1
|
Kamath ND, Matreyek KA. Comprehensive mutational characterization of the calcium-sensing STIM1 EF-hand reveals residues essential for structure and function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.23.634525. [PMID: 39896620 PMCID: PMC11785200 DOI: 10.1101/2025.01.23.634525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Calcium signaling is a fundamental molecular means of cellular regulation. Store operated calcium entry (SOCE) is a major intracellular signaling module, wherein calcium release from the endoplasmic reticulum triggers transmembrane STIM1 proteins to conformationally shift and oligomerize to prompt calcium influx from the extracellular environment. STIM1 senses ER calcium concentrations with its canonical EF-hand domain, and missense variants can dysregulate SOCE and cause Tubular Aggregate Myopathy, Stormorken Syndrome or immunodeficiency. Few STIM1 EF-hand variants are characterized, obscuring how STIM1 sequence controls its function, and hampering clinical interpretation of STIM1 variants observed in patients. We leveraged fitness costs caused by overexpression of STIM1 variants in cultured human cells to functionally characterize 706 of the 720 possible single amino acid variants of the STIM1 canonical EF-hand. The calcium-coordinating EF-hand residues exhibited varying mutational patterns. The trailing helix possessed a core of immutable residues, even depleting during library propagation in bacteria, implicating residues normally restraining STIM1 aggregation. The leading helix only exhibited toxicity in cells with endogenous STIM1, implicating a multimerization-dependent STIM1 regulatory module. No cytotoxic STIM1 variants were observed in healthy human populations. Some disease-associated variants had low scores, but most pathogenic variants were not overtly cytotoxic in our assay. We demonstrate that orthogonal measurements for STIM1 oligomerization, cytoplasmic calcium influx, and cellular stress complement the cytotoxicity phenotypes to enhance variant understanding. Collectively, these data reveal the complex molecular roles embedded in the STIM1 canonical EF-hand sequence for its function in promoting calcium signaling through SOCE.
Collapse
Affiliation(s)
- Nisha D Kamath
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Kenneth A Matreyek
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| |
Collapse
|
2
|
Blanco E, Camps C, Bahal S, Kerai MD, Ferla MP, Rochussen AM, Handel AE, Golwala ZM, Spiridou Goncalves H, Kricke S, Klein F, Zhang F, Zinghirino F, Evans G, Keane TM, Lizot S, Kusters MA, Iro MA, Patel SV, Morris EC, Burns SO, Radcliffe R, Vasudevan P, Price A, Gillham O, Valdebenito GE, Stewart GS, Worth A, Adams SP, Duchen M, André I, Adams DJ, Santili G, Gilmour KC, Holländer GA, Davies EG, Taylor JC, Griffiths GM, Thrasher AJ, Dhalla F, Kreins AY. Dominant negative variants in ITPR3 impair T cell Ca2+ dynamics causing combined immunodeficiency. J Exp Med 2025; 222:e20220979. [PMID: 39560673 PMCID: PMC11577440 DOI: 10.1084/jem.20220979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 09/09/2024] [Accepted: 10/25/2024] [Indexed: 11/20/2024] Open
Abstract
The importance of calcium (Ca2+) as a second messenger in T cell signaling is exemplified by genetic deficiencies of STIM1 and ORAI1, which abolish store-operated Ca2+ entry (SOCE) resulting in combined immunodeficiency (CID). We report five unrelated patients with de novo missense variants in ITPR3, encoding a subunit of the inositol 1,4,5-trisphosphate receptor (IP3R), which forms a Ca2+ channel in the endoplasmic reticulum (ER) membrane responsible for the release of ER Ca2+ required to trigger SOCE, and for Ca2+ transfer to other organelles. The patients presented with CID, abnormal T cell Ca2+ homeostasis, incompletely penetrant ectodermal dysplasia, and multisystem disease. Their predominant T cell immunodeficiency is characterized by significant T cell lymphopenia, defects in late stages of thymic T cell development, and impaired function of peripheral T cells, including inadequate NF-κB- and NFAT-mediated, proliferative, and metabolic responses to activation. Pathogenicity is not due to haploinsufficiency, rather ITPR3 protein variants interfere with IP3R channel function leading to depletion of ER Ca2+ stores and blunted SOCE in T cells.
Collapse
Affiliation(s)
- Elena Blanco
- Molecular and Cellular Immunology, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Carme Camps
- National Institute for Health Research Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Sameer Bahal
- Molecular and Cellular Immunology, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Mohit D. Kerai
- Molecular and Cellular Immunology, Great Ormond Street Institute of Child Health, University College London, London, UK
- Immunology Laboratory, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Matteo P. Ferla
- National Institute for Health Research Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Adam M. Rochussen
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - Adam E. Handel
- Department of Paediatrics and Institute of Developmental and Regenerative Medicine, University of Oxford, Oxford, UK
| | - Zainab M. Golwala
- Molecular and Cellular Immunology, Great Ormond Street Institute of Child Health, University College London, London, UK
- Department of Paediatric Immunology and Gene Therapy, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Helena Spiridou Goncalves
- Molecular and Cellular Immunology, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Susanne Kricke
- SIHMDS-Haematology Laboratory, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Fabian Klein
- Department of Paediatrics and Institute of Developmental and Regenerative Medicine, University of Oxford, Oxford, UK
| | - Fang Zhang
- Molecular and Cellular Immunology, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Federica Zinghirino
- Molecular and Cellular Immunology, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Grace Evans
- Molecular and Cellular Immunology, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Thomas M. Keane
- Wellcome Sanger Institute, Cambridge, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Cambridge, UK
| | - Sabrina Lizot
- Human Lymphohematopoiesis Laboratory, Imagine Institute, INSERM UMR 1163, Université Paris Cité, Paris, France
| | - Maaike A.A. Kusters
- Department of Paediatric Immunology and Gene Therapy, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Mildred A. Iro
- Department of Paediatric Infectious Diseases and Immunology, University Hospital Southampton NHS Foundation Trust, Southampton, UK
- Faculty of Medicine and Institute of Life Sciences, University of Southampton, Southampton, UK
| | - Sanjay V. Patel
- Department of Paediatric Infectious Diseases and Immunology, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Emma C. Morris
- Department of Immunology, Royal Free London Hospitals NHS Foundation Trust, London, UK
- Institute for Immunity and Transplantation, University College London, London, UK
| | - Siobhan O. Burns
- Department of Immunology, Royal Free London Hospitals NHS Foundation Trust, London, UK
- Institute for Immunity and Transplantation, University College London, London, UK
| | - Ruth Radcliffe
- Department of Immunology, University Hospitals of Leicester NHS Trust, Leicester, UK
| | - Pradeep Vasudevan
- Department of Clinical Genetics, University Hospitals of Leicester NHS Trust, Leicester, UK
| | - Arthur Price
- Department of Immunology, University Hospitals of Leicester NHS Trust, Leicester, UK
| | - Olivia Gillham
- Department of Cell and Developmental Biology and Consortium for Mitochondrial Research, University College London, London, UK
| | - Gabriel E. Valdebenito
- Department of Cell and Developmental Biology and Consortium for Mitochondrial Research, University College London, London, UK
| | - Grant S. Stewart
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Austen Worth
- Department of Paediatric Immunology and Gene Therapy, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Stuart P. Adams
- SIHMDS-Haematology Laboratory, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Michael Duchen
- Department of Cell and Developmental Biology and Consortium for Mitochondrial Research, University College London, London, UK
| | - Isabelle André
- Human Lymphohematopoiesis Laboratory, Imagine Institute, INSERM UMR 1163, Université Paris Cité, Paris, France
| | | | - Giorgia Santili
- Molecular and Cellular Immunology, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Kimberly C. Gilmour
- Immunology Laboratory, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Georg A. Holländer
- Department of Paediatrics and Institute of Developmental and Regenerative Medicine, University of Oxford, Oxford, UK
- Paediatric Immunology, Department of Biomedicine, University of Basel and University Children’s Hospital, Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - E. Graham Davies
- Molecular and Cellular Immunology, Great Ormond Street Institute of Child Health, University College London, London, UK
- Department of Paediatric Immunology and Gene Therapy, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Jenny C. Taylor
- National Institute for Health Research Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Gillian M. Griffiths
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - Adrian J. Thrasher
- Molecular and Cellular Immunology, Great Ormond Street Institute of Child Health, University College London, London, UK
- Department of Paediatric Immunology and Gene Therapy, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Fatima Dhalla
- Department of Paediatrics and Institute of Developmental and Regenerative Medicine, University of Oxford, Oxford, UK
- Department of Clinical Immunology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Alexandra Y. Kreins
- Molecular and Cellular Immunology, Great Ormond Street Institute of Child Health, University College London, London, UK
- Department of Paediatric Immunology and Gene Therapy, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
- Institute for Health Research Great Ormond Street Hospital Biomedical Research Centre, London, UK
| |
Collapse
|
3
|
Zou J, Zhang P, Solari FA, Schönichen C, Provenzale I, Mattheij NJA, Kuijpers MJE, Rauch JS, Swieringa F, Sickmann A, Zieger B, Jurk K, Heemskerk JWM. Suppressed ORAI1-STIM1-dependent Ca 2+ entry by protein kinase C isoforms regulating platelet procoagulant activity. J Biol Chem 2024; 300:107899. [PMID: 39424145 PMCID: PMC11742345 DOI: 10.1016/j.jbc.2024.107899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 10/09/2024] [Accepted: 10/12/2024] [Indexed: 10/21/2024] Open
Abstract
Agonist-induced rises in cytosolic Ca2+ control most platelet responses in thrombosis and hemostasis. In human platelets, we earlier demonstrated that the ORAI1-STIM1 pathway is a major component of extracellular Ca2+ entry, in particular when induced via the ITAM-linked collagen receptor, glycoprotein VI (GPVI). In the present article, using functionally defective platelets from patients with a loss-of-function mutation in ORAI1 or STIM1, we show that Ca2+ entry induced by the endoplasmic reticulum ATPase inhibitor, thapsigargin, fully relies on this pathway. We demonstrate that both the GPVI-induced and thapsigargin-induced Ca2+ entry are strongly suppressed by protein kinase C (PKC) activation while leaving intracellular Ca2+ mobilization unchanged. Comparing the effects of a PKC inhibitory panel pointed to redundant roles of beta and theta PKC isoforms in Ca2+-entry suppression. In contrast, tyrosine kinases positively regulated GPVI-induced Ca2+ entry and mobilization. Label-free and stable isotope phosphoproteome analysis of GPVI-stimulated platelets suggested a regulatory role of bridging integrator-2 (BIN2), known as an important mediator of the ORAI1-STIM1 pathway in mouse platelets. Identified were 25 to 45 regulated phospho-sites in BIN2 and 16 to 18 in STIM1. Five of these were characterized as direct substrates of the expressed PKC isoforms alpha, beta delta, and theta. Functional platelet testing indicated that the downregulation of Ca2+ entry by PKC resulted in suppressed phosphatidylserine exposure and plasmatic thrombin generation. Conclusively, our results indicate that in platelets multiple PKC isoforms constrain the store-regulated Ca2+ entry via ORAI1-BIN2-STIM1, and hence downregulate platelet-dependent coagulation.
Collapse
Affiliation(s)
- Jinmi Zou
- Synapse Research Institute Maastricht, Maastricht, The Netherlands; Department of Biochemistry, CARIM, 6200 MD Maastricht University, Maastricht, The Netherlands
| | - Pengyu Zhang
- Department of Biochemistry, CARIM, 6200 MD Maastricht University, Maastricht, The Netherlands; Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany; Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V, Dortmund, Germany
| | - Fiorella A Solari
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V, Dortmund, Germany
| | - Claudia Schönichen
- Department of Biochemistry, CARIM, 6200 MD Maastricht University, Maastricht, The Netherlands; Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Isabella Provenzale
- Department of Biochemistry, CARIM, 6200 MD Maastricht University, Maastricht, The Netherlands
| | - Nadine J A Mattheij
- Department of Clinical Chemistry and Hematology, Maxima Medical Center Veldhoven, Veldhoven, The Netherlands
| | - Marijke J E Kuijpers
- Department of Biochemistry, CARIM, 6200 MD Maastricht University, Maastricht, The Netherlands
| | - Julia S Rauch
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V, Dortmund, Germany
| | - Frauke Swieringa
- Synapse Research Institute Maastricht, Maastricht, The Netherlands
| | - Albert Sickmann
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V, Dortmund, Germany; Medizinische Fakultät, Medizinische Proteom-Center, Ruhr-Universität Bochum, Bochum, Germany; Department of Chemistry, College of Physical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Barbara Zieger
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, Medical Center, University of Freiburg, Freiburg, Germany
| | - Kerstin Jurk
- Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Johan W M Heemskerk
- Synapse Research Institute Maastricht, Maastricht, The Netherlands; Department of Biochemistry, CARIM, 6200 MD Maastricht University, Maastricht, The Netherlands.
| |
Collapse
|
4
|
Baskar D, Vengalil S, Polavarapu K, Preethish-Kumar V, Arunachal G, Sukrutha R, Bardhan M, Huddar A, Unnikrishnan G, Kulkarni GB, Chickabasaviah YT, Kumar RS, Nalini A, Nashi S. Phenotypic Heterogeneity in ORAI-1-Associated Congenital Myopathy. Glob Med Genet 2024; 11:297-303. [PMID: 39238562 PMCID: PMC11377103 DOI: 10.1055/s-0044-1790245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024] Open
Abstract
Introduction ORAI-1 is a plasma membrane calcium release-activated calcium channel that plays a crucial role in the excitation-contraction of skeletal muscles. Loss-of-function mutations of ORAI-1 cause severe combined immunodeficiency, nonprogressive muscle hypotonia, and anhidrotic ectodermal dysplasia. Autosomal dominant gain-of-function mutation causes Stormorken's syndrome, which includes tubular aggregate myopathy along with bleeding diathesis. Methods This is a description of a genetically confirmed case of ORAI-1-associated myopathy with clinical, histopathological, and imaging characteristics and a detailed literature review. Results We report an 18-year-old woman who presented with 2-and-a-half year history of slowly progressive proximal lower limb weakness and ophthalmoparesis. Her serum creatine kinase levels were normal. Magnetic resonance imaging of the muscle showed predominant fatty infiltration of the glutei and quadriceps femoris. Histopathological analysis of muscle biopsy was suggestive of congenital fiber-type disproportion (CFTD). Clinical exome sequencing showed novel homozygous nonsense pathogenic variant NC_000012.12 (NM_032790.3): c.205G > T (p.Glu69Ter) in ORAI-1 gene. Conclusion This report expands the phenotypic spectrum of ORAI-1-related myopathy to include congenital myopathy-CFTD with ophthalmoparesis, a novel manifestation.
Collapse
Affiliation(s)
- Dipti Baskar
- Department of Neurology, National Institute of Mental Health and Neuro Sciences, Bengaluru, Karnataka, India
| | - Seena Vengalil
- Department of Neurology, National Institute of Mental Health and Neuro Sciences, Bengaluru, Karnataka, India
| | - Kiran Polavarapu
- Division of Neurology, Children's Hospital of Eastern Ontario Research Institute, The Ottawa Hospital, University of Ottawa, Ottawa, Canada
| | - Veeramani Preethish-Kumar
- Department of Neurology, Morriston Hospital, Swansea Bay University Health Board, Swansea, United Kingdom
| | - Gautham Arunachal
- Department of Human Genetics, National Institute of Mental Health and Neuro Sciences, Bengaluru, Karnataka, India
| | - Ramya Sukrutha
- Department of Human Genetics, National Institute of Mental Health and Neuro Sciences, Bengaluru, Karnataka, India
| | - Mainak Bardhan
- Department of Neurology, National Institute of Mental Health and Neuro Sciences, Bengaluru, Karnataka, India
| | - Akshata Huddar
- Department of Neurology, National Institute of Mental Health and Neuro Sciences, Bengaluru, Karnataka, India
| | - Gopikrishnan Unnikrishnan
- Department of Neurology, National Institute of Mental Health and Neuro Sciences, Bengaluru, Karnataka, India
| | - Girish Baburao Kulkarni
- Department of Neurology, National Institute of Mental Health and Neuro Sciences, Bengaluru, Karnataka, India
| | - Yasha T Chickabasaviah
- Department of Neuropathology, National Institute of Mental Health and Neuro Sciences, Bengaluru, Karnataka, India
| | - Rashmi Santhosh Kumar
- Department of Neuropathology, National Institute of Mental Health and Neuro Sciences, Bengaluru, Karnataka, India
| | - Atchayaram Nalini
- Department of Neurology, National Institute of Mental Health and Neuro Sciences, Bengaluru, Karnataka, India
| | - Saraswati Nashi
- Department of Neurology, National Institute of Mental Health and Neuro Sciences, Bengaluru, Karnataka, India
| |
Collapse
|
5
|
Karakus IS, Catak MC, Frohne A, Bayram Catak F, Yorgun Altunbas M, Babayeva R, Bal SK, Eltan SB, Yalcin Gungoren E, Esen F, Zemheri IE, Karakoc-Aydiner E, Ozen A, Caki-Kilic S, Kraakman MJ, Boztug K, Baris S. Rapamycin Controls Lymphoproliferation and Reverses T-Cell Responses in a Patient with a Novel STIM1 Loss-of-Function Deletion. J Clin Immunol 2024; 44:94. [PMID: 38578569 PMCID: PMC10997552 DOI: 10.1007/s10875-024-01682-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/27/2024] [Indexed: 04/06/2024]
Abstract
PURPOSE Deficiency of stromal interaction molecule 1 (STIM1) results in combined immunodeficiency accompanied by extra-immunological findings like enamel defects and myopathy. We here studied a patient with a STIM1 loss-of-function mutation who presented with severe lymphoproliferation. We sought to explore the efficacy of the mTOR inhibitor rapamycin in controlling disease manifestations and reversing aberrant T-cell subsets and functions, which has never been used previously in this disorder. METHODS Clinical findings of the patient were collected over time. We performed immunological evaluations before and after initiation of rapamycin treatment, including detailed lymphocyte subset analyses, alterations in frequencies of circulating T follicular helper (cTFH) and regulatory T (Treg) cells and their subtypes as well as T cell activation and proliferation capacities. RESULTS A novel homozygous exon 2 deletion in STIM1 was detected in a 3-year-old girl with severe lymphoproliferation, recurrent infections, myopathy, iris hypoplasia, and enamel hypoplasia. Lymphoproliferation was associated with severe T-cell infiltrates. The deletion resulted in a complete loss of protein expression, associated with a lack of store-operated calcium entry response, defective T-cell activation, proliferation, and cytokine production. Interestingly, patient blood contained fewer cTFH and increased circulating follicular regulatory (cTFR) cells. Abnormal skewing towards TH2-like responses in certain T-cell subpopulations like cTFH, non-cTFH memory T-helper, and Treg cells was associated with increased eosinophil numbers and serum IgE levels. Treatment with rapamycin controlled lymphoproliferation, improved T-cell activation and proliferation capacities, reversed T-cell responses, and repressed high IgE levels and eosinophilia. CONCLUSIONS This study enhances our understanding of STIM1 deficiency by uncovering additional abnormal T-cell responses, and reveals for the first time the potential therapeutic utility of rapamycin for this disorder.
Collapse
Affiliation(s)
| | - Mehmet Cihangir Catak
- Division of Pediatric Allergy and Immunology, School of Medicine, Marmara University, Fevzi Çakmak Mah. No: 41, Pendik/Istanbul, Turkey
- Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey
- The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | | | - Feyza Bayram Catak
- Division of Pediatric Allergy and Immunology, School of Medicine, Marmara University, Fevzi Çakmak Mah. No: 41, Pendik/Istanbul, Turkey
- Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey
- The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Melek Yorgun Altunbas
- Division of Pediatric Allergy and Immunology, School of Medicine, Marmara University, Fevzi Çakmak Mah. No: 41, Pendik/Istanbul, Turkey
- Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey
- The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Royala Babayeva
- Division of Pediatric Allergy and Immunology, School of Medicine, Marmara University, Fevzi Çakmak Mah. No: 41, Pendik/Istanbul, Turkey
- Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey
- The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | | | - Sevgi Bilgic Eltan
- Division of Pediatric Allergy and Immunology, School of Medicine, Marmara University, Fevzi Çakmak Mah. No: 41, Pendik/Istanbul, Turkey
- Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey
- The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Ezgi Yalcin Gungoren
- Division of Pediatric Allergy and Immunology, School of Medicine, Marmara University, Fevzi Çakmak Mah. No: 41, Pendik/Istanbul, Turkey
- Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey
- The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Fehim Esen
- Department of Ophthalmology, School of Medicine, Istanbul Medeniyet University, Istanbul, Turkey
| | - Itir Ebru Zemheri
- Department of Pathology, Umraniye Education and Research Hospital, University of Health Sciences, Istanbul, Turkey
| | - Elif Karakoc-Aydiner
- Division of Pediatric Allergy and Immunology, School of Medicine, Marmara University, Fevzi Çakmak Mah. No: 41, Pendik/Istanbul, Turkey
- Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey
- The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Ahmet Ozen
- Division of Pediatric Allergy and Immunology, School of Medicine, Marmara University, Fevzi Çakmak Mah. No: 41, Pendik/Istanbul, Turkey
- Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey
- The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Suar Caki-Kilic
- Division of Pediatric Hematology, Umraniye Education and Research Hospital, University of Health Sciences, Istanbul, Turkey
| | | | - Kaan Boztug
- Anna Children's Cancer Research Institute, Vienna, Austria
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Anna Children's Hospital, Vienna, Austria
| | - Safa Baris
- Division of Pediatric Allergy and Immunology, School of Medicine, Marmara University, Fevzi Çakmak Mah. No: 41, Pendik/Istanbul, Turkey.
- Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey.
- The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey.
| |
Collapse
|
6
|
Sallinger M, Grabmayr H, Humer C, Bonhenry D, Romanin C, Schindl R, Derler I. Activation mechanisms and structural dynamics of STIM proteins. J Physiol 2024; 602:1475-1507. [PMID: 36651592 DOI: 10.1113/jp283828] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/11/2023] [Indexed: 01/19/2023] Open
Abstract
The family of stromal interaction molecules (STIM) includes two widely expressed single-pass endoplasmic reticulum (ER) transmembrane proteins and additional splice variants that act as precise ER-luminal Ca2+ sensors. STIM proteins mainly function as one of the two essential components of the so-called Ca2+ release-activated Ca2+ (CRAC) channel. The second CRAC channel component is constituted by pore-forming Orai proteins in the plasma membrane. STIM and Orai physically interact with each other to enable CRAC channel opening, which is a critical prerequisite for various downstream signalling pathways such as gene transcription or proliferation. Their activation commonly requires the emptying of the intracellular ER Ca2+ store. Using their Ca2+ sensing capabilities, STIM proteins confer this Ca2+ content-dependent signal to Orai, thereby linking Ca2+ store depletion to CRAC channel opening. Here we review the conformational dynamics occurring along the entire STIM protein upon store depletion, involving the transition from the quiescent, compactly folded structure into an active, extended state, modulation by a variety of accessory components in the cell as well as the impairment of individual steps of the STIM activation cascade associated with disease.
Collapse
Affiliation(s)
- Matthias Sallinger
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, Linz, Austria
| | - Herwig Grabmayr
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, Linz, Austria
| | - Christina Humer
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, Linz, Austria
| | - Daniel Bonhenry
- Center for Nanobiology and Structural Biology, Institute of Microbiology, Academy of Sciences of the Czech Republic, Nove Hrady, Czech Republic
| | - Christoph Romanin
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, Linz, Austria
| | - Rainer Schindl
- Gottfried Schatz Research Centre, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Isabella Derler
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, Linz, Austria
| |
Collapse
|
7
|
Alvarez F, Liu Z, Bay A, Piccirillo CA. Deciphering the developmental trajectory of tissue-resident Foxp3 + regulatory T cells. Front Immunol 2024; 15:1331846. [PMID: 38605970 PMCID: PMC11007185 DOI: 10.3389/fimmu.2024.1331846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/14/2024] [Indexed: 04/13/2024] Open
Abstract
Foxp3+ TREG cells have been at the focus of intense investigation for their recognized roles in preventing autoimmunity, facilitating tissue recuperation following injury, and orchestrating a tolerance to innocuous non-self-antigens. To perform these critical tasks, TREG cells undergo deep epigenetic, transcriptional, and post-transcriptional changes that allow them to adapt to conditions found in tissues both at steady-state and during inflammation. The path leading TREG cells to express these tissue-specialized phenotypes begins during thymic development, and is further driven by epigenetic and transcriptional modifications following TCR engagement and polarizing signals in the periphery. However, this process is highly regulated and requires TREG cells to adopt strategies to avoid losing their regulatory program altogether. Here, we review the origins of tissue-resident TREG cells, from their thymic and peripheral development to the transcriptional regulators involved in their tissue residency program. In addition, we discuss the distinct signalling pathways that engage the inflammatory adaptation of tissue-resident TREG cells, and how they relate to their ability to recognize tissue and pathogen-derived danger signals.
Collapse
Affiliation(s)
- Fernando Alvarez
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- Infectious Diseases and Immunology in Global Health Program, The Research Institute of the McGill University Health Centre (RI-MUHC), Montréal, QC, Canada
- Centre of Excellence in Translational Immunology (CETI), Montréal, QC, Canada
| | - Zhiyang Liu
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- Infectious Diseases and Immunology in Global Health Program, The Research Institute of the McGill University Health Centre (RI-MUHC), Montréal, QC, Canada
- Centre of Excellence in Translational Immunology (CETI), Montréal, QC, Canada
| | - Alexandre Bay
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- Infectious Diseases and Immunology in Global Health Program, The Research Institute of the McGill University Health Centre (RI-MUHC), Montréal, QC, Canada
- Centre of Excellence in Translational Immunology (CETI), Montréal, QC, Canada
| | - Ciriaco A. Piccirillo
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- Infectious Diseases and Immunology in Global Health Program, The Research Institute of the McGill University Health Centre (RI-MUHC), Montréal, QC, Canada
- Centre of Excellence in Translational Immunology (CETI), Montréal, QC, Canada
| |
Collapse
|
8
|
Bacsa B, Hopl V, Derler I. Synthetic Biology Meets Ca 2+ Release-Activated Ca 2+ Channel-Dependent Immunomodulation. Cells 2024; 13:468. [PMID: 38534312 PMCID: PMC10968988 DOI: 10.3390/cells13060468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 02/27/2024] [Accepted: 03/05/2024] [Indexed: 03/28/2024] Open
Abstract
Many essential biological processes are triggered by the proximity of molecules. Meanwhile, diverse approaches in synthetic biology, such as new biological parts or engineered cells, have opened up avenues to precisely control the proximity of molecules and eventually downstream signaling processes. This also applies to a main Ca2+ entry pathway into the cell, the so-called Ca2+ release-activated Ca2+ (CRAC) channel. CRAC channels are among other channels are essential in the immune response and are activated by receptor-ligand binding at the cell membrane. The latter initiates a signaling cascade within the cell, which finally triggers the coupling of the two key molecular components of the CRAC channel, namely the stromal interaction molecule, STIM, in the ER membrane and the plasma membrane Ca2+ ion channel, Orai. Ca2+ entry, established via STIM/Orai coupling, is essential for various immune cell functions, including cytokine release, proliferation, and cytotoxicity. In this review, we summarize the tools of synthetic biology that have been used so far to achieve precise control over the CRAC channel pathway and thus over downstream signaling events related to the immune response.
Collapse
Affiliation(s)
- Bernadett Bacsa
- Division of Medical Physics und Biophysics, Medical University of Graz, A-8010 Graz, Austria;
| | - Valentina Hopl
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, A-4020 Linz, Austria;
| | - Isabella Derler
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, A-4020 Linz, Austria;
| |
Collapse
|
9
|
Reid W, Romberg N. Inborn Errors of Immunity and Cytokine Storm Syndromes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1448:185-207. [PMID: 39117816 DOI: 10.1007/978-3-031-59815-9_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Inborn errors of immunity (IEI) are a diverse and growing category of more than 430 chronic disorders that share susceptibilities to infections. Whether the result of a genetic lesion that causes defective granule-dependent cytotoxicity, excessive lymphoproliferation, or an overwhelming infection represents a unique antigenic challenge, IEIs can display a proclivity for cytokine storm syndrome (CSS) development. This chapter provides an overview of CSS pathophysiology as it relates to IEIs. For each IEI, the immunologic defect and how it promotes or discourages CSS phenomena are reviewed. The IEI-associated molecular defects in pathways that are postulated to be critical to CSS physiology (i.e., toll-like receptors, T regulatory cells, the IL-12/IFNγ axis, IL-6) and, whenever possible, review strategies for treating CSS in IEI patients with molecularly directed therapies are highlighted.
Collapse
Affiliation(s)
- Whitney Reid
- Department of Pediatrics, Division of Allergy and Immunology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Neil Romberg
- Department of Pediatrics, Division of Allergy and Immunology, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| |
Collapse
|
10
|
Abdelnaby AE, Trebak M. Store-Operated Ca 2+ Entry in Fibrosis and Tissue Remodeling. CONTACT (THOUSAND OAKS (VENTURA COUNTY, CALIF.)) 2024; 7:25152564241291374. [PMID: 39659877 PMCID: PMC11629433 DOI: 10.1177/25152564241291374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/29/2024] [Accepted: 09/27/2024] [Indexed: 12/12/2024]
Abstract
Fibrosis is a pathological condition characterized by excessive tissue deposition of extracellular matrix (ECM) components, leading to scarring and impaired function across multiple organ systems. This complex process is mediated by a dynamic interplay between cell types, including myofibroblasts, fibroblasts, immune cells, epithelial cells, and endothelial cells, each contributing distinctively through various signaling pathways. Critical to the regulatory mechanisms involved in fibrosis is store-operated calcium entry (SOCE), a calcium entry pathway into the cytosol active at the endoplasmic reticulum-plasma membrane contact sites and common to all cells. This review addresses the multifactorial nature of fibrosis with a focus on the pivotal roles of different cell types. We highlight the essential functions of myofibroblasts in ECM production, the transformation of fibroblasts, and the participation of immune cells in modulating the fibrotic landscape. We emphasize the contributions of SOCE in these different cell types to fibrosis, by exploring the involvement of SOCE in cellular functions such as proliferation, migration, secretion, and inflammatory responses. The examination of the cellular and molecular mechanisms of fibrosis and the role of SOCE in these mechanisms offers the potential of targeting SOCE as a therapeutic strategy for mitigating or reversing fibrosis.
Collapse
Affiliation(s)
- Ahmed Emam Abdelnaby
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Mohamed Trebak
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
11
|
Gross S, Womer L, Kappes DJ, Soboloff J. Multifaceted control of T cell differentiation by STIM1. Trends Biochem Sci 2023; 48:1083-1097. [PMID: 37696713 PMCID: PMC10787584 DOI: 10.1016/j.tibs.2023.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 08/08/2023] [Accepted: 08/18/2023] [Indexed: 09/13/2023]
Abstract
In T cells, stromal interaction molecule (STIM) and Orai are dispensable for conventional T cell development, but critical for activation and differentiation. This review focuses on novel STIM-dependent mechanisms for control of Ca2+ signals during T cell activation and its impact on mitochondrial function and transcriptional activation for control of T cell differentiation and function. We highlight areas that require further work including the roles of plasma membrane Ca2+ ATPase (PMCA) and partner of STIM1 (POST) in controlling Orai function. A major knowledge gap also exists regarding the independence of T cell development from STIM and Orai, despite compelling evidence that it requires Ca2+ signals. Resolving these and other outstanding questions ensures that the field will remain active for many years to come.
Collapse
Affiliation(s)
- Scott Gross
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Lauren Womer
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | | | - Jonathan Soboloff
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA; Department of Cancer and Cellular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA.
| |
Collapse
|
12
|
Berna-Erro A, Sanchez-Collado J, Nieto-Felipe J, Macias-Diaz A, Redondo PC, Smani T, Lopez JJ, Jardin I, Rosado JA. The Ca 2+ Sensor STIM in Human Diseases. Biomolecules 2023; 13:1284. [PMID: 37759684 PMCID: PMC10526185 DOI: 10.3390/biom13091284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/11/2023] [Accepted: 08/20/2023] [Indexed: 09/29/2023] Open
Abstract
The STIM family of proteins plays a crucial role in a plethora of cellular functions through the regulation of store-operated Ca2+ entry (SOCE) and, thus, intracellular calcium homeostasis. The two members of the mammalian STIM family, STIM1 and STIM2, are transmembrane proteins that act as Ca2+ sensors in the endoplasmic reticulum (ER) and, upon Ca2+ store discharge, interact with and activate the Orai/CRACs in the plasma membrane. Dysregulation of Ca2+ signaling leads to the pathogenesis of a variety of human diseases, including neurodegenerative disorders, cardiovascular diseases, cancer, and immune disorders. Therefore, understanding the mechanisms underlying Ca2+ signaling pathways is crucial for developing therapeutic strategies targeting these diseases. This review focuses on several rare conditions associated with STIM1 mutations that lead to either gain- or loss-of-function, characterized by myopathy, hematological and immunological disorders, among others, and due to abnormal activation of CRACs. In addition, we summarize the current evidence concerning STIM2 allele duplication and deletion associated with language, intellectual, and developmental delay, recurrent pulmonary infections, microcephaly, facial dimorphism, limb anomalies, hypogonadism, and congenital heart defects.
Collapse
Affiliation(s)
- Alejandro Berna-Erro
- Department of Physiology, Institute of Molecular Pathology Biomarkers, Universidad de Extremadura, 10003 Caceres, Spain; (A.B.-E.); (J.N.-F.); (A.M.-D.); (P.C.R.); (J.J.L.)
| | - Jose Sanchez-Collado
- Department of Medical Physiology and Biophysics, University of Seville, 41004 Seville, Spain; (J.S.-C.); (T.S.)
| | - Joel Nieto-Felipe
- Department of Physiology, Institute of Molecular Pathology Biomarkers, Universidad de Extremadura, 10003 Caceres, Spain; (A.B.-E.); (J.N.-F.); (A.M.-D.); (P.C.R.); (J.J.L.)
| | - Alvaro Macias-Diaz
- Department of Physiology, Institute of Molecular Pathology Biomarkers, Universidad de Extremadura, 10003 Caceres, Spain; (A.B.-E.); (J.N.-F.); (A.M.-D.); (P.C.R.); (J.J.L.)
| | - Pedro C. Redondo
- Department of Physiology, Institute of Molecular Pathology Biomarkers, Universidad de Extremadura, 10003 Caceres, Spain; (A.B.-E.); (J.N.-F.); (A.M.-D.); (P.C.R.); (J.J.L.)
| | - Tarik Smani
- Department of Medical Physiology and Biophysics, University of Seville, 41004 Seville, Spain; (J.S.-C.); (T.S.)
- Group of Cardiovascular Pathophysiology, Institute of Biomedicine of Seville, University Hospital of Virgen del Rocio, University of Seville, Spanish National Research Council (CSIC), 41004 Seville, Spain
| | - Jose J. Lopez
- Department of Physiology, Institute of Molecular Pathology Biomarkers, Universidad de Extremadura, 10003 Caceres, Spain; (A.B.-E.); (J.N.-F.); (A.M.-D.); (P.C.R.); (J.J.L.)
| | - Isaac Jardin
- Department of Physiology, Institute of Molecular Pathology Biomarkers, Universidad de Extremadura, 10003 Caceres, Spain; (A.B.-E.); (J.N.-F.); (A.M.-D.); (P.C.R.); (J.J.L.)
| | - Juan A. Rosado
- Department of Physiology, Institute of Molecular Pathology Biomarkers, Universidad de Extremadura, 10003 Caceres, Spain; (A.B.-E.); (J.N.-F.); (A.M.-D.); (P.C.R.); (J.J.L.)
| |
Collapse
|
13
|
Gamage TH, Grabmayr H, Horvath F, Fahrner M, Misceo D, Louch WE, Gunnes G, Pullisaar H, Reseland JE, Lyngstadaas SP, Holmgren A, Amundsen SS, Rathner P, Cerofolini L, Ravera E, Krobath H, Luchinat C, Renger T, Müller N, Romanin C, Frengen E. A single amino acid deletion in the ER Ca 2+ sensor STIM1 reverses the in vitro and in vivo effects of the Stormorken syndrome-causing R304W mutation. Sci Signal 2023; 16:eadd0509. [PMID: 36749824 DOI: 10.1126/scisignal.add0509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 01/18/2023] [Indexed: 02/09/2023]
Abstract
Stormorken syndrome is a multiorgan hereditary disease caused by dysfunction of the endoplasmic reticulum (ER) Ca2+ sensor protein STIM1, which forms the Ca2+ release-activated Ca2+ (CRAC) channel together with the plasma membrane channel Orai1. ER Ca2+ store depletion activates STIM1 by releasing the intramolecular "clamp" formed between the coiled coil 1 (CC1) and CC3 domains of the protein, enabling the C terminus to extend and interact with Orai1. The most frequently occurring mutation in patients with Stormorken syndrome is R304W, which destabilizes and extends the STIM1 C terminus independently of ER Ca2+ store depletion, causing constitutive binding to Orai1 and CRAC channel activation. We found that in cis deletion of one amino acid residue, Glu296 (which we called E296del) reversed the pathological effects of R304W. Homozygous Stim1 E296del+R304W mice were viable and phenotypically indistinguishable from wild-type mice. NMR spectroscopy, molecular dynamics simulations, and cellular experiments revealed that although the R304W mutation prevented CC1 from interacting with CC3, the additional deletion of Glu296 opposed this effect by enabling CC1-CC3 binding and restoring the CC domain interactions within STIM1 that are critical for proper CRAC channel function. Our results provide insight into the activation mechanism of STIM1 by clarifying the molecular basis of mutation-elicited protein dysfunction and pathophysiology.
Collapse
Affiliation(s)
- Thilini H Gamage
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, 0450 Oslo, Norway
| | - Herwig Grabmayr
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstrasse 40, 4020 Linz, Austria
| | - Ferdinand Horvath
- Institute of Theoretical Physics, Johannes Kepler University Linz, Altenbergerstrasse 69, 4040 Linz, Austria
| | - Marc Fahrner
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstrasse 40, 4020 Linz, Austria
| | - Doriana Misceo
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, 0450 Oslo, Norway
| | - William Edward Louch
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, 0450 Oslo, Norway
| | - Gjermund Gunnes
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 1430 Ås, Norway
| | - Helen Pullisaar
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, 0455 Oslo, Norway
| | - Janne Elin Reseland
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, 0455 Oslo, Norway
| | | | - Asbjørn Holmgren
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, 0450 Oslo, Norway
| | - Silja S Amundsen
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, 0450 Oslo, Norway
| | - Petr Rathner
- Institute of Organic Chemistry and Institute of Inorganic Chemistry, Johannes Kepler University Linz, Altenbergerstrasse 69, 4040 Linz, Austria
- Institut für Analytische Chemie, University of Vienna, Währinger Straße 38, 1090 Wien, Austria
| | - Linda Cerofolini
- Magnetic Resonance Center, University of Florence and Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine, 50019 Sesto Fiorentino, Italy
| | - Enrico Ravera
- Magnetic Resonance Center, University of Florence and Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine, 50019 Sesto Fiorentino, Italy
- Department of Chemistry, Ugo Schiff, University of Florence, 50019 Sesto Fiorentino, Italy
| | - Heinrich Krobath
- Institute of Theoretical Physics, Johannes Kepler University Linz, Altenbergerstrasse 69, 4040 Linz, Austria
| | - Claudio Luchinat
- Department of Chemistry, Ugo Schiff, University of Florence, 50019 Sesto Fiorentino, Italy
- CERM, University of Florence, 50019 Sesto Fiorentino, Italy
| | - Thomas Renger
- Institute of Theoretical Physics, Johannes Kepler University Linz, Altenbergerstrasse 69, 4040 Linz, Austria
| | - Norbert Müller
- Institute of Organic Chemistry and Institute of Inorganic Chemistry, Johannes Kepler University Linz, Altenbergerstrasse 69, 4040 Linz, Austria
- Department of Chemistry, Faculty of Science, University of South Bohemia, Branišovská 1645/31A, 370 05 České Budějovice, Czech Republic
- Institute of Biochemistry, Johannes Kepler University Linz, Altenbergerstrasse 69, 4040 Linz, Austria
| | - Christoph Romanin
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstrasse 40, 4020 Linz, Austria
| | - Eirik Frengen
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, 0450 Oslo, Norway
| |
Collapse
|
14
|
Protasi F, Girolami B, Roccabianca S, Rossi D. Store-operated calcium entry: From physiology to tubular aggregate myopathy. Curr Opin Pharmacol 2023; 68:102347. [PMID: 36608411 DOI: 10.1016/j.coph.2022.102347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 11/30/2022] [Accepted: 12/04/2022] [Indexed: 01/06/2023]
Abstract
Store-Operated Ca2+ entry (SOCE) is recognized as a key mechanism in muscle physiology necessary to refill intracellular Ca2+ stores during sustained muscle activity. For many years the cell structures expected to mediate SOCE in skeletal muscle fibres remained unknown. Recently, the identification of Ca2+ Entry Units (CEUs) in exercised muscle fibres opened new insights into the role of extracellular Ca2+ in muscle contraction and, more generally, in intracellular Ca2+ homeostasis. Accordingly, intracellular Ca2+ unbalance due to alterations in SOCE strictly correlates with muscle disfunction and disease. Mutations in proteins involved in SOCE (STIM1, ORAI1, and CASQ1) have been linked to tubular aggregate myopathy (TAM), a disease that causes muscle weakness and myalgia and is characterized by a typical accumulation of highly ordered and packed membrane tubules originated from the sarcoplasmic reticulum (SR). Achieving a full understanding of the molecular pathways activated by alterations in Ca2+ entry mechanisms is a necessary step to design effective therapies for human SOCE-related disorders.
Collapse
Affiliation(s)
- Feliciano Protasi
- CAST, Center for Advanced Studies and Technology; University G. d'Annunzio of Chieti-Pescara, I-66100, Italy; DMSI, Department of Medicine and Aging Sciences; University G. d'Annunzio of Chieti-Pescara, I-66100, Italy
| | - Barbara Girolami
- CAST, Center for Advanced Studies and Technology; University G. d'Annunzio of Chieti-Pescara, I-66100, Italy; DMSI, Department of Medicine and Aging Sciences; University G. d'Annunzio of Chieti-Pescara, I-66100, Italy
| | - Sara Roccabianca
- DMMS, Department of Molecular and Developmental Medicine; University of Siena, I-53100, Siena Italy
| | - Daniela Rossi
- DMMS, Department of Molecular and Developmental Medicine; University of Siena, I-53100, Siena Italy.
| |
Collapse
|
15
|
Neumann J, Van Nieuwenhove E, Terry LE, Staels F, Knebel TR, Welkenhuyzen K, Ahmadzadeh K, Baker MR, Gerbaux M, Willemsen M, Barber JS, Serysheva II, De Waele L, Vermeulen F, Schlenner S, Meyts I, Yule DI, Bultynck G, Schrijvers R, Humblet-Baron S, Liston A. Disrupted Ca 2+ homeostasis and immunodeficiency in patients with functional IP 3 receptor subtype 3 defects. Cell Mol Immunol 2023; 20:11-25. [PMID: 36302985 PMCID: PMC9794825 DOI: 10.1038/s41423-022-00928-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 09/12/2022] [Indexed: 11/27/2022] Open
Abstract
Calcium signaling is essential for lymphocyte activation, with genetic disruptions of store-operated calcium (Ca2+) entry resulting in severe immunodeficiency. The inositol 1,4,5-trisphosphate receptor (IP3R), a homo- or heterotetramer of the IP3R1-3 isoforms, amplifies lymphocyte signaling by releasing Ca2+ from endoplasmic reticulum stores following antigen stimulation. Although knockout of all IP3R isoforms in mice causes immunodeficiency, the seeming redundancy of the isoforms is thought to explain the absence of variants in human immunodeficiency. In this study, we identified compound heterozygous variants of ITPR3 (a gene encoding IP3R subtype 3) in two unrelated Caucasian patients presenting with immunodeficiency. To determine whether ITPR3 variants act in a nonredundant manner and disrupt human immune responses, we characterized the Ca2+ signaling capacity, the lymphocyte response, and the clinical phenotype of these patients. We observed disrupted Ca2+ signaling in patient-derived fibroblasts and immune cells, with abnormal proliferation and activation responses following T-cell receptor stimulation. Reconstitution of IP3R3 in IP3R knockout cell lines led to the identification of variants as functional hypomorphs that showed reduced ability to discriminate between homeostatic and induced states, validating a genotype-phenotype link. These results demonstrate a functional link between defective endoplasmic reticulum Ca2+ channels and immunodeficiency and identify IP3Rs as diagnostic targets for patients with specific inborn errors of immunity. These results also extend the known cause of Ca2+-associated immunodeficiency from store-operated entry to impaired Ca2+ mobilization from the endoplasmic reticulum, revealing a broad sensitivity of lymphocytes to genetic defects in Ca2+ signaling.
Collapse
Affiliation(s)
- Julika Neumann
- VIB Center for Brain and Disease Research, Leuven, Belgium
- Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium
| | - Erika Van Nieuwenhove
- VIB Center for Brain and Disease Research, Leuven, Belgium
- Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium
- UZ Leuven, Leuven, Belgium
| | - Lara E Terry
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY, 14526, USA
| | - Frederik Staels
- Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium
- UZ Leuven, Leuven, Belgium
| | - Taylor R Knebel
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY, 14526, USA
| | - Kirsten Welkenhuyzen
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, Leuven Kankerinstituut, KU Leuven, Leuven, Belgium
| | - Kourosh Ahmadzadeh
- Laboratory of Immunobiology, Department Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, Belgium
| | - Mariah R Baker
- Department of Biochemistry and Molecular Biology, Structural Biology Imaging Center, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Margaux Gerbaux
- Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium
- Pediatric Department, Academic Children Hospital Queen Fabiola, Université Libre de Bruxelles, Brussels, Belgium
| | - Mathijs Willemsen
- VIB Center for Brain and Disease Research, Leuven, Belgium
- Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium
| | - John S Barber
- VIB Center for Brain and Disease Research, Leuven, Belgium
- Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium
| | - Irina I Serysheva
- Department of Biochemistry and Molecular Biology, Structural Biology Imaging Center, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Liesbeth De Waele
- Department of Pediatric Neurology, University Hospitals Leuven, Leuven, Belgium
| | | | - Susan Schlenner
- Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium
| | - Isabelle Meyts
- UZ Leuven, Leuven, Belgium.
- Laboratory for Inborn Errors of Immunity, Department of Immunology and Microbiology, KU Leuven, Leuven, Belgium.
| | - David I Yule
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY, 14526, USA
| | - Geert Bultynck
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, Leuven Kankerinstituut, KU Leuven, Leuven, Belgium
| | - Rik Schrijvers
- UZ Leuven, Leuven, Belgium.
- Laboratory for Allergy and Clinical Immunology and Immunogenetics Research Group, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium.
| | | | - Adrian Liston
- VIB Center for Brain and Disease Research, Leuven, Belgium.
- Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium.
- Immunology Programme, The Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, UK.
| |
Collapse
|
16
|
Arai H, Inaba A, Ikezaki S, Kumakami-Sakano M, Azumane M, Ohshima H, Morikawa K, Harada H, Otsu K. Energy metabolic shift contributes to the phenotype modulation of maturation stage ameloblasts. Front Physiol 2022; 13:1062042. [PMID: 36523561 PMCID: PMC9745043 DOI: 10.3389/fphys.2022.1062042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 11/15/2022] [Indexed: 12/13/2023] Open
Abstract
Maturation stage ameloblasts (M-ABs) are responsible for terminal enamel mineralization in teeth and undergo characteristic cyclic changes in both morphology and function between ruffle-ended ameloblasts (RA) and smooth-ended ameloblasts (SA). Energy metabolism has recently emerged as a potential regulator of cell differentiation and fate decisions; however, its implication in M-ABs remains unclear. To elucidate the relationship between M-ABs and energy metabolism, we examined the expression pattern of energy metabolic enzymes in M-ABs of mouse incisors. Further, using the HAT7 cell line with M-AB characteristics, we designed experiments to induce an energy metabolic shift by changes in oxygen concentration. We revealed that RA preferentially utilizes oxidative phosphorylation, whereas SA depends on glycolysis-dominant energy metabolism in mouse incisors. In HAT7 cells, hypoxia induced an energy metabolic shift toward a more glycolytic-dominant state, and the energy metabolic shift reduced alkaline phosphatase (ALP) activity and calcium transport and deposition with a change in calcium-related gene expression, implying a phenotype shift from RA to SA. Taken together, these results indicate that the energy metabolic state is an important determinant of the RA/SA phenotype in M-ABs. This study sheds light on the biological significance of energy metabolism in governing M-ABs, providing a novel molecular basis for understanding enamel mineralization and elucidating the pathogenesis of enamel hypomineralization.
Collapse
Affiliation(s)
- Haruno Arai
- Division of Developmental Biology and Regenerative Medicine, Department of Anatomy, Iwate Medical University, Yahaba, Japan
- Division of Pediatric and Special Care Dentistry, Department of Oral Health Science, School of Dentistry, Iwate Medical University, Morioka, Japan
| | - Akira Inaba
- Division of Developmental Biology and Regenerative Medicine, Department of Anatomy, Iwate Medical University, Yahaba, Japan
- Division of Pediatric and Special Care Dentistry, Department of Oral Health Science, School of Dentistry, Iwate Medical University, Morioka, Japan
| | - Shojiro Ikezaki
- Division of Developmental Biology and Regenerative Medicine, Department of Anatomy, Iwate Medical University, Yahaba, Japan
| | - Mika Kumakami-Sakano
- Division of Developmental Biology and Regenerative Medicine, Department of Anatomy, Iwate Medical University, Yahaba, Japan
| | - Marii Azumane
- Division of Developmental Biology and Regenerative Medicine, Department of Anatomy, Iwate Medical University, Yahaba, Japan
- Division of Oral and Maxillofacial Surgery, Department of Reconstructive Oral and Maxillofacial Surgery, Iwate Medical University, Morioka, Japan
| | - Hayato Ohshima
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Kazumasa Morikawa
- Division of Pediatric and Special Care Dentistry, Department of Oral Health Science, School of Dentistry, Iwate Medical University, Morioka, Japan
| | - Hidemitsu Harada
- Division of Developmental Biology and Regenerative Medicine, Department of Anatomy, Iwate Medical University, Yahaba, Japan
| | - Keishi Otsu
- Division of Developmental Biology and Regenerative Medicine, Department of Anatomy, Iwate Medical University, Yahaba, Japan
| |
Collapse
|
17
|
Rossi D, Catallo MR, Pierantozzi E, Sorrentino V. Mutations in proteins involved in E-C coupling and SOCE and congenital myopathies. J Gen Physiol 2022; 154:e202213115. [PMID: 35980353 PMCID: PMC9391951 DOI: 10.1085/jgp.202213115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 07/15/2022] [Accepted: 07/21/2022] [Indexed: 11/24/2022] Open
Abstract
In skeletal muscle, Ca2+ necessary for muscle contraction is stored and released from the sarcoplasmic reticulum (SR), a specialized form of endoplasmic reticulum through the mechanism known as excitation-contraction (E-C) coupling. Following activation of skeletal muscle contraction by the E-C coupling mechanism, replenishment of intracellular stores requires reuptake of cytosolic Ca2+ into the SR by the activity of SR Ca2+-ATPases, but also Ca2+ entry from the extracellular space, through a mechanism called store-operated calcium entry (SOCE). The fine orchestration of these processes requires several proteins, including Ca2+ channels, Ca2+ sensors, and Ca2+ buffers, as well as the active involvement of mitochondria. Mutations in genes coding for proteins participating in E-C coupling and SOCE are causative of several myopathies characterized by a wide spectrum of clinical phenotypes, a variety of histological features, and alterations in intracellular Ca2+ balance. This review summarizes current knowledge on these myopathies and discusses available knowledge on the pathogenic mechanisms of disease.
Collapse
Affiliation(s)
- Daniela Rossi
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
- Interdepartmental Program of Molecular Diagnosis and Pathogenetic Mechanisms of Rare Genetic Diseases, Azienda Ospedaliero Universitaria Senese, Siena, Italy
| | - Maria Rosaria Catallo
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Enrico Pierantozzi
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Vincenzo Sorrentino
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
- Interdepartmental Program of Molecular Diagnosis and Pathogenetic Mechanisms of Rare Genetic Diseases, Azienda Ospedaliero Universitaria Senese, Siena, Italy
| |
Collapse
|
18
|
Letizia M, Wang YH, Kaufmann U, Gerbeth L, Sand A, Brunkhorst M, Weidner P, Ziegler JF, Böttcher C, Schlickeiser S, Fernández C, Yamashita M, Stauderman K, Sun K, Kunkel D, Prakriya M, Sanders AD, Siegmund B, Feske S, Weidinger C. Store-operated calcium entry controls innate and adaptive immune cell function in inflammatory bowel disease. EMBO Mol Med 2022; 14:e15687. [PMID: 35919953 PMCID: PMC9449601 DOI: 10.15252/emmm.202215687] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 07/03/2022] [Accepted: 07/05/2022] [Indexed: 12/12/2022] Open
Abstract
Inflammatory bowel disease (IBD) is characterized by dysregulated intestinal immune responses. Using mass cytometry (CyTOF) to analyze the immune cell composition in the lamina propria (LP) of patients with ulcerative colitis (UC) and Crohn's disease (CD), we observed an enrichment of CD4+ effector T cells producing IL‐17A and TNF, CD8+ T cells producing IFNγ, T regulatory (Treg) cells, and innate lymphoid cells (ILC). The function of these immune cells is regulated by store‐operated Ca2+ entry (SOCE), which results from the opening of Ca2+ release‐activated Ca2+ (CRAC) channels formed by ORAI and STIM proteins. We observed that the pharmacologic inhibition of SOCE attenuated the production of proinflammatory cytokines including IL‐2, IL‐4, IL‐6, IL‐17A, TNF, and IFNγ by human colonic T cells and ILCs, reduced the production of IL‐6 by B cells and the production of IFNγ by myeloid cells, but had no effect on the viability, differentiation, and function of intestinal epithelial cells. T cell‐specific deletion of CRAC channel genes in mice showed that Orai1, Stim1, and Stim2‐deficient T cells have quantitatively distinct defects in SOCE, which correlate with gradually more pronounced impairment of cytokine production by Th1 and Th17 cells and the severity of IBD. Moreover, the pharmacologic inhibition of SOCE with a selective CRAC channel inhibitor attenuated IBD severity and colitogenic T cell function in mice. Our data indicate that SOCE inhibition may be a suitable new approach for the treatment of IBD.
Collapse
Affiliation(s)
- Marilena Letizia
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.,Department of Gastroenterology, Infectious Diseases and Rheumatology, Campus Benjamin Franklin, Berlin, Germany
| | - Yin-Hu Wang
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
| | - Ulrike Kaufmann
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
| | - Lorenz Gerbeth
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.,Department of Gastroenterology, Infectious Diseases and Rheumatology, Campus Benjamin Franklin, Berlin, Germany
| | - Annegret Sand
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.,Department of Gastroenterology, Infectious Diseases and Rheumatology, Campus Benjamin Franklin, Berlin, Germany
| | - Max Brunkhorst
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.,Department of Gastroenterology, Infectious Diseases and Rheumatology, Campus Benjamin Franklin, Berlin, Germany
| | - Patrick Weidner
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.,Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Single Cell Approaches for Personalized Medicine, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Jörn Felix Ziegler
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.,Department of Gastroenterology, Infectious Diseases and Rheumatology, Campus Benjamin Franklin, Berlin, Germany
| | - Chotima Böttcher
- Experimental and Clinical Research Center, Berlin, A Cooperation of Charité and MDC, Berlin, Germany
| | - Stephan Schlickeiser
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.,Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Flow & Mass Cytometry Core Facility, Berlin, Germany
| | - Camila Fernández
- Experimental and Clinical Research Center, Berlin, A Cooperation of Charité and MDC, Berlin, Germany
| | - Megumi Yamashita
- Department of Pharmacology, Northwestern University, Chicago, IL, USA
| | | | - Katherine Sun
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
| | - Désirée Kunkel
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.,Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Flow & Mass Cytometry Core Facility, Berlin, Germany
| | - Murali Prakriya
- Department of Pharmacology, Northwestern University, Chicago, IL, USA
| | -
- TRR 241 Research Initiative, Berlin-Erlangen, Germany
| | - Ashley D Sanders
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.,Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Single Cell Approaches for Personalized Medicine, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Britta Siegmund
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.,Department of Gastroenterology, Infectious Diseases and Rheumatology, Campus Benjamin Franklin, Berlin, Germany
| | - Stefan Feske
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
| | - Carl Weidinger
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.,Department of Gastroenterology, Infectious Diseases and Rheumatology, Campus Benjamin Franklin, Berlin, Germany.,Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA.,Clinician Scientist Program, Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
19
|
Store-Operated Ca2+ Entry Is Up-Regulated in Tumour-Infiltrating Lymphocytes from Metastatic Colorectal Cancer Patients. Cancers (Basel) 2022; 14:cancers14143312. [PMID: 35884372 PMCID: PMC9315763 DOI: 10.3390/cancers14143312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/03/2022] [Accepted: 07/04/2022] [Indexed: 11/29/2022] Open
Abstract
Simple Summary Store-operated Ca2+ entry (SOCE) has long been known to regulate the differentiation and effector functions of T cells as well as to be instrumental to the ability of cytotoxic T lymphocytes to target cancer cells. Currently, no information is available regarding the expression and function of SOCE in tumour-infiltrating lymphocytes (TILs) that have been expanded in vitro for adoptive cell therapy (ACT). This study provides the first evidence that SOCE is up-regulated in ex vivo-expanded TILs from metastatic colorectal cancer (mCRC) patients. The up-regulation of SOCE mainly depends on diacylglycerol kinase (DGK), which prevents the protein kinase C-dependent inhibition of Ca2+ entry in normal T cells. Of note, the pharmacological blockade of SOCE with the selective inhibitor, BTP-2, during target cell killing significantly increases cytotoxic activity at low TIL density, i.e., when TILs-mediated cancer cell death is rarer. This study, albeit preliminary, could lay the foundation to propose an alternative strategy to effect ACT. It has been shown that ex vivo-expanded TILs did not improve the disease-free survival rate in mCRC patients. Our results strongly suggest that pre-treating autologous TILs with a SOCE or DGK inhibitor before being infused into the patient could improve their cytotoxic activity against cancer cells. Abstract (1) Background: Store-operated Ca2+ entry (SOCE) drives the cytotoxic activity of cytotoxic T lymphocytes (CTLs) against cancer cells. However, SOCE can be enhanced in cancer cells due to an increase in the expression and/or function of its underlying molecular components, i.e., STIM1 and Orai1. Herein, we evaluated the SOCE expression and function in tumour-infiltrating lymphocytes (TILs) from metastatic colorectal cancer (mCRC) patients. (2) Methods: Functional studies were conducted in TILs expanded ex vivo from CRC liver metastases. Peripheral blood T cells from healthy donors (hPBTs) and mCRC patients (cPBTs) were used as controls. (3) Results: SOCE amplitude is enhanced in TILs compared to hPBTs and cPBTs, but the STIM1 protein is only up-regulated in TILs. Pharmacological manipulation showed that the increase in SOCE mainly depends on tonic modulation by diacylglycerol kinase, which prevents the protein kinase C-dependent inhibition of SOCE activity. The larger SOCE caused a stronger Ca2+ response to T-cell receptor stimulation by autologous mCRC cells. Reducing Ca2+ influx with BTP-2 during target cell killing significantly increases cytotoxic activity at low target:effector ratios. (4) Conclusions: SOCE is enhanced in ex vivo-expanded TILs deriving from mCRC patients but decreasing Ca2+ influx with BTP-2 increases cytotoxic activity at a low TIL density.
Collapse
|
20
|
Glauben R, Letizia M, Weidinger C. Targeting SOCE in Intestinal Epithelial Cells: A New Treatment Concept for Inflammatory Bowel Disease? Cell Mol Gastroenterol Hepatol 2022; 14:243-244. [PMID: 35523355 PMCID: PMC9254622 DOI: 10.1016/j.jcmgh.2022.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 12/10/2022]
Affiliation(s)
| | | | - Carl Weidinger
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Gastroenterology, Infectious Diseases and Rheumatology, Campus Benjamin Franklin, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Clinician Scientist Program, Berlin, Germany.
| |
Collapse
|
21
|
Abstract
Store-operated Ca2+ entry (SOCE) is a ubiquitous Ca2+ signaling pathway that is evolutionarily conserved across eukaryotes. SOCE is triggered physiologically when the endoplasmic reticulum (ER) Ca2+ stores are emptied through activation of inositol 1,4,5-trisphosphate receptors. SOCE is mediated by the Ca2+ release-activated Ca2+ (CRAC) channels, which are highly Ca2+ selective. Upon store depletion, the ER Ca2+-sensing STIM proteins aggregate and gain extended conformations spanning the ER-plasma membrane junctional space to bind and activate Orai, the pore-forming proteins of hexameric CRAC channels. In recent years, studies on STIM and Orai tissue-specific knockout mice and gain- and loss-of-function mutations in humans have shed light on the physiological functions of SOCE in various tissues. Here, we describe recent findings on the composition of native CRAC channels and their physiological functions in immune, muscle, secretory, and neuronal systems to draw lessons from transgenic mice and human diseases caused by altered CRAC channel activity.
Collapse
Affiliation(s)
- Scott M Emrich
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA;
| | - Ryan E Yoast
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA;
| | - Mohamed Trebak
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA;
- Department of Pharmacology and Chemical Biology and Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
22
|
Berlansky S, Sallinger M, Grabmayr H, Humer C, Bernhard A, Fahrner M, Frischauf I. Calcium Signals during SARS-CoV-2 Infection: Assessing the Potential of Emerging Therapies. Cells 2022; 11:253. [PMID: 35053369 PMCID: PMC8773957 DOI: 10.3390/cells11020253] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/05/2022] [Accepted: 01/11/2022] [Indexed: 01/09/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a positive-sense single-stranded RNA virus that causes coronavirus disease 2019 (COVID-19). This respiratory illness was declared a pandemic by the world health organization (WHO) in March 2020, just a few weeks after being described for the first time. Since then, global research effort has considerably increased humanity's knowledge about both viruses and disease. It has also spawned several vaccines that have proven to be key tools in attenuating the spread of the pandemic and severity of COVID-19. However, with vaccine-related skepticism being on the rise, as well as breakthrough infections in the vaccinated population and the threat of a complete immune escape variant, alternative strategies in the fight against SARS-CoV-2 are urgently required. Calcium signals have long been known to play an essential role in infection with diverse viruses and thus constitute a promising avenue for further research on therapeutic strategies. In this review, we introduce the pivotal role of calcium signaling in viral infection cascades. Based on this, we discuss prospective calcium-related treatment targets and strategies for the cure of COVID-19 that exploit viral dependence on calcium signals.
Collapse
Affiliation(s)
| | | | | | | | | | - Marc Fahrner
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstrasse 40, 4020 Linz, Austria; (S.B.); (M.S.); (H.G.); (C.H.); (A.B.)
| | - Irene Frischauf
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstrasse 40, 4020 Linz, Austria; (S.B.); (M.S.); (H.G.); (C.H.); (A.B.)
| |
Collapse
|
23
|
Latour S. Inherited immunodeficiencies associated with proximal and distal defects in T cell receptor signaling and co-signaling. Biomed J 2022; 45:321-333. [PMID: 35091087 PMCID: PMC9250091 DOI: 10.1016/j.bj.2022.01.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 12/24/2022] Open
Affiliation(s)
- Sylvain Latour
- Laboratory of Lymphocyte Activation and Susceptibility to EBV infection, Inserm UMR 1163, Université de Paris, Institut Imagine, Paris, France.
| |
Collapse
|
24
|
Wu B, Rice L, Shrimpton J, Lawless D, Walker K, Carter C, McKeown L, Anwar R, Doody GM, Srikanth S, Gwack Y, Savic S. Biallelic mutations in calcium release activated channel regulator 2A (CRACR2A) cause a primary immunodeficiency disorder. eLife 2021; 10:e72559. [PMID: 34908525 PMCID: PMC8673834 DOI: 10.7554/elife.72559] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 12/04/2021] [Indexed: 01/19/2023] Open
Abstract
CRAC channel regulator 2 A (CRACR2A) is a large Rab GTPase that is expressed abundantly in T cells and acts as a signal transmitter between T cell receptor stimulation and activation of the Ca2+-NFAT and JNK-AP1 pathways. CRACR2A has been linked to human diseases in numerous genome-wide association studies, however, to date no patient with damaging variants in CRACR2A has been identified. In this study, we describe a patient harboring biallelic variants in CRACR2A [paternal allele c.834 gaG> gaT (p.E278D) and maternal alelle c.430 Aga > Gga (p.R144G) c.898 Gag> Tag (p.E300*)], the gene encoding CRACR2A. The 33-year-old patient of East-Asian origin exhibited late onset combined immunodeficiency characterised by recurrent chest infections, panhypogammaglobulinemia and CD4+ T cell lymphopenia. In vitro exposure of patient B cells to a T-dependent stimulus resulted in normal generation of antibody-secreting cells, however the patient's T cells showed pronounced reduction in CRACR2A protein levels and reduced proximal TCR signaling, including dampened SOCE and reduced JNK phosphorylation, that contributed to a defect in proliferation and cytokine production. Expression of individual allelic mutants in CRACR2A-deleted T cells showed that the CRACR2AE278D mutant did not affect JNK phosphorylation, but impaired SOCE which resulted in reduced cytokine production. The truncated double mutant CRACR2AR144G/E300* showed a pronounced defect in JNK phosphorylation as well as SOCE and strong impairment in cytokine production. Thus, we have identified variants in CRACR2A that led to late-stage combined immunodeficiency characterized by loss of function in T cells.
Collapse
Affiliation(s)
- Beibei Wu
- Department of Physiology, David Geffen School of Medicine, UCLALos AngelesUnited States
| | - Laura Rice
- Leeds Institute of Medical Research, University of LeedsLeedsUnited Kingdom
| | - Jennifer Shrimpton
- Division of Haematology and Immunology, Leeds Institute of Medical Research, University of LeedsLeedsUnited Kingdom
| | - Dylan Lawless
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de LausanneLausanneSwitzerland
| | - Kieran Walker
- Division of Haematology and Immunology, Leeds Institute of Medical Research, University of LeedsLeedsUnited Kingdom
| | - Clive Carter
- Department of Clinical Immunology and Allergy, St James's University HospitalLeedsUnited Kingdom
| | - Lynn McKeown
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of LeedsLeedsUnited Kingdom
| | - Rashida Anwar
- Leeds Institute of Medical Research, University of LeedsLeedsUnited Kingdom
| | - Gina M Doody
- Division of Haematology and Immunology, Leeds Institute of Medical Research, University of LeedsLeedsUnited Kingdom
| | - Sonal Srikanth
- Department of Physiology, David Geffen School of Medicine, UCLALos AngelesUnited States
| | - Yousang Gwack
- Department of Physiology, David Geffen School of Medicine, UCLALos AngelesUnited States
| | - Sinisa Savic
- Department of Clinical Immunology and Allergy, St James's University HospitalLeedsUnited Kingdom
- National Institute for Health Research-Leeds Biomedical Research Centre and Leeds Institute of Rheumatic and Musculoskeletal Medicine, Wellcome Trust Brenner Building, St James's University HospitalLeedsUnited Kingdom
| |
Collapse
|
25
|
Jiang LJ, Zhao X, Dou ZY, Su QX, Rong ZH. Stormorken Syndrome Caused by a Novel STIM1 Mutation: A Case Report. Front Neurol 2021; 12:522513. [PMID: 34408715 PMCID: PMC8366773 DOI: 10.3389/fneur.2021.522513] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 06/28/2021] [Indexed: 12/03/2022] Open
Abstract
Objective: To identify the gene mutation of Stormorken syndrome and review the published Stromal Interaction Molecule 1 (STIM1) mutation phenotype. Methods: We described the clinical and molecular aspects of a Chinese female with Stormorken syndrome by laboratory tests, muscle biopsies, and genetic analysis. We used this information to summarize all the mutation sites reported in the literature. We also reviewed the clinical features of published cases with a gain of function mutations of STIM1. Results: A 12-year-old Chinese female presented with skin purpura in the lower limbs and stroke-like episodes. Muscle biopsy and microscopic examination revealed atrophy in her skeletal muscle. Genetic analysis identified a novel heterozygous missense mutation, a c.1095G>C transition (NM_003156.3), which caused a p.K365N amino acid substitution in the protein and affected a STIM1-orai1-activation region (SOAR). Conclusions: The novel variant c.1095G>C transition (NM_003156.3) was located in the SOAR, which expands the phenotypic spectrum of STIM1 variants in human disorders and may define the molecular basis of Stormorken syndrome.
Collapse
Affiliation(s)
- Li-Jun Jiang
- Department of Pediatrics, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xue Zhao
- Department of Pediatrics, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zhi-Yan Dou
- Department of Pediatrics, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Qing-Xiao Su
- Department of Pediatrics, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zan-Hua Rong
- Department of Pediatrics, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
26
|
Ponnatt TS, Lilley CM, Mirza KM. Hemophagocytic Lymphohistiocytosis. Arch Pathol Lab Med 2021; 146:507-519. [PMID: 34347856 DOI: 10.5858/arpa.2020-0802-ra] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/08/2021] [Indexed: 11/06/2022]
Abstract
CONTEXT.— Hemophagocytic lymphohistiocytosis (HLH) is a rare, life-threatening disorder of immune regulation that can eventually result in end-organ damage and death. HLH is characterized by uncontrolled activation of cytotoxic T lymphocytes, natural killer cells, and macrophages that can lead to a cytokine storm. The diagnosis of HLH is often challenging due to the diverse clinical manifestations and the presence of several diagnostic mimics. The prognosis is generally poor, warranting rapid diagnosis and aggressive management. OBJECTIVE.— To provide a comprehensive review of the pathogenesis, clinical features, diagnosis, and management of HLH. DATA SOURCES.— Peer-reviewed literature. CONCLUSIONS.— HLH is a condition where a complete understanding of the pathogenesis, early diagnosis, and proper management has an important role in determining patient outcome. Genetic mutations causing impairment in the function of cytotoxic T lymphocytes and natural killer cells have been identified as the root cause of familial HLH; however, the specific pathogenesis of acquired HLH is unclear. The HLH-2004 protocol used in the diagnosis of HLH was originally developed for the pediatric population. The HLH-2004 protocol still forms the basis of the diagnosis of HLH in adults, although its use in adults has not been formally validated yet. Treatment of HLH is primarily based on the HLH-94 protocol, which involves suppressing the inflammatory response, but the treatment needs to be modified in adults depending on the underlying cause and comorbidities.
Collapse
Affiliation(s)
- Tanya Sajan Ponnatt
- From the Department of Pathology, Loyola University Chicago, Health Sciences Campus, Maywood, Illinois
| | - Cullen M Lilley
- From the Department of Pathology, Loyola University Chicago, Health Sciences Campus, Maywood, Illinois
| | - Kamran M Mirza
- From the Department of Pathology, Loyola University Chicago, Health Sciences Campus, Maywood, Illinois
| |
Collapse
|
27
|
Chang Y, Roy S, Pan Z. Store-Operated Calcium Channels as Drug Target in Gastroesophageal Cancers. Front Pharmacol 2021; 12:668730. [PMID: 34012400 PMCID: PMC8126661 DOI: 10.3389/fphar.2021.668730] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/12/2021] [Indexed: 12/24/2022] Open
Abstract
Gastroesophageal cancers, including tumors occurring in esophagus and stomach, usually have poor prognosis and lack effective chemotherapeutic drugs for treatment. The association between dysregulated store-operated calcium entry (SOCE), a key intracellular Ca2+ signaling pathway and gastroesophageal cancers are emerging. This review summarizes the recent advances in understanding the contribution of SOCE-mediated intracellular Ca2+ signaling to gastroesophageal cancers. It assesses the pathophysiological role of each component in SOCE machinery, such as Orais and STIMs in the cancer cell proliferation, migration, and invasion as well as stemness maintenance. Lastly, it discusses efforts towards development of more specific and potent SOCE inhibitors, which may be a new set of chemotherapeutic drugs appearing at the horizon, to provide either targeted therapy or adjuvant treatment to overcome drug resistance for gastroesophageal cancers.
Collapse
Affiliation(s)
- Yan Chang
- College of Nursing and Health Innovation, The University of Texas at Arlington, Arlington, TX, United States
| | - Souvik Roy
- Department of Mathematics, The University of Texas at Arlington, Arlington, TX, United States
| | - Zui Pan
- College of Nursing and Health Innovation, The University of Texas at Arlington, Arlington, TX, United States
| |
Collapse
|
28
|
Sogkas G, Atschekzei F, Adriawan IR, Dubrowinskaja N, Witte T, Schmidt RE. Cellular and molecular mechanisms breaking immune tolerance in inborn errors of immunity. Cell Mol Immunol 2021; 18:1122-1140. [PMID: 33795850 PMCID: PMC8015752 DOI: 10.1038/s41423-020-00626-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 12/11/2020] [Indexed: 02/01/2023] Open
Abstract
In addition to susceptibility to infections, conventional primary immunodeficiency disorders (PIDs) and inborn errors of immunity (IEI) can cause immune dysregulation, manifesting as lymphoproliferative and/or autoimmune disease. Autoimmunity can be the prominent phenotype of PIDs and commonly includes cytopenias and rheumatological diseases, such as arthritis, systemic lupus erythematosus (SLE), and Sjogren's syndrome (SjS). Recent advances in understanding the genetic basis of systemic autoimmune diseases and PIDs suggest an at least partially shared genetic background and therefore common pathogenic mechanisms. Here, we explore the interconnected pathogenic pathways of autoimmunity and primary immunodeficiency, highlighting the mechanisms breaking the different layers of immune tolerance to self-antigens in selected IEI.
Collapse
Affiliation(s)
- Georgios Sogkas
- Department of Rheumatology and Immunology, Hannover Medical School, Hanover, Germany.
- Hannover Medical School, Cluster of Excellence RESIST (EXC 2155), Hanover, Germany.
| | - Faranaz Atschekzei
- Department of Rheumatology and Immunology, Hannover Medical School, Hanover, Germany
- Hannover Medical School, Cluster of Excellence RESIST (EXC 2155), Hanover, Germany
| | - Ignatius Ryan Adriawan
- Department of Rheumatology and Immunology, Hannover Medical School, Hanover, Germany
- Hannover Medical School, Cluster of Excellence RESIST (EXC 2155), Hanover, Germany
| | - Natalia Dubrowinskaja
- Department of Rheumatology and Immunology, Hannover Medical School, Hanover, Germany
- Hannover Medical School, Cluster of Excellence RESIST (EXC 2155), Hanover, Germany
| | - Torsten Witte
- Department of Rheumatology and Immunology, Hannover Medical School, Hanover, Germany
- Hannover Medical School, Cluster of Excellence RESIST (EXC 2155), Hanover, Germany
| | - Reinhold Ernst Schmidt
- Department of Rheumatology and Immunology, Hannover Medical School, Hanover, Germany
- Hannover Medical School, Cluster of Excellence RESIST (EXC 2155), Hanover, Germany
| |
Collapse
|
29
|
Zöphel D, Hof C, Lis A. Altered Ca 2+ Homeostasis in Immune Cells during Aging: Role of Ion Channels. Int J Mol Sci 2020; 22:ijms22010110. [PMID: 33374304 PMCID: PMC7794837 DOI: 10.3390/ijms22010110] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 12/29/2022] Open
Abstract
Aging is an unstoppable process and begins shortly after birth. Each cell of the organism is affected by the irreversible process, not only with equal density but also at varying ages and with different speed. Therefore, aging can also be understood as an adaptation to a continually changing cellular environment. One of these very prominent changes in age affects Ca2+ signaling. Especially immune cells highly rely on Ca2+-dependent processes and a strictly regulated Ca2+ homeostasis. The intricate patterns of impaired immune cell function may represent a deficit or compensatory mechanisms. Besides, altered immune function through Ca2+ signaling can profoundly affect the development of age-related disease. This review attempts to summarize changes in Ca2+ signaling due to channels and receptors in T cells and beyond in the context of aging.
Collapse
Affiliation(s)
| | | | - Annette Lis
- Correspondence: ; Tel.: +49-(0)-06841-1616318; Fax: +49-(0)-6841-1616302
| |
Collapse
|
30
|
Tiffner A, Derler I. Molecular Choreography and Structure of Ca 2+ Release-Activated Ca 2+ (CRAC) and K Ca2+ Channels and Their Relevance in Disease with Special Focus on Cancer. MEMBRANES 2020; 10:E425. [PMID: 33333945 PMCID: PMC7765462 DOI: 10.3390/membranes10120425] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 12/16/2022]
Abstract
Ca2+ ions play a variety of roles in the human body as well as within a single cell. Cellular Ca2+ signal transduction processes are governed by Ca2+ sensing and Ca2+ transporting proteins. In this review, we discuss the Ca2+ and the Ca2+-sensing ion channels with particular focus on the structure-function relationship of the Ca2+ release-activated Ca2+ (CRAC) ion channel, the Ca2+-activated K+ (KCa2+) ion channels, and their modulation via other cellular components. Moreover, we highlight their roles in healthy signaling processes as well as in disease with a special focus on cancer. As KCa2+ channels are activated via elevations of intracellular Ca2+ levels, we summarize the current knowledge on the action mechanisms of the interplay of CRAC and KCa2+ ion channels and their role in cancer cell development.
Collapse
Affiliation(s)
| | - Isabella Derler
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, A-4020 Linz, Austria;
| |
Collapse
|
31
|
Silva-Rojas R, Laporte J, Böhm J. STIM1/ ORAI1 Loss-of-Function and Gain-of-Function Mutations Inversely Impact on SOCE and Calcium Homeostasis and Cause Multi-Systemic Mirror Diseases. Front Physiol 2020; 11:604941. [PMID: 33250786 PMCID: PMC7672041 DOI: 10.3389/fphys.2020.604941] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 10/15/2020] [Indexed: 12/19/2022] Open
Abstract
Store-operated Ca2+ entry (SOCE) is a ubiquitous and essential mechanism regulating Ca2+ homeostasis in all tissues, and controls a wide range of cellular functions including keratinocyte differentiation, osteoblastogenesis and osteoclastogenesis, T cell proliferation, platelet activation, and muscle contraction. The main SOCE actors are STIM1 and ORAI1. Depletion of the reticular Ca2+ stores induces oligomerization of the luminal Ca2+ sensor STIM1, and the oligomers activate the plasma membrane Ca2+ channel ORAI1 to trigger extracellular Ca2+ entry. Mutations in STIM1 and ORAI1 result in abnormal SOCE and lead to multi-systemic disorders. Recessive loss-of-function mutations are associated with CRAC (Ca2+ release-activated Ca2+) channelopathy, involving immunodeficiency and autoimmunity, muscular hypotonia, ectodermal dysplasia, and mydriasis. In contrast, dominant STIM1 and ORAI1 gain-of-function mutations give rise to tubular aggregate myopathy and Stormorken syndrome (TAM/STRMK), forming a clinical spectrum encompassing muscle weakness, thrombocytopenia, ichthyosis, hyposplenism, short stature, and miosis. Functional studies on patient-derived cells revealed that CRAC channelopathy mutations impair SOCE and extracellular Ca2+ influx, while TAM/STRMK mutations induce excessive Ca2+ entry through SOCE over-activation. In accordance with the opposite pathomechanisms underlying both disorders, CRAC channelopathy and TAM/STRMK patients show mirror phenotypes at the clinical and molecular levels, and the respective animal models recapitulate the skin, bones, immune system, platelet, and muscle anomalies. Here we review and compare the clinical presentations of CRAC channelopathy and TAM/STRMK patients and the histological and molecular findings obtained on human samples and murine models to highlight the mirror phenotypes in different tissues, and to point out potentially undiagnosed anomalies in patients, which may be relevant for disease management and prospective therapeutic approaches.
Collapse
Affiliation(s)
- Roberto Silva-Rojas
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Inserm U1258, CNRS UMR 7104, Université de Strasbourg, Illkirch, France
| | - Jocelyn Laporte
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Inserm U1258, CNRS UMR 7104, Université de Strasbourg, Illkirch, France
| | - Johann Böhm
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Inserm U1258, CNRS UMR 7104, Université de Strasbourg, Illkirch, France
| |
Collapse
|
32
|
Epigenetic alterations in skin homing CD4 +CLA + T cells of atopic dermatitis patients. Sci Rep 2020; 10:18020. [PMID: 33093567 PMCID: PMC7582180 DOI: 10.1038/s41598-020-74798-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 09/15/2020] [Indexed: 02/06/2023] Open
Abstract
T cells expressing the cutaneous lymphocyte antigen (CLA) mediate pathogenic inflammation in atopic dermatitis (AD). The molecular alterations contributing to their dysregulation remain unclear. With the aim to elucidate putative altered pathways in AD we profiled DNA methylation levels and miRNA expression in sorted T cell populations (CD4+, CD4+CD45RA+ naïve, CD4+CLA+, and CD8+) from adult AD patients and healthy controls (HC). Skin homing CD4+CLA+ T cells from AD patients showed significant differences in DNA methylation in 40 genes compared to HC (p < 0.05). Reduced DNA methylation levels in the upstream region of the interleukin-13 gene (IL13) in CD4+CLA+ T cells from AD patients correlated with increased IL13 mRNA expression in these cells. Sixteen miRNAs showed differential expression in CD4+CLA+ T cells from AD patients targeting genes in 202 biological processes (p < 0.05). An integrated network analysis of miRNAs and CpG sites identified two communities of strongly interconnected regulatory elements with strong antagonistic behaviours that recapitulated the differences between AD patients and HC. Functional analysis of the genes linked to these communities revealed their association with key cytokine signaling pathways, MAP kinase signaling and protein ubiquitination. Our findings support that epigenetic mechanisms play a role in the pathogenesis of AD by affecting inflammatory signaling molecules in skin homing CD4+CLA+ T cells and uncover putative molecules participating in AD pathways.
Collapse
|
33
|
|
34
|
Protasi F, Pietrangelo L, Boncompagni S. Calcium entry units (CEUs): perspectives in skeletal muscle function and disease. J Muscle Res Cell Motil 2020; 42:233-249. [PMID: 32812118 PMCID: PMC8332569 DOI: 10.1007/s10974-020-09586-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 08/03/2020] [Indexed: 12/28/2022]
Abstract
In the last decades the term Store-operated Ca2+ entry (SOCE) has been used in the scientific literature to describe an ubiquitous cellular mechanism that allows recovery of calcium (Ca2+) from the extracellular space. SOCE is triggered by a reduction of Ca2+ content (i.e. depletion) in intracellular stores, i.e. endoplasmic or sarcoplasmic reticulum (ER and SR). In skeletal muscle the mechanism is primarily mediated by a physical interaction between stromal interaction molecule-1 (STIM1), a Ca2+ sensor located in the SR membrane, and ORAI1, a Ca2+-permeable channel of external membranes, located in transverse tubules (TTs), the invaginations of the plasma membrane (PM) deputed to propagation of action potentials. It is generally accepted that in skeletal muscle SOCE is important to limit muscle fatigue during repetitive stimulation. We recently discovered that exercise promotes the assembly of new intracellular junctions that contains colocalized STIM1 and ORAI1, and that the presence of these new junctions increases Ca2+ entry via ORAI1, while improving fatigue resistance during repetitive stimulation. Based on these findings we named these new junctions Ca2+ Entry Units (CEUs). CEUs are dynamic organelles that assemble during muscle activity and disassemble during recovery thanks to the plasticity of the SR (containing STIM1) and the elongation/retraction of TTs (bearing ORAI1). Interestingly, similar structures described as SR stacks were previously reported in different mouse models carrying mutations in proteins involved in Ca2+ handling (calsequestrin-null mice; triadin and junctin null mice, etc.) or associated to microtubules (MAP6 knockout mice). Mutations in Stim1 and Orai1 (and calsequestrin-1) genes have been associated to tubular aggregate myopathy (TAM), a muscular disease characterized by: (a) muscle pain, cramping, or weakness that begins in childhood and worsens over time, and (b) the presence of large accumulations of ordered SR tubes (tubular aggregates, TAs) that do not contain myofibrils, mitochondria, nor TTs. Interestingly, TAs are also present in fast twitch muscle fibers of ageing mice. Several important issues remain un-answered: (a) the molecular mechanisms and signals that trigger the remodeling of membranes and the functional activation of SOCE during exercise are unclear; and (b) how dysfunctional SOCE and/or mutations in Stim1, Orai1 and calsequestrin (Casq1) genes lead to the formation of tubular aggregates (TAs) in aging and disease deserve investigation.
Collapse
Affiliation(s)
- Feliciano Protasi
- CAST, Center for Advanced Studies and Technology, University G. d'Annunzio of Chieti-Pescara, 66100, Chieti, Italy.
- DMSI, Department of Medicine and Aging Sciences, University G. d'Annunzio of Chieti-Pescara, 66100, Chieti, Italy.
| | - Laura Pietrangelo
- CAST, Center for Advanced Studies and Technology, University G. d'Annunzio of Chieti-Pescara, 66100, Chieti, Italy
- DMSI, Department of Medicine and Aging Sciences, University G. d'Annunzio of Chieti-Pescara, 66100, Chieti, Italy
| | - Simona Boncompagni
- CAST, Center for Advanced Studies and Technology, University G. d'Annunzio of Chieti-Pescara, 66100, Chieti, Italy
- DNICS, Department of Neuroscience, Imaging and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, 66100, Chieti, Italy
| |
Collapse
|
35
|
Vaeth M, Kahlfuss S, Feske S. CRAC Channels and Calcium Signaling in T Cell-Mediated Immunity. Trends Immunol 2020; 41:878-901. [PMID: 32711944 DOI: 10.1016/j.it.2020.06.012] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 06/19/2020] [Accepted: 06/24/2020] [Indexed: 12/22/2022]
Abstract
Calcium (Ca2+) signals play fundamental roles in immune cell function. The main sources of Ca2+ influx in mammalian lymphocytes following antigen receptor stimulation are Ca2+ release-activated Ca2+ (CRAC) channels. These are formed by ORAI proteins in the plasma membrane and are activated by stromal interaction molecules (STIM) located in the endoplasmic reticulum (ER). Human loss-of-function (LOF) mutations in ORAI1 and STIM1 that abolish Ca2+ influx cause a unique disease syndrome called CRAC channelopathy that is characterized by immunodeficiency autoimmunity and non-immunological symptoms. Studies in mice lacking Stim and Orai genes have illuminated many cellular and molecular mechanisms by which these molecules control lymphocyte function. CRAC channels are required for the differentiation and function of several T lymphocyte subsets that provide immunity to infection, mediate inflammation and prevent autoimmunity. This review examines new insights into how CRAC channels control T cell-mediated immunity.
Collapse
Affiliation(s)
- Martin Vaeth
- Institute of Systems Immunology, Julius-Maximilians University of Würzburg, Würzburg, Germany; Department of Pathology, New York University School of Medicine, New York, NY, USA
| | - Sascha Kahlfuss
- Institute of Molecular and Clinical Immunology, Health Campus Immunology, Infectiology, and Inflammation, Otto-von-Guericke University Magdeburg, Magdeburg, Germany; Department of Pathology, New York University School of Medicine, New York, NY, USA
| | - Stefan Feske
- Department of Pathology, New York University School of Medicine, New York, NY, USA.
| |
Collapse
|
36
|
Kahlfuss S, Kaufmann U, Concepcion AR, Noyer L, Raphael D, Vaeth M, Yang J, Pancholi P, Maus M, Muller J, Kozhaya L, Khodadadi-Jamayran A, Sun Z, Shaw P, Unutmaz D, Stathopulos PB, Feist C, Cameron SB, Turvey SE, Feske S. STIM1-mediated calcium influx controls antifungal immunity and the metabolic function of non-pathogenic Th17 cells. EMBO Mol Med 2020; 12:e11592. [PMID: 32609955 PMCID: PMC7411566 DOI: 10.15252/emmm.201911592] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 05/19/2020] [Accepted: 05/25/2020] [Indexed: 12/18/2022] Open
Abstract
Immunity to fungal infections is mediated by cells of the innate and adaptive immune system including Th17 cells. Ca2+ influx in immune cells is regulated by stromal interaction molecule 1 (STIM1) and its activation of the Ca2+ channel ORAI1. We here identify patients with a novel mutation in STIM1 (p.L374P) that abolished Ca2+ influx and resulted in increased susceptibility to fungal and other infections. In mice, deletion of STIM1 in all immune cells enhanced susceptibility to mucosal C. albicans infection, whereas T cell‐specific deletion of STIM1 impaired immunity to systemic C. albicans infection. STIM1 deletion impaired the production of Th17 cytokines essential for antifungal immunity and compromised the expression of genes in several metabolic pathways including Foxo and HIF1α signaling that regulate glycolysis and oxidative phosphorylation (OXPHOS). Our study further revealed distinct roles of STIM1 in regulating transcription and metabolic programs in non‐pathogenic Th17 cells compared to pathogenic, proinflammatory Th17 cells, a finding that may potentially be exploited for the treatment of Th17 cell‐mediated inflammatory diseases.
Collapse
Affiliation(s)
- Sascha Kahlfuss
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
| | - Ulrike Kaufmann
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
| | - Axel R Concepcion
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
| | - Lucile Noyer
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
| | - Dimitrius Raphael
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
| | - Martin Vaeth
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
| | - Jun Yang
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
| | - Priya Pancholi
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
| | - Mate Maus
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
| | - James Muller
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
| | - Lina Kozhaya
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | | | - Zhengxi Sun
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
| | - Patrick Shaw
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
| | - Derya Unutmaz
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Peter B Stathopulos
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Cori Feist
- Department of Obstetrics & Gynecology, Oregon Health & Science University, Portland, OR, USA
| | - Scott B Cameron
- Division of Allergy and Clinical Immunology, Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
| | - Stuart E Turvey
- Division of Allergy and Clinical Immunology, Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
| | - Stefan Feske
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
| |
Collapse
|
37
|
Noble M, Lin QT, Sirko C, Houpt JA, Novello MJ, Stathopulos PB. Structural Mechanisms of Store-Operated and Mitochondrial Calcium Regulation: Initiation Points for Drug Discovery. Int J Mol Sci 2020; 21:E3642. [PMID: 32455637 PMCID: PMC7279490 DOI: 10.3390/ijms21103642] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/11/2020] [Accepted: 05/17/2020] [Indexed: 12/18/2022] Open
Abstract
Calcium (Ca2+) is a universal signaling ion that is essential for the life and death processes of all eukaryotes. In humans, numerous cell stimulation pathways lead to the mobilization of sarco/endoplasmic reticulum (S/ER) stored Ca2+, resulting in the propagation of Ca2+ signals through the activation of processes, such as store-operated Ca2+ entry (SOCE). SOCE provides a sustained Ca2+ entry into the cytosol; moreover, the uptake of SOCE-mediated Ca2+ by mitochondria can shape cytosolic Ca2+ signals, function as a feedback signal for the SOCE molecular machinery, and drive numerous mitochondrial processes, including adenosine triphosphate (ATP) production and distinct cell death pathways. In recent years, tremendous progress has been made in identifying the proteins mediating these signaling pathways and elucidating molecular structures, invaluable for understanding the underlying mechanisms of function. Nevertheless, there remains a disconnect between using this accumulating protein structural knowledge and the design of new research tools and therapies. In this review, we provide an overview of the Ca2+ signaling pathways that are involved in mediating S/ER stored Ca2+ release, SOCE, and mitochondrial Ca2+ uptake, as well as pinpoint multiple levels of crosstalk between these pathways. Further, we highlight the significant protein structures elucidated in recent years controlling these Ca2+ signaling pathways. Finally, we describe a simple strategy that aimed at applying the protein structural data to initiating drug design.
Collapse
Affiliation(s)
- Megan Noble
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON N6A5C1, Canada; (M.N.); (Q.-T.L.); (C.S.); (M.J.N.)
| | - Qi-Tong Lin
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON N6A5C1, Canada; (M.N.); (Q.-T.L.); (C.S.); (M.J.N.)
| | - Christian Sirko
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON N6A5C1, Canada; (M.N.); (Q.-T.L.); (C.S.); (M.J.N.)
| | - Jacob A. Houpt
- Department of Medicine, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON N6A5C1, Canada;
| | - Matthew J. Novello
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON N6A5C1, Canada; (M.N.); (Q.-T.L.); (C.S.); (M.J.N.)
| | - Peter B. Stathopulos
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON N6A5C1, Canada; (M.N.); (Q.-T.L.); (C.S.); (M.J.N.)
| |
Collapse
|
38
|
Abstract
A strong Th17 inflammatory response aggravates ischemia reperfusion-induced (IR-induced) acute kidney injury (AKI), tissue fibrosis, and AKI-to-chronic kidney disease (CKD) progression. However, the underlying mechanisms of sustained Th17 activation following AKI and during AKI-to-CKD progression are unclear. In this issue of the JCI, Mehrotra et al. present compelling evidence that the store-operated calcium (Ca2+) channel Orai1 sustains Th17-driven inflammatory response after AKI and drives the AKI-to-CKD transition. Orai1 blockade significantly protected renal function from IR, attenuated high-salt-induced AKI-to-CKD progression in rats, and decreased Th17 response in rat and human T cells. Therapeutic targeting of Orai1 can potentially reduce AKI, AKI-to-CKD progression, and other Th17-driven diseases.
Collapse
|
39
|
Derakhshan D, Taherifard E, Taherifard E, Sajedianfard S, Derakhshan A. A novel frame shift mutation in STIM1 gene causing primary immunodeficiency. Intractable Rare Dis Res 2020; 9:109-112. [PMID: 32494559 PMCID: PMC7263988 DOI: 10.5582/irdr.2020.01020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Immunodeficiency 10 is an autosomal recessive disorder presenting with iris hypoplasia, muscular hypotonia and nonprogressive myopathy, recurrent bacterial infections, autoimmune hemolytic anemia, hypohidrosis and nail dysplasia caused by the mutation of stromal interaction molecule 1 gene (STIM1). Herein, we present a new case of STIM1 mediated immunodeficiency, carrying a novel frameshift mutation. Our patient presented with nephrotic syndrome, hypotonia, myopathy, recurrent bacterial infections, thrombocytopenia and autoimmune hemolytic anemia. She is now 23 months old and is on steroid, cyclosporine and monthly IVIG. She has had no recent significant infections and is receiving rehabilitation therapy to improve her motor skills. Rare genetic syndromes should be suspected in patients of consanguineous parents, who present with a set of different manifestations. Gathering all the patient's manifestations together and looking them as one disease should be encouraged.
Collapse
Affiliation(s)
| | | | - Ehsan Taherifard
- Address correspondence to:Ehsan Taherifard, Shiraz University of Medical Sciences, Zand St., Shiraz, Iran. E-mail:
| | | | | |
Collapse
|
40
|
Dhande IS, Kneedler SC, Zhu Y, Joshi AS, Hicks MJ, Wenderfer SE, Braun MC, Doris PA. Natural genetic variation in Stim1 creates stroke in the spontaneously hypertensive rat. Genes Immun 2020; 21:182-192. [PMID: 32300198 PMCID: PMC7274944 DOI: 10.1038/s41435-020-0097-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 02/28/2020] [Accepted: 03/20/2020] [Indexed: 12/28/2022]
Abstract
Similar to humans, the risk of cerebrovascular disease in stroke-prone spontaneously hypertensive rats (SHR-A3/SHRSP) arises from naturally occurring genetic variation. In the present study, we show the involvement of genetic variation affecting the store-operated calcium signaling gene, Stim1, in the pathogenesis of stroke in SHR. Stim1 is a key lymphocyte activation signaling molecule and contains functional variation in SHR-A3 that diverges from stroke-resistant SHR-B2. We created a SHR-A3 congenic line in which Stim1 was substituted with the corresponding genomic segment from SHR-B2. Compared with SHR-A3 rats, Stim1 congenic SHR-A3 (SHR-A3(Stim1-B2)) have reduced cerebrovascular disease in response to salt loading including lower neurological deficit scores and cerebral edema. Microbleeds and major hemorrhages occurred in over half of SHR-A3 rats. These lesions were absent in SHR-A3(Stim1-B2) rats. Loss of Stim1 function in mice and humans is associated with antibody-mediated autoimmunity due to defects in T lymphocyte helper function to B cells. We investigated autoantibody formation using a high-density protein array to detect the presence of IgG and IgM autoantibodies in SHR-A3. Autoantibodies to key cerebrovascular stress proteins were detected that were reduced in the congenic line.
Collapse
Affiliation(s)
- Isha S Dhande
- Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Sterling C Kneedler
- Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Yaming Zhu
- Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Aniket S Joshi
- Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - M John Hicks
- Department of Pathology and Immunology, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, 77030, USA
| | - Scott E Wenderfer
- Department of Pediatrics, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, 77030, USA
| | - Michael C Braun
- Department of Pediatrics, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, 77030, USA
| | - Peter A Doris
- Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
| |
Collapse
|
41
|
Latour S, Fischer A. Signaling pathways involved in the T-cell-mediated immunity against Epstein-Barr virus: Lessons from genetic diseases. Immunol Rev 2020; 291:174-189. [PMID: 31402499 DOI: 10.1111/imr.12791] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/05/2019] [Accepted: 06/10/2019] [Indexed: 12/13/2022]
Abstract
Primary immunodeficiencies (PIDs) provide researchers with unique models to understand in vivo immune responses in general and immunity to infections in particular. In humans, impaired immune control of Epstein-Barr virus (EBV) infection is associated with the occurrence of several different immunopathologic conditions; these include non-malignant and malignant B-cell lymphoproliferative disorders, hemophagocytic lymphohistiocytosis (HLH), a severe inflammatory condition, and a chronic acute EBV infection of T cells. Studies of PIDs associated with a predisposition to develop severe, chronic EBV infections have led to the identification of key components of immunity to EBV - notably the central role of T-cell expansion and its regulation in the pathophysiology of EBV-associated diseases. On one hand, the defective expansion of EBV-specific CD8 T cells results from mutations in genes involved in T-cell activation (such as RASGRP1, MAGT1, and ITK), DNA metabolism (CTPS1) or co-stimulatory pathways (CD70, CD27, and TNFSFR9 (also known as CD137/4-1BB)) leads to impaired elimination of proliferating EBV-infected B cells and the occurrence of lymphoma. On the other hand, protracted T-cell expansion and activation after the defective killing of EBV-infected B cells is caused by genetic defects in the components of the lytic granule exocytosis pathway or in the small adapter protein SH2D1A (also known as SAP), a key activator of T- and NK cell-cytotoxicity. In this setting, the persistence of EBV-infected cells results in HLH, a condition characterized by unleashed T-cell and macrophage activation. Moreover, genetic defects causing selective vulnerability to EBV infection have highlighted the role of co-receptor molecules (CD27, CD137, and SLAM-R) selectively involved in immune responses against infected B cells via specific T-B cell interactions.
Collapse
Affiliation(s)
- Sylvain Latour
- Laboratory of Lymphocyte Activation and Susceptibility to EBV infection, Inserm UMR 1163, Paris, France.,University Paris Descartes Sorbonne Paris Cité, Imagine Institut, Paris, France
| | - Alain Fischer
- University Paris Descartes Sorbonne Paris Cité, Imagine Institut, Paris, France.,Department of Pediatric Immunology, Hematology and Rheumatology, Necker-Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris (APHP), Paris, France.,Collège de France, Paris, France.,Inserm UMR 1163, Paris, France
| |
Collapse
|
42
|
Human inborn errors of immunity to herpes viruses. Curr Opin Immunol 2020; 62:106-122. [PMID: 32014647 DOI: 10.1016/j.coi.2020.01.004] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 12/16/2019] [Accepted: 01/07/2020] [Indexed: 12/16/2022]
Abstract
Infections with any of the nine human herpes viruses (HHV) can be asymptomatic or life-threatening. The study of patients with severe diseases caused by HHVs, in the absence of overt acquired immunodeficiency, has led to the discovery or diagnosis of various inborn errors of immunity. The related inborn errors of adaptive immunity disrupt α/β T-cell rather than B-cell immunity. Affected patients typically develop HHV infections in the context of other infectious diseases. However, this is not always the case, as illustrated by inborn errors of SAP-dependent T-cell immunity to EBV-infected B cells. The related inborn errors of innate immunity disrupt leukocytes other than T and B cells, non-hematopoietic cells, or both. Patients typically develop only a single type of infection due to HHV, although, again, this is not always the case, as illustrated by inborn errors of TLR3 immunity resulting in HSV1 encephalitis in some patients and influenza pneumonitis in others. Most severe HHV infections in otherwise healthy patients remains unexplained. The forward human genetic dissection of isolated and syndromic HHV-driven illnesses will establish the molecular and cellular basis of protective immunity to HHVs, paving the way for novel diagnosis and management strategies.
Collapse
|
43
|
Butorac C, Krizova A, Derler I. Review: Structure and Activation Mechanisms of CRAC Channels. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1131:547-604. [PMID: 31646526 DOI: 10.1007/978-3-030-12457-1_23] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Ca2+ release activated Ca2+ (CRAC) channels represent a primary pathway for Ca2+ to enter non-excitable cells. The two key players in this process are the stromal interaction molecule (STIM), a Ca2+ sensor embedded in the membrane of the endoplasmic reticulum, and Orai, a highly Ca2+ selective ion channel located in the plasma membrane. Upon depletion of the internal Ca2+ stores, STIM is activated, oligomerizes, couples to and activates Orai. This review provides an overview of novel findings about the CRAC channel activation mechanisms, structure and gating. In addition, it highlights, among diverse STIM and Orai mutants, also the disease-related mutants and their implications.
Collapse
Affiliation(s)
- Carmen Butorac
- Institute of Biophysics, Johannes Kepler University of Linz, Linz, Austria
| | - Adéla Krizova
- Institute of Biophysics, Johannes Kepler University of Linz, Linz, Austria
| | - Isabella Derler
- Institute of Biophysics, Johannes Kepler University of Linz, Linz, Austria.
| |
Collapse
|
44
|
A muscular hypotonia-associated STIM1 mutant at R429 induces abnormalities in intracellular Ca 2+ movement and extracellular Ca 2+ entry in skeletal muscle. Sci Rep 2019; 9:19140. [PMID: 31844136 PMCID: PMC6915709 DOI: 10.1038/s41598-019-55745-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 12/02/2019] [Indexed: 12/20/2022] Open
Abstract
Stromal interaction molecule 1 (STIM1) mediates extracellular Ca2+ entry into the cytosol through a store-operated Ca2+ entry (SOCE) mechanism, which is involved in the physiological functions of various tissues, including skeletal muscle. STIM1 is also associated with skeletal muscle diseases, but its pathological mechanisms have not been well addressed. The present study focused on examining the pathological mechanism(s) of a mutant STIM1 (R429C) that causes human muscular hypotonia. R429C was expressed in mouse primary skeletal myotubes, and the properties of the skeletal myotubes were examined using single-cell Ca2+ imaging of myotubes and transmission electron microscopy (TEM) along with biochemical approaches. R429C did not interfere with the terminal differentiation of myoblasts to myotubes. Unlike wild-type STIM1, there was no further increase of SOCE by R429C. R429C bound to endogenous STIM1 and slowed down the initial rate of SOCE that were mediated by endogenous STIM1. Moreover, R429C increased intracellular Ca2+ movement in response to membrane depolarization by eliminating the attenuation on dihydropyridine receptor-ryanodine receptor (DHPR-RyR1) coupling by endogenous STIM1. The cytosolic Ca2+ level was also increased due to the reduction in SR Ca2+ level. In addition, R429C-expressing myotubes showed abnormalities in mitochondrial shape, a significant decrease in ATP levels, and the higher expression levels of mitochondrial fission-mediating proteins. Therefore, serial defects in SOCE, intracellular Ca2+ movement, and cytosolic Ca2+ level along with mitochondrial abnormalities in shape and ATP level could be a pathological mechanism of R429C for human skeletal muscular hypotonia. This study also suggests a novel clue that STIM1 in skeletal muscle could be related to mitochondria via regulating intra and extracellular Ca2+ movements.
Collapse
|
45
|
Abstract
Calcium (Ca2+) signalling is of paramount importance to immunity. Regulated increases in cytosolic and organellar Ca2+ concentrations in lymphocytes control complex and crucial effector functions such as metabolism, proliferation, differentiation, antibody and cytokine secretion and cytotoxicity. Altered Ca2+ regulation in lymphocytes leads to various autoimmune, inflammatory and immunodeficiency syndromes. Several types of plasma membrane and organellar Ca2+-permeable channels are functional in T cells. They contribute highly localized spatial and temporal Ca2+ microdomains that are required for achieving functional specificity. While the mechanistic details of these Ca2+ microdomains are only beginning to emerge, it is evident that through crosstalk, synergy and feedback mechanisms, they fine-tune T cell signalling to match complex immune responses. In this article, we review the expression and function of various Ca2+-permeable channels in the plasma membrane, endoplasmic reticulum, mitochondria and endolysosomes of T cells and their role in shaping immunity and the pathogenesis of immune-mediated diseases.
Collapse
Affiliation(s)
- Mohamed Trebak
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, PA, USA.
| | - Jean-Pierre Kinet
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
46
|
Abstract
Metals are essential components in all forms of life required for the function of nearly half of all enzymes and are critically involved in virtually all fundamental biological processes. Especially, the transition metals iron (Fe), zinc (Zn), manganese (Mn), nickel (Ni), copper (Cu) and cobalt (Co) are crucial micronutrients known to play vital roles in metabolism as well due to their unique redox properties. Metals carry out three major functions within metalloproteins: to provide structural support, to serve as enzymatic cofactors, and to mediate electron transportation. Metal ions are also involved in the immune system from metal allergies to nutritional immunity. Within the past decade, much attention has been drawn to the roles of metal ions in the immune system, since increasing evidence has mounted to suggest that metals are critically implicated in regulating both the innate immune sensing of and the host defense against invading pathogens. The importance of ions in immunity is also evidenced by the identification of various immunodeficiencies in patients with mutations in ion channels and transporters. In addition, cancer immunotherapy has recently been conclusively demonstrated to be effective and important for future tumor treatment, although only a small percentage of cancer patients respond to immunotherapy because of inadequate immune activation. Importantly, metal ion-activated immunotherapy is becoming an effective and potential way in tumor therapy for better clinical application. Nevertheless, we are still in a primary stage of discovering the diverse immunological functions of ions and mechanistically understanding the roles of these ions in immune regulation. This review summarizes recent advances in the understanding of metal-controlled immunity. Particular emphasis is put on the mechanisms of innate immune stimulation and T cell activation by the essential metal ions like calcium (Ca2+), zinc (Zn2+), manganese (Mn2+), iron (Fe2+/Fe3+), and potassium (K+), followed by a few unessential metals, in order to draw a general diagram of metalloimmunology.
Collapse
Affiliation(s)
- Chenguang Wang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Rui Zhang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Xiaoming Wei
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Mengze Lv
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Zhengfan Jiang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.
| |
Collapse
|
47
|
Gamage TH, Lengle E, Gunnes G, Pullisaar H, Holmgren A, Reseland JE, Merckoll E, Corti S, Mizobuchi M, Morales RJ, Tsiokas L, Tjønnfjord GE, Lacruz RS, Lyngstadaas SP, Misceo D, Frengen E. STIM1 R304W in mice causes subgingival hair growth and an increased fraction of trabecular bone. Cell Calcium 2019; 85:102110. [PMID: 31785581 DOI: 10.1016/j.ceca.2019.102110] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 11/05/2019] [Accepted: 11/11/2019] [Indexed: 02/06/2023]
Abstract
Calcium signaling plays a central role in bone development and homeostasis. Store operated calcium entry (SOCE) is an important calcium influx pathway mediated by calcium release activated calcium (CRAC) channels in the plasma membrane. Stromal interaction molecule 1 (STIM1) is an endoplasmic reticulum calcium sensing protein important for SOCE. We generated a mouse model expressing the STIM1 R304W mutation, causing Stormorken syndrome in humans. Stim1R304W/R304W mice showed perinatal lethality, and the only three animals that survived into adulthood presented with reduced growth, low body weight, and thoracic kyphosis. Radiographs revealed a reduced number of ribs in the Stim1R304W/R304W mice. Microcomputed tomography data revealed decreased cortical bone thickness and increased trabecular bone volume fraction in Stim1R304W/R304W mice, which had thinner and more compact bone compared to wild type mice. The Stim1R304W/+ mice showed an intermediate phenotype. Histological analyses showed that the Stim1R304W/R304W mice had abnormal bone architecture, with markedly increased number of trabeculae and reduced bone marrow cavity. Homozygous mice showed STIM1 positive osteocytes and osteoblasts. These findings highlight the critical role of the gain-of-function (GoF) STIM1 R304W protein in skeletal development and homeostasis in mice. Furthermore, the novel feature of bilateral subgingival hair growth on the lower incisors in the Stim1R304W/R304W mice and 25 % of the heterozygous mice indicate that the GoF STIM1 R304W protein also induces an abnormal epithelial cell fate.
Collapse
Affiliation(s)
- Thilini H Gamage
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Emma Lengle
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Gjermund Gunnes
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Norway
| | - Helen Pullisaar
- Department of Orthodontics, Institute of Clinical Dentistry, University of Oslo, Oslo, Norway
| | - Asbjørn Holmgren
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Janne E Reseland
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, Oslo, Norway
| | - Else Merckoll
- Department of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | - Stefania Corti
- Neurology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Neuroscience Section, Department of Pathophysiology and Transplantation, Dino Ferrari Centre, University of Milan, Milan, Italy
| | | | | | - Leonidas Tsiokas
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma, USA
| | - Geir E Tjønnfjord
- Department of Haematology, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Rodrigo S Lacruz
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, USA
| | - Staale P Lyngstadaas
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, Oslo, Norway
| | - Doriana Misceo
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Eirik Frengen
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway.
| |
Collapse
|
48
|
Bhuvaneshwari S, Sankaranarayanan K. Structural and Mechanistic Insights of CRAC Channel as a Drug Target in Autoimmune Disorder. Curr Drug Targets 2019; 21:55-75. [PMID: 31556856 DOI: 10.2174/1389450120666190926150258] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 08/20/2019] [Accepted: 08/20/2019] [Indexed: 01/17/2023]
Abstract
BACKGROUND Calcium (Ca2+) ion is a major intracellular signaling messenger, controlling a diverse array of cellular functions like gene expression, secretion, cell growth, proliferation, and apoptosis. The major mechanism controlling this Ca2+ homeostasis is store-operated Ca2+ release-activated Ca2+ (CRAC) channels. CRAC channels are integral membrane protein majorly constituted via two proteins, the stromal interaction molecule (STIM) and ORAI. Following Ca2+ depletion in the Endoplasmic reticulum (ER) store, STIM1 interacts with ORAI1 and leads to the opening of the CRAC channel gate and consequently allows the influx of Ca2+ ions. A plethora of studies report that aberrant CRAC channel activity due to Loss- or gain-of-function mutations in ORAI1 and STIM1 disturbs this Ca2+ homeostasis and causes several autoimmune disorders. Hence, it clearly indicates that the therapeutic target of CRAC channels provides the space for a new approach to treat autoimmune disorders. OBJECTIVE This review aims to provide the key structural and mechanical insights of STIM1, ORAI1 and other molecular modulators involved in CRAC channel regulation. RESULTS AND CONCLUSION Understanding the structure and function of the protein is the foremost step towards improving the effective target specificity by limiting their potential side effects. Herein, the review mainly focusses on the structural underpinnings of the CRAC channel gating mechanism along with its biophysical properties that would provide the solid foundation to aid the development of novel targeted drugs for an autoimmune disorder. Finally, the immune deficiencies caused due to mutations in CRAC channel and currently used pharmacological blockers with their limitation are briefly summarized.
Collapse
Affiliation(s)
- Sampath Bhuvaneshwari
- Ion Channel Biology Laboratory, AU-KBC Research Centre, Madras Institute of Technology, Anna University, Chrompet, Chennai -600 044, India
| | - Kavitha Sankaranarayanan
- Ion Channel Biology Laboratory, AU-KBC Research Centre, Madras Institute of Technology, Anna University, Chrompet, Chennai -600 044, India
| |
Collapse
|
49
|
Aloulou M, Fazilleau N. Regulation of B cell responses by distinct populations of CD4 T cells. Biomed J 2019; 42:243-251. [PMID: 31627866 PMCID: PMC6818157 DOI: 10.1016/j.bj.2019.06.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 06/24/2019] [Accepted: 06/26/2019] [Indexed: 01/28/2023] Open
Abstract
Maturation of B cells in Germinal Centers (GC) is a hallmark in adaptive immunity and the basis of successful vaccines that protect us against lethal infections. Nonetheless, vaccination efficacy is very much reduced in aged population and against highly mutagenic viruses. Therefore, it is key to understand how B cell selection takes place in GC in order to develop new and fully protective vaccines. The cellular mechanisms that control selection of GC B cells are performed by different T cell populations. On one side, cognate entanglement of B cells with T follicular helper (Tfh) cells through cytokines and co-stimulatory signals promotes survival, proliferation, mutagenesis and terminal differentiation of GC B cells. On the other hand, regulatory T cells have also been reported within GC and interfere with T cell help for antibody production. These cells have been classified as a distinct T cell sub-population called T Follicular regulatory cells (Tfr). In this review, we investigate the phenotype, function and differentiation of these two cell populations. In addition, based on the different functions of these cell subsets, we highlight the open questions surrounding their heterogeneity.
Collapse
Affiliation(s)
- Meryem Aloulou
- Center for Pathophysiology of Toulouse Purpan, Toulouse, France; INSERM U1043, Toulouse, France; CNRS UMR5282, Toulouse, France; University of Toulouse III, Toulouse, France
| | - Nicolas Fazilleau
- Center for Pathophysiology of Toulouse Purpan, Toulouse, France; INSERM U1043, Toulouse, France; CNRS UMR5282, Toulouse, France; University of Toulouse III, Toulouse, France.
| |
Collapse
|
50
|
Morin G, Biancalana V, Echaniz-Laguna A, Noury JB, Lornage X, Moggio M, Ripolone M, Violano R, Marcorelles P, Maréchal D, Renaud F, Maurage CA, Tard C, Cuisset JM, Laporte J, Böhm J. Tubular aggregate myopathy and Stormorken syndrome: Mutation spectrum and genotype/phenotype correlation. Hum Mutat 2019; 41:17-37. [PMID: 31448844 DOI: 10.1002/humu.23899] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 07/29/2019] [Accepted: 08/21/2019] [Indexed: 11/06/2022]
Abstract
Calcium (Ca2+ ) acts as a ubiquitous second messenger, and normal cell and tissue physiology strictly depends on the precise regulation of Ca2+ entry, storage, and release. Store-operated Ca2+ entry (SOCE) is a major mechanism controlling extracellular Ca2+ entry, and mainly relies on the accurate interplay between the Ca2+ sensor STIM1 and the Ca2+ channel ORAI1. Mutations in STIM1 or ORAI1 result in abnormal Ca2+ homeostasis and are associated with severe human disorders. Recessive loss-of-function mutations impair SOCE and cause combined immunodeficiency, while dominant gain-of-function mutations induce excessive extracellular Ca2+ entry and cause tubular aggregate myopathy (TAM) and Stormorken syndrome (STRMK). TAM and STRMK are spectra of the same multisystemic disease characterized by muscle weakness, miosis, thrombocytopenia, hyposplenism, ichthyosis, dyslexia, and short stature. To date, 42 TAM/STRMK families have been described, and here we report five additional families for which we provide clinical, histological, ultrastructural, and genetic data. In this study, we list and review all new and previously reported STIM1 and ORAI1 cases, discuss the pathomechanisms of the mutations based on the known functions and the protein structure of STIM1 and ORAI1, draw a genotype/phenotype correlation, and delineate an efficient screening strategy for the molecular diagnosis of TAM/STRMK.
Collapse
Affiliation(s)
- Gilles Morin
- Clinical Genetics, Amiens University Hospital, Amiens, France.,University of Picardy Jules Verne, EA 4666, Amiens, France.,Department of translational medicine and Neurogenetics, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France
| | - Valérie Biancalana
- Department of translational medicine and Neurogenetics, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.,Inserm U1258, Illkirch, France.,CNRS UMR7104, Illkirch, France.,Strasbourg University, Illkirch, France.,Laboratoire Diagnostic Génétique, CHRU, Strasbourg, France
| | - Andoni Echaniz-Laguna
- Department of Neurology, APHP, CHU de Bicêtre, Le Kremlin Bicêtre, France.,French National Reference Center for Rare Neuropathies (NNERF), Le Kremlin Bicêtre, France.,Inserm U1195 & Paris-Sud University, Le Kremlin Bicêtre, France
| | | | - Xavière Lornage
- Department of translational medicine and Neurogenetics, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.,Inserm U1258, Illkirch, France.,CNRS UMR7104, Illkirch, France.,Strasbourg University, Illkirch, France
| | - Maurizio Moggio
- Neuromuscular and Rare Diseases Unit, Department of Neuroscience, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Michela Ripolone
- Neuromuscular and Rare Diseases Unit, Department of Neuroscience, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Raffaella Violano
- Neuromuscular and Rare Diseases Unit, Department of Neuroscience, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | | | - Denis Maréchal
- Department of Neurology, CHRU Cavale Blanche, Brest, France
| | - Florence Renaud
- Department of Pathology, Lille University Hospital, Lille, France
| | | | - Céline Tard
- CHU Lille, Inserm U1171, Service de neurologie, Centre de Référence des Maladies Neuromusculaires Nord Est Ile-de-France, Lille University, Lille, France
| | | | - Jocelyn Laporte
- Department of translational medicine and Neurogenetics, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.,Inserm U1258, Illkirch, France.,CNRS UMR7104, Illkirch, France.,Strasbourg University, Illkirch, France
| | - Johann Böhm
- Department of translational medicine and Neurogenetics, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.,Inserm U1258, Illkirch, France.,CNRS UMR7104, Illkirch, France.,Strasbourg University, Illkirch, France
| |
Collapse
|