600417. [PMID: 38979385 PMCID: PMC11230284 DOI: 10.1101/2024.06.24.600417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Pattern recognition receptors (PRRs) such as C-type lectin receptors (CLRs) and Toll-like receptors (TLRs) are used by hosts to recognize pathogen-associated molecular patterns (PAMPs) in microorganisms and to initiate innate immune responses. While PRRs exist across invertebrate and vertebrate species, the functional homology of many of these receptors is still unclear. In this study, we investigate the innate immune response of zebrafish larvae to zymosan, a β-glucan-containing particle derived from fungal cell walls. Macrophages and neutrophils robustly respond to zymosan and are required for zymosan-induced activation of the NF-κB transcription factor. Full activation of NF-κB in response to zymosan depends on Card9/Syk and Myd88, conserved CLR and TLR adaptor proteins, respectively. Two putative CLRs, Clec4c and Sclra, are both required for maximal sensing of zymosan and NF-κB activation. Altogether, we identify conserved PRRs and PRR signaling pathways in larval zebrafish that promote recognition of fungal PAMPs. These results inform modeling of human fungal infections in zebrafish and increase our knowledge of the evolution and conservation of PRR pathways in vertebrates.
Collapse
Affiliation(s)
- Erin Glass
- Department of Biological Sciences, Clemson University, Clemson, SC
- Eukaryotic Pathogens Innovation Center, Clemson University, Clemson, SC
| | - Stephan L. Robinson
- Eukaryotic Pathogens Innovation Center, Clemson University, Clemson, SC
- School of Medicine Greenville, University of South Carolina, Greenville, SC
| | - Emily E. Rosowski
- Department of Biological Sciences, Clemson University, Clemson, SC
- Eukaryotic Pathogens Innovation Center, Clemson University, Clemson, SC
| |
Collapse
|
8
|
Shankar J, Thakur R, Clemons KV, Stevens DA. Interplay of Cytokines and Chemokines in Aspergillosis. J Fungi (Basel) 2024; 10:251. [PMID: 38667922 PMCID: PMC11051073 DOI: 10.3390/jof10040251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/11/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
Aspergillosis is a fungal infection caused by various species of Aspergillus, most notably A. fumigatus. This fungus causes a spectrum of diseases, including allergic bronchopulmonary aspergillosis, aspergilloma, chronic pulmonary aspergillosis, and invasive aspergillosis. The clinical manifestations and severity of aspergillosis can vary depending on individual immune status and the specific species of Aspergillus involved. The recognition of Aspergillus involves pathogen-associated molecular patterns (PAMPs) such as glucan, galactomannan, mannose, and conidial surface proteins. These are recognized by the pathogen recognition receptors present on immune cells such as Toll-like receptors (TLR-1,2,3,4, etc.) and C-type lectins (Dectin-1 and Dectin-2). We discuss the roles of cytokines and pathogen recognition in aspergillosis from both the perspective of human and experimental infection. Several cytokines and chemokines have been implicated in the immune response to Aspergillus infection, including interferon-γ (IFN-γ), tumor necrosis factor-α (TNF-α), CCR4, CCR17, and other interleukins. For example, allergic bronchopulmonary aspergillosis (ABPA) is characterized by Th2 and Th9 cell-type immunity and involves interleukin (IL)-4, IL-5, IL-13, and IL-10. In contrast, it has been observed that invasive aspergillosis involves Th1 and Th17 cell-type immunity via IFN-γ, IL-1, IL-6, and IL-17. These cytokines activate various immune cells and stimulate the production of other immune molecules, such as antimicrobial peptides and reactive oxygen species, which aid in the clearance of the fungal pathogen. Moreover, they help to initiate and coordinate the immune response, recruit immune cells to the site of infection, and promote clearance of the fungus. Insight into the host response from both human and animal studies may aid in understanding the immune response in aspergillosis, possibly leading to harnessing the power of cytokines or cytokine (receptor) antagonists and transforming them into precise immunotherapeutic strategies. This could advance personalized medicine.
Collapse
Affiliation(s)
- Jata Shankar
- Genomic Laboratory, Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat Solan 173234, Himachal Pradesh, India
| | - Raman Thakur
- Department of Medical Laboratory Science, Lovely Professional University, Jalandhar 144001, Punjab, India;
| | - Karl V. Clemons
- California Institute for Medical Research, San Jose, CA 95128, USA; (K.V.C.); (D.A.S.)
- Division of Infectious Diseases and Geographic Medicine, Stanford University Medical School, Stanford, CA 94305, USA
| | - David A. Stevens
- California Institute for Medical Research, San Jose, CA 95128, USA; (K.V.C.); (D.A.S.)
- Division of Infectious Diseases and Geographic Medicine, Stanford University Medical School, Stanford, CA 94305, USA
| |
Collapse
|
9
|
Avelar GM, Pradhan A, Ma Q, Hickey E, Leaves I, Liddle C, Rodriguez Rondon AV, Kaune AK, Shaw S, Maufrais C, Sertour N, Bain JM, Larcombe DE, de Assis LJ, Netea MG, Munro CA, Childers DS, Erwig LP, Brown GD, Gow NAR, Bougnoux ME, d'Enfert C, Brown AJP. A CO 2 sensing module modulates β-1,3-glucan exposure in Candida albicans. mBio 2024; 15:e0189823. [PMID: 38259065 PMCID: PMC10865862 DOI: 10.1128/mbio.01898-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 12/11/2023] [Indexed: 01/24/2024] Open
Abstract
Microbial species capable of co-existing with healthy individuals, such as the commensal fungus Candida albicans, exploit multifarious strategies to evade our immune defenses. These strategies include the masking of immunoinflammatory pathogen-associated molecular patterns (PAMPs) at their cell surface. We reported previously that C. albicans actively reduces the exposure of the proinflammatory PAMP, β-1,3-glucan, at its cell surface in response to host-related signals such as lactate and hypoxia. Here, we show that clinical isolates of C. albicans display phenotypic variability with respect to their lactate- and hypoxia-induced β-1,3-glucan masking. We have exploited this variability to identify responsive and non-responsive clinical isolates. We then performed RNA sequencing on these isolates to reveal genes whose expression patterns suggested potential association with lactate- or hypoxia-induced β-1,3-glucan masking. The deletion of two such genes attenuated masking: PHO84 and NCE103. We examined NCE103-related signaling further because NCE103 has been shown previously to encode carbonic anhydrase, which promotes adenylyl cyclase-protein kinase A (PKA) signaling at low CO2 levels. We show that while CO2 does not trigger β-1,3-glucan masking in C. albicans, the Sch9-Rca1-Nce103 signaling module strongly influences β-1,3-glucan exposure in response to hypoxia and lactate. In addition to identifying a new regulatory module that controls PAMP exposure in C. albicans, our data imply that this module is important for PKA signaling in response to environmental inputs other than CO2.IMPORTANCEOur innate immune defenses have evolved to protect us against microbial infection in part via receptor-mediated detection of "pathogen-associated molecular patterns" (PAMPs) expressed by invading microbes, which then triggers their immune clearance. Despite this surveillance, many microbial species are able to colonize healthy, immune-competent individuals, without causing infection. To do so, these microbes must evade immunity. The commensal fungus Candida albicans exploits a variety of strategies to evade immunity, one of which involves reducing the exposure of a proinflammatory PAMP (β-1,3-glucan) at its cell surface. Most of the β-1,3-glucan is located in the inner layer of the C. albicans cell wall, hidden by an outer layer of mannan fibrils. Nevertheless, some β-1,3-glucan can become exposed at the fungal cell surface. However, in response to certain specific host signals, such as lactate or hypoxia, C. albicans activates an anticipatory protective response that decreases β-1,3-glucan exposure, thereby reducing the susceptibility of the fungus to impending innate immune attack. Here, we exploited the natural phenotypic variability of C. albicans clinical isolates to identify strains that do not display the response to β-1,3-glucan masking signals observed for the reference isolate, SC5314. Then, using genome-wide transcriptional profiling, we compared these non-responsive isolates with responsive controls to identify genes potentially involved in β-1,3-glucan masking. Mutational analysis of these genes revealed that a sensing module that was previously associated with CO2 sensing also modulates β-1,3-glucan exposure in response to hypoxia and lactate in this major fungal pathogen of humans.
Collapse
Affiliation(s)
- Gabriela M. Avelar
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, United Kingdom
| | - Arnab Pradhan
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, United Kingdom
- Medical Research Council Centre for Medical Mycology, School of Biosciences, University of Exeter, Exeter, United Kingdom
| | - Qinxi Ma
- Medical Research Council Centre for Medical Mycology, School of Biosciences, University of Exeter, Exeter, United Kingdom
| | - Emer Hickey
- Medical Research Council Centre for Medical Mycology, School of Biosciences, University of Exeter, Exeter, United Kingdom
| | - Ian Leaves
- Medical Research Council Centre for Medical Mycology, School of Biosciences, University of Exeter, Exeter, United Kingdom
| | - Corin Liddle
- Bioimaging Unit, University of Exeter, Exeter, United Kingdom
| | - Alejandra V. Rodriguez Rondon
- Medical Research Council Centre for Medical Mycology, School of Biosciences, University of Exeter, Exeter, United Kingdom
| | - Ann-Kristin Kaune
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, United Kingdom
| | - Sophie Shaw
- Centre for Genome Enabled Biology and Medicine, University of Aberdeen, Aberdeen, United Kingdom
| | - Corinne Maufrais
- Institut Pasteur, Université Paris Cité, INRAe USC2019, Unité Biologie et Pathogénicité Fongiques, Paris, France
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, Paris, France
| | - Natacha Sertour
- Institut Pasteur, Université Paris Cité, INRAe USC2019, Unité Biologie et Pathogénicité Fongiques, Paris, France
| | - Judith M. Bain
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, United Kingdom
| | - Daniel E. Larcombe
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, United Kingdom
- Medical Research Council Centre for Medical Mycology, School of Biosciences, University of Exeter, Exeter, United Kingdom
| | - Leandro J. de Assis
- Medical Research Council Centre for Medical Mycology, School of Biosciences, University of Exeter, Exeter, United Kingdom
| | - Mihai G. Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
- Department for Immunology & Metabolism, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - Carol A. Munro
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, United Kingdom
| | - Delma S. Childers
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, United Kingdom
| | - Lars P. Erwig
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, United Kingdom
- Johnson-Johnson Innovation, EMEA Innovation Centre, London, United Kingdom
| | - Gordon D. Brown
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, United Kingdom
- Medical Research Council Centre for Medical Mycology, School of Biosciences, University of Exeter, Exeter, United Kingdom
| | - Neil A. R. Gow
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, United Kingdom
- Medical Research Council Centre for Medical Mycology, School of Biosciences, University of Exeter, Exeter, United Kingdom
| | - Marie-Elisabeth Bougnoux
- Institut Pasteur, Université Paris Cité, INRAe USC2019, Unité Biologie et Pathogénicité Fongiques, Paris, France
- Unité de Parasitologie-Mycologie, Service de Microbiologie Clinique, Hôpital Necker-Enfants-Malades, Assistance Publique des Hôpitaux de Paris (APHP), Paris, France
- Université Paris Cité, Paris, France
| | - Christophe d'Enfert
- Institut Pasteur, Université Paris Cité, INRAe USC2019, Unité Biologie et Pathogénicité Fongiques, Paris, France
| | - Alistair J. P. Brown
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, United Kingdom
- Medical Research Council Centre for Medical Mycology, School of Biosciences, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
10
|
Ruchti F, Tuor M, Mathew L, McCarthy NE, LeibundGut-Landmann S. γδ T cells respond directly and selectively to the skin commensal yeast Malassezia for IL-17-dependent fungal control. PLoS Pathog 2024; 20:e1011668. [PMID: 38215167 PMCID: PMC10810444 DOI: 10.1371/journal.ppat.1011668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/25/2024] [Accepted: 12/16/2023] [Indexed: 01/14/2024] Open
Abstract
Stable microbial colonization of the skin depends on tight control by the host immune system. The lipid-dependent yeast Malassezia typically colonizes skin as a harmless commensal and is subject to host type 17 immunosurveillance, but this fungus has also been associated with diverse skin pathologies in both humans and animals. Using a murine model of Malassezia exposure, we show that Vγ4+ dermal γδ T cells expand rapidly and are the major source of IL-17A mediating fungal control in colonized skin. A pool of memory-like Malassezia-responsive Vγ4+ T cells persisted in the skin, were enriched in draining lymph nodes even after fungal clearance, and were protective upon fungal re-exposure up to several weeks later. Induction of γδT17 immunity depended on IL-23 and IL-1 family cytokine signalling, whereas Toll-like and C-type lectin receptors were dispensable. Furthermore, Vγ4+ T cells from Malassezia-exposed hosts were able to respond directly and selectively to Malassezia-derived ligands, independently of antigen-presenting host cells. The fungal moieties detected were shared across diverse species of the Malassezia genus, but not conserved in other Basidiomycota or Ascomycota. These data provide novel mechanistic insight into the induction and maintenance of type 17 immunosurveillance of skin commensal colonization that has significant implications for cutaneous health.
Collapse
Affiliation(s)
- Fiorella Ruchti
- Section of Immunology, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland
- Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Meret Tuor
- Section of Immunology, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland
- Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Liya Mathew
- Centre for Immunobiology, Bart’s and The London School of Medicine and Dentistry, The Blizard Institute, Queen Mary University of London, London, United Kingdom
| | - Neil E McCarthy
- Centre for Immunobiology, Bart’s and The London School of Medicine and Dentistry, The Blizard Institute, Queen Mary University of London, London, United Kingdom
| | - Salomé LeibundGut-Landmann
- Section of Immunology, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland
- Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| |
Collapse
|
11
|
Liu Y, Ouyang Y, You W, Liu W, Cheng Y, Mai X, Shen Z. Physiological roles of human interleukin-17 family. Exp Dermatol 2024; 33:e14964. [PMID: 37905720 DOI: 10.1111/exd.14964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 10/08/2023] [Accepted: 10/13/2023] [Indexed: 11/02/2023]
Abstract
Interleukin-17 s (IL-17s) are well-known proinflammatory cytokines, and their antagonists perform excellently in the treatment of inflammatory skin diseases such as psoriasis. However, their physiological functions have not been given sufficient attention by clinicians. IL-17s can protect the host from extracellular pathogens, maintain epithelial integrity, regulate cognitive processes and modulate adipocyte activity through distinct mechanisms. Here, we present a systematic review concerning the physiological functions of IL-17s. Our goal is not to negate the therapeutic effect of IL-17 antagonists, but to ensure their safe use and reasonably explain the possible adverse events that may occur in their application.
Collapse
Affiliation(s)
- Yucong Liu
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Ye Ouyang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Wanchun You
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Wenqi Liu
- Department of Dermatology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Yufan Cheng
- Department of Dermatology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Xinming Mai
- Medical School, Shenzhen University, Shenzhen, China
| | - Zhu Shen
- Department of Dermatology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| |
Collapse
|
12
|
King J, Dambuza IM, Reid DM, Yuecel R, Brown GD, Warris A. Detailed characterisation of invasive aspergillosis in a murine model of X-linked chronic granulomatous disease shows new insights in infections caused by Aspergillus fumigatus versus Aspergillus nidulans. Front Cell Infect Microbiol 2023; 13:1241770. [PMID: 37724291 PMCID: PMC10505440 DOI: 10.3389/fcimb.2023.1241770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 08/11/2023] [Indexed: 09/20/2023] Open
Abstract
Introduction Invasive aspergillosis (IA) is the most prevalent infectious complication in patients with chronic granulomatous disease (CGD). Yet, understanding of fungal pathogenesis in the CGD host remains limited, particularly with regards to A. nidulans infection. Methods We have used a murine model of X-linked CGD to investigate how the pathogenesis of IA varies between A. fumigatus and A. nidulans, comparing infection in both X-linked CGD (gp91-/-) mice and their parent C57BL/6 (WT) mice. A 14-colour flow cytometry panel was used to assess the cell dynamics over the course of infection, with parallel assessment of pulmonary cytokine production and lung histology. Results We observed a lack of association between pulmonary pathology and infection outcome in gp91-/- mice, with no significant mortality in A. nidulans infected mice. An overwhelming and persistent neutrophil recruitment and IL-1 release in gp91-/- mice following both A. fumigatus and A. nidulans infection was observed, with divergent macrophage, dendritic cell and eosinophil responses and distinct cytokine profiles between the two infections. Conclusion We have provided an in-depth characterisation of the immune response to pulmonary aspergillosis in an X-linked CGD murine model. This provides the first description of distinct pulmonary inflammatory environments in A. fumigatus and A. nidulans infection in X-linked CGD and identifies several new avenues for further research.
Collapse
Affiliation(s)
- Jill King
- Medical Research Council (MRC) Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
- MRC Centre for Medical Mycology Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
- Department of General Paediatrics, Royal Aberdeen Children’s Hospital, Aberdeen, United Kingdom
| | - Ivy M. Dambuza
- Medical Research Council (MRC) Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
- MRC Centre for Medical Mycology Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Delyth M. Reid
- MRC Centre for Medical Mycology Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Raif Yuecel
- Exeter Centre for Cytometrics, University of Exeter, Exeter, United Kingdom
- Iain Fraser Cytometry Centre, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Gordon D. Brown
- Medical Research Council (MRC) Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
- MRC Centre for Medical Mycology Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Adilia Warris
- Medical Research Council (MRC) Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
- MRC Centre for Medical Mycology Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| |
Collapse
|
13
|
Steffan BN, Calise D, Park SC, Niu M, Yang J, Hammock BD, Jones M, Steele C, Keller NP. Loss of the mammalian G-protein coupled receptor, G2A, modulates severity of invasive pulmonary aspergillosis. Front Immunol 2023; 14:1173544. [PMID: 37435068 PMCID: PMC10331294 DOI: 10.3389/fimmu.2023.1173544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 06/01/2023] [Indexed: 07/13/2023] Open
Abstract
Background Aspergillus fumigatus is a well-known opportunistic pathogen that causes a range of diseases including the often-fatal disease, invasive pulmonary aspergillosis (IPA), in immunocompromised populations. The severity of IPA is dependent on both host- and pathogen-derived signaling molecules that mediate host immunity and fungal growth. Oxylipins are bioactive oxygenated fatty acids known to influence host immune response and Aspergillus developmental programs. Aspergillus synthesizes 8-HODE and 5,8-diHODE that have structural similarities to 9-HODE and 13-HODE, which are known ligands of the host G-protein-coupled receptor G2A (GPR132). Materials and methods Oxylipins were extracted from infected lung tissue to assess fungal oxylipin production and the Pathhunter β-arrestin assay was used to assess agonist and antagonist activity by fungal oxylipins on G2A. An immunocompetent model of A. fumigatus infection was used to assess changes in survival and immune responses for G2A-/- mice. Results Here we report that Aspergillus oxylipins are produced in lung tissue of infected mice and in vitro ligand assays suggest 8-HODE is a G2A agonist and 5,8-diHODE is a partial antagonist. To address the hypothesis that G2A could be involved in the progression of IPA, we assessed the response of G2A-/- mice to A. fumigatus infection. G2A-/- mice showed a survival advantage over wild-type mice; this was accompanied by increased recruitment of G2A-/- neutrophils and increased levels of inflammatory markers in A. fumigatus-infected lungs. Conclusions We conclude that G2A suppresses host inflammatory responses to Aspergillus fumigatus although it remains unclear if fungal oxylipins are involved in G2A activities.
Collapse
Affiliation(s)
- Breanne N. Steffan
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, United States
| | - Dante Calise
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, United States
| | - Sung Chul Park
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, United States
| | - Mengyao Niu
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, United States
| | - Jun Yang
- Department of Entomology, University of California-Davis, Davis, CA, United States
| | - Bruce D. Hammock
- Department of Entomology, University of California-Davis, Davis, CA, United States
| | - MaryJane Jones
- Department of Microbiology and Immunology, School of Medicine, Tulane University, New Orleans, LA, United States
| | - Chad Steele
- Department of Microbiology and Immunology, School of Medicine, Tulane University, New Orleans, LA, United States
| | - Nancy P. Keller
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, United States
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
14
|
Ribeiro HAL, Scindia Y, Mehrad B, Laubenbacher R. COVID-19-associated pulmonary aspergillosis in immunocompetent patients: a virtual patient cohort study. J Math Biol 2023; 87:6. [PMID: 37306747 DOI: 10.1007/s00285-023-01940-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 05/10/2023] [Accepted: 05/21/2023] [Indexed: 06/13/2023]
Abstract
The opportunistic fungus Aspergillus fumigatus infects the lungs of immunocompromised hosts, including patients undergoing chemotherapy or organ transplantation. More recently however, immunocompetent patients with severe SARS-CoV2 have been reported to be affected by COVID-19 Associated Pulmonary Aspergillosis (CAPA), in the absence of the conventional risk factors for invasive aspergillosis. This paper explores the hypothesis that contributing causes are the destruction of the lung epithelium permitting colonization by opportunistic pathogens. At the same time, the exhaustion of the immune system, characterized by cytokine storms, apoptosis, and depletion of leukocytes may hinder the response to A. fumigatus infection. The combination of these factors may explain the onset of invasive aspergillosis in immunocompetent patients. We used a previously published computational model of the innate immune response to infection with Aspergillus fumigatus. Variation of model parameters was used to create a virtual patient population. A simulation study of this virtual patient population to test potential causes for co-infection in immunocompetent patients. The two most important factors determining the likelihood of CAPA were the inherent virulence of the fungus and the effectiveness of the neutrophil population, as measured by granule half-life and ability to kill fungal cells. Varying these parameters across the virtual patient population generated a realistic distribution of CAPA phenotypes observed in the literature. Computational models are an effective tool for hypothesis generation. Varying model parameters can be used to create a virtual patient population for identifying candidate mechanisms for phenomena observed in actual patient populations.
Collapse
Affiliation(s)
- Henrique A L Ribeiro
- Department of Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, University of Florida, Gainesville, 32610, FL, USA
| | - Yogesh Scindia
- Department of Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, University of Florida, Gainesville, 32610, FL, USA
| | - Borna Mehrad
- Department of Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, University of Florida, Gainesville, 32610, FL, USA
| | - Reinhard Laubenbacher
- Department of Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, University of Florida, Gainesville, 32610, FL, USA.
| |
Collapse
|
15
|
Myszor IT, Gudmundsson GH. Modulation of innate immunity in airway epithelium for host-directed therapy. Front Immunol 2023; 14:1197908. [PMID: 37251385 PMCID: PMC10213533 DOI: 10.3389/fimmu.2023.1197908] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 04/24/2023] [Indexed: 05/31/2023] Open
Abstract
Innate immunity of the mucosal surfaces provides the first-line defense from invading pathogens and pollutants conferring protection from the external environment. Innate immune system of the airway epithelium consists of several components including the mucus layer, mucociliary clearance of beating cilia, production of host defense peptides, epithelial barrier integrity provided by tight and adherens junctions, pathogen recognition receptors, receptors for chemokines and cytokines, production of reactive oxygen species, and autophagy. Therefore, multiple components interplay with each other for efficient protection from pathogens that still can subvert host innate immune defenses. Hence, the modulation of innate immune responses with different inducers to boost host endogenous front-line defenses in the lung epithelium to fend off pathogens and to enhance epithelial innate immune responses in the immunocompromised individuals is of interest for host-directed therapy. Herein, we reviewed possibilities of modulation innate immune responses in the airway epithelium for host-directed therapy presenting an alternative approach to standard antibiotics.
Collapse
Affiliation(s)
- Iwona T. Myszor
- Faculty of Life and Environmental Sciences, Biomedical Center, University of Iceland, Reykjavik, Iceland
| | - Gudmundur Hrafn Gudmundsson
- Faculty of Life and Environmental Sciences, Biomedical Center, University of Iceland, Reykjavik, Iceland
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
16
|
Singh RP, Bhardwaj A. β-glucans: a potential source for maintaining gut microbiota and the immune system. Front Nutr 2023; 10:1143682. [PMID: 37215217 PMCID: PMC10198134 DOI: 10.3389/fnut.2023.1143682] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 04/03/2023] [Indexed: 05/24/2023] Open
Abstract
The human gastrointestinal (GI) tract holds a complex and dynamic population of microbial communities, which exerts a marked influence on the host physiology during homeostasis and disease conditions. Diet is considered one of the main factors in structuring the gut microbiota across a lifespan. Intestinal microbial communities play a vital role in sustaining immune and metabolic homeostasis as well as protecting against pathogens. The negatively altered gut bacterial composition has related to many inflammatory diseases and infections. β-glucans are a heterogeneous assemblage of glucose polymers with a typical structure comprising a leading chain of β-(1,4) and/or β-(1,3)-glucopyranosyl units with various branches and lengths as a side chain. β-glucans bind to specific receptors on immune cells and initiate immune responses. However, β-glucans from different sources differ in their structures, conformation, physical properties, and binding affinity to receptors. How these properties modulate biological functions in terms of molecular mechanisms is not known in many examples. This review provides a critical understanding of the structures of β-glucans and their functions for modulating the gut microbiota and immune system.
Collapse
Affiliation(s)
- Ravindra Pal Singh
- Department of Industrial Biotechnology, Gujarat Biotechnology University, Gandhinagar, Gujarat, India
| | | |
Collapse
|
17
|
Yoshikawa FSY, Wakatsuki M, Yoshida K, Yabe R, Torigoe S, Yamasaki S, Barber GN, Saijo S. Dectin-1/IL-15 Pathway Affords Protection against Extrapulmonary Aspergillus fumigatus Infection by Regulating Natural Killer Cell Survival. J Innate Immun 2023; 15:397-411. [PMID: 36657412 PMCID: PMC10015709 DOI: 10.1159/000527188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 09/21/2022] [Indexed: 01/20/2023] Open
Abstract
Aspergillus fumigatus is a ubiquitous, yet potentially pathogenic, mold. The immune system employs innate receptors, such as dectin-1, to recognize fungal pathogens, but the immunological networks that afford protection are poorly explored. Here, we investigated the role of dectin-1 in anti-A. fumigatus response in an experimental model of acute invasive aspergillosis. Mice lacking dectin-1 presented enhanced signs of inflammation, with increased production of inflammatory cytokines and neutrophil infiltration, quickly succumbing to the infection. Curiously, resistance did not require T/B lymphocytes or IL-17. Instead, the main effector function of dectin-1 was the preservation of the NK cell population in the kidneys by the provision of the cytokine IL-15. While the depletion of NK cells impaired host defense in wild-type mice, IL-15 administration restored antifungal responses in dectin-1-deficient mice. Our results uncover a new effector mechanism for dectin-1 in anti-Aspergillus defense, adding an alternative approach to understand the pathophysiology of this infection.
Collapse
Affiliation(s)
- Fábio S Y Yoshikawa
- Division of Molecular Immunology, Medical Mycology Research Center, Chiba University, Chiba, Japan,
| | - Maki Wakatsuki
- Division of Molecular Immunology, Medical Mycology Research Center, Chiba University, Chiba, Japan
| | - Kosuke Yoshida
- Division of Molecular Immunology, Medical Mycology Research Center, Chiba University, Chiba, Japan
| | - Rikio Yabe
- Division of Molecular Immunology, Medical Mycology Research Center, Chiba University, Chiba, Japan
| | - Shota Torigoe
- Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Sho Yamasaki
- Division of Molecular Immunology, Medical Mycology Research Center, Chiba University, Chiba, Japan
- Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
- Laboratory of Molecular Immunology, Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
- Division of Molecular Design, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Glen N Barber
- Department of Cell Biology, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Shinobu Saijo
- Division of Molecular Immunology, Medical Mycology Research Center, Chiba University, Chiba, Japan
| |
Collapse
|
18
|
Woodring T, Deepe GS, Levitz SM, Wuethrich M, Klein BS. They shall not grow mold: Soldiers of innate and adaptive immunity to fungi. Semin Immunol 2023; 65:101673. [PMID: 36459927 PMCID: PMC10311222 DOI: 10.1016/j.smim.2022.101673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Indexed: 11/30/2022]
Abstract
Fungi are ubiquitous commensals, seasoned predators, and important agents of emerging infectious diseases [1 ]. The immune system assumes the essential responsibility for responding intelligently to the presence of known and novel fungi to maintain host health. In this Review, we describe the immune responses to pathogenic fungi and the varied array of fungal agents confronting the vertebrate host within the broader context of fungal and animal evolution. We provide an overview of the mechanistic details of innate and adaptive antifungal immune responses, as well as ways in which these basic mechanisms support the development of vaccines and immunotherapies.
Collapse
Affiliation(s)
- Therese Woodring
- Departments of Pediatrics, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison WI, USA
| | - George S Deepe
- Department of Medicine, Division of Infectious Diseases, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Stuart M Levitz
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Marcel Wuethrich
- Departments of Pediatrics, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison WI, USA
| | - Bruce S Klein
- Departments of Pediatrics, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison WI, USA; Departments of Internal Medicine, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison WI, USA; Departments of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison WI, USA.
| |
Collapse
|
19
|
de Assis LJ, Bain JM, Liddle C, Leaves I, Hacker C, Peres da Silva R, Yuecel R, Bebes A, Stead D, Childers DS, Pradhan A, Mackenzie K, Lagree K, Larcombe DE, Ma Q, Avelar GM, Netea MG, Erwig LP, Mitchell AP, Brown GD, Gow NAR, Brown AJP. Nature of β-1,3-Glucan-Exposing Features on Candida albicans Cell Wall and Their Modulation. mBio 2022; 13:e0260522. [PMID: 36218369 PMCID: PMC9765427 DOI: 10.1128/mbio.02605-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 01/15/2023] Open
Abstract
Candida albicans exists as a commensal of mucosal surfaces and the gastrointestinal tract without causing pathology. However, this fungus is also a common cause of mucosal and systemic infections when antifungal immune defenses become compromised. The activation of antifungal host defenses depends on the recognition of fungal pathogen-associated molecular patterns (PAMPs), such as β-1,3-glucan. In C. albicans, most β-1,3-glucan is present in the inner cell wall, concealed by the outer mannan layer, but some β-1,3-glucan becomes exposed at the cell surface. In response to host signals, such as lactate, C. albicans induces the Xog1 exoglucanase, which shaves exposed β-1,3-glucan from the cell surface, thereby reducing phagocytic recognition. We show here that β-1,3-glucan is exposed at bud scars and punctate foci on the lateral wall of yeast cells, that this exposed β-1,3-glucan is targeted during phagocytic attack, and that lactate-induced masking reduces β-1,3-glucan exposure at bud scars and at punctate foci. β-1,3-Glucan masking depends upon protein kinase A (PKA) signaling. We reveal that inactivating PKA, or its conserved downstream effectors, Sin3 and Mig1/Mig2, affects the amounts of the Xog1 and Eng1 glucanases in the C. albicans secretome and modulates β-1,3-glucan exposure. Furthermore, perturbing PKA, Sin3, or Mig1/Mig2 attenuates the virulence of lactate-exposed C. albicans cells in Galleria. Taken together, the data are consistent with the idea that β-1,3-glucan masking contributes to Candida pathogenicity. IMPORTANCE Microbes that coexist with humans have evolved ways of avoiding or evading our immunological defenses. These include the masking by these microbes of their "pathogen-associated molecular patterns" (PAMPs), which are recognized as "foreign" and used to activate protective immunity. The commensal fungus Candida albicans masks the proinflammatory PAMP β-1,3-glucan, which is an essential component of its cell wall. Most of this β-1,3-glucan is hidden beneath an outer layer of the cell wall on these microbes, but some can become exposed at the fungal cell surface. Using high-resolution confocal microscopy, we examine the nature of the exposed β-1,3-glucan at C. albicans bud scars and at punctate foci on the lateral cell wall, and we show that these features are targeted by innate immune cells. We also reveal that downstream effectors of protein kinase A (Mig1/Mig2, Sin3) regulate the secretion of major glucanases, modulate the levels of β-1,3-glucan exposure, and influence the virulence of C. albicans in an invertebrate model of systemic infection. Our data support the view that β-1,3-glucan masking contributes to immune evasion and the virulence of a major fungal pathogen of humans.
Collapse
Affiliation(s)
- Leandro José de Assis
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - Judith M. Bain
- Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Corin Liddle
- Bioimaging Unit, University of Exeter, Exeter, United Kingdom
| | - Ian Leaves
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | | | - Roberta Peres da Silva
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - Raif Yuecel
- Exeter Centre for Cytomics, University of Exeter, Exeter, United Kingdom
| | - Attila Bebes
- Exeter Centre for Cytomics, University of Exeter, Exeter, United Kingdom
| | - David Stead
- Aberdeen Proteomics Facility, Rowett Institute, University of Aberdeen, Aberdeen, United Kingdom
| | - Delma S. Childers
- Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Arnab Pradhan
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - Kevin Mackenzie
- Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Katherine Lagree
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| | - Daniel E. Larcombe
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - Qinxi Ma
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - Gabriela Mol Avelar
- Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Mihai G. Netea
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, Netherlands
- Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
- Department for Immunology & Metabolism, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - Lars P. Erwig
- Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
- Johnson-Johnson Innovation, EMEA Innovation Centre, London, United Kingdom
| | - Aaron P. Mitchell
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| | - Gordon D. Brown
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - Neil A. R. Gow
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - Alistair J. P. Brown
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
20
|
Griffiths JS, Orr SJ, Morton CO, Loeffler J, White PL. The Use of Host Biomarkers for the Management of Invasive Fungal Disease. J Fungi (Basel) 2022; 8:jof8121307. [PMID: 36547640 PMCID: PMC9784708 DOI: 10.3390/jof8121307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 12/03/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Invasive fungal disease (IFD) causes severe morbidity and mortality, and the number of IFD cases is increasing. Exposure to opportunistic fungal pathogens is inevitable, but not all patients with underlying diseases increasing susceptibility to IFD, develop it. IFD diagnosis currently uses fungal biomarkers and clinical risk/presentation to stratify high-risk patients and classifies them into possible, probable, and proven IFD. However, the fungal species responsible for IFD are highly diverse and present numerous diagnostic challenges, which culminates in the empirical anti-fungal treatment of patients at risk of IFD. Recent studies have focussed on host-derived biomarkers that may mediate IFD risk and can be used to predict, and even identify IFD. The identification of novel host genetic variants, host gene expression changes, and host protein expression (cytokines and chemokines) associated with increased risk of IFD has enhanced our understanding of why only some patients at risk of IFD actually develop disease. Furthermore, these host biomarkers when incorporated into predictive models alongside conventional diagnostic techniques enhance predictive and diagnostic results. Once validated in larger studies, host biomarkers associated with IFD may optimize the clinical management of populations at risk of IFD. This review will summarise the latest developments in the identification of host biomarkers for IFD, their use in predictive modelling and their potential application/usefulness for informing clinical decisions.
Collapse
Affiliation(s)
- James S. Griffiths
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King’s College London, London WC2R 2LS, UK
| | - Selinda J. Orr
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Science, Queen’s University Belfast, Belfast BT9 7BL, UK
| | | | - Juergen Loeffler
- Department of Internal Medicine II, University Hospital of Würzburg, 97070 Würzburg, Germany
| | - P. Lewis White
- Public Health Wales, Microbiology Cardiff, University Hospital of Wales, Heath Park, Cardiff CF14 4XW, UK
- Correspondence:
| |
Collapse
|
21
|
Neuroimmune Responses in a New Experimental Animal Model of Cerebral Aspergillosis. mBio 2022; 13:e0225422. [PMID: 36040029 PMCID: PMC9600342 DOI: 10.1128/mbio.02254-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Exposure of immunosuppressed individuals to the opportunistic fungal pathogen Aspergillus fumigatus may result in invasive pulmonary aspergillosis (IPA), which can lead to the development of cerebral aspergillosis (CA), a highly lethal infection localized in the central nervous system (CNS). There are no experimental models of CA that effectively mimic human disease, resulting in a considerable knowledge gap regarding mechanisms of neurological pathogenicity and neuroimmune responses during infection. In this report, immunosuppressed mice (via acute, high-dose corticosteroid administration) challenged with A. fumigatus resting conidia intranasally, followed a day later by a 70-fold lower inoculum of pre-swollen conidia intravenously (IN + IV + steroid), demonstrated increased weight loss, signs of severe clinical disease, increased fungal burden in the brain, and significant reduction in survival compared to immunosuppressed mice challenged intranasally only (IN + steroid) or non-immunosuppressed mice challenged both intranasally and intravenously (IN + IV). The IN + IV + steroid group demonstrated significant decreases in monocytes, eosinophils, dendritic cells (DCs), and invasive natural killer T (iNKT) cells, but not neutrophils or γδ T cells, in the brain compared to the IN + IV group. Likewise, the IN + IV + steroid group had significantly lower levels of interleukin (IL)-1β, IL-6, IL-17A, CC motif chemokine ligand 3 (CCL3), CXC chemokine ligand 10 (CXCL10), and vascular endothelial growth factor (VEGF) in the brain compared to the IN + IV group. IN + IV + steroid was superior to both IN + IV + chemotherapy (cytarabine + daunorubicin) and IN + IV + neutropenia for the development of CA. In conclusion, we have developed a well-defined, physiologically relevant model of disseminated CA in corticosteroid-induced immunosuppressed mice with a primary pulmonary infection. This model will serve to advance understanding of disease mechanisms, identify immunopathogenic processes, and help define the protective neuroinflammatory response to CA. IMPORTANCE Invasive fungal infections (IFIs) result in significant mortality in immunosuppressed individuals. Of these, invasive pulmonary aspergillosis (IPA), caused by the opportunistic mold Aspergillus fumigatus, is the most lethal. Lethality in IPA is due to two main factors: destruction of the lung leading to compromised pulmonary function, and dissemination of the organism to extrapulmonary organs. Of these, the CNS is the most common site of dissemination. However, very little is known regarding the pathogenesis of or immune response during cerebral aspergillosis, which is directly due to the lack of an animal model that incorporates immunosuppression, lung infection, and consistent dissemination to the CNS/brain. In this report, we have developed a new experimental animal model of CA which includes the above parameters and characterized the neuroimmune response. We further compared this disseminated CA model to two additional immunosuppressive strategies. Overall, this model of disseminated CA following IPA in an immunosuppressed host provides a novel platform for studying the efficacy of antifungal drugs and immunotherapies for improving disease outcomes.
Collapse
|
22
|
He Q, Li M, Cao J, Zhang M, Feng C. Diagnosis values of Dectin-1 and IL-17 levels in plasma for invasive pulmonary aspergillosis in bronchiectasis. Front Cell Infect Microbiol 2022; 12:1018499. [PMID: 36304934 PMCID: PMC9592802 DOI: 10.3389/fcimb.2022.1018499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 09/27/2022] [Indexed: 11/29/2022] Open
Abstract
Background Among immunocompetent patients, patients with bronchiectasis are considered to be a high-risk group for invasive pulmonary aspergillosis (IPA). Early diagnosis and treatment can improve the prognosis of patients. Objectives We aimed to investigate the diagnostic value of Dectin-1 and IL-17 for diagnosing IPA with bronchiectasis. Methods We retrospectively collected data on patients with bronchiectasis who had been hospitalized in the Third Affiliated Hospital of Soochow University between September 2018 to December 2021. Dectin-1, IL-17 and GM were measured by enzyme-linked immunosorbent assays. Results A total of 129 patients were analyzed in the study, of whom 33 had proven or probable IPA with bronchiectasis. The remaining 96 patients served as controls. The plasma Dectin-1 and IL-17 levels in the IPA group were significantly higher than that in the control group (P=0.005; P<0.001). The plasma GM, BALF GM, plasma Dectin-1 and IL-17 assays had sensitivities of 39.4%, 62.5%, 69.7% and 78.8%, respectively, and specificities of 89.2%, 91.5%, 72.9% and 71.9%, respectively. The sensitivity of Dectin-1 and IL-17 in plasma was higher than that in plasma and BALF GM. while the specificity is lower than that of plasma and BALF GM. The diagnostic sensitivity and specificity of plasma GM combined with IL-17 for IPA in bronchiectasis were greater than 80%. The combination of plasma GM and IL-17 can improve the sensitivity of the GM test, but does not reduce the diagnostic specificity. The plasma Dectin-1 and IL-17 showed positive linear correlations with the bronchiectasis severity Index (BSI) score in linear regression. Conclusions Plasma Dectin-1 and IL-17 levels were significantly higher in bronchiectasis patients with IPA. The sensitivity of Dectin-1 and IL-17 was superior to that of GM for the diagnosis of IPA in patients with bronchiectasis. The combination of GM and IL-17 in plasma is helpful for the diagnosis of IPA in bronchiectasis patients who cannot tolerate invasive procedures.
Collapse
|
23
|
Sharma J, Mudalagiriyappa S, Nanjappa SG. T cell responses to control fungal infection in an immunological memory lens. Front Immunol 2022; 13:905867. [PMID: 36177012 PMCID: PMC9513067 DOI: 10.3389/fimmu.2022.905867] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 08/22/2022] [Indexed: 11/24/2022] Open
Abstract
In recent years, fungal vaccine research emanated significant findings in the field of antifungal T-cell immunity. The generation of effector T cells is essential to combat many mucosal and systemic fungal infections. The development of antifungal memory T cells is integral for controlling or preventing fungal infections, and understanding the factors, regulators, and modifiers that dictate the generation of such T cells is necessary. Despite the deficiency in the clear understanding of antifungal memory T-cell longevity and attributes, in this review, we will compile some of the existing literature on antifungal T-cell immunity in the context of memory T-cell development against fungal infections.
Collapse
Affiliation(s)
| | | | - Som Gowda Nanjappa
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
24
|
Cai L, Gao P, Wang Z, Dai C, Ning Y, Ilkit M, Xue X, Xiao J, Chen C. Lung and gut microbiomes in pulmonary aspergillosis: Exploring adjunctive therapies to combat the disease. Front Immunol 2022; 13:988708. [PMID: 36032147 PMCID: PMC9411651 DOI: 10.3389/fimmu.2022.988708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Species within the Aspergillus spp. cause a wide range of infections in humans, including invasive pulmonary aspergillosis, chronic pulmonary aspergillosis, and allergic bronchopulmonary aspergillosis, and are associated with high mortality rates. The incidence of pulmonary aspergillosis (PA) is on the rise, and the emergence of triazole-resistant Aspergillus spp. isolates, especially Aspergillus fumigatus, limits the efficacy of mold-active triazoles. Therefore, host-directed and novel adjunctive therapies are required to more effectively combat PA. In this review, we focus on PA from a microbiome perspective. We provide a general overview of the effects of the lung and gut microbiomes on the growth of Aspergillus spp. and host immunity. We highlight the potential of the microbiome as a therapeutic target for PA.
Collapse
Affiliation(s)
- Liuyang Cai
- Shanghai Engineering Research Center of Lung Transplantation, Shanghai, China
- Basic School of Medicine, Second Military Medical University (Naval Medical University), Shanghai, China
| | - Peigen Gao
- Shanghai Engineering Research Center of Lung Transplantation, Shanghai, China
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zeyu Wang
- Shanghai Engineering Research Center of Lung Transplantation, Shanghai, China
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Chenyang Dai
- Shanghai Engineering Research Center of Lung Transplantation, Shanghai, China
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ye Ning
- Shanghai Engineering Research Center of Lung Transplantation, Shanghai, China
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Macit Ilkit
- Division of Mycology, Department of Microbiology, Faculty of Medicine, University of Çukurova, Adana, Turkey
| | - Xiaochun Xue
- Department of Pharmacy, 905th Hospital of People’s Liberation Army of China (PLA) Navy, Shanghai, China
- *Correspondence: Xiaochun Xue, ; Jinzhou Xiao, ; Chang Chen,
| | - Jinzhou Xiao
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, China
- *Correspondence: Xiaochun Xue, ; Jinzhou Xiao, ; Chang Chen,
| | - Chang Chen
- Shanghai Engineering Research Center of Lung Transplantation, Shanghai, China
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
- *Correspondence: Xiaochun Xue, ; Jinzhou Xiao, ; Chang Chen,
| |
Collapse
|
25
|
Matthaiou EI, Chiu W, Conrad C, Hsu J. Macrophage Lysosomal Alkalinization Drives Invasive Aspergillosis in a Mouse Cystic Fibrosis Model of Airway Transplantation. J Fungi (Basel) 2022; 8:751. [PMID: 35887506 PMCID: PMC9321820 DOI: 10.3390/jof8070751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/05/2022] [Accepted: 07/08/2022] [Indexed: 01/25/2023] Open
Abstract
Cystic fibrosis (CF) lung transplant recipients (LTRs) exhibit a disproportionately high rate of life-threatening invasive aspergillosis (IA). Loss of the cystic fibrosis transmembrane conductance regulator (CFTR-/-) in macrophages (mφs) has been associated with lyosomal alkalinization. We hypothesize that this alkalinization would persist in the iron-laden post-transplant microenvironment increasing the risk of IA. To investigate our hypothesis, we developed a murine CF orthotopic tracheal transplant (OTT) model. Iron levels were detected by immunofluorescence staining and colorimetric assays. Aspergillus fumigatus (Af) invasion was evaluated by Grocott methenamine silver staining. Phagocytosis and killing of Af conidia were examined by flow cytometry and confocal microscopy. pH and lysosomal acidification were measured by LysoSensorTM and LysotrackerTM, respectively. Af was more invasive in the CF airway transplant recipient compared to the WT recipient (p < 0.05). CFTR-/- mφs were alkaline at baseline, a characteristic that was increased with iron-overload. These CFTR-/- mφs were unable to phagocytose and kill Af conidia (p < 0.001). Poly(lactic-co-glycolic acid) (PLGA) nanoparticles acidified lysosomes, restoring the CFTR-/- mφs’ ability to clear conidia. Our results suggest that CFTR-/- mφs’ alkalinization interacts with the iron-loaded transplant microenvironment, decreasing the CF-mφs’ ability to kill Af conidia, which may explain the increased risk of IA. Therapeutic pH modulation after transplantation could decrease the risk of IA.
Collapse
Affiliation(s)
- Efthymia Iliana Matthaiou
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Stanford University School of Medicine, Stanford, CA 94304, USA; (E.I.M.); (W.C.)
| | - Wayland Chiu
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Stanford University School of Medicine, Stanford, CA 94304, USA; (E.I.M.); (W.C.)
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Carol Conrad
- Department of Pediatrics, Pulmonary Medicine, Stanford University School of Medicine, Stanford, CA 94304, USA;
| | - Joe Hsu
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Stanford University School of Medicine, Stanford, CA 94304, USA; (E.I.M.); (W.C.)
| |
Collapse
|
26
|
Computational Modeling of Macrophage Iron Sequestration during Host Defense against Aspergillus. mSphere 2022; 7:e0007422. [PMID: 35862797 PMCID: PMC9429928 DOI: 10.1128/msphere.00074-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Iron is essential to the virulence of Aspergillus species, and restricting iron availability is a critical mechanism of antimicrobial host defense. Macrophages recruited to the site of infection are at the crux of this process, employing multiple intersecting mechanisms to orchestrate iron sequestration from pathogens. To gain an integrated understanding of how this is achieved in aspergillosis, we generated a transcriptomic time series of the response of human monocyte-derived macrophages to Aspergillus and used this and the available literature to construct a mechanistic computational model of iron handling of macrophages during this infection. We found an overwhelming macrophage response beginning 2 to 4 h after exposure to the fungus, which included upregulated transcription of iron import proteins transferrin receptor-1, divalent metal transporter-1, and ZIP family transporters, and downregulated transcription of the iron exporter ferroportin. The computational model, based on a discrete dynamical systems framework, consisted of 21 3-state nodes, and was validated with additional experimental data that were not used in model generation. The model accurately captures the steady state and the trajectories of most of the quantitatively measured nodes. In the experimental data, we surprisingly found that transferrin receptor-1 upregulation preceded the induction of inflammatory cytokines, a feature that deviated from model predictions. Model simulations suggested that direct induction of transferrin receptor-1 (TfR1) after fungal recognition, independent of the iron regulatory protein-labile iron pool (IRP-LIP) system, explains this finding. We anticipate that this model will contribute to a quantitative understanding of iron regulation as a fundamental host defense mechanism during aspergillosis. IMPORTANCE Invasive pulmonary aspergillosis is a major cause of death among immunosuppressed individuals despite the best available therapy. Depriving the pathogen of iron is an essential component of host defense in this infection, but the mechanisms by which the host achieves this are complex. To understand how recruited macrophages mediate iron deprivation during the infection, we developed and validated a mechanistic computational model that integrates the available information in the field. The insights provided by this approach can help in designing iron modulation therapies as anti-fungal treatments.
Collapse
|
27
|
Wu DM, He M, Zhao YY, Deng SH, Liu T, Zhang T, Zhang F, Wang YY, Xu Y. Increased susceptibility of irradiated mice to Aspergillus fumigatus infection via NLRP3/GSDMD pathway in pulmonary bronchial epithelia. Cell Commun Signal 2022; 20:98. [PMID: 35761358 PMCID: PMC9238178 DOI: 10.1186/s12964-022-00907-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/24/2022] [Indexed: 11/23/2022] Open
Abstract
Background Aspergillus fumigatus infection is difficult to diagnose clinically and can develop into invasive pulmonary aspergillosis, which has a high fatality rate. The incidence of Aspergillus fumigatus infection has increased die to widespread application of radiotherapy technology. However, knowledge regarding A. fumigatus infection following radiation exposure is limited, and the underlying mechanism remains unclear. In this study, we established a mouse model to explore the effect of radiation on A. fumigatus infection and the associated mechanisms. Methods In this study, a mouse model of A. fumigatus infection after radiation was established by irradiating with 5 Gy on the chest and instilling 5 × 107/ml Aspergillus fumigatus conidia into trachea after 24 h to explore the effect and study its function and mechanism. Mice were compared among the following groups: normal controls (CON), radiation only (RA), infection only (Af), and radiation + infection (RA + Af). Staining analyses were used to detect infection and damage in lung tissues. Changes in protein and mRNA levels of pyroptosis-related molecules were assessed by western blot analysis and quantitative reverse transcription polymerase chain reaction, respectively. Protein concentrations in the serum and alveolar lavage fluid were also measured. An immunofluorescence colocalization analysis was performed to confirm that NLRP3 inflammasomes activated pyroptosis. Results Radiation destroyed the pulmonary epithelial barrier and significantly increased the pulmonary fungal burden of A. fumigatus. The active end of caspase-1 and gasdermin D (GSDMD) were highly expressed even after infection. Release of interleukin-18 (IL-18) and interleukin-1β (IL-1β) provided further evidence of pyroptosis. NLRP3 knockout inhibited pyroptosis, which effectively attenuated damage to the pulmonary epithelial barrier and reduced the burden of A. fumigatus. Conclusions Our findings indicated that the activation of NLRP3 inflammasomes following radiation exposure increased susceptibility to A. fumigatus infection. Due to pyroptosis in lung epithelial cells, it resulted in the destruction of the lung epithelial barrier and further damage to lung tissue. Moreover, we found that NLRP3 knockout effectively inhibited the pyroptosis and reducing susceptibility to A. fumigatus infection and further lung damage. Overall, our results suggest that NLRP3/GSDMD pathway mediated-pyroptosis in the lungs may be a key event in this process and provide new insights into the underlying mechanism of infection. Video abstract
Supplementary Information The online version contains supplementary material available at 10.1186/s12964-022-00907-2.
Collapse
Affiliation(s)
- Dong-Ming Wu
- School of Clinical Medicine, Chengdu Medical College, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, People's Republic of China
| | - Miao He
- School of Clinical Medicine, Chengdu Medical College, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, People's Republic of China
| | - Yang-Yang Zhao
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, Sichuan, People's Republic of China
| | - Shi-Hua Deng
- School of Clinical Medicine, Chengdu Medical College, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, People's Republic of China
| | - Teng Liu
- School of Clinical Medicine, Chengdu Medical College, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, People's Republic of China
| | - Ting Zhang
- School of Clinical Medicine, Chengdu Medical College, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, People's Republic of China
| | - Feng Zhang
- School of Clinical Medicine, Chengdu Medical College, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, People's Republic of China
| | - Yuan-Yi Wang
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, Sichuan, People's Republic of China
| | - Ying Xu
- School of Clinical Medicine, Chengdu Medical College, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, People's Republic of China.
| |
Collapse
|
28
|
Aspergillus Endophthalmitis: Epidemiology, Pathobiology, and Current Treatments. J Fungi (Basel) 2022; 8:jof8070656. [PMID: 35887412 PMCID: PMC9318612 DOI: 10.3390/jof8070656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/21/2022] [Accepted: 06/16/2022] [Indexed: 02/04/2023] Open
Abstract
Fungal endophthalmitis is one of the leading causes of vision loss worldwide. Post-operative and traumatic injuries are major contributing factors resulting in ocular fungal infections in healthy and, more importantly, immunocompromised individuals. Among the fungal pathogens, the Aspergillus species, Aspergillus fumigatus, continues to be more prevalent in fungal endophthalmitis patients. However, due to overlapping clinical symptoms with other endophthalmitis etiology, fungal endophthalmitis pose a challenge in its diagnosis and treatment. Hence, it is critical to understand its pathobiology to develop and deploy proper therapeutic interventions for combating Aspergillus infections. This review highlights the different modes of Aspergillus transmission and the host immune response during endophthalmitis. Additionally, we discuss recent advancements in the diagnosis of fungal endophthalmitis. Finally, we comprehensively summarize various antifungal regimens and surgical options for the treatment of Aspergillus endophthalmitis.
Collapse
|
29
|
Phosphatidylinositol 3-Kinase (PI3K) Orchestrates Aspergillus fumigatus-Induced Eosinophil Activation Independently of Canonical Toll-Like Receptor (TLR)/C-Type-Lectin Receptor (CLR) Signaling. mBio 2022; 13:e0123922. [PMID: 35695427 PMCID: PMC9426586 DOI: 10.1128/mbio.01239-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Eosinophilia is associated with various persisting inflammatory diseases and often coincides with chronic fungal infections or fungal allergy as in the case of allergic bronchopulmonary aspergillosis (ABPA). Here, we show that intranasal administration of live Aspergillus fumigatus conidia causes fatal lung damage in eosinophilic interleukin-5 (IL-5)-transgenic mice. To further investigate the activation of eosinophils by A. fumigatus, we established a coculture system of mouse bone marrow-derived eosinophils (BMDE) with different A. fumigatus morphotypes and analyzed the secretion of cytokines, chemokines, and eicosanoids. A. fumigatus-stimulated BMDE upregulated expression of CD11b and downregulated CD62L and CCR3. They further secreted several proinflammatory mediators, including IL-4, IL-13, IL-18, macrophage inflammatory protein-1α (MIP-1α)/CC chemokine ligand 3 (CCL3), MIP-1β/CCL4, and thromboxane. This effect required direct interaction and adherence between eosinophils and A. fumigatus, as A. fumigatus culture supernatants or A. fumigatus mutant strains with impaired adhesion elicited a rather poor eosinophil response. Unexpectedly, canonical Toll-like receptor (TLR) or C-type-lectin receptor (CLR) signaling was largely dispensable, as the absence of MYD88, TRIF, or caspase recruitment domain-containing protein 9 (CARD9) resulted in only minor alterations. However, transcriptome analysis indicated a role for the PI3K-AKT-mTOR pathway in A. fumigatus-induced eosinophil activation. Correspondingly, we could show that phosphatidylinositol 3-kinase (PI3K) inhibitors successfully prevent A. fumigatus-induced eosinophil activation. The PI3K pathway in eosinophils may therefore serve as a potential drug target to interfere with undesired eosinophil activation in fungus-elicited eosinophilic disorders.
Collapse
|
30
|
Mentrup T, Stumpff-Niggemann AY, Leinung N, Schlosser C, Schubert K, Wehner R, Tunger A, Schatz V, Neubert P, Gradtke AC, Wolf J, Rose-John S, Saftig P, Dalpke A, Jantsch J, Schmitz M, Fluhrer R, Jacobsen ID, Schröder B. Phagosomal signalling of the C-type lectin receptor Dectin-1 is terminated by intramembrane proteolysis. Nat Commun 2022; 13:1880. [PMID: 35388002 PMCID: PMC8987071 DOI: 10.1038/s41467-022-29474-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 03/14/2022] [Indexed: 11/23/2022] Open
Abstract
Sensing of pathogens by pattern recognition receptors (PRR) is critical to initiate protective host defence reactions. However, activation of the immune system has to be carefully titrated to avoid tissue damage necessitating mechanisms to control and terminate PRR signalling. Dectin-1 is a PRR for fungal β-glucans on immune cells that is rapidly internalised after ligand-binding. Here, we demonstrate that pathogen recognition by the Dectin-1a isoform results in the formation of a stable receptor fragment devoid of the ligand binding domain. This fragment persists in phagosomal membranes and contributes to signal transduction which is terminated by the intramembrane proteases Signal Peptide Peptidase-like (SPPL) 2a and 2b. Consequently, immune cells lacking SPPL2b demonstrate increased anti-fungal ROS production, killing capacity and cytokine responses. The identified mechanism allows to uncouple the PRR signalling response from delivery of the pathogen to degradative compartments and identifies intramembrane proteases as part of a regulatory circuit to control anti-fungal immune responses. Dectin-1 is a critical component of the innate sensing repertoire which is involved in pattern based recognition of fungal pathogens. Here the authors show that intramembrane proteolysis is involved in the regulation of the antifungal host response by termination of the phagosomal signalling of Dectin-1.
Collapse
Affiliation(s)
- Torben Mentrup
- Institute of Physiological Chemistry, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | | | - Nadja Leinung
- Institute of Physiological Chemistry, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Christine Schlosser
- Biochemistry and Molecular Biology, Institute of Theoretical Medicine, Medical Faculty, University of Augsburg, Augsburg, Germany
| | - Katja Schubert
- Research Group Microbial Immunology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany
| | - Rebekka Wehner
- Institute of Immunology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,National Center for Tumor Diseases (NCT), Partner Site Dresden, Dresden, Germany.,German Cancer Consortium (DKTK), Partner Site Dresden, Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Antje Tunger
- Institute of Immunology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,National Center for Tumor Diseases (NCT), Partner Site Dresden, Dresden, Germany
| | - Valentin Schatz
- Institute of Clinical Microbiology and Hygiene, University Hospital of Regensburg and University of Regensburg, Regensburg, Germany
| | - Patrick Neubert
- Institute of Clinical Microbiology and Hygiene, University Hospital of Regensburg and University of Regensburg, Regensburg, Germany
| | - Ann-Christine Gradtke
- Institute of Physiological Chemistry, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Janina Wolf
- Biochemical Institute, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Stefan Rose-John
- Biochemical Institute, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Paul Saftig
- Biochemical Institute, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Alexander Dalpke
- Institute of Medical Microbiology and Virology, University Hospital Carl Gustav Carus, Medical Faculty, Technische Universität Dresden, Dresden, Germany
| | - Jonathan Jantsch
- Institute of Clinical Microbiology and Hygiene, University Hospital of Regensburg and University of Regensburg, Regensburg, Germany
| | - Marc Schmitz
- Institute of Immunology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,National Center for Tumor Diseases (NCT), Partner Site Dresden, Dresden, Germany.,German Cancer Consortium (DKTK), Partner Site Dresden, Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Regina Fluhrer
- Biochemistry and Molecular Biology, Institute of Theoretical Medicine, Medical Faculty, University of Augsburg, Augsburg, Germany
| | - Ilse D Jacobsen
- Research Group Microbial Immunology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany.,Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Bernd Schröder
- Institute of Physiological Chemistry, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
31
|
Wurster S, Albert ND, Bharadwaj U, Kasembeli MM, Tarrand JJ, Daver N, Kontoyiannis DP. Blockade of the PD-1/PD-L1 Immune Checkpoint Pathway Improves Infection Outcomes and Enhances Fungicidal Host Defense in a Murine Model of Invasive Pulmonary Mucormycosis. Front Immunol 2022; 13:838344. [PMID: 35251033 PMCID: PMC8896628 DOI: 10.3389/fimmu.2022.838344] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/02/2022] [Indexed: 12/21/2022] Open
Abstract
Anecdotal clinical reports suggested a benefit of adjunct immune checkpoint inhibitors (ICIs) to treat invasive mucormycosis. However, proof-of-concept data in animal models and mechanistic insights into the effects of ICIs on host defense against Mucorales are lacking. Therefore, we studied the effects of PD-1 and PD-L1 inhibitors (4 doses of 250 µg/kg) on outcomes and immunopathology of invasive pulmonary mucormycosis (IPM) in cyclophosphamide- and cortisone acetate-immunosuppressed mice. Rhizopus arrhizus-infected mice receiving either of the ICI treatments had significantly improved survival, less morbidity, and lower fungal burden compared to isotype-treated infected mice. While early improvement of morbidity/mortality was comparable between the ICI treatments, anti-PD-L1 provided more consistent sustained protection through day 7 post-infection than anti-PD-1. Both ICIs enhanced the fungicidal activity of ex-vivo splenocytes and effectively counteracted T-cell exhaustion; however, macrophages of ICI-treated mice showed compensatory upregulation of other checkpoint markers. Anti-PD-1 elicited stronger pulmonary release of proinflammatory cytokines and chemokines than anti-PD-L1, but also induced cytokines associated with potentially unfavorable type 2 T-helper-cell and regulatory T-cell responses. Although no signs of hyperinflammatory toxicity were observed, mice with IPM receiving ICIs, particularly anti-PD-1, had elevated serum levels of IL-6, a cytokine linked to ICI toxicities. Altogether, inhibition of the PD-1/PD-L1 pathway improved clinical outcomes of IPM in immunosuppressed mice, even without concomitant antifungals. PD-L1 inhibition yielded more favorable immune responses and more consistent protection from IPM-associated morbidity and mortality than PD-1 blockade. Future dose-effect studies are needed to define the “sweet spot” between ICI-induced augmentation of antifungal immunity and potential immunotoxicities.
Collapse
Affiliation(s)
- Sebastian Wurster
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Nathaniel D Albert
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Uddalak Bharadwaj
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Moses M Kasembeli
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jeffrey J Tarrand
- Department of Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Naval Daver
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Dimitrios P Kontoyiannis
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
32
|
Namvar S, Labram B, Rowley J, Herrick S. Aspergillus fumigatus-Host Interactions Mediating Airway Wall Remodelling in Asthma. J Fungi (Basel) 2022; 8:jof8020159. [PMID: 35205913 PMCID: PMC8879933 DOI: 10.3390/jof8020159] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/29/2022] [Accepted: 02/01/2022] [Indexed: 12/03/2022] Open
Abstract
Asthma is a chronic heterogeneous respiratory condition that is mainly associated with sensitivity to airborne agents such as pollen, dust mite products and fungi. Key pathological features include increased airway inflammation and airway wall remodelling. In particular, goblet cell hyperplasia, combined with excess mucus secretion, impairs clearance of the inhaled foreign material. Furthermore, structural changes such as subepithelial fibrosis and increased smooth muscle hypertrophy collectively contribute to deteriorating airway function and possibility of exacerbations. Current pharmacological therapies focused on airway wall remodelling are limited, and as such, are an area of unmet clinical need. Sensitisation to the fungus, Aspergillus fumigatus, is associated with enhanced asthma severity, bronchiectasis, and hospitalisation. How Aspergillus fumigatus may drive airway structural changes is unclear, although recent evidence points to a central role of the airway epithelium. This review provides an overview of the airway pathology in patients with asthma and fungal sensitisation, summarises proposed airway epithelial cell-fungal interactions and discusses the initiation of a tissue remodelling response. Related findings from in vivo animal models are included given the limited analysis of airway pathology in patients. Lastly, an important role for Aspergillus fumigatus-derived proteases in triggering a cascade of damage-repair events through upregulation of airway epithelial-derived factors is proposed.
Collapse
Affiliation(s)
- Sara Namvar
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester and Manchester Academic Health Science Centre, Manchester M13 9PT, UK; (B.L.); (J.R.)
- School of Science, Engineering and Environment, University of Salford, Salford M5 4WT, UK
- Correspondence: (S.N.); (S.H.)
| | - Briony Labram
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester and Manchester Academic Health Science Centre, Manchester M13 9PT, UK; (B.L.); (J.R.)
| | - Jessica Rowley
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester and Manchester Academic Health Science Centre, Manchester M13 9PT, UK; (B.L.); (J.R.)
| | - Sarah Herrick
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester and Manchester Academic Health Science Centre, Manchester M13 9PT, UK; (B.L.); (J.R.)
- Correspondence: (S.N.); (S.H.)
| |
Collapse
|
33
|
Chen F, Qasir D, Morris AC. Invasive Pulmonary Aspergillosis in Hospital and Ventilator-Associated Pneumonias. Semin Respir Crit Care Med 2022; 43:234-242. [PMID: 35042260 DOI: 10.1055/s-0041-1739472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Pneumonia is the commonest nosocomial infection complicating hospital stay, with both non-ventilated hospital-acquired pneumonia (HAP) and ventilator-associated pneumonia (VAP) occurring frequently amongst patients in intensive care. Aspergillus is an increasingly recognized pathogen amongst patients with HAP and VAP, and is associated with significantly increased mortality if left untreated.Invasive pulmonary aspergillosis (IPA) was originally identified in patients who had been profoundly immunosuppressed, however, this disease can also occur in patients with relative immunosuppression such as critically ill patients in intensive care unit (ICU). Patients in ICU commonly have several risk factors for IPA, with the inflamed pulmonary environment providing a niche for aspergillus growth.An understanding of the true prevalence of this condition amongst ICU patients, and its specific rate in patients with HAP or VAP is hampered by difficulties in diagnosis. Establishing a definitive diagnosis requires tissue biopsy, which is seldom practical in critically ill patients, so imperfect proxy measures are required. Clinical and radiological findings in ventilated patients are frequently non-specific. The best-established test is galactomannan antigen level in bronchoalveolar lavage fluid, although this must be interpreted in the clinical context as false positive results can occur. Acknowledging these limitations, the best estimates of the prevalence of IPA range from 0.3 to 5% amongst all ICU patients, 12% amongst patients with VAP and 7 to 28% amongst ventilated patients with influenza.Antifungal triazoles including voriconazole are the first-line therapy choice in most cases. Amphotericin has excellent antimold coverage, but a less advantageous side effect profile. Echinocandins are less effective against IPA, but may play a role in rescue therapy, or as an adjuvant to triazole therapy.A high index of suspicion for IPA should be maintained when investigating patients with HAP or VAP, especially when they have specific risk factors or are not responding to appropriate empiric antibacterial therapy.
Collapse
Affiliation(s)
- Fangyue Chen
- JVF Intensive Care Unit, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Danyal Qasir
- School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Andrew Conway Morris
- JVF Intensive Care Unit, Addenbrooke's Hospital, Cambridge, United Kingdom.,Department of Medicine, Division of Anaesthesia, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
34
|
Tran HTT, Truong AD, Chu NT, Vu HN, Nguyen HT, Nguyen T, Siti F, Lee H, Leon AD, Yersin AG, Dang HV. Inhibition of African swine fever virus replication by β-glucan. Open Vet J 2022; 12:1027-1034. [PMID: 36650869 PMCID: PMC9805760 DOI: 10.5455/ovj.2022.v12.i6.31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/22/2022] [Indexed: 12/30/2022] Open
Abstract
Background African swine fever (ASF) is one of the most important diseases in pigs because of its effects on all ages and breeds. To date, commercial vaccines and drugs for the prevention of ASF are lacking in the market and the survival of African swine fever virus (ASFV) in various environmental, farm, and or feed matrices has allowed the virus to remain, causing new outbreaks in the pig population. Besides biosecurity and animal husbandry management practices, the improvement of the host immune responses is critical to control, managing, and preventing ASF. Aim In this study, we investigated the protective role of β-glucan against ASFV infection using a porcine alveolar macrophage (PAM) model. Methods The effects of β-glucan on cell proliferation were evaluated by using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. The potential effects of β-glucan against a field ASFV strain isolated in Vietnam were further examined by real-time PCR and hemadsorption assays. The interferon (IFN)-α and interleukin (IL)-6 protein production induced by β-glucan was determined using a sandwich enzyme-linked immunosorbent assay. Results Our results demonstrated that the β-glucan additive possessed an immune stimulus factor against ASFV. Specifically, protection of PAMs against ASFV infection in vitro was observed at 12 hours (p < 0.05) at the tested doses (30 and 50 µg/ml) as induced by incubation with β-glucan for 2 hours. These effects remained until 24 hours after post-infection. Additionally, at a high dose (50 µg/ml), pre-treatment with the β-glucan statistically increased the expression levels of IFNα and IL-6 when compared to untreated groups or only ASFV infection. Conclusion Together, these findings indicated that the β-glucan may protect the host against ASFV infection via the multiple cellular immune mechanisms.
Collapse
Affiliation(s)
- Ha Thi Thanh Tran
- Department of Biochemistry and Immunology, National Institute of Veterinary Research, 86 Truong Chinh, Dong Da, Hanoi 100000, Vietnam,Both authors contributed equally to this work
| | - Anh Duc Truong
- Department of Biochemistry and Immunology, National Institute of Veterinary Research, 86 Truong Chinh, Dong Da, Hanoi 100000, Vietnam,Both authors contributed equally to this work
| | - Nhu Thi Chu
- Department of Biochemistry and Immunology, National Institute of Veterinary Research, 86 Truong Chinh, Dong Da, Hanoi 100000, Vietnam
| | - Hoai Nam Vu
- Department of Biochemistry and Immunology, National Institute of Veterinary Research, 86 Truong Chinh, Dong Da, Hanoi 100000, Vietnam
| | - Huyen Thi Nguyen
- Department of Biochemistry and Immunology, National Institute of Veterinary Research, 86 Truong Chinh, Dong Da, Hanoi 100000, Vietnam
| | - Tinh Nguyen
- Kemin Animal Nutrition and Health, Asia Pacific 12 Senoko Drive, 758200 Singapore
| | - Fatimah Siti
- Kemin Animal Nutrition and Health, Asia Pacific 12 Senoko Drive, 758200 Singapore
| | - Hans Lee
- Kemin Animal Nutrition and Health, Asia Pacific 12 Senoko Drive, 758200 Singapore
| | - Alexander De Leon
- Kemin Animal Nutrition and Health, Asia Pacific 12 Senoko Drive, 758200 Singapore
| | | | - Hoang Vu Dang
- Department of Biochemistry and Immunology, National Institute of Veterinary Research, 86 Truong Chinh, Dong Da, Hanoi 100000, Vietnam,Corresponding Author: Hoang Vu Dang. Department of Biochemistry and Immunology, National Institute of Veterinary Research, Hanoi, Vietnam.
| |
Collapse
|
35
|
Kanjanapruthipong T, Sukphopetch P, Reamtong O, Isarangkul D, Muangkaew W, Thiangtrongjit T, Sansurin N, Fongsodsri K, Ampawong S. Cytoskeletal Alteration Is an Early Cellular Response in Pulmonary Epithelium Infected with Aspergillus fumigatus Rather than Scedosporium apiospermum. MICROBIAL ECOLOGY 2022; 83:216-235. [PMID: 33890146 DOI: 10.1007/s00248-021-01750-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 04/02/2021] [Indexed: 06/12/2023]
Abstract
Invasive aspergillosis and scedosporiosis are life-threatening fungal infections with similar clinical manifestations in immunocompromised patients. Contrarily, Scedosporium apiospermum is susceptible to some azole derivative but often resistant to amphotericin B. Histopathological examination alone cannot diagnose these two fungal species. Pathogenesis studies could contribute to explore candidate protein markers for new diagnosis and treatment methods leading to a decrease in mortality. In the present study, proteomics was conducted to identify significantly altered proteins in A549 cells infected with or without Aspergillus fumigatus and S. apiospermum as measured at initial invasion. Protein validation was performed with immunogold labelling alongside immunohistochemical techniques in infected A549 cells and lungs from murine models. Further, cytokine production was measured, using the Bio-Plex-Multiplex immunoassay. The cytoskeletal proteins HSPA9, PA2G4, VAT1, PSMA2, PEX1, PTGES3, KRT1, KRT9, CLIP1 and CLEC20A were mainly changed during A. fumigatus infection, while the immunologically activated proteins WNT7A, GAPDH and ANXA2 were principally altered during S. apiospermum infection. These proteins are involved in fungal internalisation and structural destruction leading to pulmonary disorders. Interleukin (IL)-21, IL-1α, IL-22, IL-2, IL-8, IL-12, IL-17A, interferon-γ and tumour necrosis factor-α were upregulated in both aspergillosis and scedosporiosis, although more predominately in the latter, in accordance with chitin synthase-1 and matrix metalloproteinase levels. Our results demonstrated that during invasion, A. fumigatus primarily altered host cellular integrity, whereas S. apiospermum chiefly induced and extensively modulated host immune responses.
Collapse
Affiliation(s)
- Tapanee Kanjanapruthipong
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, Ratchawithi Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Passanesh Sukphopetch
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Ratchawithi Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Onrapak Reamtong
- Department of Molecular Tropical Medicine and Genetic, Faculty of Tropical Medicine, Mahidol University, Ratchawithi Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Duangnate Isarangkul
- Department of Microbiology, Faculty of Science, Mahidol University, 272, Rama VI Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Watcharamat Muangkaew
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Ratchawithi Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Tipparat Thiangtrongjit
- Department of Molecular Tropical Medicine and Genetic, Faculty of Tropical Medicine, Mahidol University, Ratchawithi Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Nichapa Sansurin
- Northeast Laboratory Animal Center, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Kamonpan Fongsodsri
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, Ratchawithi Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Sumate Ampawong
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, Ratchawithi Road, Ratchathewi, Bangkok, 10400, Thailand.
| |
Collapse
|
36
|
Mold, Mycotoxins and a Dysregulated Immune System: A Combination of Concern? Int J Mol Sci 2021; 22:ijms222212269. [PMID: 34830149 PMCID: PMC8619365 DOI: 10.3390/ijms222212269] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 12/14/2022] Open
Abstract
Fungi represent one of the most diverse and abundant eukaryotes on earth. The interplay between mold exposure and the host immune system is still not fully elucidated. Literature research focusing on up-to-date publications is providing a heterogenous picture of evidence and opinions regarding the role of mold and mycotoxins in the development of immune diseases. While the induction of allergic immune responses by molds is generally acknowledged, other direct health effects like the toxic mold syndrome are controversially discussed. However, recent observations indicate a particular importance of mold/mycotoxin exposure in individuals with pre-existing dysregulation of the immune system, due to exacerbation of underlying pathophysiology including allergic and non-allergic chronic inflammatory diseases, autoimmune disorders, and even human immunodeficiency virus (HIV) disease progression. In this review, we focus on the impact of mycotoxins regarding their impact on disease progression in pre-existing immune dysregulation. This is complemented by experimental in vivo and in vitro findings to present cellular and molecular modes of action. Furthermore, we discuss hypothetical mechanisms of action, where evidence is missing since much remains to be discovered.
Collapse
|
37
|
Functionalized niosomes as a smart delivery device in cancer and fungal infection. Eur J Pharm Sci 2021; 168:106052. [PMID: 34740786 DOI: 10.1016/j.ejps.2021.106052] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/13/2021] [Accepted: 10/25/2021] [Indexed: 12/17/2022]
Abstract
Various diseases remain untreated due to lack of suitable therapeutic moiety or a suitable drug delivery device, especially where toxicities and side effects are the primary reason for concern. Cancer and fungal infections are diseases where treatment schedules are not completed due to severe side effects or lengthy treatment protocols. Advanced treatment approaches such as active targeting and inhibition of angiogenesis may be preferred method for the treatment for malignancy over the conventional method. Niosomes may be a better alternative drug delivery carrier for various therapeutic moieties (either hydrophilic or hydrophobic) and also due to ease of surface modification, non-immunogenicity and economical. Active targeting approach may be done by targeting the receptors through coupling of suitable ligand on niosomal surface. Moreover, various receptors (CD44, folate, epidermal growth factor receptor (EGFR) & Vascular growth factor receptor (VGFR)) expressed by malignant cells have also been reviewed. The preparation of suitable niosomal formulation also requires considerable attention, and its formulation depends upon various factors such as selection of non-ionic surfactant, method of fabrication, and fabrication parameters. A combination therapy (dual drug and immunotherapy) has been proposed for the treatment of fungal infection with special consideration for surface modification with suitable ligand on niosomal surface to sensitize the receptors (C-type lectin receptors, Toll-like receptors & Nucleotide-binding oligomerization domain-like receptors) present on immune cells involved in fungal immunity. Certain gene silencing concept has also been discussed as an advanced alternative treatment for cancer by silencing the mRNA at molecular level using short interfering RNA (si-RNA).
Collapse
|
38
|
Lim JY, Kim YJ, Woo SA, Jeong JW, Lee YR, Kim CH, Park HM. The LAMMER Kinase, LkhA, Affects Aspergillus fumigatus Pathogenicity by Modulating Reproduction and Biosynthesis of Cell Wall PAMPs. Front Cell Infect Microbiol 2021; 11:756206. [PMID: 34722342 PMCID: PMC8548842 DOI: 10.3389/fcimb.2021.756206] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 09/27/2021] [Indexed: 02/01/2023] Open
Abstract
The LAMMER kinase in eukaryotes is a well-conserved dual-specificity kinase. Aspergillus species cause a wide spectrum of diseases called aspergillosis in humans, depending on the underlying immune status of the host, such as allergy, aspergilloma, and invasive aspergillosis. Aspergillus fumigatus is the most common opportunistic fungal pathogen that causes invasive aspergillosis. Although LAMMER kinase has various functions in morphology, development, and cell cycle regulation in yeast and filamentous fungi, its function in A. fumigatus is not known. We performed molecular studies on the function of the A. fumigatus LAMMER kinase, AfLkhA, and reported its involvement in multiple cellular processes, including development and virulence. Deletion of AflkhA resulted in defects in colonial growth, production of conidia, and sexual development. Transcription and genetic analyses indicated that AfLkhA modulates the expression of key developmental regulatory genes. The AflkhA-deletion strain showed increased production of gliotoxins and protease activity. When conidia were challenged with alveolar macrophages, enodocytosis of conidia by macrophages was increased in the AflkhA-deletion strain, resulting from changes in expression of the cell wall genes and thus content of cell wall pathogen-associated molecular patterns, including β-1,3-glucan and GM. While T cell-deficient zebrafish larvae were significantly susceptible to wild-type A. fumigatus infection, AflkhA-deletion conidia infection reduced host mortality. A. fumigatus AfLkhA is required for the establishment of virulence factors, including conidial production, mycotoxin synthesis, protease activity, and interaction with macrophages, which ultimately affect pathogenicity at the organismal level.
Collapse
Affiliation(s)
- Joo-Yeon Lim
- Laboratory of Cellular Differentiation, Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, South Korea.,Institute of Biotechnology, Chungnam National University, Daejeon, South Korea
| | - Yeon Ju Kim
- Laboratory of Cellular Differentiation, Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, South Korea
| | - Seul Ah Woo
- Laboratory of Cellular Differentiation, Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, South Korea
| | - Jae Wan Jeong
- Laboratory of Cellular Differentiation, Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, South Korea
| | - Yu-Ri Lee
- Laboratory of Developmental Genetics, Department of Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, South Korea
| | - Cheol-Hee Kim
- Laboratory of Developmental Genetics, Department of Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, South Korea
| | - Hee-Moon Park
- Laboratory of Cellular Differentiation, Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, South Korea
| |
Collapse
|
39
|
Zhou X, Moore BB. Experimental Models of Infectious Pulmonary Complications Following Hematopoietic Cell Transplantation. Front Immunol 2021; 12:718603. [PMID: 34484223 PMCID: PMC8415416 DOI: 10.3389/fimmu.2021.718603] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 07/26/2021] [Indexed: 12/23/2022] Open
Abstract
Pulmonary infections remain a major cause of morbidity and mortality in hematopoietic cell transplantation (HCT) recipients. The prevalence and type of infection changes over time and is influenced by the course of immune reconstitution post-transplant. The interaction between pathogens and host immune responses is complex in HCT settings, since the conditioning regimens create periods of neutropenia and immunosuppressive drugs are often needed to prevent graft rejection and limit graft-versus-host disease (GVHD). Experimental murine models of transplantation are valuable tools for dissecting the procedure-related alterations to innate and adaptive immunity. Here we review mouse models of post-HCT infectious pulmonary complications, primarily focused on three groups of pathogens that frequently infect HCT recipients: bacteria (often P. aeruginosa), fungus (primarily Aspergillus fumigatus), and viruses (primarily herpesviruses). These mouse models have advanced our knowledge regarding how the conditioning and HCT process negatively impacts innate immunity and have provided new potential strategies of managing the infections. Studies using mouse models have also validated clinical observations suggesting that prior or occult infections are a potential etiology of noninfectious pulmonary complications post-HCT as well.
Collapse
Affiliation(s)
- Xiaofeng Zhou
- Dept. of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, United States.,Division of Pulmonary and Critical Care Medicine, Dept. of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Bethany B Moore
- Dept. of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, United States.,Division of Pulmonary and Critical Care Medicine, Dept. of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, United States
| |
Collapse
|
40
|
Daines M, Pereira R, Cunningham A, Pryor B, Besselsen DG, Liu Y, Luo Q, Chen Y. Novel Mouse Models of Fungal Asthma. Front Cell Infect Microbiol 2021; 11:683194. [PMID: 34485171 PMCID: PMC8415780 DOI: 10.3389/fcimb.2021.683194] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 07/22/2021] [Indexed: 01/09/2023] Open
Abstract
Alternaria alternata is a ubiquitous fungus and a major allergen associated with the development of asthma. Inhalation of intact spores is the primary cause of human exposure to fungal allergen. However, allergen-rich cultured fungal filtrates are oftentimes used in the current models of fungal sensitization that do not fully reflect real-life exposures. Thus, establishing novel spore exposure models is imperative. In this study, we established novel fungal exposure models of both adult and neonate to live spores. We examined pathophysiological changes in the spore models as compared to the non-exposure controls and also to the conventional filtrate models. While both Alternaria filtrate- and spore-exposed adult BALB/c mice developed elevated airway hyperresponsiveness (AHR), filtrates induced a greater IgE mediated response and higher broncholavage eosinophils than spores. In contrast, the mice exposed to Alternaria spores had higher numbers of neutrophils. Both exposures induced comparable levels of lung tissue inflammation and mucous cell metaplasia (MCM). In the neonatal model, exposure to Alternaria spores resulted in a significant increase of AHR in both adult and neonatal mice. Increased levels of IgE in both neonatal and adult mice exposed to spores was associated with increased eosinophilia in the treatment groups. Adult demonstrated increased numbers of lymphocytes that was paralleled by increased IgG1 production. Both adults and neonates demonstrated similarly increased eosinophilia, IgE, tissue inflammation and MCM.
Collapse
Affiliation(s)
- Michael Daines
- Department of Pediatrics, College of Medicine, University of Arizona, Tucson, AZ, United States.,Asthma & Airway Disease Research Center, University of Arizona, Tucson, AZ, United States
| | - Rhea Pereira
- Department of Pediatrics, College of Medicine, University of Arizona, Tucson, AZ, United States
| | - Aubrey Cunningham
- Department of Pediatrics, College of Medicine, University of Arizona, Tucson, AZ, United States
| | - Barry Pryor
- School of Plant Science, University of Arizona, Tucson, AZ, United States
| | - David G Besselsen
- Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, United States
| | - Yuchen Liu
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Arizona, Tucson, AZ, United States
| | - Qianwen Luo
- Department of Biosystems Engineering, University of Arizona, Tucson, AZ, United States
| | - Yin Chen
- Asthma & Airway Disease Research Center, University of Arizona, Tucson, AZ, United States.,Department of Pharmacology and Toxicology, School of Pharmacy, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
41
|
Lauruschkat CD, Etter S, Schnack E, Ebel F, Schäuble S, Page L, Rümens D, Dragan M, Schlegel N, Panagiotou G, Kniemeyer O, Brakhage AA, Einsele H, Wurster S, Loeffler J. Chronic Occupational Mold Exposure Drives Expansion of Aspergillus-Reactive Type 1 and Type 2 T-Helper Cell Responses. J Fungi (Basel) 2021; 7:jof7090698. [PMID: 34575736 PMCID: PMC8471116 DOI: 10.3390/jof7090698] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/20/2021] [Accepted: 08/25/2021] [Indexed: 12/11/2022] Open
Abstract
Occupational mold exposure can lead to Aspergillus-associated allergic diseases including asthma and hypersensitivity pneumonitis. Elevated IL-17 levels or disbalanced T-helper (Th) cell expansion were previously linked to Aspergillus-associated allergic diseases, whereas alterations to the Th cell repertoire in healthy occupationally exposed subjects are scarcely studied. Therefore, we employed functional immunoassays to compare Th cell responses to A. fumigatus antigens in organic farmers, a cohort frequently exposed to environmental molds, and non-occupationally exposed controls. Organic farmers harbored significantly higher A. fumigatus-specific Th-cell frequencies than controls, with comparable expansion of Th1- and Th2-cell frequencies but only slightly elevated Th17-cell frequencies. Accordingly, Aspergillus antigen-induced Th1 and Th2 cytokine levels were strongly elevated, whereas induction of IL-17A was minimal. Additionally, increased levels of some innate immune cell-derived cytokines were found in samples from organic farmers. Antigen-induced cytokine release combined with Aspergillus-specific Th-cell frequencies resulted in high classification accuracy between organic farmers and controls. Aspf22, CatB, and CipC elicited the strongest differences in Th1 and Th2 responses between the two cohorts, suggesting these antigens as potential candidates for future bio-effect monitoring approaches. Overall, we found that occupationally exposed agricultural workers display a largely balanced co-expansion of Th1 and Th2 immunity with only minor changes in Th17 responses.
Collapse
Affiliation(s)
- Chris D. Lauruschkat
- Department of Internal Medicine II, University Hospital of Wuerzburg, 97080 Wuerzburg, Germany; (C.D.L.); (S.E.); (L.P.); (D.R.); (H.E.)
| | - Sonja Etter
- Department of Internal Medicine II, University Hospital of Wuerzburg, 97080 Wuerzburg, Germany; (C.D.L.); (S.E.); (L.P.); (D.R.); (H.E.)
| | - Elisabeth Schnack
- Institute for Infectious Diseases and Zoonoses, Ludwig-Maximilians-University of Munich, 80539 Munich, Germany; (E.S.); (F.E.)
| | - Frank Ebel
- Institute for Infectious Diseases and Zoonoses, Ludwig-Maximilians-University of Munich, 80539 Munich, Germany; (E.S.); (F.E.)
| | - Sascha Schäuble
- Systems Biology and Bioinformatics, Leibniz Institute for Natural Product Research and Infection Biology—Hans-Knoell-Institute (HKI), 07745 Jena, Germany; (S.S.); (G.P.)
| | - Lukas Page
- Department of Internal Medicine II, University Hospital of Wuerzburg, 97080 Wuerzburg, Germany; (C.D.L.); (S.E.); (L.P.); (D.R.); (H.E.)
| | - Dana Rümens
- Department of Internal Medicine II, University Hospital of Wuerzburg, 97080 Wuerzburg, Germany; (C.D.L.); (S.E.); (L.P.); (D.R.); (H.E.)
| | - Mariola Dragan
- Department of Surgery I, University Hospital of Wuerzburg, 97080 Wuerzburg, Germany; (M.D.); (N.S.)
| | - Nicolas Schlegel
- Department of Surgery I, University Hospital of Wuerzburg, 97080 Wuerzburg, Germany; (M.D.); (N.S.)
| | - Gianni Panagiotou
- Systems Biology and Bioinformatics, Leibniz Institute for Natural Product Research and Infection Biology—Hans-Knoell-Institute (HKI), 07745 Jena, Germany; (S.S.); (G.P.)
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Olaf Kniemeyer
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology—Hans-Knoell-Institute (HKI), 07745 Jena, Germany; (O.K.); (A.A.B.)
| | - Axel A. Brakhage
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology—Hans-Knoell-Institute (HKI), 07745 Jena, Germany; (O.K.); (A.A.B.)
| | - Hermann Einsele
- Department of Internal Medicine II, University Hospital of Wuerzburg, 97080 Wuerzburg, Germany; (C.D.L.); (S.E.); (L.P.); (D.R.); (H.E.)
| | - Sebastian Wurster
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Juergen Loeffler
- Department of Internal Medicine II, University Hospital of Wuerzburg, 97080 Wuerzburg, Germany; (C.D.L.); (S.E.); (L.P.); (D.R.); (H.E.)
- Correspondence: ; Tel.: +49-931-201-36412
| |
Collapse
|
42
|
Sun J, Gao L, Huang S, Wang L, Yang W, Zhang T, Jin Y, Song L. CLec-TM1-ERK-GSK3β Pathway Regulates Vibrio splendidus-Induced IL-17 Production in Oyster. THE JOURNAL OF IMMUNOLOGY 2021; 207:640-650. [PMID: 34193596 DOI: 10.4049/jimmunol.2100007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 05/16/2021] [Indexed: 11/19/2022]
Abstract
C-type lectins are a family of pattern recognition receptors that recognize microbial components and subsequently activate the signaling cascade to induce the production of proinflammatory cytokines. In the current study, the homologs of ERK (named as CgERK) and GSK3β (named as CgGSK3β) and a novel C-type lectin with a transmembrane domain (named as CgCLec-TM1) were identified from oyster Crassostrea gigas CgCLec-TM1 was able to bind Escherichia coli and Vibrio splendidus through its carbohydrate recognition domain and then activated CgERK by inducing its phosphorylation. The activated CgERK interacted with CgGSK3β to phosphorylate it at Ser9, which eventually induced the expressions of CgIL-17-1 and CgIL-17-5. The interaction between CgERK and CgGSK3β, as well as the phosphorylation of CgGSK3β, could be inhibited by ERK inhibitor (PD98059) to reduce the expressions of CgIL-17-1 and CgIL-17-5. CgGSK3β in oyster was proposed as a new substrate of CgERK. The results defined a CLec-TM1-ERK-GSK3β signaling pathway in oyster, which was activated by V. splendidus and then induced CgIL-17 productions.
Collapse
Affiliation(s)
- Jiejie Sun
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China.,Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, China
| | - Lei Gao
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China.,Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, China
| | - Shu Huang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China.,Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China.,Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, China.,Southern Laboratory of Ocean Science and Engineering, Zhuhai, China; and.,Dalian Key Laboratory of Aquatic Animal Disease Control, Dalian Ocean University, Dalian, China
| | - Wenwen Yang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China.,Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, China
| | - Tong Zhang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China.,Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, China
| | - Yingnan Jin
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China.,Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, China
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China; .,Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, China.,Southern Laboratory of Ocean Science and Engineering, Zhuhai, China; and
| |
Collapse
|
43
|
Role of Dectin-2 in the phagocytosis of Cryptococcus neoformans by dendritic cells. Infect Immun 2021; 89:e0033021. [PMID: 34251289 DOI: 10.1128/iai.00330-21] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cell walls and capsules of Cryptococcus neoformans, a yeast-type fungal pathogen, are rich in polysaccharides. Dectin-2 is a C-type lectin receptor (CLR) that recognizes high-mannose polysaccharides. Previously, we demonstrated that Dectin-2 is involved in cytokine production by bone marrow-derived dendritic cells (BM-DCs) in response to stimulation with C. neoformans. In the present study, we analyzed the role of Dectin-2 in the phagocytosis of C. neoformans by BM-DCs. The engulfment of this fungus by BM-DCs was significantly decreased in mice lacking Dectin-2 (Dectin-2KO) or caspase recruitment domain-containing protein 9 (CARD9KO), a common adapter molecule that delivers signals triggered by CLRs, compared to wild-type (WT) mice. Phagocytosis was likewise inhibited, to a similar degree, by the inhibition of Syk, a signaling molecule involved in CLR-triggered activation. A PI3K inhibitor, in contrast, completely abrogated the phagocytosis of C. neoformans. Actin polymerization, i.e., conformational changes in cytoskeletons detected at sites of contact with C. neoformans, was also decreased in BM-DCs of Dectin-2KO and CARD9KO mice. Finally, the engulfment of C. neoformans by macrophages was significantly decreased in the lungs of Dectin-2KO mice compared to WT mice. These results suggest that Dectin-2 may play an important role in the actin polymerization and phagocytosis of C. neoformans by DCs, possibly through signaling via CARD9 and a signaling pathway mediated by Syk and PI3K.
Collapse
|
44
|
Gu C, Upchurch K, Horton J, Wiest M, Zurawski S, Millard M, Kane RR, Joo H, Miller LA, Oh S. Dectin-1 Controls TSLP-Induced Th2 Response by Regulating STAT3, STAT6, and p50-RelB Activities in Dendritic Cells. Front Immunol 2021; 12:678036. [PMID: 34305908 PMCID: PMC8293820 DOI: 10.3389/fimmu.2021.678036] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/16/2021] [Indexed: 12/12/2022] Open
Abstract
The epithelium-associated cytokine thymic stromal lymphopoietin (TSLP) can induce OX40L and CCL17 expression by myeloid dendritic cells (mDCs), which contributes to aberrant Th2-type immune responses. Herein, we report that such TSLP-induced Th2-type immune response can be effectively controlled by Dectin-1, a C-type lectin receptor expressed by mDCs. Dectin-1 stimulation induced STAT3 activation and decreased the transcriptional activity of p50-RelB, both of which resulted in reduced OX40L expression on TSLP-activated mDCs. Dectin-1 stimulation also suppressed TSLP-induced STAT6 activation, resulting in decreased expression of the Th2 chemoattractant CCL17. We further demonstrated that Dectin-1 activation was capable of suppressing ragweed allergen (Amb a 1)-specific Th2-type T cell response in allergy patients ex vivo and house dust mite allergen (Der p 1)-specific IgE response in non-human primates in vivo. Collectively, this study provides a molecular explanation of Dectin-1-mediated suppression of Th2-type inflammatory responses and suggests Dectin-1 as a target for controlling Th2-type inflammation.
Collapse
Affiliation(s)
- Chao Gu
- Department of Immunology, Mayo Clinic, Scottsdale, AZ, United States
| | - Katherine Upchurch
- Institute of Biomedical Studies, Baylor University, Waco, TX, United States
| | - Joshua Horton
- Institute of Biomedical Studies, Baylor University, Waco, TX, United States
| | - Mathew Wiest
- Department of Immunology, Mayo Clinic, Scottsdale, AZ, United States.,Institute of Biomedical Studies, Baylor University, Waco, TX, United States
| | | | - Mark Millard
- Department of Pulmonology, Baylor University Medical Center, Dallas, TX, United States
| | - Robert R Kane
- Institute of Biomedical Studies, Baylor University, Waco, TX, United States.,Department of Chemistry and Biochemistry, Baylor University, Waco, TX, United States
| | - HyeMee Joo
- Department of Immunology, Mayo Clinic, Scottsdale, AZ, United States.,Institute of Biomedical Studies, Baylor University, Waco, TX, United States
| | - Lisa A Miller
- California National Primate Research Center, University of California, Davis, Davis, CA, United States
| | - SangKon Oh
- Department of Immunology, Mayo Clinic, Scottsdale, AZ, United States.,Institute of Biomedical Studies, Baylor University, Waco, TX, United States
| |
Collapse
|
45
|
Aspergillus fumigatus Influences Gasdermin-D-Dependent Pyroptosis of the Lung via Regulating Toll-Like Receptor 2-Mediated Regulatory T Cell Differentiation. J Immunol Res 2021; 2021:5538612. [PMID: 34222495 PMCID: PMC8219420 DOI: 10.1155/2021/5538612] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/17/2021] [Accepted: 03/23/2021] [Indexed: 12/15/2022] Open
Abstract
Purpose Aspergillus fumigatus, as an opportunistic fungus, has developed a series of escape mechanisms under the host's immune response to obtain nutrients and promote fungal growth in the hostile environment. The immune escape of pathogens may be through suppressing the inflammatory response mediated by regulatory T cells (Tregs). The aim of this study was to explore whether A. fumigatus influences Gasdermin-D-dependent pyroptosis of the lung by regulating Toll-like receptor 2-mediated regulatory T cell differentiation. Methods Collect peripheral blood from patients with A. fumigatus. ELISA kits we used to detect the expression levels of IL-1β, IL-6, IL-2R, and IL-10 in the serum and flow cytometry to detect the percentage of CD4+CD25+Foxp3+ Tregs in the patients' peripheral blood mononuclear cells (PBMCs). The mouse model of A. fumigatus infection was constructed by tracheal instillation. The pathological changes in the lungs of the mice were observed under a microscope. The fungal load in the lung tissue was determined by the plate colony count. ELISA kit was used to detect the lung tissue homogenate proinflammatory cytokines TNF-α, IL-6, CCL2, and VEGF. Q-PCR was used for the detection of the expression of Foxp3 and TLR2 genes in the lung. Western blot was used for the detection of the expression of TLR2, Gasdermin-D (GSDMD), IL-1α, and IL-1β in the lung. Flow cytometry was used to detect splenic CD4+CD25+FOXP3+ Tregs. Using magnetic beads to extract CD4+ T cells from mice spleen, the effects of A. fumigatus conidia or TLR2 inhibitor (C29) to differentiate CD4+ T cells in vitro were tested. Results The expression of Foxp3 and TLR2 in the lung tissue of mice infected with A. fumigatus increased, and we observed that the proportion of Tregs in both A. fumigatus infection patients and mice was upregulated. After using the CD25 neutralizing antibody, the number of Tregs in the mice spleen was significantly reduced. However, lung damage was reduced and the ability to clear lung fungi was enhanced. We found that the Tregs in TLR2−/− mice were significantly reduced and the nonlethal dose of A. fumigatus conidia did not cause severe lung damage in TLR2−/− mice. Compared with that of wild-type mice, the fungal burden in the lung of TLR2-deficient mice was reduced and the knockout of TLR2 changed the expression of GSDMD, IL-1α, and IL-1β in A. fumigatus. In in vitro experiments, we found that the inhibition of TLR2 can reduce Treg differentiation. Conclusions A. fumigatus triggers CD4+CD25+FOXP3+ Treg proliferation and differentiation by activating the TLR2 pathway, which may be a potential mechanism for evading host defenses in A. fumigatus. This effect can modulate GSDMD-dependent pyroptosis and may partly involve TRL2 signaling.
Collapse
|
46
|
Rowley J, Namvar S, Gago S, Labram B, Bowyer P, Richardson MD, Herrick SE. Differential Proinflammatory Responses to Aspergillus fumigatus by Airway Epithelial Cells In Vitro Are Protease Dependent. J Fungi (Basel) 2021; 7:468. [PMID: 34200666 PMCID: PMC8228831 DOI: 10.3390/jof7060468] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/29/2021] [Accepted: 06/03/2021] [Indexed: 12/05/2022] Open
Abstract
Aspergillus fumigatus is an important human respiratory mould pathogen. In addition to a barrier function, airway epithelium elicits a robust defence against inhaled A. fumigatus by initiating an immune response. The manner by which A. fumigatus initiates this response and the reasons for the immunological heterogeneity with different isolates are unclear. Both direct fungal cell wall-epithelial cell interaction and secretion of soluble proteases have been proposed as possible mechanisms. Our aim was to determine the contribution of fungal proteases to the induction of epithelial IL-6 and IL-8 in response to different A. fumigatus isolates. Airway epithelial cells were exposed to conidia from a low or high protease-producing strain of A. fumigatus, and IL-6 and IL-8 gene expression and protein production were quantified. The role of proteases in cytokine production was further determined using specific protease inhibitors. The proinflammatory cytokine response correlated with conidia germination and hyphal extension. IL-8 induction was significantly reduced in the presence of matrix metalloprotease or cysteine protease inhibitors. With a high protease-producing strain of A. fumigatus, IL-6 release was metalloprotease dependent. Dectin-1 antagonism also inhibited the production of both cytokines. In conclusion, A. fumigatus-secreted proteases mediate a proinflammatory response by airway epithelial cells in a strain-dependent manner.
Collapse
Affiliation(s)
- Jessica Rowley
- School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester and Manchester Academic Health Science Centre, Manchester M13 9PT, UK; (J.R.); (S.N.); (S.G.); (B.L.); (P.B.); (M.D.R.)
| | - Sara Namvar
- School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester and Manchester Academic Health Science Centre, Manchester M13 9PT, UK; (J.R.); (S.N.); (S.G.); (B.L.); (P.B.); (M.D.R.)
- School of Science, Engineering and Environment, University of Salford, Salford M5 4WT, UK
| | - Sara Gago
- School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester and Manchester Academic Health Science Centre, Manchester M13 9PT, UK; (J.R.); (S.N.); (S.G.); (B.L.); (P.B.); (M.D.R.)
- Manchester Fungal Infection Group, Division of Infection, Immunity and Respiratory Medicine, University of Manchester, Manchester M13 9NT, UK
- NIHR Manchester Biomedical Research Centre, Manchester Academic Health Science Centre, Manchester University NHS Foundation Trust, Manchester M23 9LT, UK
| | - Briony Labram
- School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester and Manchester Academic Health Science Centre, Manchester M13 9PT, UK; (J.R.); (S.N.); (S.G.); (B.L.); (P.B.); (M.D.R.)
| | - Paul Bowyer
- School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester and Manchester Academic Health Science Centre, Manchester M13 9PT, UK; (J.R.); (S.N.); (S.G.); (B.L.); (P.B.); (M.D.R.)
- Manchester Fungal Infection Group, Division of Infection, Immunity and Respiratory Medicine, University of Manchester, Manchester M13 9NT, UK
| | - Malcolm D. Richardson
- School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester and Manchester Academic Health Science Centre, Manchester M13 9PT, UK; (J.R.); (S.N.); (S.G.); (B.L.); (P.B.); (M.D.R.)
- Manchester Fungal Infection Group, Division of Infection, Immunity and Respiratory Medicine, University of Manchester, Manchester M13 9NT, UK
- NIHR Manchester Biomedical Research Centre, Manchester Academic Health Science Centre, Manchester University NHS Foundation Trust, Manchester M23 9LT, UK
- Mycology Reference Centre, ECMM Excellence Centre of Medical Mycology, Manchester University NHS Foundation Trust, Manchester M23 9LT, UK
| | - Sarah E. Herrick
- School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester and Manchester Academic Health Science Centre, Manchester M13 9PT, UK; (J.R.); (S.N.); (S.G.); (B.L.); (P.B.); (M.D.R.)
| |
Collapse
|
47
|
Tong J, Duan Z, Zeng R, Du L, Xu S, Wang L, Liu Y, Chen Q, Chen X, Li M. MiR-146a Negatively Regulates Aspergillus fumigatus-Induced TNF-α and IL-6 Secretion in THP-1 Macrophages. Mycopathologia 2021; 186:341-354. [PMID: 34089172 DOI: 10.1007/s11046-021-00538-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 02/17/2021] [Indexed: 10/20/2022]
Abstract
Aspergillus fumigatu (A. fumigatus) is one of the most common important fungal pathogens that cause life-threatening infectious disease in immunocompromised individuals. However, the host immune response against this pathogenic mold is not fully understood. MicroRNAs (miRNAs) play essential roles in regulating innate immunity. Thus, we investigated the function of miR-146a in inflammatory responses in macrophages after A. fumigatus stimulation in this study. We found that TNF-α and IL-6 were increased in THP-1 macrophage-like cells treated with A. fumigatus at both the mRNA and protein levels. The interaction between THP-1 macrophage-like cells and A. fumigatus resulted in a long-lasting increase in miR-146a expression dependent on p38 MAPK and NF-κB signaling. In A. fumigatus-challenged THP-1 macrophage-like cells, overexpression of miR-146a by miR-146a mimics decreased TNF-α and IL-6 production, whereas downregulation of miR-146a by anti-miR-146a significantly enhanced the level of TNF-α and IL-6. Our study demonstrates that the crosstalk between miR-146a and the inflammation-regulating p38 MAPK and NF-κB pathways might be a fine-tuning mechanism in the modulation of the inflammatory response in macrophages infected with A. fumigatus. Our findings illuminate the crucial role of miR-146a in the pathogenesis of human diseases associated with A. fumigatus infection.
Collapse
Affiliation(s)
- Jianbo Tong
- Jiangsu Key Laboratory of Molecular Biology for Skin, Institute of Dermatology, Diseases and STIs, Chinese Academy of Medical Science & Peking Union Medical College, Nanjing, 210042, People's Republic of China.,Department of Dermatology, First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, 330001, People's Republic of China
| | - Zhimin Duan
- Jiangsu Key Laboratory of Molecular Biology for Skin, Institute of Dermatology, Diseases and STIs, Chinese Academy of Medical Science & Peking Union Medical College, Nanjing, 210042, People's Republic of China
| | - Rong Zeng
- Jiangsu Key Laboratory of Molecular Biology for Skin, Institute of Dermatology, Diseases and STIs, Chinese Academy of Medical Science & Peking Union Medical College, Nanjing, 210042, People's Republic of China
| | - Leilei Du
- Jiangsu Key Laboratory of Molecular Biology for Skin, Institute of Dermatology, Diseases and STIs, Chinese Academy of Medical Science & Peking Union Medical College, Nanjing, 210042, People's Republic of China
| | - Song Xu
- Jiangsu Key Laboratory of Molecular Biology for Skin, Institute of Dermatology, Diseases and STIs, Chinese Academy of Medical Science & Peking Union Medical College, Nanjing, 210042, People's Republic of China
| | - Liwei Wang
- Jiangsu Key Laboratory of Molecular Biology for Skin, Institute of Dermatology, Diseases and STIs, Chinese Academy of Medical Science & Peking Union Medical College, Nanjing, 210042, People's Republic of China
| | - Yuzhen Liu
- Jiangsu Key Laboratory of Molecular Biology for Skin, Institute of Dermatology, Diseases and STIs, Chinese Academy of Medical Science & Peking Union Medical College, Nanjing, 210042, People's Republic of China
| | - Qing Chen
- Jiangsu Province Blood Center, Nanjing, 210042, Jiangsu, People's Republic of China. .,Center for Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, 100005, Beijing, People's Republic of China.
| | - Xu Chen
- Jiangsu Key Laboratory of Molecular Biology for Skin, Institute of Dermatology, Diseases and STIs, Chinese Academy of Medical Science & Peking Union Medical College, Nanjing, 210042, People's Republic of China.
| | - Min Li
- Jiangsu Key Laboratory of Molecular Biology for Skin, Institute of Dermatology, Diseases and STIs, Chinese Academy of Medical Science & Peking Union Medical College, Nanjing, 210042, People's Republic of China. .,Center for Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, 100005, Beijing, People's Republic of China.
| |
Collapse
|
48
|
Zhang M, Xia Z, Yang X, Ao J, Yang R. Specific microRNA/mRNA expression profiles and novel immune regulation mechanisms are induced in THP-1 macrophages by in vitro exposure to Trichosporon asahii. Mycoses 2021; 64:831-840. [PMID: 33715213 DOI: 10.1111/myc.13268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/05/2021] [Accepted: 03/09/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Trichosporon asahii is considered the most prominent species associated with invasive trichosporonosis, but little is known about the pathogenesis of T. asahii infection in the host. MicroRNAs (miRNAs) are a class of noncoding endogenous small RNAs that play vital roles by manipulating immune responses against pathogenic microorganisms. Nevertheless, the exact functions of miRNAs in T. asahii infection are still unknown. OBJECTIVE To investigate the interactions involved in the miRNA immune response in THP-1 macrophages following in vitro exposure to T. asahii. METHODS We utilized next-generation sequencing to detect differentially expressed (DE) miRNAs and mRNAs in THP-1 cells after 24 h of in vitro exposure to T. asahii. Real-time quantitative polymerase chain reaction (RT-qPCR) was used to verify the sequencing results. The miRNA-mRNA regulatory network was constructed with the DE miRNAs and DE mRNAs. We performed Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathway analysis of the predicted targeting mRNAs in the miRNA-mRNA network. A dual-luciferase reporter assay and enzyme-linked immunosorbent assay (ELISA) were utilized to demonstrate the reliability of the miR-342-3p/Dectin-1 pair. RESULTS A total of 120 DE miRNAs and 588 DE mRNAs were identified after 24 h of in vitro exposure to T. asahii. The miRNA-mRNA regulatory network was constructed with 39 DE miRNAs and 228 DE mRNAs. KEGG pathway analysis revealed that the up-regulated DE mRNAs in the complex interaction network were mainly involved in immune-related pathways. In addition, we verified the target relationship between miR-342-3p and Dectin-1 and found that miR-342-3p could promote the expression of TNF-α and IL-6 by negatively regulating Dectin-1. CONCLUSIONS This study evaluated the expression profiles of miRNA/mRNA and revealed the immunological consequences of THP-1 macrophages in response to T. asahii exposure. Moreover, our data suggest that miR-342-3p can indirectly promote inflammatory responses and may be a potential therapeutic target against trichosporonosis.
Collapse
Affiliation(s)
- Mingwang Zhang
- Department of Dermatology, Southwest Hospital, Army Medical University, Chongqing, China.,Department of Dermatology, The Seventh Medical Center of PLA General Hospital, Peking, China
| | - Zhikuan Xia
- Department of Dermatology, The Seventh Medical Center of PLA General Hospital, Peking, China.,The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Xin Yang
- Department of Dermatology, The Seventh Medical Center of PLA General Hospital, Peking, China.,The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Junhong Ao
- Department of Dermatology, The Seventh Medical Center of PLA General Hospital, Peking, China
| | - Rongya Yang
- Department of Dermatology, The Seventh Medical Center of PLA General Hospital, Peking, China.,The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
49
|
Desamero MJM, Chung SH, Kakuta S. Insights on the Functional Role of Beta-Glucans in Fungal Immunity Using Receptor-Deficient Mouse Models. Int J Mol Sci 2021; 22:4778. [PMID: 33946381 PMCID: PMC8125483 DOI: 10.3390/ijms22094778] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/21/2021] [Accepted: 04/27/2021] [Indexed: 12/18/2022] Open
Abstract
Understanding the host anti-fungal immunity induced by beta-glucan has been one of the most challenging conundrums in the field of biomedical research. During the last couple of decades, insights on the role of beta-glucan in fungal disease progression, susceptibility, and resistance have been greatly augmented through the utility of various beta-glucan cognate receptor-deficient mouse models. Analysis of dectin-1 knockout mice has clarified the downstream signaling pathways and adaptive effector responses triggered by beta-glucan in anti-fungal immunity. On the other hand, assessment of CR3-deficient mice has elucidated the compelling action of beta-glucans in neutrophil-mediated fungal clearance, and the investigation of EphA2-deficient mice has highlighted its novel involvement in host sensing and defense to oral mucosal fungal infection. Based on these accounts, this review focuses on the recent discoveries made by these gene-targeted mice in beta-glucan research with particular emphasis on the multifaceted aspects of fungal immunity.
Collapse
Affiliation(s)
- Mark Joseph Maranan Desamero
- Laboratory of Biomedical Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan;
- Department of Basic Veterinary Sciences, College of Veterinary Medicine, University of the Philippines Los Baños, Laguna 4031, Philippines
| | - Soo-Hyun Chung
- Division of Experimental Animal Immunology, Research Institute for Biomedical Sciences, Tokyo University of Science, 2669 Yamazaki, Noda, Chiba 278-0022, Japan;
| | - Shigeru Kakuta
- Laboratory of Biomedical Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan;
| |
Collapse
|
50
|
Dunne MR, Wagener J, Loeffler J, Doherty DG, Rogers TR. Unconventional T cells - New players in antifungal immunity. Clin Immunol 2021; 227:108734. [PMID: 33895356 DOI: 10.1016/j.clim.2021.108734] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 04/06/2021] [Accepted: 04/20/2021] [Indexed: 12/29/2022]
Abstract
Life-threatening invasive fungal diseases (IFD) are increasing in incidence, especially in immunocompromised patients and successful resolution of IFD requires a variety of different immune cells. With the limited repertoire of available antifungal drugs there is a need for more effective therapeutic strategies. This review interrogates the evidence on the human immune response to the main pathogens driving IFD, with a focus on the role of unconventional lymphocytes e.g. natural killer (NK) cells, gamma/delta (γδ) T cells, mucosal associated invariant T (MAIT) cells, invariant natural killer T (iNKT) cells and innate lymphoid cells (ILC). Recent discoveries and new insights into the roles of these novel lymphocyte groups in antifungal immunity will be discussed, and we will explore how an improved understanding of antifungal action by lymphocytes can inform efforts to improve antifungal treatment options.
Collapse
Affiliation(s)
- Margaret R Dunne
- Department of Clinical Microbiology, Trinity College Dublin, Sir Patrick Dun Research Laboratory, St James's Hospital, Dublin 8, Ireland; Department of Immunology, School of Medicine, Trinity College Dublin, Dublin 8, Ireland.
| | - Johannes Wagener
- Department of Clinical Microbiology, Trinity College Dublin, Sir Patrick Dun Research Laboratory, St James's Hospital, Dublin 8, Ireland
| | - Juergen Loeffler
- Department of Internal Medicine II, WÜ4i, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Derek G Doherty
- Department of Immunology, School of Medicine, Trinity College Dublin, Dublin 8, Ireland
| | - Thomas R Rogers
- Department of Clinical Microbiology, Trinity College Dublin, Sir Patrick Dun Research Laboratory, St James's Hospital, Dublin 8, Ireland
| |
Collapse
|