1
|
Mandviwala AS, Huckriede ALW, Arankalle VA, Patil HP. Mucosal delivery of a prefusogenic-F, glycoprotein, and matrix proteins-based virus-like particle respiratory syncytial virus vaccine induces protective immunity as evidenced by challenge studies in mice. Virology 2024; 598:110194. [PMID: 39096774 DOI: 10.1016/j.virol.2024.110194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/18/2024] [Accepted: 07/28/2024] [Indexed: 08/05/2024]
Abstract
RSV infection remains a serious threat to the children all over the world, especially, in the low-middle income countries. Vaccine delivery via the mucosa holds great potential for inducing local immune responses in the respiratory tract. Previously, we reported the development of highly immunogenic RSV virus-like-particles (RSV-VLPs) based on the conformationally stable prefusogenic-F protein (preFg), glycoprotein and matrix protein. Here, to explore whether mucosal delivery of RSV-VLPs is an effective strategy to induce RSV-specific mucosal and systemic immunity, RSV-VLPs were administered via the nasal, sublingual and pulmonary routes to BALB/c mice. The results demonstrate that immunization with the VLPs via the mucosal routes induced minimal mucosal response and yet facilitated modest levels of serum IgG antibodies, enhanced T cell responses and the expression of the lung-homing marker CXCR3 on splenocytes. Immunization with VLPs via all three mucosal routes provided protection against RSV challenge with no signs of RSV induced pathology.
Collapse
Affiliation(s)
- Ahmedali S Mandviwala
- Department of Communicable Diseases, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be University), Pune, India
| | - Anke L W Huckriede
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Vidya A Arankalle
- Department of Communicable Diseases, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be University), Pune, India
| | - Harshad P Patil
- Department of Communicable Diseases, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be University), Pune, India.
| |
Collapse
|
2
|
Sebina I, Ngo S, Rashid RB, Alorro M, Namubiru P, Howard D, Ahmed T, Phipps S. CXCR3 + effector regulatory T cells associate with disease tolerance during lower respiratory pneumovirus infection. Immunology 2024; 172:500-515. [PMID: 38584001 DOI: 10.1111/imm.13790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/28/2024] [Indexed: 04/09/2024] Open
Abstract
Lifestyle factors like poor maternal diet or antibiotic exposure disrupt early life microbiome assembly in infants, increasing the risk of severe lower respiratory infections (sLRI). Our prior studies in mice indicated that a maternal low-fibre diet (LFD) exacerbates LRI severity in infants by impairing recruitment of plasmacytoid dendritic cells (pDC) and consequently attenuating expansion of lung regulatory T (Treg) cells during pneumonia virus of mice (PVM) infection. Here, we investigated whether maternal dietary fibre intake influences Treg cell phenotypes in the mediastinal lymph nodes (mLN) and lungs of PVM-infected neonatal mice. Using high dimensional flow cytometry, we identified distinct clusters of regulatory T cells (Treg cells), which differed between lungs and mLN during infection, with notably greater effector Treg cell accumulation in the lungs. Compared to high-fibre diet (HFD)-reared pups, frequencies of various effector Treg cell subsets were decreased in the lungs of LFD-reared pups. Particularly, recruitment of chemokine receptor 3 (CXCR3+) expressing Treg cells was attenuated in LFD-reared pups, correlating with lower lung expression of CXCL9 and CXCL10 chemokines. The recruitment of this subset in response to PVM infection was similarly impaired in pDC depleted mice or following anti-CXCR3 treatment, increasing immunopathology in the lungs. In summary, PVM infection leads to the sequential recruitment and expansion of distinct Treg cell subsets to the lungs and mLN. The attenuated recruitment of the CXCR3+ subset in LFD-reared pups increases LRI severity, suggesting that strategies to enhance pDCs or CXCL9/CXCL10 expression will lower immune-mediated pathogenesis.
Collapse
Affiliation(s)
- Ismail Sebina
- Respiratory Immunology Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Sylvia Ngo
- Respiratory Immunology Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Ridwan B Rashid
- Respiratory Immunology Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Mariah Alorro
- Respiratory Immunology Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Patricia Namubiru
- Respiratory Immunology Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Daniel Howard
- Respiratory Immunology Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Tufael Ahmed
- Respiratory Immunology Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Simon Phipps
- Respiratory Immunology Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
3
|
Martínez-Fleta P, Marcos MC, Jimenez-Carretero D, Galván-Román JM, Girón-Moreno RM, Calero-García AA, Arcos-García A, Martín-Gayo E, de la Fuente H, Esparcia-Pinedo L, Aspa J, Ancochea J, Alfranca A, Sánchez-Madrid F. Imbalance of SARS-CoV-2-specific CCR6+ and CXCR3+ CD4+ T cells and IFN-γ + CD8+ T cells in patients with Long-COVID. Clin Immunol 2024; 264:110267. [PMID: 38825071 DOI: 10.1016/j.clim.2024.110267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 06/04/2024]
Abstract
Long-COVID (LC) is characterised by persistent symptoms for at least 3 months after acute infection. A dysregulation of the immune system and a persistent hyperinflammatory state may cause LC. LC patients present differences in activation and exhaustion states of innate and adaptive compartments. Different T CD4+ cell subsets can be identified by differential expression of chemokine receptors (CCR). However, changes in T cells with expression of CCRs such as CCR6 and CXCR3 and their relationship with CD8+ T cells remains unexplored in LC. Here, we performed unsupervised analysis and found CCR6+ CD4+ subpopulations enriched in COVID-19 convalescent individuals upon activation with SARS-CoV-2 peptides. SARS-CoV-2 specific CCR6+ CD4+ are decreased in LC patients, whereas CXCR3+ CCR6- and CCR4+ CCR6- CD4+ T cells are increased. LC patients showed lower IFN-γ-secreting CD8+ T cells after stimulation with SARS-CoV-2 Spike protein. This work underscores the role of CCR6 in the pathophysiology of LC.
Collapse
Affiliation(s)
- Pedro Martínez-Fleta
- Department of Immunology, Hospital Universitario de La Princesa IIS-Princesa (Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa), Madrid, Spain
| | - María Celeste Marcos
- Department of Pneumology, Hospital Universitario de La Princesa IIS-Princesa (Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa), Madrid, Spain
| | | | - José María Galván-Román
- Department of Internal Medicine, Hospital Universitario de La Princesa IIS-Princesa (Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa), Madrid, Spain
| | - Rosa María Girón-Moreno
- Department of Pneumology, Hospital Universitario de La Princesa IIS-Princesa (Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa), Madrid, Spain
| | - Ana Adela Calero-García
- Department of Immunology, Hospital Universitario de La Princesa IIS-Princesa (Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa), Madrid, Spain
| | - Ana Arcos-García
- Department of Pneumology, Hospital Universitario de La Princesa IIS-Princesa (Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa), Madrid, Spain
| | - Enrique Martín-Gayo
- Department of Immunology, Hospital Universitario de La Princesa IIS-Princesa (Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa), Madrid, Spain; Department of Medicine, Universidad Autónoma de Madrid (UAM), Madrid, Spain; CIBER Infectious Diseases (CIBERINFECC) from Instituto de Salud Carlos III, Madrid, Spain
| | - Hortensia de la Fuente
- Department of Immunology, Hospital Universitario de La Princesa IIS-Princesa (Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa), Madrid, Spain; CIBER Cardiovascular CIBERCV, Madrid, Spain
| | - Laura Esparcia-Pinedo
- Department of Immunology, Hospital Universitario de La Princesa IIS-Princesa (Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa), Madrid, Spain
| | - Javier Aspa
- Department of Pneumology, Hospital Universitario de La Princesa IIS-Princesa (Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa), Madrid, Spain
| | - Julio Ancochea
- Department of Pneumology, Hospital Universitario de La Princesa IIS-Princesa (Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa), Madrid, Spain
| | - Arantzazu Alfranca
- Department of Immunology, Hospital Universitario de La Princesa IIS-Princesa (Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa), Madrid, Spain; CIBER Cardiovascular CIBERCV, Madrid, Spain; Department of Medicine, Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Francisco Sánchez-Madrid
- Department of Immunology, Hospital Universitario de La Princesa IIS-Princesa (Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa), Madrid, Spain; CIBER Cardiovascular CIBERCV, Madrid, Spain; Department of Medicine, Universidad Autónoma de Madrid (UAM), Madrid, Spain.
| |
Collapse
|
4
|
Chi H, Pepper M, Thomas PG. Principles and therapeutic applications of adaptive immunity. Cell 2024; 187:2052-2078. [PMID: 38670065 PMCID: PMC11177542 DOI: 10.1016/j.cell.2024.03.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/01/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024]
Abstract
Adaptive immunity provides protection against infectious and malignant diseases. These effects are mediated by lymphocytes that sense and respond with targeted precision to perturbations induced by pathogens and tissue damage. Here, we review key principles underlying adaptive immunity orchestrated by distinct T cell and B cell populations and their extensions to disease therapies. We discuss the intracellular and intercellular processes shaping antigen specificity and recognition in immune activation and lymphocyte functions in mediating effector and memory responses. We also describe how lymphocytes balance protective immunity against autoimmunity and immunopathology, including during immune tolerance, response to chronic antigen stimulation, and adaptation to non-lymphoid tissues in coordinating tissue immunity and homeostasis. Finally, we discuss extracellular signals and cell-intrinsic programs underpinning adaptive immunity and conclude by summarizing key advances in vaccination and engineering adaptive immune responses for therapeutic interventions. A deeper understanding of these principles holds promise for uncovering new means to improve human health.
Collapse
Affiliation(s)
- Hongbo Chi
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| | - Marion Pepper
- Department of Immunology, University of Washington, Seattle, WA, USA.
| | - Paul G Thomas
- Department of Host-Microbe Interactions and Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
5
|
Liu YG, Jin SW, Zhang SS, Xia TJ, Liao YH, Pan RL, Yan MZ, Chang Q. Interferon lambda in respiratory viral infection: immunomodulatory functions and antiviral effects in epithelium. Front Immunol 2024; 15:1338096. [PMID: 38495892 PMCID: PMC10940417 DOI: 10.3389/fimmu.2024.1338096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/19/2024] [Indexed: 03/19/2024] Open
Abstract
Type III interferon (IFN-λ), a new member of the IFN family, was initially considered to possess antiviral functions similar to those of type I interferon, both of which are induced via the JAK/STAT pathway. Nevertheless, recent findings demonstrated that IFN-λ exerts a nonredundant antiviral function at the mucosal surface, preferentially produced in epithelial cells in contrast to type I interferon, and its function cannot be replaced by type I interferon. This review summarizes recent studies showing that IFN-λ inhibits the spread of viruses from the cell surface to the body. Further studies have found that the role of IFN-λ is not only limited to the abovementioned functions, but it can also can exert direct and/or indirect effects on immune cells in virus-induced inflammation. This review focuses on the antiviral activity of IFN-λ in the mucosal epithelial cells and its action on immune cells and summarizes the pathways by which IFN-λ exerts its action and differentiates it from other interferons in terms of mechanism. Finally, we conclude that IFN-λ is a potent epidermal antiviral factor that enhances the respiratory mucosal immune response and has excellent therapeutic potential in combating respiratory viral infections.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ming-Zhu Yan
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qi Chang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
6
|
Guo K, Yombo DJK, Wang Z, Navaeiseddighi Z, Xu J, Schmit T, Ahamad N, Tripathi J, De Kumar B, Mathur R, Hur J, Sun J, Olszewski MA, Khan N. The chemokine receptor CXCR3 promotes CD8 + T cell-dependent lung pathology during influenza pathogenesis. SCIENCE ADVANCES 2024; 10:eadj1120. [PMID: 38170765 PMCID: PMC10776024 DOI: 10.1126/sciadv.adj1120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 12/01/2023] [Indexed: 01/05/2024]
Abstract
The dual role of CD8+ T cells in influenza control and lung pathology is increasingly appreciated. To explore whether protective and pathological functions can be linked to specific subsets, we dissected CD8+ T responses in influenza-infected murine lungs. Our single-cell RNA-sequencing (scRNA-seq) analysis revealed notable diversity in CD8+ T subpopulations during peak viral load and infection-resolved state. While enrichment of a Cxcr3hi CD8+ T effector subset was associated with a more robust cytotoxic response, both CD8+ T effector and central memory exhibited equally potent effector potential. The scRNA-seq analysis identified unique regulons regulating the cytotoxic response in CD8+ T cells. The late-stage CD8+ T blockade in influenza-cleared lungs or continuous CXCR3 blockade mitigated lung injury without affecting viral clearance. Furthermore, adoptive transfer of wild-type CD8+ T cells exacerbated influenza lung pathology in Cxcr3-/- mice. Collectively, our data imply that CXCR3 interception could have a therapeutic effect in preventing influenza-linked lung injury.
Collapse
Affiliation(s)
- Kai Guo
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Dan J. K. Yombo
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA
| | - Zhihan Wang
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | | | - Jintao Xu
- Research Service, Ann Arbor VA Health System, Department of Veterans Affairs Health System, Ann Arbor, MI 48109, USA
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI 48109, USA
| | - Taylor Schmit
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA
| | - Nassem Ahamad
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL 32610, USA
| | - Jitendra Tripathi
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA
| | - Bony De Kumar
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA
| | - Ramkumar Mathur
- Department of Geriatrics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA
| | - Junguk Hur
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA
| | - Jie Sun
- Carter Immunology Center, University of Virginia, Charlottesville, VA 22908, USA
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA 22908, USA
| | - Michal A. Olszewski
- Research Service, Ann Arbor VA Health System, Department of Veterans Affairs Health System, Ann Arbor, MI 48109, USA
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI 48109, USA
| | - Nadeem Khan
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
7
|
Torres DJ, Mrass P, Byrum J, Gonzales A, Martinez DN, Juarez E, Thompson E, Vezys V, Moses ME, Cannon JL. Quantitative analyses of T cell motion in tissue reveals factors driving T cell search in tissues. eLife 2023; 12:e84916. [PMID: 37870221 PMCID: PMC10672806 DOI: 10.7554/elife.84916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 10/22/2023] [Indexed: 10/24/2023] Open
Abstract
T cells are required to clear infection, and T cell motion plays a role in how quickly a T cell finds its target, from initial naive T cell activation by a dendritic cell to interaction with target cells in infected tissue. To better understand how different tissue environments affect T cell motility, we compared multiple features of T cell motion including speed, persistence, turning angle, directionality, and confinement of T cells moving in multiple murine tissues using microscopy. We quantitatively analyzed naive T cell motility within the lymph node and compared motility parameters with activated CD8 T cells moving within the villi of small intestine and lung under different activation conditions. Our motility analysis found that while the speeds and the overall displacement of T cells vary within all tissues analyzed, T cells in all tissues tended to persist at the same speed. Interestingly, we found that T cells in the lung show a marked population of T cells turning at close to 180o, while T cells in lymph nodes and villi do not exhibit this "reversing" movement. T cells in the lung also showed significantly decreased meandering ratios and increased confinement compared to T cells in lymph nodes and villi. These differences in motility patterns led to a decrease in the total volume scanned by T cells in lung compared to T cells in lymph node and villi. These results suggest that the tissue environment in which T cells move can impact the type of motility and ultimately, the efficiency of T cell search for target cells within specialized tissues such as the lung.
Collapse
Affiliation(s)
| | - Paulus Mrass
- Department of Molecular Genetics and Microbiology, University of New Mexico School of MedicineAlbuquerqueUnited States
| | - Janie Byrum
- Department of Molecular Genetics and Microbiology, University of New Mexico School of MedicineAlbuquerqueUnited States
| | | | | | | | - Emily Thompson
- Department of Microbiology and Immunology, University of Minnesota Medical SchoolMinneapolisUnited States
| | - Vaiva Vezys
- Department of Microbiology and Immunology, University of Minnesota Medical SchoolMinneapolisUnited States
| | - Melanie E Moses
- Department of Computer Science, University of New MexicoAlbuquerqueUnited States
| | - Judy L Cannon
- Department of Molecular Genetics and Microbiology, University of New Mexico School of MedicineAlbuquerqueUnited States
- Autophagy, Inflammation, and Metabolism Center of Biomedical Research Excellence, University of New Mexico School of MedicineAlbuquerqueUnited States
| |
Collapse
|
8
|
Arroyo-Díaz NM, Bachus H, Papillion A, Randall TD, Akther J, Rosenberg AF, León B, Ballesteros-Tato A. Interferon-γ production by Tfh cells is required for CXCR3 + pre-memory B cell differentiation and subsequent lung-resident memory B cell responses. Immunity 2023; 56:2358-2372.e5. [PMID: 37699392 PMCID: PMC10592015 DOI: 10.1016/j.immuni.2023.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 06/08/2023] [Accepted: 08/17/2023] [Indexed: 09/14/2023]
Abstract
Lung-resident memory B cells (lung-BRMs) differentiate into plasma cells after reinfection, providing enhanced pulmonary protection. Here, we investigated the determinants of lung-BRM differentiation upon influenza infection. Kinetic analyses revealed that influenza nucleoprotein (NP)-specific BRMs preferentially differentiated early after infection and required T follicular helper (Tfh) cell help. BRM differentiation temporally coincided with transient interferon (IFN)-γ production by Tfh cells. Depletion of IFN-γ in Tfh cells prevented lung-BRM differentiation and impaired protection against heterosubtypic infection. IFN-γ was required for expression of the transcription factor T-bet by germinal center (GC) B cells, which promoted differentiation of a CXCR3+ GC B cell subset that were precursors of lung-BRMs and CXCR3+ memory B cells in the mediastinal lymph node. Absence of IFN-γ signaling or T-bet in GC B cells prevented CXCR3+ pre-memory precursor development and hampered CXCR3+ memory B cell differentiation and subsequent lung-BRM responses. Thus, Tfh-cell-derived IFN-γ is critical for lung-BRM development and pulmonary immunity, with implications for vaccination strategies targeting BRMs.
Collapse
Affiliation(s)
- Nicole M Arroyo-Díaz
- Department of Medicine, Division of Clinical Immunology and Rheumatology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Holly Bachus
- Department of Medicine, Division of Clinical Immunology and Rheumatology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Amber Papillion
- Department of Medicine, Division of Clinical Immunology and Rheumatology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Troy D Randall
- Department of Medicine, Division of Clinical Immunology and Rheumatology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jobaida Akther
- Department of Medicine, Division of Clinical Immunology and Rheumatology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Alexander F Rosenberg
- Department of Microbiology, The University of Alabama at Birmingham, Birmingham, AL, USA; Informatics Institute, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Beatriz León
- Department of Microbiology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - André Ballesteros-Tato
- Department of Medicine, Division of Clinical Immunology and Rheumatology, The University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
9
|
Armitage E, Quan D, Flórido M, Palendira U, Triccas JA, Britton WJ. CXCR3 Provides a Competitive Advantage for Retention of Mycobacterium tuberculosis-Specific Tissue-Resident Memory T Cells Following a Mucosal Tuberculosis Vaccine. Vaccines (Basel) 2023; 11:1549. [PMID: 37896952 PMCID: PMC10611282 DOI: 10.3390/vaccines11101549] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/26/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
Mycobacterium tuberculosis is a major human pathogen, and new vaccines are needed to prevent transmission. Mucosal vaccination may confer protection against M. tuberculosis by stimulating tissue-resident memory (TRM) CD4+ T cells in the lungs. The chemokine receptor CXCR3 promotes lung recruitment of T cells, but its role in TRM development is unknown. This study demonstrates the recombinant influenza A virus vaccine PR8.p25, expressing the immunodominant M. tuberculosis T cell epitope p25, induces CXCR3 expression on p25-specific CD4+ T cells in the lungs so that the majority of vaccine-induced CD4+ TRM expresses CXCR3 at 6 weeks. However, CXCR3-/- mice developed equivalent antigen-specific CD4+ T cell responses to wild-type (WT) mice following PR8.p25, and surprisingly retained more p25-specific CD4+ TRM in the lungs than WT mice at 6 weeks. The adoptive transfer of CXCR3-/- and WT P25 T cells into WT mice revealed that the initial recruitment of vaccine-induced CD4+ T cells into the lungs was independent of CXCR3, but by 6 weeks, CXCR3-deficient P25 T cells, and especially CXCR3-/- TRM, were significantly reduced compared to CXCR3-sufficient P25 T cells. Therefore, although CXCR3 was not essential for CD4+ TRM recruitment or retention, it provided a competitive advantage for the induction of M. tuberculosis-specific CD4+ TRM in the lungs following pulmonary immunization.
Collapse
Affiliation(s)
- Ellis Armitage
- Centenary Institute, The University of Sydney, Sydney, NSW 2006, Australia; (E.A.); (D.Q.); (M.F.); (U.P.)
| | - Diana Quan
- Centenary Institute, The University of Sydney, Sydney, NSW 2006, Australia; (E.A.); (D.Q.); (M.F.); (U.P.)
| | - Manuela Flórido
- Centenary Institute, The University of Sydney, Sydney, NSW 2006, Australia; (E.A.); (D.Q.); (M.F.); (U.P.)
| | - Umaimainthan Palendira
- Centenary Institute, The University of Sydney, Sydney, NSW 2006, Australia; (E.A.); (D.Q.); (M.F.); (U.P.)
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia;
| | - James A. Triccas
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia;
- The University of Sydney Infectious Diseases Institute (Sydney ID), Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Warwick J. Britton
- Centenary Institute, The University of Sydney, Sydney, NSW 2006, Australia; (E.A.); (D.Q.); (M.F.); (U.P.)
- Central Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
- Department of Clinical Immunology, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia
| |
Collapse
|
10
|
Damei I, Trickovic T, Mami-Chouaib F, Corgnac S. Tumor-resident memory T cells as a biomarker of the response to cancer immunotherapy. Front Immunol 2023; 14:1205984. [PMID: 37545498 PMCID: PMC10399960 DOI: 10.3389/fimmu.2023.1205984] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 07/03/2023] [Indexed: 08/08/2023] Open
Abstract
Tumor-infiltrating lymphocytes (TIL) often include a substantial subset of CD8+ tissue-resident memory T (TRM) cells enriched in tumor-specific T cells. These TRM cells play a major role in antitumor immune response. They are identified on the basis of their expression of the CD103 (αE(CD103)β7) and/or CD49a (α1(CD49a)β1) integrins, and the C-type lectin CD69, which are involved in tissue residency. TRM cells express several T-cell inhibitory receptors on their surface but they nevertheless react strongly to malignant cells, exerting a strong cytotoxic function, particularly in the context of blocking interactions of PD-1 with PD-L1 on target cells. These TRM cells form stable conjugates with autologous tumor cells and interact with dendritic cells and other T cells within the tumor microenvironment to orchestrate an optimal in situ T-cell response. There is growing evidence to indicate that TGF-β is essential for the formation and maintenance of TRM cells in the tumor, through the induction of CD103 expression on activated CD8+ T cells, and for the regulation of TRM effector functions through bidirectional integrin signaling. CD8+ TRM cells were initially described as a prognostic marker for survival in patients with various types of cancer, including ovarian, lung and breast cancers and melanoma. More recently, these tumor-resident CD8+ T cells have been shown to be a potent predictive biomarker of the response of cancer patients to immunotherapies, including therapeutic cancer vaccines and immune checkpoint blockade. In this review, we will highlight the major characteristics of tumor TRM cell populations and the possibilities for their exploitation in the design of more effective immunotherapy strategies for cancer.
Collapse
|
11
|
Pritzl CJ, Luera D, Knudson KM, Quaney MJ, Calcutt MJ, Daniels MA, Teixeiro E. IKK2/NFkB signaling controls lung resident CD8 + T cell memory during influenza infection. Nat Commun 2023; 14:4331. [PMID: 37468506 DOI: 10.1038/s41467-023-40107-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 07/13/2023] [Indexed: 07/21/2023] Open
Abstract
CD8+ T cell tissue resident memory (TRM) cells are especially suited to control pathogen spread at mucosal sites. However, their maintenance in lung is short-lived. TCR-dependent NFkB signaling is crucial for T cell memory but how and when NFkB signaling modulates tissue resident and circulating T cell memory during the immune response is unknown. Here, we find that enhancing NFkB signaling in T cells once memory to influenza is established, increases pro-survival Bcl-2 and CD122 levels thus boosting lung CD8+ TRM maintenance. By contrast, enhancing NFkB signals during the contraction phase of the response leads to a defect in CD8+ TRM differentiation without impairing recirculating memory subsets. Specifically, inducible activation of NFkB via constitutive active IKK2 or TNF interferes with TGFβ signaling, resulting in defects of lung CD8+ TRM imprinting molecules CD69, CD103, Runx3 and Eomes. Conversely, inhibiting NFkB signals not only recovers but improves the transcriptional signature and generation of lung CD8+ TRM. Thus, NFkB signaling is a critical regulator of tissue resident memory, whose levels can be tuned at specific times during infection to boost lung CD8+ TRM.
Collapse
Affiliation(s)
- Curtis J Pritzl
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, USA
- Roy Blunt NextGen Precision Health Building, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Dezzarae Luera
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, USA
- Roy Blunt NextGen Precision Health Building, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Karin M Knudson
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Michael J Quaney
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Michael J Calcutt
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, USA
| | - Mark A Daniels
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, USA
- Roy Blunt NextGen Precision Health Building, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Emma Teixeiro
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, USA.
- Roy Blunt NextGen Precision Health Building, School of Medicine, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
12
|
Moreno Ayala MA, Campbell TF, Zhang C, Dahan N, Bockman A, Prakash V, Feng L, Sher T, DuPage M. CXCR3 expression in regulatory T cells drives interactions with type I dendritic cells in tumors to restrict CD8 + T cell antitumor immunity. Immunity 2023; 56:1613-1630.e5. [PMID: 37392735 PMCID: PMC10752240 DOI: 10.1016/j.immuni.2023.06.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 03/07/2023] [Accepted: 06/06/2023] [Indexed: 07/03/2023]
Abstract
Infiltration of regulatory T (Treg) cells, an immunosuppressive population of CD4+ T cells, into solid cancers represents a barrier to cancer immunotherapy. Chemokine receptors are critical for Treg cell recruitment and cell-cell interactions in inflamed tissues, including cancer, and thus are an ideal therapeutic target. Here, we show in multiple cancer models that CXCR3+ Treg cells were increased in tumors compared with lymphoid tissues, exhibited an activated phenotype, and interacted preferentially with CXCL9-producing BATF3+ dendritic cells (DCs). Genetic ablation of CXCR3 in Treg cells disrupted DC1-Treg cell interactions and concomitantly increased DC-CD8+ T cell interactions. Mechanistically, CXCR3 ablation in Treg cells increased tumor antigen-specific cross-presentation by DC1s, increasing CD8+ T cell priming and reactivation in tumors. This ultimately impaired tumor progression, especially in combination with anti-PD-1 checkpoint blockade immunotherapy. Overall, CXCR3 is shown to be a critical chemokine receptor for Treg cell accumulation and immune suppression in tumors.
Collapse
Affiliation(s)
- Mariela A Moreno Ayala
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Timothy F Campbell
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Chenyu Zhang
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Noa Dahan
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Alissa Bockman
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Varsha Prakash
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Lawrence Feng
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Theo Sher
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Michel DuPage
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
13
|
Jones MC, Castonguay C, Nanaware PP, Weaver GC, Stadinski B, Kugler-Umana OA, Huseby ES, Stern LJ, McKinstry KK, Strutt TM, Devarajan P, Swain SL. CD4 Effector TCR Avidity for Peptide on APC Determines the Level of Memory Generated. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:1950-1961. [PMID: 37093656 PMCID: PMC10247507 DOI: 10.4049/jimmunol.2200337] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 03/30/2023] [Indexed: 04/25/2023]
Abstract
Initial TCR affinity for peptide Ag is known to impact the generation of memory; however, its contributions later, when effectors must again recognize Ag at 5-8 d postinfection to become memory, is unclear. We examined whether the effector TCR affinity for peptide at this "effector checkpoint" dictates the extent of memory and degree of protection against rechallenge. We made an influenza A virus nucleoprotein (NP)-specific TCR transgenic mouse strain, FluNP, and generated NP-peptide variants that are presented by MHC class II to bind to the FluNP TCR over a broad range of avidity. To evaluate the impact of avidity in vivo, we primed naive donor FluNP in influenza A virus-infected host mice, purified donor effectors at the checkpoint, and cotransferred them with the range of peptides pulsed on activated APCs into second uninfected hosts. Higher-avidity peptides yielded higher numbers of FluNP memory cells in spleen and most dramatically in lung and draining lymph nodes and induced better protection against lethal influenza infection. Avidity determined memory cell number, not cytokine profile, and already impacted donor cell number within several days of transfer. We previously found that autocrine IL-2 production at the checkpoint prevents default effector apoptosis and supports memory formation. Here, we find that peptide avidity determines the level of IL-2 produced by these effectors and that IL-2Rα expression by the APCs enhances memory formation, suggesting that transpresentation of IL-2 by APCs further amplifies IL-2 availability. Secondary memory generation was also avidity dependent. We propose that this regulatory pathway selects CD4 effectors of highest affinity to progress to memory.
Collapse
Affiliation(s)
- Michael C. Jones
- Department of Pathology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Catherine Castonguay
- Department of Pathology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Padma P. Nanaware
- Department of Pathology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Grant C. Weaver
- Department of Pathology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Brian Stadinski
- Department of Pathology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Olivia A. Kugler-Umana
- Department of Pathology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Eric S. Huseby
- Department of Pathology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Lawrence J. Stern
- Department of Pathology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Karl Kai McKinstry
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL. 32827,USA
| | - Tara M. Strutt
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL. 32827,USA
| | - Priyadharshini Devarajan
- Department of Pathology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Susan L. Swain
- Department of Pathology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| |
Collapse
|
14
|
Sasaki E, Asanuma H, Momose H, Furuhata K, Mizukami T, Matsumura T, Takahashi Y, Hamaguchi I. Systemically inoculated adjuvants stimulate pDC-dependent IgA response in local site. Mucosal Immunol 2023; 16:275-286. [PMID: 36935091 DOI: 10.1016/j.mucimm.2023.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/25/2023] [Accepted: 03/08/2023] [Indexed: 03/19/2023]
Abstract
The stimulation of local immunity by vaccination is desirable for controlling virus replication in the respiratory tract. However, the local immune stimulatory effects of adjuvanted vaccines administered through the non-mucosal route are poorly understood. Here, we clarify the mechanisms by which non-mucosal inoculation of adjuvants stimulates the plasmacytoid dendritic cell (pDC)-dependent immunoglobulin (Ig)A response in the lungs. After systemic inoculation with type 1 interferon (IFN)-inducing adjuvants, type 1 IFN promotes CXCL9/10/11 release from alveolar endothelial and epithelial cells and recruits CXCR3-expressing pDCs into the lungs. Because adjuvant-activated pulmonary pDCs highly express major histocompatibility complex II, cluster of differentiation 80, and cluster of differentiation 86, transplantation of such cells into the lungs successfully enhances antigen-specific IgA production by the intranasally sensitized vaccine. In contrast, pDC accumulation in the lungs and subsequent IgA production are impaired in pDC-depleted mice and Ifnar1-/- mice. Notably, the combination of systemic inoculation with type 1 IFN-inducing adjuvants and intranasal antigen sensitization protects mice against influenza virus infection due to the pDC-dependent IgA response and type I IFN response. Our results provide insights into the novel mucosal vaccine strategies using non-mucosal inoculated adjuvants.
Collapse
Affiliation(s)
- Eita Sasaki
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan.
| | - Hideki Asanuma
- Center for Influenza and Respiratory Virus Research, National Institute of Infectious Diseases, Tokyo, Japan
| | - Haruka Momose
- Research Center for Biological Products in the Next Generation, National Institute of Infectious Diseases, Tokyo, Japan
| | - Keiko Furuhata
- Research Center for Biological Products in the Next Generation, National Institute of Infectious Diseases, Tokyo, Japan
| | - Takuo Mizukami
- Research Center for Biological Products in the Next Generation, National Institute of Infectious Diseases, Tokyo, Japan
| | - Takayuki Matsumura
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yoshimasa Takahashi
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan
| | - Isao Hamaguchi
- Research Center for Biological Products in the Next Generation, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
15
|
Akiyama M, Yoshimoto K, Ishigaki S, Suzuki K, Takeuchi T, Kaneko Y. Disease-specific expansion of CD29+IL-17RA+ T effector cells possessing multiple signalling pathways in spondyloarthritis. Rheumatology (Oxford) 2023; 62:1296-1305. [PMID: 35799366 DOI: 10.1093/rheumatology/keac391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/17/2022] [Accepted: 06/28/2022] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVES T cells adhere to enthesis fibrocartilage via integrins and intrinsically require IL-17RA-mediated signals to maintain their effector function. We analysed CD29+IL-17RA+ T cells in inflamed lesions and peripheral blood in patients with SpA and investigated their association with disease activity and therapeutic response. METHODS Transcriptome analysis of synovial fluid T cells from PsA was performed using publicly available bulk cell RNA sequencing data. Blood samples were obtained from healthy controls (n = 37), RA (n = 12), IgG4-related disease (IgG4-RD; n = 12), large vessel vasculitis (LVV; n = 12) and SpA (n = 28) and were analysed by flow cytometry. RESULTS T cells in the inflamed joints of PsA showed CD29 and IL-17RA expression. CD29+IL-17RA+ T cells showed enriched CXCR3+CD45RA+ effector cells and activation of spleen tyrosine kinase (Syk), nuclear factor κB (NF-κB) and Janus kinase-signal transducer and activator of transcription (JAK-STAT) pathways. The proportion of peripheral blood CD29+IL-17RA+ T cells was significantly increased in patients with SpA compared with patients with RA, IgG4-RD or LVV and in healthy controls. Based on the ASDAS-CRP scores, the proportion of CD29+IL-17RA+ T cells was positively correlated with disease activity in treatment-naïve patients with active SpA. Anti-IL-17 but not anti-TNF monoclonal antibodies reduced CD29+IL-17RA+ T cells. CONCLUSIONS CD29+IL-17RA+ T effector cells with enhanced Syk, NF-κB and JAK-STAT pathways were specifically increased in SpA and were correlated with disease activity, implicating a role of this newly identified T cell population in the pathogenesis. Anti-IL-17 monoclonal antibodies may be effective for patients by reducing this pathogenic T cell population.
Collapse
Affiliation(s)
- Mitsuhiro Akiyama
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Keiko Yoshimoto
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Sho Ishigaki
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Katsuya Suzuki
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Tsutomu Takeuchi
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Yuko Kaneko
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
16
|
Fears AC, Walker EM, Chirichella N, Slisarenko N, Merino KM, Golden N, Picou B, Spencer S, Russell-Lodrigue KE, Doyle-Meyers LA, Blair RV, Beddingfield BJ, Maness NJ, Roy CJ, Rout N. The dynamics of γδ T cell responses in nonhuman primates during SARS-CoV-2 infection. Commun Biol 2022; 5:1380. [PMID: 36526890 PMCID: PMC9756695 DOI: 10.1038/s42003-022-04310-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Although most SARS-CoV-2 infections are mild, some patients develop systemic inflammation and progress to acute respiratory distress syndrome (ARDS). However, the cellular mechanisms underlying this spectrum of disease remain unclear. γδT cells are T lymphocyte subsets that have key roles in systemic and mucosal immune responses during infection and inflammation. Here we show that peripheral γδT cells are rapidly activated following aerosol or intra-tracheal/intra-nasal (IT/IN) SARS-CoV-2 infection in nonhuman primates. Our results demonstrate a rapid expansion of Vδ1 γδT cells at day1 that correlate significantly with lung viral loads during the first week of infection. Furthermore, increase in levels of CCR6 and Granzyme B expression in Vδ1 T cells during viral clearance imply a role in innate-like epithelial barrier-protective and cytotoxic functions. Importantly, the early activation and mobilization of circulating HLA-DR+CXCR3+ γδT cells along with significant correlations of Vδ1 T cells with IL-1Ra and SCF levels in bronchoalveolar lavage suggest a novel role for Vδ1 T cells in regulating lung inflammation during aerosol SARS-CoV-2 infection. A deeper understanding of the immunoregulatory functions of MHC-unrestricted Vδ1 T cells in lungs during early SARS-CoV-2 infection is particularly important in the wake of emerging new variants with increased transmissibility and immune evasion potential.
Collapse
Affiliation(s)
- Alyssa C Fears
- Division of Microbiology, Tulane National Primate Research Center, Covington, LA, USA
| | - Edith M Walker
- Division of Microbiology, Tulane National Primate Research Center, Covington, LA, USA
| | - Nicole Chirichella
- Division of Microbiology, Tulane National Primate Research Center, Covington, LA, USA
| | - Nadia Slisarenko
- Division of Microbiology, Tulane National Primate Research Center, Covington, LA, USA
| | - Kristen M Merino
- Division of Microbiology, Tulane National Primate Research Center, Covington, LA, USA
| | - Nadia Golden
- Division of Microbiology, Tulane National Primate Research Center, Covington, LA, USA
| | - Breanna Picou
- High Containment Research Performance Core, Tulane National Primate Research Center, Covington, LA, USA
| | - Skye Spencer
- High Containment Research Performance Core, Tulane National Primate Research Center, Covington, LA, USA
| | - Kasi E Russell-Lodrigue
- Division of Veterinary Medicine, Tulane National Primate Research Center, Covington, LA, USA
| | - Lara A Doyle-Meyers
- Division of Veterinary Medicine, Tulane National Primate Research Center, Covington, LA, USA
| | - Robert V Blair
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA, USA
| | | | - Nicholas J Maness
- Division of Microbiology, Tulane National Primate Research Center, Covington, LA, USA
- Department of Microbiology and Immunology, Tulane School of Medicine, New Orleans, LA, USA
| | - Chad J Roy
- Division of Microbiology, Tulane National Primate Research Center, Covington, LA, USA
- Department of Microbiology and Immunology, Tulane School of Medicine, New Orleans, LA, USA
| | - Namita Rout
- Division of Microbiology, Tulane National Primate Research Center, Covington, LA, USA.
- Department of Microbiology and Immunology, Tulane School of Medicine, New Orleans, LA, USA.
- Tulane Center for Aging, Tulane University School of Medicine, New Orleans, LA, USA.
| |
Collapse
|
17
|
Kawasaki T, Ikegawa M, Kawai T. Antigen Presentation in the Lung. Front Immunol 2022; 13:860915. [PMID: 35615351 PMCID: PMC9124800 DOI: 10.3389/fimmu.2022.860915] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 04/15/2022] [Indexed: 12/28/2022] Open
Abstract
The lungs are constantly exposed to environmental and infectious agents such as dust, viruses, fungi, and bacteria that invade the lungs upon breathing. The lungs are equipped with an immune defense mechanism that involves a wide variety of immunological cells to eliminate these agents. Various types of dendritic cells (DCs) and macrophages (MACs) function as professional antigen-presenting cells (APCs) that engulf pathogens through endocytosis or phagocytosis and degrade proteins derived from them into peptide fragments. During this process, DCs and MACs present the peptides on their major histocompatibility complex class I (MHC-I) or MHC-II protein complex to naïve CD8+ or CD4+ T cells, respectively. In addition to these cells, recent evidence supports that antigen-specific effector and memory T cells are activated by other lung cells such as endothelial cells, epithelial cells, and monocytes through antigen presentation. In this review, we summarize the molecular mechanisms of antigen presentation by APCs in the lungs and their contribution to immune response.
Collapse
Affiliation(s)
| | | | - Taro Kawai
- *Correspondence: Takumi Kawasaki, ; Taro Kawai,
| |
Collapse
|
18
|
Dalit L, Alvarado C, Küijper L, Kueh AJ, Weir A, D’Amico A, Herold MJ, Vince JE, Nutt SL, Groom JR. CXCL11 expressing C57BL/6 mice have intact adaptive immune responses to viral infection. Immunol Cell Biol 2022; 100:312-322. [PMID: 35233830 PMCID: PMC9542850 DOI: 10.1111/imcb.12541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 02/24/2022] [Accepted: 02/26/2022] [Indexed: 12/13/2022]
Abstract
The chemokine receptor CXCR3 is expressed on immune cells to co‐ordinate lymphocyte activation and migration. CXCR3 binds three chemokine ligands, CXCL9, CXCL10 and CXCL11. These ligands display distinct expression patterns and ligand signaling biases; however, how each ligand functions individually and collaboratively is incompletely understood. CXCL9 and CXCL10 are considered pro‐inflammatory chemokines during viral infection, while CXCL11 may induce a tolerizing state. The investigation of the individual role of CXCL11 in vivo has been hampered as C57BL/6 mice carry several mutations that result in a null allele. Here, CRISPR/Cas9 was used to correct these mutations on a C57BL/6 background. It was validated that CXCL11KI mice expressed CXCL11 protein in dendritic cells, spleen and lung. CXCL11KI mice were largely phenotypically indistinguishable from C57BL/6 mice, both at steady‐state and during two models of viral infection. While CXCL11 expression did not modify acute antiviral responses, this study provides a new tool to understand the role of CXCL11 in other experimental settings.
Collapse
Affiliation(s)
- Lennard Dalit
- Walter and Eliza Hall Institute of Medical Research Parkville VIC Australia
- Department of Medical Biology University of Melbourne Parkville VIC Australia
| | - Carolina Alvarado
- Walter and Eliza Hall Institute of Medical Research Parkville VIC Australia
| | - Lisan Küijper
- Walter and Eliza Hall Institute of Medical Research Parkville VIC Australia
| | - Andrew J Kueh
- Walter and Eliza Hall Institute of Medical Research Parkville VIC Australia
- Department of Medical Biology University of Melbourne Parkville VIC Australia
| | - Ashley Weir
- Walter and Eliza Hall Institute of Medical Research Parkville VIC Australia
- Department of Medical Biology University of Melbourne Parkville VIC Australia
| | - Angela D’Amico
- Walter and Eliza Hall Institute of Medical Research Parkville VIC Australia
| | - Marco J Herold
- Walter and Eliza Hall Institute of Medical Research Parkville VIC Australia
- Department of Medical Biology University of Melbourne Parkville VIC Australia
| | - James E Vince
- Walter and Eliza Hall Institute of Medical Research Parkville VIC Australia
- Department of Medical Biology University of Melbourne Parkville VIC Australia
| | - Stephen L Nutt
- Walter and Eliza Hall Institute of Medical Research Parkville VIC Australia
- Department of Medical Biology University of Melbourne Parkville VIC Australia
| | - Joanna R Groom
- Walter and Eliza Hall Institute of Medical Research Parkville VIC Australia
- Department of Medical Biology University of Melbourne Parkville VIC Australia
| |
Collapse
|
19
|
Oja AE, van Lier RAW, Hombrink P. Two sides of the same coin: Protective versus pathogenic CD4 + resident memory T cells. Sci Immunol 2022; 7:eabf9393. [PMID: 35394815 DOI: 10.1126/sciimmunol.abf9393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The ability of the adaptive immune system to form memory is key to providing protection against secondary infections. Resident memory T cells (TRM) are specialized T cell populations that reside within tissue sites where they await reencounter with their cognate antigen. TRM are distinct from circulating memory cells, including central and effector memory T cells, both functionally and transcriptionally. Since the discovery of TRM, most research has focused on CD8+ TRM, despite that CD4+ TRM are also abundant in most tissues. In the past few years, more evidence has emerged that CD4+ TRM can contribute both protective and pathogenic roles in disease. A complexity inherent to the CD4+ TRM field is the ability of CD4+ T cells to polarize into a multitude of distinct subsets and recognize not only viruses and intracellular bacteria but also extracellular bacteria, fungi, and parasites. In this review, we outline the key features of CD4+ TRM in health and disease, including their contributions to protection against SARS-CoV-2 and potential contributions to immunopathology associated with COVID-19.
Collapse
Affiliation(s)
- Anna E Oja
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - René A W van Lier
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Pleun Hombrink
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
20
|
Gauthier M, Kale SL, Oriss TB, Scholl K, Das S, Yuan H, Hu S, Chen J, Camiolo M, Ray P, Wenzel S, Ray A. Dual role for CXCR3 and CCR5 in asthmatic type 1 inflammation. J Allergy Clin Immunol 2022; 149:113-124.e7. [PMID: 34146578 PMCID: PMC8674372 DOI: 10.1016/j.jaci.2021.05.044] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 05/17/2021] [Accepted: 05/27/2021] [Indexed: 01/03/2023]
Abstract
BACKGROUND Many patients with severe asthma (SA) fail to respond to type 2 inflammation-targeted therapies. We previously identified a cohort of subjects with SA expressing type 1 inflammation manifesting with IFN-γ expression and variable type 2 responses. OBJECTIVE We investigated the role of the chemotactic receptors C-X-C chemokine receptor 3 (CXCR3) and C-C chemokine receptor 5 (CCR5) in establishing type 1 inflammation in SA. METHODS Bronchoalveolar lavage microarray data from the Severe Asthma Research Program I/II were analyzed for pathway expression and paired with clinical parameters. Wild-type, Cxcr3-/-, and Ccr5-/- mice were exposed to a type 1-high SA model with analysis of whole lung gene expression and histology. Wild-type and Cxcr3-/- mice were treated with a US Food and Drug Administration-approved CCR5 inhibitor (maraviroc) with assessment of airway resistance, inflammatory cell recruitment by flow cytometry, whole lung gene expression, and histology. RESULTS A cohort of subjects with increased IFN-γ expression showed higher asthma severity. IFN-γ expression was correlated with CXCR3 and CCR5 expression, but in Cxcr3-/- and Ccr5-/- mice type 1 inflammation was preserved in a murine SA model, most likely owing to compensation by the other pathway. Incorporation of maraviroc into the experimental model blunted airway hyperreactivity despite only mild effects on lung inflammation. CONCLUSIONS IFNG expression in asthmatic airways was strongly correlated with expression of both the chemokine receptors CXCR3 and CCR5. Although these pathways provide redundancy for establishing type 1 lung inflammation, inhibition of the CCL5/CCR5 pathway with maraviroc provided unique benefits in reducing airway hyperreactivity. Targeting this pathway may be a novel approach for improving lung function in individuals with type 1-high asthma.
Collapse
Affiliation(s)
- Marc Gauthier
- Department of Medicine, Division of Pulmonary Allergy and Critical Care Medicine, Pittsburgh, Pa.
| | - Sagar Laxman Kale
- Department of Medicine, Division of Pulmonary Allergy and Critical Care Medicine, Pittsburgh, Pa
| | - Timothy B Oriss
- Department of Medicine, Division of Pulmonary Allergy and Critical Care Medicine, Pittsburgh, Pa; Department of Immunology, The University of Pittsburgh School of Medicine, Pittsburgh, Pa
| | - Kathryn Scholl
- Department of Medicine, Division of Pulmonary Allergy and Critical Care Medicine, Pittsburgh, Pa
| | - Sudipta Das
- Department of Medicine, Division of Pulmonary Allergy and Critical Care Medicine, Pittsburgh, Pa
| | - Huijuan Yuan
- Department of Medicine, Division of Pulmonary Allergy and Critical Care Medicine, Pittsburgh, Pa
| | - Sanmei Hu
- Department of Medicine, Division of Pulmonary Allergy and Critical Care Medicine, Pittsburgh, Pa
| | - Jie Chen
- Department of Medicine, Division of Pulmonary Allergy and Critical Care Medicine, Pittsburgh, Pa
| | - Matthew Camiolo
- Department of Medicine, Division of Pulmonary Allergy and Critical Care Medicine, Pittsburgh, Pa
| | - Prabir Ray
- Department of Medicine, Division of Pulmonary Allergy and Critical Care Medicine, Pittsburgh, Pa; Department of Immunology, The University of Pittsburgh School of Medicine, Pittsburgh, Pa
| | - Sally Wenzel
- Department of Medicine, Division of Pulmonary Allergy and Critical Care Medicine, Pittsburgh, Pa; The University of Pittsburgh School of Environmental and Occupational Health, Pittsburgh, Pa
| | - Anuradha Ray
- Department of Medicine, Division of Pulmonary Allergy and Critical Care Medicine, Pittsburgh, Pa; Department of Immunology, The University of Pittsburgh School of Medicine, Pittsburgh, Pa.
| |
Collapse
|
21
|
Braverman J, Monk IR, Ge C, Westall GP, Stinear TP, Wakim LM. Staphylococcus aureus specific lung resident memory CD4 + Th1 cells attenuate the severity of influenza virus induced secondary bacterial pneumonia. Mucosal Immunol 2022; 15:783-796. [PMID: 35637249 PMCID: PMC9148937 DOI: 10.1038/s41385-022-00529-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/25/2022] [Accepted: 05/03/2022] [Indexed: 02/04/2023]
Abstract
Staphylococcus aureus is a major cause of severe pulmonary infections. The evolution of multi-drug resistant strains limits antibiotic treatment options. To date, all candidate vaccines tested have failed, highlighting the need for an increased understanding of the immunological requirements for effective S. aureus immunity. Using an S. aureus strain engineered to express a trackable CD4+ T cell epitope and a murine model of S. aureus pneumonia, we show strategies that lodge Th1 polarised bacterium specific CD4+ tissue resident memory T cells (Trm) in the lung can significantly attenuate the severity of S. aureus pneumonia. This contrasts natural infection of mice that fails to lodge CD4+ Trm cells along the respiratory tract or provide protection against re-infection, despite initially generating Th17 bacterium specific CD4+ T cell responses. Interestingly, lack of CD4+ Trm formation after natural infection in mice appears to be reflected in humans, where the frequency of S. aureus reactive CD4+ Trm cells in lung tissue is also low. Our findings reveal the protective capacity of S. aureus specific respiratory tract CD4+ Th1 polarised Trm cells and highlight the potential for targeting these cells in vaccines that aim to prevent the development of S. aureus pneumonia.
Collapse
Affiliation(s)
- Jessica Braverman
- grid.1008.90000 0001 2179 088XDepartment of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000 Australia
| | - Ian R. Monk
- grid.1008.90000 0001 2179 088XDepartment of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000 Australia
| | - Chenghao Ge
- grid.1008.90000 0001 2179 088XDepartment of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000 Australia ,grid.12527.330000 0001 0662 3178School of Medicine, Tsinghua University, Beijing, China
| | - Glen P. Westall
- grid.1002.30000 0004 1936 7857Lung Transplant Service, Alfred Hospital, Melbourne, Victoria, Australia; Department of Medicine, Monash University, Melbourne, VIC Australia
| | - Timothy P. Stinear
- grid.1008.90000 0001 2179 088XDepartment of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000 Australia
| | - Linda M. Wakim
- grid.1008.90000 0001 2179 088XDepartment of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000 Australia
| |
Collapse
|
22
|
Ashrafi F, Nematollahi P, Salmasi M, Hedayat A, Amra B. Association of lymphocyte subsets with mortality in severe COVID-19 pneumonia patients. J Clin Lab Anal 2021; 35:e24046. [PMID: 34626490 PMCID: PMC8605151 DOI: 10.1002/jcla.24046] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/15/2021] [Accepted: 09/28/2021] [Indexed: 12/17/2022] Open
Abstract
Background Few studies have investigated the alterations in the T and B cell counts and related subgroups in pulmonary infections especially COVID‐19. Here, we aimed to evaluate total T and B lymphocytes and T cell subgroup counts to find the possible correlation between number of these cells and severity and mortality in COVID‐19 patients. Methods This study was performed on 40 patients with severe COVID‐19 infection confirmed by reverse transcription‐polymerase chain reaction (RT‐PCR) and chest HRCT in August 2020. By the time of admission, T lymphocytes profile in peripheral blood was investigated using multicolor flow cytometry. The total number of T lymphocytes, CD4+ T cells, CD8+ T cells, and B lymphocytes were calculated. Expression of CD2, CD3, CD5, and CD7 as pan T cell surface markers and expression of CD38 and HLA‐DR as activated markers on T lymphocytes were also evaluated. Results Nine patients (22.5%) died during the study and 16 patients (40%) were admitted to ICU. Deceased patients demonstrated lower amounts of T cell count and CD4+ T cell count (with a marginal difference (p = 0.07)) compared with survived patients at the time of admission. The chance of mortality was significantly higher for patients with CD7 loss (OR = 14.89). A marginally significant relationship was also indicated between CD4<200/ml and mortality (OR = 8.65), but no other significant relationships were observed between variables and ICU admission. Conclusion Altogether, CD7 loss on T lymphocytes and CD4+ T cell count below 200/ml revealed a significant relationship with mortality. Considering T lymphocytes and T cell subgroup count could have a predictive value for patients suffering from COVID‐19.
Collapse
Affiliation(s)
- Farzaneh Ashrafi
- Hematology Oncology Division, Internal Medicine Department, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Pardis Nematollahi
- Department of Pathology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mehrzad Salmasi
- Internal Medicine Department, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Arash Hedayat
- Internal Medicine Department, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Babak Amra
- Bamdad Respiratory and Sleep Research Center, Department of Internal Medicine, Pulmonary and Sleep Ward, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
23
|
Yuan G, Chen B, Meng Y, Lu J, Shi X, Hu A, Hu Y, Wang D. Role of the CXCR3‑mediated TLRs/MyD88 signaling pathway in promoting the development of hepatitis B into cirrhosis and liver cancer. Mol Med Rep 2021; 24:738. [PMID: 34435646 PMCID: PMC8404096 DOI: 10.3892/mmr.2021.12378] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 05/18/2021] [Indexed: 12/14/2022] Open
Abstract
Chronic hepatitis B can lead to liver cirrhosis and primary hepatocellular carcinoma. The present study aimed to investigate whether C‑X‑C motif chemokine receptor 3 (CXCR3) regulates the genes in Toll‑like receptors (TLRs)/myeloid differentiation primary response protein 88 (MyD88) signaling pathway in the development of hepatitis B into cirrhosis and liver cancer in vitro. A hepatitis B virus (HBV) overexpression lentivirus was constructed and infected into a LX‑2 cell line to obtain stable HBV‑overexpressing cells (named HBV‑LX‑2 cells). The CXCR3 gene was knocked down using small interfering RNA in HBV‑LX‑2 cells. Cell Counting Kit‑8 assays, cell scratch tests and flow cytometry were used to detect cell proliferation, migration and apoptosis, respectively. The levels of IL‑1β and IL‑6 in serum samples of patients with liver cancer were measured via ELISA, and the collagen content in liver cancer tissues was detected using Masson staining. Western blotting was used to detect the expression levels of proteins in the TLRs/MyD88 signaling pathway. Excessive fibrosis was identified in the liver cancer tissues, and the serum levels of IL‑6 and IL‑1β were abnormally increased in patients with liver cancer. It was found that interfering with CXCR3 inhibited cell proliferation and migration, as well as promoted the apoptosis of HBV‑LX‑2 cells. Moreover, interfering with CXCR3 inhibited the expression levels of collagen type I α 1 chain and the proteins in the TLRs/MyD88 pathway. In conclusion, CXCR3 knockdown could inhibit the expression levels of proteins in the TLR4/MyD88 signaling pathway, decrease cell proliferation and migration, and promote cell apoptosis, thus inhibiting the development of liver cirrhosis to liver cancer.
Collapse
Affiliation(s)
- Gang Yuan
- Department of Acute Infection, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang 315010, P.R. China
| | - Bin Chen
- Hepatology Center, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang 315010, P.R. China
| | - Yina Meng
- Institute of Hepatology, Ningbo University School of Medicine, Ningbo, Zhejiang 315211, P.R. China
| | - Jialin Lu
- Institute of Hepatology, Ningbo University School of Medicine, Ningbo, Zhejiang 315211, P.R. China
| | - Xiaojun Shi
- Department of Hepato-Oncology, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang 315010, P.R. China
| | - Airong Hu
- Institute of Hepatology, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang 315010, P.R. China
| | - Yaoren Hu
- Institute of Hepatology, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang 315010, P.R. China
| | - Donghui Wang
- Department of Acute Infection, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang 315010, P.R. China
| |
Collapse
|
24
|
Boutet M, Benet Z, Guillen E, Koch C, M’Homa Soudja S, Delahaye F, Fooksman D, Lauvau G. Memory CD8 + T cells mediate early pathogen-specific protection via localized delivery of chemokines and IFNγ to clusters of monocytes. SCIENCE ADVANCES 2021; 7:eabf9975. [PMID: 34516896 PMCID: PMC8442869 DOI: 10.1126/sciadv.abf9975] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 07/12/2021] [Indexed: 06/13/2023]
Abstract
While cognate antigen drives clonal expansion of memory CD8+ T (CD8+ TM) cells to achieve sterilizing immunity in immunized hosts, not much is known on how cognate antigen contributes to early protection before clonal expansion occurs. Here, using distinct models of immunization, we establish that cognate antigen recognition by CD8+ TM cells on dendritic cells initiates their rapid and coordinated production of a burst of CCL3, CCL4, and XCL1 chemokines under the transcriptional control of interferon (IFN) regulatory factor 4. Using intravital microscopy imaging, we reveal that CD8+ TM cells undergo antigen-dependent arrest in splenic red pulp clusters of CCR2+Ly6C+ monocytes to which they deliver IFNγ and chemokines. IFNγ enables chemokine-induced microbicidal activities in monocytes for protection. Thus, rapid and effective CD8+ TM cell responses require spatially and temporally coordinated events that quickly restrict microbial pathogen growth through the local delivery of activating chemokines to CCR2+Ly6C+ monocytes.
Collapse
Affiliation(s)
- Marie Boutet
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1301 Morris Park Avenue, Bronx, NY 10461, USA
| | - Zachary Benet
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1301 Morris Park Avenue, Bronx, NY 10461, USA
- Department of Pathology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Erik Guillen
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1301 Morris Park Avenue, Bronx, NY 10461, USA
| | - Caroline Koch
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1301 Morris Park Avenue, Bronx, NY 10461, USA
| | - Saidi M’Homa Soudja
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1301 Morris Park Avenue, Bronx, NY 10461, USA
| | - Fabien Delahaye
- Department of Genetics, Albert Einstein College of Medicine, 1301 Morris Park Avenue, Bronx, NY 10461, USA
- Institut Pasteur de Lille, UMR1283/8199, 59000 Lille, France
| | - David Fooksman
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1301 Morris Park Avenue, Bronx, NY 10461, USA
- Department of Pathology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Grégoire Lauvau
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1301 Morris Park Avenue, Bronx, NY 10461, USA
| |
Collapse
|
25
|
Adamo S, Chevrier S, Cervia C, Zurbuchen Y, Raeber ME, Yang L, Sivapatham S, Jacobs A, Baechli E, Rudiger A, Stüssi‐Helbling M, Huber LC, Schaer DJ, Bodenmiller B, Boyman O, Nilsson J. Profound dysregulation of T cell homeostasis and function in patients with severe COVID-19. Allergy 2021; 76:2866-2881. [PMID: 33884644 PMCID: PMC8251365 DOI: 10.1111/all.14866] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 03/09/2021] [Accepted: 03/14/2021] [Indexed: 01/08/2023]
Abstract
BACKGROUND Coronavirus disease 2019 (COVID-19) is caused by infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and shows a broad clinical presentation ranging from asymptomatic infection to fatal disease. A very prominent feature associated with severe COVID-19 is T cell lymphopenia. However, homeostatic and functional properties of T cells are ill-defined in COVID-19. METHODS We prospectively enrolled individuals with mild and severe COVID-19 into our multicenter cohort and performed a cross-sectional analysis of phenotypic and functional characteristics of T cells using 40-parameter mass cytometry, flow cytometry, targeted proteomics, and functional assays. RESULTS Compared with mild disease, we observed strong perturbations of peripheral T cell homeostasis and function in severe COVID-19. Individuals with severe COVID-19 showed T cell lymphopenia and redistribution of T cell populations, including loss of naïve T cells, skewing toward CD4+ T follicular helper cells and cytotoxic CD4+ T cells, and expansion of activated and exhausted T cells. Extensive T cell apoptosis was particularly evident with severe disease and T cell lymphopenia, which in turn was accompanied by impaired T cell responses to several common viral antigens. Patients with severe disease showed elevated interleukin-7 and increased T cell proliferation. Furthermore, patients sampled at late time points after symptom onset had higher T cell counts and improved antiviral T cell responses. CONCLUSION Our study suggests that severe COVID-19 is characterized by extensive T cell dysfunction and T cell apoptosis, which is associated with signs of homeostatic T cell proliferation and T cell recovery.
Collapse
Affiliation(s)
- Sarah Adamo
- Department of ImmunologyUniversity Hospital Zurich (USZ)ZurichSwitzerland
| | - Stéphane Chevrier
- Department of Quantitative BiomedicineUniversity of ZurichZurichSwitzerland
- Institute of Molecular Health SciencesETH ZurichZurichSwitzerland
| | - Carlo Cervia
- Department of ImmunologyUniversity Hospital Zurich (USZ)ZurichSwitzerland
| | - Yves Zurbuchen
- Department of ImmunologyUniversity Hospital Zurich (USZ)ZurichSwitzerland
| | - Miro E. Raeber
- Department of ImmunologyUniversity Hospital Zurich (USZ)ZurichSwitzerland
| | - Liliane Yang
- Department of ImmunologyUniversity Hospital Zurich (USZ)ZurichSwitzerland
| | - Sujana Sivapatham
- Department of Quantitative BiomedicineUniversity of ZurichZurichSwitzerland
- Institute of Molecular Health SciencesETH ZurichZurichSwitzerland
| | - Andrea Jacobs
- Department of Quantitative BiomedicineUniversity of ZurichZurichSwitzerland
- Institute of Molecular Health SciencesETH ZurichZurichSwitzerland
| | - Esther Baechli
- Clinic for Internal MedicineUster HospitalUsterSwitzerland
| | - Alain Rudiger
- Department of MedicineLimmattal HospitalSchlierenSwitzerland
| | | | - Lars C. Huber
- Clinic for Internal MedicineCity Hospital Triemli ZurichZurichSwitzerland
| | | | - Bernd Bodenmiller
- Department of Quantitative BiomedicineUniversity of ZurichZurichSwitzerland
- Institute of Molecular Health SciencesETH ZurichZurichSwitzerland
| | - Onur Boyman
- Department of ImmunologyUniversity Hospital Zurich (USZ)ZurichSwitzerland
- Faculty of MedicineUniversity of ZurichZurichSwitzerland
| | - Jakob Nilsson
- Department of ImmunologyUniversity Hospital Zurich (USZ)ZurichSwitzerland
| |
Collapse
|
26
|
Abstract
Elicitation of lung tissue-resident memory CD8 T cells (TRMs) is a goal of T cell-based vaccines against respiratory viral pathogens, such as influenza A virus (IAV). C-C chemokine receptor type 2 (CCR2)-dependent monocyte trafficking plays an essential role in the establishment of CD8 TRMs in lungs of IAV-infected mice. Here, we used a combination adjuvant-based subunit vaccine strategy that evokes multifaceted (TC1/TC17/TH1/TH17) IAV nucleoprotein-specific lung TRMs to determine whether CCR2 and monocyte infiltration are essential for vaccine-induced TRM development and protective immunity to IAV in lungs. Following intranasal vaccination, neutrophils, monocytes, conventional dendritic cells (DCs), and monocyte-derived dendritic cells internalized and processed vaccine antigen in lungs. We found that basic leucine zipper ATF-like transcription factor 3 (BATF3)-dependent DCs were essential for eliciting T cell responses, but CCR2 deficiency enhanced the differentiation of CD127hi, KLRG-1lo, OX40+ve CD62L+ve, and mucosally imprinted CD69+ve CD103+ve effector and memory CD8 T cells in lungs and airways of vaccinated mice. Mechanistically, increased development of lung TRMs induced by CCR2 deficiency was linked to dampened expression of T-bet but not altered TCF-1 levels or T cell receptor signaling in CD8 T cells. T1/T17 functional programming, parenchymal localization of CD8/CD4 effector and memory T cells, recall T cell responses, and protective immunity to a lethal IAV infection were unaffected in CCR2-deficient mice. Taken together, we identified a negative regulatory role for CCR2 and monocyte trafficking in mucosal imprinting and differentiation of vaccine-induced TRMs. Mechanistic insights from this study may aid the development of T-cell-based vaccines against respiratory viral pathogens, including IAV and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). IMPORTANCE While antibody-based immunity to influenza A virus (IAV) is type and subtype specific, lung- and airway-resident memory T cells that recognize conserved epitopes in the internal viral proteins are known to provide heterosubtypic immunity. Hence, broadly protective IAV vaccines need to elicit robust T cell memory in the respiratory tract. We have developed a combination adjuvant-based IAV nucleoprotein vaccine that elicits strong CD4 and CD8 T cell memory in lungs and protects against H1N1 and H5N1 strains of IAV. In this study, we examined the mechanisms that control vaccine-induced protective memory T cells in the respiratory tract. We found that trafficking of monocytes into lungs might limit the development of antiviral lung-resident memory T cells following intranasal vaccination. These findings suggest that strategies that limit monocyte infiltration can potentiate vaccine-induced frontline T-cell immunity to respiratory viruses, such as IAV and SARS-CoV-2.
Collapse
|
27
|
Corleis B, Cho JL, Gates SJ, Linder AH, Dickey A, Lisanti-Park AC, Schiff AE, Ghebremichael M, Kohli P, Winkler T, Harris RS, Medoff BD, Kwon DS. Smoking and HIV-1 Infection Promote Retention of CD8+ T Cells in the Airway Mucosa. Am J Respir Cell Mol Biol 2021; 65:513-520. [PMID: 34166603 DOI: 10.1165/rcmb.2021-0168oc] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Smoking and HIV-1 infection are risk factors for COPD, which is among the most common comorbid conditions in people living with HIV-1. HIV-1 infection leads to persistent expansion of CD8+ T cells, and CD8+ T cell-mediated inflammation has been implicated in COPD pathogenesis. In this study, we investigated the effects of HIV-1 infection and smoking on T cell dynamics in patients at risk of COPD. Bronchoalveolar lavage (BAL), endobronchial brushings and blood from HIV-1 infected and uninfected non-smokers and smokers were analyzed by flow cytometry, and lungs were imaged by computed tomography. Chemokines were measured in BAL fluid, and CD8+ T cell chemotaxis in the presence of cigarette smoke extract was assessed in vitro. HIV-1 infection increased CD8+ T cells in the BAL, but this increase was abrogated by smoking. Smokers had reduced BAL levels of the T cell-recruiting chemokines CXCL10 and CCL5, and cigarette smoke extract inhibited CXCL10 and CCL5 production by macrophages and CD8+ T cell transmigration in vitro. In contrast to the BAL, CD8+ T cells in endobronchial brushings were increased in HIV-1 infected smokers, driven by an accumulation of effector memory T cells in the airway mucosa and an increase in tissue resident memory T cells. Mucosal CD8+ T cell numbers inversely correlated with lung aeration, suggesting an association with inflammation and remodeling. HIV-1 infection and smoking lead to retention of CD8+ T cells within the airway mucosa.
Collapse
Affiliation(s)
- Björn Corleis
- Ragon Institute, 200750, Charlestown, Massachusetts, United States.,Friedrich-Loeffler-Institute Federal Research Institute for Animal Health, 39023, Institute of Immunology, Greifswald - Insel Riems, Germany
| | - Josalyn L Cho
- University of Iowa Roy J and Lucille A Carver College of Medicine, 12243, Department of Internal Medicine, Division of Pulmonary, Critical Care and Occupational Medicine, Iowa City, Iowa, United States;
| | - Samantha J Gates
- Ragon Institute, 200750, Charlestown, Massachusetts, United States
| | - Alice H Linder
- Ragon Institute, 200750, Charlestown, Massachusetts, United States
| | - Amy Dickey
- Massachusetts General Hospital, 2348, Department of Medicine, Division of Pulmonary and Critical Care Medicine, Boston, Massachusetts, United States
| | | | - Abigail E Schiff
- Ragon Institute, 200750, Charlestown, Massachusetts, United States
| | | | - Puja Kohli
- Massachusetts General Hospital, 2348, Department of Medicine, Division of Pulmonary and Critical Care Medicine, Boston, Massachusetts, United States
| | - Tilo Winkler
- Massachusetts General Hospital, 2348, Department of Medicine, Division of Pulmonary and Critical Care Medicine, Boston, Massachusetts, United States
| | - R Scott Harris
- Massachusetts General Hospital, 2348, Department of Medicine, Division of Pulmonary and Critical Care Medicine, Boston, Massachusetts, United States
| | - Benjamin D Medoff
- Massachusetts General Hospital, 2348, Department of Medicine, Division of Pulmonary and Critical Care Medicine, Boston, Massachusetts, United States
| | - Douglas S Kwon
- Massachusetts General Hospital, 2348, Department of Medicine, Division of Infectious Diseases, Boston, Massachusetts, United States.,Ragon Institute, 200750, Charlestown, Massachusetts, United States
| |
Collapse
|
28
|
Sun R, Jang JH, Lauzon AM, Martin JG. Interferon-γ amplifies airway smooth muscle-mediated CD4+ T cell recruitment by promoting the secretion of C-X-C-motif chemokine receptor 3 ligands. FASEB J 2021; 35:e21228. [PMID: 33337555 DOI: 10.1096/fj.202001480r] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 10/30/2020] [Accepted: 11/11/2020] [Indexed: 11/11/2022]
Abstract
Asthmatic airways feature increased ASM mass that is largely attributable to hyperplasia, and which potentially contributes to excessive airway narrowing. T cells induce ASMC proliferation via contact-dependent mechanisms in vitro that may have importance for asthmatic ASM growth, as CD4+ T cells infiltrate ASM bundles in asthmatic human airways. In this study, we used an in vitro migration assay to investigate the pathways responsible for the trafficking of human CD4+ T cells to ASM. ASMCs induced chemotaxis of activated CD4+ T cells, which was inhibited by the CXCR3 antagonist AMG487 and neutralizing antibodies against its ligands CXCL10 and 11, but not CCR3 or CCR5 antagonists. CXCR3 expression was upregulated among all T cells following anti-CD3/CD28-activation. CD4+ T cells upregulated CXCL9, 10, and 11 expression in ASMCs in an IFN-γ/STAT1-dependent manner. Disruption of IFN-γ-signaling resulted in reduced T cell migration, along with the inhibition of CD4+ T cell-mediated STAT1 activation and CXCR3 ligand secretion by ASMCs. ASMCs derived from healthy and asthmatic donors demonstrated similar T cell-recruiting capacities. In vivo CXCL10 and 11 expression by asthmatic ASM was confirmed by immunostaining. We conclude that the CXCL10/11-CXCR3 axis causes CD4+ T cell recruitment to ASM that is amplified by T cell-derived IFN-γ.
Collapse
Affiliation(s)
- Rui Sun
- Meakins-Christie Laboratories, The Research Institute of McGill University Health Centre, Montreal, QC, Canada
| | - Joyce H Jang
- Meakins-Christie Laboratories, The Research Institute of McGill University Health Centre, Montreal, QC, Canada
| | - Anne-Marie Lauzon
- Meakins-Christie Laboratories, The Research Institute of McGill University Health Centre, Montreal, QC, Canada
| | - James G Martin
- Meakins-Christie Laboratories, The Research Institute of McGill University Health Centre, Montreal, QC, Canada
| |
Collapse
|
29
|
Sweet SC. Community-Acquired Respiratory Viruses Post-Lung Transplant. Semin Respir Crit Care Med 2021; 42:449-459. [PMID: 34030206 DOI: 10.1055/s-0041-1729172] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Survival in lung transplant recipients (LTRs) lags behind heart, liver, and kidney transplant, in part due to the direct and indirect effects of infection. LTRs have increased susceptibility to infection due to the combination of a graft continually exposed to the outside world, multiple mechanisms for impaired mucus clearance, and immunosuppression. Community-acquired respiratory viral infections (CARVs) are common in LTRs. Picornaviruses have roughly 40% cumulative incidence followed by respiratory syncytial virus and coronaviruses. Although single-center retrospective and prospective series implicate CARV in rejection and mortality, conclusive evidence for and well-defined mechanistic links to long-term outcome are lacking. Treatment of viral infections can be challenging except for influenza. Future studies are needed to develop better treatments and clarify the links between CARV and long-term outcomes.
Collapse
Affiliation(s)
- Stuart C Sweet
- Division of Allergy and Pulmonary Medicine, Washington University in St. Louis, St. Louis, Missouri
| |
Collapse
|
30
|
Lee W, Kingstad-Bakke B, Kedl RM, Kawaoka Y, Suresh M. CCR2 Regulates Vaccine-Induced Mucosal T-Cell Memory to Influenza A Virus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021. [PMID: 33791695 DOI: 10.1101/2021.03.24.436901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Elicitation of lung tissue-resident memory CD8 T cells (T RM s) is a goal of T-cell based vaccines against respiratory viral pathogens such as influenza A virus (IAV). Chemokine receptor 2 (CCR2)-dependent monocyte trafficking plays an essential role in the establishment of CD8 T RM s in lungs of IAV-infected mice. Here, we used a combination adjuvant-based subunit vaccine strategy that evokes multifaceted (T C 1/T C 17/T H 1/T H 17) IAV nucleoprotein-specific lung T RM s, to determine whether CCR2 and monocyte infiltration are essential for vaccine-induced T RM development and protective immunity to IAV in lungs. Following intranasal vaccination, neutrophils, monocytes, conventional dendrtitic cells (DCs) and monocyte-derived DCs internalized and processed vaccine antigen in lungs. We also found that Basic Leucine Zipper ATF-Like Transcription Factor 3 (BATF-3)-dependent DCs were essential for eliciting T cell responses, but CCR2 deficiency enhanced the differentiation of CD127 HI /KLRG-1 LO , OX40 +ve CD62L +ve and mucosally imprinted CD69 +ve CD103 +ve effector and memory CD8 T cells in lungs and airways of vaccinated mice. Mechanistically, increased development of lung T RM s, induced by CCR2 deficiency was linked to dampened expression of T-bet, but not altered TCF-1 levels or T cell receptor signaling in CD8 T cells. T1/T17 functional programming, parenchymal localization of CD8/CD4 effector and memory T cells, recall T cell responses and protective immunity to a lethal IAV infection were unaffected in CCR2-deficient mice. Taken together, we identified a negative regulatory role for CCR2 and monocyte trafficking in mucosal imprinting and differentiation of vaccine-induced T RM s. Mechanistic insights from this study may aid the development of T-cell-based vaccines against respiratory viral pathogens including IAV and SARS-CoV-2. Importance While antibody-based immunity to influenza A virus (IAV) is type and sub-type specific, lung and airway-resident memory T cells that recognize conserved epitopes in the internal viral proteins are known to provide heterosubtypic immunity. Hence, broadly protective IAV vaccines need to elicit robust T-cell memory in the respiratory tract. We have developed a combination adjuvant-based IAV nucleoprotein vaccine that elicits strong CD4 and CD8 T cell memory in lungs and protects against H1N1 and H5N1 strains of IAV. In this study, we examined the mechanisms that control vaccine-induced protective memory T cells in the respiratory tract. We found that trafficking of monocytes into lungs might limit the development of anti-viral lung-resident memory T cells, following intranasal vaccination. These findings suggested that strategies that limit monocyte infiltration can potentiate vaccine-induced frontline T-cell immunity to respiratory viruses such as IAV and SARS-CoV-2.
Collapse
|
31
|
Tan H, Lee WS, Wragg KM, Nelson C, Esterbauer R, Kelly HG, Amarasena T, Jones R, Starkey G, Wang BZ, Yoshino O, Tiang T, Grayson ML, Opdam H, D'Costa R, Vago A, Mackay LK, Gordon CL, Wheatley AK, Kent SJ, Juno JA. Adaptive immunity to human coronaviruses is widespread but low in magnitude. Clin Transl Immunology 2021; 10:e1264. [PMID: 33747512 PMCID: PMC7968850 DOI: 10.1002/cti2.1264] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVES Endemic human coronaviruses (hCoVs) circulate worldwide but cause minimal mortality. Although seroconversion to hCoV is near ubiquitous during childhood, little is known about hCoV-specific T-cell memory in adults. METHODS We quantified CD4 T-cell and antibody responses to hCoV spike antigens in 42 SARS-CoV-2-uninfected individuals. Antigen-specific memory T cells and circulating T follicular helper (cTFH) cells were identified using an activation-induced marker assay and characterised for memory phenotype and chemokine receptor expression. RESULTS T-cell responses were widespread within conventional memory and cTFH compartments but did not correlate with IgG titres. SARS-CoV-2 cross-reactive T cells were observed in 48% of participants and correlated with HKU1 memory. hCoV-specific T cells exhibited a CCR6+ central memory phenotype in the blood, but were enriched for frequency and CXCR3 expression in human lung-draining lymph nodes. CONCLUSION Overall, hCoV-specific humoral and cellular memory are independently maintained, with a shared phenotype existing among coronavirus-specific CD4 T cells. This understanding of endemic coronavirus immunity provides insight into the homeostatic maintenance of immune responses that are likely to be critical components of protection against SARS-CoV-2.
Collapse
Affiliation(s)
- Hyon‐Xhi Tan
- Department of Microbiology and ImmunologyUniversity of Melbourne, at the Peter Doherty institute for Infection and ImmunityMelbourneVICAustralia
| | - Wen Shi Lee
- Department of Microbiology and ImmunologyUniversity of Melbourne, at the Peter Doherty institute for Infection and ImmunityMelbourneVICAustralia
| | - Kathleen M Wragg
- Department of Microbiology and ImmunologyUniversity of Melbourne, at the Peter Doherty institute for Infection and ImmunityMelbourneVICAustralia
| | - Christina Nelson
- Department of Microbiology and ImmunologyUniversity of Melbourne, at the Peter Doherty institute for Infection and ImmunityMelbourneVICAustralia
| | - Robyn Esterbauer
- Department of Microbiology and ImmunologyUniversity of Melbourne, at the Peter Doherty institute for Infection and ImmunityMelbourneVICAustralia
| | - Hannah G Kelly
- Department of Microbiology and ImmunologyUniversity of Melbourne, at the Peter Doherty institute for Infection and ImmunityMelbourneVICAustralia
- Australian Research Council Centre for Excellence in Convergent Bio‐Nano Science and TechnologyUniversity of MelbourneMelbourneVICAustralia
| | - Thakshila Amarasena
- Department of Microbiology and ImmunologyUniversity of Melbourne, at the Peter Doherty institute for Infection and ImmunityMelbourneVICAustralia
| | - Robert Jones
- Department of SurgeryAustin HealthHeidelbergVICAustralia
| | - Graham Starkey
- Department of SurgeryAustin HealthHeidelbergVICAustralia
| | - Bao Zhong Wang
- Department of SurgeryAustin HealthHeidelbergVICAustralia
| | - Osamu Yoshino
- Department of SurgeryAustin HealthHeidelbergVICAustralia
| | - Thomas Tiang
- Department of SurgeryAustin HealthHeidelbergVICAustralia
| | | | - Helen Opdam
- DonateLifeThe Australian Organ and Tissue AuthorityCarltonVICAustralia
- Department of Intensive CareAustin HealthHeidelbergVICAustralia
| | - Rohit D'Costa
- DonateLife VictoriaCarltonVICAustralia
- Intensive Care UnitThe Royal Melbourne HospitalParkvilleVICAustralia
| | - Angela Vago
- Department of SurgeryAustin HealthHeidelbergVICAustralia
| | - Laura K Mackay
- Department of Microbiology and ImmunologyUniversity of Melbourne, at the Peter Doherty institute for Infection and ImmunityMelbourneVICAustralia
| | - Claire L Gordon
- Department of Microbiology and ImmunologyUniversity of Melbourne, at the Peter Doherty institute for Infection and ImmunityMelbourneVICAustralia
- Department of Infectious DiseasesAustin HealthHeidelbergVICAustralia
| | - Adam K Wheatley
- Department of Microbiology and ImmunologyUniversity of Melbourne, at the Peter Doherty institute for Infection and ImmunityMelbourneVICAustralia
| | - Stephen J Kent
- Department of Microbiology and ImmunologyUniversity of Melbourne, at the Peter Doherty institute for Infection and ImmunityMelbourneVICAustralia
- Australian Research Council Centre for Excellence in Convergent Bio‐Nano Science and TechnologyUniversity of MelbourneMelbourneVICAustralia
- Melbourne Sexual Health Centre and Department of Infectious DiseasesAlfred Hospital and Central Clinical SchoolMonash UniversityMelbourneVICAustralia
| | - Jennifer A Juno
- Department of Microbiology and ImmunologyUniversity of Melbourne, at the Peter Doherty institute for Infection and ImmunityMelbourneVICAustralia
| |
Collapse
|
32
|
Morgan J, Muskat K, Tippalagama R, Sette A, Burel J, Lindestam Arlehamn CS. Classical CD4 T cells as the cornerstone of antimycobacterial immunity. Immunol Rev 2021; 301:10-29. [PMID: 33751597 PMCID: PMC8252593 DOI: 10.1111/imr.12963] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/11/2021] [Accepted: 02/13/2021] [Indexed: 12/13/2022]
Abstract
Tuberculosis is a significant health problem without an effective vaccine to combat it. A thorough understanding of the immune response and correlates of protection is needed to develop a more efficient vaccine. The immune response against Mycobacterium tuberculosis (Mtb) is complex and involves all aspects of the immune system, however, the optimal protective, non‐pathogenic T cell response against Mtb is still elusive. This review will focus on discussing CD4 T cell immunity against mycobacteria and its importance in Mtb infection with a primary focus on human studies. We will in particular discuss the large heterogeneity of immune cell subsets that have been revealed by recent immunological investigations at an unprecedented level of detail. These studies have identified specific classical CD4 T cell subsets important for immune responses against Mtb in various states of infection. We further discuss the functional attributes that have been linked to the various subsets such as upregulation of activation markers and cytokine production. Another important topic to be considered is the antigenic targets of Mtb‐specific immune responses, and how antigen reactivity is influenced by both disease state and environmental exposure(s). These are key points for both vaccines and immune diagnostics development. Ultimately, these factors are holistically considered in the definition and investigations of what are the correlates on protection and resolution of disease.
Collapse
Affiliation(s)
- Jeffrey Morgan
- Center for Infectious Disease, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Kaylin Muskat
- Center for Infectious Disease, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Rashmi Tippalagama
- Center for Infectious Disease, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Alessandro Sette
- Center for Infectious Disease, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Julie Burel
- Center for Infectious Disease, La Jolla Institute for Immunology, La Jolla, CA, USA
| | | |
Collapse
|
33
|
Tindemans I, van Schoonhoven A, KleinJan A, de Bruijn MJ, Lukkes M, van Nimwegen M, van den Branden A, Bergen IM, Corneth OB, van IJcken WF, Stadhouders R, Hendriks RW. Notch signaling licenses allergic airway inflammation by promoting Th2 cell lymph node egress. J Clin Invest 2021; 130:3576-3591. [PMID: 32255764 DOI: 10.1172/jci128310] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 03/24/2020] [Indexed: 12/27/2022] Open
Abstract
Allergic asthma is mediated by Th2 responses to inhaled allergens. Although previous experiments indicated that Notch signaling activates expression of the key Th2 transcription factor Gata3, it remains controversial how Notch promotes allergic airway inflammation. Here we show that T cell-specific Notch deficiency in mice prevented house dust mite-driven eosinophilic airway inflammation and significantly reduced Th2 cytokine production, serum IgE levels, and airway hyperreactivity. However, transgenic Gata3 overexpression in Notch-deficient T cells only partially rescued this phenotype. We found that Notch signaling was not required for T cell proliferation or Th2 polarization. Instead, Notch-deficient in vitro-polarized Th2 cells showed reduced accumulation in the lungs upon in vivo transfer and allergen challenge, as Notch-deficient Th2 cells were retained in the lung-draining lymph nodes. Transcriptome analyses and sequential adoptive transfer experiments revealed that while Notch-deficient lymph node Th2 cells established competence for lung migration, they failed to upregulate sphingosine-1-phosphate receptor 1 (S1PR1) and its critical upstream transcriptional activator Krüppel-like factor 2 (KLF2). As this KLF2/S1PR1 axis represents the essential cell-intrinsic regulator of T cell lymph node egress, we conclude that the druggable Notch signaling pathway licenses the Th2 response in allergic airway inflammation via promoting lymph node egress.
Collapse
|
34
|
Khalil BA, Elemam NM, Maghazachi AA. Chemokines and chemokine receptors during COVID-19 infection. Comput Struct Biotechnol J 2021; 19:976-988. [PMID: 33558827 PMCID: PMC7859556 DOI: 10.1016/j.csbj.2021.01.034] [Citation(s) in RCA: 135] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 12/17/2022] Open
Abstract
Chemokines are crucial inflammatory mediators needed during an immune response to clear pathogens. However, their excessive release is the main cause of hyperinflammation. In the recent COVID-19 outbreak, chemokines may be the direct cause of acute respiratory disease syndrome, a major complication leading to death in about 40% of severe cases. Several clinical investigations revealed that chemokines are directly involved in the different stages of SARS-CoV-2 infection. Here, we review the role of chemokines and their receptors in COVID-19 pathogenesis to better understand the disease immunopathology which may aid in developing possible therapeutic targets for the infection.
Collapse
Key Words
- AECs, airway epithelial cells
- AP-1, Activator Protein 1
- ARDS
- ARDS, acute respiratory disease syndrome
- BALF, bronchial alveolar lavage fluid
- CAP, community acquired pneumonia
- COVID-19
- CRS, cytokine releasing syndrome
- Chemokine Receptors
- Chemokines
- DCs, dendritic cells
- ECM, extracellular matrix
- GAGs, glycosaminoglycans
- HIV, human immunodeficiency virus
- HRSV, human respiratory syncytial virus
- IFN, interferon
- IMM, inflammatory monocytes and macrophages
- IP-10, IFN-γ-inducible protein 10
- IRF, interferon regulatory factor
- Immunity
- MERS-CoV, Middle East respiratory syndrome coronavirus
- NETs, neutrophil extracellular traps
- NF-κB, Nuclear Factor kappa-light-chain-enhancer of activated B cells
- NK cells, natural killer cells
- PBMCs, peripheral blood mononuclear cells
- PRR, pattern recognition receptors
- RSV, rous sarcoma virus
- SARS-CoV, severe acute respiratory syndrome coronavirus
- SARS-CoV-2
- TLR, toll like receptor
- TRIF, TIR-domain-containing adapter-inducing interferon-β
Collapse
Affiliation(s)
- Bariaa A. Khalil
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Immuno-Oncology Group, Sharjah Institute for Medical Research (SIMR), Sharjah, United Arab Emirates
| | - Noha Mousaad Elemam
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Immuno-Oncology Group, Sharjah Institute for Medical Research (SIMR), Sharjah, United Arab Emirates
| | - Azzam A. Maghazachi
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Immuno-Oncology Group, Sharjah Institute for Medical Research (SIMR), Sharjah, United Arab Emirates
| |
Collapse
|
35
|
Pontes Ferreira C, de Moro Cariste L, Henrique Noronha I, Fernandes Durso D, Lannes-Vieira J, Ramalho Bortoluci K, Araki Ribeiro D, Golenbock D, Gazzinelli RT, de Vasconcelos JRC. CXCR3 chemokine receptor contributes to specific CD8+ T cell activation by pDC during infection with intracellular pathogens. PLoS Negl Trop Dis 2020; 14:e0008414. [PMID: 32574175 PMCID: PMC7337401 DOI: 10.1371/journal.pntd.0008414] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 07/06/2020] [Accepted: 05/22/2020] [Indexed: 11/21/2022] Open
Abstract
Chemokine receptor type 3 (CXCR3) plays an important role in CD8+ T cells migration during intracellular infections, such as Trypanosoma cruzi. In addition to chemotaxis, CXCR3 receptor has been described as important to the interaction between antigen-presenting cells and effector cells. We hypothesized that CXCR3 is fundamental to T. cruzi-specific CD8+ T cell activation, migration and effector function. Anti-CXCR3 neutralizing antibody administration to acutely T. cruzi-infected mice decreased the number of specific CD8+ T cells in the spleen, and those cells had impaired in activation and cytokine production but unaltered proliferative response. In addition, anti-CXCR3-treated mice showed decreased frequency of CD8+ T cells in the heart and numbers of plasmacytoid dendritic cells in spleen and lymph node. As CD8+ T cells interacted with plasmacytoid dendritic cells during infection by T. cruzi, we suggest that anti-CXCR3 treatment lowers the quantity of plasmacytoid dendritic cells, which may contribute to impair the prime of CD8+ T cells. Understanding which molecules and mechanisms guide CD8+ T cell activation and migration might be a key to vaccine development against Chagas disease as those cells play an important role in T. cruzi infection control. Inflammatory chemokine receptors such as CXCR3 play an important role in T lymphocytes migration into an infected tissue during Th1 response. Recently, the role of CXCR3 as a co-stimulatory molecule was demonstrated, and T lymphocytes from CXCR3 deficient mice had impaired effector function. CXCR3 receptor was highly expressed on specific CD8+ T cells after challenge with T. cruzi, and the hypothesis of that molecule is important for CD8+ T cells activation, migration and functionality was raised. We used the anti-CXCR3 neutralizing antibody approach and demonstrated that C57BL/6 treated mice died very quickly due to T. cruzi infection, and specific CD8+ T cells had decreased effector phenotyping, cytokine production, and cytotoxicity. In addition, anti-CXCR3 treatment decreased the number of dendritic plasmacytoid cells in the lymphoid tissues. The lower quantity of dendritic plasmacytoid cells in those tissues might contribute to the decrease in CD8+ T cells activation. Overall, CXCR3 molecule seems to be an important molecule to be explored during vaccine against Chagas disease strategies.
Collapse
Affiliation(s)
- Camila Pontes Ferreira
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo, São Paulo, Brazil
| | | | - Isaú Henrique Noronha
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo, São Paulo, Brazil
| | - Danielle Fernandes Durso
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Joseli Lannes-Vieira
- Laboratory of Biology of the Interactions, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro, Brazil
| | | | - Daniel Araki Ribeiro
- Department of Biosciences of the Federal University of São Paulo, Santos, Brazil
| | - Douglas Golenbock
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Ricardo Tostes Gazzinelli
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - José Ronnie Carvalho de Vasconcelos
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo, São Paulo, Brazil
- Department of Biosciences of the Federal University of São Paulo, Santos, Brazil
- * E-mail:
| |
Collapse
|
36
|
Bhuniya A, Guha I, Ganguly N, Saha A, Dasgupta S, Nandi P, Das A, Ghosh S, Ghosh T, Haque E, Banerjee S, Bose A, Baral R. NLGP Attenuates Murine Melanoma and Carcinoma Metastasis by Modulating Cytotoxic CD8 + T Cells. Front Oncol 2020; 10:201. [PMID: 32211313 PMCID: PMC7076076 DOI: 10.3389/fonc.2020.00201] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 02/05/2020] [Indexed: 02/06/2023] Open
Abstract
Neem leaf glycoprotein (NLGP), a natural immunomodulator, attenuates murine carcinoma and melanoma metastasis, independent of primary tumor growth and alterations in basic cellular properties (cell proliferation, cytokine secretion, etc.). Colonization event of invasion–metastasis cascade was primarily inhibited by NLGP, with no effect on metastasis-related invasion, migration, and extravasation. High infiltration of interferon γ (IFN-γ)–secreting cytotoxic CD8+ T cells [CD44+, CD69+, GranB+, IFN-γ+, and interleukin 2+] was documented in the metastatic site of NLGP-treated mice. Systemic CD8+ T cell depletion abolished NLGP-mediated metastasis inhibition and reappeared upon adoptive transfer of NLGP-activated CD8+ T cells. Interferon γ-secreting from CD8+ T cells inhibit the expression of angiogenesis regulatory vascular endothelial growth factor and transforming growth factor β and have an impact on the prevention of colonization. Neem leaf glycoprotein modulates dendritic cells (DCs) for proper antigen presentation by its DC surface binding and upregulation of MHC-I/II, CD86, and CCR7. Neem leaf glycoprotein–treated DCs specifically imprint CXCR3 and CCR4 homing receptors on activated CD8+ T cells, which helps to infiltrate into metastatic sites to restrain colonization. Such NLGP's effect on DCs is translation dependent and transcription independent. Studies using ovalbumin, OVA257−264, and crude B16F10 antigen indicate MHC-I upregulation depends on the quantity of proteasome degradable peptide and only stimulates CD8+ T cells in the presence of antigen. Overall data suggest NLGP inhibits metastasis, in conjunction with tumor growth restriction, and thus might appear as a promising next-generation cancer immunotherapeutic.
Collapse
Affiliation(s)
- Avishek Bhuniya
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata, India
| | - Ipsita Guha
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata, India
| | - Nilanjan Ganguly
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata, India
| | - Akata Saha
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata, India
| | - Shayani Dasgupta
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata, India
| | - Partha Nandi
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata, India
| | - Arnab Das
- RNA Biology and Research Laboratory, Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Sarbari Ghosh
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata, India
| | - Tithi Ghosh
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata, India
| | - Enamul Haque
- Department of Zoology, Barasat Government College, Barasat, India
| | - Saptak Banerjee
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata, India
| | - Anamika Bose
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata, India
| | - Rathindranath Baral
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata, India
| |
Collapse
|
37
|
Wang H, Hoffman C, Yang X, Clapp B, Pascual DW. Targeting resident memory T cell immunity culminates in pulmonary and systemic protection against Brucella infection. PLoS Pathog 2020; 16:e1008176. [PMID: 31951645 PMCID: PMC6968852 DOI: 10.1371/journal.ppat.1008176] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 10/31/2019] [Indexed: 12/15/2022] Open
Abstract
Brucellosis remains the most common zoonotic disease globally. Currently no vaccines for humans exist, and conventional brucellosis vaccines for livestock fail to confer complete protection; hence, an improved vaccine is needed. Although Brucella infections primarily occur following a mucosal exposure, vaccines are administered parenterally. Few studies have considered mucosal vaccinations, or even targeting of tissue-resident memory T (TRM) cells. TRM cells protect against viral infections, but less is known of their role in bacterial infections, and even less for brucellosis. Oral prime, nasal boost with a newly developed Brucella abortus double mutant (znBAZ) confers nearly complete protection against pulmonary challenge with wild-type (wt) B. abortus 2308, and its protective efficacy is >2800-fold better than the RB51 vaccine. Vaccination with znBAZ potently stimulated CD8+ T cells, whereas mucosal vaccination with RB51 induced mostly CD4+ T cells. Subsequent analysis revealed these pulmonary CD44+ CD69+ CD8+ T cells to be either CD103+ or CD103- TRM cells, and these sequestered to the lung parenchyma as CXCR3lo and to the airways as CXCR3hi. Both CD8+ TRM subsets contained single-positive IFN-γ and TNF-α, as well as, polyfunctional cells. IL-17-producing CD8+ TRM cells were also induced by znBAZ vaccination, but in vivo IL-17 neutralization had no impact upon protection. In vivo depletion of CD4+ T cells had no impact upon protection in znBAZ-vaccinated mice. In contrast, CD4+ T cell depletion reduced RB51’s protective efficacy in spleens and lungs by two- and three-logs, respectively. Although anti-CD8 mAb-treated znBAZ-vaccinated mice showed a significantly reduced pulmonary efficacy, this treatment failed to completely deplete the lung CD8+ T cells, leaving the CD103+ and CD103- CD8+ TRM cell ratios intact. Only znBAZ-vaccinated CD8-/- mice were fully sensitive to pulmonary challenge with virulent wt B. abortus 2308 since CD8+ TRM cells could not be induced. Collectively, these data demonstrate the key role of mucosal vaccination for the generation of CD8+ TRM cells in protecting against pulmonary challenge with virulent B. abortus. Brucellosis is the most common zoonotic disease worldwide and is transmitted via the consumption of unpasteurized dairy products or exposure to Brucella-laden aerosols. In fact, mucosal exposure is the most common route of infection for humans and animals, yet parenteral vaccination of livestock remains the preferred route of immunization. To determine whether development of a mucosal vaccination regimen could effectively generate immunity against pulmonary challenge with virulent B. abortus, a double-mutant B. abortus vaccine was administered mucosally, and found to induce CD8+ TRM cells. These conferred complete protection against pulmonary infection and prevented systemic brucellae spread even in the absence of immune recirculating CD8+ T cells. These data show that mucosal vaccination can stimulate the induction of TRM cells, which should be considered as a more effective means to protect against brucellosis. Furthermore, brucellosis needs to be considered a mucosal pathogen to warrant development of approaches different from conventional methods to protect humans and livestock against this disease.
Collapse
Affiliation(s)
- Hongbin Wang
- Department of Infectious Diseases and Immunology, University of Florida, Gainesville, Florida, United States of America
| | - Carol Hoffman
- Department of Infectious Diseases and Immunology, University of Florida, Gainesville, Florida, United States of America
| | - Xinghong Yang
- Department of Infectious Diseases and Immunology, University of Florida, Gainesville, Florida, United States of America
| | - Beata Clapp
- Department of Infectious Diseases and Immunology, University of Florida, Gainesville, Florida, United States of America
| | - David W. Pascual
- Department of Infectious Diseases and Immunology, University of Florida, Gainesville, Florida, United States of America
- * E-mail:
| |
Collapse
|
38
|
Pulmonary monocytes interact with effector T cells in the lung tissue to drive T RM differentiation following viral infection. Mucosal Immunol 2020; 13:161-171. [PMID: 31723250 PMCID: PMC6917844 DOI: 10.1038/s41385-019-0224-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 10/15/2019] [Accepted: 10/22/2019] [Indexed: 02/04/2023]
Abstract
Lung resident memory CD8 T cells (TRM) are critical for protection against respiratory viruses, but the cellular interactions required for their development are poorly understood. Herein we describe the necessity of classical monocytes for the establishment of lung TRM following influenza infection. We find that, during the initial appearance of lung TRM, monocytes and dendritic cells are the most numerous influenza antigen-bearing APCs in the lung. Surprisingly, depletion of DCs after initial T cell priming did not impact lung TRM development or maintenance. In contrast, a monocyte deficient pulmonary environment in CCR2-/- mice results in significantly less lung TRM following influenza infection, despite no defect in the antiviral effector response or in the peripheral memory pool. Imaging shows direct interaction of antigen-specific T cells with antigen-bearing monocytes in the lung, and pulmonary classical monocytes from the lungs of influenza infected mice are sufficient to drive differentiation of T cells in vitro. These data describe a novel role for pulmonary monocytes in mediating lung TRM development through direct interaction with T cells in the lung.
Collapse
|
39
|
Zacharias ZR, Legge KL. Chronic Ethanol Consumption Reduces Existing CD8 T Cell Memory and Is Associated with Lesions in Protection against Secondary Influenza A Virus Infections. THE JOURNAL OF IMMUNOLOGY 2019; 203:3313-3324. [PMID: 31712384 DOI: 10.4049/jimmunol.1900770] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 10/16/2019] [Indexed: 01/12/2023]
Abstract
Chronic alcohol consumption is associated with an increased incidence of disease severity during pulmonary infections. Our previous work in a mouse model of chronic alcohol consumption has detailed that the primary influenza A virus (IAV)-specific CD8 T cell response in mice that consumed ethanol (EtOH) had a reduced proliferative capacity as well as the ability to kill IAV target cells. Interestingly, recent studies have highlighted that human alcoholics have an increased susceptibility to IAV infections, even though they likely possess pre-existing immunity to IAV. However, the effects of chronic alcohol consumption on pre-existing immune responses (i.e., memory) to IAV have not been explored. Our results presented in this study show that IAV-immune mice that then chronically consumed alcohol (X31→EtOH) exhibited increased morbidity and mortality following IAV re-exposure compared with IAV-immune mice that had consumed water (X31→H2O). This increased susceptibility in X31→EtOH mice was associated with reduced IAV-specific killing of target cells and a reduction in the number of IAV-specific CD8 T cells within the lungs. Furthermore, upon IAV challenge, recruitment of the remaining memory IAV-specific CD8 T cells into the lungs is reduced in X31→EtOH mice. This altered recruitment is associated with a reduced pulmonary expression of CXCL10 and CXCL11, which are chemokines that are important for T cell recruitment to the lungs. Overall, these results demonstrate that chronic alcohol consumption negatively affects the resting memory CD8 T cell response and reduces the ability of memory T cells to be recruited to the site of infection upon subsequent exposures, therein contributing to an enhanced susceptibility to IAV infections.
Collapse
Affiliation(s)
- Zeb R Zacharias
- Interdisciplinary Immunology Graduate Program, University of Iowa, Iowa City, IA 52242.,Department of Pathology, University of Iowa, Iowa City, IA 52242; and
| | - Kevin L Legge
- Interdisciplinary Immunology Graduate Program, University of Iowa, Iowa City, IA 52242; .,Department of Pathology, University of Iowa, Iowa City, IA 52242; and.,Department of Microbiology and Immunology, University of Iowa, Iowa City, IA 52242
| |
Collapse
|
40
|
Alosaimi B, Hamed ME, Naeem A, Alsharef AA, AlQahtani SY, AlDosari KM, Alamri AA, Al-Eisa K, Khojah T, Assiri AM, Enani MA. MERS-CoV infection is associated with downregulation of genes encoding Th1 and Th2 cytokines/chemokines and elevated inflammatory innate immune response in the lower respiratory tract. Cytokine 2019; 126:154895. [PMID: 31706200 PMCID: PMC7128721 DOI: 10.1016/j.cyto.2019.154895] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 10/14/2019] [Accepted: 10/17/2019] [Indexed: 12/31/2022]
Abstract
MERS-CoV infection downregulates Th1 and Th2 cytokines and chemokines. MERS-CoV infection provokes high levels of IL-1α, IL-1β and IL-8 (CXCL8). Inflammatory cytokines/chemokines correlate with MERS-CoV case fatality rate. Th1/Th2 downregulation may contribute to severe infection and evolution of ARDS.
MERS-CoV, a highly pathogenic virus in humans, is associated with high morbidity and case fatality. Inflammatory responses have a significant impact on MERS-CoV pathogenesis and disease outcome. However, CD4+ T-cell induced immune responses during acute MERS-CoV infection are barely detectable, with potent inhibition of effector T cells and downregulation of antigen presentation. The local pulmonary immune response, particularly the Th1 and Th2-related immune response during acute severe MERS-CoV infection is not fully understood. In this study, we offer the first insights into the pulmonary gene expression profile of Th1 and Th2-related cytokines/chemokines (Th1 & Th2 responses) during acute MERS-CoV infection using RT2 Profiler PCR Arrays. We also quantified the expression level of primary inflammatory cytokines/chemokines. Our results showed a downregulation of Th2, inadequate (partial) Th1 immune response and high expression levels of inflammatory cytokines IL-1α and IL-1β and the neutrophil chemoattractant chemokine IL-8 (CXCL8) in the lower respiratory tract of MERS-CoV infected patients. Moreover, we identified a high viral load in all included patients. We also observed a correlation between inflammatory cytokines, Th1, and Th2 downregulation and the case fatality rate. Th1 and Th2 response downregulation, high expression of inflammatory cytokines, and high viral load may contribute to lung inflammation, severe infection, the evolution of pneumonia and ARDS, and a higher case fatality rate. Further study of the molecular mechanisms underlying the Th1 and Th2 regulatory pathways will be vital for active vaccine development and the identification of novel therapeutic strategies.
Collapse
Affiliation(s)
- Bandar Alosaimi
- Research Center, King Fahad Medical City, Riyadh, Saudi Arabia; College of Medicine, King Fahad Medical City, Riyadh, Saudi Arabia.
| | - Maaweya E Hamed
- College of Science, King Saud University, Department of Botany and Microbiology, Riyadh, Saudi Arabia
| | - Asif Naeem
- Research Center, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Ali A Alsharef
- General Directorate of Laboratories and Blood Banks, Ministry of Health, Saudi Arabia
| | - Saeed Y AlQahtani
- General Directorate of Laboratories and Blood Banks, Ministry of Health, Saudi Arabia
| | - Kamel M AlDosari
- Riyadh Regional Laboratory, Ministry of Health, Riyadh, Saudi Arabia
| | - Aref A Alamri
- Riyadh Regional Laboratory, Ministry of Health, Riyadh, Saudi Arabia
| | - Kholoud Al-Eisa
- Riyadh Regional Laboratory, Ministry of Health, Riyadh, Saudi Arabia
| | - Taghreed Khojah
- Riyadh Regional Laboratory, Ministry of Health, Riyadh, Saudi Arabia
| | - Abdullah M Assiri
- Preventive Medicine Assistant Deputyship, Ministry of Health, Riyadh, Saudi Arabia
| | - Mushira A Enani
- Medical Specialties Department, Section of Infectious Diseases, King Fahad Medical City, Riyadh, Saudi Arabia
| |
Collapse
|
41
|
Price MJ, Hicks SL, Bradley JE, Randall TD, Boss JM, Scharer CD. IgM, IgG, and IgA Influenza-Specific Plasma Cells Express Divergent Transcriptomes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2019; 203:2121-2129. [PMID: 31501259 PMCID: PMC6783370 DOI: 10.4049/jimmunol.1900285] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 08/13/2019] [Indexed: 12/31/2022]
Abstract
Ab-secreting cells (ASC) or plasma cells are essential components of the humoral immune system. Although Abs of different isotypes have distinct functions, it is not known if the ASC that secrete each isotype are also distinct. ASC downregulate their surface BCR upon differentiation, hindering analyses that couple BCR information to other molecular characteristics. In this study, we developed a methodology using fixation, permeabilization, and intracellular staining coupled with cell sorting and reversal of the cross-links to allow RNA sequencing of isolated cell subsets. Using hemagglutinin and nucleoprotein Ag-specific B cell tetramers and intracellular staining for IgM, IgG, and IgA isotypes, we were able to derive and compare the gene expression programs of ASC subsets that were responding to the same Ags following influenza infection in mice. Intriguingly, whereas a shared ASC signature was identified, each ASC isotype-specific population expressed distinct transcriptional programs controlling cellular homing, metabolism, and potential effector functions. Additionally, we extracted and compared BCR clonotypes and found that each ASC isotype contained a unique, clonally related CDR3 repertoire. In summary, these data reveal specific complexities in the transcriptional programming of Ag-specific ASC populations.
Collapse
Affiliation(s)
- Madeline J Price
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322
| | - Sakeenah L Hicks
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322
| | - John E Bradley
- Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294; and
| | - Troy D Randall
- Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294; and
| | - Jeremy M Boss
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322
| | - Christopher D Scharer
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322;
| |
Collapse
|
42
|
Wein AN, McMaster SR, Takamura S, Dunbar PR, Cartwright EK, Hayward SL, McManus DT, Shimaoka T, Ueha S, Tsukui T, Masumoto T, Kurachi M, Matsushima K, Kohlmeier JE. CXCR6 regulates localization of tissue-resident memory CD8 T cells to the airways. J Exp Med 2019; 216:2748-2762. [PMID: 31558615 PMCID: PMC6888981 DOI: 10.1084/jem.20181308] [Citation(s) in RCA: 195] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 01/14/2019] [Accepted: 08/13/2019] [Indexed: 01/02/2023] Open
Abstract
Lung TRM cells are present in both the interstitium and airways, but factors regulating their localization to these distinct sites are unknown. This work shows that the CXCR6/CXCL16 axis governs the partitioning of TRM cells to different compartments of the lung and maintains the airway TRM cell pool. Resident memory T cells (TRM cells) are an important first-line defense against respiratory pathogens, but the unique contributions of lung TRM cell populations to protective immunity and the factors that govern their localization to different compartments of the lung are not well understood. Here, we show that airway and interstitial TRM cells have distinct effector functions and that CXCR6 controls the partitioning of TRM cells within the lung by recruiting CD8 TRM cells to the airways. The absence of CXCR6 significantly decreases airway CD8 TRM cells due to altered trafficking of CXCR6−/− cells within the lung, and not decreased survival in the airways. CXCL16, the ligand for CXCR6, is localized primarily at the respiratory epithelium, and mice lacking CXCL16 also had decreased CD8 TRM cells in the airways. Finally, blocking CXCL16 inhibited the steady-state maintenance of airway TRM cells. Thus, the CXCR6/CXCL16 signaling axis controls the localization of TRM cells to different compartments of the lung and maintains airway TRM cells.
Collapse
Affiliation(s)
- Alexander N Wein
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA
| | - Sean R McMaster
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA
| | - Shiki Takamura
- Department of Immunology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Paul R Dunbar
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA
| | - Emily K Cartwright
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA
| | - Sarah L Hayward
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA
| | - Daniel T McManus
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA
| | - Takeshi Shimaoka
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Chiba, Japan
| | - Satoshi Ueha
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Chiba, Japan
| | - Tatsuya Tsukui
- Department of Medicine, University of California, San Francisco, San Francisco, CA
| | - Tomoko Masumoto
- Department of Immunology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Makoto Kurachi
- Department of Microbiology and Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Kouji Matsushima
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Chiba, Japan
| | - Jacob E Kohlmeier
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA .,Emory-UGA Center of Excellence for Influenza Research and Surveillance, Atlanta, GA
| |
Collapse
|
43
|
T-bet optimizes CD4 T-cell responses against influenza through CXCR3-dependent lung trafficking but not functional programming. Mucosal Immunol 2019; 12:1220-1230. [PMID: 31278374 PMCID: PMC6717559 DOI: 10.1038/s41385-019-0183-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 05/09/2019] [Accepted: 06/04/2019] [Indexed: 02/04/2023]
Abstract
Although clearance of many intracellular pathogens requires T-bet-dependent CD4 T cell programming, the extent to which T-bet is needed to direct protective CD4 responses against influenza is not known. Here, we characterize wild-type and T-bet-deficient CD4 cells during murine influenza infection. Surprisingly, although T-bet expression has broad impacts on cytokine production by virus-specific CD4 cells, the protective efficacy of T-bet-deficient effector cells is only marginally reduced. This reduction is due to lower CXCR3 expression, leading to suboptimal accumulation of activated T-bet-deficient cells in the infected lung. However, T-bet-deficient cells outcompete wild-type cells to form lung-resident and circulating memory populations following viral clearance, and primed T-bet-deficient mice efficiently clear supralethal heterosubtypic influenza challenges even when depleted of CD8 T cells. These results are relevant to the identification of more incisive correlates of protective T cells and for vaccines that aim to induce durable cellular immunity against influenza.
Collapse
|
44
|
Unique transcriptional and protein-expression signature in human lung tissue-resident NK cells. Nat Commun 2019; 10:3841. [PMID: 31451696 PMCID: PMC6710242 DOI: 10.1038/s41467-019-11632-9] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 07/23/2019] [Indexed: 12/14/2022] Open
Abstract
Human lung tissue-resident NK cells (trNK cells) are likely to play an important role in host responses towards viral infections, inflammatory conditions and cancer. However, detailed insights into these cells are still largely lacking. Here we show, using RNA sequencing and flow cytometry-based analyses, that subsets of human lung CD69+CD16− NK cells display hallmarks of tissue-residency, including high expression of CD49a, CD103, and ZNF683, and reduced expression of SELL, S1PR5, and KLF2/3. CD49a+CD16− NK cells are functionally competent, and produce IFN-γ, TNF, MIP-1β, and GM-CSF. After stimulation with IL-15, they upregulate perforin, granzyme B, and Ki67 to a similar degree as CD49a−CD16− NK cells. Comparing datasets from trNK cells in human lung and bone marrow with tissue-resident memory CD8+ T cells identifies core genes co-regulated either by tissue-residency, cell-type or location. Together, our data indicate that human lung trNK cells have distinct features, likely regulating their function in barrier immunity. Detailed characterizations of human lung tissue-resident natural killer (trNK) cells, which potentially regulate local immune responses, is still lacking. Here the authors show that lung CD69+ CD16– NK cells express tissue-residency markers, produce effector cytokines, and are distinct, feature-wise, from lung CD8+ memory T cells or trNK in other tissues.
Collapse
|
45
|
Pontes Ferreira C, Cariste LM, Ferri Moraschi B, Ferrarini Zanetti B, Won Han S, Araki Ribeiro D, Vieira Machado A, Lannes-Vieira J, Gazzinelli RT, Vasconcelos JRC. CXCR3 chemokine receptor guides Trypanosoma cruzi-specific T-cells triggered by DNA/adenovirus ASP2 vaccine to heart tissue after challenge. PLoS Negl Trop Dis 2019; 13:e0007597. [PMID: 31356587 PMCID: PMC6687206 DOI: 10.1371/journal.pntd.0007597] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 08/08/2019] [Accepted: 07/02/2019] [Indexed: 12/15/2022] Open
Abstract
CD8+ T lymphocytes play an important role in controlling infections by intracellular pathogens. Chemokines and their receptors are crucial for the migration of CD8+ T-lymphocytes, which are the main IFNγ producers and cytotoxic effectors cells. Although the participation of chemokine ligands and receptors has been largely explored in viral infection, much less is known in infection by Trypanosoma cruzi, the causative agent of Chagas disease. After T. cruzi infection, CXCR3 chemokine receptor is highly expressed on the surface of CD8+ T-lymphocytes. Here, we hypothesized that CXCR3 is a key molecule for migration of parasite-specific CD8+ T-cells towards infected tissues, where they may play their effector activities. Using a model of induction of resistance to highly susceptible A/Sn mice using an ASP2-carrying DNA/adenovirus prime-boost strategy, we showed that CXCR3 expression was upregulated on CD8+ T-cells, which selectively migrated towards its ligands CXCL9 and CXCL10. Anti-CXCR3 administration reversed the vaccine-induced resistance to T. cruzi infection in a way associated with hampered cytotoxic activity and increased proapoptotic markers on the H2KK-restricted TEWETGQI-specific CD8+ T-cells. Furthermore, CXCR3 receptor critically guided TEWETGQI-specific effector CD8+ T-cells to the infected heart tissue that express CXCL9 and CXCL10. Overall, our study pointed CXCR3 and its ligands as key molecules to drive T. cruzi-specific effector CD8+ T-cells into the infected heart tissue. The unveiling of the process driving cell migration and colonization of infected tissues by pathogen-specific effector T-cells is a crucial requirement to the development of vaccine strategies.
Collapse
Affiliation(s)
- Camila Pontes Ferreira
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo, São Paulo, Brazil
| | | | - Barbara Ferri Moraschi
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo, São Paulo, Brazil
| | | | - Sang Won Han
- Department of Biophysics, Federal University of São Paulo, São Paulo, Brazil
| | | | | | - Joseli Lannes-Vieira
- Laboratory of Biology of the Interactions, Oswaldo Cruz Institute/Fiocruz, Rio de Janeiro, Brazil
| | - Ricardo Tostes Gazzinelli
- René Rachou Research Center, Fiocruz, Minas Gerais, Brazil
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, United States ofAmerica
| | - José Ronnie Carvalho Vasconcelos
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo, São Paulo, Brazil
- Department of Biosciences, Federal University of São Paulo, Santos, Brazil
- * E-mail:
| |
Collapse
|
46
|
Tomar J, Patil HP, Bracho G, Tonnis WF, Frijlink HW, Petrovsky N, Vanbever R, Huckriede A, Hinrichs WLJ. Advax augments B and T cell responses upon influenza vaccination via the respiratory tract and enables complete protection of mice against lethal influenza virus challenge. J Control Release 2018; 288:199-211. [PMID: 30218687 PMCID: PMC7111335 DOI: 10.1016/j.jconrel.2018.09.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 09/06/2018] [Accepted: 09/10/2018] [Indexed: 12/31/2022]
Abstract
Administration of influenza vaccines via the respiratory tract has potential benefits over conventional parenteral administration, inducing immunity directly at the site of influenza exposure as well as being needle free. In this study, we investigated the suitability of Advax™, a stable particulate polymorph of inulin, also referred to as delta inulin, as a mucosal adjuvant for whole inactivated influenza vaccine (WIV) administered either as a liquid or dry powder formulation. Spray freeze-drying produced Advax-adjuvanted WIV powder particles in a size range (1-5 μm) suitable for inhalation. The physical and biological characteristics of both WIV and Advax remained unaltered both by admixing WIV with Advax and by spray freeze drying. Upon intranasal or pulmonary immunization, both liquid and dry powder formulations containing Advax induced significantly higher systemic, mucosal and cellular immune responses than non-adjuvanted WIV formulations. Furthermore, pulmonary immunization with Advax-adjuvanted WIV led to robust memory B cell responses along with an increase of lung localization factors i.e. CXCR3, CD69, and CD103. A less pronounced but still positive effect of Advax was seen on memory T cell responses. In contrast to animals immunized with WIV alone, all animals pulmonary immunized with a single dose of Advax-adjuvanted WIV were fully protected with no visible clinical symptoms against a lethal dose of influenza virus. These data confirm that Advax is a potent mucosal adjuvant that boosts vaccine-induced humoral and cellular immune responses both in the lung and systemically with major positive effects on B-cell memory and complete protection against live virus. Hence, respiratory tract immunization, particularly via the lungs, with Advax-adjuvanted WIV formulation as a liquid or dry powder is a promising alternative to parenteral influenza vaccination.
Collapse
Affiliation(s)
- Jasmine Tomar
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Groningen, The Netherlands
| | - Harshad P Patil
- Advanced Drug Delivery & Biomaterials, Louvain Drug Research Institute (LDRI), Université catholique de Louvain, Brussels 1200, Belgium
| | - Gustavo Bracho
- Vaxine Pty Ltd., Flinders Medical Centre, Bedford Park, Adelaide 5042, Australia
| | - Wouter F Tonnis
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Groningen, The Netherlands
| | - Henderik W Frijlink
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Groningen, The Netherlands
| | - Nikolai Petrovsky
- Vaxine Pty Ltd., Flinders Medical Centre, Bedford Park, Adelaide 5042, Australia; Department of Diabetes and Endocrinology, Flinders University, Adelaide 5042, Australia
| | - Rita Vanbever
- Advanced Drug Delivery & Biomaterials, Louvain Drug Research Institute (LDRI), Université catholique de Louvain, Brussels 1200, Belgium
| | - Anke Huckriede
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Wouter L J Hinrichs
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
47
|
HIV persistence in mucosal CD4+ T cells within the lungs of adults receiving long-term suppressive antiretroviral therapy. AIDS 2018; 32:2279-2289. [PMID: 30102653 PMCID: PMC6200382 DOI: 10.1097/qad.0000000000001962] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Background: The lungs were historically identified as one of the major anatomic sites for HIV replication in the pre-antiretroviral therapy (ART) era. However, their contribution to HIV persistence in individuals under suppressive ART remains understudied. Design: We assessed HIV persistence and comprehensively characterized pulmonary mucosal CD4+ T cells in HIV-infected (HIV+) individuals receiving long-term suppressive ART versus uninfected participants. Methods: Bronchoalveolar lavage (BAL), bronchial biopsies, and matched peripheral blood were obtained from n = 24 HIV-infected adults receiving long-term suppressive ART (median: 9 years) and n = 8 healthy volunteers without respiratory symptoms. HIV-DNA and cell-associated HIV-RNA were quantified by ultra-sensitive PCR, and lung mucosal CD4+ T-cell subsets were characterized by multiparameter flow cytometry. Results: The levels of HIV-DNA were 13-fold higher in total BAL cells compared to blood. Importantly, FACS-sorted CD4+ T cells from BAL contained greater levels of HIV-DNA compared to peripheral CD4+ T cells. BAL CD4+ T cells in HIV+ individuals were characterized mostly by an effector memory phenotype, whereas naive and terminally differentiated cells were underrepresented compared to blood. Furthermore, BAL CD4+ T cells expressed higher levels of immune activation (HLA-DR/CD38) and senescence (CD57) markers. Importantly, BAL was enriched in T-cell subsets proposed to be preferential cellular HIV reservoirs, including memory CD4+CCR6+, Th1Th17 (CD4+CCR6+CCR4−CXCR3+), CD4+CCR6+CXCR3−CCR4−, and CD4+CD32a+ T cells. Conclusion: The pulmonary mucosa represents an important immunological effector site highly enriched in activated and preferential CD4+ T-cell subsets for HIV persistence during long-term ART in individuals without respiratory symptoms. Our findings raise new challenges for the design of novel HIV eradication strategies in mucosal tissues.
Collapse
|
48
|
Liu QZ, Ma WT, Yang JB, Zhao ZB, Yan K, Yao Y, Li L, Miao Q, Gershwin ME, Lian ZX. The CXC Chemokine Receptor 3 Inhibits Autoimmune Cholangitis via CD8 + T Cells but Promotes Colitis via CD4 + T Cells. Front Immunol 2018; 9:1090. [PMID: 29868034 PMCID: PMC5966573 DOI: 10.3389/fimmu.2018.01090] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 05/01/2018] [Indexed: 11/13/2022] Open
Abstract
CXC chemokine receptor 3 (CXCR3), a receptor for the C-X-C motif chemokines (CXCL) CXCL9, CXCL10, and CXCL11, which not only plays a role in chemotaxis but also regulates differentiation and development of memory and effector T cell populations. Herein, we explored the function of CXCR3 in the modulation of different organ-specific autoimmune diseases in interleukin (IL)-2 receptor deficiency (CD25-/-) mice, a murine model for both cholangitis and colitis. We observed higher levels of CXCL9 and CXCL10 in the liver and colon and higher expression of CXCR3 on T cells of the CD25-/- mice compared with control animals. Deletion of CXCR3 resulted in enhanced liver inflammation but alleviated colitis. These changes in liver and colon pathology after CXCR3 deletion were associated with increased numbers of hepatic CD4+ and CD8+ T cells, in particular effector memory CD8+ T cells, as well as decreased T cells in mesenteric lymph nodes and colon lamina propria. In addition, increased interferon-γ response and decreased IL-17A response was observed in both liver and colon after CXCR3 deletion. CXCR3 modulated the functions of T cells involved in different autoimmune diseases, whereas the consequence of such modulation was organ-specific regarding to their effects on disease severity. Our findings emphasize the importance of extra caution in immunotherapy for organ-specific autoimmune diseases, as therapeutic interventions aiming at a target such as CXCR3 for certain disease could result in adverse effects in an unrelated organ.
Collapse
Affiliation(s)
- Qing-Zhi Liu
- Liver Immunology Laboratory, School of Life Sciences, University of Science and Technology of China, Hefei, China.,Chronic Disease Laboratory, School of Medicine, Institutes for Life Sciences, South China University of Technology, Guangzhou, China
| | - Wen-Tao Ma
- Liver Immunology Laboratory, School of Life Sciences, University of Science and Technology of China, Hefei, China.,College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, China
| | - Jing-Bo Yang
- Liver Immunology Laboratory, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Zhi-Bin Zhao
- Liver Immunology Laboratory, School of Life Sciences, University of Science and Technology of China, Hefei, China.,Chronic Disease Laboratory, School of Medicine, Institutes for Life Sciences, South China University of Technology, Guangzhou, China
| | - Kai Yan
- Liver Immunology Laboratory, School of Life Sciences, University of Science and Technology of China, Hefei, China.,Chronic Disease Laboratory, School of Medicine, Institutes for Life Sciences, South China University of Technology, Guangzhou, China
| | - Yuan Yao
- Liver Immunology Laboratory, School of Life Sciences, University of Science and Technology of China, Hefei, China.,Chronic Disease Laboratory, School of Medicine, Institutes for Life Sciences, South China University of Technology, Guangzhou, China
| | - Liang Li
- Liver Immunology Laboratory, School of Life Sciences, University of Science and Technology of China, Hefei, China.,Chronic Disease Laboratory, School of Medicine, Institutes for Life Sciences, South China University of Technology, Guangzhou, China
| | - Qi Miao
- Department of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - M Eric Gershwin
- Division of Rheumatology, Allergy and Clinical Immunology, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Zhe-Xiong Lian
- Liver Immunology Laboratory, School of Life Sciences, University of Science and Technology of China, Hefei, China.,Chronic Disease Laboratory, School of Medicine, Institutes for Life Sciences, South China University of Technology, Guangzhou, China
| |
Collapse
|
49
|
Oja AE, Piet B, Helbig C, Stark R, van der Zwan D, Blaauwgeers H, Remmerswaal EBM, Amsen D, Jonkers RE, Moerland PD, Nolte MA, van Lier RAW, Hombrink P. Trigger-happy resident memory CD4 + T cells inhabit the human lungs. Mucosal Immunol 2018; 11:654-667. [PMID: 29139478 DOI: 10.1038/mi.2017.94] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 09/18/2017] [Indexed: 02/04/2023]
Abstract
Resident memory T cells (TRM) reside in the lung epithelium and mediate protective immunity against respiratory pathogens. Although lung CD8+ TRM have been extensively characterized, the properties of CD4+ TRM remain unclear. Here we determined the transcriptional signature of CD4+ TRM, identified by the expression of CD103, retrieved from human lung resection material. Various tissue homing molecules were specifically upregulated on CD4+ TRM, whereas expression of tissue egress and lymph node homing molecules were low. CD103+ TRM expressed low levels of T-bet, only a small portion expressed Eomesodermin (Eomes), and although the mRNA levels for Hobit were increased, protein expression was absent. On the other hand, the CD103+ TRM showed a Notch signature. CD4+CD103+ TRM constitutively expressed high transcript levels of numerous cytotoxic mediators that was functionally reflected by a fast recall response, magnitude of cytokine production, and a high degree of polyfunctionality. Interestingly, the superior cytokine production appears to be because of an accessible interferon-γ (IFNγ) locus and was partially because of rapid translation of preformed mRNA. Our studies provide a molecular understanding of the maintenance and potential function of CD4+ TRM in the human lung. Understanding the specific properties of CD4+ TRM is required to rationally improve vaccine design.
Collapse
Affiliation(s)
- A E Oja
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam, The Netherlands
| | - B Piet
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam, The Netherlands.,Department of Respiratory Medicine, OLVG, Amsterdam, The Netherlands
| | - C Helbig
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam, The Netherlands
| | - R Stark
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam, The Netherlands
| | - D van der Zwan
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam, The Netherlands
| | - H Blaauwgeers
- Department of Pathology, OLVG, Amsterdam, The Netherlands
| | - E B M Remmerswaal
- Department of Experimental Immunology, Academic Medical Center, Amsterdam, The Netherlands.,Renal Transplant Unit, Division of Internal Medicine, Academic Medical Center, Amsterdam The Netherlands
| | - D Amsen
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam, The Netherlands
| | - R E Jonkers
- Department of Respiratory Medicine, Academic Medical Center, Amsterdam, The Netherlands
| | - P D Moerland
- Department of Clinical Epidemiology, Biostatistics and Bioinformatics and Department of Immunology, Academic Medical Center, Amsterdam, The Netherlands
| | - M A Nolte
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam, The Netherlands
| | - R A W van Lier
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam, The Netherlands
| | - P Hombrink
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam, The Netherlands
| |
Collapse
|
50
|
Respiratory Viruses and Other Relevant Viral Infections in the Lung Transplant Recipient. LUNG TRANSPLANTATION 2018. [PMCID: PMC7123387 DOI: 10.1007/978-3-319-91184-7_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
As advances occur in surgical technique, postoperative care, and immunosuppressive therapy, the rate of mortality in the early postoperative period following lung transplantation continues to decline. With the improvements in immediate and early posttransplant mortality, infections and their sequel as well as rejection and chronic allograft dysfunction are increasingly a major cause of posttransplant mortality. This chapter will focus on infections by respiratory viruses and other viral infections relevant to lung transplantation, including data regarding the link between viral infections and allograft dysfunction.
Collapse
|