1
|
Wang L, Chen H, Lu C, Ding Y, He Y, Xu J, Xu J, Zhang Z. Rebastinib attenuates acute lung injury by promoting NLRP3 ubiquitination and blocking NLRP3/GSDMD signaling pathway in macrophages and protecting alveolar epithelial cells. Int Immunopharmacol 2025; 159:114819. [PMID: 40403501 DOI: 10.1016/j.intimp.2025.114819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 04/24/2025] [Accepted: 05/06/2025] [Indexed: 05/24/2025]
Abstract
Acute lung injury (ALI) is a devastating inflammatory lung disease with high morbidity and mortality. Characterized by diffuse alveolar damage, macrophages infiltration, and pulmonary edema, ALI currently lacks effective therapeutic strategies. Rebastinib is a small molecule inhibitor of the Tie2 receptor and an antineoplastic drug. This study investigated the effects of Rebastinib on lipopolysaccharide (LPS)-induced ALI and GSDMD-mediated pyroptosis and NLRP3 inflammasome activation in vitro and in vivo. Our results revealed that Rebastinib significantly attenuated GSDMD-dependent pyroptosis in macrophages, leading to reduced production of caspase-1, LDH and IL-1β. Mechanistically, Rebastinib promoted NLRP3 ubiquitination, thereby disrupting the connection between ASC and NLRP3 and effectively suppressing NLRP3 inflammasome assembly. Additionally, Rebastinib exhibited effective protection function on alveolar epithelial cells in a co-culture system. Furthermore, Rebastinib administration alleviated lung inflammatory damage in LPS-induced ALI mouse model. These findings suggest that Rebastinib holds promise as a therapeutic candidate for ALI by inhibiting the activation of pyroptosis and NLRP3 inflammasome on macrophages.
Collapse
Affiliation(s)
- Lingqiao Wang
- Department of Emergency, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health
| | - Hao Chen
- Department of Orthopedics Surgery, Hangzhou First People's Hospital, Hangzhou, Zhejiang Province 31000, China
| | - Congcong Lu
- Department of Orthopedics Surgery, Hangzhou First People's Hospital, Hangzhou, Zhejiang Province 31000, China; The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou First People's Hospital, Hangzhou 310053, PR China
| | - Yi Ding
- Department of Orthopedics Surgery, Hangzhou First People's Hospital, Hangzhou, Zhejiang Province 31000, China
| | - Ying He
- Department of Cardiac Ultrasound Center, Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88 Jiefang Road, Shangcheng District, Hangzhou City, Zhejiang Province 310000, China
| | - Jian Xu
- Department of Laboratory Medicine, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University
| | - Jiani Xu
- The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China.
| | - Zhen Zhang
- Department of Orthopedics Surgery, Hangzhou First People's Hospital, Hangzhou, Zhejiang Province 31000, China.
| |
Collapse
|
2
|
Lan Y, Wang H, Jing L, Li R, Sun J, Meng X, Wu J. Jatrorrhizine alleviates cytokine storm secondary lung injury via regulating CD39-dominant purinergic braking and downstream NLRP3 inflammasome. Phytother Res 2025; 39:2374-2392. [PMID: 40192171 DOI: 10.1002/ptr.8062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/11/2023] [Accepted: 10/15/2023] [Indexed: 05/21/2025]
Abstract
Cytokine storm secondary lung injury (CSSLI) is a form of acute lung injury (ALI) comparable to that caused by sepsis for which there are no effective therapeutic strategies. Coptis chinensis Franch. and Scutellaria baicalensis Georgi. are two botanical medicines that exhibit anti-inflammatory properties. This study aimed to investigate the underlying therapeutic mechanism of the combination (CCSB) treatment in mice with ALI. A high dosage of lipopolysaccharide (LPS) was administered intraperitoneally to C57BL/6 mice to establish an ALI model. The AMP-Glo™ assay was applied to screen for the component with the most potent CD39-promoting enzyme activity from CCSB constituents migrating to the bloodstream. The PMA-differentiated THP-1 and RAW264.7 macrophage cell lines were stimulated with LPS and adenosine triphosphate, followed by treatment with Jatrorrhizine (JH). The administration of CCSB demonstrated a notable improvement in lung injury through the modulation of the CD39-P2X7 purinergic pathway and subsequent regulation of the NLRP3 inflammasome. The restrained CD39 and A2b were reversed by JH, leading to the suppression of the P2X7-NLRP3 signaling pathway. In addition, the utilization of a CD39 inhibitor (POM-1) attenuated the inhibitory effect of JH on the NLRP3 signaling pathway. CCSB successfully rescued CSSLI, along with its small-molecule component JH, which demonstrated the ability to inhibit the NLRP3 signaling pathway and pyroptosis, at least partially through regulating the CD39 enzyme.
Collapse
Affiliation(s)
- Yuejia Lan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Huan Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Lijia Jing
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Rui Li
- Chengdu University of Traditional Chinese Medicine-Affiliated Meishan Hospital/Meishan Hospital of Traditional Chinese Medicine, Meishan, People's Republic of China
| | - Jiayi Sun
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Xianli Meng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Jiasi Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| |
Collapse
|
3
|
Zhang Q, Meng B, Tang M, Li C, Xu Y, Pan J, Yu L, Li Y, Yang Y, Liu Y, Li H, Hu L, Wu T, Li J. Activation of GPR35 by kynurenic acid inhibits IL-1β secretion in macrophages during CR-hvKP-induced pneumonia. Int Immunopharmacol 2025; 153:114416. [PMID: 40106903 DOI: 10.1016/j.intimp.2025.114416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/21/2025] [Accepted: 03/02/2025] [Indexed: 03/22/2025]
Abstract
Carbapenemase-resistant hypervirulent Klebsiella pneumoniae (CR-hvKP) is a common pathogen that can cause severe pneumonia. The innate immune response, especially the response of macrophages, plays a crucial role in the host's defense against bacterial infections. Glycolysis is implicated in the modulation of immune functions in macrophages. Here, we provide evidence supporting the role of GPR35 in decreasing glycolysis and reducing the secretion of IL-1β in macrophages by inhibiting the transcription of HK2 during K. pneumoniae-induced pneumonia. Mice with GPR35 knock-out exhibit higher mortality and increased lung bacterial burdens. Mechanistically, GPR35 activation by kynurenic acid inhibits caspase-1 cleavage and reduces IL-1β secretion in macrophages by specifically suppressing activation of the NLRP3 inflammasome. These findings underscore the role of GPR35 in regulating inflammation during K. pneumoniae-induced pneumonia and suggest that GPR35 is a potential therapeutic target for clinical treatment.
Collapse
Affiliation(s)
- Qingyue Zhang
- Department of Infectious Diseases & Anhui Center for Surveillance of Bacterial Resistance, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Anhui Province Key Laboratory of Infectious Diseases & Institute of Bacterial Resistance & Institute of Infectious Diseases, Anhui Medical University, Hefei 230022, China.
| | - Bao Meng
- Department of Infectious Diseases & Anhui Center for Surveillance of Bacterial Resistance, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Anhui Province Key Laboratory of Infectious Diseases & Institute of Bacterial Resistance & Institute of Infectious Diseases, Anhui Medical University, Hefei 230022, China.
| | - Mingyang Tang
- Department of Infectious Diseases & Anhui Center for Surveillance of Bacterial Resistance, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Anhui Province Key Laboratory of Infectious Diseases & Institute of Bacterial Resistance & Institute of Infectious Diseases, Anhui Medical University, Hefei 230022, China.
| | - Chengcheng Li
- Department of Infectious Diseases & Anhui Center for Surveillance of Bacterial Resistance, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Anhui Province Key Laboratory of Infectious Diseases & Institute of Bacterial Resistance & Institute of Infectious Diseases, Anhui Medical University, Hefei 230022, China.
| | - Yuexin Xu
- Department of Infectious Diseases & Anhui Center for Surveillance of Bacterial Resistance, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Anhui Province Key Laboratory of Infectious Diseases & Institute of Bacterial Resistance & Institute of Infectious Diseases, Anhui Medical University, Hefei 230022, China.
| | - Jinjin Pan
- Department of Infectious Diseases & Anhui Center for Surveillance of Bacterial Resistance, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Anhui Province Key Laboratory of Infectious Diseases & Institute of Bacterial Resistance & Institute of Infectious Diseases, Anhui Medical University, Hefei 230022, China.
| | - Liang Yu
- Department of Infectious Diseases & Anhui Center for Surveillance of Bacterial Resistance, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Anhui Province Key Laboratory of Infectious Diseases & Institute of Bacterial Resistance & Institute of Infectious Diseases, Anhui Medical University, Hefei 230022, China.
| | - Yasheng Li
- Department of Infectious Diseases & Anhui Center for Surveillance of Bacterial Resistance, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Anhui Province Key Laboratory of Infectious Diseases & Institute of Bacterial Resistance & Institute of Infectious Diseases, Anhui Medical University, Hefei 230022, China.
| | - Yi Yang
- Department of Infectious Diseases & Anhui Center for Surveillance of Bacterial Resistance, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Anhui Province Key Laboratory of Infectious Diseases & Institute of Bacterial Resistance & Institute of Infectious Diseases, Anhui Medical University, Hefei 230022, China.
| | - Yanyan Liu
- Department of Infectious Diseases & Anhui Center for Surveillance of Bacterial Resistance, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Anhui Province Key Laboratory of Infectious Diseases & Institute of Bacterial Resistance & Institute of Infectious Diseases, Anhui Medical University, Hefei 230022, China.
| | - Hongru Li
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China.
| | - Lifen Hu
- Department of Infectious Diseases & Anhui Center for Surveillance of Bacterial Resistance, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Anhui Province Key Laboratory of Infectious Diseases & Institute of Bacterial Resistance & Institute of Infectious Diseases, Anhui Medical University, Hefei 230022, China.
| | - Ting Wu
- Department of Infectious Diseases & Anhui Center for Surveillance of Bacterial Resistance, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Anhui Province Key Laboratory of Infectious Diseases & Institute of Bacterial Resistance & Institute of Infectious Diseases, Anhui Medical University, Hefei 230022, China.
| | - Jiabin Li
- Department of Infectious Diseases & Anhui Center for Surveillance of Bacterial Resistance, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Anhui Province Key Laboratory of Infectious Diseases & Institute of Bacterial Resistance & Institute of Infectious Diseases, Anhui Medical University, Hefei 230022, China.
| |
Collapse
|
4
|
Gao ZG, Haddad M, Jacobson KA. A 2B adenosine receptor signaling and regulation. Purinergic Signal 2025; 21:201-220. [PMID: 38833181 PMCID: PMC12061833 DOI: 10.1007/s11302-024-10025-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 05/20/2024] [Indexed: 06/06/2024] Open
Abstract
The A2B adenosine receptor (A2BR) is one of the four adenosine-activated G protein-coupled receptors. In addition to adenosine, protein kinase C (PKC) was recently found to activate the A2BR. The A2BR is coupled to both Gs and Gi, as well as Gq proteins in some cell types. Many primary cells and cell lines, such as bladder and breast cancer, bronchial smooth muscle, skeletal muscle, and fat cells, express the A2BR endogenously at high levels, suggesting its potentially important role in asthma, cancer, diabetes, and other conditions. The A2BR has been characterized as both pro- and anti-inflammatory, inducing cell type-dependent secretion of IL-6, IL-8, and IL-10. Theophylline and enprofylline have long been used for asthma treatment, although it is still not entirely clear if their A2BR antagonism contributes to their therapeutic effects or side effects. The A2BR is required in ischemic cardiac preconditioning by adenosine. Both A2BR and protein kinase C (PKC) contribute to cardioprotection, and both modes of A2BR signaling can be blocked by A2BR antagonists. Inhibitors of PKC and A2BR are in clinical cancer trials. Sulforaphane and other isothiocyanates from cruciferous vegetables such as broccoli and cauliflower have been reported to inhibit A2BR signaling via reaction with an intracellular A2BR cysteine residue (C210). A full, A2BR-selective agonist, critical to elucidate many controversial roles of the A2BR, is still not available, although agonist-bound A2BR structures have recently been reported.
Collapse
Affiliation(s)
- Zhan-Guo Gao
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, NIDDK, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA.
| | - Mansour Haddad
- Faculty of Pharmacy, Yarmouk University, Irbid, 21163, Jordan
| | - Kenneth A Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, NIDDK, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA.
| |
Collapse
|
5
|
Wu Y, Li B, Xuan Y, Jiang Y, Chen J, Liao H, Feng J, Zhang J. Fluorofenidone alleviates cigarette smoke exposure-induced chronic lung injury by targeting ferroptosis. Sci Rep 2024; 14:32149. [PMID: 39738585 PMCID: PMC11686209 DOI: 10.1038/s41598-024-83998-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 12/18/2024] [Indexed: 01/02/2025] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a common condition that poses significant health risks to humans. Pulmonary interstitial fibrosis (PIF) often manifests in advanced stages of COPD. Fluorofenidone (AKF) has a wide range of pharmacological effects, including anti-fibrotic, antioxidant, and anti-inflammatory effects. Therefore, this study aimed to assess the role of AKF in lung injury and its underlying mechanisms. The COPD mice model was constructed by cigarette smoke (CS) combined with lipopolysaccharide (LPS) treatment. The effect of AKF on COPD mice was evaluated by lung injury, lipid peroxidation, inflammatory factors, and the expression of ferroptosis markers. Furthermore, the normal human bronchial epithelial cell line, Beas-2B, was used to verify the mechanism underlying the association between ferroptosis and inflammation. AKF attenuated the cigarette smoke (CS)/LPS-induced inflammatory response in the mouse lungs. Additionally, AKF attenuated the CS/LPS-induced fibrosis response in the mouse lungs. AKF inhibits ferroptosis in lung tissues of CS/LPS-exposed mice. Furthermore, AKF suppressed the inflammatory response and ferroptosis in CSE-treated BEAS-2B cells via NF-κB signaling pathway. AKF can function as a novel ferroptosis inhibitor by inhibiting NF-κB to inhibit airway inflammation and fibrosis, providing a scientific basis for the use of AKF to prevent the progression of COPD and pulmonary fibrosis.
Collapse
Affiliation(s)
- Yuan Wu
- Department of General Practice, The Second Affiliated Hospital of Guangxi Medical University, No 166 Daxuedong Road, Nanning, Guangxi, 530007, China
- Department of General Medicine, Hunan Provincial People's Hospital, Changsha, 410005, China
| | - Binbin Li
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, China
| | - Yixuan Xuan
- Department of Emergency Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, China
| | - Yu Jiang
- Institute of Emergency Medicine, Hunan Provincial Key Laboratory of Emergency and Critical Care Metabonomics, Hunan Provincial People's Hospital, Changsha, 410005, China
| | - Jinping Chen
- Department of General Medicine, Hunan Provincial People's Hospital, Changsha, 410005, China
| | - Hong Liao
- Department of General Medicine, Hunan Provincial People's Hospital, Changsha, 410005, China
| | - Jihua Feng
- Department of Emergency Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, China.
- Guangxi Health Commission key Laboratory of Emergency and Critical Medicine, Nanning, 530007, China.
| | - Jianfeng Zhang
- Department of General Practice, The Second Affiliated Hospital of Guangxi Medical University, No 166 Daxuedong Road, Nanning, Guangxi, 530007, China.
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, China.
- Department of Emergency Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, China.
- Guangxi Health Commission key Laboratory of Emergency and Critical Medicine, Nanning, 530007, China.
| |
Collapse
|
6
|
Dietz S, Hebel J, Rühle J, Huff A, Eltzschig HK, Lajqi T, Poets CF, Gille C, Köstlin‐Gille N. Impact of the adenosine receptor A2BR expressed on myeloid cells on immune regulation during pregnancy. Eur J Immunol 2024; 54:e2451149. [PMID: 39460389 PMCID: PMC11628929 DOI: 10.1002/eji.202451149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 10/04/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024]
Abstract
During pregnancy, the maternal immune system must carefully balance protection against pathogens with tolerance toward the semiallogeneic fetus. Dysfunctions of the immune system can lead to severe complications such as preeclampsia, fetal growth restriction, or pregnancy loss. Adenosine plays a role in physiological processes and plasma-level increase during pregnancy. The adenosine receptor A2B (A2BR), which is expressed on both, immune and nonimmune cells, is activated by high adenosine concentrations, achieved during pregnancy. We investigated the impact of A2BR expressed on myeloid cells on immune regulation during pregnancy using a mouse model with myeloid deficiency for A2BR. We demonstrate systemic changes in myeloid and lymphoid cell populations during pregnancy in A2BR-KO (Adora2B923f/f-LysMCre) mice with increased monocytes, neutrophils, and T cells but decreased B cells as well as altered T-cell subpopulations with decreased Th1 cells and Tregs and increased Th17 cells. Lack of A2BR on myeloid cells caused an increased systemic expression of IL-6 but decreased systemic accumulation and function of MDSC and reduced numbers of uterine natural killer cells. The pregnancy outcome was only marginally affected. Our results demonstrate that A2BR on myeloid cells plays a role in immune regulation during pregnancy, but the clinical impact on pregnancy remains unclear.
Collapse
Affiliation(s)
- Stefanie Dietz
- Department of NeonatologyTuebingen University Children's HospitalTuebingenGermany
- Department of NeonatologyHeidelberg University, Medical FacultyHeidelbergGermany
| | - Janine Hebel
- Department of NeonatologyTuebingen University Children's HospitalTuebingenGermany
| | - Jessica Rühle
- Department of NeonatologyTuebingen University Children's HospitalTuebingenGermany
| | - Alisha Huff
- Department of NeonatologyTuebingen University Children's HospitalTuebingenGermany
| | | | - Trim Lajqi
- Department of NeonatologyHeidelberg University, Medical FacultyHeidelbergGermany
| | - Christian F. Poets
- Department of NeonatologyTuebingen University Children's HospitalTuebingenGermany
| | - Christian Gille
- Department of NeonatologyHeidelberg University, Medical FacultyHeidelbergGermany
| | - Natascha Köstlin‐Gille
- Department of NeonatologyTuebingen University Children's HospitalTuebingenGermany
- Department of NeonatologyHeidelberg University, Medical FacultyHeidelbergGermany
| |
Collapse
|
7
|
Zhou Y, Kang L, Yin G, Yang L, Chen B, Liu B, Zhu X, Xie Q. Adenosine A2B receptor activation regulates the balance between T helper 17 cells and regulatory T cells, and inhibits regulatory T cells exhaustion in experimental autoimmune myositis. J Cachexia Sarcopenia Muscle 2024; 15:2460-2475. [PMID: 39284778 PMCID: PMC11634480 DOI: 10.1002/jcsm.13581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 07/11/2024] [Accepted: 07/23/2024] [Indexed: 12/13/2024] Open
Abstract
BACKGROUND Idiopathic inflammatory myopathy (IIM) is a systemic autoimmune disease characterized by skeletal muscle involvement. This study aimed to investigate the role of adenosine receptor signalling pathways in the development of experimental autoimmune myositis (EAM). METHODS An ecto-5'-nucleotidase (CD73) inhibitor, adenosine receptor agonists, a hypoxia-inducible factor-1α (HIF-1α) inhibitor or a vehicle were administered to control and EAM mice. Murine splenic CD4+ or regulatory T cells (Tregs) were isolated using magnetic beads and subsequently stimulated with an adenosine A2B receptor agonist, a HIF-1α inhibitor, or vehicle in vitro. In cross-sectional studies, we collected 64 serum samples (69% female, 49 ± 9 years), 63 peripheral blood samples (70% female, 50 ± 11 years), and 34 skeletal muscle samples (71% female, 63 ± 6 years) from patients with IIM. Additionally, 35 serum samples and 30 peripheral blood samples were obtained from age- and sex-matched healthy controls, and six quadriceps muscle samples were collected from patients with osteoarthritis to serve as the normal group. RESULTS Patients with IIM exhibited increased CD73 [dermatomyositis (DM), polymyositis (PM): P < 0.01; immune-mediated necrotizing myopathy (IMNM): P < 0.0001] and adenosine deaminase (ADA) expression (DM: P < 0.001; PM, IMNM: P < 0.0001) in the skeletal muscles, and serum ADA levels [56.7 (95% CI: 53.7, 58.7) vs. 198.8 (95% CI: 186.2, 237.3) ng/μL, P < 0.0001]. Intervention with a CD73 inhibitor exacerbated (P = 0.0461), whereas adenosine receptor agonists (A1: P = 0.0009; A2B: P < 0.0001; A3: P = 0.0001) and the HIF-1α inhibitor (P = 0.0044) alleviated skeletal muscle injury in EAM mice. Elevated expression of programmed cell death protein-1 (PD1: P = 0.0023) and T-cell immunoglobulin and mucin-domain containing-3 (TIM3: P < 0.0001) in skeletal muscles of patients with IIM were correlated with creatine kinase levels (PD1, r = 0.7072, P < 0.0001; TIM3, r = 0.4808, P = 0.0046). PD1+CD4+ (r = 0.3243, P = 0.0115) and PD1+CD8+ (r = 0.3959, P = 0.0017) T cells were correlated with Myositis Disease Activity Assessment Visual Analogue Scale scores (muscle) in IIM. The exhausted Tregs were identified in the skeletal muscles of patients with IIM. Activation of the A2B adenosine receptor downregulated HIF-1α (protein or mRNA level, P < 0.01), resulting in decreased T helper cell 17 (Th17) (13.58% vs. 5.43%, P = 0.0201) and phosphorylated-signal transducer and activator of transcription 3 (p-STAT3)+ Th17 (16.32% vs. 6.73%, P = 0.0029), decreased exhausted Tregs (PD1+ Tregs: 53.55% vs. 40.28%, P = 0.0005; TIM3+ Tregs: 3.93% vs. 3.11%, P = 0.0029), and increased Tregs (0.45% vs. 2.89%, P = 0.0006) in EAM mice. CONCLUSIONS The exhausted T cells may be pathogenic in IIM, and the activation of adenosine A2B receptor signalling pathway can regulate Th17/Treg balance and inhibit Tregs exhaustion, thereby slowing EAM disease progression.
Collapse
Affiliation(s)
- Yueyuan Zhou
- Department of Rheumatology and ImmunologyWest China Hospital, Sichuan UniversityChengduWuhou DistrictChina
| | - Limei Kang
- Department of Rheumatology and ImmunologyWest China Hospital, Sichuan UniversityChengduWuhou DistrictChina
| | - Geng Yin
- Department of General Practice, General Practice Medical CenterWest China Hospital, Sichuan UniversityChengduWuhou DistrictChina
| | - Leiyi Yang
- Department of Rheumatology and ImmunologyWest China Hospital, Sichuan UniversityChengduWuhou DistrictChina
| | - Bo Chen
- Department of Rheumatology and ImmunologyWest China Hospital, Sichuan UniversityChengduWuhou DistrictChina
| | - Binhan Liu
- Department of Rheumatology and ImmunologyWest China Hospital, Sichuan UniversityChengduWuhou DistrictChina
| | - Xiaoyan Zhu
- Department of PhysiologyNaval Medical UniversityShanghaiYangpu DistrictChina
| | - Qibing Xie
- Department of Rheumatology and ImmunologyWest China Hospital, Sichuan UniversityChengduWuhou DistrictChina
| |
Collapse
|
8
|
Du J, Zhou P, Zhao X, He YT, He CS, Wang RY. Sappanone A ameliorates acute lung injury through inhibiting the activation of the NF-κB signaling pathway. Toxicol Appl Pharmacol 2024; 492:117127. [PMID: 39419123 DOI: 10.1016/j.taap.2024.117127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 10/11/2024] [Accepted: 10/13/2024] [Indexed: 10/19/2024]
Abstract
Acute lung injury (ALI) is a serious respiratory disease characterized by diffuse alveolar injury, and it has emerged as a major concern in clinical practice due to limited treatments. This study aimed to explore the pharmacological effects and regulatory mechanism of sappanone A (SA) on ALI. In vivo, mice were administered with SA followed by intratracheal injection of lipopolysaccharide (LPS) to establish an animal model of ALI. We observed that SA exerted comparable anti-inflammatory effects to dexamethasone, as evidenced by effectively mitigating histopathological abnormalities and suppressing the inflammatory response in the lung tissues of mice with ALI. RNA sequencing analysis revealed that SA significantly inhibited the activation of the nuclear factor kappa B (NF-κB) signaling pathway. In vitro, we found that SA protected BEAS-2B cells against LPS-induced cellular injury and reduced inflammatory cytokine generation. Furthermore, both in vivo and in vitro experiments demonstrated that SA effectively prevented LPS-induced oxidative stress and apoptosis. Consistent with the results of the RNA sequencing analysis, SA significantly inhibited the increased protein expressions of p105, p50, c-REL, as well as the ratios of p-p65/p65 and p-IκBα/IκBα in the lung tissues of mice with ALI and LPS-stimulated BEAS-2B cells. Additionally, SA inhibited the nuclear translocation of p65 in BEAS-2B cells stimulated with LPS. Importantly, specific blockade of the NF-κB signaling pathway using BAY11-7082 was identified to alleviate LPS-induced cellular injury in BEAS-2B cells. Collectively, these findings suggest that SA can ameliorate ALI, at least in part, through the inhibition of NF-κB signaling pathway activation.
Collapse
Affiliation(s)
- Jing Du
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Piao Zhou
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xin Zhao
- Clinical Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yu-Ting He
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Cheng-Shi He
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Rui-Yu Wang
- Emergency Medicine Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
9
|
Adhikary K, Sarkar R, Maity S, Sadhukhan I, Sarkar R, Ganguly K, Barman S, Maiti R, Chakraborty S, Chakraborty TR, Bagchi D, Banerjee P. Immunomodulation of Macrophages in Diabetic Wound Individuals by Structurally Diverse Bioactive Phytochemicals. Pharmaceuticals (Basel) 2024; 17:1294. [PMID: 39458935 PMCID: PMC11510503 DOI: 10.3390/ph17101294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/15/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024] Open
Abstract
Diabetes-related ulcers and slow-healing wounds pose a significant health risk to individuals due to their uncertain causes. Mortality rates for diabetes foot ulcers (DFUs) range from 10% after 16 months to 24% after five years. The use of bioactive phytochemicals can play a key role in healing wounds in a predictable time. Recent literature has demonstrated that various natural substances, including flavonoids, saponins, phenolic compounds, and polysaccharides, play key roles at different stages of the wound-healing process through diverse mechanisms. These studies have categorized the compounds according to their characteristics, bioactivities, and modes of action. In this study, we evaluated the role of natural compounds derived from plant sources that have been shown to play a crucial role in immunomodulation. Macrophages are closely involved in immunomodulation within the wound microenvironment and are key players in efferocytosis, inflammation resolution, and tissue regeneration, all of which contribute to successful wound healing. Phytochemicals and their derivatives have shown capabilities in immune regulation, including macrophage migration, nitric oxide synthase inhibition, lymphocyte and T-cell stimulation, cytokine activation, natural killer cell enhancement, and the regulation of NF-κβ, TNF-α, and apoptosis. In this review, we have studied the role of phytochemicals in immunomodulation for the resolution of diabetic wound inflammation.
Collapse
Affiliation(s)
- Krishnendu Adhikary
- Department of Interdisciplinary Science, Centurion University of Technology and Management, Khurda 752050, Odisha, India;
| | - Riya Sarkar
- Department of Medical Lab Technology, Dr. B. C. Roy Academy of Professional Courses, Bidhannagar, Durgapur 713212, West Bengal, India
| | - Sriparna Maity
- Department of Medical Lab Technology, Dr. B. C. Roy Academy of Professional Courses, Bidhannagar, Durgapur 713212, West Bengal, India
| | - Ishani Sadhukhan
- Department of Food Processing, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103, West Bengal, India
| | - Riya Sarkar
- Department of Medical Lab Technology & Biotechnology, Paramedical College Durgapur, Durgapur 713212, West Bengal, India
| | - Krishnendu Ganguly
- Department of Medical Lab Technology & Biotechnology, Paramedical College Durgapur, Durgapur 713212, West Bengal, India
| | - Saurav Barman
- Department of Soil Science, Centurion University of Technology and Management, Paralakhemundi 761211, Odisha, India
| | - Rajkumar Maiti
- Department of Physiology, Bankura Christian College, Bankura 722101, West Bengal, India;
| | - Sanjoy Chakraborty
- Department of Biological Sciences, New York City College of Technology, City University of New York (CUNY), Brooklyn, NY 11201, USA
| | - Tandra R. Chakraborty
- Department of Biology, College of Arts and Sciences, Adelphi University, Garden City, NY 11530, USA
| | - Debasis Bagchi
- Department of Biology, College of Arts and Sciences, Adelphi University, Garden City, NY 11530, USA
- Department of Psychology, Gordon F. Derner School of Psychology, Adelphi University, Garden City, NY 11530, USA
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX 77004, USA
| | - Pradipta Banerjee
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| |
Collapse
|
10
|
Wu D, Liao X, Gao J, Gao Y, Li Q, Gao W. Potential pharmaceuticals targeting neuroimmune interactions in treating acute lung injury. Clin Transl Med 2024; 14:e1808. [PMID: 39129233 PMCID: PMC11317502 DOI: 10.1002/ctm2.1808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/24/2024] [Accepted: 07/28/2024] [Indexed: 08/13/2024] Open
Abstract
BACKGROUND AND MAIN BODY Although interactions between the nervous and immune systems have been recognized decades ago, it has become increasingly appreciated that neuroimmune crosstalk is among the driving factors of multiple pulmonary inflammatory diseases including acute lung injury (ALI). Here, we review the current understanding of nerve innervations towards the lung and summarize how the neural regulation of immunity and inflammation participates in the onset and progression of several lung diseases, especially ALI. We then present advancements in the development of potential drugs for ALI targeting neuroimmune interactions, including cholinergic anti-inflammatory pathway, sympathetic-immune pathway, purinergic signalling, neuropeptides and renin-angiotensin system at different stages from preclinical investigation to clinical trials, including the traditional Chinese medicine. CONCLUSION This review highlights the importance of considering the therapeutic strategy of inflammatory diseases within a conceptual framework that integrates classical inflammatory cascade and neuroimmune circuits, so as to deepen the understanding of immune modulation and develop more sophisticated approaches to treat lung diseases represented by ALI. KEY POINTS The lungs present abundant nerve innervations. Neuroimmune interactions exert a modulatory effect in the onset and progression of lung inflammatory diseases, especially acute lung injury. The advancements of potential drugs for ALI targeting neuroimmune crosstalk at different stages from preclinical investigation to clinical trials are elaborated. Point out the direction for the development of neuroimmune pharmacology in the future.
Collapse
Affiliation(s)
- Di Wu
- Department of Pulmonary and Critical Care MedicineShanghai East HospitalSchool of MedicineTongji UniversityShanghaiP. R. China
| | - Ximing Liao
- Department of Pulmonary and Critical Care MedicineShanghai East HospitalSchool of MedicineTongji UniversityShanghaiP. R. China
| | - Jing Gao
- Department of Pulmonary and Critical Care MedicineShanghai East HospitalSchool of MedicineTongji UniversityShanghaiP. R. China
| | - Yixuan Gao
- Department of GynaecologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanP. R. China
| | - Qiang Li
- Department of Pulmonary and Critical Care MedicineShanghai East HospitalSchool of MedicineTongji UniversityShanghaiP. R. China
| | - Wei Gao
- Department of Pulmonary and Critical Care MedicineShanghai East HospitalSchool of MedicineTongji UniversityShanghaiP. R. China
| |
Collapse
|
11
|
Chen M, Lei S, Zhou Z, Wang M, Feng C, Gao X, Ding C, Song Z, Tang W, Zhang A. Design, Synthesis, and Pharmacological Evaluation of Spiro[carbazole-3,3'-pyrrolidine] Derivatives as cGAS Inhibitors for Treatment of Acute Lung Injury. J Med Chem 2024; 67:6268-6291. [PMID: 38619191 DOI: 10.1021/acs.jmedchem.3c02229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Overactivation of cyclic GMP-AMP synthase (cGAS) is implicated in the occurrence of many inflammatory and autoimmune diseases, and inhibition of cGAS with a specific inhibitor has been proposed as a potential therapeutic strategy. However, only a few low-potency cGAS inhibitors have been reported, and few are suitable for clinical investigation. As a continuation of our structural optimization on the reported cGAS inhibitor 6 (G140), we developed a series of spiro[carbazole-3,3'-pyrrolidine] derivatives bearing a unique 2-azaspiro[4.5]decane structural motif, among which compound 30d-S was identified with high cellular effects against cGAS. This compound showed improved plasma exposure, lower clearance, and an oral bioavailability of 35% in rats. Moreover, in the LPS-induced acute lung injury (ALI) mice model, oral administration of compound 30d-S at 30 mg/kg markedly reduced lung inflammation and alleviated histopathological changes. These results confirm that 30d-S is a new efficacious cGAS inhibitor and is worthy of further investigation.
Collapse
Affiliation(s)
- Mingjie Chen
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
- National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China
| | - Shuyue Lei
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zihua Zhou
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
- National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China
| | - Meng Wang
- School of Medicine, Anhui University of Science and Technology, Huainan 232001, China
| | - Chunlan Feng
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoling Gao
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
- National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China
| | - Chunyong Ding
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
- National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China
| | - Zilan Song
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
- National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China
| | - Wei Tang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ao Zhang
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
- National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China
| |
Collapse
|
12
|
Figarella K, Kim J, Ruan W, Mills T, Eltzschig HK, Yuan X. Hypoxia-adenosine axis as therapeutic targets for acute respiratory distress syndrome. Front Immunol 2024; 15:1328565. [PMID: 38312838 PMCID: PMC10835146 DOI: 10.3389/fimmu.2024.1328565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/03/2024] [Indexed: 02/06/2024] Open
Abstract
The human respiratory and circulatory systems collaborate intricately to ensure oxygen delivery to all cells, which is vital for ATP production and maintaining physiological functions and structures. During limited oxygen availability, hypoxia-inducible factors (HIFs) are stabilized and play a fundamental role in maintaining cellular processes for hypoxia adaptation. First discovered during investigations of erythropoietin production regulation, HIFs influence physiological and pathological processes, including development, inflammation, wound healing, and cancer. HIFs promote extracellular adenosine signaling by enhancing adenosine generation and receptor signaling, representing an endogenous feedback mechanism that curbs excessive inflammation, supports injury resolution, and enhances hypoxia tolerance. This is especially important for conditions that involve tissue hypoxia, such as acute respiratory distress syndrome (ARDS), which globally poses significant health challenges without specific treatment options. Consequently, pharmacological strategies to amplify HIF-mediated adenosine production and receptor signaling are of great importance.
Collapse
Affiliation(s)
- Katherine Figarella
- Department of Anesthesiology, Critical Care and Pain Medicine, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Jieun Kim
- Department of Anesthesiology, Critical Care and Pain Medicine, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Wei Ruan
- Department of Anesthesiology, Critical Care and Pain Medicine, University of Texas Health Science Center at Houston, Houston, TX, United States
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Tingting Mills
- Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Holger Klaus Eltzschig
- Department of Anesthesiology, Critical Care and Pain Medicine, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Xiaoyi Yuan
- Department of Anesthesiology, Critical Care and Pain Medicine, University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
13
|
de Silva TA, Apte S, Voisey J, Spann K, Tan M, Divithotawela C, Chambers D, O’Sullivan B. Single-Cell Profiling of Cells in the Lung of a Patient with Chronic Hypersensitivity Pneumonitis Reveals Inflammatory Niche with Abundant CD39+ T Cells with Functional ATPase Phenotype: A Case Study. Int J Mol Sci 2023; 24:14442. [PMID: 37833889 PMCID: PMC10572861 DOI: 10.3390/ijms241914442] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/13/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
This study investigated immune cell characteristics in chronic hypersensitivity pneumonitis (HP), focusing on CD39-expressing cells' impact on inflammation and tissue remodelling. Lung tissue from an HP patient was analysed using single-cell transcriptomics, flow cytometry, and gene expression profiling. The tissue revealed diverse cell types like macrophages, T cells, fibroblasts, and regulatory T cells (Tregs). CD39-expressing Tregs exhibited heightened ATP hydrolysis capacity and regulatory gene expression. CD39hi cells displayed markers of both Tregs and proinflammatory Th17 cells, suggesting transitional properties. Communication networks involving molecules like SPP1, collagen, CSF1, and IL-1β were identified, hinting at interactions between cell types in HP pathogenesis. This research provides insights into the immune response and cell interactions in chronic HP. CD39-expressing cells dual nature as Tregs and Th17 cells suggests a role in modulating lung inflammation, potentially affecting disease progression. These findings lay the groundwork for further research, underscoring CD39-expressing cells as potential therapeutic targets in HP.
Collapse
Affiliation(s)
- Tharushi Ayanthika de Silva
- Centre for Genomics and Personalised Health, Faculty of Health, School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia
- Queensland Lung Transplant Service, Ground Floor, Clinical Sciences Building, The Prince Charles Hospital, Rode Road, Chermside, Brisbane, QLD 4000, Australia
| | - Simon Apte
- Queensland Lung Transplant Service, Ground Floor, Clinical Sciences Building, The Prince Charles Hospital, Rode Road, Chermside, Brisbane, QLD 4000, Australia
- Facility of Clinical Medicine, The University of Queensland, Brisbane, QLD 4000, Australia
| | - Joanne Voisey
- Centre for Genomics and Personalised Health, Faculty of Health, School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia
| | - Kirsten Spann
- Centre for Immunology and Infection Control, Faculty of Health, School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia
| | - Maxine Tan
- Queensland Lung Transplant Service, Ground Floor, Clinical Sciences Building, The Prince Charles Hospital, Rode Road, Chermside, Brisbane, QLD 4000, Australia
- Facility of Clinical Medicine, The University of Queensland, Brisbane, QLD 4000, Australia
| | - Chandima Divithotawela
- Queensland Lung Transplant Service, Ground Floor, Clinical Sciences Building, The Prince Charles Hospital, Rode Road, Chermside, Brisbane, QLD 4000, Australia
| | - Daniel Chambers
- Centre for Genomics and Personalised Health, Faculty of Health, School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia
- Queensland Lung Transplant Service, Ground Floor, Clinical Sciences Building, The Prince Charles Hospital, Rode Road, Chermside, Brisbane, QLD 4000, Australia
- Facility of Clinical Medicine, The University of Queensland, Brisbane, QLD 4000, Australia
| | - Brendan O’Sullivan
- Centre for Genomics and Personalised Health, Faculty of Health, School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia
- Queensland Lung Transplant Service, Ground Floor, Clinical Sciences Building, The Prince Charles Hospital, Rode Road, Chermside, Brisbane, QLD 4000, Australia
- Facility of Clinical Medicine, The University of Queensland, Brisbane, QLD 4000, Australia
| |
Collapse
|
14
|
Zhang Q, Yang C, Ma S, Guo S, Hu X, Zhou Z, Liu Y, Zhang X, Jiang R, Zhang Z, Wen L. Shiwei Qingwen decoction regulates TLR4/NF-κB signaling pathway and NLRP3 inflammasome to reduce inflammatory response in lipopolysaccharide -induced acute lung injury. JOURNAL OF ETHNOPHARMACOLOGY 2023; 313:116615. [PMID: 37164255 DOI: 10.1016/j.jep.2023.116615] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/25/2023] [Accepted: 05/06/2023] [Indexed: 05/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Shiwei Qingwen decoction (SWQ), a Chinese herbal formula based on the classic traditional Chinese medicine prescription Yu Ping Feng San, has shown efficacy in preventing and treating early pneumonia with good clinical outcomes. However, its underlying mechanism is yet unclear. AIM OF THE STUDY To clarify the preventive and therapeutic effects of SWQ on lipopolysaccharide (LPS)-induced acute lung injury (ALI) and explore the underlying mechanism by which SWQ influences pneumonia. MATERIALS AND METHODS First, the chemical composition of SWQ was preliminarily determined by high performance liquid chromatography (HPLC), and the impact of SWQ (3.27, 6.55, and 13.1 g/kg) was assessed in the LPS-induced ALI rat model. Next, its inflammatory pathway was determined via network pharmacology. Finally, the molecular mechanism of SWQ was validated using a rat ALI model and a THP-1 cell inflammation model. RESULTS HPLC identified chlorogenic acid, prime-O-glucosylcimifugin, calycosin, and 5-O-methylaminoside in the chemical profile of SWQ. In the ALI model, SWQ alleviated ALI by reducing lung wet/dry weight ratio (W/D) and preventing histopathological damage to the lungs. At the same time, SWQ decreased penetration of inflammatory mediators by upregulating AQP1 and AQP5 and endothelial nitric oxide synthase (eNOS). Pretreatment with SWQ downregulated white blood cells and neutrophils count in BALF and suppressed LPS-induced expression levels of MPO, NE, and pro-inflammatory factors (TNF-α, IL-1β, IL-6, and iNOS). Network pharmacology showed that SWQ was associated with TLR4/NF-κB inflammation pathway. Moreover, pretreatment with SWQ reduced the expression level of TLR4/NF-κB signaling pathway-associated proteins (TLR4, Myd88, p-IκB, and p-p65) and NLRP3 inflammasome (NLRP3, ASC, caspase-1, and cleaved-IL-1β) in vivo and vitro. CONCLUSIONS The present study demonstrates that SWQ can reduce inflammation in ALI by inhibiting TLR4/NF-κB and NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- Qian Zhang
- School of Basic Medicine, Hubei University of Traditional Chinese Medicine, Wuhan, 430065, China
| | - Chengxiong Yang
- School of Chemical Engineering and Pharmacy, Jingchu University of Technology, Jingmen, 448000, China
| | - Shangzhi Ma
- School of Pharmacy, Hubei University of Traditional Chinese Medicine, Wuhan, 430065, China
| | - Shuyun Guo
- School of Basic Medicine, Hubei University of Traditional Chinese Medicine, Wuhan, 430065, China
| | - Xiaodi Hu
- School of Pharmacy, Hubei University of Traditional Chinese Medicine, Wuhan, 430065, China
| | - Zhongshi Zhou
- School of Pharmacy, Hubei University of Traditional Chinese Medicine, Wuhan, 430065, China
| | - Yanju Liu
- School of Pharmacy, Hubei University of Traditional Chinese Medicine, Wuhan, 430065, China
| | - Xiuqiao Zhang
- School of Pharmacy, Hubei University of Traditional Chinese Medicine, Wuhan, 430065, China
| | - Ruixue Jiang
- School of Basic Medicine, Hubei University of Traditional Chinese Medicine, Wuhan, 430065, China
| | - Zhihua Zhang
- School of Basic Medicine, Hubei University of Traditional Chinese Medicine, Wuhan, 430065, China.
| | - Li Wen
- School of Pharmacy, Hubei University of Traditional Chinese Medicine, Wuhan, 430065, China.
| |
Collapse
|
15
|
Strickland LN, Faraoni EY, Ruan W, Yuan X, Eltzschig HK, Bailey-Lundberg JM. The resurgence of the Adora2b receptor as an immunotherapeutic target in pancreatic cancer. Front Immunol 2023; 14:1163585. [PMID: 37187740 PMCID: PMC10175829 DOI: 10.3389/fimmu.2023.1163585] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 04/19/2023] [Indexed: 05/17/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is characterized by a dense desmoplastic stroma that impedes drug delivery, reduces parenchymal blood flow, and suppresses the anti-tumor immune response. The extracellular matrix and abundance of stromal cells result in severe hypoxia within the tumor microenvironment (TME), and emerging publications evaluating PDAC tumorigenesis have shown the adenosine signaling pathway promotes an immunosuppressive TME and contributes to the overall low survival rate. Hypoxia increases many elements of the adenosine signaling pathway, resulting in higher adenosine levels in the TME, further contributing to immune suppression. Extracellular adenosine signals through 4 adenosine receptors (Adora1, Adora2a, Adora2b, Adora3). Of the 4 receptors, Adora2b has the lowest affinity for adenosine and thus, has important consequences when stimulated by adenosine binding in the hypoxic TME. We and others have shown that Adora2b is present in normal pancreas tissue, and in injured or diseased pancreatic tissue, Adora2b levels are significantly elevated. The Adora2b receptor is present on many immune cells, including macrophages, dendritic cells, natural killer cells, natural killer T cells, γδ T cells, B cells, T cells, CD4+ T cells, and CD8+ T cells. In these immune cell types, adenosine signaling through Adora2b can reduce the adaptive anti-tumor response, augmenting immune suppression, or may contribute to transformation and changes in fibrosis, perineural invasion, or the vasculature by binding the Adora2b receptor on neoplastic epithelial cells, cancer-associated fibroblasts, blood vessels, lymphatic vessels, and nerves. In this review, we discuss the mechanistic consequences of Adora2b activation on cell types in the tumor microenvironment. As the cell-autonomous role of adenosine signaling through Adora2b has not been comprehensively studied in pancreatic cancer cells, we will also discuss published data from other malignancies to infer emerging therapeutic considerations for targeting the Adora2b adenosine receptor to reduce the proliferative, invasive, and metastatic potential of PDAC cells.
Collapse
Affiliation(s)
| | | | | | | | | | - Jennifer M. Bailey-Lundberg
- Department of Anesthesiology, Critical Care, and Pain Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
16
|
Wang Y, Sun Z, Zhang H, Song Y, Wang Y, Xu W, Li M. CVB3 Inhibits NLRP3 Inflammasome Activation by Suppressing NF-κB Pathway and ROS Production in LPS-Induced Macrophages. Viruses 2023; 15:v15051078. [PMID: 37243164 DOI: 10.3390/v15051078] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/19/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
Inflammasomes are cytosolic sensors of pathogens. Their activation can lead to the induction of caspase-1-mediated inflammatory responses and the release of several proinflammatory cytokines, including IL-1β. There is a complex relationship between viral infection and the nucleotide-binding oligomerization domain-like receptors family pyrin domain-containing 3 (NLRP3) inflammasome. The activation of the NLRP3 inflammasome is essential for antiviral immunity, while excessive NLRP3 inflammasome activation may lead to excessive inflammation and pathological damage. Meanwhile, viruses have evolved strategies to suppress the activation of inflammasome signaling pathways, thus escaping immune responses. In this study, we investigated the inhibitory effect of coxsackievirus B3 (CVB3), a positive single-strand RNA virus, on the activation of the NLRP3 inflammasome in macrophages. CVB3-infected mice had significantly lower production of IL-1β and a lower level of NLRP3 in the small intestine after LPS stimulation. Furthermore, we found that CVB3 infection inhibited NLRP3 inflammasome activation and IL-1β production in macrophages by suppressing the NF-κB signaling pathway and ROS production. Additionally, CVB3 infection increased the susceptibility of mice to Escherichia coli infection by decreasing IL-1β production. Collectively, our study revealed a novel mechanism of NLRP3 inflammasome activation by suppressing the NF-κB pathway and ROS production in LPS-induced macrophages. Our findings may provide new ideas for antiviral treatment and drug development for CVB3 infection.
Collapse
Affiliation(s)
- Yanqi Wang
- Institute of Biology and Medical Sciences, Soochow University, Building 703, 199 Ren-ai Road, Suzhou 215123, China
| | - Zhirong Sun
- Institute of Biology and Medical Sciences, Soochow University, Building 703, 199 Ren-ai Road, Suzhou 215123, China
| | - Hongkai Zhang
- Suzhou Center for Disease Prevention and Control, 72 Sanxiang Road, Suzhou 215004, China
| | - Yahui Song
- Institute of Biology and Medical Sciences, Soochow University, Building 703, 199 Ren-ai Road, Suzhou 215123, China
| | - Yi Wang
- Institute of Biology and Medical Sciences, Soochow University, Building 703, 199 Ren-ai Road, Suzhou 215123, China
| | - Wei Xu
- Institute of Biology and Medical Sciences, Soochow University, Building 703, 199 Ren-ai Road, Suzhou 215123, China
| | - Min Li
- Institute of Biology and Medical Sciences, Soochow University, Building 703, 199 Ren-ai Road, Suzhou 215123, China
| |
Collapse
|
17
|
Effendi WI, Nagano T. A2B Adenosine Receptor in Idiopathic Pulmonary Fibrosis: Pursuing Proper Pit Stop to Interfere with Disease Progression. Int J Mol Sci 2023; 24:4428. [PMID: 36901855 PMCID: PMC10002355 DOI: 10.3390/ijms24054428] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/19/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
Purine nucleotides and nucleosides are involved in various human physiological and pathological mechanisms. The pathological deregulation of purinergic signaling contributes to various chronic respiratory diseases. Among the adenosine receptors, A2B has the lowest affinity such that it was long considered to have little pathophysiological significance. Many studies suggest that A2BAR plays protective roles during the early stage of acute inflammation. However, increased adenosine levels during chronic epithelial injury and inflammation might activate A2BAR, resulting in cellular effects relevant to the progression of pulmonary fibrosis.
Collapse
Affiliation(s)
- Wiwin Is Effendi
- Department of Pulmonology and Respiratory Medicine, Faculty of Medicine, Universitas Airlangga (UNAIR), Surabaya 60132, Indonesia
- Department of Pulmonology and Respiratory Medicine, Universitas Airlangga Teaching Hospital, Surabaya 60015, Indonesia
- Pulmonology and Respiratory Medicine of UNAIR (PaRU) Research Center, Universitas Airlangga Teaching Hospital, Surabaya 60015, Indonesia
| | - Tatsuya Nagano
- Division of Respiratory Medicine, Department of Internal Medicine, Graduate School of Medicine, Kobe University, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| |
Collapse
|
18
|
Hamidou Soumana I, Ryu MH, Leitao Filho FS, Yang J, Orach J, Nislow C, Leung JM, Rider CF, Carlsten C. Exposure to diesel exhaust alters the functional metagenomic composition of the airway microbiome in former smokers. ENVIRONMENTAL RESEARCH 2023; 216:114826. [PMID: 36403657 DOI: 10.1016/j.envres.2022.114826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/01/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
The lung microbiome plays a crucial role in airway homeostasis, yet we know little about the effects of exposures such as air pollution therein. We conducted a controlled human exposure study to assess the impact of diesel exhaust (DE) on the human airway microbiome. Twenty-four participants (former smokers with mild to moderate COPD (N = 9), healthy former smokers (N = 7), and control healthy never smokers (N = 8)) were exposed to DE (300 μg/m3 PM2.5) and filtered air (FA) for 2 h in a randomized order, separated by a 4-week washout. Endobronchial brushing samples were collected 24 h post-exposure and sequenced for the 16S microbiome, which was analyzed using QIIME2 and PICRUSt2 to examine diversity and metabolic functions, respectively. DE exposure altered airway microbiome metabolic functions in spite of statistically stable microbiome diversity. Affected functions included increases in: superpathway of purine deoxyribonucleosides degradation (pathway differential abundance 743.9, CI 95% 201.2 to 1286.6), thiazole biosynthesis I (668.5, CI 95% 139.9 to 1197.06), and L-lysine biosynthesis II (666.5, CI 95% 73.3 to 1257.7). There was an exposure-by-age effect, such that menaquinone biosynthesis superpathways were the most enriched function in the microbiome of participants aged >60, irrespective of smoking or health status. Moreover, exposure-by-phenotype analysis showed metabolic alterations in former smokers after DE exposure. These observations suggest that DE exposure induced substantial changes in the metabolic functions of the airway microbiome despite the absence of diversity changes.
Collapse
Affiliation(s)
- Illiassou Hamidou Soumana
- Air Pollution Exposure Laboratory, Vancouver Coastal Health Research Institute, Division of Respiratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Min Hyung Ryu
- Air Pollution Exposure Laboratory, Vancouver Coastal Health Research Institute, Division of Respiratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | | | - Julia Yang
- Centre for Heart and Lung Innovation, St. Paul's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Juma Orach
- Air Pollution Exposure Laboratory, Vancouver Coastal Health Research Institute, Division of Respiratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Corey Nislow
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - Janice M Leung
- Centre for Heart and Lung Innovation, St. Paul's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Christopher Francis Rider
- Air Pollution Exposure Laboratory, Vancouver Coastal Health Research Institute, Division of Respiratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Christopher Carlsten
- Air Pollution Exposure Laboratory, Vancouver Coastal Health Research Institute, Division of Respiratory Medicine, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
19
|
Ren Y, Qi L, Zhang L, Xu J, Ma J, Lv Y, Zhang Y, Wu R. Cupping alleviates lung injury through the adenosine/A 2BAR pathway. Heliyon 2022; 8:e12141. [PMID: 36544817 PMCID: PMC9761715 DOI: 10.1016/j.heliyon.2022.e12141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/09/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Acute lung injury (ALI) is a serious condition. Inflammation plays a crucial role in the pathogenesis of ALI. Cupping, as a part of traditional Chinese medicine, is still a popular complementary and alternative therapy for a variety of ailments including respiratory diseases. However, reliable scientific data about cupping therapy are scarce. Adenosine, a purine nucleoside produced under metabolic stress by the action of extracellular ectonucleotidases (i.e. CD39 and CD73), can attenuate ALI through the A2BAR receptor. The aim of this study was to investigate the protective effect of cupping in a rat model of ALI and the role of adenosine in it. METHODS Male adult rats were subjected to ALI by intratracheal LPS instillation (0.3 mg/kg). Immediately after intratracheal LPS instillation, vacuum pressure was applied to a sanitized plastic bell cup on the back of the rat by suction for 10 min. Pulmonary injury and inflammation were assessed at 4 h after LPS challenge. The role of adenosine and A2BAR in cupping's protection after LPS instillation were evaluated. RESULTS Cupping alleviated LPS-induced lung injury, reduced inflammation and inhibited NF-kB activation in rats. Cupping upregulated CD39 and CD73 mRNA expression of the skin tissue at the cupping site and increased circulating levels of adenosine. Administration of PSB1115, a specific adenosine A2BAR receptor antagonist, abolished cupping's beneficial effects in LPS-induced ALI. CONCLUSIONS Cupping attenuates lung inflammation and injury through the adenosine/A2BAR pathway. The current study provides evidence-based information about cupping therapy in ALI.
Collapse
Affiliation(s)
- Yifan Ren
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Lei Qi
- Department of Neurosurgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Lin Zhang
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Jinkai Xu
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Jiancan Ma
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Yi Lv
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Yuanyuan Zhang
- Department of Pediatrics, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Rongqian Wu
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| |
Collapse
|
20
|
Guo J, Liu QZ, Zhu FJ, Li M, Li J, Guo L, Sun QY, Yang QX. Acteoside attenuates acute lung injury following administration of cobra venom factor to mice. Heliyon 2022; 8:e11622. [PMID: 36411899 PMCID: PMC9674544 DOI: 10.1016/j.heliyon.2022.e11622] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/17/2022] [Accepted: 11/07/2022] [Indexed: 11/16/2022] Open
Abstract
Background Acteoside, a water-soluble active constituent of diverse valuable medicinal vegetation, has shown strong anti-inflammatory property. However, studies on the anti-inflammatory property of acteoside in complement-induced acute lung injury (ALI) are limited. Therefore, this study aims to evaluate the anti-inflammatory activity of acteoside in cobra venom factor (CVF)-stimulated human microvascular endothelial cells (HMEC) and in ALI mice model. Methods In this study, we investigated the effects of acteoside (20, 10, and 5 μg/mL) in vitro in CVF induced HMECs and the activity of acteoside (100, 50, and 20 mg/kg/day bodyweight) in vivo in CVF induced ALI mice. Each eight male mice were orally administered acteoside or the positive drug PDTC (100 mg/kg/day) for 7 days before CVF (35 μg/kg) injection. After injection for 1 h, the pharmacological effects of acteoside were investigated by spectrophotometry, pathological examination, enzyme-linked immunosorbent assay, and immunohistochemistry. Results In vitro, acteoside (20, 10, and 5 μg/mL) reduced the protein expression of adhesion molecules and pro-inflammatory cytokines and transcriptional activity of NF-κB (P < 0.01). In vivo studies showed that acteoside dose-dependently alleviated lung histopathologic lesion, inhibited the production of the protein content of BALF, leukocyte cell number, lung MPO activity, and expression levels of IL-6, TNF-α, and ICAM-1, and suppressed the C5b-9 deposition and NF-κB activation in CVF-induced acute lung inflammation in mice (P < 0.05, 0.01). Conclusion This study demonstrates that acteoside exerts strong anti-inflammatory activities in the CVF-induced acute lung inflammation model and suggests that acteoside is a potential therapeutic agent for complement-related inflammatory diseases.
Collapse
Affiliation(s)
- Jing Guo
- School of Karst Science, Guizhou Normal University/State Engineering Technology Institute for Karst Desertification Control, Guiyang, China
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
- Center for Pharmacology and Bioactivity Research, The Key Laboratory of Chemistry for Natural Products, Guizhou Province and Chinese Academy of Sciences, Guiyang, China
- Mordern Research Center for Traditional Chinese Medicine, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | - Qiao-Zhou Liu
- School of Karst Science, Guizhou Normal University/State Engineering Technology Institute for Karst Desertification Control, Guiyang, China
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
- Center for Pharmacology and Bioactivity Research, The Key Laboratory of Chemistry for Natural Products, Guizhou Province and Chinese Academy of Sciences, Guiyang, China
- Guyuan No. 8 Middle School, Guyuan, China
| | - Fang-Juan Zhu
- School of Karst Science, Guizhou Normal University/State Engineering Technology Institute for Karst Desertification Control, Guiyang, China
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
- Center for Pharmacology and Bioactivity Research, The Key Laboratory of Chemistry for Natural Products, Guizhou Province and Chinese Academy of Sciences, Guiyang, China
| | - Min Li
- General Ward, Guizhou Provincial People's Hospital, Guiyang, China
| | - Jiao Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
- Center for Pharmacology and Bioactivity Research, The Key Laboratory of Chemistry for Natural Products, Guizhou Province and Chinese Academy of Sciences, Guiyang, China
| | - Li Guo
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
- Center for Pharmacology and Bioactivity Research, The Key Laboratory of Chemistry for Natural Products, Guizhou Province and Chinese Academy of Sciences, Guiyang, China
| | - Qian-Yun Sun
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
- Center for Pharmacology and Bioactivity Research, The Key Laboratory of Chemistry for Natural Products, Guizhou Province and Chinese Academy of Sciences, Guiyang, China
- Corresponding author.
| | - Qing-Xiong Yang
- School of Karst Science, Guizhou Normal University/State Engineering Technology Institute for Karst Desertification Control, Guiyang, China
- Corresponding author.
| |
Collapse
|
21
|
Contribution of Adenosine in the Physiological Changes and Injuries Secondary to Exposure to Extreme Oxygen Pressure in Healthy Subjects. Biomedicines 2022; 10:biomedicines10092059. [PMID: 36140160 PMCID: PMC9495509 DOI: 10.3390/biomedicines10092059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/04/2022] [Accepted: 08/16/2022] [Indexed: 12/05/2022] Open
Abstract
Climbers and aviators are exposed to severe hypoxia at high altitudes, whereas divers are exposed to hyperoxia at depth. The aim of this study was to report changes in the adenosinergic system induced by exposure to extreme oxygen partial pressures. At high altitudes, the increased adenosine concentration contributes to brain protection against hypoxia through various mechanisms such as stimulation of glycogenolysis for ATP production, reduction in neuronal energy requirements, enhancement in 2,3-bisphosphoglycerate production, and increase in cerebral blood flow secondary to vasodilation of cerebral arteries. In the context of mountain illness, the increased level of A2AR expression leads to glial dysfunction through neuroinflammation and is involved in the pathogenesis of neurological disorders. Nonetheless, a high level of adenosine concentration can protect against high-altitude pulmonary edema via a decrease in pulmonary arterial pressure. The adenosinergic system is also involved in the acclimatization phenomenon induced by prolonged exposure to altitude hypoxia. During hyperoxic exposure, decreased extracellular adenosine and low A2A receptor expression contribute to vasoconstriction. The resulting decrease in cerebral blood flow is considered a preventive phenomenon against cerebral oxygen toxicity through the decrease in oxygen delivery to the brain. With regard to lung oxygen toxicity, hyperoxia leads to an increase in extracellular adenosine, which acts to preserve pulmonary barrier function. Changes in the adenosinergic system induced by exposure to extreme oxygen partial pressures frequently have a benefit in decreasing the risk of adverse effects.
Collapse
|
22
|
Wang S, Luo SX, Jie J, Li D, Liu H, Song L. Efficacy of terpenoids in attenuating pulmonary edema in acute lung injury: A meta-analysis of animal studies. Front Pharmacol 2022; 13:946554. [PMID: 36034851 PMCID: PMC9401633 DOI: 10.3389/fphar.2022.946554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/27/2022] [Indexed: 12/09/2022] Open
Abstract
Background: The clinical efficiency of terpenoids in treating human acute lung injury (ALI) is yet to be determined. The lipopolysaccharide-induced rat model of ALI is a well-established and widely used experimental model for studying terpenoids’ effects on ALI. Using a systematic review and meta-analysis, the therapeutic efficiency of terpenoid administration on the lung wet-to-dry weight ratio in rats was investigated. Methods: Using the Cochrane Library, Embase, and PubMed databases, a comprehensive literature search for studies evaluating the therapeutic efficacy of terpenoids on ALI in rats was conducted. The lung wet-to-dry weight ratio was extracted as the main outcome. The quality of the included studies was assessed using the Systematic Review Center for Laboratory Animal Experimentation’s risk of bias tool. Results: In total, 16 studies were included in this meta-analysis. In general, terpenoids significantly lowered the lung wet-to-dry weight ratio when compared with the control vehicle (p = 0.0002; standardized mean difference (SMD): −0.16; 95% confidence interval (CI): −0.24, −0.08). Subgroup analysis revealed that low dose (≤10 μmol/kg) (p < 0.0001; SMD: −0.68; 95% CI: −1.02, −0.34), intraperitoneal injection (p = 0.0002; SMD: −0.43; 95% CI: −0.66, −0.20), diterpenoid (p = 0.004; SMD: −0.13; 95% CI: −0.23, −0.04), and triterpenoid (p = 0.04; SMD: −0.28; 95% CI: −0.54, −0.01) significantly lowered the lung wet-to-dry weight ratio when compared with the control vehicle. Conclusion: A low dose of diterpenoid and triterpenoid administered intraperitoneally is effective in alleviating ALI. This systematic review and meta-analysis provides a valuable mirror for clinical research aiming at the advancement of terpenoids for preventive and therapeutic use. Systematic Review Registration: CRD42022326779
Collapse
Affiliation(s)
- Shuai Wang
- Department of Vascular Surgery, General Surgery Center, The First Hospital of Jilin University, Chasngchun, JL, China
| | - Sean X. Luo
- Department of Vascular Surgery, General Surgery Center, The First Hospital of Jilin University, Chasngchun, JL, China
| | - Jing Jie
- Center for Pathogen Biology and Infectious Diseases, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, Department of Respiratory Medicine, State Key Laboratory for Zoonotic Diseases, The First Hospital of Jilin University, Changchun, China
| | - Dan Li
- Center for Pathogen Biology and Infectious Diseases, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, Department of Respiratory Medicine, State Key Laboratory for Zoonotic Diseases, The First Hospital of Jilin University, Changchun, China
| | - Han Liu
- Center for Pathogen Biology and Infectious Diseases, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, Department of Respiratory Medicine, State Key Laboratory for Zoonotic Diseases, The First Hospital of Jilin University, Changchun, China
- *Correspondence: Han Liu, ; Lei Song,
| | - Lei Song
- Center for Pathogen Biology and Infectious Diseases, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, Department of Respiratory Medicine, State Key Laboratory for Zoonotic Diseases, The First Hospital of Jilin University, Changchun, China
- *Correspondence: Han Liu, ; Lei Song,
| |
Collapse
|
23
|
STING inhibitor ameliorates LPS-induced ALI by preventing vascular endothelial cells-mediated immune cells chemotaxis and adhesion. Acta Pharmacol Sin 2022; 43:2055-2066. [PMID: 34907359 PMCID: PMC9343420 DOI: 10.1038/s41401-021-00813-2] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/01/2021] [Indexed: 02/08/2023]
Abstract
Acute lung injury (ALI) is a common and devastating clinical disorder featured by excessive inflammatory responses. Stimulator of interferon genes (STING) is an indispensable molecule for regulating inflammation and immune response in multiple diseases, but the role of STING in the ALI pathogenesis is not well elucidated. In this study, we explored the molecular mechanisms of STING in regulating lipopolysaccharide (LPS)-induced lung injury. Mice were pretreated with a STING inhibitor C-176 (15, 30 mg/kg, i.p.) before LPS inhalation to induce ALI. We showed that LPS inhalation significantly increased STING expression in the lung tissues, whereas C-176 pretreatment dose-dependently suppressed the expression of STING, decreased the production of inflammatory cytokines including TNF-α, IL-6, IL-12, and IL-1β, and restrained the expression of chemokines and adhesion molecule vascular cell adhesion protein-1 (VCAM-1) in the lung tissues. Consistently, in vitro experiments conducted in TNF-α-stimulated HMEC-1cells (common and classic vascular endothelial cells) revealed that human STING inhibitor H-151 or STING siRNA downregulated the expression levels of adhesion molecule and chemokines in HMEC-1cells, accompanied by decreased adhesive ability and chemotaxis of immunocytes upon TNF-α stimulation. We further revealed that STING inhibitor H-151 or STING knockdown significantly decreased the phosphorylation of transcription factor STAT1, which subsequently influenced its binding to chemokine CCL2 and adhesive molecule VCAM-1 gene promoter. Collectively, STING inhibitor can alleviate LPS-induced ALI in mice by preventing vascular endothelial cells-mediated immune cell chemotaxis and adhesion, suggesting that STING may be a promising therapeutic target for the treatment of ALI.
Collapse
|
24
|
Zhang T, Yu-Jing L, Ma T. The immunomodulatory function of adenosine in sepsis. Front Immunol 2022; 13:936547. [PMID: 35958599 PMCID: PMC9357910 DOI: 10.3389/fimmu.2022.936547] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/06/2022] [Indexed: 12/03/2022] Open
Abstract
Sepsis is an unsolved clinical condition with a substantial mortality rate in the hospital. Despite decades of research, no effective treatments for sepsis exists. The role of adenosine in the pathogenesis of sepsis is discussed in this paper. Adenosine is an essential endogenous molecule that activates the A1, A2a, A2b, and A3 adenosine receptors to regulate tissue function. These receptors are found on a wide range of immune cells and bind adenosine, which helps to control the immune response to inflammation. The adenosine receptors have many regulatory activities that determine the onset and progression of the disease, which have been discovered via the use of animal models. A greater understanding of the role of adenosine in modulating the immune system has sparked hope that an adenosine receptor-targeted treatment may be used one day to treat sepsis.
Collapse
Affiliation(s)
- Teng Zhang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Li Yu-Jing
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China
| | - Tao Ma
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
- *Correspondence: Tao Ma,
| |
Collapse
|
25
|
Yuan X, Mills T, Doursout MF, Evans SE, Vidal Melo MF, Eltzschig HK. Alternative adenosine Receptor activation: The netrin-Adora2b link. Front Pharmacol 2022; 13:944994. [PMID: 35910389 PMCID: PMC9334855 DOI: 10.3389/fphar.2022.944994] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 06/28/2022] [Indexed: 11/25/2022] Open
Abstract
During hypoxia or inflammation, extracellular adenosine levels are elevated. Studies using pharmacologic approaches or genetic animal models pertinent to extracellular adenosine signaling implicate this pathway in attenuating hypoxia-associated inflammation. There are four distinct adenosine receptors. Of these, it is not surprising that the Adora2b adenosine receptor functions as an endogenous feedback loop to control hypoxia-associated inflammation. First, Adora2b activation requires higher adenosine concentrations compared to other adenosine receptors, similar to those achieved during hypoxic inflammation. Second, Adora2b is transcriptionally induced during hypoxia or inflammation by hypoxia-inducible transcription factor HIF1A. Studies seeking an alternative adenosine receptor activation mechanism have linked netrin-1 with Adora2b. Netrin-1 was originally discovered as a neuronal guidance molecule but also functions as an immune-modulatory signaling molecule. Similar to Adora2b, netrin-1 is induced by HIF1A, and has been shown to enhance Adora2b signaling. Studies of acute respiratory distress syndrome (ARDS), intestinal inflammation, myocardial or hepatic ischemia and reperfusion implicate the netrin-Adora2b link in tissue protection. In this review, we will discuss the potential molecular linkage between netrin-1 and Adora2b, and explore studies demonstrating interactions between netrin-1 and Adora2b in attenuating tissue inflammation.
Collapse
Affiliation(s)
- Xiaoyi Yuan
- Department of Anesthesiology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Tingting Mills
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Marie-Francoise Doursout
- Department of Anesthesiology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Scott E. Evans
- Department of Pulmonology, MD Anderson Cancer Center, Houston, TX, United States
| | | | - Holger K. Eltzschig
- Department of Anesthesiology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
26
|
Palmer CS, Kimmey JM. Neutrophil Recruitment in Pneumococcal Pneumonia. Front Cell Infect Microbiol 2022; 12:894644. [PMID: 35646729 PMCID: PMC9136017 DOI: 10.3389/fcimb.2022.894644] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 04/18/2022] [Indexed: 01/19/2023] Open
Abstract
Streptococcus pneumoniae (Spn) is the primary agent of community-acquired pneumonia. Neutrophils are innate immune cells that are essential for bacterial clearance during pneumococcal pneumonia but can also do harm to host tissue. Neutrophil migration in pneumococcal pneumonia is therefore a major determinant of host disease outcomes. During Spn infection, detection of the bacterium leads to an increase in proinflammatory signals and subsequent expression of integrins and ligands on both the neutrophil as well as endothelial and epithelial cells. These integrins and ligands mediate the tethering and migration of the neutrophil from the bloodstream to the site of infection. A gradient of host-derived and bacterial-derived chemoattractants contribute to targeted movement of neutrophils. During pneumococcal pneumonia, neutrophils are rapidly recruited to the pulmonary space, but studies show that some of the canonical neutrophil migratory machinery is dispensable. Investigation of neutrophil migration is necessary for us to understand the dynamics of pneumococcal infection. Here, we summarize what is known about the pathways that lead to migration of the neutrophil from the capillaries to the lung during pneumococcal infection.
Collapse
Affiliation(s)
| | - Jacqueline M. Kimmey
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, Santa Cruz, CA, United States
| |
Collapse
|
27
|
Zhao N, Xia GQ, Cai JN, Li ZX, Lv XW. Adenosine receptor A2B mediates alcoholic hepatitis by regulating cAMP levels and the NF-KB pathway. Toxicol Lett 2022; 359:84-95. [DOI: 10.1016/j.toxlet.2022.01.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 01/15/2022] [Accepted: 01/24/2022] [Indexed: 12/16/2022]
|
28
|
Zhang C, Wang X, Wang C, He C, Ma Q, Li J, Wang W, Xu YT, Wang T. Qingwenzhike Prescription Alleviates Acute Lung Injury Induced by LPS via Inhibiting TLR4/NF-kB Pathway and NLRP3 Inflammasome Activation. Front Pharmacol 2022; 12:790072. [PMID: 35002723 PMCID: PMC8733650 DOI: 10.3389/fphar.2021.790072] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 11/12/2021] [Indexed: 12/11/2022] Open
Abstract
Background: Acute lung injury (ALI) is characterized by dysfunction of the alveolar epithelial membrane caused by acute inflammation and tissue injury. Qingwenzhike (QWZK) prescription has been demonstrated to be effective against respiratory viral infections in clinical practices, including coronavirus disease 2019 (COVID-19) infection. So far, the chemical compositions, protective effects on ALI, and possible anti-inflammatory mechanisms remain unknown. Methods: In this study, the compositions of QWZK were determined via the linear ion trap/electrostatic field orbital trap tandem high-resolution mass spectrometry (UHPLC-LTQ-Orbitrap MS). To test the protective effects of QWZK on ALI, an ALI model induced by lipopolysaccharide (LPS) in rats was used. The effects of QWZK on the LPS-induced ALI were evaluated by pathological changes and the number and classification of white blood cell (WBC) in bronchoalveolar lavage fluid (BALF). To investigate the possible underlying mechanisms, the contents of interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), monocyte chemoattractant protein (MCP-1), interleukin-1β (IL-1β), interleukin-18 (IL-18), and immunoregulatory-related factors interferon-γ (IFN-γ) were detected by ELISA. Furthermore, the expression of Toll-like receptor 4 (TLR4), p-IKKα/β, IKKα, IKKβ, p-IκBα, IκBα, p-NF-κB, nuclear factor-κB (NF-κB), NOD-like receptor family pyrin domain containing 3 (NLRP3), cleaved caspase-1, pro-caspase-1, apoptosis-associated speck-like protein containing CARD (ASC), and β-actin were tested by Western blot. Results: A total of 99 compounds were identified in QWZK, including 33 flavonoids, 23 phenolic acids, 3 alkaloids, 3 coumarins, 20 triterpenoids, 5 anthraquinones, and 12 others. ALI rats induced by LPS exhibited significant increase in neutrophile, significant decrease in lymphocyte, and evidently thicker alveolar wall than control animals. QWZK reversed the changes in WBC count and alveolar wall to normal level on the model of ALI induced by LPS. ELISA results revealed that QWZK significantly reduced the overexpression of proinflammatory factors IL-6, TNF-α, MCP-1, IL-1β, IL-18, and IFN-γ induced by LPS. Western blot results demonstrated that QWZK significantly downregulated the overexpression of TLR4, p-IKKα/β, p-IκBα, p-NF-κB, NLRP3, cleaved caspase-1, and ASC induced by LPS, which suggested that QWZK inhibited TLR4/NF-κB signaling pathway and NLRP3 inflammasomes. Conclusions: The chemical compositions of QWZK were first identified. It was demonstrated that QWZK showed protective effects on ALI induced by LPS. The possible underlying mechanisms of QWZK on ALI induced by LPS was via inhibiting TLR4/NF-kB signaling pathway and NLRP3 inflammasome activation. This work suggested that QWZK is a potential therapeutic candidate for the treatments of ALI and pulmonary inflammation.
Collapse
Affiliation(s)
- Cai Zhang
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.,NMPA Key Laboratory for Research and Evaluation of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xinran Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Chunguo Wang
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.,NMPA Key Laboratory for Research and Evaluation of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Cheng He
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.,NMPA Key Laboratory for Research and Evaluation of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Quantao Ma
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.,NMPA Key Laboratory for Research and Evaluation of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Jialin Li
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.,NMPA Key Laboratory for Research and Evaluation of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Weiling Wang
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.,NMPA Key Laboratory for Research and Evaluation of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yan-Tong Xu
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.,NMPA Key Laboratory for Research and Evaluation of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Ting Wang
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.,NMPA Key Laboratory for Research and Evaluation of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
29
|
Halpin-Veszeleiova K, Hatfield SM. Therapeutic Targeting of Hypoxia-A2-Adenosinergic Pathway in COVID-19 Patients. Physiology (Bethesda) 2022; 37:46-52. [PMID: 34486395 PMCID: PMC8742736 DOI: 10.1152/physiol.00010.2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The hypoxia-hypoxia-inducible factor (HIF)-1α-A2-adenosinergic pathway protects tissues from inflammatory damage during antipathogen immune responses. The elimination of this physiological tissue-protecting mechanism by supplemental oxygenation may contribute to the high mortality of oxygen-ventilated COVID-19 patients by exacerbating inflammatory lung damage. Restoration of this pathway with hypoxia-adenosinergic drugs may improve outcomes in these patients.
Collapse
Affiliation(s)
- Katarina Halpin-Veszeleiova
- New England Inflammation and Tissue Protection Institute, Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts
| | - Stephen M Hatfield
- New England Inflammation and Tissue Protection Institute, Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts
| |
Collapse
|
30
|
Kanduc D. From Anti-SARS-CoV-2 Immune Response to the Cytokine Storm via Molecular Mimicry. Antibodies (Basel) 2021; 10:36. [PMID: 34698069 PMCID: PMC8544210 DOI: 10.3390/antib10040036] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 08/20/2021] [Accepted: 09/08/2021] [Indexed: 02/07/2023] Open
Abstract
The aim of this study was to investigate the role of molecular mimicry in the cytokine storms associated with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Human proteins endowed with anti-inflammatory activity were assembled and analyzed for peptide sharing with the SARS-CoV-2 spike glycoprotein (gp) using public databases. It was found that the SARS-CoV-2 spike gp shares numerous pentapeptides with anti-inflammatory proteins that, when altered, can lead to cytokine storms characterized by diverse disorders such as systemic multiorgan hyperinflammation, macrophage activation syndrome, ferritinemia, endothelial dysfunction, and acute respiratory syndrome. Immunologically, many shared peptides are part of experimentally validated epitopes and are also present in pathogens to which individuals may have been exposed following infections or vaccinal routes and of which the immune system has stored memory. Such an immunologic imprint might trigger powerful anamnestic secondary cross-reactive responses, thus explaining the raging of the cytokine storm that can occur following exposure to SARS-CoV-2. In conclusion, the results support molecular mimicry and the consequent cross-reactivity as a potential mechanism in SARS-CoV-2-induced cytokine storms, and highlight the role of immunological imprinting in determining high-affinity, high-avidity, autoimmune cross-reactions as a pathogenic sequela associated with anti-SARS-CoV-2 vaccines.
Collapse
Affiliation(s)
- Darja Kanduc
- Department of Biosciences, Biotechnologies, and Biopharmaceutics, University of Bari, 70125 Bari, Italy
| |
Collapse
|
31
|
Leão Batista Simões J, Fornari Basso H, Cristine Kosvoski G, Gavioli J, Marafon F, Elias Assmann C, Barbosa Carvalho F, Dulce Bagatini M. Targeting purinergic receptors to suppress the cytokine storm induced by SARS-CoV-2 infection in pulmonary tissue. Int Immunopharmacol 2021; 100:108150. [PMID: 34537482 PMCID: PMC8435372 DOI: 10.1016/j.intimp.2021.108150] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/26/2021] [Accepted: 09/08/2021] [Indexed: 12/13/2022]
Abstract
The etiological agent of coronavirus disease (COVID-19) is the new member of the Coronaviridae family, a severe acute respiratory syndrome coronavirus 2 virus (SARS-CoV-2), responsible for the pandemic that is plaguing the world. The single-stranded RNA virus is capable of infecting the respiratory tract, by binding the spike (S) protein on its viral surface to receptors for the angiotensin II-converting enzyme (ACE2), highly expressed in the pulmonary tissue, enabling the interaction of the virus with alveolar epithelial cells promoting endocytosis and replication of viral material. The infection triggers the activation of the immune system, increased purinergic signaling, and the release of cytokines as a defense mechanism, but the response can become exaggerated and prompt the so-called “cytokine storm”, developing cases such as severe acute respiratory syndrome (SARS). This is characterized by fever, cough, and difficulty breathing, which can progress to pneumonia, failure of different organs and death. Thus, the present review aims to compile and correlate the mechanisms involved between the immune and purinergic systems with COVID-19, since the modulation of purinergic receptors, such as A2A, A2B, and P2X7 expressed by immune cells, seems to be effective as a promising therapy, to reduce the severity of the disease, as well as aid in the treatment of acute lung diseases and other cases of generalized inflammation.
Collapse
Affiliation(s)
| | | | | | - Jullye Gavioli
- Medical School, Federal University of Fronteira Sul, Chapecó, SC, Brazil
| | - Filomena Marafon
- Postgraduate Program in Biochemistry, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Charles Elias Assmann
- Postgraduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | | | | |
Collapse
|
32
|
Hong H, Huang Q, Cai Y, Lin T, Xia F, Jin Z. Dexmedetomidine preconditioning ameliorates lung injury induced by pulmonary ischemia/reperfusion by upregulating promoter histone H3K4me3 modification of KGF-2. Exp Cell Res 2021; 406:112762. [PMID: 34352276 DOI: 10.1016/j.yexcr.2021.112762] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/28/2021] [Accepted: 07/30/2021] [Indexed: 12/14/2022]
Abstract
Keratinocyte growth factor (KGF)-2 has been highlighted to play a significant role in maintaining the endothelial barrier integrity in lung injury induced by ischemia-reperfusion (I/R). However, the underlying mechanism remains largely unknown. The aims of this study were to determine whether dexmedetomidine preconditioning (DexP) modulates pulmonary I/R-induced lung injury through the alteration in KGF-2 expression. In our I/R-modeled mice, DexP significantly inhibited pathological injury, inflammatory response, and inflammatory cell infiltration, while promoted endothelial barrier integrity and KGF-2 promoter activity in lung tissues. Bioinformatics prediction and ChIP-seq revealed that I/R significantly diminished the level of H3K4me3 modification in the KGF-2 promoter, which was significantly reversed by DexP. Moreover, DexP inhibited the expression of histone demethylase JMJD3, which in turn promoted the expression of KGF-2. In addition, overexpression of JMJD3 weakened the protective effect of DexP on lung injury in mice with I/R. Collectively, the present results demonstrated that DexP ameliorates endothelial barrier dysfunction via the JMJD3/KGF-2 axis.
Collapse
Affiliation(s)
- Huisuo Hong
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, PR China
| | - Qingqing Huang
- Department of Obstetrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, PR China.
| | - Yaoyao Cai
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, PR China
| | - Tingting Lin
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, PR China
| | - Fangfang Xia
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, PR China
| | - Zhousheng Jin
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, PR China.
| |
Collapse
|
33
|
Kim B, Guaregua V, Chen X, Zhao C, Yeow W, Berg NK, Eltzschig HK, Yuan X. Characterization of a Murine Model System to Study MicroRNA-147 During Inflammatory Organ Injury. Inflammation 2021; 44:1426-1440. [PMID: 33566257 PMCID: PMC7873671 DOI: 10.1007/s10753-021-01427-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 12/15/2020] [Accepted: 01/26/2021] [Indexed: 12/13/2022]
Abstract
Inflammatory organ injury and sepsis have profound impacts on the morbidity and mortality of surgical and critical care patients. MicroRNAs are small RNAs composed of 20-25 nucleotides that have a significant contribution to gene regulation. MicroRNA-147 (miR-147), in particular, has been shown to have an emerging role in different physiological functions such as cell cycle regulation and inflammatory responses. However, animal model systems to study tissue-specific functions of miR-147 during inflammatory conditions in vivo are lacking. In the present study, we characterize miR-147 expression in different organs and cell types. Next, we generated a transgenic mouse line with a floxed miR-147 gene. Subsequently, we used this mouse line to generate mice with whole-body deletion of miR-147 (miR-147 -/-) by crossing "floxed" miR-147 mice with transgenic mice expressing Cre recombinase in all tissues (CMVcre mice). Systematic analysis of miR-147 -/- mice demonstrates normal growth, development, and off-spring. In addition, deletion of the target gene in different organs was successful at baseline or during inflammation, including the heart, intestine, stomach, liver, spleen, bone marrow, lungs, kidneys, or stomach. Moreover, miR-147 -/- mice have identical baseline inflammatory gene expression compared to C57BL/6 mice, except elevated IL-6 expression in the spleen (7.5 fold, p < 0.05). Taken together, our data show the successful development of a transgenic animal model for tissue and cell-specific deletion of miR-147 that can be used to study the functional roles of miR-147 during inflammatory organ injury.
Collapse
Affiliation(s)
- Boyun Kim
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX, 77030, USA
| | - Victor Guaregua
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX, 77030, USA
| | - Xuebo Chen
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX, 77030, USA
| | - Chad Zhao
- McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Wanyi Yeow
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX, 77030, USA
| | - Nathaniel K Berg
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX, 77030, USA
| | - Holger K Eltzschig
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX, 77030, USA
| | - Xiaoyi Yuan
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX, 77030, USA.
| |
Collapse
|
34
|
Berg NK, Li J, Kim B, Mills T, Pei G, Zhao Z, Li X, Zhang X, Ruan W, Eltzschig HK, Yuan X. Hypoxia-inducible factor-dependent induction of myeloid-derived netrin-1 attenuates natural killer cell infiltration during endotoxin-induced lung injury. FASEB J 2021; 35:e21334. [PMID: 33715200 PMCID: PMC8251729 DOI: 10.1096/fj.202002407r] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 12/21/2022]
Abstract
Sepsis and sepsis‐associated lung inflammation significantly contribute to the morbidity and mortality of critical illness. Here, we examined the hypothesis that neuronal guidance proteins could orchestrate inflammatory events during endotoxin‐induced lung injury. Through a targeted array, we identified netrin‐1 as the top upregulated neuronal guidance protein in macrophages treated with lipopolysaccharide (LPS). Furthermore, we found that netrin‐1 is highly enriched in infiltrating myeloid cells, particularly in macrophages during LPS‐induced lung injury. Transcriptional studies implicate hypoxia‐inducible factor HIF‐1α in the transcriptional induction of netrin‐1 during LPS treatment. Subsequently, the deletion of netrin‐1 in the myeloid compartment (Ntn1loxp/loxp LysM Cre) resulted in exaggerated mortality and lung inflammation. Surprisingly, further studies revealed enhanced natural killer cells (NK cells) infiltration in Ntn1loxp/loxp LysM Cre mice, and neutralization of NK cell chemoattractant chemokine (C‐C motif) ligand 2 (CCL2) reversed the exaggerated lung inflammation. Together, these studies provide functional insight into myeloid cell‐derived netrin‐1 in controlling lung inflammation through the modulation of CCL2‐dependent infiltration of NK cells.
Collapse
Affiliation(s)
- Nathaniel K Berg
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Jiwen Li
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA.,Department of Cardiac Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Boyun Kim
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Tingting Mills
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Guangsheng Pei
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center, Houston, TX, USA
| | - Zhongming Zhao
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center, Houston, TX, USA.,Human Genetics Center, School of Public Health, The University of Texas Health Science Center, Houston, TX, USA
| | - Xiangyun Li
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA.,Department of Anesthesiology, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China
| | - Xu Zhang
- Department of Internal Medicine, The University of Texas Health Science Center, Houston, TX, USA.,Center for Clinical and Translational Sciences, The University of Texas Health Science Center, Houston, TX, USA
| | - Wei Ruan
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA.,Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Holger K Eltzschig
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Xiaoyi Yuan
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| |
Collapse
|
35
|
Figueiredo AB, de Oliveira E Castro RA, Nogueira-Paiva NC, Moreira F, Gonçalves FQ, Soares RP, Castro-Borges W, Silva GG, Cunha RA, Gonçalves T, Afonso LCC. Clustering of adenosine A 2B receptors with ectonucleotidases in caveolin-rich lipid rafts underlies immunomodulation by Leishmania amazonensis. FASEB J 2021; 35:e21509. [PMID: 33813781 DOI: 10.1096/fj.202002396rr] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 02/12/2021] [Accepted: 02/22/2021] [Indexed: 11/11/2022]
Abstract
Extracellular adenosine plays important roles in modulating the immune responses. We have previously demonstrated that infection of dendritic cells (DC) by Leishmania amazonensis leads to increased expression of CD39 and CD73 and to the selective activation of the low affinity A2B receptors (A2B R), which contributes to DC inhibition, without involvement of the high affinity A2A R. To understand this apparent paradox, we now characterized the alterations of both adenosine receptors in infected cells. With this aim, bone marrow-derived DC from C57BL/6J mice were infected with metacyclic promastigotes of L. amazonensis. Fluorescence microscopy revealed that L. amazonensis infection stimulates the recruitment of A2B R, but not of A2A R, to the surface of infected DC, without altering the amount of mRNA or the total A2B R density, an effect dependent on lipophosphoglycan (LPG). Log-phase promastigotes or axenic amastigotes of L. amazonensis do not stimulate A2B R recruitment. A2B R clusters are localized in caveolin-rich lipid rafts and the disruption of these membrane domains impairs A2B R recruitment and activation. More importantly, our results show that A2B R co-localize with CD39 and CD73 forming a "purinergic cluster" that allows for the production of extracellular adenosine in close proximity with these receptors. We conclude that A2B R activation by locally produced adenosine constitutes an elegant and powerful evasion mechanism used by L. amazonensis to down-modulate the DC activation.
Collapse
Affiliation(s)
- Amanda Braga Figueiredo
- Laboratório de Imunoparasitologia, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - Renata Alves de Oliveira E Castro
- Laboratório de Imunoparasitologia, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - Nívia Carolina Nogueira-Paiva
- Laboratório Multiusuário de Microscopia, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - Filipa Moreira
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | | | | | - William Castro-Borges
- Laboratório de Enzimologia e Proteômica, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - Gustavo Gonçalves Silva
- Laboratório de Enzimologia e Proteômica, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - Rodrigo Antunes Cunha
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Teresa Gonçalves
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Luís Carlos Crocco Afonso
- Laboratório de Imunoparasitologia, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| |
Collapse
|
36
|
Garcia-Garcia L, Olle L, Martin M, Roca-Ferrer J, Muñoz-Cano R. Adenosine Signaling in Mast Cells and Allergic Diseases. Int J Mol Sci 2021; 22:ijms22105203. [PMID: 34068999 PMCID: PMC8156042 DOI: 10.3390/ijms22105203] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/10/2021] [Accepted: 05/12/2021] [Indexed: 02/06/2023] Open
Abstract
Adenosine is a nucleoside involved in the pathogenesis of allergic diseases. Its effects are mediated through its binding to G protein-coupled receptors: A1, A2a, A2b and A3. The receptors differ in the type of G protein they recruit, in the effect on adenylyl cyclase (AC) activity and the downstream signaling pathway triggered. Adenosine can produce both an enhancement and an inhibition of mast cell degranulation, indicating that adenosine effects on these receptors is controversial and remains to be clarified. Depending on the study model, A1, A2b, and A3 receptors have shown anti- or pro-inflammatory activity. However, most studies reported an anti-inflammatory activity of A2a receptor. The precise knowledge of the adenosine mechanism of action may allow to develop more efficient therapies for allergic diseases by using selective agonist and antagonist against specific receptor subtypes.
Collapse
Affiliation(s)
- Lucia Garcia-Garcia
- Clinical and Experimental Respiratory Immunoallergy (IRCE), Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (L.G.-G.); (L.O.); (M.M.); (J.R.-F.)
| | - Laia Olle
- Clinical and Experimental Respiratory Immunoallergy (IRCE), Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (L.G.-G.); (L.O.); (M.M.); (J.R.-F.)
| | - Margarita Martin
- Clinical and Experimental Respiratory Immunoallergy (IRCE), Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (L.G.-G.); (L.O.); (M.M.); (J.R.-F.)
- Biochemistry and Molecular Biology Unit, Biomedicine Department, Faculty of Medicine, University of Barcelona, 08036 Barcelona, Spain
- ARADyAL, Instituto de Salud Carlos III, 28220 Madrid, Spain
| | - Jordi Roca-Ferrer
- Clinical and Experimental Respiratory Immunoallergy (IRCE), Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (L.G.-G.); (L.O.); (M.M.); (J.R.-F.)
| | - Rosa Muñoz-Cano
- Clinical and Experimental Respiratory Immunoallergy (IRCE), Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (L.G.-G.); (L.O.); (M.M.); (J.R.-F.)
- ARADyAL, Instituto de Salud Carlos III, 28220 Madrid, Spain
- Allergy Section, Hospital Clinic, Universitat de Barcelona, 08036 Barcelona, Spain
- Correspondence: ; Tel.: +34-93-2275540
| |
Collapse
|
37
|
Vohwinkel CU, Coit EJ, Burns N, Elajaili H, Hernandez‐Saavedra D, Yuan X, Eckle T, Nozik E, Tuder RM, Eltzschig HK. Targeting alveolar-specific succinate dehydrogenase A attenuates pulmonary inflammation during acute lung injury. FASEB J 2021; 35:e21468. [PMID: 33687752 PMCID: PMC8250206 DOI: 10.1096/fj.202002778r] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/03/2021] [Accepted: 02/05/2021] [Indexed: 01/22/2023]
Abstract
Acute lung injury (ALI) is an inflammatory lung disease, which manifests itself in patients as acute respiratory distress syndrome (ARDS). Previous studies have implicated alveolar-epithelial succinate in ALI protection. Therefore, we hypothesized that targeting alveolar succinate dehydrogenase SDH A would result in elevated succinate levels and concomitant lung protection. Wild-type (WT) mice or transgenic mice with targeted alveolar-epithelial Sdha or hypoxia-inducible transcription factor Hif1a deletion were exposed to ALI induced by mechanical ventilation. Succinate metabolism was assessed in alveolar-epithelial via mass spectrometry as well as redox measurements and evaluation of lung injury. In WT mice, ALI induced by mechanical ventilation decreased SDHA activity and increased succinate in alveolar-epithelial. In vitro, cell-permeable succinate decreased epithelial inflammation during stretch injury. Mice with inducible alveolar-epithelial Sdha deletion (Sdhaloxp/loxp SPC-CreER mice) revealed reduced lung inflammation, improved alveolar barrier function, and attenuated histologic injury. Consistent with a functional role of succinate to stabilize HIF, Sdhaloxp/loxp SPC-CreER experienced enhanced Hif1a levels during hypoxia or ALI. Conversely, Hif1aloxp/loxp SPC-CreER showed increased inflammation with ALI induced by mechanical ventilation. Finally, wild-type mice treated with intra-tracheal dimethlysuccinate were protected during ALI. These data suggest that targeting alveolar-epithelial SDHA dampens ALI via succinate-mediated stabilization of HIF1A. Translational extensions of our studies implicate succinate treatment in attenuating alveolar inflammation in patients suffering from ARDS.
Collapse
Affiliation(s)
- Christine U. Vohwinkel
- Developmental Lung BiologyCardiovascular Pulmonary Research LaboratoriesDivision of Pulmonary Sciences and Critical Care MedicineDivision of Pediatric Critical CareDepartments of Medicine and PediatricsUniversity of ColoradoAuroraCOUSA
| | - Ethan J. Coit
- Developmental Lung BiologyCardiovascular Pulmonary Research LaboratoriesDivision of Pulmonary Sciences and Critical Care MedicineDivision of Pediatric Critical CareDepartments of Medicine and PediatricsUniversity of ColoradoAuroraCOUSA
| | - Nana Burns
- Developmental Lung BiologyCardiovascular Pulmonary Research LaboratoriesDivision of Pulmonary Sciences and Critical Care MedicineDivision of Pediatric Critical CareDepartments of Medicine and PediatricsUniversity of ColoradoAuroraCOUSA
| | - Hanan Elajaili
- Developmental Lung BiologyCardiovascular Pulmonary Research LaboratoriesDivision of Pulmonary Sciences and Critical Care MedicineDivision of Pediatric Critical CareDepartments of Medicine and PediatricsUniversity of ColoradoAuroraCOUSA
| | | | - Xiaoyi Yuan
- Department of AnesthesiologyMcGovern Medical SchoolThe University of Texas Health Science Center at HoustonHoustonTXUSA
| | - Tobias Eckle
- Department of AnesthesiologyUniversity of Colorado ‐ Anschutz Medical CampusAuroraCOUSA
| | - Eva Nozik
- Developmental Lung BiologyCardiovascular Pulmonary Research LaboratoriesDivision of Pulmonary Sciences and Critical Care MedicineDivision of Pediatric Critical CareDepartments of Medicine and PediatricsUniversity of ColoradoAuroraCOUSA
| | - Rubin M. Tuder
- Division of Pulmonary Sciences and Critical Care MedicineUniversity of ColoradoAuroraCOUSA
| | - Holger K. Eltzschig
- Department of AnesthesiologyMcGovern Medical SchoolThe University of Texas Health Science Center at HoustonHoustonTXUSA
| |
Collapse
|
38
|
Li X, Berg NK, Mills T, Zhang K, Eltzschig HK, Yuan X. Adenosine at the Interphase of Hypoxia and Inflammation in Lung Injury. Front Immunol 2021; 11:604944. [PMID: 33519814 PMCID: PMC7840604 DOI: 10.3389/fimmu.2020.604944] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 11/25/2020] [Indexed: 12/19/2022] Open
Abstract
Hypoxia and inflammation often coincide in pathogenic conditions such as acute respiratory distress syndrome (ARDS) and chronic lung diseases, which are significant contributors to morbidity and mortality for the general population. For example, the recent global outbreak of Coronavirus disease 2019 (COVID-19) has placed viral infection-induced ARDS under the spotlight. Moreover, chronic lung disease ranks the third leading cause of death in the United States. Hypoxia signaling plays a diverse role in both acute and chronic lung inflammation, which could partially be explained by the divergent function of downstream target pathways such as adenosine signaling. Particularly, hypoxia signaling activates adenosine signaling to inhibit the inflammatory response in ARDS, while in chronic lung diseases, it promotes inflammation and tissue injury. In this review, we discuss the role of adenosine at the interphase of hypoxia and inflammation in ARDS and chronic lung diseases, as well as the current strategy for therapeutic targeting of the adenosine signaling pathway.
Collapse
Affiliation(s)
- Xiangyun Li
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
- Department of Anesthesiology, Tianjin Medical University NanKai Hospital, Tianjin, China
| | - Nathanial K. Berg
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Tingting Mills
- Department of Biochemistry, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Kaiying Zhang
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Holger K. Eltzschig
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Xiaoyi Yuan
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
39
|
Guo J, Li M, Yang Y, Zhang L, Zhang LW, Sun QY. Pretreatment with atorvastatin ameliorates cobra venom factor-induced acute lung inflammation in mice. BMC Pulm Med 2020; 20:263. [PMID: 33046059 PMCID: PMC7552367 DOI: 10.1186/s12890-020-01307-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 10/04/2020] [Indexed: 11/28/2022] Open
Abstract
Background The complement system plays a critical role as the pathogenic factor in the models of acute lung injury due to various causes. Cobra venom factor (CVF) is a commonly used complement research tool. The CVF can cause acute inflammation in the lung by producing complement activation components. Atorvastatin (ATR) is a 3-hydroxy-3-methylglutaryl coenzyme A inhibitor approved for control of plasma cholesterol levels. This inhibitor can reduce the acute pulmonary inflammatory response. However, the ability of ATR in treating acute lung inflammation caused by complement activation is still unknown. Therefore, we investigated the effect of ATR on lung inflammation in mice induced by activation of the complement alternative pathway in this study. Methods ATR (10 mg/kg/day via oral gavage) was administered for 7 days before tail vein injection of CVF (25 μg/kg). On the seventh day, all mice were sacrificed 1 h after injection. The lung lobe, bronchoalveolar lavage fluid (BALF), and blood samples were collected. The myeloperoxidase (MPO) activity of the lung homogenate, the leukocyte cell count, and the protein content of BALF were measured. The levels of interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), P-selectin, and Intercellular cell adhesion molecule-1 (ICAM-1) in BALF and serum were determined by enzyme-linked immunosorbent assay. The pathological change of the lung tissue was observed by hematoxylin and eosin staining. The deposition of C5b-9 in the lung tissue was detected by immunohistochemistry. The phosphorylation of NF-κB p65 in the lung tissues was examined by immunohistochemistry and western blotting. Results The lung inflammation levels were determined by measuring the leukocyte cell numbers and protein content of BALF, the lung MPO activity, and expression and staining of the inflammatory mediators (IL-6 and TNF-α), and adhesion molecules (P-selectin and ICAM-1) for lung lesion. A significant reduction in the lung inflammation levels was observed after 7 days in ATR pre-treated mice with a CVF-induced lung disease. Deposition of C5b-9 was significantly alleviated by ATR pretreatment. Early intervention with ATR significantly reduced the development of acute lung inflammation on the basis of phosphorylation of NF-κB p65 in the lung. Conclusion These findings suggest the identification of ATR treatment for the lung inflammation induced by activating the complement system on the basis of its anti-inflammatory response. Together with the model replicating the complement activating characteristics of acute lung injury, the results may be translatable to the overactivated complement relevant diseases.
Collapse
Affiliation(s)
- Jing Guo
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China.,Center for Pharmacology and Bioactivity Research, The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang, 550014, China.,Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, 030006, China
| | - Min Li
- General Ward, Guizhou Provincial People's Hospital, Guiyang, 550002, China
| | - Yi Yang
- Center for Pharmacology and Bioactivity Research, The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang, 550014, China
| | - Lin Zhang
- Center for Pharmacology and Bioactivity Research, The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang, 550014, China
| | - Li-Wei Zhang
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, 030006, China.,Key Laboratory of Chemical Biology and Molecular Engineering of Education Ministry, Institute of Molecular Science, Shanxi University, Taiyuan, 030006, China
| | - Qian-Yun Sun
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China. .,Center for Pharmacology and Bioactivity Research, The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang, 550014, China.
| |
Collapse
|
40
|
Wang N, Li Y, Wang X, Ma Z, Wang Y, Zhang C, Yuan Y, Zhao M. Inhibition of TBK1 by amlexanox attenuates paraquat-induced acute lung injury. Toxicology 2020; 443:152555. [DOI: 10.1016/j.tox.2020.152555] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 07/24/2020] [Accepted: 07/31/2020] [Indexed: 12/13/2022]
|
41
|
Prevention of Oxygen-Induced Inflammatory Lung Injury by Caffeine in Neonatal Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:3840124. [PMID: 32831996 PMCID: PMC7429812 DOI: 10.1155/2020/3840124] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/15/2020] [Accepted: 07/18/2020] [Indexed: 12/26/2022]
Abstract
Background Preterm birth implies an array of respiratory diseases including apnea of prematurity and bronchopulmonary dysplasia (BPD). Caffeine has been introduced to treat apneas but also appears to reduce rates of BPD. Oxygen is essential when treating preterm infants with respiratory problems but high oxygen exposure aggravates BPD. This experimental study is aimed at investigating the action of caffeine on inflammatory response and cell death in pulmonary tissue in a hyperoxia-based model of BPD in the newborn rat. Material/Methods. Lung injury was induced by hyperoxic exposure with 80% oxygen for three (P3) or five (P5) postnatal days with or without recovery in ambient air until postnatal day 15 (P15). Newborn Wistar rats were treated with PBS or caffeine (10 mg/kg) every two days beginning at the day of birth. The effects of caffeine on hyperoxic-induced pulmonary inflammatory response were examined at P3 and P5 immediately after oxygen exposure or after recovery in ambient air (P15) by immunohistological staining and analysis of lung homogenates by ELISA and qPCR. Results Treatment with caffeine significantly attenuated changes in hyperoxia-induced cell death and apoptosis-associated factors. There was a significant decrease in proinflammatory mediators and redox-sensitive transcription factor NFκB in the hyperoxia-exposed lung tissue of the caffeine-treated group compared to the nontreated group. Moreover, treatment with caffeine under hyperoxia modulated the transcription of the adenosine receptor (Adora)1. Caffeine induced pulmonary chemokine and cytokine transcription followed by immune cell infiltration of alveolar macrophages as well as increased adenosine receptor (Adora1, 2a, and 2b) expression. Conclusions The present study investigating the impact of caffeine on the inflammatory response, pulmonary cell degeneration and modulation of adenosine receptor expression, provides further evidence that caffeine acts as an antioxidative and anti-inflammatory drug for experimental oxygen-mediated lung injury. Experimental studies may broaden the understanding of therapeutic use of caffeine in modulating detrimental mechanisms involved in BPD development.
Collapse
|
42
|
Gile J, Oyama Y, Shuff S, Eckle T. A Role for the Adenosine ADORA2B Receptor in Midazolam Induced Cognitive Dysfunction. Curr Pharm Des 2020; 26:4330-4337. [PMID: 32294028 DOI: 10.2174/1381612826666200415171622] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 04/01/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND We recently reported a role for the circadian rhythm protein Period 2 (PER2) in midazolam induced cognitive dysfunction. Based on previous studies showing a critical role for the adenosine A2B receptor (ADORA2B) in PER2 regulation, we hypothesized that hippocampal ADORA2B is crucial for cognitive function. METHODS Midazolam treated C57BL/6J mice were analyzed for Adora2b hippocampal mRNA expression levels, and spontaneous T-maze alternation was determined in Adora2b-/- mice. Using the specific ADORA2B agonist BAY-60-6583 in midazolam treated C57BL/6J mice, we analyzed hippocampal Per2 mRNA expression levels and spontaneous T-maze alternation. Finally, Adora2b-/- mice were assessed for mRNA expression of markers for inflammation or cognitive function in the hippocampus. RESULTS Midazolam treatment significantly downregulated Adora2b or Per2 mRNA in the hippocampus of C57BL/6J mice, and hippocampal PER2 protein expression or T-maze alternation was significantly reduced in Adora2b-/- mice. ADORA2B agonist BAY-60-6583 restored midazolam mediated reduction in spontaneous alternation in C57BL/6J mice. Analysis of hippocampal Tnf-α or Il-6 mRNA levels in Adora2b-/- mice did not reveal an inflammatory phenotype. However, C-fos, a critical component of hippocampus-dependent learning and memory, was significantly downregulated in the hippocampus of Adora2b-/- mice. CONCLUSION These results suggest a role of ADORA2B in midazolam induced cognitive dysfunction. Further, our data demonstrate that BAY-60-6583 treatment restores midazolam induced cognitive dysfunction, possibly via increases of Per2. Additional mechanistic studies hint towards C-FOS as another potential underlying mechanism of memory impairment in Adora2b-/- mice. These findings suggest the ADORA2B agonist as a potential therapy in patients with midazolam induced cognitive dysfunction.
Collapse
Affiliation(s)
- Jennifer Gile
- Department of Anesthesiology, University of Colorado School of Medicine, Aurora, CO 80045, United States
| | - Yoshimasa Oyama
- Department of Anesthesiology, University of Colorado School of Medicine, Aurora, CO 80045, United States
| | - Sydney Shuff
- Department of Anesthesiology, University of Colorado School of Medicine, Aurora, CO 80045, United States
| | - Tobias Eckle
- Department of Anesthesiology, University of Colorado School of Medicine, Aurora, CO 80045, United States
| |
Collapse
|
43
|
Harvey JB, Phan LH, Villarreal OE, Bowser JL. CD73's Potential as an Immunotherapy Target in Gastrointestinal Cancers. Front Immunol 2020; 11:508. [PMID: 32351498 PMCID: PMC7174602 DOI: 10.3389/fimmu.2020.00508] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 03/05/2020] [Indexed: 02/06/2023] Open
Abstract
CD73, a cell surface 5'nucleotidase that generates adenosine, has emerged as an attractive therapeutic target for reprogramming cancer cells and the tumor microenvironment to dampen antitumor immune cell evasion. Decades of studies have paved the way for these findings, starting with the discovery of adenosine signaling, particularly adenosine A2A receptor (A2AR) signaling, as a potent suppressor of tissue-devastating immune cell responses, and evolving with studies focusing on CD73 in breast cancer, melanoma, and non-small cell lung cancer. Gastrointestinal (GI) cancers are a major cause of cancer-related deaths. Evidence is mounting that shows promise for improving patient outcomes through incorporation of immunomodulatory strategies as single agents or in combination with current treatment options. Recently, several immune checkpoint inhibitors received FDA approval for use in GI cancers; however, clinical benefit is limited. Investigating molecular mechanisms promoting immunosuppression, such as CD73, in GI cancers can aid in current efforts to extend the efficacy of immunotherapy to more patients. In this review, we discuss current clinical and basic research studies on CD73 in GI cancers, including gastric, liver, pancreatic, and colorectal cancer, with special focus on the potential of CD73 as an immunotherapy target in these cancers. We also present a summary of current clinical studies targeting CD73 and/or A2AR and combination of these therapies with immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Jerry B. Harvey
- Department of Anesthesiology, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Luan H. Phan
- Department of Anesthesiology, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Oscar E. Villarreal
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jessica L. Bowser
- Department of Anesthesiology, The University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
44
|
Wang M, Guo X, Zhao H, Lv J, Wang H, An Y. Adenosine A 2B receptor activation stimulates alveolar fluid clearance through alveolar epithelial sodium channel via cAMP pathway in endotoxin-induced lung injury. Am J Physiol Lung Cell Mol Physiol 2020; 318:L787-L800. [PMID: 32129084 DOI: 10.1152/ajplung.00195.2019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Clinical studies have established that the capacity of removing excess fluid from alveoli is impaired in most patients with acute respiratory distress syndrome. Impaired alveolar fluid clearance (AFC) correlates with poor outcomes. Adenosine A2B receptor (A2BAR) has the lowest affinity with adenosine among four adenosine receptors. It is documented that A2BAR can activate adenylyl cyclase (AC) resulting in elevated cAMP. Based on the understanding that cAMP is a key regulator of epithelial sodium channel (ENaC), which is the limited step in sodium transport, we hypothesized that A2BAR signaling may affect AFC in acute lung injury (ALI) through regulating ENaC via cAMP, thus attenuating pulmonary edema. To address this, we utilized pharmacological approaches to determine the role of A2BAR in AFC in rats with endotoxin-induced lung injury and further focused on the mechanisms in vitro. We observed elevated pulmonary A2BAR level in rats with ALI and the similar upregulation in alveolar epithelial cells exposed to LPS. A2BAR stimulation significantly attenuated pulmonary edema during ALI, an effect that was associated with enhanced AFC and increased ENaC expression. The regulatory effects of A2BAR on ENaC-α expression were further verified in cultured alveolar epithelial type II (ATII) cells. More importantly, activation of A2BAR dramatically increased amiloride-sensitive Na+ currents in ATII cells. Moreover, we observed that A2BAR activation stimulated cAMP accumulation, whereas the cAMP inhibitor abolished the regulatory effect of A2BAR on ENaC-α expression, suggesting that A2BAR activation regulates ENaC-α expression via cAMP-dependent mechanism. Together, these findings suggest that signaling through alveolar epithelial A2BAR promotes alveolar fluid balance during endotoxin-induced ALI by regulating ENaC via cAMP pathway, raising the hopes for treatment of pulmonary edema due to ALI.
Collapse
Affiliation(s)
- Mengnan Wang
- Department of Critical Care Medicine, Peking University People's Hospital, Beijing, China
| | - Xiaoxia Guo
- Department of Critical Care Medicine, Peking University People's Hospital, Beijing, China
| | - Huiying Zhao
- Department of Critical Care Medicine, Peking University People's Hospital, Beijing, China
| | - Jie Lv
- Department of Critical Care Medicine, Peking University People's Hospital, Beijing, China
| | - Huixia Wang
- Department of Critical Care Medicine, Peking University People's Hospital, Beijing, China
| | - Youzhong An
- Department of Critical Care Medicine, Peking University People's Hospital, Beijing, China
| |
Collapse
|
45
|
Reyes AWB, Vu SH, Huy TXN, Min W, Lee HJ, Chang HH, Lee JH, Kim S. Adenosine receptor Adora2b antagonism attenuates Brucella abortus 544 infection in professional phagocyte RAW 264.7 cells and BALB/c mice. Vet Microbiol 2020; 242:108586. [PMID: 32122590 DOI: 10.1016/j.vetmic.2020.108586] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 01/18/2023]
Abstract
Brucella as a stealthy intracellular pathogen avoids activation of innate immune response. Here we investigated the contribution of an adenosine receptor, Adora2b, during Brucella infection in professional phagocyte RAW 264.7 cells and in a murine model. Adora2b-deficient cells showed attenuated Brucella internalization and intracellular survival with enhanced release of IL-6, TNF-α, IL-12 and MCP-1. In addition, blockade of Adora2b using MRS 1754 treatment in mice resulted in increased total weight of the spleens but suppressed bacterial burden in these organs accompanied by elevated levels of IL-6, IFN-γ, TNF-α, IL-12 and MCP-1, while reduced IL-10. Overall, we proposed that the Adora2b participates in the successful phagocytic pathway and intracellular survival of Brucella in RAW 264.7 cells, and could be a potential therapeutic target for the treatment of acute brucellosis in animals.
Collapse
Affiliation(s)
| | - Son Hai Vu
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Tran Xuan Ngoc Huy
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - WonGi Min
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Hu Jang Lee
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Hong Hee Chang
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - John Hwa Lee
- College of Veterinary Medicine, Chonbuk National University, Iksan, 54596, Republic of Korea
| | - Suk Kim
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, 52828, Republic of Korea.
| |
Collapse
|
46
|
Magrone T, Jirillo E. Sepsis: From Historical Aspects to Novel Vistas. Pathogenic and Therapeutic Considerations. Endocr Metab Immune Disord Drug Targets 2020; 19:490-502. [PMID: 30857516 DOI: 10.2174/1871530319666181129112708] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 05/30/2018] [Accepted: 05/31/2018] [Indexed: 12/14/2022]
Abstract
BACKGROUND Sepsis is a clinical condition due to an infectious event which leads to an early hyper-inflammatory phase followed by a status of tolerance or immune paralysis. Hyper-inflammation derives from a massive activation of immune (neutrophils, monocytes/macrophages, dendritic cells and lymphocytes) and non-immune cells (platelets and endothelial cells) in response to Gram-negative and Gram-positive bacteria and fungi. DISCUSSION A storm of pro-inflammatory cytokines and reactive oxygen species accounts for the systemic inflammatory response syndrome. In this phase, bacterial clearance may be associated with a severe organ failure development. Tolerance or compensatory anti-inflammatory response syndrome (CARS) depends on the production of anti-inflammatory mediators, such as interleukin-10, secreted by T regulatory cells. However, once triggered, CARS, if prolonged, may also be detrimental to the host, thus reducing bacterial clearance. CONCLUSION In this review, the description of pathogenic mechanisms of sepsis is propaedeutic to the illustration of novel therapeutic attempts for the prevention or attenuation of experimental sepsis as well as of clinical trials. In this direction, inhibitors of NF-κB pathway, cell therapy and use of dietary products in sepsis will be described in detail.
Collapse
Affiliation(s)
- Thea Magrone
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs, University of Bari, School of Medicine, Bari, Italy
| | - Emilio Jirillo
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs, University of Bari, School of Medicine, Bari, Italy
| |
Collapse
|
47
|
Wan L, Wu W, Jiang S, Wan S, Meng D, Wang Z, Zhang J, Wei L, Yu P. Mibefradil and Flunarizine, Two T-Type Calcium Channel Inhibitors, Protect Mice against Lipopolysaccharide-Induced Acute Lung Injury. Mediators Inflamm 2020; 2020:3691701. [PMID: 33223955 PMCID: PMC7671802 DOI: 10.1155/2020/3691701] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 10/04/2020] [Accepted: 10/21/2020] [Indexed: 12/28/2022] Open
Abstract
Recent studies have illuminated that blocking Ca2+ influx into effector cells is an attractive therapeutic strategy for lung injury. We hypothesize that T-type calcium channel may be a potential therapeutic target for acute lung injury (ALI). In this study, the pharmacological activity of mibefradil (a classical T-type calcium channel inhibitor) was assessed in a mouse model of lipopolysaccharide- (LPS-) induced ALI. In LPS challenged mice, mibefradil (20 and 40 mg/kg) dramatically decreased the total cell number, as well as the productions of TNF-α and IL-6 in bronchoalveolar lavage fluid (BALF). Mibefradil also suppressed total protein concentration in BALF, attenuated Evans blue extravasation, MPO activity, and NF-κB activation in lung tissue. Furthermore, flunarizine, a widely prescripted antimigraine agent with potent inhibition on T-type channel, was also found to protect mice against lung injury. These data demonstrated that T-type calcium channel inhibitors may be beneficial for treating acute lung injury. The important role of T-type calcium channel in the acute lung injury is encouraged to be further investigated.
Collapse
Affiliation(s)
- Limei Wan
- The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, China
| | - Weibin Wu
- Department of Basic Medicine, Zhaoqing Medical College, Zhaoqing 526020, China
| | - Shunjun Jiang
- Department of Pharmacy, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Shanhe Wan
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, China
| | - Dongmei Meng
- Department of Pharmacy, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Zhipeng Wang
- Department of Pharmacy, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Jiajie Zhang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, China
| | - Li Wei
- Department of Pharmacy, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Pengjiu Yu
- Department of Pharmacy, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| |
Collapse
|
48
|
Wolska N, Rozalski M. Blood Platelet Adenosine Receptors as Potential Targets for Anti-Platelet Therapy. Int J Mol Sci 2019; 20:ijms20215475. [PMID: 31684173 PMCID: PMC6862090 DOI: 10.3390/ijms20215475] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/31/2019] [Accepted: 11/01/2019] [Indexed: 12/21/2022] Open
Abstract
Adenosine receptors are a subfamily of highly-conserved G-protein coupled receptors. They are found in the membranes of various human cells and play many physiological functions. Blood platelets express two (A2A and A2B) of the four known adenosine receptor subtypes (A1, A2A, A2B, and A3). Agonization of these receptors results in an enhanced intracellular cAMP and the inhibition of platelet activation and aggregation. Therefore, adenosine receptors A2A and A2B could be targets for anti-platelet therapy, especially under circumstances when classic therapy based on antagonizing the purinergic receptor P2Y12 is insufficient or problematic. Apart from adenosine, there is a group of synthetic, selective, longer-lasting agonists of A2A and A2B receptors reported in the literature. This group includes agonists with good selectivity for A2A or A2B receptors, as well as non-selective compounds that activate more than one type of adenosine receptor. Chemically, most A2A and A2B adenosine receptor agonists are adenosine analogues, with either adenine or ribose substituted by single or multiple foreign substituents. However, a group of non-adenosine derivative agonists has also been described. This review aims to systematically describe known agonists of A2A and A2B receptors and review the available literature data on their effects on platelet function.
Collapse
Affiliation(s)
- Nina Wolska
- Department of Haemostasis and Haemostatic Disorders, Chair of Biomedical Science, Medical University of Lodz, 92-215 Lodz, Poland.
| | - Marcin Rozalski
- Department of Haemostasis and Haemostatic Disorders, Chair of Biomedical Science, Medical University of Lodz, 92-215 Lodz, Poland.
| |
Collapse
|
49
|
Le TTT, Berg NK, Harting MT, Li X, Eltzschig HK, Yuan X. Purinergic Signaling in Pulmonary Inflammation. Front Immunol 2019; 10:1633. [PMID: 31379836 PMCID: PMC6646739 DOI: 10.3389/fimmu.2019.01633] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 07/01/2019] [Indexed: 12/21/2022] Open
Abstract
Purine nucleotides and nucleosides are at the center of biologic reactions. In particular, adenosine triphosphate (ATP) is the fundamental energy currency of cellular activity and adenosine has been demonstrated to play essential roles in human physiology and pathophysiology. In this review, we examine the role of purinergic signaling in acute and chronic pulmonary inflammation, with emphasis on ATP and adenosine. ATP is released into extracellular space in response to cellular injury and necrosis. It is then metabolized to adenosine monophosphate (AMP) via ectonucleoside triphosphate diphosphohydrolase-1 (CD39) and further hydrolyzed to adenosine via ecto-5'-nucleotidase (CD73). Adenosine signals via one of four adenosine receptors to exert pro- or anti-inflammatory effects. Adenosine signaling is terminated by intracellular transport by concentrative or equilibrative nucleoside transporters (CNTs and ENTs), deamination to inosine by adenosine deaminase (ADA), or phosphorylation back into AMP via adenosine kinase (AK). Pulmonary inflammatory and hypoxic conditions lead to increased extracellular ATP, adenosine diphosphate (ADP) and adenosine levels, which translates to increased adenosine signaling. Adenosine signaling is central to the pulmonary injury response, leading to various effects on inflammation, repair and remodeling processes that are either tissue-protective or tissue destructive. In the acute setting, particularly through activation of adenosine 2A and 2B receptors, adenosine signaling serves an anti-inflammatory, tissue-protective role. However, excessive adenosine signaling in the chronic setting promotes pro-inflammatory, tissue destructive effects in chronic pulmonary inflammation.
Collapse
Affiliation(s)
- Thanh-Thuy T. Le
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Nathaniel K. Berg
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Matthew T. Harting
- Department of Pediatric Surgery, McGovern Medical School, Children's Memorial Hermann Hospital, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Xiangyun Li
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
- Department of Anesthesiology, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China
| | - Holger K. Eltzschig
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Xiaoyi Yuan
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
50
|
Abstract
Elsa N. Bou Ghanem works in the field of innate immune senescence, inflammation, and host defense. In this mSphere of Influence article, she reflects on how "Adenosine A2B receptor deficiency promotes host defenses against Gram-negative bacterial pneumonia" by Barletta et al. (K. E. Barletta, R. E. Cagnina, M. D. Burdick, J. Linden, and B. Mehrad, Am J Respir Crit Care Med 186:1044-1050, 2012, https://doi.org/10.1164/rccm.201204-0622OC) impacted her own work examining the role of the extracellular adenosine pathway in neutrophil responses and host defense against pneumococcal pneumonia.
Collapse
Affiliation(s)
- Elsa N Bou Ghanem
- Department of Microbiology and Immunology, University at Buffalo School of Medicine, Buffalo, New York, USA
| |
Collapse
|