1
|
Yan M, Man S, Ma L, Guo L, Huang L, Gao W. Immunological mechanisms in steatotic liver diseases: An overview and clinical perspectives. Clin Mol Hepatol 2024; 30:620-648. [PMID: 38988278 PMCID: PMC11540396 DOI: 10.3350/cmh.2024.0315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/10/2024] [Accepted: 07/10/2024] [Indexed: 07/12/2024] Open
Abstract
Steatotic liver diseases (SLD) are the principal worldwide cause of cirrhosis and end-stage liver cancer, affecting nearly a quarter of the global population. SLD includes metabolic dysfunction-associated alcoholic liver disease (MetALD) and metabolic dysfunction-associated steatotic liver disease (MASLD), resulting in asymptomatic liver steatosis, fibrosis, cirrhosis and associated complications. The immune processes include gut dysbiosis, adiposeliver organ crosstalk, hepatocyte death and immune cell-mediated inflammatory processes. Notably, various immune cells such as B cells, plasma cells, dendritic cells, conventional CD4+ and CD8+ T cells, innate-like T cells, platelets, neutrophils and macrophages play vital roles in the development of MetALD and MASLD. Immunological modulations targeting hepatocyte death, inflammatory reactions and gut microbiome include N-acetylcysteine, selonsertib, F-652, prednisone, pentoxifylline, anakinra, JKB-121, HA35, obeticholic acid, probiotics, prebiotics, antibiotics and fecal microbiota transplantation. Understanding the immunological mechanisms underlying SLD is crucial for advancing clinical therapeutic strategies.
Collapse
Affiliation(s)
- Mengyao Yan
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Shuli Man
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Long Ma
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Lanping Guo
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Luqi Huang
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wenyuan Gao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Weijin Road, Tianjin, China
| |
Collapse
|
2
|
Systemic CD4 Immunity and PD-L1/PD-1 Blockade Immunotherapy. Int J Mol Sci 2022; 23:ijms232113241. [PMID: 36362027 PMCID: PMC9655397 DOI: 10.3390/ijms232113241] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/25/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
PD-L1/PD-1 blockade immunotherapy has changed the therapeutic approaches for the treatment of many cancers. Nevertheless, the mechanisms underlying its efficacy or treatment failure are still unclear. Proficient systemic immunity seems to be a prerequisite for efficacy, as recently shown in patients and in mouse models. It is widely accepted that expansion of anti-tumor CD8 T cell populations is principally responsible for anti-tumor responses. In contrast, the role of CD4 T cells has been less studied. Here we review and discuss the evidence supporting the contribution of CD4 T cells to anti-tumor immunity, especially recent advances linking CD4 T cell subsets to efficacious PD-L1/PD-1 blockade immunotherapy. We also discuss the role of CD4 T cell memory subsets present in peripheral blood before the start of immunotherapies, and their utility as predictors of response.
Collapse
|
3
|
Dertschnig S, Evans P, Santos E Sousa P, Manzo T, Ferrer IR, Stauss HJ, Bennett CL, Chakraverty R. Graft-versus-host disease reduces lymph node display of tissue-restricted self-antigens and promotes autoimmunity. J Clin Invest 2020; 130:1896-1911. [PMID: 31917684 PMCID: PMC7108931 DOI: 10.1172/jci133102] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 01/03/2020] [Indexed: 12/28/2022] Open
Abstract
Acute graft-versus-host disease (GVHD) is initially triggered by alloreactive T cells, which damage peripheral tissues and lymphoid organs. Subsequent transition to chronic GVHD involves the emergence of autoimmunity, although the underlying mechanisms driving this process are unclear. Here, we tested the hypothesis that acute GVHD blocks peripheral tolerance of autoreactive T cells by impairing lymph node (LN) display of peripheral tissue–restricted antigens (PTAs). At the initiation of GVHD, LN fibroblastic reticular cells (FRCs) rapidly reduced expression of genes regulated by DEAF1, an autoimmune regulator-like transcription factor required for intranodal expression of PTAs. Subsequently, GVHD led to the selective elimination of the FRC population, and blocked the repair pathways required for its regeneration. We used a transgenic mouse model to show that the loss of presentation of an intestinal PTA by FRCs during GVHD resulted in the activation of autoaggressive T cells and gut injury. Finally, we show that FRCs normally expressed a unique PTA gene signature that was highly enriched for genes expressed in the target organs affected by chronic GVHD. In conclusion, acute GVHD damages and prevents repair of the FRC network, thus disabling an essential platform for purging autoreactive T cells from the repertoire.
Collapse
Affiliation(s)
- Simone Dertschnig
- UCL Cancer Institute, and.,Institute of Immunity and Transplantation, London, United Kingdom
| | - Pamela Evans
- UCL Cancer Institute, and.,Institute of Immunity and Transplantation, London, United Kingdom
| | - Pedro Santos E Sousa
- UCL Cancer Institute, and.,Institute of Immunity and Transplantation, London, United Kingdom
| | | | - Ivana R Ferrer
- UCL Cancer Institute, and.,Institute of Immunity and Transplantation, London, United Kingdom
| | - Hans J Stauss
- Institute of Immunity and Transplantation, London, United Kingdom
| | - Clare L Bennett
- UCL Cancer Institute, and.,Institute of Immunity and Transplantation, London, United Kingdom
| | - Ronjon Chakraverty
- UCL Cancer Institute, and.,Institute of Immunity and Transplantation, London, United Kingdom
| |
Collapse
|
4
|
Zhang W, Lim SM, Hwang J, Ramalingam S, Kim M, Jin JO. Monophosphoryl lipid A-induced activation of plasmacytoid dendritic cells enhances the anti-cancer effects of anti-PD-L1 antibodies. Cancer Immunol Immunother 2020; 70:689-700. [PMID: 32902663 DOI: 10.1007/s00262-020-02715-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 08/31/2020] [Indexed: 12/23/2022]
Abstract
Monophosphoryl lipid A (MPLA) is a toll-like receptor 4 ligand that promotes immune activation in mice and humans, without undesired inflammation. Immunotherapy by the combining immune checkpoint blockade and MPLA has shown promising anti-cancer effects in both mice and humans. In this study, we explored how MPLA enhanced the anti-cancer effects of anti-PD-L1 antibodies (Abs). Anti-cancer immunity induced by the combination of anti-PD-L1 Abs and MPLA failed in CD4 and CD8 cell-depleted mice. Moreover, the combination treatment of anti-PD-L1 Abs and MPLA synergistically enhanced the activation of plasmacytoid dendritic cells (pDCs) in the mouse in vivo, while conventional DCs were not. In addition, mice treated with anti-PD-L1 Abs and MPLA were not protected from B16 melanoma by blockade of interferon-alpha receptor (IFNAR). The combination of anti-PD-L1 Abs and MPLA also promoted human peripheral blood pDC activation and induced IFN-α-dependent T cell activation. Therefore, these results demonstrate that MPLA enhances anti-PD-L1 Ab-mediated anti-cancer immunity through the activation and IFN-α production of pDCs.
Collapse
Affiliation(s)
- Wei Zhang
- Shanghai Public Health Clinical Center, Shanghai Medical College, Fudan University, Shanghai, 201508, China
| | - Seong-Min Lim
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 38541, Republic of Korea.,Research Institute of Cell Culture, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Juyoung Hwang
- Shanghai Public Health Clinical Center, Shanghai Medical College, Fudan University, Shanghai, 201508, China.,Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 38541, Republic of Korea.,Research Institute of Cell Culture, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Srinivasan Ramalingam
- Department of Food Science and Technology, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Myunghee Kim
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, 38541, Republic of Korea.,Department of Food Science and Technology, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Jun-O Jin
- Shanghai Public Health Clinical Center, Shanghai Medical College, Fudan University, Shanghai, 201508, China. .,Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 38541, Republic of Korea. .,Research Institute of Cell Culture, Yeungnam University, Gyeongsan, 38541, Republic of Korea.
| |
Collapse
|
5
|
Hotblack A, Holler A, Piapi A, Ward S, Stauss HJ, Bennett CL. Tumor-Resident Dendritic Cells and Macrophages Modulate the Accumulation of TCR-Engineered T Cells in Melanoma. Mol Ther 2018; 26:1471-1481. [PMID: 29628306 PMCID: PMC5986719 DOI: 10.1016/j.ymthe.2018.03.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 03/09/2018] [Accepted: 03/12/2018] [Indexed: 12/17/2022] Open
Abstract
Ongoing clinical trials explore T cell receptor (TCR) gene therapy as a treatment option for cancer, but responses in solid tumors are hampered by the immunosuppressive microenvironment. The production of TCR gene-engineered T cells requires full T cell activation in vitro, and it is currently unknown whether in vivo interactions with conventional dendritic cells (cDCs) regulate the accumulation and function of engineered T cells in tumors. Using the B16 melanoma model and the inducible depletion of CD11c+ cells in CD11c.diphtheria toxin receptor (DTR) mice, we analyzed the interaction between tumor-resident cDCs and engineered T cells expressing the melanoma-specific TRP-2 TCR. We found that depletion of CD11c+ cells triggered the recruitment of cross-presenting cDC1 into the tumor and enhanced the accumulation of TCR-engineered T cells. We show that the recruited tumor cDCs present melanoma tumor antigen, leading to enhanced activation of TCR-engineered T cells. In addition, detailed analysis of the tumor myeloid compartment revealed that the depletion of a population of DT-sensitive macrophages can contribute to the accumulation of tumor-infiltrating T cells. Together, these data suggest that the relative frequency of tumor-resident cDCs and macrophages may impact the therapeutic efficacy of TCR gene therapy in solid tumors.
Collapse
Affiliation(s)
- Alastair Hotblack
- Institute for Immunity and Transplantation, Division of Infection and Immunity, University College London, London NW3 2PF, UK
| | - Angelika Holler
- Institute for Immunity and Transplantation, Division of Infection and Immunity, University College London, London NW3 2PF, UK
| | - Alice Piapi
- Institute for Immunity and Transplantation, Division of Infection and Immunity, University College London, London NW3 2PF, UK
| | - Sophie Ward
- Institute for Immunity and Transplantation, Division of Infection and Immunity, University College London, London NW3 2PF, UK; Cancer Institute, Division of Cancer Studies, University College London, London WC1E 6DD, UK
| | - Hans J Stauss
- Institute for Immunity and Transplantation, Division of Infection and Immunity, University College London, London NW3 2PF, UK.
| | - Clare L Bennett
- Institute for Immunity and Transplantation, Division of Infection and Immunity, University College London, London NW3 2PF, UK; Cancer Institute, Division of Cancer Studies, University College London, London WC1E 6DD, UK.
| |
Collapse
|
6
|
Oleinika K, Rosser EC, Matei DE, Nistala K, Bosma A, Drozdov I, Mauri C. CD1d-dependent immune suppression mediated by regulatory B cells through modulations of iNKT cells. Nat Commun 2018; 9:684. [PMID: 29449556 PMCID: PMC5814456 DOI: 10.1038/s41467-018-02911-y] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Accepted: 01/08/2018] [Indexed: 12/22/2022] Open
Abstract
Regulatory B cells (Breg) express high levels of CD1d that presents lipid antigens to invariant natural killer T (iNKT) cells. The function of CD1d in Breg biology and iNKT cell activity during inflammation remains unclear. Here we show, using chimeric mice, cell depletion and adoptive cell transfer, that CD1d-lipid presentation by Bregs induces iNKT cells to secrete interferon (IFN)-γ to contribute, partially, to the downregulation of T helper (Th)1 and Th17-adaptive immune responses and ameliorate experimental arthritis. Mice lacking CD1d-expressing B cells develop exacerbated disease compared to wild-type mice, and fail to respond to treatment with the prototypical iNKT cell agonist α-galactosylceramide. The absence of lipid presentation by B cells alters iNKT cell activation with disruption of metabolism regulation and cytokine responses. Thus, we identify a mechanism by which Bregs restrain excessive inflammation via lipid presentation.
Collapse
MESH Headings
- Adoptive Transfer/methods
- Animals
- Antigens, CD1d/genetics
- Antigens, CD1d/immunology
- Antigens, CD1d/metabolism
- Arthritis, Experimental/genetics
- Arthritis, Experimental/immunology
- Arthritis, Experimental/metabolism
- B-Lymphocytes/drug effects
- B-Lymphocytes/immunology
- B-Lymphocytes/metabolism
- B-Lymphocytes, Regulatory/immunology
- Cells, Cultured
- Galactosylceramides/pharmacology
- Interferon-gamma/immunology
- Interferon-gamma/metabolism
- Male
- Mice, Inbred C57BL
- Mice, Knockout
- Natural Killer T-Cells/drug effects
- Natural Killer T-Cells/immunology
- Natural Killer T-Cells/metabolism
- Th1 Cells/immunology
- Th1 Cells/metabolism
- Th17 Cells/immunology
- Th17 Cells/metabolism
Collapse
Affiliation(s)
- K Oleinika
- Centre for Rheumatology, Division of Medicine, University College London, London, WC1E 6JF, UK
- Division of Infection and Immunity, University College London, London, WC1E 6BT UK, UK
| | - E C Rosser
- Centre for Rheumatology, Division of Medicine, University College London, London, WC1E 6JF, UK
- Infection, Inflammation and Rheumatology Section, Infection, Immunity and Inflammation Programme, UCL Great Ormond Street Institute of Child Health, University College London, London, WC1N 1EH, UK
| | - D E Matei
- Centre for Rheumatology, Division of Medicine, University College London, London, WC1E 6JF, UK
| | - K Nistala
- Centre for Rheumatology, Division of Medicine, University College London, London, WC1E 6JF, UK
| | - A Bosma
- Centre for Rheumatology, Division of Medicine, University College London, London, WC1E 6JF, UK
| | | | - C Mauri
- Centre for Rheumatology, Division of Medicine, University College London, London, WC1E 6JF, UK.
| |
Collapse
|
7
|
Rossowska J, Anger N, Szczygieł A, Mierzejewska J, Pajtasz-Piasecka E. Intratumoral Lentivector-Mediated TGF-β1 Gene Downregulation As a Potent Strategy for Enhancing the Antitumor Effect of Therapy Composed of Cyclophosphamide and Dendritic Cells. Front Immunol 2017; 8:713. [PMID: 28713366 PMCID: PMC5492852 DOI: 10.3389/fimmu.2017.00713] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 06/01/2017] [Indexed: 12/27/2022] Open
Abstract
Vaccination with dendritic cells (DCs) stimulated with tumor antigens can induce specific cellular immune response that recognizes a high spectrum of tumor antigens. However, the ability of cancer cells to produce immunosuppressive factors drastically decreases the antitumor activity of DCs. The main purpose of the study was to improve the effectiveness of DC-based immunotherapy or chemoimmunotherapy composed of cyclophosphamide (CY) and DCs by application of lentivectors (LVs)-encoding short hairpin RNA specific for TGF-β1 (shTGFβ1 LVs). We observed that s.c. inoculation of both MC38 cells with silenced expression of TGF-β1 (MC38/shTGF-β1) and direct intratumoral application of shTGFβ1 LVs contributed to reduction of suppressor activity of myeloid cells and Tregs in tumor. Contrary to expectations, in mice bearing wild tumor, the application of shTGFβ1 LVs prior to vaccination with bone marrow-derived DC stimulated with tumor antigens (BMDC/TAg) did not influence myeloid-derived suppressor cell (MDSC) infiltration into tumor. As a result, we observed only minor MC38 tumor growth inhibition (TGI) accompanied by systemic antitumor response activation comparable to that obtained for negative control (shN). However, when the proposed scheme was complemented by pretreatment with a low dose of CY, we noticed high MC38 TGI together with decreased number of MDSCs in tumor and induction of Th1-type response. Moreover, in both schemes of treatment, LVs (shTGFβ1 as well as shN) induced high influx of CTLs into tumor associated probably with the viral antigen introduction into tumor microenvironment. Concluding, the application of shTGFβ1 LVs alone or in combination with DC-based vaccines is not sufficient for long-lasting elimination of suppression in tumor. However, simultaneous reduction of TGF-β1 in tumor microenvironment and its remodeling by pretreatment with a low dose of CY facilitates the settlement of peritumorally inoculated DCs and supports them in restoration and activation of a potent antitumor response.
Collapse
Affiliation(s)
- Joanna Rossowska
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Natalia Anger
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Agnieszka Szczygieł
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Jagoda Mierzejewska
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Elżbieta Pajtasz-Piasecka
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| |
Collapse
|
8
|
Hotblack A, Seshadri S, Zhang L, Hamrang-Yousefi S, Chakraverty R, Escors D, Bennett CL. Dendritic Cells Cross-Present Immunogenic Lentivector-Encoded Antigen from Transduced Cells to Prime Functional T Cell Immunity. Mol Ther 2017; 25:504-511. [PMID: 28153097 PMCID: PMC5368353 DOI: 10.1016/j.ymthe.2016.11.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 11/10/2016] [Accepted: 11/11/2016] [Indexed: 12/03/2022] Open
Abstract
Recombinant lentiviral vectors (LVs) are highly effective vaccination vehicles that elicit protective T cell immunity in disease models. Dendritic cells (DCs) acquire antigen at sites of vaccination and migrate to draining lymph nodes, where they prime vaccine-specific T cells. The potency with which LVs activate CD8+ T cell immunity has been attributed to the transduction of DCs at the immunization site and durable presentation of LV-encoded antigens. However, it is not known how LV-encoded antigens continue to be presented to T cells once directly transduced DCs have turned over. Here, we report that LV-encoded antigen is efficiently cross-presented by DCs in vitro. We have further exploited the temporal depletion of DCs in the murine CD11c.DTR (diphtheria toxin receptor) model to demonstrate that repopulating DCs that were absent at the time of immunization cross-present LV-encoded antigen to T cells in vivo. Indirect presentation of antigen from transduced cells by DCs is sufficient to prime functional effector T cells that control tumor growth. These data suggest that DCs cross-present immunogenic antigen from LV-transduced cells, thereby facilitating prolonged activation of T cells in the absence of circulating LV particles. These are findings that may impact on the future design of LV vaccination strategies.
Collapse
Affiliation(s)
- Alastair Hotblack
- Institute for Immunity and Transplantation, University College London, London NW3 2PF, UK
| | - Sara Seshadri
- Institute for Immunity and Transplantation, University College London, London NW3 2PF, UK; Cancer Institute, University College London, London WC1E 6DD, UK
| | - Lei Zhang
- Institute for Immunity and Transplantation, University College London, London NW3 2PF, UK; Cancer Institute, University College London, London WC1E 6DD, UK
| | - Sahar Hamrang-Yousefi
- Institute for Immunity and Transplantation, University College London, London NW3 2PF, UK; Cancer Institute, University College London, London WC1E 6DD, UK
| | - Ronjon Chakraverty
- Institute for Immunity and Transplantation, University College London, London NW3 2PF, UK; Cancer Institute, University College London, London WC1E 6DD, UK
| | - David Escors
- Immunomodulation Group, Navarrabiomed-Fundaçion Miguel Servet, Calle de Irunlarrea 3, 31008 Pamplona, Spain
| | - Clare L Bennett
- Institute for Immunity and Transplantation, University College London, London NW3 2PF, UK; Cancer Institute, University College London, London WC1E 6DD, UK.
| |
Collapse
|
9
|
Sivakumaran S, Henderson S, Ward S, Santos E Sousa P, Manzo T, Zhang L, Conlan T, Means TK, D'Aveni M, Hermine O, Rubio MT, Chakraverty R, Bennett CL. Depletion of CD11c⁺ cells in the CD11c.DTR model drives expansion of unique CD64⁺ Ly6C⁺ monocytes that are poised to release TNF-α. Eur J Immunol 2016; 46:192-203. [PMID: 26464217 PMCID: PMC4722854 DOI: 10.1002/eji.201545789] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 09/10/2015] [Accepted: 10/07/2015] [Indexed: 12/13/2022]
Abstract
Dendritic cells (DCs) play a vital role in innate and adaptive immunities. Inducible depletion of CD11c(+) DCs engineered to express a high-affinity diphtheria toxin receptor has been a powerful tool to dissect DC function in vivo. However, despite reports showing that loss of DCs induces transient monocytosis, the monocyte population that emerges and the potential impact of monocytes on studies of DC function have not been investigated. We found that depletion of CD11c(+) cells from CD11c.DTR mice induced the expansion of a variant CD64(+) Ly6C(+) monocyte population in the spleen and blood that was distinct from conventional monocytes. Expansion of CD64(+) Ly6C(+) monocytes was independent of mobilization from the BM via CCR2 but required the cytokine, G-CSF. Indeed, this population was also expanded upon exposure to exogenous G-CSF in the absence of DC depletion. CD64(+) Ly6C(+) monocytes were characterized by upregulation of innate signaling apparatus despite the absence of inflammation, and an increased capacity to produce TNF-α following LPS stimulation. Thus, depletion of CD11c(+) cells induces expansion of a unique CD64(+) Ly6C(+) monocyte population poised to synthesize TNF-α. This finding will require consideration in experiments using depletion strategies to test the role of CD11c(+) DCs in immunity.
Collapse
Affiliation(s)
- Shivajanani Sivakumaran
- Institute for Immunity and Transplantation, University College LondonLondon, UK
- Cancer Institute, University College LondonLondon, UK
| | - Stephen Henderson
- Cancer Institute, University College LondonLondon, UK
- Bill Lyons Informatics Centre, University College LondonLondon, UK
| | - Sophie Ward
- Institute for Immunity and Transplantation, University College LondonLondon, UK
- Cancer Institute, University College LondonLondon, UK
| | - Pedro Santos E Sousa
- Institute for Immunity and Transplantation, University College LondonLondon, UK
- Cancer Institute, University College LondonLondon, UK
| | - Teresa Manzo
- Institute for Immunity and Transplantation, University College LondonLondon, UK
- Cancer Institute, University College LondonLondon, UK
| | - Lei Zhang
- Institute for Immunity and Transplantation, University College LondonLondon, UK
- Cancer Institute, University College LondonLondon, UK
| | - Thomas Conlan
- Institute for Immunity and Transplantation, University College LondonLondon, UK
- Cancer Institute, University College LondonLondon, UK
| | - Terry K Means
- MGH Center for Immunology and Inflammatory Diseases, Harvard Medical SchoolBoston, MA, USA
| | - Maud D'Aveni
- CNRS UMR 8147, Université Paris Descartes, Faculté de MédecineHôpital Necker, Paris, France
| | - Olivier Hermine
- CNRS UMR 8147, Université Paris Descartes, Faculté de MédecineHôpital Necker, Paris, France
| | - Marie-Thérèse Rubio
- CNRS UMR 8147, Université Paris Descartes, Faculté de MédecineHôpital Necker, Paris, France
| | - Ronjon Chakraverty
- Institute for Immunity and Transplantation, University College LondonLondon, UK
- Cancer Institute, University College LondonLondon, UK
| | - Clare L Bennett
- Institute for Immunity and Transplantation, University College LondonLondon, UK
- Cancer Institute, University College LondonLondon, UK
| |
Collapse
|
10
|
Goyvaerts C, Kurt DG, Van Lint S, Heirman C, Van Ginderachter JA, De Baetselier P, Raes G, Thielemans K, Breckpot K. Immunogenicity of targeted lentivectors. Oncotarget 2015; 5:704-15. [PMID: 24519916 PMCID: PMC3996667 DOI: 10.18632/oncotarget.1680] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
To increase the safety and possibly efficacy of HIV-1 derived lentivectors (LVs) as an anti-cancer vaccine, we recently developed the Nanobody (Nb) display technology to target LVs to antigen presenting cells (APCs). In this study, we extend these data with exclusive targeting of LVs to conventional dendritic cells (DCs), which are believed to be the main cross-presenting APCs for the induction of a TH1-conducted antitumor immune response. The immunogenicity of these DC-subtype targeted LVs was compared to that of broad tropism, general APC-targeted and non-infectious LVs. Intranodal immunization with ovalbumin encoding LVs induced proliferation of antigen specific CD4+ T cells, irrespective of the LVs' targeting ability. However, the cytokine secretion profile of the restimulated CD4+ T cells demonstrated that general APC targeting induced a similar TH1-profile as the broad tropism LVs while transduction of conventional DCs alone induced a similar and less potent TH1 profile as the non-infectious LVs. This observation contradicts the hypothesis that conventional DCs are the most important APCs and suggests that the activation of other APCs is also meaningful. Despite these differences, all targeted LVs were able to stimulate cytotoxic T lymphocytes, be it to a lesser extent than broad tropism LVs. Furthermore this induction was shown to be dependent on type I interferon for the targeted and non-infectious LVs, but not for broad tropism LVs. Finally we demonstrated that the APC-targeted LVs were as potent in therapy as broad tropism LVs and as such deliver on their promise as safer and efficacious LV-based vaccines.
Collapse
Affiliation(s)
- Cleo Goyvaerts
- Laboratory of Molecular and Cellular Therapy, Department of Immunology-Physiology, Vrije Universiteit Brussel, Brussels, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Macdonald DC, Hotblack A, Akbar S, Britton G, Collins MK, Rosenberg WC. 4-1BB ligand activates bystander dendritic cells to enhance immunization in trans. THE JOURNAL OF IMMUNOLOGY 2014; 193:5056-64. [PMID: 25305314 DOI: 10.4049/jimmunol.1301723] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Expression of the costimulatory receptor 4-1BB is induced by TCR recognition of Ag, whereas 4-1BB ligand (4-1BBL) is highly expressed on activated APC. 4-1BB signaling is particularly important for survival of activated and memory CD8(+) T cells. We wished to test whether coexpression of Ag and 4-1BBL by dendritic cells (DC) would be an effective vaccine strategy. Therefore, we constructed lentiviral vectors (LV) coexpressing 4-1BBL and influenza nucleoprotein (NP). Following s.c. immunization of mice, which targets DC, we found superior CD8(+) T cell responses against NP and protection from influenza when 4-1BBL was expressed. However, functionally superior CD8(+) T cell responses were obtained when two LV were coinjected: one expressing 4-1BBL and the other expressing NP. This surprising result suggested that 4-1BBL is more effective when expressed in trans, acting on adjacent DC. Therefore, we investigated the effect of LV expression of 4-1BBL in mouse DC cultures and observed induced maturation of bystander, untransduced cells. Maturation was blocked by anti-4-1BBL Ab, required cell-cell contact, and did not require the cytoplasmic signaling domain of 4-1BBL. Greater maturation of untransduced cells could be explained by LV expression of 4-1BBL, causing downregulation of 4-1BB. These data suggest that coexpression of 4-1BBL and Ag by vaccine vectors that target DC may not be an optimal strategy. However, 4-1BBL LV immunization activates significant numbers of bystander DC in the draining lymph nodes. Therefore, transactivation by 4-1BBL/4-1BB interaction following DC-DC contact may play a role in the immune response to infection or vaccination.
Collapse
Affiliation(s)
- Douglas C Macdonald
- Division of Infection and Immunity, University College London, London WC1E 6BT, United Kingdom
| | - Alastair Hotblack
- Division of Infection and Immunity, University College London, London WC1E 6BT, United Kingdom
| | - Saniath Akbar
- Division of Infection and Immunity, University College London, London WC1E 6BT, United Kingdom
| | - Gary Britton
- Division of Infection and Immunity, University College London, London WC1E 6BT, United Kingdom
| | - Mary K Collins
- Division of Infection and Immunity, University College London, London WC1E 6BT, United Kingdom; National Institute for Biological Standards and Control, South Mimms, Potters Bar, Hertsfordshire EN6 3QG, United Kingdom; and
| | - William C Rosenberg
- Division of Medicine, University College London, London WC1E 6BT, United Kingdom
| |
Collapse
|
12
|
Liechtenstein T, Perez-Janices N, Blanco-Luquin I, Goyvaerts C, Schwarze J, Dufait I, Lanna A, Ridder MD, Guerrero-Setas D, Breckpot K, Escors D. Anti-melanoma vaccines engineered to simultaneously modulate cytokine priming and silence PD-L1 characterized using ex vivo myeloid-derived suppressor cells as a readout of therapeutic efficacy. Oncoimmunology 2014; 3:e945378. [PMID: 25954597 DOI: 10.4161/21624011.2014.945378] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 05/09/2014] [Indexed: 01/21/2023] Open
Abstract
Efficacious antitumor vaccines strongly stimulate cancer-specific effector T cells and counteract the activity of tumor-infiltrating immunosuppressive cells. We hypothesised that combining cytokine expression with silencing programmed cell death ligand 1 (PD-L1) could potentiate anticancer immune responses of lentivector vaccines. Thus, we engineered a collection of lentivectors that simultaneously co-expressed an antigen, a PD-L1-silencing shRNA, and various T cell-polarising cytokines, including interferon γ (IFNγ), transforming growth factor β (TGFβ) or interleukins (IL12, IL15, IL23, IL17A, IL6, IL10, IL4). In a syngeneic B16F0 melanoma model and using tyrosinase related protein 1 (TRP1) as a vaccine antigen, we found that simultaneous delivery of IL12 and a PD-L1-silencing shRNA was the only combination that exhibited therapeutically relevant anti-melanoma activities. Mechanistically, we found that delivery of the PD-L1 silencing construct boosted T cell numbers, inhibited in vivo tumor growth and strongly cooperated with IL12 cytokine priming and antitumor activities. Finally, we tested the capacities of our vaccines to counteract tumor-infiltrating myeloid-derived suppressor cell (MDSC) activities ex vivo. Interestingly, the lentivector co-expressing IL12 and the PD-L1 silencing shRNA was the only one that counteracted MDSC suppressive activities, potentially underlying the observed anti-melanoma therapeutic benefit. We conclude that (1) evaluation of vaccines in healthy mice has no significant predictive value for the selection of anticancer treatments; (2) B16 cells expressing xenoantigens as a tumor model are of limited value; and (3) vaccines which inhibit the suppressive effect of MDSC on T cells in our ex vivo assay show promising and relevant antitumor activities.
Collapse
Key Words
- 142 3p, target sequence for the microRNA 142 3p
- DC, dendritic cell
- G-MDSC, granulocytic MDSC
- IL, interleukin
- IiOVA, MHC II invariant chain-ovalbumin
- M-MDS, monocytic MDSC
- MDSC
- MDSC, myeloid-derived suppressor cell
- MLR, mixed lymphocyte reaction
- OVA, chicken ovalbumin
- PD-1, programmed cell death 1
- PD-L1
- PD-L1, programmed cell death 1 ligand 1
- T cell
- TAA, tumor associated antigen
- TCR, T cell receptor
- TRP1, tyrosinase related protein 1;
- TRP2, tyrosinase related protein 2
- Th, T helper lymphocyte
- immunotherapy
- melanoma
- p1, PD-L1-targeted microRNA
- shRNA, short hairpin RNA
Collapse
Affiliation(s)
- Therese Liechtenstein
- Division of infection and immunity; Rayne Institute; University College London ; London, UK ; Immunomodulation group; Navarrabiomed-Fundacion Miguel Servet ; Pamplona, Navarra, Spain
| | - Noemi Perez-Janices
- Division of infection and immunity; Rayne Institute; University College London ; London, UK ; Cancer Epigenetics group; Navarrabiomed-Fundacion Miguel Servet ; Pamplona, Navarra, Spain
| | - Idoia Blanco-Luquin
- Cancer Epigenetics group; Navarrabiomed-Fundacion Miguel Servet ; Pamplona, Navarra, Spain
| | - Cleo Goyvaerts
- Laboratory of Molecular and Cellular Therapy; Department of Physiology-Immunology; Vrije Universiteit Brussel ; Jette, Belgium
| | - Julia Schwarze
- Laboratory of Molecular and Cellular Therapy; Department of Physiology-Immunology; Vrije Universiteit Brussel ; Jette, Belgium
| | - Ines Dufait
- Laboratory of Molecular and Cellular Therapy; Department of Physiology-Immunology; Vrije Universiteit Brussel ; Jette, Belgium ; Department of Radiotherapy; Vrije Universiteit Brussel ; Jette, Belgium
| | - Alessio Lanna
- Division of infection and immunity; Rayne Institute; University College London ; London, UK
| | - Mark De Ridder
- Department of Radiotherapy; Vrije Universiteit Brussel ; Jette, Belgium
| | - David Guerrero-Setas
- Cancer Epigenetics group; Navarrabiomed-Fundacion Miguel Servet ; Pamplona, Navarra, Spain
| | - Karine Breckpot
- Laboratory of Molecular and Cellular Therapy; Department of Physiology-Immunology; Vrije Universiteit Brussel ; Jette, Belgium
| | - David Escors
- Division of infection and immunity; Rayne Institute; University College London ; London, UK ; Immunomodulation group; Navarrabiomed-Fundacion Miguel Servet ; Pamplona, Navarra, Spain
| |
Collapse
|
13
|
|
14
|
Macdonald DC, Singh H, Whelan MA, Escors D, Arce F, Bottoms SE, Barclay WS, Maini M, Collins MK, Rosenberg WMC. Harnessing alveolar macrophages for sustained mucosal T-cell recall confers long-term protection to mice against lethal influenza challenge without clinical disease. Mucosal Immunol 2014; 7:89-100. [PMID: 23715172 DOI: 10.1038/mi.2013.27] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 04/01/2013] [Indexed: 02/04/2023]
Abstract
Vaccines that induce T cells, which recognize conserved viral proteins, could confer universal protection against seasonal and pandemic influenza strains. An effective vaccine should generate sufficient mucosal T cells to ensure rapid viral control before clinical disease. However, T cells may also cause lung injury in influenza, so this approach carries inherent risks. Here we describe intranasal immunization of mice with a lentiviral vector expressing influenza nucleoprotein (NP), together with an NFκB activator, which transduces over 75% of alveolar macrophages (AM). This strategy recalls and expands NP-specific CD8+ T cells in the lung and airway of mice that have been immunized subcutaneously, or previously exposed to influenza. Granzyme B-high, lung-resident T-cell populations persist for at least 4 months and can control a lethal influenza challenge without harmful cytokine responses, weight loss, or lung injury. These data demonstrate that AM can be harnessed as effective antigen-presenting cells for influenza vaccination.
Collapse
Affiliation(s)
- D C Macdonald
- Division of Infection and Immunity and MRC Centre for Medical Molecular Virology, University College London, London, UK
| | - H Singh
- Division of Infection and Immunity and MRC Centre for Medical Molecular Virology, University College London, London, UK
| | - M A Whelan
- Division of Medicine, University College London, London, UK
| | - D Escors
- Division of Infection and Immunity and MRC Centre for Medical Molecular Virology, University College London, London, UK
| | - F Arce
- Division of Infection and Immunity and MRC Centre for Medical Molecular Virology, University College London, London, UK
| | - S E Bottoms
- Division of Medicine, University College London, London, UK
| | - W S Barclay
- Division of Virology, Imperial College London, St Mary's Campus, London, UK
| | - M Maini
- Division of Infection and Immunity and MRC Centre for Medical Molecular Virology, University College London, London, UK
| | - M K Collins
- Division of Infection and Immunity and MRC Centre for Medical Molecular Virology, University College London, London, UK
| | | |
Collapse
|
15
|
Abstract
The success of immunotherapy against infectious diseases has shown us the powerful potential that such a treatment offers, and substantial work has been done to apply this strategy in the fight against cancer. Cancer is however a fiercer opponent than pathogen-caused diseases due to natural tolerance towards tumour associated antigens and tumour-induced immunosuppression. Recent gene therapy clinical trials with viral vectors have shown clinical efficacy in the correction of genetic diseases, HIV and cancer. The first successful gene therapy clinical trials were carried out with onco(γ-)retroviral vectors but oncogenesis by insertional mutagenesis appeared as a serious complication. Lentiviral vectors have emerged as a potentially safer strategy, and recently the first clinical trial of patients with advanced leukemia using lentiviral vectors has proven successful. Additionally, therapeutic lentivectors have shown clinical efficacy for the treatment of HIV, X-linked adrenoleukodystrophy, and β-thalassaemia. This review aims at describing lentivectors and how they can be utilized to boost anti-tumour immune responses by manipulating the effector immune cells.
Collapse
|
16
|
Cell-intrinsic regulation of murine dendritic cell function and survival by prereceptor amplification of glucocorticoid. Blood 2013; 122:3288-97. [PMID: 24081658 DOI: 10.1182/blood-2013-03-489138] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although the inhibitory effects of therapeutic glucocorticoids (GCs) on dendritic cells (DCs) are well established, the roles of endogenous GCs in DC homeostasis are less clear. A critical element regulating endogenous GC concentrations involves local conversion of inactive substrates to active 11-hydroxyglucocorticoids, a reduction reaction catalyzed within the endoplasmic reticulum by an enzyme complex containing 11β-hydroxysteroid dehydrogenase type 1 (11βHSD1) and hexose-6-phosphate dehydrogenase (H6PDH). In this study, we found that this GC amplification pathway operates both constitutively and maximally in steady state murine DC populations and is unaffected by additional inflammatory stimuli. Under physiologic conditions, 11βHSD1-H6PDH increases the sensitivity of plasmacytoid DCs (pDCs) to GC-induced apoptosis and restricts the survival of this population through a cell-intrinsic mechanism. Upon CpG activation, the effects of enzyme activity are overridden, with pDCs becoming resistant to GCs and fully competent to release type I interferon. CD8α(+) DCs are also highly proficient in amplifying GC levels, leading to impaired maturation following toll-like receptor-mediated signaling. Indeed, pharmacologic inhibition of 11βHSD1 synergized with CpG to enhance specific T-cell responses following vaccination targeted to CD8α(+) DCs. In conclusion, amplification of endogenous GCs is a critical cell-autonomous mechanism for regulating the survival and functions of DCs in vivo.
Collapse
|
17
|
Liechtenstein T, Perez-Janices N, Bricogne C, Lanna A, Dufait I, Goyvaerts C, Laranga R, Padella A, Arce F, Baratchian M, Ramirez N, Lopez N, Kochan G, Blanco-Luquin I, Guerrero-Setas D, Breckpot K, Escors D. Immune modulation by genetic modification of dendritic cells with lentiviral vectors. Virus Res 2013; 176:1-15. [PMID: 23726846 DOI: 10.1016/j.virusres.2013.05.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 05/13/2013] [Accepted: 05/14/2013] [Indexed: 11/24/2022]
Abstract
Our work over the past eight years has focused on the use of HIV-1 lentiviral vectors (lentivectors) for the genetic modification of dendritic cells (DCs) to control their functions in immune modulation. DCs are key professional antigen presenting cells which regulate the activity of most effector immune cells, including T, B and NK cells. Their genetic modification provides the means for the development of targeted therapies towards cancer and autoimmune disease. We have been modulating with lentivectors the activity of intracellular signalling pathways and co-stimulation during antigen presentation to T cells, to fine-tune the type and strength of the immune response. In the course of our research, we have found unexpected results such as the surprising immunosuppressive role of anti-viral signalling pathways, and the close link between negative co-stimulation in the immunological synapse and T cell receptor trafficking. Here we review our major findings and put them into context with other published work.
Collapse
Affiliation(s)
- Therese Liechtenstein
- Division of Infection and Immunity, Rayne Institute, University College London, London, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Coutant F, Sanchez David RY, Félix T, Boulay A, Caleechurn L, Souque P, Thouvenot C, Bourgouin C, Beignon AS, Charneau P. A nonintegrative lentiviral vector-based vaccine provides long-term sterile protection against malaria. PLoS One 2012; 7:e48644. [PMID: 23133649 PMCID: PMC3487763 DOI: 10.1371/journal.pone.0048644] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2012] [Accepted: 09/27/2012] [Indexed: 01/06/2023] Open
Abstract
Trials testing the RTS,S candidate malaria vaccine and radiation-attenuated sporozoites (RAS) have shown that protective immunity against malaria can be induced and that an effective vaccine is not out of reach. However, longer-term protection and higher protection rates are required to eradicate malaria from the endemic regions. It implies that there is still a need to explore new vaccine strategies. Lentiviral vectors are very potent at inducing strong immunological memory. However their integrative status challenges their safety profile. Eliminating the integration step obviates the risk of insertional oncogenesis. Providing they confer sterile immunity, nonintegrative lentiviral vectors (NILV) hold promise as mass pediatric vaccine by meeting high safety standards. In this study, we have assessed the protective efficacy of NILV against malaria in a robust pre-clinical model. Mice were immunized with NILV encoding Plasmodium yoelii Circumsporozoite Protein (Py CSP) and challenged with sporozoites one month later. In two independent protective efficacy studies, 50% (37.5-62.5) of the animals were fully protected (p = 0.0072 and p = 0.0008 respectively when compared to naive mice). The remaining mice with detectable parasitized red blood cells exhibited a prolonged patency and reduced parasitemia. Moreover, protection was long-lasting with 42.8% sterile protection six months after the last immunization (p = 0.0042). Post-challenge CD8+ T cells to CSP, in contrast to anti-CSP antibodies, were associated with protection (r = -0.6615 and p = 0.0004 between the frequency of IFN-g secreting specific T cells in spleen and parasitemia). However, while NILV and RAS immunizations elicited comparable immunity to CSP, only RAS conferred 100% of sterile protection. Given that a better protection can be anticipated from a multi-antigen vaccine and an optimized vector design, NILV appear as a promising malaria vaccine.
Collapse
Affiliation(s)
- Frédéric Coutant
- Unité Virologie Moléculaire et Vaccinologie, Department of Virology, Institut Pasteur and CNRS URA3015, Institut Pasteur, Paris, France
| | - Raul Yusef Sanchez David
- Unité Virologie Moléculaire et Vaccinologie, Department of Virology, Institut Pasteur and CNRS URA3015, Institut Pasteur, Paris, France
| | - Tristan Félix
- Unité Virologie Moléculaire et Vaccinologie, Department of Virology, Institut Pasteur and CNRS URA3015, Institut Pasteur, Paris, France
| | - Aude Boulay
- Unité Virologie Moléculaire et Vaccinologie, Department of Virology, Institut Pasteur and CNRS URA3015, Institut Pasteur, Paris, France
| | - Laxmee Caleechurn
- Unité Virologie Moléculaire et Vaccinologie, Department of Virology, Institut Pasteur and CNRS URA3015, Institut Pasteur, Paris, France
| | - Philippe Souque
- Unité Virologie Moléculaire et Vaccinologie, Department of Virology, Institut Pasteur and CNRS URA3015, Institut Pasteur, Paris, France
| | - Catherine Thouvenot
- Centre de Production et d’Infection des Anophèles (CEPIA), Department of Parasitology and Mycology, Institut Pasteur, Paris, France
| | - Catherine Bourgouin
- Centre de Production et d’Infection des Anophèles (CEPIA), Department of Parasitology and Mycology, Institut Pasteur, Paris, France
| | - Anne-Sophie Beignon
- Unité Virologie Moléculaire et Vaccinologie, Department of Virology, Institut Pasteur and CNRS URA3015, Institut Pasteur, Paris, France
| | - Pierre Charneau
- Unité Virologie Moléculaire et Vaccinologie, Department of Virology, Institut Pasteur and CNRS URA3015, Institut Pasteur, Paris, France
| |
Collapse
|
19
|
Liechtenstein T, Dufait I, Lanna A, Breckpot K, Escors D. MODULATING CO-STIMULATION DURING ANTIGEN PRESENTATION TO ENHANCE CANCER IMMUNOTHERAPY. IMMUNOLOGY, ENDOCRINE & METABOLIC AGENTS IN MEDICINAL CHEMISTRY 2012; 12:224-235. [PMID: 22945252 PMCID: PMC3428911 DOI: 10.2174/187152212802001875] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
One of the key roles of the immune system is the identification of potentially dangerous pathogens or tumour cells, and raising a wide range of mechanisms to eliminate them from the organism. One of these mechanisms is activation and expansion of antigen-specific cytotoxic T cells, after recognition of antigenic peptides on the surface of antigen presenting cells such as dendritic cells (DCs). However, DCs also process and present autoantigens. Therefore, antigen presentation has to occur in the appropriate context to either trigger immune responses or establishing immunological tolerance. This is achieved by co-stimulation of T cells during antigen presentation. Co-stimulation consists on the simultaneous binding of ligand-receptor molecules at the immunological synapse which will determine the type and extent of T cell responses. In addition, the type of cytokines/chemokines present during antigen presentation will influence the polarisation of T cell responses, whether they lead to tolerance, antibody responses or cytotoxicity. In this review, we will focus on approaches manipulating co-stimulation during antigen presentation, and the role of cytokine stimulation on effective T cell responses. More specifically, we will address the experimental strategies to interfere with negative co-stimulation such as that mediated by PD-L1 (Programmed cell death 1 ligand 1)/PD-1 (Programmed death 1) to enhance anti-tumour immunity.
Collapse
Affiliation(s)
- Therese Liechtenstein
- Division of Infection and Immunity. Rayne Institute. University College London. 5 University Street. WC1E 6JF. London. United Kingdom
| | - Ines Dufait
- Division of Infection and Immunity. Rayne Institute. University College London. 5 University Street. WC1E 6JF. London. United Kingdom
- Department of Physiology-Immunology. Medical School. Free University of Brussels. Laarbeeklaan 103. 1090 Jette. Belgium
| | - Alessio Lanna
- Division of Infection and Immunity. Rayne Institute. University College London. 5 University Street. WC1E 6JF. London. United Kingdom
| | - Karine Breckpot
- Department of Physiology-Immunology. Medical School. Free University of Brussels. Laarbeeklaan 103. 1090 Jette. Belgium
| | - David Escors
- Division of Infection and Immunity. Rayne Institute. University College London. 5 University Street. WC1E 6JF. London. United Kingdom
| |
Collapse
|
20
|
Hong Y, Peng Y, Xiao H, Mi M, Munn D, He Y. Immunoglobulin Fc fragment tagging allows strong activation of endogenous CD4 T cells to reshape the tumor milieu and enhance the antitumor effect of lentivector immunization. THE JOURNAL OF IMMUNOLOGY 2012; 188:4819-27. [PMID: 22504640 DOI: 10.4049/jimmunol.1103512] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A major problem with current cancer vaccines is that the induction of CD8 immune responses is rarely associated with antitumor benefits, mainly owing to multiple immune suppressions in established tumor lesions. In this study, we investigated if and how activation of endogenous CD4 T cells could be achieved to influence the suppressive tumor milieu and antitumor effect. We engineered a lentivector (lv) to express a nominal fusion Ag composed of hepatitis B surface protein and IgG2a Fc fragment (HBS-Fc-lv) to increase the magnitude of CD8 response but, more importantly, to induce effective coactivation of CD4 T cells. We found that, remarkably, immunization with HBS-Fc-lv caused significant regression of established tumors. Immunologic analysis revealed that, compared with HBS-lv without Fc fragment, immunization with HBS-Fc-lv markedly increased the number of functional CD8 and CD4 T cells and the level of Th1/Tc1-like cytokines in the tumor while substantially decreasing the regulatory T cell ratio. The favorable immunologic changes in tumor lesions and the improvement of antitumor effects from HBS-Fc-lv immunization were dependent on the CD4 activation, which was Fc receptor mediated. Adoptive transfer of CD4 T cells from the HBS-Fc-lv-immunized mice could activate endogenous CD8 T cells in an IFN-γ-dependent manner. We conclude that endogenous CD4 T cells can be activated by lv expressing Fc-tagged Ag to provide another layer of help--that is, creating a Th1/Tc1-like proinflammatory milieu within the tumor lesion to boost the effector phase of immune responses in enhancing the antitumor effect.
Collapse
Affiliation(s)
- Yuan Hong
- Immunology/Immunotherapy Program, Cancer Center, Medical College of Georgia, Georgia Health Sciences University, Augusta, GA 30912, USA
| | | | | | | | | | | |
Collapse
|
21
|
Di Nunzio F, Félix T, Arhel N, Nisole S, Charneau P, Beignon AS. HIV-derived vectors for therapy and vaccination against HIV. Vaccine 2012; 30:2499-509. [DOI: 10.1016/j.vaccine.2012.01.089] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Revised: 01/26/2012] [Accepted: 01/31/2012] [Indexed: 11/29/2022]
|
22
|
A TLR4 agonist synergizes with dendritic cell-directed lentiviral vectors for inducing antigen-specific immune responses. Vaccine 2012; 30:2570-81. [PMID: 22314134 DOI: 10.1016/j.vaccine.2012.01.074] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Revised: 01/24/2012] [Accepted: 01/24/2012] [Indexed: 11/24/2022]
Abstract
TLR4 agonists can be used as adjuvants to trigger innate immune responses of antigen-presenting cells (APCs) such as dendritic cells (DCs) to enhance vaccine-specific immunity. Adjuvant effects of TLR4 agonists are mediated by downstream signaling controlled by both MyD88 and TRIF adapter proteins. In this study, we investigated the adjuvanting capacity of glucopyranosyl lipid A (GLA), a chemically synthesized TLR4 agonist, to boost antigen-specific immunity elicited by DC-directed lentiviral vectors (DC-LV). We found that stimulation by this agonist in vitro can activate DCs in a TLR4-dependent manner. The agonist can significantly boost DC-LV-induced humoral and cellular immune responses, resulting in better antitumor reactions in response to tumor challenges. We observed that the adjuvant-mediated enhancement of cytotoxic CD8(+) T cell responses is CD4(+) T cell-dependent and determined that in vitro the agonist stimulation involves the participation of both MyD88 and TRIF pathways to activate DCs. In vivo immunization study however revealed that adjuvant effects depend more on the MyD88 signaling as TRIF(-/-) mice but not MyD88(-/-) mice were able to maintain the enhanced CD8(+) T cell responses upon DC-LV immunization. Thus, our study supports the use of this TLR4 agonist as a potent adjuvant candidate for boosting DC-LV immunization.
Collapse
|
23
|
Escors D, Kochan G, Stephenson H, Breckpot K. Cell and Tissue Gene Targeting with Lentiviral Vectors. SPRINGERBRIEFS IN BIOCHEMISTRY AND MOLECULAR BIOLOGY 2012. [PMCID: PMC7122860 DOI: 10.1007/978-3-0348-0402-8_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
One of the main advantages of using lentivectors is their capacity to transduce a wide range of cell types, independently from the cell cycle stage. However, transgene expression in certain cell types is sometimes not desirable, either because of toxicity, cell transformation, or induction of transgene-specific immune responses. In other cases, specific targeting of only cancerous cells within a tumor is sought after for the delivery of suicide genes. Consequently, great effort has been invested in developing strategies to control transgene delivery/expression in a cell/tissue-specific manner. These strategies can broadly be divided in three; particle pseudotyping (surface targeting), which entails modification of the envelope glycoprotein (ENV); transcriptional targeting, which utilizes cell-specific promoters and/or inducible promoters; and posttranscriptional targeting, recently applied in lentivectors by introducing sequence targets for cell-specific microRNAs. In this chapter we describe each of these strategies providing some illustrative examples.
Collapse
Affiliation(s)
- David Escors
- University College London, Rayne Building, 5 University Street, London, WC1E 6JF UK
| | - Grazyna Kochan
- Oxford Structural Genomics Consortium, University of Oxford, Old Road Campus Research Building. Roosevelt Drive, Headington, Oxford, OX3 7DQ UK
| | - Holly Stephenson
- Institute of Child Health, University College London, Great Ormond Street, London, WC1N 3JH UK
| | | |
Collapse
|
24
|
Karwacz K, Bricogne C, MacDonald D, Arce F, Bennett CL, Collins M, Escors D. PD-L1 co-stimulation contributes to ligand-induced T cell receptor down-modulation on CD8+ T cells. EMBO Mol Med 2011; 3:581-92. [PMID: 21739608 PMCID: PMC3191120 DOI: 10.1002/emmm.201100165] [Citation(s) in RCA: 209] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Revised: 06/28/2011] [Accepted: 07/01/2011] [Indexed: 11/24/2022] Open
Abstract
T cell receptor (TCR) down-modulation after antigen presentation is a fundamental process that regulates TCR signal transduction. Current understanding of this process is that intrinsic TCR/CD28 signal transduction leads to TCR down-modulation. Here, we show that the interaction between programmed cell death 1 ligand 1 (PD-L1) on dendritic cells (DCs) and programmed death 1 (PD-1) on CD8 T cells contributes to ligand-induced TCR down-modulation. We provide evidence that this occurs via Casitas B-lymphoma (Cbl)-b E3 ubiquitin ligase up-regulation in CD8 T cells. Interference with PD-L1/PD-1 signalling markedly inhibits TCR down-modulation leading to hyper-activated, proliferative CD8 T cells as assessed in vitro and in vivo in an arthritis model. PD-L1 silencing accelerates anti-tumour immune responses and strongly potentiates DC anti-tumour capacities, when combined with mitogen-activated kinase (MAPK) modulators that promote DC activation.
Collapse
Affiliation(s)
- Katarzyna Karwacz
- Division of Infection and Immunity, Windeyer Institute of Medical Sciences, University College London, UK
| | | | | | | | | | | | | |
Collapse
|
25
|
Wahlin BE, Sundström C, Holte H, Hagberg H, Erlanson M, Nilsson-Ehle H, Lindén O, Nordström M, Ostenstad B, Geisler CH, Brown PDN, Lehtinen T, Maisenhölder M, Tierens AM, Sander B, Christensson B, Kimby E. T cells in tumors and blood predict outcome in follicular lymphoma treated with rituximab. Clin Cancer Res 2011; 17:4136-44. [PMID: 21518780 DOI: 10.1158/1078-0432.ccr-11-0264] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE T cells influence outcome in follicular lymphoma, but their contributions seem to be modified by therapy. Their impact in patients receiving rituximab without chemotherapy is unknown. EXPERIMENTAL DESIGN Using flow cytometry, we evaluated the T cells in tumors and/or blood in a total of 250 follicular lymphoma patients included in two Nordic Lymphoma Group randomized trials that compared single rituximab with IFN-α2a-rituximab combinations. RESULTS In univariate analysis, higher levels of CD3(+), CD4(+), and CD8(+) T cells in both tumors and blood correlated with superior treatment responses, and in multivariate analysis, tumor-CD3(+) (P = 0.011) and blood-CD4(+) (P = 0.029) cells were independent. CD4(+) cells were favorable regardless of treatment arm, but CD8(+) cells were favorable only in patients treated with single rituximab, because IFN-α2a improved responses especially in patients with low CD8(+) cell levels. Higher levels of blood-CD3(+) (P = 0.003) and blood-CD4(+) (P = 0.046) cells predicted longer overall survival, and higher levels of blood-CD8(+) cells longer times to next treatment (P = 0.046). CONCLUSIONS We conclude that therapeutic effects of rituximab are augmented by tumor-associated T cells for rapid responses and by systemic T cells for sustained responses. CD4(+) and CD8(+) cells are both favorable in patients treated with rituximab. IFN-α2a abrogates the negative impact of few CD8(+) cells.
Collapse
Affiliation(s)
- Björn Engelbrekt Wahlin
- Division of Hematology, Department of Medicine at Huddinge, Division of Hematology, Department of Medicine at Solna, Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Norway.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|