1
|
Li X, Chen F, Li Y, Zhen Y, Ju J, Li Z, Huang S, Sun Q. Downregulation of RSAD2 ameliorates keratinocyte hyperproliferation and skin inflammation in psoriasis via the TAK1/NF-κB axis. Biochem Pharmacol 2025; 233:116764. [PMID: 39848474 DOI: 10.1016/j.bcp.2025.116764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 12/18/2024] [Accepted: 01/20/2025] [Indexed: 01/25/2025]
Abstract
Immune cell infiltration and keratinocyte (KC) hyperproliferation are characteristics of psoriasis. Radical S-adenosyl methionine domain-containing 2 (RSAD2) plays an integral role in the innate immune response and is associated with various immune-related diseases. However, RSAD2's expression and role in modulating immune responses in psoriasis remain unexplored. In this study, we demonstrated a significant upregulation of RSAD2 expression in both psoriatic lesions and psoriasis-like mouse epidermis, with its expression positively correlated with psoriasis severity. In psoriatic cell models, RSAD2 was shown to promote the proliferation and secretion of pro-inflammatory cytokines by activating the transforming growth factor-β-activated kinase 1 (TAK1)-mediated nuclear factor kappa-B (NF-κB) signaling pathway. Additionally, it was found that the expression of RSAD2 is increased by the action of interferon regulatory factor-1 (IRF1), which binds to the promoter region of RSAD2. Therefore, the function of RSAD2 in psoriasis is regulated by IRF1. Notably, RSAD2 inhibition decreased epidermal hyperplasia and alleviated imiquimod (IMQ)-induced psoriatic dermatitis. In summary, our study highlights the modulation of the IRF1-RSAD2-TAK1 axis as a potential innovative therapeutic approach for psoriasis, offering new insights into the molecular mechanisms by which KCs drive inflammation in psoriasis.
Collapse
Affiliation(s)
- Xueqing Li
- Department of Dermatology, Qilu Hospital Shandong University Jinan Shandong China; Laboratory of Basic Medical Science, Qilu Hospital of Shandong University Jinan Shandong China
| | - Fuqiang Chen
- Department of Dermatology, The First Hospital of China Medical University Shenyang Liaoning China
| | - Yunqian Li
- Department of Dermatology, Qilu Hospital Shandong University Jinan Shandong China; Laboratory of Basic Medical Science, Qilu Hospital of Shandong University Jinan Shandong China
| | - Yunyue Zhen
- Department of Dermatology, Qilu Hospital Shandong University Jinan Shandong China; Laboratory of Basic Medical Science, Qilu Hospital of Shandong University Jinan Shandong China
| | - Jiaoying Ju
- Department of Dermatology, Qilu Hospital Shandong University Jinan Shandong China; Laboratory of Basic Medical Science, Qilu Hospital of Shandong University Jinan Shandong China
| | - Zhengjun Li
- Department of Dermatology, Qilu Hospital Shandong University Jinan Shandong China
| | - Shan Huang
- Department of Dermatology, Qilu Hospital Shandong University Jinan Shandong China; Laboratory of Basic Medical Science, Qilu Hospital of Shandong University Jinan Shandong China.
| | - Qing Sun
- Department of Dermatology, Qilu Hospital Shandong University Jinan Shandong China.
| |
Collapse
|
2
|
Swaraj S, Tripathi S. Interference without interferon: interferon-independent induction of interferon-stimulated genes and its role in cellular innate immunity. mBio 2024; 15:e0258224. [PMID: 39302126 PMCID: PMC11481898 DOI: 10.1128/mbio.02582-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024] Open
Abstract
Interferons (IFNs) are multifaceted proteins that play pivotal roles in orchestrating robust antiviral immune responses and modulating the intricate landscape of host immunity. The major signaling pathway activated by IFNs is the JAK/STAT (Janus kinase/signal transducer and activator of transcription) pathway, which leads to the transcription of a battery of genes, collectively known as IFN-stimulated genes (ISGs). While the well-established role of IFNs in coordinating the innate immune response against viral infections is widely acknowledged, recent years have provided a more distinct comprehension of the functional significance attributed to non-canonical, IFN-independent induction of ISGs. In this review, we summarize the non-conventional signaling pathways of ISG induction. These alternative pathways offer new avenues for developing antiviral strategies or immunomodulation in various diseases.
Collapse
Affiliation(s)
- Shachee Swaraj
- Emerging Viral Pathogens Laboratory, Centre for Infectious Disease Research, Indian Institute of Science, Bengaluru, India
- Microbiology & Cell Biology Department, Biological Sciences Division, Indian Institute of Science, Bengaluru, India
| | - Shashank Tripathi
- Emerging Viral Pathogens Laboratory, Centre for Infectious Disease Research, Indian Institute of Science, Bengaluru, India
- Microbiology & Cell Biology Department, Biological Sciences Division, Indian Institute of Science, Bengaluru, India
| |
Collapse
|
3
|
Alippe Y, Wang L, Coskun R, Muraro SP, Zhao FR, Elam-Noll M, White JM, Vota DM, Hauk VC, Gordon JI, Handley SA, Diamond MS. Fetal MAVS and type I IFN signaling pathways control ZIKV infection in the placenta and maternal decidua. J Exp Med 2024; 221:e20240694. [PMID: 39042188 PMCID: PMC11270594 DOI: 10.1084/jem.20240694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/12/2024] [Accepted: 06/26/2024] [Indexed: 07/24/2024] Open
Abstract
The contribution of placental immune responses to congenital Zika virus (ZIKV) syndrome remains poorly understood. Here, we leveraged a mouse model of ZIKV infection to identify mechanisms of innate immune restriction exclusively in the fetal compartment of the placenta. ZIKV principally infected mononuclear trophoblasts in the junctional zone, which was limited by mitochondrial antiviral-signaling protein (MAVS) and type I interferon (IFN) signaling mechanisms. Single nuclear RNA sequencing revealed MAVS-dependent expression of IFN-stimulated genes (ISGs) in spongiotrophoblasts but not in other placental cells that use alternate pathways to induce ISGs. ZIKV infection of Ifnar1-/- or Mavs-/- placentas was associated with greater infection of the adjacent immunocompetent decidua, and heterozygous Mavs+/- or Ifnar1+/- dams carrying immunodeficient fetuses sustained greater maternal viremia and tissue infection than dams carrying wild-type fetuses. Thus, MAVS-IFN signaling in the fetus restricts ZIKV infection in junctional zone trophoblasts, which modulates dissemination and outcome for both the fetus and the pregnant mother.
Collapse
MESH Headings
- Female
- Animals
- Pregnancy
- Interferon Type I/metabolism
- Interferon Type I/immunology
- Signal Transduction/immunology
- Adaptor Proteins, Signal Transducing/metabolism
- Adaptor Proteins, Signal Transducing/genetics
- Placenta/immunology
- Placenta/virology
- Placenta/metabolism
- Zika Virus Infection/immunology
- Zika Virus Infection/virology
- Zika Virus/immunology
- Zika Virus/physiology
- Mice
- Decidua/immunology
- Decidua/virology
- Decidua/metabolism
- Fetus/immunology
- Fetus/virology
- Trophoblasts/immunology
- Trophoblasts/virology
- Trophoblasts/metabolism
- Receptor, Interferon alpha-beta/genetics
- Receptor, Interferon alpha-beta/metabolism
- Mice, Inbred C57BL
- Mice, Knockout
- Immunity, Innate
- Pregnancy Complications, Infectious/immunology
- Pregnancy Complications, Infectious/virology
- Disease Models, Animal
Collapse
Affiliation(s)
- Yael Alippe
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Leran Wang
- Department of Pathology and Immunology and Center for Genome Sciences, Lab and Genomic Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Reyan Coskun
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Stéfanie P. Muraro
- Campinas State University, Laboratory of Emerging Viruses, Campinas, Brazil
| | - Fang R. Zhao
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Michelle Elam-Noll
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - J. Michael White
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Daiana M. Vota
- Universidad de Buenos Aires—CONICET, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina
| | - Vanesa C. Hauk
- Universidad de Buenos Aires—CONICET, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina
| | - Jeffrey I. Gordon
- Department of Pathology and Immunology and Center for Genome Sciences, Lab and Genomic Medicine, Washington University School of Medicine, St. Louis, MO, USA
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Scott A. Handley
- Department of Pathology and Immunology and Center for Genome Sciences, Lab and Genomic Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Michael S. Diamond
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Department of Pathology and Immunology and Center for Genome Sciences, Lab and Genomic Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
- Andrew M. and Jane M. Bursky the Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA
- Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
4
|
Chen S, Ye J, Lin Y, Chen W, Huang S, Yang Q, Qian H, Gao S, Hua C. Crucial Roles of RSAD2/viperin in Immunomodulation, Mitochondrial Metabolism and Autoimmune Diseases. Inflammation 2024:10.1007/s10753-024-02076-5. [PMID: 38909344 DOI: 10.1007/s10753-024-02076-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/22/2024] [Accepted: 06/03/2024] [Indexed: 06/24/2024]
Abstract
Autoimmune diseases are typically characterized by aberrant activation of immune system that leads to excessive inflammatory reactions and tissue damage. Nevertheless, precise targeted and efficient therapies are limited. Thus, studies into novel therapeutic targets for the management of autoimmune diseases are urgently needed. Radical S-adenosyl methionine domain-containing 2 (RSAD2) is an interferon-stimulated gene (ISG) renowned for the antiviral properties of the protein it encodes, named viperin. An increasing number of studies have underscored the new roles of RSAD2/viperin in immunomodulation and mitochondrial metabolism. Previous studies have shown that there is a complex interplay between RSAD2/vipeirn and mitochondria and that binding of the iron-sulfur (Fe-S) cluster is necessary for the involvement of viperin in mitochondrial metabolism. Viperin influences the proliferation and development of immune cells as well as inflammation via different signaling pathways. However, the function of RSAD2/viperin varies in different studies and a comprehensive overview of this emerging theme is lacking. This review will describe the characteristics of RSAD2/viperin, decipher its function in immunometabolic processes, and clarify the crosstalk between RSAD2/viperin and mitochondria. Furthermore, we emphasize the crucial roles of RSAD2 in autoimmune diseases and its potential application value.
Collapse
Affiliation(s)
- Siyan Chen
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Zhejiang Province, Wenzhou, 325035, China
| | - Jiani Ye
- School of the 2nd Clinical Medical Sciences, Wenzhou Medical University, Zhejiang Province, Wenzhou, 325035, China
| | - Yinfang Lin
- School of the 1st Clinical Medical Sciences, Wenzhou Medical University, Zhejiang Province, Wenzhou, 325035, China
| | - Wenxiu Chen
- School of the 1st Clinical Medical Sciences, Wenzhou Medical University, Zhejiang Province, Wenzhou, 325035, China
| | - Shenghao Huang
- School of the 2nd Clinical Medical Sciences, Wenzhou Medical University, Zhejiang Province, Wenzhou, 325035, China
| | - Qianru Yang
- School of the 1st Clinical Medical Sciences, Wenzhou Medical University, Zhejiang Province, Wenzhou, 325035, China
| | - Hengrong Qian
- School of the 2nd Clinical Medical Sciences, Wenzhou Medical University, Zhejiang Province, Wenzhou, 325035, China
| | - Sheng Gao
- Laboratory Animal Center, Wenzhou Medical University, Zhejiang Province, Wenzhou, 325035, China.
| | - Chunyan Hua
- School of Basic Medical Sciences, Wenzhou Medical University, Zhejiang Province, Wenzhou, 325035, China.
| |
Collapse
|
5
|
Sravanthi M, Sebastian R, Krishnaswamy N, Mahadappa P, Dechamma HJ, Umapathi V, Sanyal A. Production of polyclonal viperin antisera using N-terminal deleted recombinant bovine viperin. Anim Biotechnol 2023; 34:2827-2834. [PMID: 36112063 DOI: 10.1080/10495398.2022.2120890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Viperin, also known as radical S-adenosyl methionine domain-containing protein (RSAD2) is a multifunctional interferon-stimulated gene (ISG) that is activated during the viral infections. Viperin belongs to S-adenosyl methionine (SAM) superfamily of enzymes known to catalyze radical-mediated reactions and viperin inhibits a wide range of DNA and RNA viruses through its broad range of activity. The present study reports cloning and expression of bovine viperin in a bacterial expression system. PCR-based site-directed mutagenesis was carried out for deletion of N-terminal 1-70 amino acid containing amphipathic helix of viperin that interferes in protein expression and purification. The resultant truncated viperin protein was expressed in Escherichia coli, BL-21(DE3) competent cells and purified using nickel charged affinity column. The truncated 54 kDa protein was confirmed by western blot using human RSAD2 as a probe. Further, in house, hyperimmune serum was raised against the truncated viperin in the rabbit and the reactivity was confirmed by western blot using mammalian expression vector construct of viperin transfected in Baby Hamster kidney (BHK) cells and in MDBK cells infected with Foot and Mouth disease Asia I virus.
Collapse
Affiliation(s)
- Mannem Sravanthi
- Foot and Mouth Disease Research Laboratory, Indian Veterinary Research Institute, Bengaluru, India
| | - Renjith Sebastian
- Foot and Mouth Disease Research Laboratory, Indian Veterinary Research Institute, Bengaluru, India
| | - Narayanan Krishnaswamy
- Foot and Mouth Disease Research Laboratory, Indian Veterinary Research Institute, Bengaluru, India
| | - Priyanka Mahadappa
- Foot and Mouth Disease Research Laboratory, Indian Veterinary Research Institute, Bengaluru, India
| | - H J Dechamma
- Foot and Mouth Disease Research Laboratory, Indian Veterinary Research Institute, Bengaluru, India
| | - V Umapathi
- Foot and Mouth Disease Research Laboratory, Indian Veterinary Research Institute, Bengaluru, India
| | - Aniket Sanyal
- Foot and Mouth Disease Research Laboratory, Indian Veterinary Research Institute, Bengaluru, India
| |
Collapse
|
6
|
Weichert L, Düsedau HP, Fritzsch D, Schreier S, Scharf A, Grashoff M, Cebulski K, Michaelsen-Preusse K, Erck C, Lienenklaus S, Dunay IR, Kröger A. Astrocytes evoke a robust IRF7-independent type I interferon response upon neurotropic viral infection. J Neuroinflammation 2023; 20:213. [PMID: 37737190 PMCID: PMC10515022 DOI: 10.1186/s12974-023-02892-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 09/06/2023] [Indexed: 09/23/2023] Open
Abstract
BACKGROUND Type I interferons (IFN-I) are fundamental in controlling viral infections but fatal interferonopathy is restricted in the immune-privileged central nervous system (CNS). In contrast to the well-established role of Interferon Regulatory Factor 7 (IRF7) in the regulation of IFN-I response in the periphery, little is known about the specific function in the CNS. METHODS To investigate the role for IRF7 in antiviral response during neurotropic virus infection, mice deficient for IRF3 and IRF7 were infected systemically with Langat virus (LGTV). Viral burden and IFN-I response was analyzed in the periphery and the CNS by focus formation assay, RT-PCR, immunohistochemistry and in vivo imaging. Microglia and infiltration of CNS-infiltration of immune cells were characterized by flow cytometry. RESULTS Here, we demonstrate that during infection with the neurotropic Langat virus (LGTV), an attenuated member of the tick-borne encephalitis virus (TBEV) subgroup, neurons do not rely on IRF7 for cell-intrinsic antiviral resistance and IFN-I induction. An increased viral replication in IRF7-deficient mice suggests an indirect antiviral mechanism. Astrocytes rely on IRF7 to establish a cell-autonomous antiviral response. Notably, the loss of IRF7 particularly in astrocytes resulted in a high IFN-I production. Sustained production of IFN-I in astrocytes is independent of an IRF7-mediated positive feedback loop. CONCLUSION IFN-I induction in the CNS is profoundly regulated in a cell type-specific fashion.
Collapse
Affiliation(s)
- Loreen Weichert
- Molecular Microbiology Group, Institute of Medical Microbiology and Hospital Hygiene, Otto-von-Guericke-University Magdeburg, 39120, Magdeburg, Germany
- Innate Immunity and Infection, Helmholtz Centre for Infection Research, 38124, Braunschweig, Germany
| | - Henning Peter Düsedau
- Institute of Inflammation and Neurodegeneration, Otto-von-Guericke-University Magdeburg, 39120, Magdeburg, Germany
| | - David Fritzsch
- Molecular Microbiology Group, Institute of Medical Microbiology and Hospital Hygiene, Otto-von-Guericke-University Magdeburg, 39120, Magdeburg, Germany
| | - Sarah Schreier
- Molecular Microbiology Group, Institute of Medical Microbiology and Hospital Hygiene, Otto-von-Guericke-University Magdeburg, 39120, Magdeburg, Germany
| | - Annika Scharf
- Molecular Microbiology Group, Institute of Medical Microbiology and Hospital Hygiene, Otto-von-Guericke-University Magdeburg, 39120, Magdeburg, Germany
- Innate Immunity and Infection, Helmholtz Centre for Infection Research, 38124, Braunschweig, Germany
| | - Martina Grashoff
- Molecular Microbiology Group, Institute of Medical Microbiology and Hospital Hygiene, Otto-von-Guericke-University Magdeburg, 39120, Magdeburg, Germany
- Innate Immunity and Infection, Helmholtz Centre for Infection Research, 38124, Braunschweig, Germany
| | - Kristin Cebulski
- Molecular Microbiology Group, Institute of Medical Microbiology and Hospital Hygiene, Otto-von-Guericke-University Magdeburg, 39120, Magdeburg, Germany
| | | | - Christian Erck
- Cellular Proteome Research, Helmholtz Centre for Infection Research, 38124, Braunschweig, Germany
| | - Stefan Lienenklaus
- Institute for Laboratory Animal Science, Hanover Medical School, 30625, Hannover, Germany
| | - Ildiko Rita Dunay
- Institute of Inflammation and Neurodegeneration, Otto-von-Guericke-University Magdeburg, 39120, Magdeburg, Germany
- Health Campus Immunology, Infectiology, and inflammation (GC-I3), Magdeburg, Germany
- Center for Behavioral Braun Science (CBBS), 39106, Magdeburg, Germany
| | - Andrea Kröger
- Molecular Microbiology Group, Institute of Medical Microbiology and Hospital Hygiene, Otto-von-Guericke-University Magdeburg, 39120, Magdeburg, Germany.
- Innate Immunity and Infection, Helmholtz Centre for Infection Research, 38124, Braunschweig, Germany.
- Health Campus Immunology, Infectiology, and inflammation (GC-I3), Magdeburg, Germany.
- Center for Behavioral Braun Science (CBBS), 39106, Magdeburg, Germany.
| |
Collapse
|
7
|
Pradeep P, Sivakumar KC, Sreekumar E. Host Factor Nucleophosmin 1 (NPM1/B23) Exerts Antiviral Effects against Chikungunya Virus by Its Interaction with Viral Nonstructural Protein 3. Microbiol Spectr 2023; 11:e0537122. [PMID: 37409962 PMCID: PMC10433958 DOI: 10.1128/spectrum.05371-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 06/13/2023] [Indexed: 07/07/2023] Open
Abstract
Chikungunya virus (CHIKV) hijacks host cell machinery to support its replication. Nucleophosmin 1 (NPM1/B23), a nucleolar phosphoprotein, is one of the host proteins known to restrict CHIKV infection; however, the mechanistic details of the antiviral role of NPM1 are not elucidated. It was seen in our experiments that the level of NPM1 expression affected the expression levels of interferon-stimulated genes (ISGs) that play antiviral roles in CHIKV infection, such as IRF1, IRF7, OAS3, and IFIT1, indicating that one of the antiviral mechanisms could be through modulation of interferon-mediated pathways. Our experiments also identified that for CHIKV restriction, NPM1 must move from the nucleus to the cytoplasm. A deletion of the nuclear export signal (NES), which confines NPM1 within the nucleus, abolishes its anti-CHIKV action. We observed that NPM1 binds CHIKV nonstructural protein 3 (nsP3) strongly via its macrodomain, thereby exerting a direct interaction with viral proteins to limit infection. Based on site-directed mutagenesis and coimmunoprecipitation studies, it was also observed that amino acid residues N24 and Y114 of the CHIKV nsP3 macrodomain, known to be involved in virus virulence, bind ADP-ribosylated NPM1 to inhibit infection. Overall, the results show a key role of NPM1 in CHIKV restriction and indicate it as a promising host target for developing antiviral strategies against CHIKV. IMPORTANCE Chikungunya, a recently reemerged mosquito-borne infection caused by a positive-sense, single-stranded RNA virus, has caused explosive epidemics in tropical regions. Unlike the classical symptoms of acute fever and debilitating arthralgia, incidences of neurological complications and mortality were reported. Currently there are no antivirals or commercial vaccines available against chikungunya. Like all viruses, CHIKV uses host cellular machinery for establishment of infection and successful replication. To counter this, the host cell activates several restriction factors and innate immune response mediators. Understanding these host-virus interactions helps to develop host-targeted antivirals against the disease. Here, we report the antiviral role of the multifunctional host protein NPM1 against CHIKV. The significant inhibitory effect of this protein against CHIKV involves its increased expression and movement from its natural location within the nucleus to the cytoplasm. There, it interacts with functional domains of key viral proteins. Our results support ongoing efforts toward development of host-directed antivirals against CHIKV and other alphaviruses.
Collapse
Affiliation(s)
- Parvanendhu Pradeep
- Molecular Virology Laboratory, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, India
- Research Centre, University of Kerala, Thiruvananthapuram, India
| | | | - Easwaran Sreekumar
- Molecular Virology Laboratory, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, India
- Molecular Bioassay Laboratory, Institute of Advanced Virology (IAV), Thiruvananthapuram, India
| |
Collapse
|
8
|
Oliver GF, Ashander LM, Dawson AC, Ma Y, Carr JM, Williams KA, Smith JR. Dengue Virus Infection of Human Retinal Müller Glial Cells. Viruses 2023; 15:1410. [PMID: 37515098 PMCID: PMC10385653 DOI: 10.3390/v15071410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/17/2023] [Accepted: 06/18/2023] [Indexed: 07/30/2023] Open
Abstract
Retinopathy is a recently recognized complication of dengue, affecting up to 10% of hospitalized patients. Research on the pathogenesis has focused largely on effects of dengue virus (DENV) at the blood-retinal barrier. Involvement of retinal Müller glial cells has received little attention, although this cell population contributes to the pathology of other intraocular infections. The goal of our work was to establish the susceptibility of Müller cells to infection with DENV and to identify characteristics of the cellular antiviral, inflammatory, and immunomodulatory responses to DENV infection in vitro. Primary human Müller cell isolates and the MIO-M1 human Müller cell line were infected with the laboratory-adapted Mon601 strain and DENV serotype 1 and 2 field isolates, and cell-DENV interactions were investigated by immunolabelling and quantitative real-time polymerase chain reaction. Müller cells were susceptible to DENV infection, but experiments involving primary cell isolates indicated inter-individual variation. Viral infection induced an inflammatory response (including tumour necrosis factor-α, interleukin [IL]-1β, and IL-6) and an immunomodulatory response (including programmed death-ligand [PD-L]1 and PD-L2). The type I interferon response was muted in the Müller cell line compared to primary cell isolates. The highest infectivity and cell responses were observed in the laboratory-adapted strain, and overall, infectivity and cell responses were stronger in DENV2 strains. This work demonstrates that Müller cells mount an antiviral and immune response to DENV infection, and that this response varies across cell isolates and DENV strain. The research provides a direction for future efforts to understand the role of human retinal Müller glial cells in dengue retinopathy.
Collapse
Affiliation(s)
- Genevieve F Oliver
- Flinders Health and Medical Research Institute, and College of Medicine and Public Health, Flinders University, Adelaide, SA 5042, Australia
| | - Liam M Ashander
- Flinders Health and Medical Research Institute, and College of Medicine and Public Health, Flinders University, Adelaide, SA 5042, Australia
| | - Abby C Dawson
- Flinders Health and Medical Research Institute, and College of Medicine and Public Health, Flinders University, Adelaide, SA 5042, Australia
| | - Yuefang Ma
- Flinders Health and Medical Research Institute, and College of Medicine and Public Health, Flinders University, Adelaide, SA 5042, Australia
| | - Jillian M Carr
- Flinders Health and Medical Research Institute, and College of Medicine and Public Health, Flinders University, Adelaide, SA 5042, Australia
| | - Keryn A Williams
- Flinders Health and Medical Research Institute, and College of Medicine and Public Health, Flinders University, Adelaide, SA 5042, Australia
| | - Justine R Smith
- Flinders Health and Medical Research Institute, and College of Medicine and Public Health, Flinders University, Adelaide, SA 5042, Australia
| |
Collapse
|
9
|
Iwama RE, Moran Y. Origins and diversification of animal innate immune responses against viral infections. Nat Ecol Evol 2023; 7:182-193. [PMID: 36635343 DOI: 10.1038/s41559-022-01951-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 11/11/2022] [Indexed: 01/14/2023]
Abstract
Immune systems are of pivotal importance to any living organism on Earth, as they protect the organism against deleterious effects of viral infections. Though the current knowledge about these systems is still biased towards the immune response in vertebrates, some studies have focused on the identification and characterization of components of invertebrate antiviral immune systems. Two classic model organisms, the insect Drosophila melanogaster and the nematode Caenorhabditis elegans, were instrumental in the discovery of several important components of the innate immune system, such as the Toll-like receptors and the RNA interference pathway. However, these two model organisms provide only a limited view of the evolutionary history of the immune system, as they both are ecdysozoan protostomes. Recent functional studies in non-classic models such as unicellular holozoans (for example, choanoflagellates), lophotrochozoans (for example, oysters) and cnidarians (for example, sea anemones) have added crucial information for understanding the evolution of antiviral systems, as they revealed unexpected ancestral complexity. This Review aims to summarize this information and present the ancestral nature of the antiviral immune response in animals. We also discuss lineage-specific adaptations and future perspectives for the comparative study of the innate immune system that are essential for understanding its evolution.
Collapse
Affiliation(s)
- Rafael E Iwama
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, Hebrew University of Jerusalem, Jerusalem, Israel.
| | - Yehu Moran
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
10
|
Raji Sathyan K, Premraj A, Thavarool Puthiyedathu S. Antiviral radical SAM enzyme viperin homologue from Asian seabass (Lates calcarifer): Molecular characterisation and expression analysis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 136:104499. [PMID: 35931216 DOI: 10.1016/j.dci.2022.104499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
The host response to virus infection is mediated by the interferon system and its workhorse effector proteins like Interferon-stimulated genes (ISGs). Viperin is an interferon-inducible antiviral protein. In the present study, an antiviral radical SAM enzyme, viperin homologue, was cloned and characterised from teleost, Asian seabass (Lates calcarifer). This cloned viperin cDNA encodes 351 amino acid protein with predicted N-terminal amphipathic alpha-helix, conserved radical S-adenosyl l-methionine (SAM) domain with CxxxCxxC motif and a highly conserved C-terminal domain. Lcviperin gene consists of six exons and five introns. The secondary structure contains nine alpha helices and beta sheets. Viperin from Lates is evolutionarily conserved and shares about 89% identity with Seriola dumerili and 70% identity with human orthologue. Poly(I:C) and RGNNV upregulated Lcviperin during in-vivo challenge studies, providing insight into its antiviral properties. Lates antiviral effector genes like viperin could help in elucidating the host-virus protein interactions and allow the development of improved antiviral strategies against pathogens like betanodavirus that devastate aquaculture of the species.
Collapse
Affiliation(s)
- Krishnapriya Raji Sathyan
- National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, 682 016, Kerala, India
| | - Avinash Premraj
- Camel Biotechnology Centre, Presidential Camels and Camel Racing Affairs Centre, Department of the President's Affairs, PO Box 17292, Al Ain, United Arab Emirates
| | - Sajeevan Thavarool Puthiyedathu
- National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, 682 016, Kerala, India.
| |
Collapse
|
11
|
Zhou X, Zhang Z, Xu H, Zhu B, Zhang L, Lie L, Huang Y, Du X, Liu H, Li Y, Huang Y, Hu S, Zhou C, Wen Q, Pepplenbosch MP, Ma L. Viperin impairs the innate immune response through the IRAK1-TRAF6-TAK1 axis to promote Mtb infection. Sci Signal 2022; 15:eabe1621. [PMID: 36194648 DOI: 10.1126/scisignal.abe1621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Mycobacterium tuberculosis (Mtb) infection is a long-standing public health threat, and the development of host-directed therapy for eradicating Mtb infection requires better insights into Mtb-host interactions. Viperin [virus-inhibitory protein, endoplasmic reticulum-associated, interferon (IFN) inducible] is an IFN-inducible protein with broad antiviral activities. Here, we demonstrated that Viperin was increased in abundance in patients with lymphatic and pulmonary tuberculosis (TB). Viperin-deficient mice had decreased Mtb bacterial loads and enhanced macrophage responses compared with their wild-type counterparts. Viperin suppressed the formation of a complex containing interleukin-1 receptor-associated kinase 1, TNF receptor-associated factor 6, and transforming growth factor β-activated kinase 1 (TAK1) and inhibited the TAK1-dependent activation of IκB kinase α/β, thereby impairing the production of nitric oxide and proinflammatory cytokines. These results suggest that Viperin promotes Mtb infection by inhibiting host innate immune responses in macrophages, suggesting that Viperin may be a candidate target for adjunct host-directed therapy in patients with TB.
Collapse
Affiliation(s)
- Xinying Zhou
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Zelin Zhang
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Hui Xu
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Bo Zhu
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Lijie Zhang
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Linmiao Lie
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Yingqi Huang
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Xialin Du
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Honglin Liu
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Yanfen Li
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Yulan Huang
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Shengfeng Hu
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Chaoying Zhou
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Qian Wen
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Mailkel P Pepplenbosch
- Department of Gastroenterology and Hepatology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Li Ma
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
12
|
Li X, Liu S, Rai KR, Zhou W, Wang S, Chi X, Guo G, Chen JL, Liu S. Initial activation of STAT2 induced by IAV infection is critical for innate antiviral immunity. Front Immunol 2022; 13:960544. [PMID: 36148221 PMCID: PMC9486978 DOI: 10.3389/fimmu.2022.960544] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 08/17/2022] [Indexed: 11/18/2022] Open
Abstract
STAT2 is an important transcription factor activated by interferons (IFNs) upon viral infection and plays a key role in antiviral responses. Interestingly, here we found that phosphorylation of STAT2 could be induced by several viruses at early infection stage, including influenza A virus (IAV), and such initial activation of STAT2 was independent of type I IFNs and JAK kinases. Furthermore, it was observed that the early activation of STAT2 during viral infection was mainly regulated by the RIG-I/MAVS-dependent pathway. Disruption of STAT2 phosphorylation at Tyr690 restrained antiviral response, as silencing STAT2 or blocking STAT2 Y690 phosphorylation suppressed the expression of several interferon-stimulated genes (ISGs), thereby facilitating viral replication. In vitro experiments using overexpression system or kinase inhibitors showed that several kinases including MAPK12 and Syk were involved in regulation of the early phosphorylation of STAT2 triggered by IAV infection. Moreover, when MAPK12 kinase was inhibited, expression of several ISGs was clearly decreased in cells infected with IAV at the early infection stage. Accordingly, inhibition of MAPK12 accelerated the replication of influenza virus in host. These results provide a better understanding of how initial activation of STAT2 and the early antiviral responses are induced by the viral infection.
Collapse
Affiliation(s)
- Xinxin Li
- Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Siya Liu
- Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Kul Raj Rai
- Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wenzhuo Zhou
- Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Song Wang
- Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaojuan Chi
- Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Guijie Guo
- Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ji-Long Chen
- Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shasha Liu
- Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
13
|
The Virus-Induced Upregulation of the miR-183/96/182 Cluster and the FoxO Family Protein Members Are Not Required for Efficient Replication of HSV-1. Viruses 2022; 14:v14081661. [PMID: 36016282 PMCID: PMC9414244 DOI: 10.3390/v14081661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/25/2022] [Accepted: 07/25/2022] [Indexed: 12/07/2022] Open
Abstract
Herpes simplex virus 1 (HSV-1) expresses a large number of miRNAs, and their function is still not completely understood. In addition, HSV-1 has been found to deregulate host miRNAs, which adds to the complexity of the regulation of efficient virus replication. In this study, we comprehensively addressed the deregulation of host miRNAs by massive-parallel sequencing. We found that only miRNAs expressed from a single cluster, miR-183/96/182, are reproducibly deregulated during productive infection. These miRNAs are predicted to regulate a great number of potential targets involved in different cellular processes and have only 33 shared targets. Among these, members of the FoxO family of proteins were identified as potential targets for all three miRNAs. However, our study shows that the upregulated miRNAs do not affect the expression of FoxO proteins, moreover, these proteins were upregulated in HSV-1 infection. Furthermore, we show that the individual FoxO proteins are not required for efficient HSV-1 replication. Taken together, our results indicate a complex and redundant response of infected cells to the virus infection that is efficiently inhibited by the virus.
Collapse
|
14
|
Avian IRF1 and IRF7 Play Overlapping and Distinct Roles in Regulating IFN-Dependent and -Independent Antiviral Responses to Duck Tembusu Virus Infection. Viruses 2022; 14:v14071506. [PMID: 35891486 PMCID: PMC9315619 DOI: 10.3390/v14071506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 02/04/2023] Open
Abstract
Avian interferon regulatory factors 1 and 7 (IRF1 and IRF7) play important roles in the host’s innate immunity against viral infection. Our previous study revealed that duck tembusu virus (DTMUV) infection of chicken fibroblasts (DF1) and duck embryo fibroblasts (DEFs) induced the expression of a variety of IFN-stimulated genes (ISGs), including VIPERIN, IFIT5, CMPK2, IRF1, and IRF7. IRF1 was further shown to play a significant role in regulating the up-expression of VIPERIN, IFIT5, and CMPK2 and inhibiting DTMUV replication. In this study, we confirm, through overexpression and knockout approaches, that both IRF1 and IRF7 inhibit DTMUV replication, mainly via regulation of type I IFN expression, as well as the induction of IRF1, VIPERIN, IFIT5, CMPK2, and MX1. In addition, IRF1 directly promoted the expression of VIPERIN and CMPK2 in an IFN-independent manner when IRF7 and type I IFN signaling were undermined. We also found that non-structural protein 2B (NS2B) of DTMUV was able to inhibit the induction of IFN-β mRNA triggered by Newcastle disease virus (NDV) infection or poly(I:C) treatment, revealing a strategy employed by DTMUV to evade host’s immunosurveillance. This study demonstrates that avian IRF7 and IRF1 play distinct roles in the regulation of type I IFN response during DTMUV infection.
Collapse
|
15
|
Reslan A, Haddad JG, Desprès P, Bascands JL, Gadea G. High Glucose Induces in HK2 Kidney Cells an IFN–Dependent ZIKV Antiviral Status Fueled by Viperin. Biomedicines 2022; 10:biomedicines10071577. [PMID: 35884880 PMCID: PMC9313244 DOI: 10.3390/biomedicines10071577] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/29/2022] [Accepted: 07/01/2022] [Indexed: 12/19/2022] Open
Abstract
Zika virus (ZIKV) is an emerging mosquito-borne flavivirus that rapidly became a major medical concern worldwide. We have recently reported that a high glucose level decreases the rate of Zika virus (ZIKV) replication with an impact on human kidney HK-2 cell survival. However, the mechanisms by which cells cultured in a high glucose medium inhibit ZIKV growth remain unclear. Viperin belongs to interferon-stimulated genes (ISG) and its expression is highly up-regulated upon viral infection, leading to antiviral activity against a variety of viruses, including flaviviruses. As such, viperin has been shown to be a major actor involved in the innate immune response against Zika virus (ZIKV). Our present study aims to further characterize the involvement of viperin in ZIKV growth inhibition under high glucose concentration (HK-2HGC). We show for the first time that endogenous viperin is over-expressed in HK-2 cells cultured under high glucose concentration (HK-2HGC), which is associated with ZIKV growth inhibition. Viperin knockdown in HK-2HGC rescues ZIKV growth. In addition, our results emphasize that up-regulated viperin in HK-2HGC leads to ZIKV growth inhibition through the stimulation of IFN-β production. In summary, our work provides new insights into the ZIKV growth inhibition mechanism observed in HK-2 cells cultured in a high glucose environment.
Collapse
Affiliation(s)
- Alawiya Reslan
- Unité Mixte Processus Infectieux en Milieu Insulaire Tropical, Plateforme Technologique CYROI, Université de la Réunion, INSERM U1187, CNRS UMR 9192, IRD UMR 249, 94791 Sainte Clotilde, La Réunion, France; (A.R.); (J.G.H.); (P.D.)
- Unité Mixte Diabète Athérothrombose Thérapies Réunion Océan Indien, Plateforme Technologique CYROI, Université de la Réunion, INSERM U1188, 94791 Sainte Clotilde, La Réunion, France
| | - Juliano G. Haddad
- Unité Mixte Processus Infectieux en Milieu Insulaire Tropical, Plateforme Technologique CYROI, Université de la Réunion, INSERM U1187, CNRS UMR 9192, IRD UMR 249, 94791 Sainte Clotilde, La Réunion, France; (A.R.); (J.G.H.); (P.D.)
| | - Philippe Desprès
- Unité Mixte Processus Infectieux en Milieu Insulaire Tropical, Plateforme Technologique CYROI, Université de la Réunion, INSERM U1187, CNRS UMR 9192, IRD UMR 249, 94791 Sainte Clotilde, La Réunion, France; (A.R.); (J.G.H.); (P.D.)
| | - Jean-Loup Bascands
- Unité Mixte Diabète Athérothrombose Thérapies Réunion Océan Indien, Plateforme Technologique CYROI, Université de la Réunion, INSERM U1188, 94791 Sainte Clotilde, La Réunion, France
- Correspondence: (J.-L.B.); (G.G.); Tel.: +262-262-938-806 (G.G.)
| | - Gilles Gadea
- Unité Mixte Processus Infectieux en Milieu Insulaire Tropical, Plateforme Technologique CYROI, Université de la Réunion, INSERM U1187, CNRS UMR 9192, IRD UMR 249, 94791 Sainte Clotilde, La Réunion, France; (A.R.); (J.G.H.); (P.D.)
- Institut de Recherche en Cancérologie de Montpellier, Université de Montpellier, INSERM U1194, IRCM, F-34298 Montpellier, France
- Correspondence: (J.-L.B.); (G.G.); Tel.: +262-262-938-806 (G.G.)
| |
Collapse
|
16
|
Harasgama JC, Kasthuriarachchi TDW, Sirisena DMKP, Kwon H, Lee S, Wan Q, Lee J. Modulation of fish immune response by interferon regulatory factor 4 in redlip mullet (Liza haematocheilus): Delineation through expression profiling, antiviral assay, and macrophage polarization analysis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 130:104356. [PMID: 35065138 DOI: 10.1016/j.dci.2022.104356] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 01/17/2022] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
Interferon regulatory factor 4 (IRF4) is a crucial member of IRF family, which acts as an imperative transcription factor in the development and maturation of multiple lineages of blood cells and also plays a pivotal role in host defense against microbial infections. In the present study, we aimed to investigate the detailed structural and functional aspects of a redlip mullet IRF4 homolog (LhIRF4). The LhIRF4 open reading frame consists of 1347 base pairs encoding 449 amino acids, with the DNA-binding domain sharing significant homology with that of other vertebrate IRF4 homologs. The highest transcription levels of LhIRF4 were observed in the mullet intestine and spleen under normal physiological conditions. Furthermore, a time-dependent upregulation of LhIRF4 transcription was observed in the spleen and head kidney tissues upon pathogenic challenges. When overexpressed in mullet cells, LhIRF4 was localized to the nucleus and significantly stimulated the transcription of several host antiviral genes. Moreover, the overexpression of LhIRF4 strongly inhibited the replication of viral hemorrhagic septicemia virus (VHSV) in vitro. The function of LhIRF4 in regulation of macrophage M2 polarization has also been evidently demonstrated in RAW 264.7 cells. Taken together, our findings indicate the profound role of LhIRF4 in modulating immune responses against microbial infections in redlip mullet.
Collapse
Affiliation(s)
- J C Harasgama
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea
| | - T D W Kasthuriarachchi
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea
| | - D M K P Sirisena
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea
| | - Hyukjae Kwon
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea
| | - Seongdo Lee
- General Affairs Division, National Fishery Products Quality Management Service, Busan, 49111, Republic of Korea
| | - Qiang Wan
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea.
| | - Jehee Lee
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea.
| |
Collapse
|
17
|
Knop L, Spanier J, Larsen PK, Witte A, Bank U, Dunay IR, Kalinke U, Schüler T. IFNAR signaling in fibroblastic reticular cells can modulate CD8 + memory fate decision. Eur J Immunol 2022; 52:895-906. [PMID: 35365883 DOI: 10.1002/eji.202149760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/27/2022] [Accepted: 03/31/2022] [Indexed: 11/12/2022]
Abstract
CD8+ memory T cells (TM ) are crucial for the long-term protection from infections and cancer. Multiple cell types and cytokines are involved in the regulation of CD8+ T cell responses and subsequent TM formation. Besides their direct antiviral effects, type I interferons (IFN-α/β) modulate CD8+ T cell immunity via their action on several immune cell subsets. However, it is largely unclear how non-immune cells are involved in this multicellular network modulating CD8+ TM formation. Fibroblastic reticular cells (FRCs), form the three-dimensional scaffold of secondary lymphoid organs, express the IFN-α/β receptor (IFNAR) and modulate adaptive immune responses. However, it is unclear whether and how early IFNAR signals in lymph node (LN) FRCs affect CD8+ TM differentiation. Using peptide vaccination and viral infection, we studied CD8+ TM differentiation in mice with a FRC-specific IFNAR deletion (FRCΔIFNAR ). We show here that the differentiation of CD8+ TCR-transgenic T cells into central memory cells (TCM ) is enhanced in peptide-vaccinated FRCΔIFNAR mice. Conversely, vesicular stomatitis virus (VSV) infection of FRCΔIFNAR mice is associated with impaired TCM formation and the accumulation of VSV-specific double-positive (dp) CD127lo KLRG-1hi effector memory T cells. In summary, we provide evidence for a context-dependent contribution of FRC-specific IFNAR signaling to CD8+ TM differentiation. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Laura Knop
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University, Magdeburg, 39120, Germany
| | - Julia Spanier
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, Hannover, 30625, Germany
| | - Pia-Katharina Larsen
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, Hannover, 30625, Germany
| | - Amelie Witte
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University, Magdeburg, 39120, Germany
| | - Ute Bank
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University, Magdeburg, 39120, Germany
| | - Ildiko R Dunay
- Institute of Inflammation and Neurodegeneration, Medical Faculty, Otto-von-Guericke University, Magdeburg, 39120, Germany
| | - Ulrich Kalinke
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, Hannover, 30625, Germany
| | - Thomas Schüler
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University, Magdeburg, 39120, Germany
| |
Collapse
|
18
|
Kim H, Subbannayya Y, Humphries F, Skejsol A, Pinto SM, Giambelluca M, Espevik T, Fitzgerald KA, Kandasamy RK. UMP-CMP kinase 2 gene expression in macrophages is dependent on the IRF3-IFNAR signaling axis. PLoS One 2021; 16:e0258989. [PMID: 34705862 PMCID: PMC8550426 DOI: 10.1371/journal.pone.0258989] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 10/09/2021] [Indexed: 12/30/2022] Open
Abstract
Toll-like receptors (TLRs) are highly-conserved pattern recognition receptors that mediate innate immune responses to invading pathogens and endogenous danger signals released from damaged and dying cells. Activation of TLRs trigger downstream signaling cascades, that culminate in the activation of interferon regulatory factors (IRFs), which subsequently leads to type I interferon (IFN) response. In the current study, we sought to expand the scope of gene expression changes in THP1-derived macrophages upon TLR4 activation and to identify interferon-stimulated genes. RNA-seq analysis led to the identification of several known and novel differentially expressed genes, including CMPK2, particularly in association with type I IFN signaling. We performed an in-depth characterization of CMPK2 expression, a nucleoside monophosphate kinase that supplies intracellular UTP/CTP for nucleic acid synthesis in response to type I IFN signaling in macrophages. CMPK2 was significantly induced at both RNA and protein levels upon stimulation with TLR4 ligand-LPS and TLR3 ligand-Poly (I:C). Confocal microscopy and subcellular fractionation indicated CMPK2 localization in both cytoplasm and mitochondria of THP-1 macrophages. Furthermore, neutralizing antibody-based inhibition of IFNAR receptor in THP-1 cells and BMDMs derived from IFNAR KO and IRF3 KO knockout mice further revealed that CMPK2 expression is dependent on LPS/Poly (I:C) mediated IRF3- type I interferon signaling. In summary, our findings suggest that CMPK2 is a potential interferon-stimulated gene in THP-1 macrophages and that CMPK2 may facilitate IRF3- type I IFN-dependent anti-bacterial and anti-viral roles.
Collapse
Affiliation(s)
- Hera Kim
- Centre of Molecular Inflammation Research (CEMIR), and Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, Trondheim, Norway
| | - Yashwanth Subbannayya
- Centre of Molecular Inflammation Research (CEMIR), and Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, Trondheim, Norway
| | - Fiachra Humphries
- Program in Innate Immunity, University of Massachusetts Medical School, Worcester, MA, United States of America
| | - Astrid Skejsol
- Centre of Molecular Inflammation Research (CEMIR), and Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, Trondheim, Norway
| | - Sneha M. Pinto
- Centre of Molecular Inflammation Research (CEMIR), and Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, Trondheim, Norway
| | - Miriam Giambelluca
- Centre of Molecular Inflammation Research (CEMIR), and Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, Trondheim, Norway
| | - Terje Espevik
- Centre of Molecular Inflammation Research (CEMIR), and Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, Trondheim, Norway
| | - Katherine A. Fitzgerald
- Program in Innate Immunity, University of Massachusetts Medical School, Worcester, MA, United States of America
| | - Richard K. Kandasamy
- Centre of Molecular Inflammation Research (CEMIR), and Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, Trondheim, Norway
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, UAE
| |
Collapse
|
19
|
Tseng YY, Gowripalan A, Croft SN, Smith SA, Helbig KJ, Man SM, Tscharke DC. Viperin has species-specific roles in response to herpes simplex virus infection. J Gen Virol 2021; 102. [PMID: 34406117 PMCID: PMC8513645 DOI: 10.1099/jgv.0.001638] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Viperin is a gene with a broad spectrum of antiviral functions and various mechanisms of action. The role of viperin in herpes simplex virus type 1 (HSV-1) infection is unclear, with conflicting data in the literature that is derived from a single human cell type. We have addressed this gap by investigating viperin during HSV-1 infection in several cell types, spanning species and including immortalized, non-immortalized and primary cells. We demonstrate that viperin upregulation by HSV-1 infection is cell-type-specific, with mouse cells typically showing greater increases compared with those of human origin. Further, overexpression and knockout of mouse, but not human viperin significantly impedes and increases HSV-1 replication, respectively. In primary mouse fibroblasts, viperin upregulation by infection requires viral gene transcription and occurs in a predominantly IFN-independent manner. Further we identify the N-terminal domain of viperin as being required for the anti-HSV-1 activity. Interestingly, this is the region of viperin that differs most between mouse and human, which may explain the apparent species-specific activity against HSV-1. Finally, we show that HSV-1 virion host shutoff (vhs) protein is a key viral factor that antagonises viperin in mouse cells. We conclude that viperin can be upregulated by HSV-1 in mouse and human cells, and that mouse viperin has anti-HSV-1 activity.
Collapse
Affiliation(s)
- Yeu-Yang Tseng
- John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Anjali Gowripalan
- John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Sarah N. Croft
- John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Stewart A. Smith
- John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Karla J. Helbig
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, VIC, Australia
| | - Si Ming Man
- John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - David C. Tscharke
- John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
- *Correspondence: David C. Tscharke,
| |
Collapse
|
20
|
Johnson EL, Swieboda D, Olivier A, Enninga EAL, Chakraborty R. Robust innate immune responses at the placenta during early gestation may limit in utero HIV transmission. PLoS Pathog 2021; 17:e1009860. [PMID: 34432853 PMCID: PMC8437274 DOI: 10.1371/journal.ppat.1009860] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/13/2021] [Accepted: 08/02/2021] [Indexed: 12/30/2022] Open
Abstract
In 2019, >90% of new HIV infections in infants globally occurred vertically. Studies suggest intrauterine transmission most often occurs in the third trimester; however, there are no mechanistic studies to support these observations. We therefore obtained early/mid-gestation and term placentae from 20 HIV/Hepatitis B/CMV negative women. Isolated primary placental macrophages (Hofbauer cells [HCs]) were exposed to HIV-1BaL and/or interferon (IFN)-α, IFN-β, IFN-λ1, and RIG-I-like receptor (RLR) agonists. qRT-PCR, FACS, ELISA, Luminex, and Western blot analyses determined expression of activation markers, co-receptors, viral antigen, cytokines, antiviral genes, and host proteins. Early gestation HCs express higher levels of CCR5 and exhibit a more activated phenotype. Despite downregulation of CCR5, term HCs were more susceptible to HIV replication. Early gestation HCs displayed a more activated phenotype than term HCs and HIV exposure lead to the further up-regulation of T-cell co-stimulatory and MHC molecules. Limited HIV replication in early/mid gestation HCs was associated with increased secretion of anti-inflammatory cytokines, chemokines, and a more robust antiviral immune response. In contrast, term HCs were more susceptible to HIV replication, associated with dampening of IFN-induced STAT1 and STAT2 protein activation. Treatment of early/mid gestation and term HCs, with type I IFNs or RLR agonists reduced HIV replication, underscoring the importance of IFN and RLR signaling in inducing an antiviral state. Viral recognition and antiviral immunity in early gestation HCs may prevent in utero HIV infection, whereas diminished antiviral responses at term can facilitate transmission. Defining mechanisms and specific timing of vertical transmission are critical for the development of specific vaccines and antiviral therapeutics to prevent new HIV infections in children globally.
Collapse
Affiliation(s)
- Erica L. Johnson
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, Atlanta, Georgia, United States of America
| | - Dominika Swieboda
- Department of Pediatrics, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Amanda Olivier
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, Atlanta, Georgia, United States of America
| | - Elizabeth Ann L. Enninga
- Department of Pediatric and Adolescent Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, United States of America
| | - Rana Chakraborty
- Department of Pediatric and Adolescent Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, United States of America
| |
Collapse
|
21
|
Khantisitthiporn O, Shue B, Eyre NS, Nash CW, Turnbull L, Whitchurch CB, Van der Hoek KH, Helbig KJ, Beard MR. Viperin interacts with PEX19 to mediate peroxisomal augmentation of the innate antiviral response. Life Sci Alliance 2021; 4:e202000915. [PMID: 34108265 PMCID: PMC8200297 DOI: 10.26508/lsa.202000915] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 05/27/2021] [Accepted: 05/27/2021] [Indexed: 12/12/2022] Open
Abstract
Peroxisomes are recognized as significant platforms for the activation of antiviral innate immunity where stimulation of the key adapter molecule mitochondrial antiviral signaling protein (MAVS) within the RIG-I like receptor (RLR) pathway culminates in the up-regulation of hundreds of ISGs, some of which drive augmentation of multiple innate sensing pathways. However, whether ISGs can augment peroxisome-driven RLR signaling is currently unknown. Using a proteomics-based screening approach, we identified Pex19 as a binding partner of the ISG viperin. Viperin colocalized with numerous peroxisomal proteins and its interaction with Pex19 was in close association with lipid droplets, another emerging innate signaling platform. Augmentation of the RLR pathway by viperin was lost when Pex19 expression was reduced. Expression of organelle-specific MAVS demonstrated that viperin requires both mitochondria and peroxisome MAVS for optimal induction of IFN-β. These results suggest that viperin is required to enhance the antiviral cellular response with a possible role to position the peroxisome at the mitochondrial/MAM MAVS signaling synapse, furthering our understanding of the importance of multiple organelles driving the innate immune response against viral infection.
Collapse
Affiliation(s)
- Onruedee Khantisitthiporn
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide, Australia
| | - Byron Shue
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide, Australia
| | - Nicholas S Eyre
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide, Australia
| | - Colt W Nash
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide, Australia
| | - Lynne Turnbull
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, Australia
| | - Cynthia B Whitchurch
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, Australia
| | - Kylie H Van der Hoek
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide, Australia
| | - Karla J Helbig
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, Australia
| | - Michael R Beard
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide, Australia
| |
Collapse
|
22
|
Darzianiazizi M, Allison KE, Kulkarni RR, Sharif S, Karimi K, Bridle BW. Disruption of type I interferon signaling causes sexually dimorphic dysregulation of anti-viral cytokines. Cytokine X 2021; 3:100053. [PMID: 34189454 PMCID: PMC8215187 DOI: 10.1016/j.cytox.2021.100053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 04/09/2021] [Accepted: 06/01/2021] [Indexed: 12/01/2022] Open
Abstract
Type I interferons (IFNs) play a crucial role in the establishment of an antiviral state via signaling through their cognate type I IFN receptor (IFNAR). In this study, a replication-competent but highly attenuated strain of VSV (rVSVΔm51) carrying a deletion at position 51 of the matrix protein to remove suppression of anti-viral type I IFN responses was used to explore the effect of disrupted IFNAR signaling on inflammatory cytokine responses in mice. The kinetic responses of interleukin-6, tumor necrosis factor-α and interleukin-12 were evaluated in virus-infected male and female mice with or without concomitant antibody-mediated IFNAR-blockade. Unlike controls, both male and female IFNAR-blocked mice showed signs of sickness by 24-hours post-infection. Female IFNAR-blocked mice experienced greater morbidity as demonstrated by a significant decrease in body temperature. This was not the case for males. In addition, females with IFNAR-blockade mounted prolonged and exaggerated systemic inflammatory cytokine responses to rVSVΔm51. This was in stark contrast to controls with intact IFNAR signaling and males with IFNAR-blockade; they were able to down-regulate virus-induced inflammatory cytokine responses by 24-hours post-infection. Exaggerated cytokine responses in females with impaired IFNAR signaling was associated with more effective control of viremia than their male counterparts. However, the trade-off was greater immune-mediated morbidity. The results of this study demonstrated a role for IFNAR signaling in the down-regulation of antiviral cytokine responses, which was strongly influenced by sex. Our findings suggested that the potential to mount toxic cytokine responses to a virus with concomitant disruption of IFNAR signaling was heavily biased towards females.
Collapse
Affiliation(s)
- Maedeh Darzianiazizi
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, 50 Stone Rd. E., Guelph, Ontario N1G 2W1, Canada
| | - Katrina E Allison
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, 50 Stone Rd. E., Guelph, Ontario N1G 2W1, Canada
| | - Raveendra R Kulkarni
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA
| | - Shayan Sharif
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, 50 Stone Rd. E., Guelph, Ontario N1G 2W1, Canada
| | - Khalil Karimi
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, 50 Stone Rd. E., Guelph, Ontario N1G 2W1, Canada
| | - Byram W Bridle
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, 50 Stone Rd. E., Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
23
|
Banete A, Gee K, Basta S. Sustained IL-4 priming of macrophages enhances the inflammatory response to TLR7/8 ligand R848. J Leukoc Biol 2021; 111:401-413. [PMID: 34013552 DOI: 10.1002/jlb.3a0520-293rr] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Macrophages (Mϕ) are highly plastic, and can acquire a variety of functional phenotypes depending on the presence of different stimuli in their local environment. Mφ stimulated by interleukin (IL)-4 induce an alternative activation state and function as anti-inflammatory cells and promote tissue repair. However, there is overwhelming evidence that IL-4 can play a role in promoting inflammation. In asthma and allergic inflammation, IL-4 mediates proinflammatory responses that lead to tissue damage. Thus the effect of IL-4 on the outcome of the immune responses is greatly influenced by other cofactors and cytokines present in the microenvironment. R848 (resiquimod), a TLR7/8 agonist is a novel vaccine adjuvant, triggering a strong Th1-skewed response but its efficacy as a vaccine adjuvant shows variable results. It is not currently known whether the presence of IL-4 can dampen or enhance immunity in response to TLR7 agonists. In the present study, we sought to investigate the impact of IL-4-induced Mφ polarization on the outcome of R848 stimulation. The activation marker expression and production of cytokines were measured in murine spleen-derived Mφ. Protein expression levels of innate recognition molecules and transcription factors involved, including retinoic-acid inducible gene I, mitochondrial antiviral signaling protein, stimulator of interferon genes (STING), and IFN regulatory factors were evaluated in activated Mφ. These play a crucial role in the control of viral replication and optimal CD8+ T cell priming. We report that sustained priming with IL-4 alone promotes an antiviral response in Mφ, and enhances proinflammatory responses to R848 treatment. This highlights the need for better understanding of IL-4 proinflammatory functions and its potential use as a broad-acting antiviral in combination with R848 may be used in combination with other therapies to target the innate arm of immunity against emerging infections.
Collapse
Affiliation(s)
- Andra Banete
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Katrina Gee
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Sameh Basta
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
24
|
Stegelmeier AA, Darzianiazizi M, Hanada K, Sharif S, Wootton SK, Bridle BW, Karimi K. Type I Interferon-Mediated Regulation of Antiviral Capabilities of Neutrophils. Int J Mol Sci 2021; 22:4726. [PMID: 33946935 PMCID: PMC8125486 DOI: 10.3390/ijms22094726] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/09/2021] [Accepted: 04/27/2021] [Indexed: 02/07/2023] Open
Abstract
Interferons (IFNs) are induced by viruses and are the main regulators of the host antiviral response. They balance tissue tolerance and immune resistance against viral challenges. Like all cells in the human body, neutrophils possess the receptors for IFNs and contribute to antiviral host defense. To combat viruses, neutrophils utilize various mechanisms, such as viral sensing, neutrophil extracellular trap formation, and antigen presentation. These mechanisms have also been linked to tissue damage during viral infection and inflammation. In this review, we presented evidence that a complex cross-regulatory talk between IFNs and neutrophils initiates appropriate antiviral immune responses and regulates them to minimize tissue damage. We also explored recent exciting research elucidating the interactions between IFNs, neutrophils, and severe acute respiratory syndrome-coronavirus-2, as an example of neutrophil and IFN cross-regulatory talk. Dissecting the IFN-neutrophil paradigm is needed for well-balanced antiviral therapeutics and development of novel treatments against many major epidemic or pandemic viral infections, including the ongoing pandemic of the coronavirus disease that emerged in 2019.
Collapse
Affiliation(s)
| | | | | | | | | | - Byram W. Bridle
- Correspondence: (B.W.B.); (K.K.); Tel.: +1-(519)-824-4120 (ext. 54657) (B.W.B.); +1-(519)-824-4120 (ext. 54668) (K.K.)
| | - Khalil Karimi
- Correspondence: (B.W.B.); (K.K.); Tel.: +1-(519)-824-4120 (ext. 54657) (B.W.B.); +1-(519)-824-4120 (ext. 54668) (K.K.)
| |
Collapse
|
25
|
Huang X, Xu Y, Lin Q, Guo W, Zhao D, Wang C, Wang L, Zhou H, Jiang Y, Cui W, Qiao X, Li Y, Ma G, Tang L. Determination of antiviral action of long non-coding RNA loc107051710 during infectious bursal disease virus infection due to enhancement of interferon production. Virulence 2021; 11:68-79. [PMID: 31865850 PMCID: PMC6961729 DOI: 10.1080/21505594.2019.1707957] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The functions and profiles of lncRNAs during infectious bursal disease virus (IBDV) infection have not been determined, yet. The objectives of this study were to determine the antiviral action of loc107051710 lncRNA during IBDV infection by investigating the relationship between loc107051710 and IRF8, Type I IFN, STATs, and ISGs. DF-1 cells were either left untreated as non-infected controls (n = 1) or infected with IBDV (n = 3). RNA sequencing was applied for analysis of mRNAs and lncRNAs expression. Differentially expressed genes were verified by RT-qPCR. Then identification, of 230 significantly different expressed genes (182 mRNAs and 48 lncRNA) by pairwise comparison of the infected and control groups, was carried out. The functions of differentially expressed lncRNAs were investigated by selection of lncRNAs and mRNAs significantly enriched in the aforementioned biological processes and signaling pathways for construction of lncRNA-mRNA co-expression networks. The techniques of gene ontology and Kyoto Encyclopedia of Genes and Genomes pathways were applied. It was suggested that these differentially expressed genes were involved in the interaction between the host and IBDV. Loc107051710 was found to have potential antiviral effects. RT-qPCR and western blot were applied and revealed that loc107051710 was required for induction of IRF8, type I IFN, STAT, and ISG expression, and its knockdown promoted IBDV replication. By fluorescence in situ hybridization, it was found that loc107051710 was translocated from the nucleus to the cytoplasm after infection with IBDV. Overall, loc107051710 promoted the production of IFN-α and IFN-β by regulating IRF8, thereby promoting the antiviral activity of ISGs.
Collapse
Affiliation(s)
- Xuewei Huang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, P.R. China
| | - Yigang Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, P.R. China
| | - Qingyu Lin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, P.R. China
| | - Weilong Guo
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, P.R. China
| | - Dongfang Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, P.R. China
| | - Chunmei Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, P.R. China
| | - Li Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, P.R. China
| | - Han Zhou
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, P.R. China
| | - Yanping Jiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, P.R. China
| | - Wen Cui
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, P.R. China
| | - Xinyuan Qiao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, P.R. China
| | - Yijing Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, P.R. China
| | - Guangpeng Ma
- Agricultural High Technology Department, China Rural Technology Development Center, Beijing China
| | - Lijie Tang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, P.R. China
| |
Collapse
|
26
|
Cai C, Hu Z, Yu X. Accelerator or Brake: Immune Regulators in Malaria. Front Cell Infect Microbiol 2020; 10:610121. [PMID: 33363057 PMCID: PMC7758250 DOI: 10.3389/fcimb.2020.610121] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 11/09/2020] [Indexed: 12/15/2022] Open
Abstract
Malaria is a life-threatening infectious disease, affecting over 250 million individuals worldwide each year, eradicating malaria has been one of the greatest challenges to public health for a century. Growing resistance to anti-parasitic therapies and lack of effective vaccines are major contributing factors in controlling this disease. However, the incomplete understanding of parasite interactions with host anti-malaria immunity hinders vaccine development efforts to date. Recent studies have been unveiling the complexity of immune responses and regulators against Plasmodium infection. Here, we summarize our current understanding of host immune responses against Plasmodium-derived components infection and mainly focus on the various regulatory mechanisms mediated by recent identified immune regulators orchestrating anti-malaria immunity.
Collapse
Affiliation(s)
- Chunmei Cai
- Research Center for High Altitude Medicine, School of Medical, Qinghai University, Xining, China
- Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province, Qinghai University, Xining, China
| | - Zhiqiang Hu
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xiao Yu
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Lab of Single Cell Technology and Application, Southern Medical University, Guangzhou, China
| |
Collapse
|
27
|
Gan Z, Cheng J, Hou J, Xia L, Lu Y, Nie P. Molecular and functional characterization of interferon regulatory factor 1 (IRF1) in amphibian Xenopus tropicalis. Int J Biol Macromol 2020; 167:719-725. [PMID: 33279564 DOI: 10.1016/j.ijbiomac.2020.11.217] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 11/30/2020] [Accepted: 11/30/2020] [Indexed: 12/14/2022]
Abstract
Interferon regulatory factor 1 (IRF1) is an important regulator in controlling the transcription of type I interferon genes, and its functions have been well-characterized in mammals, birds and fish. However, little information is available regarding the function of amphibian IRF1. In this study, an IRF1 gene homolog named as Xt-IRF1 was identified in the Western clawed frog (Xenopus tropicalis), an amphibian model specie widely used for comparative immunology research. Xt-IRF1 and IRF1 in other vertebrates possess similar genomic structure and flanking genes, and were grouped together to form a separate clade in phylogenetic tree. In addition, Xt-IRF1 gene was constitutively expressed in all tissues examined, with the highest expression level observed in spleen, and was inducible after poly(I:C) stimulation. Importantly, the expression of Xt-IRF1 was markedly induced by recombinant type I interferon, and Xt-IRF1 induced a strong activation of both IFNβ and ISRE promoters. The present study opens the door to investigate the roles of IRF1 in amphibians, and thus contributes to a better understanding of the functional evolution of IRFs in lower tetrapods.
Collapse
Affiliation(s)
- Zhen Gan
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518120, China; State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; College of Fishery, Guangdong Ocean University, Zhanjiang 524025, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, and Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen 518120, China; Shenzhen Dapeng New District Science and Technology Innovation Service Center, Shenzhen 518120, China
| | - Jun Cheng
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518120, China; College of Fishery, Guangdong Ocean University, Zhanjiang 524025, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, and Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen 518120, China
| | - Jing Hou
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518120, China; State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; College of Fishery, Guangdong Ocean University, Zhanjiang 524025, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, and Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen 518120, China; Shenzhen Dapeng New District Science and Technology Innovation Service Center, Shenzhen 518120, China
| | - Liqun Xia
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518120, China; College of Fishery, Guangdong Ocean University, Zhanjiang 524025, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, and Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen 518120, China
| | - Yishan Lu
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518120, China; College of Fishery, Guangdong Ocean University, Zhanjiang 524025, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, and Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen 518120, China.
| | - Pin Nie
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
28
|
Xiang C, Huang M, Xiong T, Rong F, Li L, Liu DX, Chen RA. Transcriptomic Analysis and Functional Characterization Reveal the Duck Interferon Regulatory Factor 1 as an Important Restriction Factor in the Replication of Tembusu Virus. Front Microbiol 2020; 11:2069. [PMID: 32983049 PMCID: PMC7480082 DOI: 10.3389/fmicb.2020.02069] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 08/06/2020] [Indexed: 12/22/2022] Open
Abstract
Duck Tembusu virus (DTMUV) infection has caused great economic losses to the poultry industry in China, since its first discovery in 2010. Understanding of host anti-DTMUV responses, especially the innate immunity against DTMUV infection, would be essential for the prevention and control of this viral disease. In this study, transcriptomic analysis of duck embryonic fibroblasts (DEFs) infected with DTMUV reveals that several innate immunity-related pathways, including Toll-like, NOD-like, and retinoic acid-inducible gene I (RIG-I)-like receptor signaling pathways, are activated. Further verification by RT-qPCR confirmed that RIG-I, MAD5, TLR3, TLR7, IFN-α, IFN-β, MX, PKR, MHCI, MHCII, IL-1β, IL-6, (IFN-regulatory factor 1) IRF1, VIPERIN, IFIT5, and CMPK2 were up-regulated in cells infected with DTMUV. Through overexpression and knockdown/out of gene expression, we demonstrated that both VIPERIN and IRF1 played an important role in the regulation of DTMUV replication. Overexpression of either one significantly reduced viral replication as characterized by reduced viral RNA copy numbers and the envelope protein expression. Consistently, down-regulation of either one resulted in the enhanced replication of DTMUV in the knockdown/out cells. We further proved that IRF1 can up-regulate VIPERIN gene expression during DTMUV infection, through induction of type 1 IFNs as well as directly binding to and activation of the VIPERIN promoter. This study provides a genome-wide differential gene expression profile in cells infected with DTMUV and reveals an important function for IRF1 as well as several other interferon-stimulated genes in restricting DTMUV replication.
Collapse
Affiliation(s)
- Chengwei Xiang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Mei Huang
- Zhaoqing Institute of Biotechnology Co., Ltd., Zhaoqing, China
| | - Ting Xiong
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Fang Rong
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Linyu Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Ding Xiang Liu
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, and Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Rui Ai Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Zhaoqing Institute of Biotechnology Co., Ltd., Zhaoqing, China.,Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing, China
| |
Collapse
|
29
|
Ghosh S, Marsh ENG. Viperin: An ancient radical SAM enzyme finds its place in modern cellular metabolism and innate immunity. J Biol Chem 2020; 295:11513-11528. [PMID: 32546482 PMCID: PMC7450102 DOI: 10.1074/jbc.rev120.012784] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/16/2020] [Indexed: 12/13/2022] Open
Abstract
Viperin plays an important and multifaceted role in the innate immune response to viral infection. Viperin is also notable as one of very few radical SAM-dependent enzymes present in higher animals; however, the enzyme appears broadly conserved across all kingdoms of life, which suggests that it represents an ancient defense mechanism against viral infections. Although viperin was discovered some 20 years ago, only recently was the enzyme's structure determined and its catalytic activity elucidated. The enzyme converts CTP to 3'-deoxy-3',4'-didehydro-CTP, which functions as novel chain-terminating antiviral nucleotide when misincorporated by viral RNA-dependent RNA polymerases. Moreover, in higher animals, viperin interacts with numerous other host and viral proteins, and it is apparent that this complex network of interactions constitutes another important aspect of the protein's antiviral activity. An emerging theme is that viperin appears to facilitate ubiquitin-dependent proteasomal degradation of some of the proteins it interacts with. Viperin-targeted protein degradation contributes to the antiviral response either by down-regulating various metabolic pathways important for viral replication or by directly targeting viral proteins for degradation. Here, we review recent advances in our understanding of the structure and catalytic activity of viperin, together with studies investigating the interactions between viperin and its target proteins. These studies have provided detailed insights into the biochemical processes underpinning this unusual enzyme's wide-ranging antiviral activity. We also highlight recent intriguing reports that implicate a broader role for viperin in regulating nonpathological cellular processes, including thermogenesis and protein secretion.
Collapse
Affiliation(s)
- Soumi Ghosh
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - E Neil G Marsh
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
30
|
Norbury AJ, Calvert JK, Al-Shujairi WH, Cabezas-Falcon S, Tang V, Ong LC, Alonso SL, Smith JR, Carr JM. Dengue virus infects the mouse eye following systemic or intracranial infection and induces inflammatory responses. J Gen Virol 2020; 101:79-85. [PMID: 31774391 DOI: 10.1099/jgv.0.001354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Dengue virus (DENV) infection is associated with clinical ocular presentations and here DENV infection of the eye was assessed in mice. In an AG129 mouse model of antibody-dependent enhancement of DENV infection, DENV RNA was detected in the eye and vascular changes were present in the retinae. Intraocular CD8 and IFN-γ mRNA were increased in mice born to DENV-naïve, but not DENV-immune mothers, while TNF-α mRNA was induced and significantly higher in mice born to DENV-immune than DENV-naïve mothers. DENV RNA was detected in the eye following intracranial DENV infection and CD8 mRNA but not IFN-γ nor TNF-α were induced. In all models, viperin was increased following DENV infection. Thus, DENV in the circulation or the brain can infect the eye and stimulate innate immune responses, with induction of viperin as one response that consistently occurs in multiple DENV eye-infection models in both an IFN-dependent and independent manner.
Collapse
Affiliation(s)
- Aidan J Norbury
- Microbiology and Infectious Diseases, College of Medicine and Public Health, Flinders University, Bedford Park, Adelaide, 5042, Australia
| | - Julie K Calvert
- Microbiology and Infectious Diseases, College of Medicine and Public Health, Flinders University, Bedford Park, Adelaide, 5042, Australia
| | - Wisam H Al-Shujairi
- Department of Laboratory and Clinical Sciences, College of Pharmacy, University of Babylon, Hilla 51002, Iraq.,Microbiology and Infectious Diseases, College of Medicine and Public Health, Flinders University, Bedford Park, Adelaide, 5042, Australia
| | - Sheila Cabezas-Falcon
- Microbiology and Infectious Diseases, College of Medicine and Public Health, Flinders University, Bedford Park, Adelaide, 5042, Australia
| | - Victoria Tang
- Microbiology and Infectious Diseases, College of Medicine and Public Health, Flinders University, Bedford Park, Adelaide, 5042, Australia
| | - Li Ching Ong
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, and Immunology programme, Life Sciences Institute, National University of Singapore, 21 Lower Kent Ridge Rd, Singapore
| | - Sylvie L Alonso
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, and Immunology programme, Life Sciences Institute, National University of Singapore, 21 Lower Kent Ridge Rd, Singapore
| | - Justine R Smith
- Eye and Vision Health, College of Medicine and Public Health, Flinders University, Bedford Park, Adelaide, 5042, Australia
| | - Jillian M Carr
- Microbiology and Infectious Diseases, College of Medicine and Public Health, Flinders University, Bedford Park, Adelaide, 5042, Australia
| |
Collapse
|
31
|
Rivera-Serrano EE, Gizzi AS, Arnold JJ, Grove TL, Almo SC, Cameron CE. Viperin Reveals Its True Function. Annu Rev Virol 2020; 7:421-446. [PMID: 32603630 DOI: 10.1146/annurev-virology-011720-095930] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Most cells respond to viral infections by activating innate immune pathways that lead to the induction of antiviral restriction factors. One such factor, viperin, was discovered almost two decades ago based on its induction during viral infection. Since then, viperin has been shown to possess activity against numerous viruses via multiple proposed mechanisms. Most recently, however, viperin was demonstrated to catalyze the conversion of cytidine triphosphate (CTP) to 3'-deoxy-3',4'-didehydro-CTP (ddhCTP), a previously unknown ribonucleotide. Incorporation of ddhCTP causes premature termination of RNA synthesis by the RNA-dependent RNA polymerase of some viruses. To date, production of ddhCTP by viperin represents the only activity of viperin that links its enzymatic activity directly to an antiviral mechanism in human cells. This review examines the multiple antiviral mechanisms and biological functions attributed to viperin.
Collapse
Affiliation(s)
- Efraín E Rivera-Serrano
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA;
| | - Anthony S Gizzi
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, USA; , .,Department of Pharmacology, Johns Hopkins University, Baltimore, Maryland 21205, USA
| | - Jamie J Arnold
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA;
| | - Tyler L Grove
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, USA; ,
| | - Steven C Almo
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, USA; ,
| | - Craig E Cameron
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA;
| |
Collapse
|
32
|
Tirumurugaan KG, Pawar RM, Dhinakar Raj G, Thangavelu A, Hammond JA, Parida S. RNAseq Reveals the Contribution of Interferon Stimulated Genes to the Increased Host Defense and Decreased PPR Viral Replication in Cattle. Viruses 2020; 12:v12040463. [PMID: 32325933 PMCID: PMC7232496 DOI: 10.3390/v12040463] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 04/12/2020] [Accepted: 04/16/2020] [Indexed: 12/24/2022] Open
Abstract
Peste des petits ruminants virus (PPRV) is known to replicate in a wide variety of ruminants causing very species-specific clinical symptoms. Small ruminants (goats and sheep) are susceptible to disease while domesticated cattle and buffalo are dead-end hosts and do not display clinical symptoms. Understanding the host factors that influence differential pathogenesis and disease susceptibility could help the development of better diagnostics and control measures. To study this, we generated transcriptome data from goat and cattle peripheral blood mononuclear cells (PBMC) experimentally infected with PPRV in-vitro. After identifying differentially expressed genes, we further analyzed these immune related pathway genes using the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) and selected candidate genes were validated using in-vitro experiments. Upon PPRV infection, we identified 12 and 22 immune related genes that were differentially expressed in goat and cattle respectively. In both species, this included the interferon stimulated genes (ISGs) IFI44, IFI6, IFIT1, IFIT2, IFIT3, ISG15, Mx1, Mx2, OAS1X, RSAD2, IRF7, DDX58 and DHX58 that were transcribed significantly higher in cattle. PPRV replication in goat PBMCs significantly increased the expression of phosphodiesterase 12 (PDE12), a 2′,5′-oligoadenylate degrading enzyme that contributes to the reduced modulation of interferon-regulated gene targets. Finally, a model is proposed for the differential susceptibility between large and small ruminants based on the expression levels of type-I interferons, ISGs and effector molecules.
Collapse
Affiliation(s)
- Krishnaswamy Gopalan Tirumurugaan
- Department of Animal Biotechnology, Madras Veterinary College, Tamil Nadu Veterinary and Animal Sciences University, Chennai 600007, India; (K.G.T.); (R.M.P.)
| | - Rahul Mohanchandra Pawar
- Department of Animal Biotechnology, Madras Veterinary College, Tamil Nadu Veterinary and Animal Sciences University, Chennai 600007, India; (K.G.T.); (R.M.P.)
| | - Gopal Dhinakar Raj
- Centre for Animal Health Studies, Tamil Nadu Veterinary and Animal Sciences University, Chennai 600051, India
- Correspondence: (G.D.R.); (S.P.)
| | - Arthanari Thangavelu
- Department of Veterinary Microbiology, Madras Veterinary College, Tamil Nadu Veterinary and Animal Sciences University, Chennai 600007, India;
| | - John A. Hammond
- The Pirbright Institute, Ash Road, Pirbright, Surrey GU24 0NF, UK;
| | - Satya Parida
- The Pirbright Institute, Ash Road, Pirbright, Surrey GU24 0NF, UK;
- Correspondence: (G.D.R.); (S.P.)
| |
Collapse
|
33
|
Baines KJ, Rampersaud AM, Hillier DM, Jeyarajah MJ, Grafham GK, Eastabrook G, Lacefield JC, Renaud SJ. Antiviral Inflammation during Early Pregnancy Reduces Placental and Fetal Growth Trajectories. THE JOURNAL OF IMMUNOLOGY 2019; 204:694-706. [PMID: 31882516 DOI: 10.4049/jimmunol.1900888] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 11/28/2019] [Indexed: 12/22/2022]
Abstract
Many viruses are detrimental to pregnancy and negatively affect fetal growth and development. What is not well understood is how virus-induced inflammation impacts fetal-placental growth and developmental trajectories, particularly when inflammation occurs in early pregnancy during nascent placental and embryo development. To address this issue, we simulated a systemic virus exposure in early pregnant rats (gestational day 8.5) by administering the viral dsRNA mimic polyinosinic:polycytidylic acid (PolyI:C). Maternal exposure to PolyI:C induced a potent antiviral response and hypoxia in the early pregnant uterus, containing the primordial placenta and embryo. Maternal PolyI:C exposure was associated with decreased expression of the maternally imprinted genes Mest, Sfrp2, and Dlk1, which encode proteins critical for placental growth. Exposure of pregnant dams to PolyI:C during early pregnancy reduced fetal growth trajectories throughout gestation, concomitant with smaller placentas, and altered placental structure at midgestation. No detectable changes in placental hemodynamics were observed, as determined by ultrasound biomicroscopy. An antiviral response was not evident in rat trophoblast stem (TS) cells following exposure to PolyI:C, or to certain PolyI:C-induced cytokines including IL-6. However, TS cells expressed high levels of type I IFNR subunits (Ifnar1 and Ifnar2) and responded to IFN-⍺ by increasing expression of IFN-stimulated genes and decreasing expression of genes associated with the TS stem state, including Mest IFN-⍺ also impaired the differentiation capacity of TS cells. These results suggest that an antiviral inflammatory response in the conceptus during early pregnancy impacts TS cell developmental potential and causes latent placental development and reduced fetal growth.
Collapse
Affiliation(s)
- Kelly J Baines
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada N6A 5C1
| | - Amanda M Rampersaud
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada N6A 5C1
| | - Dendra M Hillier
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada N6A 5C1
| | - Mariyan J Jeyarajah
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada N6A 5C1
| | - Grace K Grafham
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada N6A 5C1
| | - Genevieve Eastabrook
- Department of Obstetrics and Gynaecology, University of Western Ontario, London, Ontario, Canada N6H 5W9.,Children's Health Research Institute, Lawson Health Research Institute, London, Ontario, Canada N6C 2V5
| | - James C Lacefield
- Department of Electrical and Computer Engineering, School of Biomedical Engineering, University of Western Ontario, London, Ontario, Canada N6A 3K7.,Department of Medical Biophysics, University of Western Ontario, London, Ontario, Canada N6A 3K7; and.,Robarts Research Institute, University of Western Ontario, London, Ontario, Canada N6A 5B7
| | - Stephen J Renaud
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada N6A 5C1; .,Children's Health Research Institute, Lawson Health Research Institute, London, Ontario, Canada N6C 2V5
| |
Collapse
|
34
|
Ashley CL, Abendroth A, McSharry BP, Slobedman B. Interferon-Independent Innate Responses to Cytomegalovirus. Front Immunol 2019; 10:2751. [PMID: 31921100 PMCID: PMC6917592 DOI: 10.3389/fimmu.2019.02751] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 11/11/2019] [Indexed: 12/28/2022] Open
Abstract
The critical role of interferons (IFNs) in mediating the innate immune response to cytomegalovirus (CMV) infection is well established. However, in recent years the functional importance of the IFN-independent antiviral response has become clearer. IFN-independent, IFN regulatory factor 3 (IRF3)-dependent interferon-stimulated gene (ISG) regulation in the context of CMV infection was first documented 20 years ago. Since then several IFN-independent, IRF3-dependent ISGs have been characterized and found to be among the most influential in the innate response to CMV. These include virus inhibitory protein, endoplasmic reticulum-associated IFN-inducible (viperin), ISG15, members of the interferon inducible protein with tetratricopeptide repeats (IFIT) family, interferon-inducible transmembrane (IFITM) proteins and myxovirus resistance proteins A and B (MxA, MxB). IRF3-independent, IFN-independent activation of canonically IFN-dependent signaling pathways has also been documented, such as IFN-independent biphasic activation of signal transducer and activator of transcription 1 (STAT1) during infection of monocytes, differential roles of mitochondrial and peroxisomal mitochondrial antiviral-signaling protein (MAVS), and the ability of human CMV (HCMV) immediate early protein 1 (IE1) protein to reroute IL-6 signaling and activation of STAT1 and its associated ISGs. This review examines the role of identified IFN-independent ISGs in the antiviral response to CMV and describes pathways of IFN-independent innate immune response induction by CMV.
Collapse
Affiliation(s)
- Caroline L Ashley
- Discipline of Infectious Diseases and Immunology, Faculty of Medicine and Health, Charles Perkins Centre, University of Sydney, Camperdown, NSW, Australia
| | - Allison Abendroth
- Discipline of Infectious Diseases and Immunology, Faculty of Medicine and Health, Charles Perkins Centre, University of Sydney, Camperdown, NSW, Australia
| | - Brian P McSharry
- Discipline of Infectious Diseases and Immunology, Faculty of Medicine and Health, Charles Perkins Centre, University of Sydney, Camperdown, NSW, Australia.,School of Microbiology, University College Cork, Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Barry Slobedman
- Discipline of Infectious Diseases and Immunology, Faculty of Medicine and Health, Charles Perkins Centre, University of Sydney, Camperdown, NSW, Australia
| |
Collapse
|
35
|
Seifert LL, Si C, Saha D, Sadic M, de Vries M, Ballentine S, Briley A, Wang G, Valero-Jimenez AM, Mohamed A, Schaefer U, Moulton HM, García-Sastre A, Tripathi S, Rosenberg BR, Dittmann M. The ETS transcription factor ELF1 regulates a broadly antiviral program distinct from the type I interferon response. PLoS Pathog 2019; 15:e1007634. [PMID: 31682641 PMCID: PMC6932815 DOI: 10.1371/journal.ppat.1007634] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 12/26/2019] [Accepted: 10/11/2019] [Indexed: 12/20/2022] Open
Abstract
Induction of vast transcriptional programs is a central event of innate host responses to viral infections. Here we report a transcriptional program with potent antiviral activity, driven by E74-like ETS transcription factor 1 (ELF1). Using microscopy to quantify viral infection over time, we found that ELF1 inhibits eight diverse RNA and DNA viruses after multi-cycle replication. Elf1 deficiency results in enhanced susceptibility to influenza A virus infections in mice. ELF1 does not feed-forward to induce interferons, and ELF1’s antiviral effect is not abolished by the absence of STAT1 or by inhibition of JAK phosphorylation. Accordingly, comparative expression analyses by RNA-seq revealed that the ELF1 transcriptional program is distinct from interferon signatures. Thus, ELF1 provides an additional layer of the innate host response, independent from the action of type I interferons. After decades of research on the innate immune system, we still struggle to understand exactly how this first line of defense protects cells against viral infections. Our gap in knowledge stems, on one hand, from the sheer number of effector genes, few of which have been characterized in mechanistic detail. On the other hand, our understanding of innate gene transcription is constantly evolving. We know that different regulatory mechanisms greatly influence the quality, magnitude, and timing of gene expression, all of which may contribute to the antiviral power of the innate response. Deciphering these regulatory mechanisms is indispensable for harnessing the power of innate immunity in novel antiviral therapies. Here, we report a novel transcriptional program as part of the cell-intrinsic immune system, raised by E74-like ETS transcription factor 1 (ELF1). ELF1 potently restricts multi-cycle propagation of all viruses tested in our study. Reduced levels of ELF1 significantly diminish host defenses against influenza A virus in vitro and in vivo, suggesting a critical but previously overlooked role of this ETS transcription factor. The ELF1 program is complex and comprises over 300 potentially antiviral genes, which are almost entirely distinct from those known to be induced by interferon. Taken together, our data provide evidence for a program of antiviral protection that expands the previously known arsenal of the innate immune response.
Collapse
Affiliation(s)
- Leon Louis Seifert
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, United States of America
| | - Clara Si
- Department of Microbiology, New York University School of Medicine, New York, New York, United States of America
| | - Debjani Saha
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Mohammad Sadic
- Department of Microbiology, New York University School of Medicine, New York, New York, United States of America
| | - Maren de Vries
- Department of Microbiology, New York University School of Medicine, New York, New York, United States of America
| | - Sarah Ballentine
- Department of Microbiology, New York University School of Medicine, New York, New York, United States of America
| | - Aaron Briley
- Department of Microbiology, New York University School of Medicine, New York, New York, United States of America
| | - Guojun Wang
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Ana M. Valero-Jimenez
- Department of Microbiology, New York University School of Medicine, New York, New York, United States of America
| | - Adil Mohamed
- Department of Microbiology, New York University School of Medicine, New York, New York, United States of America
| | - Uwe Schaefer
- Laboratory of Immune Cell Epigenetics and Signaling, The Rockefeller University, New York, New York, United States of America
| | - Hong M. Moulton
- Carlson College of Veterinary Medicine, Oregon State University, Corvallis, Oregon, United States of America
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Shashank Tripathi
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Microbiology and Cell Biology Department, Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, India
| | - Brad R. Rosenberg
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Meike Dittmann
- Department of Microbiology, New York University School of Medicine, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
36
|
Helbig KJ, Teh MY, Crosse KM, Monson EA, Smith M, Tran EN, Standish AJ, Morona R, Beard MR. The interferon stimulated gene viperin, restricts Shigella. flexneri in vitro. Sci Rep 2019; 9:15598. [PMID: 31666594 PMCID: PMC6821890 DOI: 10.1038/s41598-019-52130-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 10/14/2019] [Indexed: 01/08/2023] Open
Abstract
The role of interferon and interferon stimulated genes (ISG) in limiting bacterial infection is controversial, and the role of individual ISGs in the control of the bacterial life-cycle is limited. Viperin, is a broad acting anti-viral ISGs, which restricts multiple viral pathogens with diverse mechanisms. Viperin is upregulated early in some bacterial infections, and using the intracellular bacterial pathogen, S. flexneri, we have shown for the first time that viperin inhibits the intracellular bacterial life cycle. S. flexneri replication in cultured cells induced a predominantly type I interferon response, with an early increase in viperin expression. Ectopic expression of viperin limited S. flexneri cellular numbers by as much as 80% at 5hrs post invasion, with similar results also obtained for the intracellular pathogen, Listeria monocytogenes. Analysis of viperins functional domains required for anti-bacterial activity revealed the importance of both viperin's N-terminal, and its radical SAM enzymatic function. Live imaging of S. flexneri revealed impeded entry into viperin expressing cells, which corresponded to a loss of cellular cholesterol. This data further defines viperin's multi-functional role, to include the ability to limit intracellular bacteria; and highlights the role of ISGs and the type I IFN response in the control of bacterial pathogens.
Collapse
Affiliation(s)
- K J Helbig
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, Victoria, Australia.
| | - M Y Teh
- Department of Molecular and Biomedical Science, Research Centre for Infectious Diseases, University of Adelaide, Adelaide, South Australia
| | - K M Crosse
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, Victoria, Australia
| | - E A Monson
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, Victoria, Australia
| | - M Smith
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, Victoria, Australia
| | - E N Tran
- Department of Molecular and Biomedical Science, Research Centre for Infectious Diseases, University of Adelaide, Adelaide, South Australia
| | - A J Standish
- Department of Molecular and Biomedical Science, Research Centre for Infectious Diseases, University of Adelaide, Adelaide, South Australia
| | - R Morona
- Department of Molecular and Biomedical Science, Research Centre for Infectious Diseases, University of Adelaide, Adelaide, South Australia
| | - M R Beard
- Department of Molecular and Biomedical Science, Research Centre for Infectious Diseases, University of Adelaide, Adelaide, South Australia
| |
Collapse
|
37
|
Shanaka KASN, Tharuka MDN, Priyathilaka TT, Lee J. Molecular characterization and expression analysis of rockfish (Sebastes schlegelii) viperin, and its ability to enervate RNA virus transcription and replication in vitro. FISH & SHELLFISH IMMUNOLOGY 2019; 92:655-666. [PMID: 31252045 DOI: 10.1016/j.fsi.2019.06.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 06/04/2019] [Accepted: 06/09/2019] [Indexed: 06/09/2023]
Abstract
Viperin, also known as RSAD2 (Radical S-adenosyl methionine domain containing 2), is an interferon-induced endoplasmic reticulum-associated antiviral protein. Previous studies have shown that viperin levels are elevated in the presence of viral RNA, but it has rarely been characterized in marine organisms. This study was designed to functionally characterize rockfish viperin (SsVip), to examine the effects of different immune stimulants on its expression, and to determine its subcellular localization. SsVip is a 349 amino acid protein with a predicted molecular mass of 40.24 kDa. It contains an S-adenosyl l-methionine binding conserved domain with a CNYKCGFC sequence. Unchallenged tissue expression analysis using quantitative real time PCR (qPCR) revealed SsVip expression to be the highest in the blood, followed by the spleen. When challenged with poly I:C, SsVip was upregulated by approximately 60-fold in the blood after 24 h, and approximately 50-fold in the spleen after 12 h. Notable upregulation was detected throughout the poly I:C challenge experiment in both tissues. Significant expression of SsVip was detected in the blood following Streptococcus iniae and lipopolysaccharide challenge, and viral hemorrhagic septicemia virus (VHSV) gene transcription was significantly downregulated during SsVip overexpression. Furthermore, cell viability assay and virus titer quantification with the presence of SsVip revealed a significant reduction in virus replication. As with previously identified viperin counterparts, SsVip was localized in the endoplasmic reticulum. Our findings show that SsVip is an antiviral protein crucial to innate immune defense.
Collapse
Affiliation(s)
- K A S N Shanaka
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea
| | - M D Neranjan Tharuka
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea
| | - Thanthrige Thiunuwan Priyathilaka
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea
| | - Jehee Lee
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea.
| |
Collapse
|
38
|
Majzoub K, Wrensch F, Baumert TF. The Innate Antiviral Response in Animals: An Evolutionary Perspective from Flagellates to Humans. Viruses 2019; 11:v11080758. [PMID: 31426357 PMCID: PMC6723221 DOI: 10.3390/v11080758] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/08/2019] [Accepted: 08/14/2019] [Indexed: 12/13/2022] Open
Abstract
Animal cells have evolved dedicated molecular systems for sensing and delivering a coordinated response to viral threats. Our understanding of these pathways is almost entirely defined by studies in humans or model organisms like mice, fruit flies and worms. However, new genomic and functional data from organisms such as sponges, anemones and mollusks are helping redefine our understanding of these immune systems and their evolution. In this review, we will discuss our current knowledge of the innate immune pathways involved in sensing, signaling and inducing genes to counter viral infections in vertebrate animals. We will then focus on some central conserved players of this response including Toll-like receptors (TLRs), RIG-I-like receptors (RLRs) and cGAS-STING, attempting to put their evolution into perspective. To conclude, we will reflect on the arms race that exists between viruses and their animal hosts, illustrated by the dynamic evolution and diversification of innate immune pathways. These concepts are not only important to understand virus-host interactions in general but may also be relevant for the development of novel curative approaches against human disease.
Collapse
Affiliation(s)
- Karim Majzoub
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Université de Strasbourg, 67000 Strasbourg, France.
| | - Florian Wrensch
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Université de Strasbourg, 67000 Strasbourg, France
| | - Thomas F Baumert
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Université de Strasbourg, 67000 Strasbourg, France.
- Institut Hospitalo-Universitaire, Pôle Hépato-digestif, Hôpitaux Universitaires de Strasbourg, 67000 Strasbourg, France.
- Institut Universitaire de France, 75231 Paris, France.
| |
Collapse
|
39
|
Bai L, Dong J, Liu Z, Rao Y, Feng P, Lan K. Viperin catalyzes methionine oxidation to promote protein expression and function of helicases. SCIENCE ADVANCES 2019; 5:eaax1031. [PMID: 31489375 PMCID: PMC6713503 DOI: 10.1126/sciadv.aax1031] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 07/25/2019] [Indexed: 05/29/2023]
Abstract
Helicases play pivotal roles in fundamental biological processes, and posttranslational modifications regulate the localization, function, and stability of helicases. Here, we report that methionine oxidation of representative helicases, including DNA and RNA helicases of viral (ORF44 of KSHV) and cellular (MCM7 and RIG-I) origin, promotes their expression and functions. Cellular viperin, a major antiviral interferon-stimulated gene whose functions beyond host defense remain largely unknown, catalyzes the methionine oxidation of these helicases. Moreover, biochemical studies entailing loss-of-function mutations of helicases and a pharmacological inhibitor interfering with lipid metabolism and, hence, decreasing viperin activity indicate that methionine oxidation potently increases the stability and enzyme activity of these helicases that are critical for DNA replication and immune activation. Our work uncovers a pivotal role of viperin in catalyzing the methionine oxidation of helicases that are implicated in diverse fundamental biological processes.
Collapse
Affiliation(s)
- Lei Bai
- State Key Laboratory of Virology, College of Life Sciences, Medical Research Institute, Wuhan University, Wuhan 430072, P.R. China
| | - Jiazhen Dong
- Institut Pasteur of Shanghai, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, P.R. China
| | - Zhenqiu Liu
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200438, P.R. China
| | - Youliang Rao
- Section of Infection and Immunity, Herman Ostrow School of Dentistry and Norris Comprehensive Cancer Center, University of Southern California, 925 W 34th Street, Los Angeles, CA 90089, USA
| | - Pinghui Feng
- Section of Infection and Immunity, Herman Ostrow School of Dentistry and Norris Comprehensive Cancer Center, University of Southern California, 925 W 34th Street, Los Angeles, CA 90089, USA
| | - Ke Lan
- State Key Laboratory of Virology, College of Life Sciences, Medical Research Institute, Wuhan University, Wuhan 430072, P.R. China
| |
Collapse
|
40
|
Warner SM, Wiehler S, Michi AN, Proud D. Rhinovirus replication and innate immunity in highly differentiated human airway epithelial cells. Respir Res 2019; 20:150. [PMID: 31299975 PMCID: PMC6626354 DOI: 10.1186/s12931-019-1120-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 07/01/2019] [Indexed: 12/23/2022] Open
Abstract
Background Human rhinovirus (HRV) infections are the primary cause of the common cold and are a major trigger for exacerbations of lower airway diseases, such as asthma and chronic obstructive pulmonary diseases. Although human bronchial epithelial cells (HBE) are the natural host for HRV infections, much of our understanding of how HRV replicates and induces host antiviral responses is based on studies using non-airway cell lines (e.g. HeLa cells). The current study examines the replication cycle of HRV, and host cell responses, in highly differentiated cultures of HBE. Methods Highly differentiated cultures of HBE were exposed to initial infectious doses ranging from 104 to 101 50% tissue culture-infective dose (TCID50) of purified HRV-16, and responses were monitored up to 144 h after infection. Viral genomic RNA and negative strand RNA template levels were monitored, along with levels of type I and II interferons and selected antivirals. Results Regardless of initial infectious dose, relatively constant levels of both genomic and negative strand RNA are generated during replication, with negative strand copy numbers being10,000-fold lower than those of genomic strands. Infections were limited to a small percentage of ciliated cells and did not result in any overt signs of epithelial death. Importantly, regardless of infectious dose, HRV-16 infections were cleared by HBE in the absence of immune cells. Levels of type I and type III interferons (IFNs) varied with initial infectious dose, implying that factors other than levels of double-stranded RNA regulate IFN induction, but the time-course of HRV-16 clearance HBE was the same regardless of levels of IFNs produced. Patterns of antiviral viperin and ISG15 expression suggest they may be generated in an IFN-independent manner during HRV-16 infections. Conclusions These data challenge a number of aspects of dogma generated from studies in HeLa cells and emphasize the importance of appropriate cell context when studying HRV infections.
Collapse
Affiliation(s)
- Stephanie M Warner
- Department of Physiology & Pharmacology and Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, 3280 Hospital Drive NW, Calgary, AB, T2N 4Z6, Canada
| | - Shahina Wiehler
- Department of Physiology & Pharmacology and Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, 3280 Hospital Drive NW, Calgary, AB, T2N 4Z6, Canada
| | - Aubrey N Michi
- Department of Physiology & Pharmacology and Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, 3280 Hospital Drive NW, Calgary, AB, T2N 4Z6, Canada
| | - David Proud
- Department of Physiology & Pharmacology and Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, 3280 Hospital Drive NW, Calgary, AB, T2N 4Z6, Canada.
| |
Collapse
|
41
|
ER intrabody-mediated inhibition of interferon α secretion by mouse macrophages and dendritic cells. PLoS One 2019; 14:e0215062. [PMID: 30990863 PMCID: PMC6467385 DOI: 10.1371/journal.pone.0215062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 03/26/2019] [Indexed: 11/19/2022] Open
Abstract
Interferon α (IFNα) counteracts viral infections by activating various IFNα-stimulated genes (ISGs). These genes encode proteins that block viral transport into the host cell and inhibit viral replication, gene transcription and translation. Due to the existence of 14 different, highly homologous isoforms of mouse IFNα, an IFNα knockout mouse has not yet been established by genetic knockout strategies. An scFv intrabody for holding back IFNα isoforms in the endoplasmic reticulum (ER) and thus counteracting IFNα secretion is reported. The intrabody was constructed from the variable domains of the anti-mouse IFNα rat monoclonal antibody 4EA1 recognizing the 5 isoforms IFNα1, IFNα2, IFNα4, IFNα5, IFNα6. A soluble form of the intrabody had a KD of 39 nM to IFNα4. It could be demonstrated that the anti-IFNα intrabody inhibits clearly recombinant IFNα4 secretion by HEK293T cells. In addition, the secretion of IFNα4 was effectively inhibited in stably transfected intrabody expressing RAW 264.7 macrophages and dendritic D1 cells. Colocalization of the intrabody with IFNα4 and the ER marker calnexin in HEK293T cells indicated complex formation of intrabody and IFNα4 inside the ER. Intracellular binding of intrabody and antigen was confirmed by co-immunoprecipitation. Complexes of endogenous IFNα and intrabody could be visualized in the ER of Poly (I:C) stimulated RAW 264.7 macrophages and D1 dendritic cells. Infection of macrophages and dendritic cells with the vesicular stomatitis virus VSV-AV2 is attenuated by IFNα and IFNβ. The intrabody increased virus proliferation in RAW 264.7 macrophages and D1 dendritic cells under IFNβ-neutralizing conditions. To analyze if all IFNα isoforms are recognized by the intrabody was not in the focus of this study. Provided that binding of the intrabody to all isoforms was confirmed, the establishment of transgenic intrabody mice would be promising for studying the function of IFNα during viral infection and autoimmune diseases.
Collapse
|
42
|
Shah M, Bharadwaj MSK, Gupta A, Kumar R, Kumar S. Chicken viperin inhibits Newcastle disease virus infection in vitro: A possible interaction with the viral matrix protein. Cytokine 2019; 120:28-40. [PMID: 31003187 DOI: 10.1016/j.cyto.2019.04.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 03/28/2019] [Accepted: 04/12/2019] [Indexed: 02/06/2023]
Abstract
Viperin is an interferon-inducible protein that helps in protecting mammals against various virus infections. Viperin is a highly conserved member of the interferon-stimulated genes (ISG) family in many species. Viperin has been shown to play a pivotal role in the innate immunity of chicken; however, its role has not been explored in its antiviral potential. Newcastle disease virus (NDV) is the causative agent of an infectious disease in poultry. In the present study, we have shown the anti-NDV effect of chicken viperin (cViperin). The impact of cViperin upon NDV infection was investigated in chicken embryo fibroblast. The modeling of the cViperin protein was done using I-TASSER and ZDOCK is used to predict the possible interaction with the matrix protein of NDV. The interaction was further confirmed by co-immunoprecipitation assay using recombinant matrix protein of NDV with the recombinant cViperin. The recombinant NDV expressing cViperin showed reduced replication of the virus upon its growth kinetics. Our results suggest downregulation of NDV replication in the presence of cViperin. The study will be critical to elaborate our understanding of the chicken innate immune system which could help develop antiviral strategies against NDV infection.
Collapse
Affiliation(s)
- Manisha Shah
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - M S K Bharadwaj
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Anjali Gupta
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Rakesh Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Sachin Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India.
| |
Collapse
|
43
|
Solmaz G, Puttur F, Francozo M, Lindenberg M, Guderian M, Swallow M, Duhan V, Khairnar V, Kalinke U, Ludewig B, Clausen BE, Wagner H, Lang KS, Sparwasser TD. TLR7 Controls VSV Replication in CD169 + SCS Macrophages and Associated Viral Neuroinvasion. Front Immunol 2019; 10:466. [PMID: 30930901 PMCID: PMC6428728 DOI: 10.3389/fimmu.2019.00466] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 02/21/2019] [Indexed: 01/21/2023] Open
Abstract
Vesicular stomatitis virus (VSV) is an insect-transmitted rhabdovirus that is neurovirulent in mice. Upon peripheral VSV infection, CD169+ subcapsular sinus (SCS) macrophages capture VSV in the lymph, support viral replication, and prevent CNS neuroinvasion. To date, the precise mechanisms controlling VSV infection in SCS macrophages remain incompletely understood. Here, we show that Toll-like receptor-7 (TLR7), the main sensing receptor for VSV, is central in controlling lymph-borne VSV infection. Following VSV skin infection, TLR7−/− mice display significantly less VSV titers in the draining lymph nodes (dLN) and viral replication is attenuated in SCS macrophages. In contrast to effects of TLR7 in impeding VSV replication in the dLN, TLR7−/− mice present elevated viral load in the brain and spinal cord highlighting their susceptibility to VSV neuroinvasion. By generating novel TLR7 floxed mice, we interrogate the impact of cell-specific TLR7 function in anti-viral immunity after VSV skin infection. Our data suggests that TLR7 signaling in SCS macrophages supports VSV replication in these cells, increasing LN infection and may account for the delayed onset of VSV-induced neurovirulence observed in TLR7−/− mice. Overall, we identify TLR7 as a novel and essential host factor that critically controls anti-viral immunity to VSV. Furthermore, the novel mouse model generated in our study will be of valuable importance to shed light on cell-intrinsic TLR7 biology in future studies.
Collapse
Affiliation(s)
- Gülhas Solmaz
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture Between the Medical School Hannover and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | - Franz Puttur
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture Between the Medical School Hannover and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | - Marcela Francozo
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture Between the Medical School Hannover and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | - Marc Lindenberg
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture Between the Medical School Hannover and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | - Melanie Guderian
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture Between the Medical School Hannover and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | - Maxine Swallow
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture Between the Medical School Hannover and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | - Vikas Duhan
- Institute of Immunology of the University Hospital in Essen, Medical Faculty, University of Duisburg-Essen, Essen, Germany
| | - Vishal Khairnar
- Institute of Immunology of the University Hospital in Essen, Medical Faculty, University of Duisburg-Essen, Essen, Germany
| | - Ulrich Kalinke
- Institute of Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture Between the Hannover Medical School and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | - Burkhard Ludewig
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Björn E Clausen
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Hermann Wagner
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University Munich, Munich, Germany
| | - Karl S Lang
- Institute of Immunology of the University Hospital in Essen, Medical Faculty, University of Duisburg-Essen, Essen, Germany
| | - Tim D Sparwasser
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture Between the Medical School Hannover and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany.,Department of Medical Microbiology and Hygiene, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
44
|
Ashley CL, Abendroth A, McSharry BP, Slobedman B. Interferon-Independent Upregulation of Interferon-Stimulated Genes during Human Cytomegalovirus Infection is Dependent on IRF3 Expression. Viruses 2019; 11:E246. [PMID: 30871003 PMCID: PMC6466086 DOI: 10.3390/v11030246] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 02/25/2019] [Accepted: 03/07/2019] [Indexed: 12/25/2022] Open
Abstract
The antiviral activity of type I interferons (IFNs) is primarily mediated by interferon-stimulated genes (ISGs). Induction of ISG transcription is achieved when type I IFNs bind to their cognate receptor and activate the Janus Kinase/Signal Transducer and Activator of Transcription (JAK/STAT) signaling pathways. Recently it has become clear that a number of viruses are capable of directly upregulating a subset of ISGs in the absence of type I IFN production. Using cells engineered to block either the response to, or production of type I IFN, the regulation of IFN-independent ISGs was examined in the context of human cytomegalovirus (HCMV) infection. Several ISGs, including IFIT1, IFIT2, IFIT3, Mx1, Mx2, CXCL10 and ISG15 were found to be upregulated transcriptionally following HCMV infection independently of type I IFN-initiated JAK-STAT signaling, but dependent on intact IRF3 signaling. ISG15 protein regulation mirrored that of its transcript with IFNβ neutralization failing to completely inhibit ISG15 expression post HCMV infection. In addition, no detectable ISG15 protein expression was observed following HCMV infection in IRF3 knockdown CRISPR/Cas-9 clones indicating that IFN-independent control of ISG expression during HCMV infection of human fibroblasts is absolutely dependent on IRF3 expression.
Collapse
Affiliation(s)
- Caroline L Ashley
- Department of Infectious Diseases and Immunology, Charles Perkins Centre, University of Sydney, Camperdown, New South Wales 2050, Australia.
| | - Allison Abendroth
- Department of Infectious Diseases and Immunology, Charles Perkins Centre, University of Sydney, Camperdown, New South Wales 2050, Australia.
| | - Brian P McSharry
- Department of Infectious Diseases and Immunology, Charles Perkins Centre, University of Sydney, Camperdown, New South Wales 2050, Australia.
| | - Barry Slobedman
- Department of Infectious Diseases and Immunology, Charles Perkins Centre, University of Sydney, Camperdown, New South Wales 2050, Australia.
| |
Collapse
|
45
|
Wang F, Jiao H, Liu W, Chen B, Wang Y, Chen B, Lu Y, Su J, Zhang Y, Liu X. The antiviral mechanism of viperin and its splice variant in spring viremia of carp virus infected fathead minnow cells. FISH & SHELLFISH IMMUNOLOGY 2019; 86:805-813. [PMID: 30540955 DOI: 10.1016/j.fsi.2018.12.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 12/06/2018] [Accepted: 12/08/2018] [Indexed: 06/09/2023]
Abstract
Viperin is known to play an important role in innate immune and its antiviral mechanisms are well demonstrated in mammals. Fish Viperin mediates antiviral activity against several viruses. However, little has been done to the underlying mechanism. Here, we discovered a novel Viperin splice variant named Viperin_sv1 from viral-infected FHM cells. Spring varimia of carp virus (SVCV) was able to increase the mRNA levels of both Viperin and Viperin_sv1, while poly(I:C) only has effect on Viperin. Viperin functions as an antiviral protein at 24 h post-SVCV infection, but the antiviral activity dramatically declined at late infection stages. However, Viperin_sv1 inhibited SVCV replication significantly at all the tested time. Viperin_sv1, but not Viperin can facilitate the production of type I IFN and IFN stimulate genes (ISGs) through activation of RIG-1, IRF3 and IRF7 signaling cascades. On the other hand, SVCV down-regulated Viperin_sv1 at the protein level through the proteasome pathway to keep itself away from the immune system monitoring. Taken together, these findings provide new insights into the regulation of Viperin from the posttranscriptional modification perspective and the role of splicing variant Viperin_sv1 in virus-host interaction.
Collapse
Affiliation(s)
- Fang Wang
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, 430070, China; Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, 430070, China
| | - Houqi Jiao
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, 430070, China; Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, 430070, China
| | - Wanmeng Liu
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, 430070, China; Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, 430070, China
| | - Bo Chen
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, 430070, China; Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, 430070, China
| | - Yeda Wang
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, 430070, China; Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, 430070, China
| | - Buxin Chen
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, 430070, China; Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, 430070, China
| | - Yuanan Lu
- Department of Public Health Sciences, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Jianguo Su
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, 430070, China; Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, 430070, China
| | - Yongan Zhang
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xueqin Liu
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, 430070, China; Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, 430070, China.
| |
Collapse
|
46
|
Robertsen B, Greiner-Tollersrud L, Jørgensen LG. Analysis of the Atlantic salmon genome reveals a cluster of Mx genes that respond more strongly to IFN gamma than to type I IFN. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 90:80-89. [PMID: 30195710 DOI: 10.1016/j.dci.2018.09.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 09/05/2018] [Accepted: 09/05/2018] [Indexed: 06/08/2023]
Abstract
Mx proteins are antiviral GTPases, which are induced by type I IFN and virus infection. Analysis of the Atlantic salmon genome revealed the presence of 9 Mx genes localized to three chromosomes. A cluster of three Mx genes (SsaMx1 - SsaMx3), which includes previously cloned Mx genes, is present on chromosome (Chr) 12. A cluster of five Mx genes (SsaMx4-SsaMx8) is present on Chr25 while one Mx gene (SsaMx9) is present on Chr9. Phylogenetic and gene synteny analyses showed that SsaMx1-SsaMx3 are most closely related to the main group of teleost Mx proteins. In contrast, SsaMx 4-SsaMx9 formed a separate group together with zebrafish MxD and MxG and eel MxB. The Mx cluster in Chr25 showed gene synteny similar to a Mx gene cluster in the gar genome. Expression of Mx genes in cell lines stimulated with recombinant IFNs showed that Mx genes in Chr12 responded more strongly to type I IFN than to type II IFN (IFN gamma) whilst Mx genes in Chr25 responded more strongly to IFN gamma than to type I IFNs. SsaMx9 showed no response to the IFNs.
Collapse
Affiliation(s)
- Børre Robertsen
- Norwegian College of Fishery Science, UiT the Arctic University of Norway, 9037 Tromsø, Norway.
| | - Linn Greiner-Tollersrud
- Norwegian College of Fishery Science, UiT the Arctic University of Norway, 9037 Tromsø, Norway
| | - Lars Gaute Jørgensen
- Norwegian College of Fishery Science, UiT the Arctic University of Norway, 9037 Tromsø, Norway
| |
Collapse
|
47
|
Viperin Inhibits Enterovirus A71 Replication by Interacting with Viral 2C Protein. Viruses 2018; 11:v11010013. [PMID: 30587778 PMCID: PMC6357129 DOI: 10.3390/v11010013] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 12/21/2018] [Accepted: 12/22/2018] [Indexed: 12/17/2022] Open
Abstract
Enterovirus A71 (EVA71) is a human enterovirus belonging to the Picornaviridae family and mostly causes hand-foot-and-mouth disease in infants. Viperin is an important interferon-stimulated gene with a broad antiviral activity against various viruses. However, the effect of viperin on human enteroviruses and the interaction mechanism between EVA71 and viperin remains elusive. Here, we confirmed the EVA71-induced expression of viperin in a mouse model and cell lines and showed that viperin upregulation by EVA71 infection occurred on both the mRNA and protein level. Viperin knockdown and overexpression in EVA71-infected cells indicated that this protein can markedly inhibit EVA71 infection. Interestingly, immunofluorescent confocal microscopy and co-immunoprecipitation assays indicated that viperin interacts and colocalizes with the EVA71 protein 2C in the endoplasmic reticulum. Furthermore, amino acids 50⁻60 in the N-terminal domain of viperin were the key residues responsible for viperin interaction with 2C. More importantly, the N-terminal domain of viperin was found responsible for inhibiting EVA71 replication. Our findings can potentially aid future research on the prevention and treatment of nervous system damage caused by EVA71 and may provide a potential target for antiviral therapy.
Collapse
|
48
|
Liu Y, Cheng Y, Shan W, Ma J, Wang H, Sun J, Yan Y. Chicken interferon regulatory factor 1 (IRF1) involved in antiviral innate immunity via regulating IFN-β production. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 88:77-82. [PMID: 29981306 DOI: 10.1016/j.dci.2018.07.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 07/03/2018] [Accepted: 07/03/2018] [Indexed: 06/08/2023]
Abstract
Interferon regulatory factors (IRFs) is an important family for IFN expression regulating while viral infection. IRF1, IRF3, and IRF7 are the primary regulators that trigger type I IFN response in mammals. However, IRF3, which has been identified as the most critical regulator in mammals, is absent in chickens, and it is unknown whether IRF1 is involved in type I IFN signaling pathways in IRF3-deficient chicken cells. Here, we identified chicken IRF1 (chIRF1) as a critical IFN-β mediator in response to viral infection. Overexpression of chIRF1 activated IFN-β intensively and suppressed AIV and NDV viral replication. Moreover, the mRNA levels of IFN-β and ISGs increased during chIRF1 overexpression. In addition, deletion mutant analysis revealed that the first four domains of chIRF1 are indispensable for IFN-β induction. Together, our studies demonstrate that chIRF1 is an important regulator of IFN-β and is involved in chicken antiviral innate immunity.
Collapse
Affiliation(s)
- Yunxia Liu
- Shanghai Key Laboratory of Veterinary Biotechnology, Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yuqiang Cheng
- Shanghai Key Laboratory of Veterinary Biotechnology, Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wenya Shan
- Shanghai Key Laboratory of Veterinary Biotechnology, Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jingjiao Ma
- Shanghai Key Laboratory of Veterinary Biotechnology, Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hengan Wang
- Shanghai Key Laboratory of Veterinary Biotechnology, Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jianhe Sun
- Shanghai Key Laboratory of Veterinary Biotechnology, Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yaxian Yan
- Shanghai Key Laboratory of Veterinary Biotechnology, Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
49
|
Sobhkhez M, Krasnov A, Robertsen B. Transcriptome analyses of Atlantic salmon muscle genes induced by a DNA vaccine against salmonid alphavirus, the causative agent of salmon pancreas disease (PD). PLoS One 2018; 13:e0204924. [PMID: 30273392 PMCID: PMC6166962 DOI: 10.1371/journal.pone.0204924] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 09/17/2018] [Indexed: 12/20/2022] Open
Abstract
Salmonid alphavirus (SAV) is the causative agent of pancreas disease (PD) in farmed Atlantic salmon. A previous study showed that vaccination of pre-smolt salmon with a plasmid encoding the structural polypeptide of SAV gave protection against infection and development of PD accompanied by production of antibodies against the virus. In the present work we analyzed transcript responses in the muscle to vaccination with this plasmid (here named pSAV). The purpose was to shed light on how pSAV might initiate adaptive immune responses in the fish. The work was based on microarray and reverse transcription quantitative PCR analyses of muscle at the injection site 7 days after vaccination. The results showed that pSAV and pcDNA3.3 had similar abilities to up-regulate type I IFN stimulated genes. In contrast, pSAV caused higher up-regulation of IFNγ and several IFNγ inducible genes. Compared to pcDNA3.3, pSAV also gave larger increase in transcripts of marker genes for B-cells, T-cells and antigen presenting cells (APCs), which suggest attraction and role of these cells in the adaptive immune responses elicited by pSAV. Moreover, pSAV caused a stronger up-regulation of the chemokine CXCL10 and the proinflammatory cytokines IL-1ß and TNFα, which may explain attraction of lymphocytes and APCs. The present work shows that the expression profile of genes resulting from vaccination with pSAV is different from the expression profiles obtained previously by vaccination of salmonids with DNA vaccines against infectious salmon anemia virus and infectious hematopoietic necrosis virus.
Collapse
Affiliation(s)
- Mehrdad Sobhkhez
- Norwegian College of Fishery Science, UiT The Arctic University of Norway, Tromsø, Norway
| | - Aleksei Krasnov
- Nofima AS, Norwegian Institute of Food, Fisheries & Aquaculture Research, Ås, Norway
| | - Børre Robertsen
- Norwegian College of Fishery Science, UiT The Arctic University of Norway, Tromsø, Norway
- * E-mail:
| |
Collapse
|
50
|
Huong TN, Yan Y, Jumat MR, Lui J, Tan BH, Wang DY, Sugrue RJ. A sustained antiviral host response in respiratory syncytial virus infected human nasal epithelium does not prevent progeny virus production. Virology 2018; 521:20-32. [PMID: 29870884 DOI: 10.1016/j.virol.2018.05.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 05/09/2018] [Accepted: 05/18/2018] [Indexed: 12/01/2022]
Abstract
Respiratory syncytial virus infection was examined using a human nasal epithelial cell model. Maximum levels of shed-virus were produced at between 3 and 5 days post-infection (dpi), and the infectivity of the shed-virus was stable up to 10 dpi. The highest levels of interferon signalling were recorded at 2dpi, and infection induced a widespread antivirus response in the nasal epithelium, involving both infected cells and non-infected cells. Although these cellular responses were associated with reduced levels of progeny virus production and restricted virus spread, they did not inhibit the infectivity virus that is shed early in infection. In the clinical context these data suggest that although the host cell response in the nasal epithelium may restrict the levels of progeny virus particles produced, the stability of the shed-virus in the nasal mucosa may be an important factor in both disease progression and virus transmission.
Collapse
Affiliation(s)
- Tra Nguyen Huong
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Republic of Singapore
| | - Yan Yan
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Singapore 119228, Republic of Singapore
| | - Muhammad Raihan Jumat
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Republic of Singapore
| | - Jing Lui
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Singapore 119228, Republic of Singapore
| | - Boon Huan Tan
- Detection and Diagnostics Laboratory, DSO National Laboratories, 27 Medical Drive, Singapore 117510, Republic of Singapore
| | - De Yun Wang
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Singapore 119228, Republic of Singapore
| | - Richard J Sugrue
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Republic of Singapore.
| |
Collapse
|