1
|
García-Fernández C, Virgilio T, Latino I, Guerra-Rebollo M, F Gonzalez S, Borrós S, Fornaguera C. Stealth mRNA nanovaccines to control lymph node trafficking. J Control Release 2024; 374:325-336. [PMID: 39154934 DOI: 10.1016/j.jconrel.2024.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 07/15/2024] [Accepted: 08/12/2024] [Indexed: 08/20/2024]
Abstract
mRNA-based vaccines symbolize a new paradigm shift in personalized medicine for the treatment of infectious and non-infectious diseases. However, the reactogenicity associated with the currently approved formulations limits their applicability in autoinflammatory disorders, such as tumour therapeutics. In this study, we present a delivery system showing controlled immunogenicity and minimal non-specific inflammation, allowing for selective delivery of mRNA to antigen presenting cells (APCs) within the medullary region of the lymph nodes. Our platform offers precise control over the trafficking of nanoparticles within the lymph nodes by optimizing stealth and targeting properties, as well as the subsequent opsonization process. By targeting specific cells, we observed a potent adaptive and humoral immune response, which holds promise for preventive and therapeutic anti-tumoral vaccines. Through spatial programming of nanoparticle distribution, we can promote robust immunization, thus improving and expanding the utilization of mRNA vaccines. This innovative approach signifies a remarkable step forward in the field of targeted nanomedicine.
Collapse
Affiliation(s)
- Coral García-Fernández
- Grup d'Enginyeria de Materials (Gemat), Institut Químic de Sarrià (IQS), Universitat Ramon Llull (URL). Via Augusta, Barcelona, Catalonia, 08017, Spain; Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Universita della Svitzzera italiana (USI) - Switzerland, Via Francesco Chiesa 5, Bellinzona 6500, Suiza
| | - Tommaso Virgilio
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Universita della Svitzzera italiana (USI) - Switzerland, Via Francesco Chiesa 5, Bellinzona 6500, Suiza
| | - Irene Latino
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Universita della Svitzzera italiana (USI) - Switzerland, Via Francesco Chiesa 5, Bellinzona 6500, Suiza
| | - Marta Guerra-Rebollo
- Grup d'Enginyeria de Materials (Gemat), Institut Químic de Sarrià (IQS), Universitat Ramon Llull (URL). Via Augusta, Barcelona, Catalonia, 08017, Spain
| | - Santiago F Gonzalez
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Universita della Svitzzera italiana (USI) - Switzerland, Via Francesco Chiesa 5, Bellinzona 6500, Suiza
| | - Salvador Borrós
- Grup d'Enginyeria de Materials (Gemat), Institut Químic de Sarrià (IQS), Universitat Ramon Llull (URL). Via Augusta, Barcelona, Catalonia, 08017, Spain
| | - Cristina Fornaguera
- Grup d'Enginyeria de Materials (Gemat), Institut Químic de Sarrià (IQS), Universitat Ramon Llull (URL). Via Augusta, Barcelona, Catalonia, 08017, Spain.
| |
Collapse
|
2
|
Singh P, Kemper C. Complement, complosome, and complotype: A perspective. Eur J Immunol 2023; 53:e2250042. [PMID: 37120820 PMCID: PMC10613581 DOI: 10.1002/eji.202250042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 05/01/2023]
Abstract
Recent rapid progress in key technological advances, including the broader accessibility of single-cell "omic" approaches, have allowed immunologists to gain important novel insights into the contributions of individual immune cells in protective immunity and immunopathologies. These insights also taught us that there is still much to uncover about the (cellular) networks underlying immune responses. For example, in the last decade, studies on a key component of innate immunity, the complement system, have defined intracellularly active complement (the complosome) as a key orchestrator of normal cell physiology. This added an unexpected facet to the biology of complement, which was long considered fully explored. Here, we will summarize succinctly the known activation modes and functions of the complosome and provide a perspective on the origins of intracellular complement. We will also make a case for extending assessments of the complotype, the individual inherited landscape of common variants in complement genes, to the complosome, and for reassessing patients with known serum complement deficiencies for complosome perturbations. Finally, we will discuss where we see current opportunities and hurdles for dissecting the compartmentalization of complement activities toward a better understanding of their contributions to cellular function in health and disease.
Collapse
Affiliation(s)
- Parul Singh
- Complement and Inflammation Research Section, National Heart, Lung and Blood Institute, Bethesda, MD 20892, USA
| | - Claudia Kemper
- Complement and Inflammation Research Section, National Heart, Lung and Blood Institute, Bethesda, MD 20892, USA
| |
Collapse
|
3
|
Fan H, Liu J, Sun J, Feng G, Li J. Advances in the study of B cells in renal ischemia-reperfusion injury. Front Immunol 2023; 14:1216094. [PMID: 38022595 PMCID: PMC10646530 DOI: 10.3389/fimmu.2023.1216094] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
Renal ischemia-reperfusion injury (IRI) is a non-negligible clinical challenge for clinicians in surgeries such as renal transplantation. Functional loss of renal tubular epithelial cell (TEC) in IRI leads to the development of acute kidney injury, delayed graft function (DGF), and allograft rejection. The available evidence indicates that cellular oxidative stress, cell death, microvascular dysfunction, and immune response play an important role in the pathogenesis of IRI. A variety of immune cells, including macrophages and T cells, are actively involved in the progression of IRI in the immune response. The role of B cells in IRI has been relatively less studied, but there is a growing body of evidence for the involvement of B cells, which involve in the development of IRI through innate immune responses, adaptive immune responses, and negative immune regulation. Therefore, therapies targeting B cells may be a potential direction to mitigate IRI. In this review, we summarize the current state of research on the role of B cells in IRI, explore the potential effects of different B cell subsets in the pathogenesis of IRI, and discuss possible targets of B cells for therapeutic aim in renal IRI.
Collapse
Affiliation(s)
- Hongzhao Fan
- Kidney Transplantation Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jia Liu
- Dietetics Teaching and Research Section, Henan Medical College, Xinzheng, China
| | - Jiajia Sun
- Kidney Transplantation Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Guiwen Feng
- Kidney Transplantation Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jinfeng Li
- Kidney Transplantation Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
4
|
Kareem S, Jacob A, Mathew J, Quigg RJ, Alexander JJ. Complement: Functions, location and implications. Immunology 2023; 170:180-192. [PMID: 37222083 PMCID: PMC10524990 DOI: 10.1111/imm.13663] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 05/09/2023] [Indexed: 05/25/2023] Open
Abstract
The complement system, an arm of the innate immune system plays a critical role in both health and disease. The complement system is highly complex with dual possibilities, helping or hurting the host, depending on the location and local microenvironment. The traditionally known functions of complement include surveillance, pathogen recognition, immune complex trafficking, processing and pathogen elimination. The noncanonical functions of the complement system include their roles in development, differentiation, local homeostasis and other cellular functions. Complement proteins are present in both, the plasma and on the membranes. Complement activation occurs both extra- and intracellularly, which leads to considerable pleiotropy in their activity. In order to design more desirable and effective therapies, it is important to understand the different functions of complement, and its location-based and tissue-specific responses. This manuscript will provide a brief overview into the complex nature of the complement cascade, outlining some of their complement-independent functions, their effects at different locale, and their implication in disease settings.
Collapse
Affiliation(s)
- Samer Kareem
- Department of Medicine, University at Buffalo, Buffalo, New York, United States
| | - Alexander Jacob
- Department of Medicine, University at Buffalo, Buffalo, New York, United States
| | - John Mathew
- Department of Rheumatology, Christian Medical College, Vellore, India
| | - Richard J Quigg
- Department of Medicine, University at Buffalo, Buffalo, New York, United States
| | - Jessy J Alexander
- Department of Medicine, University at Buffalo, Buffalo, New York, United States
| |
Collapse
|
5
|
Martínez-Riaño A, Wang S, Boeing S, Minoughan S, Casal A, Spillane KM, Ludewig B, Tolar P. Long-term retention of antigens in germinal centers is controlled by the spatial organization of the follicular dendritic cell network. Nat Immunol 2023; 24:1281-1294. [PMID: 37443283 PMCID: PMC7614842 DOI: 10.1038/s41590-023-01559-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 06/13/2023] [Indexed: 07/15/2023]
Abstract
Germinal centers (GCs) require sustained availability of antigens to promote antibody affinity maturation against pathogens and vaccines. A key source of antigens for GC B cells are immune complexes (ICs) displayed on follicular dendritic cells (FDCs). Here we show that FDC spatial organization regulates antigen dynamics in the GC. We identify heterogeneity within the FDC network. While the entire light zone (LZ) FDC network captures ICs initially, only the central cells of the network function as the antigen reservoir, where different antigens arriving from subsequent immunizations colocalize. Mechanistically, central LZ FDCs constitutively express subtly higher CR2 membrane densities than peripheral LZ FDCs, which strongly increases the IC retention half-life. Even though repeated immunizations gradually saturate central FDCs, B cell responses remain efficient because new antigens partially displace old ones. These results reveal the principles shaping antigen display on FDCs during the GC reaction.
Collapse
Affiliation(s)
- Ana Martínez-Riaño
- Immune Receptor Activation Laboratory, The Francis Crick Institute, London, UK
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, London, UK
| | - Shenshen Wang
- Department of Physics and Astronomy, University of California Los Angeles, Los Angeles, CA, USA
| | - Stefan Boeing
- Bioinformatics and Biostatistics Science Technology Platform, The Francis Crick Institute, London, UK
| | - Sophie Minoughan
- Immune Receptor Activation Laboratory, The Francis Crick Institute, London, UK
| | - Antonio Casal
- Immune Receptor Activation Laboratory, The Francis Crick Institute, London, UK
| | - Katelyn M Spillane
- Department of Physics, King's College London, London, UK
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, UK
| | - Burkhard Ludewig
- Institute of Immunobiology, Medical Research Center, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Pavel Tolar
- Immune Receptor Activation Laboratory, The Francis Crick Institute, London, UK.
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, London, UK.
| |
Collapse
|
6
|
Gibson B, Connelly C, Moldakhmetova S, Sheerin NS. Complement activation and kidney transplantation; a complex relationship. Immunobiology 2023; 228:152396. [PMID: 37276614 DOI: 10.1016/j.imbio.2023.152396] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/14/2023] [Accepted: 05/15/2023] [Indexed: 06/07/2023]
Abstract
Although kidney transplantation is the best treatment for end stage kidney disease, the benefits are limited by factors such as the short fall in donor numbers, the burden of immunosuppression and graft failure. Although there have been improvements in one-year outcomes, the annual rate of graft loss beyond the first year has not significantly improved, despite better therapies to control the alloimmune response. There is therefore a need to develop alternative strategies to limit kidney injury at all stages along the transplant pathway and so improve graft survival. Complement is primarily part of the innate immune system, but is also known to enhance the adaptive immune response. There is increasing evidence that complement activation occurs at many stages during transplantation and can have deleterious effects on graft outcome. Complement activation begins in the donor and occurs again on reperfusion following a period of ischemia. Complement can contribute to the development of the alloimmune response and may directly contribute to graft injury during acute and chronic allograft rejection. The complexity of the relationship between complement activation and allograft outcome is further increased by the capacity of the allograft to synthesise complement proteins, the contribution complement makes to interstitial fibrosis and complement's role in the development of recurrent disease. The better we understand the role played by complement in kidney transplant pathology the better placed we will be to intervene. This is particularly relevant with the rapid development of complement therapeutics which can now target different the different pathways of the complement system. Combining our basic understanding of complement biology with preclinical and observational data will allow the development and delivery of clinical trials which have best chance to identify any benefit of complement inhibition.
Collapse
Affiliation(s)
- B Gibson
- Clinical and Translational Research Institute Faculty of Medical Sciences, Newcastle University Newcastle upon Tyne, NE2 4HH, UK
| | - C Connelly
- Clinical and Translational Research Institute Faculty of Medical Sciences, Newcastle University Newcastle upon Tyne, NE2 4HH, UK
| | - S Moldakhmetova
- Clinical and Translational Research Institute Faculty of Medical Sciences, Newcastle University Newcastle upon Tyne, NE2 4HH, UK
| | - N S Sheerin
- Clinical and Translational Research Institute Faculty of Medical Sciences, Newcastle University Newcastle upon Tyne, NE2 4HH, UK.
| |
Collapse
|
7
|
Santarsiero D, Aiello S. The Complement System in Kidney Transplantation. Cells 2023; 12:cells12050791. [PMID: 36899927 PMCID: PMC10001167 DOI: 10.3390/cells12050791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Kidney transplantation is the therapy of choice for patients who suffer from end-stage renal diseases. Despite improvements in surgical techniques and immunosuppressive treatments, long-term graft survival remains a challenge. A large body of evidence documented that the complement cascade, a part of the innate immune system, plays a crucial role in the deleterious inflammatory reactions that occur during the transplantation process, such as brain or cardiac death of the donor and ischaemia/reperfusion injury. In addition, the complement system also modulates the responses of T cells and B cells to alloantigens, thus playing a crucial role in cellular as well as humoral responses to the allograft, which lead to damage to the transplanted kidney. Since several drugs that are capable of inhibiting complement activation at various stages of the complement cascade are emerging and being developed, we will discuss how these novel therapies could have potential applications in ameliorating outcomes in kidney transplantations by preventing the deleterious effects of ischaemia/reperfusion injury, modulating the adaptive immune response, and treating antibody-mediated rejection.
Collapse
|
8
|
Cousin VN, Perez GF, Payne KJ, Voll RE, Rizzi M, Mueller CG, Warnatz K. Lymphoid stromal cells - potential implications for the pathogenesis of CVID. Front Immunol 2023; 14:1122905. [PMID: 36875120 PMCID: PMC9982092 DOI: 10.3389/fimmu.2023.1122905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 02/03/2023] [Indexed: 02/19/2023] Open
Abstract
Non-hematopoietic lymphoid stromal cells (LSC) maintain lymph node architecture and form niches allowing the migration, activation, and survival of immune cells. Depending on their localization in the lymph node, these cells display heterogeneous properties and secrete various factors supporting the different activities of the adaptive immune response. LSCs participate in the transport of antigen from the afferent lymph as well as in its delivery into the T and B cell zones and organize cell migration via niche-specific chemokines. While marginal reticular cells (MRC) are equipped for initial B-cell priming and T zone reticular cells (TRC) provide the matrix for T cell-dendritic cell interactions within the paracortex, germinal centers (GC) only form when both T- and B cells successfully interact at the T-B border and migrate within the B-cell follicle containing the follicular dendritic cell (FDC) network. Unlike most other LSCs, FDCs are capable of presenting antigen via complement receptors to B cells, which then differentiate within this niche and in proximity to T follicular helper (TFH) cells into memory and plasma cells. LSCs are also implicated in maintenance of peripheral immune tolerance. In mice, TRCs induce the alternative induction of regulatory T cells instead of TFH cells by presenting tissue-restricted self-antigens to naïve CD4 T cells via MHC-II expression. This review explores potential implications of our current knowledge of LSC populations regarding the pathogenesis of humoral immunodeficiency and autoimmunity in patients with autoimmune disorders or common variable immunodeficiency (CVID), the most common form of primary immunodeficiency in humans.
Collapse
Affiliation(s)
- Victoria N Cousin
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,University of Freiburg, Faculty of Biology, Freiburg, Germany.,Freiburg Spemann Graduate School of Biology and Medicine (SGBM), Albert Ludwigs University Freiburg, Faculty of Biology, Freiburg, Germany
| | - Guillermo F Perez
- Immunologie, Immunopathologie et Chimie Thérapeutique, CNRS UPR3572, Strasbourg, France.,Faculty of Life Science, University of Strasbourg, Strasbourg, France
| | - Kathryn J Payne
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,University of Freiburg, Faculty of Biology, Freiburg, Germany
| | - Reinhard E Voll
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Marta Rizzi
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Division of Clinical and Experimental Immunology, Institute of Immunology, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Christopher G Mueller
- Immunologie, Immunopathologie et Chimie Thérapeutique, CNRS UPR3572, Strasbourg, France.,Faculty of Life Science, University of Strasbourg, Strasbourg, France
| | - Klaus Warnatz
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
9
|
Vonbrunn E, Büttner-Herold M, Amann K, Daniel C. Complement Inhibition in Kidney Transplantation: Where Are We Now? BioDrugs 2023; 37:5-19. [PMID: 36512315 PMCID: PMC9836999 DOI: 10.1007/s40259-022-00567-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2022] [Indexed: 12/14/2022]
Abstract
Kidney transplantation is a life-saving strategy for patients with end-stage renal disease. Although progress has been made in the field of transplantation medicine in recent decades in terms of surgical techniques and immunosuppression, long-term organ survival remains a challenge. Also, for reasons of organ shortage, there is an unmet need for new therapeutic approaches to improve the long-term survival of transplants. There is increasing evidence that the complement system plays a crucial role in various pathological events after transplantation, including ischemia/reperfusion injury as well as rejection episodes. The complement system is part of the innate immune system and plays a crucial role in the defense against pathogens but is also involved in tissue homeostasis. However, the tightly regulated complement system can become dysregulated or activated by non-infectious stimuli, then targeting the organism's own cells and leading to inflammatory tissue damage that exacerbates injury. In this review, we will highlight the role of the complement system after transplantation and discuss ongoing and potential therapeutic approaches.
Collapse
Affiliation(s)
- Eva Vonbrunn
- Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Krankenhausstr. 8-10, 91054 Erlangen, Germany
| | - Maike Büttner-Herold
- Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Krankenhausstr. 8-10, 91054 Erlangen, Germany
| | - Kerstin Amann
- Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Krankenhausstr. 8-10, 91054 Erlangen, Germany
| | - Christoph Daniel
- Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Krankenhausstr. 8-10, 91054 Erlangen, Germany
| |
Collapse
|
10
|
Fryer HA, Hartley GE, Edwards ES, O'Hehir RE, van Zelm MC. Humoral immunity and B-cell memory in response to SARS-CoV-2 infection and vaccination. Biochem Soc Trans 2022; 50:1643-1658. [PMID: 36421662 PMCID: PMC9788580 DOI: 10.1042/bst20220415] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 01/15/2024]
Abstract
Natural infection with SARS-CoV-2 induces a robust circulating memory B cell (Bmem) population, which remains stable in number at least 8 months post-infection despite the contraction of antibody levels after 1 month. Multiple vaccines have been developed to combat the virus. These include two new formulations, mRNA and adenoviral vector vaccines, which have varying efficacy rates, potentially related to their distinct capacities to induce humoral immune responses. The mRNA vaccines BNT162b2 (Pfizer-BioNTech) and mRNA-1273 (Moderna) elicit significantly higher serum IgG and neutralizing antibody levels than the adenoviral vector ChAdOx1 (AstraZeneca) and Ad26.COV2.S (Janssen) vaccines. However, all vaccines induce Spike- and RBD-specific Bmem, which are vital in providing long-lasting protection in the form of rapid recall responses to subsequent infections. Past and current SARS-CoV-2 variants of concern (VoC) have shown the capacity to escape antibody neutralization to varying degrees. A booster dose with an mRNA vaccine following primary vaccination restores antibody levels and improves the capacity of these antibodies and Bmem to bind viral variants, including the current VoC Omicron. Future experimental research will be essential to evaluate the durability of protection against VoC provided by each vaccine and to identify immune markers of protection to enable prognostication of people who are at risk of severe complications from COVID-19.
Collapse
Affiliation(s)
- Holly A. Fryer
- Allergy and Clinical Immunology Laboratory, Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Gemma E. Hartley
- Allergy and Clinical Immunology Laboratory, Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Emily S.J. Edwards
- Allergy and Clinical Immunology Laboratory, Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Robyn E. O'Hehir
- Allergy and Clinical Immunology Laboratory, Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
- Allergy, Asthma and Clinical Immunology Service, Alfred Hospital, Melbourne, VIC, Australia
| | - Menno C. van Zelm
- Allergy and Clinical Immunology Laboratory, Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
- Allergy, Asthma and Clinical Immunology Service, Alfred Hospital, Melbourne, VIC, Australia
| |
Collapse
|
11
|
The Role of Complement in HSCT-TMA: Basic Science to Clinical Practice. Adv Ther 2022; 39:3896-3915. [PMID: 35781192 PMCID: PMC9402756 DOI: 10.1007/s12325-022-02184-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/06/2022] [Indexed: 12/05/2022]
Abstract
Hematopoietic stem cell transplantation-associated thrombotic microangiopathy (HSCT-TMA) is a common complication occurring post-HSCT and is associated with substantial morbidity and mortality if not promptly identified and treated. Emerging evidence suggests a central role for the complement system in the pathogenesis of HSCT-TMA. The complement system has also been shown to interact with other pathways and processes including coagulation and inflammation, all of which are activated following HSCT. Three endothelial cell-damaging “hits” are required for HSCT-TMA genesis: a genetic predisposition or existing damage, an endothelial cell-damaging conditioning regimen, and additional damaging insults. Numerous risk factors for the development of HSCT-TMA have been identified (including primary diagnosis, graft type, and conditioning regimen) and validated lists of relatively simple diagnostic signs and symptoms exist, many utilizing routine clinical and laboratory assessments. Despite the relative ease with which HSCT-TMA can be screened for, it is often overlooked or masked by other common post-transplant conditions. Recent evidence that patients with HSCT-TMA may also concurrently present with these differential diagnoses only serve to further confound its identification and treatment. HSCT-TMA may be treated, or even prevented, by removing or ameliorating triggering “hits”, and recent studies have also shown substantial utility of complement-targeted therapies in this patient population. Further investigation into optimal management and treatment strategies is needed. Greater awareness of TMA post-HSCT is urgently needed to improve patient outcomes; the objective of this article is to clarify current understanding, explain underlying complement biology and provide simple tools to aid the early recognition, management, and monitoring of HSCT-TMA.
Collapse
|
12
|
Qi R, Qin W. Role of Complement System in Kidney Transplantation: Stepping From Animal Models to Clinical Application. Front Immunol 2022; 13:811696. [PMID: 35281019 PMCID: PMC8913494 DOI: 10.3389/fimmu.2022.811696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 01/31/2022] [Indexed: 12/23/2022] Open
Abstract
Kidney transplantation is a life-saving strategy for patients with end-stage renal diseases. Despite the advances in surgical techniques and immunosuppressive agents, the long-term graft survival remains a challenge. Growing evidence has shown that the complement system, part of the innate immune response, is involved in kidney transplantation. Novel insights highlighted the role of the locally produced and intracellular complement components in the development of inflammation and the alloreactive response in the kidney allograft. In the current review, we provide the updated understanding of the complement system in kidney transplantation. We will discuss the involvement of the different complement components in kidney ischemia-reperfusion injury, delayed graft function, allograft rejection, and chronic allograft injury. We will also introduce the existing and upcoming attempts to improve allograft outcomes in animal models and in the clinical setting by targeting the complement system.
Collapse
Affiliation(s)
| | - Weijun Qin
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| |
Collapse
|
13
|
Volpatti LR, Wallace RP, Cao S, Raczy MM, Wang R, Gray LT, Alpar AT, Briquez PS, Mitrousis N, Marchell TM, Sasso MS, Nguyen M, Mansurov A, Budina E, Solanki A, Watkins EA, Schnorenberg MR, Tremain AC, Reda JW, Nicolaescu V, Furlong K, Dvorkin S, Yu SS, Manicassamy B, LaBelle JL, Tirrell MV, Randall G, Kwissa M, Swartz MA, Hubbell JA. Polymersomes Decorated with the SARS-CoV-2 Spike Protein Receptor-Binding Domain Elicit Robust Humoral and Cellular Immunity. ACS CENTRAL SCIENCE 2021; 7:1368-1380. [PMID: 34466656 PMCID: PMC8315245 DOI: 10.1021/acscentsci.1c00596] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Indexed: 05/04/2023]
Abstract
The COVID-19 pandemic underscores the need for rapid, safe, and effective vaccines. In contrast to some traditional vaccines, nanoparticle-based subunit vaccines are particularly efficient in trafficking antigens to lymph nodes, where they induce potent immune cell activation. Here, we developed a strategy to decorate the surface of oxidation-sensitive polymersomes with multiple copies of the SARS-CoV-2 spike protein receptor-binding domain (RBD) to mimic the physical form of a virus particle. We evaluated the vaccination efficacy of these surface-decorated polymersomes (RBDsurf) in mice compared to RBD-encapsulated polymersomes (RBDencap) and unformulated RBD (RBDfree), using monophosphoryl-lipid-A-encapsulated polymersomes (MPLA PS) as an adjuvant. While all three groups produced high titers of RBD-specific IgG, only RBDsurf elicited a neutralizing antibody response to SARS-CoV-2 comparable to that of human convalescent plasma. Moreover, RBDsurf was the only group to significantly increase the proportion of RBD-specific germinal center B cells in the vaccination-site draining lymph nodes. Both RBDsurf and RBDencap drove similarly robust CD4+ and CD8+ T cell responses that produced multiple Th1-type cytokines. We conclude that a multivalent surface display of spike RBD on polymersomes promotes a potent neutralizing antibody response to SARS-CoV-2, while both antigen formulations promote robust T cell immunity.
Collapse
Affiliation(s)
- Lisa R Volpatti
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Rachel P Wallace
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Shijie Cao
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Michal M Raczy
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Ruyi Wang
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Laura T Gray
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Aaron T Alpar
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Priscilla S Briquez
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Nikolaos Mitrousis
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Tiffany M Marchell
- Committee on Immunology, University of Chicago, Chicago, Illinois 60637, United States
| | - Maria Stella Sasso
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Mindy Nguyen
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Aslan Mansurov
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Erica Budina
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Ani Solanki
- Animal Resources Center, University of Chicago, Chicago, Illinois 60637, United States
| | - Elyse A Watkins
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Mathew R Schnorenberg
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Andrew C Tremain
- Committee on Immunology, University of Chicago, Chicago, Illinois 60637, United States
| | - Joseph W Reda
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Vlad Nicolaescu
- Department of Microbiology, Howard T. Ricketts Laboratory, University of Chicago, Chicago, Illinois 60637, United States
| | - Kevin Furlong
- Department of Microbiology, Howard T. Ricketts Laboratory, University of Chicago, Chicago, Illinois 60637, United States
| | - Steve Dvorkin
- Department of Microbiology, Howard T. Ricketts Laboratory, University of Chicago, Chicago, Illinois 60637, United States
| | - Shann S Yu
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Balaji Manicassamy
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa 52242, United States
| | - James L LaBelle
- Department of Pediatrics, University of Chicago Comer Children's Hospital, Chicago, Illinois 60637, United States
| | - Matthew V Tirrell
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
- Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Glenn Randall
- Department of Microbiology, Howard T. Ricketts Laboratory, University of Chicago, Chicago, Illinois 60637, United States
| | - Marcin Kwissa
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Melody A Swartz
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
- Committee on Immunology, University of Chicago, Chicago, Illinois 60637, United States
- Ben May Department of Cancer Research, University of Chicago, Chicago, Illinois 60637, United States
- Committee on Cancer Biology, University of Chicago, Chicago, Illinois 60637, United States
| | - Jeffrey A Hubbell
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
- Committee on Immunology, University of Chicago, Chicago, Illinois 60637, United States
- Committee on Cancer Biology, University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
14
|
Arulraj T, Binder SC, Meyer-Hermann M. Rate of Immune Complex Cycling in Follicular Dendritic Cells Determines the Extent of Protecting Antigen Integrity and Availability to Germinal Center B Cells. THE JOURNAL OF IMMUNOLOGY 2021; 206:1436-1442. [PMID: 33608455 DOI: 10.4049/jimmunol.2001355] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/22/2021] [Indexed: 01/02/2023]
Abstract
Follicular dendritic cells (FDCs) retain immune complexes (ICs) for prolonged time periods and are important for germinal center (GC) reactions. ICs undergo periodic cycling in FDCs, a mechanism supporting an extended half-life of Ag. Based on experimental data, we estimated that the average residence time of PE-ICs on FDC surface and interior were 21 and 36 min, respectively. GC simulations show that Ag cycling might impact GC dynamics because of redistribution of Ag on the FDC surface and by protecting Ag from degradation. Ag protection and influence on GC dynamics varied with Ag cycling time and total Ag concentration. Simulations predict that blocking Ag cycling terminates the GC reaction and decreases plasma cell production. Considering that cycling of Ag could be a target for the modulation of GC reactions, our findings highlight the importance of understanding the mechanism and regulation of IC cycling in FDCs.
Collapse
Affiliation(s)
- Theinmozhi Arulraj
- Department of Systems Immunology, Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, 38106 Braunschweig, Germany
| | - Sebastian C Binder
- Department of Systems Immunology, Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, 38106 Braunschweig, Germany.,Centre for Individualized Infection Medicine, 30625 Hannover, Germany; and
| | - Michael Meyer-Hermann
- Department of Systems Immunology, Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, 38106 Braunschweig, Germany; .,Centre for Individualized Infection Medicine, 30625 Hannover, Germany; and.,Institute for Biochemistry, Biotechnology and Bioinformatics, Braunschweig University of Technology, 38106 Braunschweig, Germany
| |
Collapse
|
15
|
Zarantonello A, Pedersen H, Laursen NS, Andersen GR. Nanobodies Provide Insight into the Molecular Mechanisms of the Complement Cascade and Offer New Therapeutic Strategies. Biomolecules 2021; 11:biom11020298. [PMID: 33671302 PMCID: PMC7922070 DOI: 10.3390/biom11020298] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 01/22/2023] Open
Abstract
The complement system is part of the innate immune response, where it provides immediate protection from infectious agents and plays a fundamental role in homeostasis. Complement dysregulation occurs in several diseases, where the tightly regulated proteolytic cascade turns offensive. Prominent examples are atypical hemolytic uremic syndrome, paroxysmal nocturnal hemoglobinuria and Alzheimer’s disease. Therapeutic intervention targeting complement activation may allow treatment of such debilitating diseases. In this review, we describe a panel of complement targeting nanobodies that allow modulation at different steps of the proteolytic cascade, from the activation of the C1 complex in the classical pathway to formation of the C5 convertase in the terminal pathway. Thorough structural and functional characterization has provided a deep mechanistic understanding of the mode of inhibition for each of the nanobodies. These complement specific nanobodies are novel powerful probes for basic research and offer new opportunities for in vivo complement modulation.
Collapse
Affiliation(s)
- Alessandra Zarantonello
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark; (A.Z.); (H.P.)
| | - Henrik Pedersen
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark; (A.Z.); (H.P.)
| | - Nick S. Laursen
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark;
| | - Gregers R. Andersen
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark; (A.Z.); (H.P.)
- Correspondence: ; Tel.: +45-30256646
| |
Collapse
|
16
|
Lofano G, Mallett CP, Bertholet S, O’Hagan DT. Technological approaches to streamline vaccination schedules, progressing towards single-dose vaccines. NPJ Vaccines 2020; 5:88. [PMID: 33024579 PMCID: PMC7501859 DOI: 10.1038/s41541-020-00238-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/25/2020] [Indexed: 12/21/2022] Open
Abstract
Vaccines represent the most successful medical intervention in history, with billions of lives saved. Although multiple doses of the same vaccine are typically required to reach an adequate level of protection, it would be advantageous to develop vaccines that induce protective immunity with fewer doses, ideally just one. Single-dose vaccines would be ideal to maximize vaccination coverage, help stakeholders to greatly reduce the costs associated with vaccination, and improve patient convenience. Here we describe past attempts to develop potent single dose vaccines and explore the reasons they failed. Then, we review key immunological mechanisms of the vaccine-specific immune responses, and how innovative technologies and approaches are guiding the preclinical and clinical development of potent single-dose vaccines. By modulating the spatio-temporal delivery of the vaccine components, by providing the appropriate stimuli to the innate immunity, and by designing better antigens, the new technologies and approaches leverage our current knowledge of the immune system and may synergize to enable the rational design of next-generation vaccination strategies. This review provides a rational perspective on the possible development of future single-dose vaccines.
Collapse
Affiliation(s)
- Giuseppe Lofano
- GSK, Slaoui Center for Vaccines Research, Rockville, MD 20850 USA
| | - Corey P. Mallett
- GSK, Slaoui Center for Vaccines Research, Rockville, MD 20850 USA
| | - Sylvie Bertholet
- GSK, Slaoui Center for Vaccines Research, Rockville, MD 20850 USA
| | - Derek T. O’Hagan
- GSK, Slaoui Center for Vaccines Research, Rockville, MD 20850 USA
| |
Collapse
|
17
|
King BC, Kulak K, Colineau L, Blom AM. Outside in: Roles of complement in autophagy. Br J Pharmacol 2020; 178:2786-2801. [PMID: 32621514 DOI: 10.1111/bph.15192] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/17/2020] [Accepted: 06/24/2020] [Indexed: 12/12/2022] Open
Abstract
The complement system is a well-characterized cascade of extracellular serum proteins that is activated by pathogens and unwanted waste material. Products of activated complement signal to the host cells via cell surface receptors, eliciting responses such as removal of the stimulus by phagocytosis. The complement system therefore functions as a warning system, resulting in removal of unwanted material. This review describes how extracellular activation of the complement system can also trigger autophagic responses within cells, up-regulating protective homeostatic autophagy in response to perceived stress, but also initiating targeted anti-microbial autophagy in order to kill intracellular cytoinvasive pathogens. In particular, we will focus on recent discoveries that indicate that complement may also have roles in detection and autophagy-mediated disposal of unwanted materials within the intracellular environment. We therefore summarize the current evidence for complement involvement in autophagy, both by transducing signals across the cell membrane, as well as roles within the cellular environment. LINKED ARTICLES: This article is part of a themed issue on Canonical and non-canonical functions of the complement system in health and disease. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.14/issuetoc.
Collapse
Affiliation(s)
- Ben C King
- Section of Medical Protein Chemistry, Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Klaudia Kulak
- Section of Medical Protein Chemistry, Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Lucie Colineau
- Section of Medical Protein Chemistry, Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Anna M Blom
- Section of Medical Protein Chemistry, Department of Translational Medicine, Lund University, Malmö, Sweden
| |
Collapse
|
18
|
Autotransporter-Mediated Display of Complement Receptor Ligands by Gram-Negative Bacteria Increases Antibody Responses and Limits Disease Severity. Pathogens 2020; 9:pathogens9050375. [PMID: 32422907 PMCID: PMC7281241 DOI: 10.3390/pathogens9050375] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/06/2020] [Accepted: 05/11/2020] [Indexed: 12/13/2022] Open
Abstract
The targeting of immunogens/vaccines to specific immune cells is a promising approach for amplifying immune responses in the absence of exogenous adjuvants. However, the targeting approaches reported thus far require novel, labor-intensive reagents for each vaccine and have primarily been shown as proof-of-concept with isolated proteins and/or inactivated bacteria. We have engineered a plasmid-based, complement receptor-targeting platform that is readily applicable to live forms of multiple gram-negative bacteria, including, but not limited to, Escherichia coli, Klebsiella pneumoniae, and Francisella tularensis. Using F. tularensis as a model, we find that targeted bacteria show increased binding and uptake by macrophages, which coincides with increased p38 and p65 phosphorylation. Mice vaccinated with targeted bacteria produce higher titers of specific antibody that recognizes a greater diversity of bacterial antigens. Following challenge with homologous or heterologous isolates, these mice exhibited less weight loss and/or accelerated weight recovery as compared to counterparts vaccinated with non-targeted immunogens. Collectively, these findings provide proof-of-concept for plasmid-based, complement receptor-targeting of live gram-negative bacteria.
Collapse
|
19
|
Shlomchik MJ, Luo W, Weisel F. Linking signaling and selection in the germinal center. Immunol Rev 2019; 288:49-63. [PMID: 30874353 DOI: 10.1111/imr.12744] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 01/24/2019] [Indexed: 12/24/2022]
Abstract
Germinal centers (GC) are sites of rapid B-cell proliferation in response to certain types of immunization. They arise in about 1 week and can persist for several months. In GCs, B cells differentiate in a unique way and begin to undergo somatic mutation of the Ig V regions at a high rate. GC B cells (GCBC) thus undergo clonal diversification that can affect the affinity of the newly mutant B-cell receptor (BCR) for its driving antigen. Through processes that are still poorly understood, GCBC with higher affinity are selectively expanded while those with mutations that inactivate the BCR are lost. In addition, at various times during the extended GC reaction, some GCBC undergo differentiation into either long-lived memory B cells (MBC) or plasma cells. The cellular and molecular signals that govern these fate decisions are not well-understood, but are an active area of research in multiple laboratories. In this review, we cover both the history of this field and focus on recent work that has helped to elucidate the signals and molecules, such as key transcription factors, that coordinate both positive selection as well as differentiation of GCBC.
Collapse
Affiliation(s)
- Mark J Shlomchik
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Wei Luo
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Florian Weisel
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
20
|
Schudel A, Francis DM, Thomas SN. Material design for lymph node drug delivery. NATURE REVIEWS. MATERIALS 2019; 4:415-428. [PMID: 32523780 PMCID: PMC7286627 DOI: 10.1038/s41578-019-0110-7] [Citation(s) in RCA: 288] [Impact Index Per Article: 57.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
A significant fraction of the total immune cells in the body are located in several hundred lymph nodes, in which lymphocyte accumulation, activation and proliferation are organized. Therefore, targeting lymph nodes provides the possibility to directly deliver drugs to lymphocytes and lymph node-resident cells and thus to modify the adaptive immune response. However, owing to the structure and anatomy of lymph nodes, as well as the distinct localization and migration of the different cell types within the lymph node, it is difficult to access specific cell populations by delivering free drugs. Materials can be used as instructive delivery vehicles to achieve accumulation of drugs in the lymph nodes and to target specific lymph node-resident cell subtypes. In this Review, we describe the compartmental architecture of lymph nodes and the cell and fluid transport mechanisms to and from lymph nodes. We discuss the different entry routes into lymph nodes and how they can be explored for drug delivery, including the lymphatics, blood capillaries, high endothelial venules, cell-mediated pathways, homing of circulating lymphocytes and direct lymph node injection. We examine different nanoscale and microscale materials for the targeting of specific immune cells and highlight their potential for the treatment of immune dysfunction and for cancer immunotherapy. Finally, we give an outlook to the field, exploring how lymph node targeting can be improved by the use of materials.
Collapse
Affiliation(s)
- Alex Schudel
- School of Materials Science and Engineering, Georgia institute of Technology, Atlanta, GA, USA
- Parker H. Petit institute for Bioengineering and Bioscience, Georgia institute of Technology, Atlanta, GA, USA
- These authors contributed equally: Alex Schudel, David M. Francis
| | - David M Francis
- Parker H. Petit institute for Bioengineering and Bioscience, Georgia institute of Technology, Atlanta, GA, USA
- School of Chemical and Biomolecular Engineering, Georgia institute of Technology, Atlanta, GA, USA
- These authors contributed equally: Alex Schudel, David M. Francis
| | - Susan N Thomas
- Parker H. Petit institute for Bioengineering and Bioscience, Georgia institute of Technology, Atlanta, GA, USA
- George W. Woodruff School of Mechanical Engineering, Georgia institute of Technology, Atlanta, GA, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia institute of Technology and Emory University, Atlanta, GA, USA
- Winship Cancer institute, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
21
|
Lofano G, Gorman MJ, Yousif AS, Yu WH, Fox JM, Dugast AS, Ackerman ME, Suscovich TJ, Weiner J, Barouch D, Streeck H, Little S, Smith D, Richman D, Lauffenburger D, Walker BD, Diamond MS, Alter G. Antigen-specific antibody Fc glycosylation enhances humoral immunity via the recruitment of complement. Sci Immunol 2019; 3:3/26/eaat7796. [PMID: 30120121 PMCID: PMC6298214 DOI: 10.1126/sciimmunol.aat7796] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 06/29/2018] [Indexed: 12/14/2022]
Abstract
HIV-specific broadly neutralizing antibodies (bNAbs) confer protection after passive immunization, but the immunological mechanisms that drive their development are poorly understood. Structural features of bNAbs indicate that they originate from extensive germinal center (GC) selection, which relies on persistent GC activity. However, why a fraction of infected individuals are able to successfully drive more effective affinity maturation is unclear. Delivery of antigens in the form of antibody-immune complexes (ICs), which bind to complement receptors (CRs) or Fc receptors (FcRs) on follicular dendritic cells, represents an effective mechanism for antigen delivery to the GC. We sought to define whether IC-FcR or CR interactions differ among individuals who develop bNAb responses to HIV. Enhanced Fc effector functions and FcR/CR interactions, via altered Fc glycosylation profiles, were observed among individuals with neutralizing antibody responses to HIV compared with those without neutralizing antibody activity. Moreover, both polyclonal neutralizer ICs and monoclonal IC mimics of neutralizer antibodies induced higher antibody titers, higher-avidity antibodies, and expanded GC B cell reactions after immunization of mice via accelerated antigen deposition within B cell follicles in a complement-dependent manner. Thus, these data point to a direct role for altered Fc profile/complement interactions in shaping the maturation of the humoral immune response, providing insights into how GC activity may be enhanced to drive affinity maturation in next-generation vaccine approaches.
Collapse
Affiliation(s)
- Giuseppe Lofano
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Matthew J Gorman
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Ashraf S Yousif
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA.,Department of Immunology and Biotechnology, Tropical Medicine Research Institute, Khartoum, Sudan
| | - Wen-Han Yu
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Julie M Fox
- Departments of Medicine, Molecular Microbiology, and Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | - Todd J Suscovich
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Joshua Weiner
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA
| | - Dan Barouch
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA.,Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
| | - Hendrik Streeck
- Institut für HIV Forschung, Universität Duisburg-Essen, Essen, Germany
| | - Susan Little
- University of California, San Diego, San Diego, CA 92093, USA
| | - Davey Smith
- University of California, San Diego, San Diego, CA 92093, USA.,VA San Diego Healthcare System, San Diego, CA 92161, USA
| | - Douglas Richman
- University of California, San Diego, San Diego, CA 92093, USA.,VA San Diego Healthcare System, San Diego, CA 92161, USA
| | - Douglas Lauffenburger
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Bruce D Walker
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA.,Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Michael S Diamond
- Departments of Medicine, Molecular Microbiology, and Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Galit Alter
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA.
| |
Collapse
|
22
|
van Erp EA, Luytjes W, Ferwerda G, van Kasteren PB. Fc-Mediated Antibody Effector Functions During Respiratory Syncytial Virus Infection and Disease. Front Immunol 2019; 10:548. [PMID: 30967872 PMCID: PMC6438959 DOI: 10.3389/fimmu.2019.00548] [Citation(s) in RCA: 175] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 02/28/2019] [Indexed: 12/20/2022] Open
Abstract
Respiratory syncytial virus (RSV) is a major cause of severe lower respiratory tract infections and hospitalization in infants under 1 year of age and there is currently no market-approved vaccine available. For protection against infection, young children mainly depend on their innate immune system and maternal antibodies. Traditionally, antibody-mediated protection against viral infections is thought to be mediated by direct binding of antibodies to viral particles, resulting in virus neutralization. However, in the case of RSV, virus neutralization titers do not provide an adequate correlate of protection. The current lack of understanding of the mechanisms by which antibodies can protect against RSV infection and disease or, alternatively, contribute to disease severity, hampers the design of safe and effective vaccines against this virus. Importantly, neutralization is only one of many mechanisms by which antibodies can interfere with viral infection. Antibodies consist of two structural regions: a variable fragment (Fab) that mediates antigen binding and a constant fragment (Fc) that mediates downstream effector functions via its interaction with Fc-receptors on (innate) immune cells or with C1q, the recognition molecule of the complement system. The interaction with Fc-receptors can lead to killing of virus-infected cells through a variety of immune effector mechanisms, including antibody-dependent cell-mediated cytotoxicity (ADCC) and antibody-dependent cellular phagocytosis (ADCP). Antibody-mediated complement activation may lead to complement-dependent cytotoxicity (CDC). In addition, both Fc-receptor interactions and complement activation can exert a broad range of immunomodulatory functions. Recent studies have emphasized the importance of Fc-mediated antibody effector functions in both protection and pathogenesis for various infectious agents. In this review article, we aim to provide a comprehensive overview of the current knowledge on Fc-mediated antibody effector functions in the context of RSV infection, discuss their potential role in establishing the balance between protection and pathogenesis, and point out important gaps in our understanding of these processes. Furthermore, we elaborate on the regulation of these effector functions on both the cellular and humoral side. Finally, we discuss the implications of Fc-mediated antibody effector functions for the rational design of safe and effective vaccines and monoclonal antibody therapies against RSV.
Collapse
Affiliation(s)
- Elisabeth A. van Erp
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
- Section Pediatric Infectious Diseases, Laboratory of Medical Immunology, Radboud Institute for Molecular Life Sciences, Nijmegen, Netherlands
- Radboud Center for Infectious Diseases, Nijmegen, Netherlands
| | - Willem Luytjes
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Gerben Ferwerda
- Section Pediatric Infectious Diseases, Laboratory of Medical Immunology, Radboud Institute for Molecular Life Sciences, Nijmegen, Netherlands
- Radboud Center for Infectious Diseases, Nijmegen, Netherlands
| | - Puck B. van Kasteren
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| |
Collapse
|
23
|
Allman D, Wilmore JR, Gaudette BT. The continuing story of T-cell independent antibodies. Immunol Rev 2019; 288:128-135. [PMID: 30874357 PMCID: PMC6653682 DOI: 10.1111/imr.12754] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 02/04/2019] [Indexed: 12/12/2022]
Abstract
The purpose of this article is to review the role of extrafollicular and T-cell independent antibody responses in humoral immunity. We consider two interrelated questions: (a) do T-cell independent antibody responses dominated by IgM and/or IgA play unique functions in immunity and homeostasis; and (b) is it typical for these responses to result in lifelong protection? In addressing these questions, we consider the established advantages of T-cell driven responses including the unique role played by germinal center reactions in these responses, and contrast the processes and outcomes of germinal center-centric responses with germinal center- and T-cell independent antibodies. We suggest that T-independent and other extrafollicular responses contribute substantially to highly stable antibody repertoires in both the serum and the intestine, providing relatively constitutive humoral barriers with the collective dual function of protecting against invading pathogens and regulating the composition of non-pathogenic microbial communities.
Collapse
Affiliation(s)
- David Allman
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - Joel R Wilmore
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - Brian T Gaudette
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
24
|
Nikitin PA, Rose EL, Byun TS, Parry GC, Panicker S. C1s Inhibition by BIVV009 (Sutimlimab) Prevents Complement-Enhanced Activation of Autoimmune Human B Cells In Vitro. THE JOURNAL OF IMMUNOLOGY 2019; 202:1200-1209. [PMID: 30635392 DOI: 10.4049/jimmunol.1800998] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 12/10/2018] [Indexed: 12/17/2022]
Abstract
The classical pathway of complement (CP) can mediate C3 opsonization of Ags responsible for the costimulation and activation of cognate B lymphocytes. In this manner, the complement system acts as a bridge between the innate and adaptive immune systems critical for establishing a humoral response. However, aberrant complement activation is often observed in autoimmune diseases in which C3 deposition on self-antigens may serve to activate self-reactive B cell clones. In this study, we use BIVV009 (Sutimlimab), a clinical stage, humanized mAb that specifically inhibits the CP-specific serine protease C1s to evaluate the impact of upstream CP antagonism on activation and proliferation of normal and autoimmune human B cells. We report that BIVV009 significantly inhibited complement-mediated activation and proliferation of primary human B cells. Strikingly, CP antagonism suppressed human Ig-induced activation of B cells derived from patients with rheumatoid arthritis. These results suggest that clinical use of CP inhibitors in autoimmune patients may not only block complement-mediated tissue damage, but may also prevent the long-term activation of autoimmune B cells and the production of autoantibodies that contribute to the underlying pathologic condition of these diseases.
Collapse
Affiliation(s)
| | - Eileen L Rose
- Bioverativ, a Sanofi company, South San Francisco, CA 94080
| | - Tony S Byun
- Bioverativ, a Sanofi company, South San Francisco, CA 94080
| | - Graham C Parry
- Bioverativ, a Sanofi company, South San Francisco, CA 94080
| | | |
Collapse
|
25
|
Chakraborty S, Karasu E, Huber-Lang M. Complement After Trauma: Suturing Innate and Adaptive Immunity. Front Immunol 2018; 9:2050. [PMID: 30319602 PMCID: PMC6165897 DOI: 10.3389/fimmu.2018.02050] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 08/20/2018] [Indexed: 12/21/2022] Open
Abstract
The overpowering effect of trauma on the immune system is undisputed. Severe trauma is characterized by systemic cytokine generation, activation and dysregulation of systemic inflammatory response complementopathy and coagulopathy, has been immensely instrumental in understanding the underlying mechanisms of the innate immune system during systemic inflammation. The compartmentalized functions of the innate and adaptive immune systems are being gradually recognized as an overlapping, interactive and dynamic system of responsive elements. Nonetheless the current knowledge of the complement cascade and its interaction with adaptive immune response mediators and cells, including T- and B-cells, is limited. In this review, we discuss what is known about the bridging effects of the complement system on the adaptive immune system and which unexplored areas could be crucial in understanding how the complement and adaptive immune systems interact following trauma.
Collapse
Affiliation(s)
- Shinjini Chakraborty
- Institute of Clinical and Experimental Trauma-Immunology, University Hospital of Ulm, Ulm, Germany
| | - Ebru Karasu
- Institute of Clinical and Experimental Trauma-Immunology, University Hospital of Ulm, Ulm, Germany
| | - Markus Huber-Lang
- Institute of Clinical and Experimental Trauma-Immunology, University Hospital of Ulm, Ulm, Germany
| |
Collapse
|
26
|
Lu LL, Suscovich TJ, Fortune SM, Alter G. Beyond binding: antibody effector functions in infectious diseases. Nat Rev Immunol 2018; 18:46-61. [PMID: 29063907 PMCID: PMC6369690 DOI: 10.1038/nri.2017.106] [Citation(s) in RCA: 486] [Impact Index Per Article: 81.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Antibodies play an essential role in host defence against pathogens by recognizing microorganisms or infected cells. Although preventing pathogen entry is one potential mechanism of protection, antibodies can control and eradicate infections through a variety of other mechanisms. In addition to binding and directly neutralizing pathogens, antibodies drive the clearance of bacteria, viruses, fungi and parasites via their interaction with the innate and adaptive immune systems, leveraging a remarkable diversity of antimicrobial processes locked within our immune system. Specifically, antibodies collaboratively form immune complexes that drive sequestration and uptake of pathogens, clear toxins, eliminate infected cells, increase antigen presentation and regulate inflammation. The diverse effector functions that are deployed by antibodies are dynamically regulated via differential modification of the antibody constant domain, which provides specific instructions to the immune system. Here, we review mechanisms by which antibody effector functions contribute to the balance between microbial clearance and pathology and discuss tractable lessons that may guide rational vaccine and therapeutic design to target gaps in our infectious disease armamentarium.
Collapse
Affiliation(s)
- Lenette L Lu
- Ragon Institute of MGH, MIT and Harvard, 400 Technology Square, Cambridge, Massachusetts 02139, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, USA
| | - Todd J Suscovich
- Ragon Institute of MGH, MIT and Harvard, 400 Technology Square, Cambridge, Massachusetts 02139, USA
| | - Sarah M Fortune
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, USA
| | - Galit Alter
- Ragon Institute of MGH, MIT and Harvard, 400 Technology Square, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
27
|
Machado Y, Duinkerken S, Hoepflinger V, Mayr M, Korotchenko E, Kurtaj A, Pablos I, Steiner M, Stoecklinger A, Lübbers J, Schmid M, Ritter U, Scheiblhofer S, Ablinger M, Wally V, Hochmann S, Raninger AM, Strunk D, van Kooyk Y, Thalhamer J, Weiss R. Synergistic effects of dendritic cell targeting and laser-microporation on enhancing epicutaneous skin vaccination efficacy. J Control Release 2017; 266:87-99. [PMID: 28919557 DOI: 10.1016/j.jconrel.2017.09.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 09/13/2017] [Indexed: 02/06/2023]
Abstract
Due to its unique immunological properties, the skin is an attractive target tissue for allergen-specific immunotherapy. In our current work, we combined a dendritic cell targeting approach with epicutaneous immunization using an ablative fractional laser to generate defined micropores in the upper layers of the skin. By coupling the major birch pollen allergen Bet v 1 to mannan from S. cerevisiae via mild periodate oxidation we generated hypoallergenic Bet-mannan neoglycoconjugates, which efficiently targeted CD14+ dendritic cells and Langerhans cells in human skin explants. Mannan conjugation resulted in sustained release from the skin and retention in secondary lymphoid organs, whereas unconjugated antigen showed fast renal clearance. In a mouse model, Bet-mannan neoglycoconjugates applied via laser-microporated skin synergistically elicited potent humoral and cellular immune responses, superior to intradermal injection. The induced antibody responses displayed IgE-blocking capacity, highlighting the therapeutic potential of the approach. Moreover, application via micropores, but not by intradermal injection, resulted in a mixed TH1/TH17-biased immune response. Our data clearly show that applying mannan-neoglycoconjugates to an organ rich in dendritic cells using laser-microporation is superior to intradermal injection. Due to their low IgE binding capacity and biodegradability, mannan neoglycoconjugates therefore represent an attractive formulation for allergen-specific epicutaneous immunotherapy.
Collapse
Affiliation(s)
- Yoan Machado
- Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | - Sanne Duinkerken
- Department of Molecular Cell Biology and Immunology, VU University Medical Centre, Amsterdam, The Netherlands
| | | | - Melissa Mayr
- Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | | | - Almedina Kurtaj
- Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | - Isabel Pablos
- Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | - Markus Steiner
- Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | | | - Joyce Lübbers
- Department of Molecular Cell Biology and Immunology, VU University Medical Centre, Amsterdam, The Netherlands
| | | | - Uwe Ritter
- Department of Immunology, University of Regensburg, Regensburg, Germany
| | | | - Michael Ablinger
- Division of Experimental Dermatology, EB House Austria, Department of Dermatology, Paracelsus Medical University, Salzburg, Austria
| | - Verena Wally
- Division of Experimental Dermatology, EB House Austria, Department of Dermatology, Paracelsus Medical University, Salzburg, Austria
| | - Sarah Hochmann
- Institute of Experimental and Clinical Cell Therapy, Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University, Austria
| | - Anna M Raninger
- Institute of Experimental and Clinical Cell Therapy, Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University, Austria
| | - Dirk Strunk
- Institute of Experimental and Clinical Cell Therapy, Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University, Austria
| | - Yvette van Kooyk
- Department of Molecular Cell Biology and Immunology, VU University Medical Centre, Amsterdam, The Netherlands
| | - Josef Thalhamer
- Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | - Richard Weiss
- Department of Molecular Biology, University of Salzburg, Salzburg, Austria.
| |
Collapse
|
28
|
St. Clair JB, Detanico T, Aviszus K, Kirchenbaum GA, Christie M, Carpenter JF, Wysocki LJ. Immunogenicity of Isogenic IgG in Aggregates and Immune Complexes. PLoS One 2017; 12:e0170556. [PMID: 28114383 PMCID: PMC5256993 DOI: 10.1371/journal.pone.0170556] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 01/07/2017] [Indexed: 01/08/2023] Open
Abstract
A paradox in monoclonal antibody (mAb) therapy is that despite the well-documented tolerogenic properties of deaggregated IgG, most therapeutic IgG mAb induce anti-mAb responses. To analyze CD4 T cell reactions against IgG in various physical states, we developed an adoptive transfer model using CD4+ T cells specific for a Vκ region-derived peptide in the hapten-specific IgG mAb 36–71. We found that heat-aggregated or immune complexes (IC) of mAb 36–71 elicited anti-idiotypic (anti-Id) antibodies, while the deaggregated form was tolerogenic. All 3 forms of mAb 36–71 induced proliferation of cognate CD4+ T cells, but the aggregated and immune complex forms drove more division cycles and induced T follicular helper cells (TFH) development more effectively than did the deaggregated form. These responses occurred despite no adjuvant and no or only trace levels of endotoxin in the preparations. Physical analyses revealed large differences in micron- and nanometer-sized particles between the aggregated and IC forms. These differences may be functionally relevant, as CD4+ T cell proliferation to aggregated, but not IC mAb 36–71, was nearly ablated upon peritoneal injection of B cell-depleting antibody. Our results imply that, in addition to denatured aggregates, immune complexes formed in vivo between therapeutic mAb and their intended targets can be immunogenic.
Collapse
Affiliation(s)
- J. Benjamin St. Clair
- Department of Biomedical Research, National Jewish Health, Denver CO, United States of America
- Medical Scientist Training Program, University of Colorado School of Medicine, Denver, Colorado, United States of America
- Integrated Department of Immunology, National Jewish Health and University of Colorado School of Medicine, Denver, Colorado, United States of America
| | - Thiago Detanico
- Department of Biomedical Research, National Jewish Health, Denver CO, United States of America
- Integrated Department of Immunology, National Jewish Health and University of Colorado School of Medicine, Denver, Colorado, United States of America
| | - Katja Aviszus
- Department of Biomedical Research, National Jewish Health, Denver CO, United States of America
- Integrated Department of Immunology, National Jewish Health and University of Colorado School of Medicine, Denver, Colorado, United States of America
| | - Greg A. Kirchenbaum
- Integrated Department of Immunology, National Jewish Health and University of Colorado School of Medicine, Denver, Colorado, United States of America
| | - Merry Christie
- Department of Pharmaceutical Sciences, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - John F. Carpenter
- Department of Pharmaceutical Sciences, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Lawrence J. Wysocki
- Department of Biomedical Research, National Jewish Health, Denver CO, United States of America
- * E-mail:
| |
Collapse
|
29
|
Valenzuela NM, Hickey MJ, Reed EF. Antibody Subclass Repertoire and Graft Outcome Following Solid Organ Transplantation. Front Immunol 2016; 7:433. [PMID: 27822209 PMCID: PMC5075576 DOI: 10.3389/fimmu.2016.00433] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Accepted: 10/03/2016] [Indexed: 12/20/2022] Open
Abstract
Long-term outcomes in solid organ transplantation are constrained by the development of donor-specific alloantibodies (DSA) against human leukocyte antigen (HLA) and other targets, which elicit antibody-mediated rejection (ABMR). However, antibody-mediated graft injury represents a broad continuum, from extensive complement activation and tissue damage compromising the function of the transplanted organ, to histological manifestations of endothelial cell injury and mononuclear cell infiltration but without concurrent allograft dysfunction. In addition, while transplant recipients with DSA as a whole fare worse than those without, a substantial minority of patients with DSA do not experience poorer graft outcome. Taken together, these observations suggest that not all DSA are equally pathogenic. Antibody effector functions are controlled by a number of factors, including antibody concentration, antigen availability, and antibody isotype/subclass. Antibody isotype is specified by many integrated signals, including the antigen itself as well as from antigen-presenting cells or helper T cells. To date, a number of studies have described the repertoire of IgG subclasses directed against HLA in pretransplant patients and evaluated the clinical impact of different DSA IgG subclasses on allograft outcome. This review will summarize what is known about the repertoire of antibodies to HLA and non-HLA targets in transplantation, focusing on the distribution of IgG subclasses, as well as the general biology, etiology, and mechanisms of injury of different humoral factors.
Collapse
Affiliation(s)
- Nicole M Valenzuela
- UCLA Immunogenetics Center, University of California Los Angeles, Los Angeles, CA, USA; Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Michelle J Hickey
- UCLA Immunogenetics Center, University of California Los Angeles, Los Angeles, CA, USA; Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Elaine F Reed
- UCLA Immunogenetics Center, University of California Los Angeles, Los Angeles, CA, USA; Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
30
|
De La Fuente J, Gortázar C, Juste R. Complement component 3: a new paradigm in tuberculosis vaccine. Expert Rev Vaccines 2015; 15:275-7. [PMID: 26605515 DOI: 10.1586/14760584.2016.1125294] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Vaccines are critical for the control of tuberculosis (TB) affecting humans and animals worldwide. First-generation vaccines protect from active TB but new vaccines are required to protect against pulmonary disease and infection. Recent advances in post-genomics technologies have allowed the characterization of host-pathogen interactions to discover new protective antigens and mechanisms to develop more effective vaccines against TB. Studies in the wild boar model resulted in the identification of complement component 3 (C3) as a natural correlate of protection against TB. Oral immunization with heat-inactivated mycobacteria protected wild boar against TB and showed that C3 plays a central role in protection. These results point at C3 as a target to develop novel vaccine formulations for more effective protection against TB in humans and animals.
Collapse
Affiliation(s)
- José De La Fuente
- a SaBio, Instituto de Investigación en Recursos Cinegéticos IREC (CSIC-UCLM-JCCM) , Ciudad Real , Spain.,b Department of Veterinary Pathobiology , Center for Veterinary Health Sciences, Oklahoma State University , Stillwater , OK , USA
| | - Christian Gortázar
- a SaBio, Instituto de Investigación en Recursos Cinegéticos IREC (CSIC-UCLM-JCCM) , Ciudad Real , Spain
| | - Ramón Juste
- c Departamento de Sanidad Animal , NEIKER-Tecnalia. Instituto Vasco de Investigación y Desarrollo Agrario , Derio , Vizcaya , Spain
| |
Collapse
|
31
|
Ramos I, Fernandez-Sesma A. Modulating the Innate Immune Response to Influenza A Virus: Potential Therapeutic Use of Anti-Inflammatory Drugs. Front Immunol 2015; 6:361. [PMID: 26257731 PMCID: PMC4507467 DOI: 10.3389/fimmu.2015.00361] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 07/04/2015] [Indexed: 12/27/2022] Open
Abstract
Infection by influenza A viruses (IAV) is frequently characterized by robust inflammation that is usually more pronounced in the case of avian influenza. It is becoming clearer that the morbidity and pathogenesis caused by IAV are consequences of this inflammatory response, with several components of the innate immune system acting as the main players. It has been postulated that using a therapeutic approach to limit the innate immune response in combination with antiviral drugs has the potential to diminish symptoms and tissue damage caused by IAV infection. Indeed, some anti-inflammatory agents have been shown to be effective in animal models in reducing IAV pathology as a proof of principle. The main challenge in developing such therapies is to selectively modulate signaling pathways that contribute to lung injury while maintaining the ability of the host cells to mount an antiviral response to control virus replication. However, the dissection of those pathways is very complex given the numerous components regulated by the same factors (i.e., NF kappa B transcription factors) and the large number of players involved in this regulation, some of which may be undescribed or unknown. This article provides a comprehensive review of the current knowledge regarding the innate immune responses associated with tissue damage by IAV infection, the understanding of which is essential for the development of effective immunomodulatory drugs. Furthermore, we summarize the recent advances on the development and evaluation of such drugs as well as the lessons learned from those studies.
Collapse
Affiliation(s)
- Irene Ramos
- Department of Microbiology, Icahn School of Medicine at Mount Sinai , New York, NY , USA
| | - Ana Fernandez-Sesma
- Department of Microbiology, Icahn School of Medicine at Mount Sinai , New York, NY , USA
| |
Collapse
|
32
|
Zhai SK, Volgina VV, Sethupathi P, Knight KL, Lanning DK. Chemokine-mediated B cell trafficking during early rabbit GALT development. THE JOURNAL OF IMMUNOLOGY 2014; 193:5951-9. [PMID: 25385821 DOI: 10.4049/jimmunol.1302575] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Microbial and host cell interactions stimulate rabbit B cells to diversify the primary Ab repertoire in GALT. B cells at the base of appendix follicles begin proliferating and diversifying their V-(D)-J genes around 1 wk of age, ∼5 d after B cells first begin entering appendix follicles. To gain insight into the microbial and host cell interactions that stimulate B cells to diversify the primary Ab repertoire, we analyzed B cell trafficking within follicles during the first week of life. We visualized B cells, as well as chemokines that mediate B cell homing in lymphoid tissues, by in situ hybridization, and we examined B cell chemokine receptor expression by flow cytometry. We found that B cells were activated and began downregulating their BCRs well before a detectable B cell proliferative region appeared at the follicle base. The proliferative region was similar to germinal center dark zones, in that it exhibited elevated CXCL12 mRNA expression, and B cells that upregulated CXCR4 mRNA in response to signals acquired from selected intestinal commensals localized in this region. Our results suggest that after entering appendix follicles, B cells home sequentially to the follicle-associated epithelium, the follicular dendritic cell network, the B cell/T cell boundary, and, ultimately, the base of the follicle, where they enter a proliferative program and diversify the primary Ab repertoire.
Collapse
Affiliation(s)
- Shi-Kang Zhai
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153
| | - Veronica V Volgina
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153
| | - Periannan Sethupathi
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153
| | - Katherine L Knight
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153
| | - Dennis K Lanning
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153
| |
Collapse
|
33
|
Virus-induced humoral immunity: on how B cell responses are initiated. Curr Opin Virol 2013; 3:357-62. [DOI: 10.1016/j.coviro.2013.05.004] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Revised: 04/27/2013] [Accepted: 05/07/2013] [Indexed: 12/15/2022]
|
34
|
Karsten CM, Köhl J. The immunoglobulin, IgG Fc receptor and complement triangle in autoimmune diseases. Immunobiology 2013; 217:1067-79. [PMID: 22964232 DOI: 10.1016/j.imbio.2012.07.015] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Revised: 07/18/2012] [Accepted: 07/18/2012] [Indexed: 01/19/2023]
Abstract
Immunoglobulin G (IgG)-mediated activation of complement and IgG Fc receptors (FcγRs) are important defense mechanisms of the innate immune system to ward off infections. However, the same mechanisms can drive severe and harmful inflammation, when IgG antibodies react with self-antigens in solution or tissues, as described for several autoimmune diseases including systemic lupus erythematosus, rheumatoid arthritis, and immune vasculitis. More specifically, IgG immune complexes (ICs) can activate all three pathways of the complement system resulting in the generation of C3 and C5 cleavage products that can activate a panel of different complement receptors on innate and adaptive immune cells. Importantly, complement and FcγRs are often co-expressed on inflammatory immune cells such as neutrophils, monocytes, macrophages or dendritic cells and act in concert to mediate the inflammatory response in autoimmune diseases. In this context, the cross-talk between the receptor for the anaphylatoxin C5a, i.e. C5ar1 (CD88) and FcγRs is of major importance. Recent data suggest a model of bidirectional regulation, in which CD88 acts upstream of FcγRs and sets the threshold for FcγR-dependent effector responses by regulating the ratio between activating and inhibitory FcγRs. Vice versa, FcγR ligation can either amplify or block C5aR-mediated effector functions, depending on whether IgG IC aggregate activating or inhibitory FcγRs. Further, complement and FcγRs cooperate on B cells and on follicular dendritic cells to regulate the development of autoreactive B cells, their differentiation into plasma cells and, eventually, the production of autoantibodies. Here, we will give an update on recent findings regarding this complex regulatory network between complement and FcγRs, which may also regulate the inflammatory response in allergy, cancer and infection.
Collapse
Affiliation(s)
- Christian M Karsten
- Institute for Systemic Inflammation Research, University of Lübeck, 23538 Lübeck, Germany
| | | |
Collapse
|
35
|
Shishido SN, Varahan S, Yuan K, Li X, Fleming SD. Humoral innate immune response and disease. Clin Immunol 2012; 144:142-58. [PMID: 22771788 PMCID: PMC3576926 DOI: 10.1016/j.clim.2012.06.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Revised: 06/05/2012] [Accepted: 06/09/2012] [Indexed: 12/27/2022]
Abstract
The humoral innate immune response consists of multiple components, including the naturally occurring antibodies (NAb), pentraxins and the complement and contact cascades. As soluble, plasma components, these innate proteins provide key elements in the prevention and control of disease. However, pathogens and cells with altered self proteins utilize multiple humoral components to evade destruction and promote pathogy. Many studies have examined the relationship between humoral immunity and autoimmune disorders. This review focuses on the interactions between the humoral components and their role in promoting the pathogenesis of bacterial and viral infections and chronic diseases such as atherosclerosis and cancer. Understanding the beneficial and detrimental aspects of the individual components and the interactions between proteins which regulate the innate and adaptive response will provide therapeutic targets for subsequent studies.
Collapse
Affiliation(s)
- Stephanie N Shishido
- Department of Diagnostic Medicine and Pathology, Kansas State University, Manhattan, KS 66506, USA
| | | | | | | | | |
Collapse
|
36
|
Moshkani S, Kuzin II, Adewale F, Jansson J, Sanz I, Schwarz EM, Bottaro A. CD23+ CD21(high) CD1d(high) B cells in inflamed lymph nodes are a locally differentiated population with increased antigen capture and activation potential. THE JOURNAL OF IMMUNOLOGY 2012; 188:5944-53. [PMID: 22593620 DOI: 10.4049/jimmunol.1103071] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
CD23(+)CD21(high)CD1d(high) B cells in inflamed nodes (Bin cells) accumulate in the lymph nodes (LNs) draining inflamed joints of the TNF-α-transgenic mouse model of rheumatoid arthritis and are primarily involved in the significant histological and functional LN alterations that accompany disease exacerbation in this strain. In this study, we investigate the origin and function of Bin cells. We show that adoptively transferred GFP(+) sorted mature follicular B (FoB) cells home preferentially to inflamed LNs of TNF-α-transgenic mice where they rapidly differentiate into Bin cells, with a close correlation with the endogenous Bin fraction. Bin cells are also induced in wild-type LNs after immunization with T-dependent Ags and display a germinal center phenotype at higher rates compared with FoB cells. Furthermore, we show that Bin cells can capture and process Ag-immune complexes in a CD21-dependent manner more efficiently than can FoB cells, and they express greater levels of MHC class II and costimulatory Ags CD80 and CD86. We propose that Bin cells are a previously unrecognized inflammation-induced B cell population with increased Ag capture and activation potential, which may facilitate normal immune responses but may contribute to autoimmunity when chronic inflammation causes their accumulation and persistence in affected LNs.
Collapse
Affiliation(s)
- Safiehkhatoon Moshkani
- Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Waffarn EE, Baumgarth N. Protective B cell responses to flu--no fluke! THE JOURNAL OF IMMUNOLOGY 2011; 186:3823-9. [PMID: 21422252 DOI: 10.4049/jimmunol.1002090] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The mechanisms regulating the induction and maintenance of B lymphocytes have been delineated extensively in immunization studies using proteins and hapten-carrier systems. Increasing evidence suggests, however, that the regulation of B cell responses induced by infections is far more complex. In this study, we review the current understanding of B cell responses induced following infection with influenza virus, a small RNA virus that causes the flu. Notably, the rapidly induced, highly protective, and long-lived humoral response to this virus is contributed by multiple B cell subsets, each generating qualitatively distinct respiratory tract and systemic responses. Some B cell subsets provide extensive cross-protection against variants of the ever-mutating virus, and each is regulated by the quality and magnitude of infection-induced innate immune signals. Knowledge gained from the analysis of such highly protective humoral response might provide a blueprint for successful vaccines and vaccination approaches.
Collapse
Affiliation(s)
- Elizabeth E Waffarn
- Center for Comparative Medicine, University of California, Davis, Davis, CA 95616, USA
| | | |
Collapse
|
38
|
Maynard AD, Warheit DB, Philbert MA. The new toxicology of sophisticated materials: nanotoxicology and beyond. Toxicol Sci 2011; 120 Suppl 1:S109-29. [PMID: 21177774 PMCID: PMC3145386 DOI: 10.1093/toxsci/kfq372] [Citation(s) in RCA: 172] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Accepted: 12/01/2010] [Indexed: 01/28/2023] Open
Abstract
It has long been recognized that the physical form of materials can mediate their toxicity--the health impacts of asbestiform materials, industrial aerosols, and ambient particulate matter are prime examples. Yet over the past 20 years, toxicology research has suggested complex and previously unrecognized associations between material physicochemistry at the nanoscale and biological interactions. With the rapid rise of the field of nanotechnology and the design and production of increasingly complex nanoscale materials, it has become ever more important to understand how the physical form and chemical composition of these materials interact synergistically to determine toxicity. As a result, a new field of research has emerged--nanotoxicology. Research within this field is highlighting the importance of material physicochemical properties in how dose is understood, how materials are characterized in a manner that enables quantitative data interpretation and comparison, and how materials move within, interact with, and are transformed by biological systems. Yet many of the substances that are the focus of current nanotoxicology studies are relatively simple materials that are at the vanguard of a new era of complex materials. Over the next 50 years, there will be a need to understand the toxicology of increasingly sophisticated materials that exhibit novel, dynamic and multifaceted functionality. If the toxicology community is to meet the challenge of ensuring the safe use of this new generation of substances, it will need to move beyond "nano" toxicology and toward a new toxicology of sophisticated materials. Here, we present a brief overview of the current state of the science on the toxicology of nanoscale materials and focus on three emerging toxicology-based challenges presented by sophisticated materials that will become increasingly important over the next 50 years: identifying relevant materials for study, physicochemical characterization, and biointeractions.
Collapse
Affiliation(s)
- Andrew D. Maynard
- Risk Science Center, University of Michigan School of Public Health, Ann Arbor Michigan 48019
| | - David B. Warheit
- DuPont Haskell Laboratory for Health and Environmental Sciences, Newark, Delaware 19714-0050
| | - Martin A. Philbert
- Toxicology Program, University of Michigan School of Public Health, Ann Arbor, Michigan 48019
| |
Collapse
|
39
|
Abstract
The complement system functions as an immune surveillance system that rapidly responds to infection. Activation of the complement system by specific recognition pathways triggers a protease cascade, generating cleavage products that function to eliminate pathogens, regulate inflammatory responses, and shape adaptive immune responses. However, when dysregulated, these powerful functions can become destructive and the complement system has been implicated as a pathogenic effector in numerous diseases, including infectious diseases. This review highlights recent discoveries that have identified critical roles for the complement system in the pathogenesis of viral infection.
Collapse
|
40
|
Gonzalez SF, Degn SE, Pitcher LA, Woodruff M, Heesters BA, Carroll MC. Trafficking of B cell antigen in lymph nodes. Annu Rev Immunol 2011; 29:215-33. [PMID: 21219172 DOI: 10.1146/annurev-immunol-031210-101255] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The clonal selection theory first proposed by Macfarlane Burnet is a cornerstone of immunology (1). At the time, it revolutionized the thinking of immunologists because it provided a simple explanation for lymphocyte specificity, immunological memory, and elimination of self-reactive clones (2). The experimental demonstration by Nossal & Lederberg (3) that B lymphocytes bear receptors for a single antigen raised the central question of where B lymphocytes encounter antigen. This question has remained mostly unanswered until recently. Advances in techniques such as multiphoton intravital microscopy (4, 5) have provided new insights into the trafficking of B cells and their antigen. In this review, we summarize these advances in the context of our current view of B cell circulation and activation.
Collapse
Affiliation(s)
- Santiago F Gonzalez
- The Immune Disease Institute and Program in Molecular and Cellular Medicine, Children's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | |
Collapse
|