1
|
Persaud AT, Khela J, Fernandes C, Chaphekar D, Burnie J, Tang VA, Colpitts CC, Guzzo C. Virion-incorporated CD14 enables HIV-1 to bind LPS and initiate TLR4 signaling in immune cells. J Virol 2024; 98:e0036324. [PMID: 38661384 PMCID: PMC11092368 DOI: 10.1128/jvi.00363-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/01/2024] [Indexed: 04/26/2024] Open
Abstract
HIV-1 has a broad range of nuanced interactions with the immune system, and the incorporation of cellular proteins by nascent virions continues to redefine our understanding of the virus-host relationship. Proteins located at the sites of viral egress can be selectively incorporated into the HIV-1 envelope, imparting new functions and phenotypes onto virions, and impacting viral spread and disease. Using virion capture assays and western blot, we show that HIV-1 can incorporate the myeloid antigen CD14 into its viral envelope. Virion-incorporated CD14 remained biologically active and able to bind its natural ligand, bacterial lipopolysaccharide (LPS), as demonstrated by flow virometry and immunoprecipitation assays. Using a Toll-like receptor 4 (TLR4) reporter cell line, we also demonstrated that virions with bound LPS can trigger TLR4 signaling to activate transcription factors that regulate inflammatory gene expression. Complementary assays with THP-1 monocytes demonstrated enhanced secretion of inflammatory cytokines like tumor necrosis factor alpha (TNF-α) and the C-C chemokine ligand 5 (CCL5), when exposed to LPS-loaded virus. These data highlight a new type of interplay between HIV-1 and the myeloid cell compartment, a previously well-established cellular contributor to HIV-1 pathogenesis and inflammation. Persistent gut inflammation is a hallmark of chronic HIV-1 infection, and contributing to this effect is the translocation of microbes across the gut epithelium. Our data herein provide proof of principle that virion-incorporated CD14 could be a novel mechanism through which HIV-1 can drive chronic inflammation, facilitated by HIV-1 particles binding bacterial LPS and initiating inflammatory signaling in TLR4-expressing cells.IMPORTANCEHIV-1 establishes a lifelong infection accompanied by numerous immunological changes. Inflammation of the gut epithelia, exacerbated by the loss of mucosal T cells and cytokine dysregulation, persists during HIV-1 infection. Feeding back into this loop of inflammation is the translocation of intestinal microbes across the gut epithelia, resulting in the systemic dissemination of bacterial antigens, like lipopolysaccharide (LPS). Our group previously demonstrated that the LPS receptor, CD14, can be readily incorporated by HIV-1 particles, supporting previous clinical observations of viruses derived from patient plasma. We now show that CD14 can be incorporated by several primary HIV-1 isolates and that this virion-incorporated CD14 can remain functional, enabling HIV-1 to bind to LPS. This subsequently allowed CD14+ virions to transfer LPS to monocytic cells, eliciting pro-inflammatory signaling and cytokine secretion. We posit here that virion-incorporated CD14 is a potential contributor to the dysregulated immune responses present in the setting of HIV-1 infection.
Collapse
Affiliation(s)
- Arvin T. Persaud
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Jasmin Khela
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
| | - Claire Fernandes
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Deepa Chaphekar
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Jonathan Burnie
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Vera A. Tang
- Flow Cytometry and Virometry Core Facility, Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Che C. Colpitts
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario, Canada
| | - Christina Guzzo
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
- Department of Immunology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
2
|
Gu H, Yu H, Qin L, Yu H, Song Y, Chen G, Zhao D, Wang S, Xue W, Wang L, Ai Z, Xu B, Peng A. MSU crystal deposition contributes to inflammation and immune responses in gout remission. Cell Rep 2023; 42:113139. [PMID: 37756161 DOI: 10.1016/j.celrep.2023.113139] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 07/22/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
As a prominent feature of gout, monosodium urate (MSU) crystal deposition induces gout flares, but its impact on immune inflammation in gout remission remains unclear. Using single-cell RNA sequencing (scRNA-seq), we characterize the transcription profiling of peripheral blood mononuclear cells (PBMCs) among intercritical remission gout, advanced remission gout, and normal controls. We find systemic inflammation in gout remission with MSU crystal deposition at the intercritical and advanced stages, evidenced by activated inflammatory pathways, strengthened inflammatory cell-cell interactions, and elevated arachidonic acid metabolic activity. We also find increased HLA-DQA1high classic monocytes and PTGS2high monocytes in advanced gout and overactivated CD8+ T cell subtypes in intercritical and advanced gout. Additionally, the osteoclast differentiation pathway is significantly enriched in monocytes, T cells, and B cells from advanced gout. Overall, we demonstrate systemic inflammation and distinctive immune responses in gout remission with MSU crystal deposition, allowing further exploration of the underlying mechanism and clinical significance in conversion from intercritical to advanced stage.
Collapse
Affiliation(s)
- Hongchen Gu
- Center for Nephrology and Clinical Metabolomics, Division of Nephrology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Hanqing Yu
- Center for Nephrology and Clinical Metabolomics, Division of Nephrology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Ling Qin
- Center for Nephrology and Clinical Metabolomics, Division of Nephrology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Hanjie Yu
- Center for Nephrology and Clinical Metabolomics, Division of Nephrology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Yaxiang Song
- Center for Nephrology and Clinical Metabolomics, Division of Nephrology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Guangqi Chen
- Center for Nephrology and Clinical Metabolomics, Division of Nephrology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Dake Zhao
- Center for Nephrology and Clinical Metabolomics, Division of Nephrology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Shu Wang
- Center for Nephrology and Clinical Metabolomics, Division of Nephrology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Wen Xue
- Center for Nephrology and Clinical Metabolomics, Division of Nephrology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Ling Wang
- Center for Nephrology and Clinical Metabolomics, Division of Nephrology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Zisheng Ai
- Department of Medical Statistics, Tongji University School of Medicine, Shanghai 200092, China
| | - Bei Xu
- Center for Nephrology and Clinical Metabolomics, Division of Nephrology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China.
| | - Ai Peng
- Center for Nephrology and Clinical Metabolomics, Division of Nephrology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China.
| |
Collapse
|
3
|
Heinzl GC, Eriksen DB, Johnsen PR, Scarafoni A, Frøkiær H. Protein Concentration Affects the Food Allergen γ-Conglutin Uptake and Bacteria-Induced Cytokine Production in Dendritic Cells. Biomolecules 2023; 13:1531. [PMID: 37892213 PMCID: PMC10605286 DOI: 10.3390/biom13101531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/08/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
γ-Conglutin (γ-C) from lupin seeds has been identified as a potent allergen with cross reactivity to peanuts. Here, we investigated how γ-C affected the response in bone marrow-derived dendritic cells (DCs) to bacterial stimuli. γ-C enhanced L. acidophilus NCFM (LaNCFM)-induced IL-12, IL-10, and IL-23 dose-dependently. In contrast, together with E. coli Nissle or LPS, γ-C reduced the production of IL-12 but not of IL-23 and IL-10. Enzyme-hydrolyzed γ-C also enhanced LaNCFM-induced IL-12 and IL-23 production. All preparations induced ROS production in the DCs. The mannose receptor ligands mannan and dextran and the clathrin inhibitor monodansylcadaverine partly inhibited the endocytosis of γ-C. Kunitz trypsin inhibitor and the scavenger receptor ligand polyG also enhanced LaNCFM-induced IL-12, indicating the involvement of receptors other than C-type lectin receptors. The endocytosis of labeled γ-C increased dose-dependently by addition of unlabeled γ-C, which coincided with γ-C's tendency to aggregate. Taken together, γ-C aggregation affects endocytosis and affects the cytokine production induced by gram-positive and gram-negative bacteria differently. We suggest that γ-C is taken up by the same mechanism as other food proteins but due to aggregation is present in higher concentration in the DCs. This could influence the resulting T-cell response in a microbial stimuli-dependent way.
Collapse
Affiliation(s)
- Giuditta C Heinzl
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Via Celoria 2, 20133 Milan, Italy
- Department of Veterinary and Animal Sciences, University of Copenhagen, Ridebanevej 9, 1871 Frederiksberg, Denmark
| | - Danny Blichfeldt Eriksen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Ridebanevej 9, 1871 Frederiksberg, Denmark
| | - Peter Riber Johnsen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Ridebanevej 9, 1871 Frederiksberg, Denmark
| | - Alessio Scarafoni
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Via Celoria 2, 20133 Milan, Italy
| | - Hanne Frøkiær
- Department of Veterinary and Animal Sciences, University of Copenhagen, Ridebanevej 9, 1871 Frederiksberg, Denmark
| |
Collapse
|
4
|
Antibacterial and Immunostimulatory Activity of Potential Probiotic Lactic Acid Bacteria Isolated from Ethiopian Fermented Dairy Products. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9030258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
Lactic acid bacteria (LAB) form a group of bacteria to which most probiotics belong and are commonly found in fermented dairy products. Fermented foods and beverages are foods made through desired microbial growth and enzymatic conversions of food components. In this study, 43 LAB were isolated from Ethiopian traditional cottage cheese, cheese, and yogurt and evaluated for their functional and safety properties as candidate probiotics. Twenty-seven isolates, representative of each fermented food type, were selected and identified to the species level. Limosilactobacillus fermentum was found to be the predominant species in all samples studied (70.4%), while 11.1% of isolates were identified as Lactiplantibacillus plantarum. All 27 isolates tested showed resistance to 0.5% bile salt, while 26 strains were resistant to pH 3. The LAB isolates were also evaluated for antagonistic properties against key pathogens, with strain-specific features observed for their antimicrobial activity. Five strains from cottage cheese (Lactiplantibacillus plantarum 54B, 54C, and 55A, Lactiplantibacillus pentosus 55B, and Pediococcus pentosaceus 95E) showed inhibitory activity against indicator pathogens that are key causes of gastrointestinal infections in Ethiopia, i.e., Escherichia coli, Salmonella enterica subsp. enterica var. Typhimurium, Staphylococcus aureus, Shigella flexneri, and Listeria monocytogenes. Strain-specific immunomodulatory activity monitored as nuclear factor kappa B (NF-κB) and interferon regulatory factor (IRF) activation was documented for Lactiplantibacillus plantarum 54B, 55A and P. pentosaceus 95E. Antibiotic susceptibility testing confirmed that all LAB isolates were safe concerning their antibiotic resistance profiles. Five isolates (especially Lactiplantibacillus plantarum 54B, 54C, and 55A, Lactiplantibacillus pentosus 55B, and P. pentosaceus 95E) showed promising results in all assays and are novel probiotic candidates of interest for clinical trial follow-up.
Collapse
|
5
|
Johnsen PR, Pinna C, Mattio L, Strube MB, Di Nunzio M, Iametti S, Dallavalle S, Pinto A, Frøkiær H. Investigation of the Effects of Monomeric and Dimeric Stilbenoids on Bacteria-Induced Cytokines and LPS-Induced ROS Formation in Bone Marrow-Derived Dendritic Cells. Int J Mol Sci 2023; 24:ijms24032731. [PMID: 36769058 PMCID: PMC9917081 DOI: 10.3390/ijms24032731] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/20/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023] Open
Abstract
Stilbenoids are anti-inflammatory and antioxidant compounds, with resveratrol being the most investigated molecule in this class. However, the actions of most other stilbenoids are much less studied. This study compares five monomeric (resveratrol, piceatannol, pterostilbene, pinostilbene, and trimethoxy-resveratrol) and two dimeric (dehydro-δ-viniferin and trans-δ-viniferin) stilbenoids for their capability to modulate the production of bacteria-induced cytokines (IL-12, IL-10, and TNF-α), as well as lipopolysaccharide (LPS)-induced reactive oxygen species (ROS), in murine bone marrow-derived dendritic cells. All monomeric species showed dose-dependent inhibition of E. coli-induced IL-12 and TNF-α, whereas only resveratrol and piceatannol inhibited IL-10 production. All monomers, except trimethoxy-resveratrol, inhibited L. acidophilus-induced IL-12, IL-10, and TNF-α production. The dimer dehydro-δ-viniferin remarkably enhanced L. acidophilus-induced IL-12 production. The contrasting effect of resveratrol and dehydro-δ-viniferin on IL-12 production was due, at least in part, to a divergent inactivation of the mitogen-activated protein kinases by the two stilbenoids. Despite having moderate to high total antioxidant activity, dehydro-δ-viniferin was a weak inhibitor of LPS-induced ROS formation. Conversely, resveratrol and piceatannol potently inhibited LPS-induced ROS formation. Methylated monomers showed a decreased antioxidant capacity compared to resveratrol, also depending on the methylation site. In summary, the immune-modulating effect of the stilbenoids depends on both specific structural features of tested compounds and the stimulating bacteria.
Collapse
Affiliation(s)
- Peter Riber Johnsen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Ridebanevej 9, 1871 Frederiksberg, Denmark
| | - Cecilia Pinna
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Via Celoria 2, 20133 Milan, Italy
| | - Luce Mattio
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Via Celoria 2, 20133 Milan, Italy
| | - Mathilde Bech Strube
- Department of Veterinary and Animal Sciences, University of Copenhagen, Ridebanevej 9, 1871 Frederiksberg, Denmark
| | - Mattia Di Nunzio
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Via Celoria 2, 20133 Milan, Italy
- Correspondence: ; Tel.: +39-02-5031-6819
| | - Stefania Iametti
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Via Celoria 2, 20133 Milan, Italy
| | - Sabrina Dallavalle
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Via Celoria 2, 20133 Milan, Italy
| | - Andrea Pinto
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Via Celoria 2, 20133 Milan, Italy
| | - Hanne Frøkiær
- Department of Veterinary and Animal Sciences, University of Copenhagen, Ridebanevej 9, 1871 Frederiksberg, Denmark
| |
Collapse
|
6
|
Inomata M, Amano S, Abe M, Hayashi T, Sakagami H. Innate immune response of human periodontal ligament fibroblasts via the Dectin-1/Syk pathway. J Med Microbiol 2022; 71. [PMID: 36748551 DOI: 10.1099/jmm.0.001627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Introduction. A diverse microbiota including fungi exists in the subgingival sites of patients with chronic periodontitis. The cell wall of Candida albicans, the most abundant fungal species, contains β-glucan. Dectin-1 binds β-glucan and participates in fungal recognition.Gap statement. Human periodontal ligament fibroblasts (PDLFs) are present in the periodontal ligament and synthesize immunomodulatory cytokines that influence the local response to infections. However, the expression and role of Dectin-1 in PDLFs have not been explored.Aim. This study aimed to determine if PDLFs express Dectin-1 and induce innate immune responses through Dectin-1 and the signalling molecule Syk.Methodology. The expression of Dectin-1 in PDLFs was determined by flow cytometry, western blotting and confocal microscopy. Real-time PCR and Western blotting were used to determine the immune response of PDLFs stimulated with β-glucan-rich zymosan and C. albicans.Results. Dectin-1 was constitutively expressed in PDLFs. Zymosan induced the expression of cytokines, including IL6, IL1B and IL17A, and the chemokine IL8. Zymosan also induced the expression of the antimicrobial peptide β-defensin-1 (DEFB1). Further, the phosphorylation of Syk and NF-κB occurred upon Dectin-1 activation. Notably, heat-killed C. albicans induced the expression of IL6, IL17A, IL8 and DEFB1, and this activation was suppressed by the Syk inhibitor, R406.Conclusion. These findings indicate that the Dectin-1/Syk pathway induces an innate immune response of PDLFs, which may facilitate the control of oral infections such as candidiasis and periodontitis.
Collapse
Affiliation(s)
- Megumi Inomata
- Division of Microbiology and Immunology, Department of Oral Biology and Tissue Engineering, Meikai University School of Dentistry, Sakado, Japan
| | - Shigeru Amano
- Research Institute of Odontology (M-RIO), Meikai University School of Dentistry, Sakado, Japan
| | - Masayo Abe
- Division of Microbiology and Immunology, Department of Oral Biology and Tissue Engineering, Meikai University School of Dentistry, Sakado, Japan
| | - Toru Hayashi
- Department of Anatomy Science, School of Allied Health Sciences, Kitasato University, Kitasato, Japan
| | - Hiroshi Sakagami
- Research Institute of Odontology (M-RIO), Meikai University School of Dentistry, Sakado, Japan
| |
Collapse
|
7
|
Eld HMS, Johnsen PR, Nielsen EM, Jørgensen FZ, Lindstrøm-Svendsen M, Baldry M, Ingmer H, Frøkiær H. Soluble C-Type Lectin-Receptor Ligands Stimulate ROS Production in Dendritic Cells and Potentiate Killing of MRSA as Well as the MRSA Induced IL-12 Production. Front Immunol 2022; 13:845881. [PMID: 35386713 PMCID: PMC8977849 DOI: 10.3389/fimmu.2022.845881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 02/24/2022] [Indexed: 12/04/2022] Open
Abstract
Methicillin resistant Staphylococcus aureus (MRSA) has developed resistance to most β-lactam antibiotics leaving few treatment options against infections with MRSA. Through mannose receptors, mannan potentiates IL-12 production induced by Gram-positive bacteria, a cytokine crucial in the clearance of S. aureus infection. We investigated the IL-12 potentiating effect of mannan pre-treatment of bone marrow-derived dendritic cells prior to stimulation with clinical MRSA strains. Mannan almost doubled IL-12 as well as IFN-β production in response to USA300, also when USA300 was treated with the β-lactam cefoxitin. The MRSA-induced IL-12 production was dependent on bacterial uptake and reactive oxygen species (ROS). Mannan alone induced ROS production, and in combination with USA300, the ROS produced corresponded to the sum induced by mannan and USA300. Addition of a monoclonal antibody against the mannose receptor likewise enhanced USA300-induced IL-12 and induced ROS production. Mannan addition further increased the endocytosis as well as the rate of endosomal killing of bacteria. Pre-treatment with soluble β-glucans also induced ROS and potentiated the USA300-induced IL-12 indicating that other C-type receptors may play a similar role. In the presence of the pro-inflammatory mediators, GM-CSF or IFN-γ, the mannan-enhanced IL-12 production increased further. The USA300-induced and the mannan-facilitated enhanced IFN-β and IL-12 showed same dependency on MAPK c-Jun N-terminal kinase signaling, suggesting that mannan enhances the signals already induced by the bacteria, rather than changing them. We suggest that the C-type lectin-induced ROS production is a key factor in the IFN-β and IL-12 potentiation.
Collapse
Affiliation(s)
- Helene M S Eld
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Peter R Johnsen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Emilie M Nielsen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Frederikke Z Jørgensen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | | | - Mara Baldry
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Hanne Ingmer
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Hanne Frøkiær
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
8
|
Gong W, Liu P, Zheng T, Wu X, Zhao Y, Ren J. The ubiquitous role of spleen tyrosine kinase (Syk) in gut diseases: From mucosal immunity to targeted therapy. Int Rev Immunol 2021; 41:552-563. [PMID: 34355656 DOI: 10.1080/08830185.2021.1962860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Spleen tyrosine kinase (Syk) is a cytoplasmic non-receptor protein tyrosine kinase expressed in a variety of cells and play crucial roles in signal transduction. Syk mediates downstream signaling by recruiting to the dually phosphorylated immunoreceptor tyrosine-based activation motifs (ITAMs) of the transmembrane adaptor molecule or the receptor chain itself. In gut diseases, Syk is observed to be expressed in intestinal epithelial cells, monocytes/macrophages, dendritic cells and mast cells. Activation of Syk in these cells can modulate intestinal mucosal immune response by promoting inflammatory cytokines and chemokines production, thus regulating gut homeostasis. Due to the restriction of specificity and selectivity for the development of Syk inhibitors, only a few such inhibitors are available in gut diseases, including intestinal ischemia/reperfusion damage, infectious disease, inflammatory bowel disease, etc. The promising outcomes of Syk inhibitors from both preclinical and clinical studies have shown to attenuate the progression of gut diseases thereby indicating a great potential in the development of Syk targeted therapy for treatment of gut diseases. This review depicts the characterization of Syk, summarizes the signal pathways of Syk, and discusses its potential targeted therapy for gut diseases.
Collapse
Affiliation(s)
- Wenbin Gong
- School of Medicine, Research Institute of General Surgery, Southeast University, Jinling Hospital, Nanjing, P.R. China
| | - Peizhao Liu
- Research Institute of General Surgery, Jinling Hospital, Nanjing, P.R. China
| | - Tao Zheng
- Department of General Surgery, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, P.R. China
| | - Xiuwen Wu
- Research Institute of General Surgery, Jinling Hospital, Nanjing, P.R. China
| | - Yun Zhao
- Department of General Surgery, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, P.R. China
| | - Jianan Ren
- School of Medicine, Research Institute of General Surgery, Southeast University, Jinling Hospital, Nanjing, P.R. China.,Research Institute of General Surgery, Jinling Hospital, Nanjing, P.R. China
| |
Collapse
|
9
|
Cecchi I, Radin M, Rodríguez-Carrio J, Tambralli A, Knight JS, Sciascia S. Utilizing type I interferon expression in the identification of antiphospholipid syndrome subsets. Expert Rev Clin Immunol 2021; 17:395-406. [PMID: 33686921 PMCID: PMC10183148 DOI: 10.1080/1744666x.2021.1901581] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Antiphospholipid Syndrome (APS) is a systemic autoimmune disease with a complex multifactorial pathogenesis, combining genetic background, traditional cardiovascular risk factors, disease-specific features such as the presence of antiphospholipid antibodies (aPL), and an imbalance of various immune system functions. Recent data support the role of interferons (IFNs), especially type IIFN (IFN-I), in the onset and development of APS clinical manifestations, including thrombotic events and obstetric complications. AREAS COVERED In this review, the authors aimed to discuss the growing body of evidence on the relevance of IFN-I pathways in APS, both from a basic mechanistic perspective, focusing on its possible use in disease/patients stratification. The IFN-I signature has shown promising, although preliminary, results in segregating aPL-positive subjects by aPL profile, association with other autoimmune conditions, such as lupus, age at onset, and current treatment, among others. EXPERT OPINION To date, the scarce available data as well as methodological and technical heterogeneity among studies limit the comparability of the results, thus requiring further validation to translate these findings to routine clinical practice. Therefore, further research is required in pursuit of more nuanced patient profiling and the development of new immunomodulatory therapeutic strategies for APS beyond anti-coagulant and antiplatelet agents.
Collapse
Affiliation(s)
- Irene Cecchi
- Center of Research of Immunopathology and Rare Diseases - Nephrology and Dialysis Coordinating Center of Piemonte and Aosta Valley Network for Rare Diseases, S. Giovanni Bosco Hospital, Department of Clinical and Biological Sciences, University of Turin, Turin Italy
| | - Massimo Radin
- Center of Research of Immunopathology and Rare Diseases - Nephrology and Dialysis Coordinating Center of Piemonte and Aosta Valley Network for Rare Diseases, S. Giovanni Bosco Hospital, Department of Clinical and Biological Sciences, University of Turin, Turin Italy
| | - Javier Rodríguez-Carrio
- Department of Functional Biology, Immunology Area, Faculty of Medicine, University of Oviedo, Oviedo, Spain.,Group of Basic and Translational Research in Inflammatory Diseases, Instituto De Investigación Sanitaria Del Principado De Asturias (ISPA), Oviedo, Spain
| | - Ajay Tambralli
- Division of Rheumatology, University of Michigan, Ann Arbor, Michigan, USA
| | - Jason S Knight
- Division of Rheumatology, University of Michigan, Ann Arbor, Michigan, USA
| | - Savino Sciascia
- Center of Research of Immunopathology and Rare Diseases - Nephrology and Dialysis Coordinating Center of Piemonte and Aosta Valley Network for Rare Diseases, S. Giovanni Bosco Hospital, Department of Clinical and Biological Sciences, University of Turin, Turin Italy
| |
Collapse
|
10
|
Eld HMS, Nielsen EM, Johnsen PR, Marengo M, Kamper IW, Frederiksen L, Bonomi F, Frees D, Iametti S, Frøkiær H. Cefoxitin treatment of MRSA leads to a shift in the IL-12/IL-23 production pattern in dendritic cells by a mechanism involving changes in the MAPK signaling. Mol Immunol 2021; 134:1-12. [PMID: 33676343 DOI: 10.1016/j.molimm.2021.02.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 02/11/2021] [Accepted: 02/23/2021] [Indexed: 12/25/2022]
Abstract
Methicillin resistant Staphylococcus aureus (MRSA) constitute a serious health care problem worldwide. This study addresses the effect of β-lactam treatment on the ability of clinically relevant MRSA strains to induce IL-12 and IL-23. MRSA strains induced a dose-dependent IL-12 response in murine bone-marrow-derived dendritic cells that was dependent on endocytosis and acidic degradation. Facilitated induction of IL-12 (but not of IL-23) called for activation of the MAP kinase JNK, and was suppressed by p38. Compromised peptidoglycan structure in cefoxitin-treated bacteria - as denoted by increased sensitivity to mutanolysin -caused a shift from IL-12 towards IL-23. Moreover, cefoxitin treatment of MRSA led to a p38 MAPK-dependent early up-regulation of Dual Specificity Phosphatase (DUSP)-1. Compared to common MRSA, characteristics associated with a persister phenotype increased intracellular survival and upon cefoxitin treatment, the peptidoglycan was not equally compromised and the cytokine induction still required phagosomal acidification. Together, these data demonstrate that β-lactam treatment changes the MRSA-induced IL-12/IL-23 pattern determined by the activation of JNK and p38. We suggest that accelerated endosomal degradation of the peptidoglycan in cefoxitin-treated MRSA leads to an early expression of DUSP-1 and accordingly, a reduction in the IL-12/IL-23 ratio in dendritic cells. This may influence the clearance of S. aureus.
Collapse
Affiliation(s)
- Helene M S Eld
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Emilie M Nielsen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Peter R Johnsen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mauro Marengo
- Department of Food, Environmental and Nutritional Science, Università degli Studi di Milano, Milan, Italy
| | - Ida W Kamper
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lise Frederiksen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Francesco Bonomi
- Department of Food, Environmental and Nutritional Science, Università degli Studi di Milano, Milan, Italy
| | - Dorte Frees
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Stefania Iametti
- Department of Food, Environmental and Nutritional Science, Università degli Studi di Milano, Milan, Italy
| | - Hanne Frøkiær
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
11
|
Zhou Y, Chen X, Cao Z, Li J, Long H, Wu Y, Zhang Z, Sun Y. R848 Is Involved in the Antibacterial Immune Response of Golden Pompano ( Trachinotus ovatus) Through TLR7/8-MyD88-NF-κB-Signaling Pathway. Front Immunol 2021; 11:617522. [PMID: 33537035 PMCID: PMC7848160 DOI: 10.3389/fimmu.2020.617522] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 12/01/2020] [Indexed: 01/24/2023] Open
Abstract
R848 is an imidazoquinoline compound that is a specific activator of toll-like receptor (TLR) 7/8 and is often used in immunological research in mammals and teleosts. However, the immune responses initiated by R848 through the TLR7/8 pathway in response to bacterial infection remain largely unexplored in teleosts. In the current study, we investigated the antibacterial response and the participating signaling pathway initiated by R848 in golden pompano (Trachinotus ovatus). We found that R848 could stimulate the proliferation of head kidney lymphocytes (HKLs) in a dose-dependent manner, enhance the survival rate of HKLs, and inhibit the replication of bacteria in vivo. However, these effects induced by R848 were significantly reduced when chloroquine (CQ) was used to blocked endosomal acidification. Additionally, an in vivo study showed that R848 strengthened the antibacterial immunity of fish through a TLR7/8 and Myd88-dependent signaling pathway. A cellular experiment showed that Pepinh-MYD (a Myd88 inhibitor) significantly reduced the R848-mediated proliferation and survival of HKLs. Luciferase activity analysis showed that R848 enhanced the nuclear factor kappa B (NF-κB) activity, whereas this activity was reduced when CQ and Pepinh-MYD were present. Additionally, when an NF-κB inhibitor was present, the R848-mediated pro-proliferative and pro-survival effects on HKLs were significantly diminished. An in vivo study showed that knockdown of TLR7, TLR8, and Myd88 expression in golden pompano via siRNA following injection of R848 resulted in increased bacterial dissemination and colonization in fish tissues compared to that of fish injection of R848 alone, suggesting that R848-induced antibacterial immunity was significantly reduced. In conclusion, these results indicate that R848 plays an essential role in the antibacterial immunity of golden pompano via the TLR7/8-Myd88-NF-κB- signaling pathway.
Collapse
Affiliation(s)
- Yongcan Zhou
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China.,Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, Haikou, China
| | - Xiaojuan Chen
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
| | - Zhenjie Cao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China.,Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, Haikou, China
| | - Jianlong Li
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China.,Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, Haikou, China
| | - Hao Long
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
| | - Ying Wu
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, Haikou, China
| | - Zhengshi Zhang
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, Haikou, China
| | - Yun Sun
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China.,Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, Haikou, China
| |
Collapse
|
12
|
Pickering RJ, Booty LM. NLR in eXile: Emerging roles of NLRX1 in immunity and human disease. Immunology 2020; 162:268-280. [PMID: 33314068 DOI: 10.1111/imm.13291] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/02/2020] [Accepted: 11/10/2020] [Indexed: 02/06/2023] Open
Abstract
NLRX1 is a member of the NOD-like receptor family, a set of pattern recognition receptors associated with innate immunity. Interestingly, NLRX1 exists in somewhat of an exile from its NLR counterparts with unique features that mediate atypical functions compared with traditional NOD-like receptors (NLRs). Aside from a mitochondrial targeting sequence, the N-terminal region is yet to be characterized. Mitochondrially located, NLRX1 sits within a subgroup of regulatory NLRs responsible for negatively regulating cellular inflammatory signalling. As well as modulating pathogen response, emerging evidence is implicating NLRX1 as a central homeostatic gatekeeper between mitochondrial biology and immunological response. More recently, NLRX1 has been implicated in a wide range of disease, both pathogen-driven and otherwise. Emerging links of NLRX1 in cancer biology, autoimmunity and other inflammatory conditions are raising the potential of targeting NLRX1 therapeutically, with recent studies in inflammatory bowel disease showing great promise. Within this review, we address the unique features of NLRX1, its roles in innate immune signalling and its involvement in a range of inflammatory, metabolic and oncology disease indications with a focus on areas that could benefit from therapeutic targeting of NLRX1.
Collapse
Affiliation(s)
- Robert J Pickering
- Immunology Network, Adaptive Immunity Research Unit, GlaxoSmithKline, Stevenage, UK.,Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's Hospital, Cambridge, UK
| | - Lee M Booty
- Immunology Network, Adaptive Immunity Research Unit, GlaxoSmithKline, Stevenage, UK
| |
Collapse
|
13
|
Irving AT, Zhang Q, Kong PS, Luko K, Rozario P, Wen M, Zhu F, Zhou P, Ng JHJ, Sobota RM, Wang LF. Interferon Regulatory Factors IRF1 and IRF7 Directly Regulate Gene Expression in Bats in Response to Viral Infection. Cell Rep 2020; 33:108345. [PMID: 33147460 PMCID: PMC8755441 DOI: 10.1016/j.celrep.2020.108345] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 08/23/2020] [Accepted: 10/13/2020] [Indexed: 12/15/2022] Open
Abstract
Bat cells and tissue have elevated basal expression levels of antiviral genes commonly associated with interferon alpha (IFNα) signaling. Here, we show Interferon Regulatory Factor 1 (IRF1), 3, and 7 levels are elevated in most bat tissues and that, basally, IRFs contribute to the expression of type I IFN ligands and high expression of interferon regulated genes (IRGs). CRISPR knockout (KO) of IRF 1/3/7 in cells reveals distinct subsets of genes affected by each IRF in an IFN-ligand signaling-dependent and largely independent manner. As the master regulators of innate immunity, the IRFs control the kinetics and maintenance of the IRG response and play essential roles in response to influenza A virus (IAV), herpes simplex virus 1 (HSV-1), Melaka virus/Pteropine orthoreovirus 3 Melaka (PRV3M), and Middle East respiratory syndrome-related coronavirus (MERS-CoV) infection. With its differential expression in bats compared to that in humans, this highlights a critical role for basal IRF expression in viral responses and potentially immune cell development in bats with relevance for IRF function in human biology.
Collapse
Affiliation(s)
- Aaron T Irving
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore; Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University International Campus, Haining, China; Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Qian Zhang
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore; University of Chinese Academy of Sciences, Beijing, China; Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Pui-San Kong
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Katarina Luko
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Pritisha Rozario
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Ming Wen
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Feng Zhu
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Peng Zhou
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore; Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Justin H J Ng
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Radoslaw M Sobota
- Functional Proteomics Laboratory, Institute of Molecular and Cell Biology (A(∗)STAR), Singapore, Singapore; Institute of Medical Biology (IMB), Agency for Science, Technology and Research (A(∗)STAR), Singapore, Singapore
| | - Lin-Fa Wang
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore.
| |
Collapse
|
14
|
Wang J, Mou C, Wang M, Pan S, Chen Z. Transcriptome analysis of senecavirus A-infected cells: Type I interferon is a critical anti-viral factor. Microb Pathog 2020; 147:104432. [PMID: 32771656 DOI: 10.1016/j.micpath.2020.104432] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/30/2020] [Accepted: 07/30/2020] [Indexed: 12/24/2022]
Abstract
Senecavirus A (SVA)-associated vesicular disease (SAVD) has extensively been present in the swine industry during the past years. The mechanisms of SVA-host interactions at the molecular level, subsequent to SVA infection, are unclear. We studied the gene expression profiles of LLC-PK1 cells, with or without SVA infection, for 6 h and 12 h using an RNA-seq technology. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were performed on differentially expressed genes (DEGs). Immune-related genes and pathways were significantly modified after SVA infection. To confirm the RNA-seq data, 28 important DEGs were selected for RT-qPCR assays. All DEGs exhibited expression patterns consistent with the RNA-seq results. Among them, type I IFNs (including IFN-α and IFN-β) showed the largest upregulation, followed by RSAD2, DDX58, MX1 and the 17 other DEGs. In contrary, ID2 and another 5 DEGs were down-regulated or unchanged. These results indicated that type I IFNs play a critical role in host immune responses against SVA infection at early stage, while other immune-regulated genes directly or indirectly participate in the host immune responses.
Collapse
Affiliation(s)
- Jing Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, JS, China.
| | - Chunxiao Mou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, JS, China.
| | - Minmin Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, JS, China.
| | - Shuonan Pan
- College of Veterinary Medicine, Yangzhou University, Yangzhou, JS, China.
| | - Zhenhai Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, JS, China; Institute of Comparative Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, China.
| |
Collapse
|
15
|
Wampler Muskardin TL, Fan W, Jin Z, Jensen MA, Dorschner JM, Ghodke-Puranik Y, Dicke B, Vsetecka D, Wright K, Mason T, Persellin S, Michet CJ, Davis JM, Matteson E, Niewold TB. Distinct Single Cell Gene Expression in Peripheral Blood Monocytes Correlates With Tumor Necrosis Factor Inhibitor Treatment Response Groups Defined by Type I Interferon in Rheumatoid Arthritis. Front Immunol 2020; 11:1384. [PMID: 32765497 PMCID: PMC7378891 DOI: 10.3389/fimmu.2020.01384] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 05/29/2020] [Indexed: 01/14/2023] Open
Abstract
Previously, we demonstrated in test and validation cohorts that type I IFN (T1IFN) activity can predict non-response to tumor necrosis factor inhibitors (TNFi) in rheumatoid arthritis (RA). In this study, we examine the biology of non-classical and classical monocytes from RA patients defined by their pre-biologic treatment T1IFN activity. We compared single cell gene expression in purified classical (CL, n = 342) and non-classical (NC, n = 359) monocytes. In our previous work, RA patients who had either high IFNβ/α activity (>1.3) or undetectable T1IFN were likely to have EULAR non-response to TNFi. In this study comparisons were made among patients grouped according to their pre-biologic treatment T1IFN activity as clinically relevant: “T1IFN undetectable (T1IFN ND) or IFNβ/α >1.3” (n = 9) and “T1IFN detectable but IFNβ/α ≤ 1.3” (n = 6). In addition, comparisons were made among patients grouped according to their T1IFN activity itself: “T1IFN ND,” “T1IFN detected and IFNβ/α ≤ 1.3,” and “IFNβ/α >1.3.” Major differences in gene expression were apparent in principal component and unsupervised cluster analyses. CL monocytes from the T1IFN ND or IFNβ/α >1.3 group were unlikely to express JAK1 and IFI27 (p < 0.0001 and p 0.0005, respectively). In NC monocytes from the same group, expression of IFNAR1, IRF1, TNFA, TLR4 (p ≤ 0.0001 for each) and others was enriched. Interestingly, JAK1 expression was absent in CL and NC monocytes from nine patients. This pattern most strongly associated with the IFNβ/α>1.3 group. Differences in gene expression in monocytes among the groups suggest differential IFN pathway activation in RA patients who are either likely to respond or to have no response to TNFi. Additional transcripts enriched in NC cells of those in the T1IFN ND and IFNβ/α >1.3 groups included MYD88, CD86, IRF1, and IL8. This work could suggest key pathways active in biologically defined groups of patients, and potential therapeutic strategies for those patients unlikely to respond to TNFi.
Collapse
Affiliation(s)
- Theresa L Wampler Muskardin
- Department of Medicine, Colton Center for Autoimmunity, New York University School of Medicine, New York, NY, United States.,Division of Rheumatology, Department of Medicine, New York University School of Medicine, New York, NY, United States
| | - Wei Fan
- Department of Rheumatology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhongbo Jin
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida College of Medicine, Gainesville, FL, United States
| | - Mark A Jensen
- Department of Medicine, Colton Center for Autoimmunity, New York University School of Medicine, New York, NY, United States.,Division of Rheumatology, Department of Medicine, New York University School of Medicine, New York, NY, United States
| | - Jessica M Dorschner
- Division of Rheumatology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, United States
| | - Yogita Ghodke-Puranik
- Department of Medicine, Colton Center for Autoimmunity, New York University School of Medicine, New York, NY, United States.,Division of Rheumatology, Department of Medicine, New York University School of Medicine, New York, NY, United States
| | - Betty Dicke
- Division of Rheumatology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, United States
| | - Danielle Vsetecka
- Division of Rheumatology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, United States
| | - Kerry Wright
- Division of Rheumatology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, United States
| | - Thomas Mason
- Division of Rheumatology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, United States
| | - Scott Persellin
- Division of Rheumatology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, United States
| | - Clement J Michet
- Division of Rheumatology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, United States
| | - John M Davis
- Division of Rheumatology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, United States
| | - Eric Matteson
- Division of Rheumatology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, United States
| | - Timothy B Niewold
- Department of Medicine, Colton Center for Autoimmunity, New York University School of Medicine, New York, NY, United States
| |
Collapse
|
16
|
Gutierrez-Merino J, Isla B, Combes T, Martinez-Estrada F, Maluquer De Motes C. Beneficial bacteria activate type-I interferon production via the intracellular cytosolic sensors STING and MAVS. Gut Microbes 2020; 11:771-788. [PMID: 31941397 PMCID: PMC7524384 DOI: 10.1080/19490976.2019.1707015] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 12/09/2019] [Accepted: 12/10/2019] [Indexed: 02/07/2023] Open
Abstract
Type-I interferon (IFN-I) cytokines are produced by immune cells in response to microbial infections, cancer and autoimmune diseases, and subsequently, trigger cytoprotective and antiviral responses through the activation of IFN-I stimulated genes (ISGs). The ability of intestinal microbiota to modulate innate immune responses is well known, but the mechanisms underlying such responses remain elusive. Here we report that the intracellular sensors stimulator of IFN genes (STING) and mitochondrial antiviral signaling (MAVS) are essential for the production of IFN-I in response to lactic acid bacteria (LAB), common gut commensal bacteria with beneficial properties. Using human macrophage cells we show that LAB strains that potently activate the inflammatory transcription factor NF-κB are poor inducers of IFN-I and conversely, those triggering significant amounts of IFN-I fail to activate NF-κB. This IFN-I response is also observed in human primary macrophages, which modulate CD64 and CD40 upon challenge with IFN-I-inducing LAB. Mechanistically, IFN-I inducers interact more intimately with phagocytes as compared to NF-κB-inducers, and fail to activate IFN-I in the presence of phagocytosis inhibitors. These bacteria are then sensed intracellularly by the cytoplasmic sensors STING and, to a lesser extent, MAVS. Accordingly, macrophages deficient for STING showed dramatically reduced phosphorylation of TANK-binding kinase (TBK)-1 and IFN-I activation, which resulted in lower expression of ISGs. Our findings demonstrate a major role for intracellular sensing and STING in the production of IFN-I by beneficial bacteria and the existence of bacteria-specific immune signatures, which can be exploited to promote cytoprotective responses and prevent overreactive NF-κB-dependent inflammation in the gut.
Collapse
Affiliation(s)
| | - Beatriz Isla
- School of Biosciences and Medicine, University of Surrey, GU2 7XH Guildford, UK
| | - Theo Combes
- School of Biosciences and Medicine, University of Surrey, GU2 7XH Guildford, UK
| | | | | |
Collapse
|
17
|
Stedman A, van Vliet AHM, A Chambers M, Gutierrez-Merino J. Gut commensal bacteria show beneficial properties as wildlife probiotics. Ann N Y Acad Sci 2020; 1467:112-132. [PMID: 32026493 DOI: 10.1111/nyas.14302] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 12/19/2019] [Accepted: 01/02/2020] [Indexed: 01/04/2023]
Abstract
Probiotics are noninvasive, environmentally friendly alternatives for reducing infectious diseases in wildlife species. Our aim in the present study was to evaluate the potential of gut commensals such as lactic acid bacteria (LAB) as wildlife probiotics. The LAB selected for our analyses were isolated from European badgers (Meles meles), a wildlife reservoir of bovine tuberculosis, and comprised four different genera: Enterococcus, Weissella, Pediococcus, and Lactobacillus. The enterococci displayed a phenotype and genotype that included the production of antibacterial peptides and stimulation of antiviral responses, as well as the presence of virulence and antibiotic resistance genes; Weissella showed antimycobacterial activity owing to their ability to produce lactate and ethanol; and lactobacilli and pediococci modulated proinflammatory phagocytic responses that associate with protection against pathogens, responses that coincide with the presence of immunomodulatory markers in their genomes. Although both lactobacilli and pediococci showed resistance to antibiotics, this was naturally acquired, and almost all isolates demonstrated a phylogenetic relationship with isolates from food and healthy animals. Our results show that LAB display probiotic benefits that depend on the genus, and that lactobacilli and pediococci are probably the most obvious candidates as probiotics against infectious diseases in wildlife because of their food-grade status and ability to modulate protective innate immune responses.
Collapse
Affiliation(s)
- Anna Stedman
- School of Biosciences and Medicine, University of Surrey-Nutritional Sciences, Guildford, United Kingdom.,The Pirbright Institute, Surrey, United Kingdom
| | | | - Mark A Chambers
- School of Veterinary Medicine, University of Surrey, Guildford, United Kingdom.,Bacteriology Department, Animal and Plant Health Agency, Addlestone, United Kingdom
| | - Jorge Gutierrez-Merino
- School of Biosciences and Medicine, University of Surrey-Nutritional Sciences, Guildford, United Kingdom
| |
Collapse
|
18
|
Tong W, Chen X, Song X, Chen Y, Jia R, Zou Y, Li L, Yin L, He C, Liang X, Ye G, Lv C, Lin J, Yin Z. Resveratrol inhibits LPS-induced inflammation through suppressing the signaling cascades of TLR4-NF-κB/MAPKs/IRF3. Exp Ther Med 2019; 19:1824-1834. [PMID: 32104238 PMCID: PMC7027153 DOI: 10.3892/etm.2019.8396] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 10/23/2019] [Indexed: 12/13/2022] Open
Abstract
Resveratrol (Res) is a natural compound that possesses anti-inflammatory properties. However, the protective molecular mechanisms of Res against lipopolysaccharide (LPS)-induced inflammation have not been fully studied. In the present study, RAW264.7 cells were stimulated with LPS in the presence or absence of Res, and the subsequent modifications to the LPS-induced signaling pathways caused by Res treatment were examined. It was identified that Res decreased the mRNA levels of Toll-like receptor 4 (TLR4), myeloid differentiation primary response protein MyD88, TIR domain-containing adapter molecule 2, which suggested that Res may inhibit the activation of the TLR4 signaling pathway. It suppressed the expression levels of total and phosphorylated TLR4, NF-κB inhibitor, p38 mitogen-activated protein kinase (MAPK), c-Jun N-terminal kinase, extracellular signal-regulated kinase 1/2 and interferon (IFN) regulatory factor 3 (IRF3) proteins. Following treatment with Res or specific inhibitors, the production of pro-inflammatory mediators including tumor necrosis factor-α, interleukin (IL)-6, IL-8 and IFN-β were decreased and the expression of anti-inflammatory mediator IL-10 was increased. These results suggested that Res may inhibit the signaling cascades of NF-κB, MAPKs and IRF3, which modulate pro-inflammatory cytokines. In conclusion, Res exhibited a therapeutic effect on LPS-induced inflammation through suppression of the TLR4-NF-κB/MAPKs/IRF3 signaling cascades.
Collapse
Affiliation(s)
- Wenzhi Tong
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, P.R. China
| | - Xiangxiu Chen
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, P.R. China
| | - Xu Song
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, P.R. China
| | - Yaqin Chen
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, P.R. China
| | - Renyong Jia
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, P.R. China
| | - Yuanfeng Zou
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, P.R. China
| | - Lixia Li
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, P.R. China
| | - Lizi Yin
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, P.R. China
| | - Changliang He
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, P.R. China
| | - Xiaoxia Liang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, P.R. China
| | - Gang Ye
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, P.R. China
| | - Cheng Lv
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, P.R. China
| | - Juchun Lin
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, P.R. China
| | - Zhongqiong Yin
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, P.R. China
| |
Collapse
|
19
|
Mathiesen R, Eld HMS, Sørensen J, Fuglsang E, Lund LD, Taverniti V, Frøkiær H. Mannan Enhances IL-12 Production by Increasing Bacterial Uptake and Endosomal Degradation in L. acidophilus and S. aureus Stimulated Dendritic Cells. Front Immunol 2019; 10:2646. [PMID: 31803184 PMCID: PMC6873232 DOI: 10.3389/fimmu.2019.02646] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Accepted: 10/25/2019] [Indexed: 01/04/2023] Open
Abstract
The mannose receptor (MR) is a C-type lectin involved in endocytosis and with a poorly defined ability to modulate cellular activation. We investigated the effect of mannan treatment prior to stimulation of murine bone marrow-derived dendritic cells with the Gram-positive bacteria Lactobacillus acidophilus NCFM (L. acidophilus) on the induction of Interleukin (IL)-12. Mannan enhanced the IL-12 production induced by L. acidophilus in a dose dependent manner (up to 230% enhancement). Additionally, mannan-enhanced IL-12 induction was also demonstrated with another Gram-positive bacteria, Staphylococcus aureus (S. aureus), while an IL-12 reducing effect was seen on Escherichia coli stimulated cells. Furthermore, the expression of Interferon β (Ifnb) was increased in cells treated with mannan prior to stimulation with L. acidophilus. The addition of mannan but not of bacteria led to endocytosis of MR, while addition of mannan prior to L. acidophilus or S. aureus resulted in increased endocytosis of bacteria, a faster killing of endocytosed bacteria, and increased reactive oxygen species production. Expression of signaling lymphocytic activation molecule (SLAMF)1 shown previously to be involved in the facilitation of endosomal degradation was upregulated by mannan but not by L. acidophilus and S. aureus. The IL-12 enhancement by mannan but not the IL-12 induced by the bacteria was abrogated by addition of inhibitors of clathrin coated pits (chlorpromazine and monodansylcadaverine). Furthermore, the addition of acid sphingomyelinase, a facilitator of ceramide raft formation, prior to addition of L. acidophilus enhanced the IL-12 production and the endocytosis of bacteria. In summary, our results show that mannan increases the IL-12 production induced by some Gram-positive bacteria through MR-endocytosis, which increases bacterial endocytosis and endosomal killing. The differential effect of MR activation on the IL-12 production induced by Gram-positive and Gram-negative bacteria may influence the immune response toward allergens and other glycoproteins.
Collapse
Affiliation(s)
- Ronja Mathiesen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Helene M S Eld
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Juliane Sørensen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Eva Fuglsang
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lisbeth Drozd Lund
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Valentina Taverniti
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Food, Environmental and Nutritional Science, Università degli Studi di Milano, Milan, Italy
| | - Hanne Frøkiær
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
20
|
Ryan FJ, Drew DP, Douglas C, Leong LEX, Moldovan M, Lynn M, Fink N, Sribnaia A, Penttila I, McPhee AJ, Collins CT, Makrides M, Gibson RA, Rogers GB, Lynn DJ. Changes in the Composition of the Gut Microbiota and the Blood Transcriptome in Preterm Infants at Less than 29 Weeks Gestation Diagnosed with Bronchopulmonary Dysplasia. mSystems 2019; 4:e00484-19. [PMID: 31662429 PMCID: PMC6819732 DOI: 10.1128/msystems.00484-19] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 10/09/2019] [Indexed: 12/21/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) is a common chronic lung condition in preterm infants that results in abnormal lung development and leads to considerable morbidity and mortality, making BPD one of the most common complications of preterm birth. We employed RNA sequencing and 16S rRNA gene sequencing to profile gene expression in blood and the composition of the fecal microbiota in infants born at <29 weeks gestational age and diagnosed with BPD in comparison to those of preterm infants that were not diagnosed with BPD. 16S rRNA gene sequencing, performed longitudinally on 255 fecal samples collected from 50 infants in the first months of life, identified significant differences in the relative levels of abundance of Klebsiella, Salmonella, Escherichia/Shigella, and Bifidobacterium in the BPD infants in a manner that was birth mode dependent. Transcriptome sequencing (RNA-Seq) analysis revealed that more than 400 genes were upregulated in infants with BPD. Genes upregulated in BPD infants were significantly enriched for functions related to red blood cell development and oxygen transport, while several immune-related pathways were downregulated. We also identified a gene expression signature consistent with an enrichment of immunosuppressive CD71+ early erythroid cells in infants with BPD. Intriguingly, genes that were correlated in their expression with the relative abundances of specific taxa in the microbiota were significantly enriched for roles in the immune system, suggesting that changes in the microbiota might influence immune gene expression systemically.IMPORTANCE Bronchopulmonary dysplasia (BPD) is a serious inflammatory condition of the lung and is the most common complication associated with preterm birth. A large body of evidence now suggests that the gut microbiota can influence immunity and inflammation systemically; however, the role of the gut microbiota in BPD has not been evaluated to date. Here, we report that there are significant differences in the gut microbiota of infants born at <29 weeks gestation and subsequently diagnosed with BPD, which are particularly pronounced when infants are stratified by birth mode. We also show that erythroid and immune gene expression levels are significantly altered in BPD infants. Interestingly, we identified an association between the composition of the microbiota and immune gene expression in blood in early life. Together, these findings suggest that the composition of the microbiota may influence the risk of developing BPD and, more generally, may shape systemic immune gene expression.
Collapse
Affiliation(s)
- Feargal J Ryan
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Damian P Drew
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
- College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, Australia
| | - Chloe Douglas
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
- SAHMRI Women and Kids, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
| | - Lex E X Leong
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
- College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, Australia
| | - Max Moldovan
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Miriam Lynn
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Naomi Fink
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
- SAHMRI Women and Kids, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
| | - Anastasia Sribnaia
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Irmeli Penttila
- SAHMRI Women and Kids, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
| | - Andrew J McPhee
- SAHMRI Women and Kids, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
- Neonatal Medicine, Women's and Children's Hospital, North Adelaide, South Australia, Australia
| | - Carmel T Collins
- SAHMRI Women and Kids, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
| | - Maria Makrides
- SAHMRI Women and Kids, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
| | - Robert A Gibson
- SAHMRI Women and Kids, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
- School of Agriculture, Food, and Wine, The University of Adelaide, Adelaide, South Australia, Australia
| | - Geraint B Rogers
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
- College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, Australia
| | - David J Lynn
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
- College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, Australia
| |
Collapse
|
21
|
Kumova OK, Fike AJ, Thayer JL, Nguyen LT, Mell JC, Pascasio J, Stairiker C, Leon LG, Katsikis PD, Carey AJ. Lung transcriptional unresponsiveness and loss of early influenza virus control in infected neonates is prevented by intranasal Lactobacillus rhamnosus GG. PLoS Pathog 2019; 15:e1008072. [PMID: 31603951 PMCID: PMC6808501 DOI: 10.1371/journal.ppat.1008072] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 10/23/2019] [Accepted: 09/05/2019] [Indexed: 12/11/2022] Open
Abstract
Respiratory viral infections contribute substantially to global infant losses and disproportionately affect preterm neonates. Using our previously established neonatal murine model of influenza infection, we demonstrate that three-day old mice are exceptionally sensitive to influenza virus infection and exhibit high mortality and viral load. Intranasal pre- and post-treatment of neonatal mice with Lactobacillus rhamnosus GG (LGG), an immune modulator in respiratory viral infection of adult mice and human preterm neonates, considerably improves neonatal mice survival after influenza virus infection. We determine that both live and heat-killed intranasal LGG are equally efficacious in protection of neonates. Early in influenza infection, neonatal transcriptional responses in the lung are delayed compared to adults. These responses increase by 24 hours post-infection, demonstrating a delay in the kinetics of the neonatal anti-viral response. LGG pretreatment improves immune gene transcriptional responses during early infection and specifically upregulates type I IFN pathways. This is critical for protection, as neonatal mice intranasally pre-treated with IFNβ before influenza virus infection are also protected. Using transgenic mice, we demonstrate that the protective effect of LGG is mediated through a MyD88-dependent mechanism, specifically via TLR4. LGG can improve both early control of virus and transcriptional responsiveness and could serve as a simple and safe intervention to protect neonates.
Collapse
Affiliation(s)
- Ogan K. Kumova
- Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States of America
| | - Adam J. Fike
- Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States of America
| | - Jillian L. Thayer
- Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States of America
| | - Linda T. Nguyen
- Pediatrics, Drexel University College of Medicine, Philadelphia, PA, United States of America
| | - Joshua Chang Mell
- Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States of America
| | - Judy Pascasio
- Pathology, Drexel University College of Medicine, Philadelphia, PA, United States of America
| | - Christopher Stairiker
- Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States of America
- Immunology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Leticia G. Leon
- Immunology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Peter D. Katsikis
- Immunology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Alison J. Carey
- Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States of America
- Pediatrics, Drexel University College of Medicine, Philadelphia, PA, United States of America
- * E-mail:
| |
Collapse
|
22
|
Surface Layer of Lactobacillus helveticus MIMLh5 Promotes Endocytosis by Dendritic Cells. Appl Environ Microbiol 2019; 85:AEM.00138-19. [PMID: 30824443 DOI: 10.1128/aem.00138-19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 02/13/2019] [Indexed: 01/09/2023] Open
Abstract
Surface layers (S-layers) are proteinaceous arrays covering the cell walls of numerous bacteria. Their suggested properties, such as interactions with the host immune system, have been only poorly described. Here, we aimed to elucidate the role of the S-layer from the probiotic bacterial strain Lactobacillus helveticus MIMLh5 in the stimulation of murine bone-marrow-derived dendritic cells (DCs). MIMLh5 induced greater production of interferon beta (IFN-β), interleukin 10 (IL-10), and IL-12p70, compared to S-layer-depleted MIMLh5 (naked MIMLh5 [n-MIMLh5]), whereas the isolated S-layer was a poor immunostimulator. No differences in the production of tumor necrosis factor alpha (TNF-α) or IL-1β were found. Inhibition of the mitogen-activated protein kinases JNK1/2, p38, and ERK1/2 modified IL-12p70 production similarly in MIMLh5 and n-MIMLh5, suggesting the induction of the same signaling pathways by the two bacterial preparations. Treatment of DCs with cytochalasin D to inhibit endocytosis before the addition of fluorescently labeled MIMLh5 cells led to a dramatic reduction in the proportion of fluorescence-positive DCs and decreased IL-12 production. Endocytosis and IL-12 production were only marginally affected by cytochalasin D pretreatment when fluorescently labeled n-MIMLh5 was used. Treatment of DCs with fluorescently labeled S-layer-coated polystyrene beads (Sl-beads) resulted in much greater uptake of beads, compared to noncoated beads. Prestimulation of DCs with cytochalasin D reduced the uptake of Sl-beads more than plain beads. These findings indicate that the S-layer plays a role in the endocytosis of MIMLh5 by DCs. In conclusion, this study provides evidence that the S-layer of L. helveticus MIMLh5 is involved in endocytosis of the bacterium, which is important for strong Th1-inducing cytokine production.IMPORTANCE Beneficial microbes may positively affect host physiology at various levels, e.g., by participating in immune system maturation and modulation, boosting defenses and dampening reactions, thus affecting the whole homeostasis. As a consequence, the use of probiotics is increasingly regarded as suitable for more extended applications for health maintenance, not only microbiota balancing. This implies a deep knowledge of the mechanisms and molecules involved in host-microbe interactions, for the final purpose of fine tuning the choice of a probiotic strain for a specific outcome. With this aim, studies targeted to the description of strain-related immunomodulatory effects and the identification of bacterial molecules responsible for specific responses are indispensable. This study provides new insights in the characterization of the food-origin probiotic bacterium L. helveticus MIMLh5 and its S-layer protein as a driver for the cross-talk with DCs.
Collapse
|
23
|
Martínez-López M, Iborra S, Conde-Garrosa R, Mastrangelo A, Danne C, Mann ER, Reid DM, Gaboriau-Routhiau V, Chaparro M, Lorenzo MP, Minnerup L, Saz-Leal P, Slack E, Kemp B, Gisbert JP, Dzionek A, Robinson MJ, Rupérez FJ, Cerf-Bensussan N, Brown GD, Bernardo D, LeibundGut-Landmann S, Sancho D. Microbiota Sensing by Mincle-Syk Axis in Dendritic Cells Regulates Interleukin-17 and -22 Production and Promotes Intestinal Barrier Integrity. Immunity 2019; 50:446-461.e9. [PMID: 30709742 PMCID: PMC6382412 DOI: 10.1016/j.immuni.2018.12.020] [Citation(s) in RCA: 146] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 07/30/2018] [Accepted: 12/17/2018] [Indexed: 12/15/2022]
Abstract
Production of interleukin-17 (IL-17) and IL-22 by T helper 17 (Th17) cells and group 3 innate lymphoid cells (ILC3s) in response to the gut microbiota ensures maintenance of intestinal barrier function. Here, we examined the mechanisms whereby the immune system detects microbiota in the steady state. A Syk-kinase-coupled signaling pathway in dendritic cells (DCs) was critical for commensal-dependent production of IL-17 and IL-22 by CD4+ T cells. The Syk-coupled C-type lectin receptor Mincle detected mucosal-resident commensals in the Peyer's patches (PPs), triggered IL-6 and IL-23p19 expression, and thereby regulated function of intestinal Th17- and IL-17-secreting ILCs. Mice deficient in Mincle or with selective depletion of Syk in CD11c+ cells had impaired production of intestinal RegIIIγ and IgA and increased systemic translocation of gut microbiota. Consequently, Mincle deficiency led to liver inflammation and deregulated lipid metabolism. Thus, sensing of commensals by Mincle and Syk signaling in CD11c+ cells reinforces intestinal immune barrier and promotes host-microbiota mutualism, preventing systemic inflammation.
Collapse
Affiliation(s)
- María Martínez-López
- Immunobiology Laboratory, Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Melchor Fernández Almagro 3, Madrid 28029, Spain
| | - Salvador Iborra
- Immunobiology Laboratory, Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Melchor Fernández Almagro 3, Madrid 28029, Spain; Department of Immunology, School of Medicine, Universidad Complutense de Madrid, 12 de Octubre Health Research Institute (imas12), Madrid, Spain.
| | - Ruth Conde-Garrosa
- Immunobiology Laboratory, Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Melchor Fernández Almagro 3, Madrid 28029, Spain
| | - Annalaura Mastrangelo
- Immunobiology Laboratory, Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Melchor Fernández Almagro 3, Madrid 28029, Spain
| | - Camille Danne
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Elizabeth R Mann
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK; Manchester Collaborative Centre for Inflammation Research, Faculty of Biology, Medicine, and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Delyth M Reid
- Medical Research Council Centre for Medical Mycology at the University of Aberdeen, Aberdeen Fungal Group, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Valérie Gaboriau-Routhiau
- INRA Micalis Institut, UMR1319, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France; INSERM UMR1163, Institut Imagine, Laboratory of Intestinal Immunity, 75015 Paris, France; Université Paris Descartes-Sorbonne Paris Cité, 75006 Paris, France
| | - Maria Chaparro
- Gastroenterology Unit, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Diego de León 62, Madrid 28006, Spain
| | - María P Lorenzo
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, Urbanización Montepríncipe, km 0, M501, Alcorcón 28925, Spain
| | | | - Paula Saz-Leal
- Immunobiology Laboratory, Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Melchor Fernández Almagro 3, Madrid 28029, Spain
| | - Emma Slack
- Institute of Food, Nutrition, and Health, ETH Zurich, Vladimir-Prelog-Weg 4, Zürich 8093, Switzerland
| | | | - Javier P Gisbert
- Gastroenterology Unit, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Diego de León 62, Madrid 28006, Spain
| | | | | | - Francisco J Rupérez
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, Urbanización Montepríncipe, km 0, M501, Alcorcón 28925, Spain
| | - Nadine Cerf-Bensussan
- INSERM UMR1163, Institut Imagine, Laboratory of Intestinal Immunity, 75015 Paris, France; Université Paris Descartes-Sorbonne Paris Cité, 75006 Paris, France
| | - Gordon D Brown
- Medical Research Council Centre for Medical Mycology at the University of Aberdeen, Aberdeen Fungal Group, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK
| | - David Bernardo
- Gastroenterology Unit, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Diego de León 62, Madrid 28006, Spain
| | - Salomé LeibundGut-Landmann
- Section of Immunology, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 266a Zurich 8057, Switzerland
| | - David Sancho
- Immunobiology Laboratory, Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Melchor Fernández Almagro 3, Madrid 28029, Spain.
| |
Collapse
|
24
|
Abstract
The type I interferon pathway has been implicated in the pathogenesis of a number of rheumatic diseases, including systemic lupus erythematosus, Sjögren syndrome, myositis, systemic sclerosis, and rheumatoid arthritis. In normal immune responses, type I interferons have a critical role in the defence against viruses, yet in many rheumatic diseases, large subgroups of patients demonstrate persistent activation of the type I interferon pathway. Genetic variations in type I interferon-related genes are risk factors for some rheumatic diseases, and can explain some of the heterogeneity in type I interferon responses seen between patients within a given disease. Inappropriate activation of the immune response via Toll-like receptors and other nucleic acid sensors also contributes to the dysregulation of the type I interferon pathway in a number of rheumatic diseases. Theoretically, differences in type I interferon activity between patients might predict response to immune-based therapies, as has been demonstrated for rheumatoid arthritis. A number of type I interferon and type I interferon pathway blocking therapies are currently in clinical trials, the results of which are promising thus far. This Review provides an overview of the many ways in which the type I interferon system affects rheumatic diseases.
Collapse
Affiliation(s)
- Theresa L. Wampler Muskardin
- Colton Center for Autoimmunity, Department of Medicine, New York University School of Medicine, New York, NY, USA
- Department of Pathology, New York University School of Medicine, New York, NY, USA
| | - Timothy B. Niewold
- Colton Center for Autoimmunity, Department of Medicine, New York University School of Medicine, New York, NY, USA
- Division of Rheumatology, Department of Medicine and Pediatrics, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
25
|
Feng H, Lenarcic EM, Yamane D, Wauthier E, Mo J, Guo H, McGivern DR, González-López O, Misumi I, Reid LM, Whitmire JK, Ting JPY, Duncan JA, Moorman NJ, Lemon SM. NLRX1 promotes immediate IRF1-directed antiviral responses by limiting dsRNA-activated translational inhibition mediated by PKR. Nat Immunol 2017; 18:1299-1309. [PMID: 28967880 PMCID: PMC5690873 DOI: 10.1038/ni.3853] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 09/11/2017] [Indexed: 12/14/2022]
Abstract
NLRX1 is unique among nucleotide-binding domain and leucine-rich repeat (NLR) proteins in its mitochondrial localization and capacity to negatively regulate MAVS- and STING-dependent antiviral innate immunity. However, some studies suggest a positive regulatory role for NLRX1 in inducing antiviral responses. We show that NLRX1 exerts opposing regulatory effects on virus activation of the transcription factors IRF1 and IRF3, potentially explaining these contradictory results. Whereas NLRX1 suppresses MAVS-mediated IRF3 activation, NLRX1 conversely facilitates virus-induced increases in IRF1 expression, thereby enhancing control of virus infection. NLRX1 has a minimal effect on NF-κB-mediated IRF1 transcription, and regulates IRF1 abundance post-transcriptionally by preventing translational shutdown mediated by the dsRNA-activated protein kinase PKR, thereby allowing virus-induced increases in IRF1 protein abundance.
Collapse
Affiliation(s)
- Hui Feng
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Erik M Lenarcic
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,Department of Microbiology & Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Daisuke Yamane
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Eliane Wauthier
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jinyao Mo
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Haitao Guo
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - David R McGivern
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Olga González-López
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Ichiro Misumi
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Lola M Reid
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jason K Whitmire
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,Department of Microbiology & Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jenny P-Y Ting
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Joseph A Duncan
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,Department of Pharmacology, The University of North Carolina, Chapel Hill, North Carolina, USA
| | - Nathaniel J Moorman
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,Department of Microbiology & Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Stanley M Lemon
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,Department of Microbiology & Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
26
|
Chen PG, Guan YJ, Zha GM, Jiao XQ, Zhu HS, Zhang CY, Wang YY, Li HP. Swine IRF3/IRF7 attenuates inflammatory responses through TLR4 signaling pathway. Oncotarget 2017; 8:61958-61968. [PMID: 28977918 PMCID: PMC5617478 DOI: 10.18632/oncotarget.18740] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 05/22/2017] [Indexed: 01/22/2023] Open
Abstract
To explore the role of IRF3/IRF7 during inflammatory responses, we investigated the effects of swine IRF3/IRF7 on TLR4 signaling pathway and inflammatory factors expression in porcine kidney epithelial PK15 cell lines. We successfully constructed eukaryotic vectors PB-IRF3 and PB-IRF7, transfected these vectors into PK15 cells and observed GFP under a fluorescence microscope. In addition, RT-PCR was also used to detect transfection efficiency. We found that IRF3/IRF7 was efficiently overexpressed in PK15 cells. Moreover, we evaluated the effects of IRF3/IRF7 on the TLR4 signaling pathway and inflammatory factors by RT-PCR. Transfected cells were treated with lipopolysaccharide (LPS) alone, or in combination with a TBK1 inhibitor (LiCl). We revealed that IRF3/IRF7 enhanced IFNα production, and decreased IL-6 mRNA expression. Blocking the TBK1 pathway, inhibited the changes in IFNα, but not IL-6 mRNA. This illustrated that IRF3/IRF7 enhanced IFNα production through TLR4/TBK1 signaling pathway and played an anti-inflammatory role, while IRF3/IRF7 decreased IL-6 expression independent of the TBK1 pathway. Trends in MyD88, TRAF6, TBK1 and NFκB mRNA variation were similar in all treatments. LPS increased MyD88, TRAF6, TBK1 and NFκB mRNA abundance in PBR3/PBR7 and PBv cells, while LiCl blocked the LPS-mediated effects. The levels of these four factors in PBR3/PBR7 cells were higher than those in PBv. These results demonstrated that IRF3/IRF7 regulated the inflammatory response through the TLR4 signaling pathway. Overexpression of swine IRF3/IRF7 in PK15 cells induced type I interferons production, and attenuated inflammatory responses through TLR4 signaling pathway.
Collapse
Affiliation(s)
- Pei-Ge Chen
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, Henan, China
| | - Yan-Jing Guan
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, Henan, China
| | - Guang-Ming Zha
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, Henan, China
| | - Xian-Qin Jiao
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, Henan, China
| | - He-Shui Zhu
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, Henan, China
| | - Cheng-Yu Zhang
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, Henan, China
| | - Yue-Ying Wang
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, Henan, China
| | - He-Ping Li
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, Henan, China
| |
Collapse
|
27
|
Boye L, Welsby I, Lund LD, Goriely S, Frøkiaer H. Plasma membrane Toll-like receptor activation increases bacterial uptake but abrogates endosomal Lactobacillus acidophilus induction of interferon-β. Immunology 2016; 149:329-342. [PMID: 27441725 DOI: 10.1111/imm.12650] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 07/11/2016] [Accepted: 07/13/2016] [Indexed: 12/31/2022] Open
Abstract
Lactobacillus acidophilus induces a potent interferon-β (IFN-β) response in dendritic cells (DCs) by a Toll-like receptor 2 (TLR2) -dependent mechanism, in turn leading to strong interleukin-12 (IL-12) production. In the present study, we investigated the involvement of different types of endocytosis in the L. acidophilus-induced IFN-β and IL-12 responses and how TLR2 or TLR4 ligation by lipopolysaccharide and Pam3/4CSK4 influenced endocytosis of L. acidophilus and the induced IFN-β and IL-12 production. Lactobacillus acidophilus was endocytosed by constitutive macropinocytosis taking place in the immature cells as well as by spleen tyrosine kinase (Syk) -dependent phagocytosis but without involvement of plasma membrane TLR2. Stimulation with TLR2 or TLR4 ligands increased macropinocytosis in a Syk-independent manner. As a consequence, incubation of DCs with TLR ligands before incubation with L. acidophilus enhanced the uptake of the bacteria. However, in these experimental conditions, induction of IFN-β and IL-12 was strongly inhibited. As L. acidophilus-induced IFN-β depends on endocytosis and endosomal degradation before signalling and as TLR stimulation from the plasma membrane leading to increased macropinocytosis abrogates IFN-β induction we conclude that plasma membrane TLR stimulation leading to increased macropinocytosis decreases endosomal induction of IFN-β and speculate that this is due to competition between compartments for molecules involved in the signal pathways. In summary, endosomal signalling by L. acidophilus that leads to IFN-β and IL-12 production is inhibited by TLR stimulation from the plasma membrane.
Collapse
Affiliation(s)
- Louise Boye
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Iain Welsby
- Institute of Medical Immunology, Université Libre de Bruxelles, Gosselies, Belgium
| | - Lisbeth Drozd Lund
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Stanislas Goriely
- Institute of Medical Immunology, Université Libre de Bruxelles, Gosselies, Belgium
| | - Hanne Frøkiaer
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark.
| |
Collapse
|
28
|
Feng H, Zhang QM, Zhang YB, Li Z, Zhang J, Xiong YW, Wu M, Gui JF. Zebrafish IRF1, IRF3, and IRF7 Differentially Regulate IFNΦ1 and IFNΦ3 Expression through Assembly of Homo- or Heteroprotein Complexes. THE JOURNAL OF IMMUNOLOGY 2016; 197:1893-904. [DOI: 10.4049/jimmunol.1600159] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 07/04/2016] [Indexed: 11/19/2022]
|
29
|
Haileselassie Y, Navis M, Vu N, Qazi KR, Rethi B, Sverremark-Ekström E. Lactobacillus reuteri and Staphylococcus aureus differentially influence the generation of monocyte-derived dendritic cells and subsequent autologous T cell responses. IMMUNITY INFLAMMATION AND DISEASE 2016; 4:315-26. [PMID: 27621814 PMCID: PMC5004286 DOI: 10.1002/iid3.115] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 05/20/2016] [Accepted: 06/20/2016] [Indexed: 12/23/2022]
Abstract
Introduction In early‐life, the immature mucosal barrier allows contact between the gut microbiota and the developing immune system. Due to their strategic location and their ability to sample luminal antigen, dendritic cells (DC) play a central role in the interaction of microbes and immune cells in the gut. Here, we investigated how two bacteria associated with opposite immune profiles in children, that is, Lactobacillus (L.) reuteri and Staphylococcus (S.) aureus, influenced the differentiation of monocytes in vitro as well how the generated DC impacted T cell responses. Methods We exposed monocyte cultures to cell‐free supernatants (CFS) from these bacteria during their differentiation to DC. Results The presence of L. reuteri‐CFS during DC differentiation resulted in DC with a more mature phenotype, in terms of up‐regulated surface markers (HLA‐DR, CD86, CD83, CCR7) and enhanced cytokine production (IL6, IL10, and IL23), but had a reduced phagocytic capacity compared with non‐treated monocyte‐derived DC (Mo‐DC). However, upon LPS activation, L. reuteri‐CFS‐generated DC displayed a more regulated phenotype than control Mo‐DC with notable reduction of cytokine responses both at mRNA and protein levels. In contrast, S. aureus‐CFS‐generated DC were more similar to control Mo‐DC both without and after LPS stimulation, but they were still able to induce responses in autologous T cells, in the absence of further T cell stimulation. Conclusions We show that bacterial signals during DC differentiation have a profound impact on DC function and possibly also for shaping the T cell pool.
Collapse
Affiliation(s)
- Yeneneh Haileselassie
- Department of Molecular Biosciences, The Wenner-Gren Institute Stockholm University Stockholm Sweden
| | - Marit Navis
- Department of Molecular Biosciences, The Wenner-Gren Institute Stockholm University Stockholm Sweden
| | - Nam Vu
- Department of Molecular Biosciences, The Wenner-Gren Institute Stockholm University Stockholm Sweden
| | - Khaleda Rahman Qazi
- Department of Molecular Biosciences, The Wenner-Gren Institute Stockholm University Stockholm Sweden
| | - Bence Rethi
- Department of Medicine Karolinska University Hospital Stockholm Sweden
| | - Eva Sverremark-Ekström
- Department of Molecular Biosciences, The Wenner-Gren Institute Stockholm University Stockholm Sweden
| |
Collapse
|
30
|
Wang F, Qiao L, Lv X, Trivett A, Yang R, Oppenheim JJ, Yang D, Zhang N. Alarmin human α defensin HNP1 activates plasmacytoid dendritic cells by triggering NF-κB and IRF1 signaling pathways. Cytokine 2016; 83:53-60. [PMID: 27031443 PMCID: PMC7822553 DOI: 10.1016/j.cyto.2016.03.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 03/14/2016] [Accepted: 03/21/2016] [Indexed: 01/13/2023]
Abstract
Human neutrophil peptide 1 (HNP1), a predominant α defensin in the azurophilic granules of human neutrophils, is an alarmin capable of inducing the migration and maturation of human myeloid/conventional dendritic cells. However, it is not determined whether it can activate plasmacytoid dendritic cells (pDCs). Herein, we found that both human pDCs and CAL-1 cells, a pDC-like cell line, produced IFNα upon treatment with HNP1. Additionally, HNP1 could promote CpG ODN-induced pDC production of proinflammatory cytokines including IFNα. HNP1 triggered activation of NF-κB and nuclear translocation of interferon regulatory factor 1 (IRF1) in CAL-1 cells. HNP1 upregulation of cytokine expression in pDCs was inhibited by blockade of NF-κB activation or knockdown of IRF1, demonstrating the importance of these two signaling events in HNP1-induced pDC activation. Using a human pDC-nude mouse model, HNP1 was shown to induce IFNα production by human pDCs in vivo. Thus, HNP1 can activate human pDCs using NF-κB and IRF signaling pathways, and HNP-induced IFN production may participate in the inflammatory pathogenesis in certain authoimmune diseases such as rheumatoid arthritis.
Collapse
Affiliation(s)
- Fang Wang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Research Center of Basic Medical Science, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin 300070, People's Republic of China
| | - Linan Qiao
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Research Center of Basic Medical Science, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin 300070, People's Republic of China
| | - Xing Lv
- Department of Rheumatism and Immunology, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin 300052, People's Republic of China
| | - Anna Trivett
- Basic Science Program, Leidos Biomedical Research Inc., and Laboratory of Molecular Immunoregulation, Cancer and Inflammation Program, Center for Cancer Research, Frederick National Laboratory for Cancer Research (FNLCR), 1050 Boyles Street, Frederick, MD 21702, USA
| | - Rui Yang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Research Center of Basic Medical Science, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin 300070, People's Republic of China
| | - Joost J Oppenheim
- Basic Science Program, Leidos Biomedical Research Inc., and Laboratory of Molecular Immunoregulation, Cancer and Inflammation Program, Center for Cancer Research, Frederick National Laboratory for Cancer Research (FNLCR), 1050 Boyles Street, Frederick, MD 21702, USA
| | - De Yang
- Basic Science Program, Leidos Biomedical Research Inc., and Laboratory of Molecular Immunoregulation, Cancer and Inflammation Program, Center for Cancer Research, Frederick National Laboratory for Cancer Research (FNLCR), 1050 Boyles Street, Frederick, MD 21702, USA.
| | - Ning Zhang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Research Center of Basic Medical Science, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin 300070, People's Republic of China.
| |
Collapse
|
31
|
Lund LD, Ingmer H, Frøkiær H. D-Alanylation of Teichoic Acids and Loss of Poly-N-Acetyl Glucosamine in Staphylococcus aureus during Exponential Growth Phase Enhance IL-12 Production in Murine Dendritic Cells. PLoS One 2016; 11:e0149092. [PMID: 26872029 PMCID: PMC4752283 DOI: 10.1371/journal.pone.0149092] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 01/27/2016] [Indexed: 02/01/2023] Open
Abstract
Staphylococcus aureus is a major human pathogen that has evolved very efficient immune evading strategies leading to persistent colonization. During different stages of growth, S. aureus express various surface molecules, which may affect the immune stimulating properties, but very little is known about their role in immune stimulation and evasion. Depending on the growth phase, S. aureus may affect antigen presenting cells differently. Here, the impact of growth phases and the surface molecules lipoteichoic acid, peptidoglycan and poly-N-acetyl glucosamine on the induction of IL-12 imperative for an efficient clearance of S. aureus was studied in dendritic cells (DCs). Exponential phase (EP) S. aureus was superior to stationary phase (SP) bacteria in induction of IL-12, which required actin-mediated endocytosis and endosomal acidification. Moreover, addition of staphylococcal cell wall derived peptidoglycan to EP S. aureus stimulated cells increased bacterial uptake but abrogated IL-12 induction, while addition of lipoteichoic acid increased IL-12 production but had no effect on the bacterial uptake. Depletion of the capability to produce poly-N-acetyl glucosamine increased the IL-12 inducing activity of EP bacteria. Furthermore, the mutant dltA unable to produce D-alanylated teichoic acids failed to induce IL-12 but like peptidoglycan and the toll-like receptor (TLR) ligands LPS and Pam3CSK4 the mutant stimulated increased macropinocytosis. In conclusion, the IL-12 response by DCs against S. aureus is highly growth phase dependent, relies on cell wall D-alanylation, endocytosis and subsequent endosomal degradation, and is abrogated by receptor induced macropinocytosis.
Collapse
Affiliation(s)
- Lisbeth Drozd Lund
- Department of Veterinary Disease Biology, University of Copenhagen, Frederiksberg, Denmark
| | - Hanne Ingmer
- Department of Veterinary Disease Biology, University of Copenhagen, Frederiksberg, Denmark
| | - Hanne Frøkiær
- Department of Veterinary Disease Biology, University of Copenhagen, Frederiksberg, Denmark
- * E-mail:
| |
Collapse
|
32
|
Yin H, Zhou H, Kang Y, Zhang X, Duan X, Alnabhan R, Liang S, Scott DA, Lamont RJ, Shang J, Wang H. Syk negatively regulates TLR4-mediated IFNβ and IL-10 production and promotes inflammatory responses in dendritic cells. Biochim Biophys Acta Gen Subj 2015; 1860:588-98. [PMID: 26708990 DOI: 10.1016/j.bbagen.2015.12.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Revised: 12/14/2015] [Accepted: 12/16/2015] [Indexed: 12/20/2022]
Abstract
BACKGROUND While Syk has been shown to associate with TLR4, the immune consequences of Syk-TLR interactions and related molecular mechanisms are unclear. METHODS Gain- and loss-of-function approaches were utilized to determine the regulatory function of Syk and elucidate the related molecular mechanisms in TLR4-mediated inflammatory responses. Cytokine production was measured by ELISA and phosphorylation of signaling molecules determined by Western blotting. RESULTS Syk deficiency in murine dendritic cells resulted in the enhancement of LPS-induced IFNβ and IL-10 but suppression of pro-inflammatory cytokines (TNFα, IL-6). Deficiency of Syk enhanced the activity of PI3K and elevated the phosphorylation of PI3K and Akt, which in turn, lead to the phospho-inactivation of the downstream, central gatekeeper of the innate response, GSK3β. Inhibition of PI3K or Akt abrogated the ability of Syk deficiency to enhance IFNβ and IL-10 in Syk deficient cells, confirmed by the overexpression of Akt (Myr-Akt) or constitutively active GSK3β (GSK3 S9A). Moreover, neither inhibition of PI3K-Akt signaling nor neutralization of de novo synthesized IFNβ could rescue TNFα and IL-6 production in LPS-stimulated Syk deficient cells. Syk deficiency resulted in decreased phosphorylation of IKKβ and the NF-κB p65 subunit, further suggesting a divergent influence of Syk on pro- and anti-inflammatory TLR responses. CONCLUSIONS Syk negatively regulates TLR4-mediated production of IFNβ and IL-10 and promotes inflammatory responses in dendritic cells through divergent regulation of downstream PI3K-Akt and NF-κB signaling pathways. GENERAL SIGNIFICANCE Syk may represent a novel target for manipulating the direction or intensity of the innate response, depending on clinical necessity.
Collapse
Affiliation(s)
- Hui Yin
- Department of Infectious Diseases, Henan Provincial People's Hospital (Zhengzhou University People's Hospital), Zhengzhou, Henan 450001, China
| | - Huaxin Zhou
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY 40202, USA
| | - Yi Kang
- Department of Infectious Diseases, Henan Provincial People's Hospital (Zhengzhou University People's Hospital), Zhengzhou, Henan 450001, China
| | - Xiaoju Zhang
- Department of Infectious Diseases, Henan Provincial People's Hospital (Zhengzhou University People's Hospital), Zhengzhou, Henan 450001, China
| | - Xiaoxian Duan
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY 40202, USA
| | - Ridab Alnabhan
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY 40202, USA
| | - Shuang Liang
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY 40202, USA
| | - David A Scott
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY 40202, USA
| | - Richard J Lamont
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY 40202, USA
| | - Jia Shang
- Department of Infectious Diseases, Henan Provincial People's Hospital (Zhengzhou University People's Hospital), Zhengzhou, Henan 450001, China.
| | - Huizhi Wang
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY 40202, USA.
| |
Collapse
|
33
|
Li XP, Sun L. TLR7 is required for optimal immune defense against bacterial infection in tongue sole (Cynoglossus semilaevis). FISH & SHELLFISH IMMUNOLOGY 2015; 47:93-99. [PMID: 26327112 DOI: 10.1016/j.fsi.2015.08.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 07/28/2015] [Accepted: 08/26/2015] [Indexed: 06/04/2023]
Abstract
In mammals as well as in teleost, toll-like receptor 7 (TLR7) is known to be involved in antiviral immunity by recognizing viral RNA. However, the antibacterial potential of fish TLR7 is unclear. In this study, we analyzed the TLR7 of tongue sole (Cynoglossus semilaevis), CsTLR7, and examined its potential involvement in antibacterial immunity. CsTLR7 is composed of 1052 amino acid residues and shares 64.0%-75.9% overall sequence identities with known teleost TLR7. CsTLR7 possesses a toll/interleukin-1 receptor domain and six leucine-rich repeats. Constitutive expression of CsTLR7 occurred in relatively high levels in kidney, spleen and liver. Bacterial infection upregulated CsTLR7 expression, whereas viral infection downregulated CsTLR7 expression. Knockdown of CsTLR7 significantly enhanced bacterial dissemination in the tissues of tongue sole. Treatment of tongue sole with the imidazoquinoline compound R848 (TLR7 activator) and the endosomal acidification inhibitor chloroquine (TLR7 inhibitor) caused enhanced and reduced resistance against bacterial infection respectively. These results indicate that CsTLR7 plays an essential role in the antibacterial immunity of tongue sole.
Collapse
Affiliation(s)
- Xue-peng Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China; Function Laboratory for Marine Biology and Biotechnology, Qingdao National Oceanography Laboratory, Qingdao, China
| | - Li Sun
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Function Laboratory for Marine Biology and Biotechnology, Qingdao National Oceanography Laboratory, Qingdao, China.
| |
Collapse
|
34
|
Ourthiague DR, Birnbaum H, Ortenlöf N, Vargas JD, Wollman R, Hoffmann A. Limited specificity of IRF3 and ISGF3 in the transcriptional innate-immune response to double-stranded RNA. J Leukoc Biol 2015; 98:119-28. [PMID: 25896227 DOI: 10.1189/jlb.4a1014-483rr] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 04/02/2015] [Indexed: 11/24/2022] Open
Abstract
The innate immune response is largely initiated by pathogen-responsive activation of the transcription factor IRF3. Among other target genes, IRF3 controls the expression of IFN-β, which triggers the activation of the transcription factor ISGF3 via the IFNAR. IRF3 and ISGF3 have been reported to control many of the same target genes and together, control the antimicrobial innate-immune program; however, their respective contributions and specificities remain unclear. Here, we used genomic technologies to characterize their specificity in terms of their physical DNA-binding and genetic function. With the use of ChiP-seq and transcriptomic measurements in WT versus ifnar(-/-) versus ifnar(-/-)irf3(-/-) macrophages responding to intracellular dsRNA, we confirmed the known ISGF3 DNA-binding motif and further specified a distinct IRF3 consensus sequence. The functional specificity of IRF3 is particularly pronounced in cytokine/chemokine regulation; yet, even in the control of IFN-β, that specificity is not absolute. By mathematically modeling IFN-β production within an abstracted tissue layer, we find that IRF3 versus ISGF3 specificity may be critical to limiting IFN-β production and ISGF3 activation, temporally and spatially, but that partial overlap in their specificity is tolerable and may enhance the effectiveness of the innate-immune response.
Collapse
Affiliation(s)
- Diana R Ourthiague
- *Signaling Systems Laboratory and Department of Chemistry and Biochemistry and San Diego Center for Systems Biology, University of California, San Diego, La Jolla, California, USA; and Institute for Quantitative and Computational Biosciences, Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California, USA
| | - Harry Birnbaum
- *Signaling Systems Laboratory and Department of Chemistry and Biochemistry and San Diego Center for Systems Biology, University of California, San Diego, La Jolla, California, USA; and Institute for Quantitative and Computational Biosciences, Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California, USA
| | - Niklas Ortenlöf
- *Signaling Systems Laboratory and Department of Chemistry and Biochemistry and San Diego Center for Systems Biology, University of California, San Diego, La Jolla, California, USA; and Institute for Quantitative and Computational Biosciences, Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California, USA
| | - Jesse D Vargas
- *Signaling Systems Laboratory and Department of Chemistry and Biochemistry and San Diego Center for Systems Biology, University of California, San Diego, La Jolla, California, USA; and Institute for Quantitative and Computational Biosciences, Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California, USA
| | - Roy Wollman
- *Signaling Systems Laboratory and Department of Chemistry and Biochemistry and San Diego Center for Systems Biology, University of California, San Diego, La Jolla, California, USA; and Institute for Quantitative and Computational Biosciences, Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California, USA
| | - Alexander Hoffmann
- *Signaling Systems Laboratory and Department of Chemistry and Biochemistry and San Diego Center for Systems Biology, University of California, San Diego, La Jolla, California, USA; and Institute for Quantitative and Computational Biosciences, Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California, USA
| |
Collapse
|
35
|
Zhou ZX, Sun L. Immune effects of R848: evidences that suggest an essential role of TLR7/8-induced, Myd88- and NF-κB-dependent signaling in the antiviral immunity of Japanese flounder (Paralichthys olivaceus). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2015; 49:113-20. [PMID: 25475963 DOI: 10.1016/j.dci.2014.11.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 11/26/2014] [Accepted: 11/26/2014] [Indexed: 06/04/2023]
Abstract
The imidazoquinoline compound R848 is a specific agonist of toll-like receptor (TLR) 7/TLR8 that has been used as an immunostimulant in humans against viral diseases. Although R848-induced immune response has been reported in teleost fish, the relevant mechanism is not clear. In this study, we investigated the antiviral potential and the signaling pathway of R848 in a model of Japanese flounder (Paralichthys olivaceus). We found that R848 was able to inhibit the replication of megalocytivirus, stimulated the proliferation of peripheral blood leukocytes (PBL), enhanced the expression of immune genes, and reduced apoptosis of PBL. When endosomal acidification was blocked by chloroquine (CQ), R848-mediated antiviral activity and immune response were significantly reduced. Likewise, inhibition of Myd88 activation markedly impaired the pro-proliferation and anti-apoptosis effect of R848. Cellular study showed that cultured founder cells treated with R848 exhibited augmented NF-κB activity, which, however, was dramatically reduced in the presence of CQ and Myd88 inhibitor. Furthermore, when NF-κB was inactivated, the effect of R848 on cell proliferation and apoptosis was significantly decreased. Taken together, these results indicate that R848 is an immunostimulant with antiviral property in a teleost species, and that the immune response of R848 is mediated by, most likely, TLR7/TLR8 signaling pathway, in which Myd88 and NK-κB play an essential role.
Collapse
Affiliation(s)
- Zhi-Xia Zhou
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
| | - Li Sun
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China.
| |
Collapse
|
36
|
Harsløf LBS, Damsgaard CT, Andersen AD, Aakjær DL, Michaelsen KF, Hellgren LI, Frøkiær H, Vogel U, Lauritzen L. Reduced ex vivo stimulated IL-6 response in infants randomized to fish oil from 9 to 18 months, especially among PPARG2 and COX2 wild types. Prostaglandins Leukot Essent Fatty Acids 2015; 94:21-7. [PMID: 25498245 DOI: 10.1016/j.plefa.2014.10.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 10/06/2014] [Accepted: 10/28/2014] [Indexed: 12/18/2022]
Abstract
We investigated whether n-3 LCPUFA affected immune function in late infancy and explored effect-modification by single nucleotide polymorphisms (SNPs) and links to intestinal microbiota. Infants (n=105) were randomized to fish oil (FO, 1.2g/d n-3 LCPUFA) or sunflower oil (SO)-supplements from age 9-18 months. Immune function was assessed by ex vivo cytokine production in stimulated blood and plasma immunoglobulin E (IgE). We genotyped functional SNPs in PPARG2 and COX2 and analyzed fecal microbiota by 16S-rRNA terminal restriction fragment length polymorphism. FO compared to SO reduced Lactobacillus paracasei-stimulated IL-6 at 18 months (P=0.03, n=104). This effect was most pronounced among infants wild-type for PPARG2-Pro12Ala and/or COX2-T8473C (P<0.05). Predominant bacterial fragments were associated with 18 months IgE in all infants (P=0.004) (bp100) and with IL-6 production among infants weaned before 9 months (P=0.047) (bp102). Thus, FO reduced IL-6 in a genotype-modified manner. The microbiota was partly linked to IL-6 and IgE, not directly to FO.
Collapse
Affiliation(s)
- Laurine B S Harsløf
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| | - Camilla T Damsgaard
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| | - Anders D Andersen
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| | - Ditte L Aakjær
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| | - Kim F Michaelsen
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| | - Lars I Hellgren
- Department of Systems Biology, Center for Biological Sequence Analysis, Technical University of Denmark, Lyngby, Denmark
| | - Hanne Frøkiær
- Department of Veterinary Disease Biology, Faculty of Health & Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Ulla Vogel
- National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Lotte Lauritzen
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark.
| |
Collapse
|
37
|
Gu M, Zhang T, lin W, Liu Z, Lai R, Xia D, Huang H, Wang X. Protein phosphatase PP1 negatively regulates the Toll-like receptor- and RIG-I-like receptor-triggered production of type I interferon by inhibiting IRF3 phosphorylation at serines 396 and 385 in macrophage. Cell Signal 2014; 26:2930-9. [PMID: 25239187 DOI: 10.1016/j.cellsig.2014.09.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 08/28/2014] [Accepted: 09/02/2014] [Indexed: 12/23/2022]
Abstract
The production of type I interferon must be tightly regulated, and the aberrant production of this protein is harmful or even fatal to the host. The transcription factor IRF3 phosphorylation is a central regulator of type I interferon meditated antiviral response. Protein phosphatase-1 (PP1) has been reported to be important in many cell functions, including development, differentiation, and tumorigenesis. However, the roles of PP1 in Toll-like receptor (TLR)- or retinoic acid-inducible gene I like receptor (RLR)-triggered IRF-3 activation remain unclear. Here, we show that the activity of PP1 is downregulated in macrophages upon stimulation with TLR or RLR ligands, including lipopolysaccharide, and poly(I:C), or vesicular stomatitis virus (VSV), respectively. The overexpression of PP1 selectively inhibits TLR- and VSV-induced interferon regulatory factor 3 (IRF3) activation but has no substantial effect on TANK-binding kinase 1 (TBK1),ΚB kinase ε (IKKε) activation. Conversely, RNA interference of PP1 significantly promotes IRF3 activation. Consistently, The overexpression of PP1 inhibits TLR- and VSV-triggered IFN-β production while PP1 knockdown significantly increases the production of IFN-β in macrophages. We further demonstrate that PP1 directly interacts with IRF3 and dephosphorylates IRF3 at Ser385 and Ser396, resulting in the suppression of TLR- and RLR-triggered IFN-β production. Thus, PP1 functions as a negative feedback regulator of TLR- and RLR-triggered antiviral immune responses by acting as an IRF3 phosphatase.
Collapse
Affiliation(s)
- Meidi Gu
- Institute of Immunology, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Ting Zhang
- Institute of Immunology, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Wenlong lin
- Institute of Immunology, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Zhiyong Liu
- Institute of Immunology, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Rongrong Lai
- Institute of Immunology, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Dajing Xia
- Institute of Immunology, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - He Huang
- Institute of Immunology, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Xiaojian Wang
- Institute of Immunology, School of Medicine, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
38
|
Mikkelsen MS, Jespersen BM, Mehlsen A, Engelsen SB, Frøkiær H. Cereal β-glucan immune modulating activity depends on the polymer fine structure. Food Res Int 2014. [DOI: 10.1016/j.foodres.2014.04.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
39
|
Lin YC, Huang DY, Chu CL, Lin YL, Lin WW. The tyrosine kinase Syk differentially regulates Toll-like receptor signaling downstream of the adaptor molecules TRAF6 and TRAF3. Sci Signal 2013; 6:ra71. [PMID: 23962979 DOI: 10.1126/scisignal.2003973] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Toll-like receptors (TLRs) are a major family of pattern recognition receptors, and they play a crucial role in innate immune responses. Activation of TLR4 signaling at the plasma membrane by its ligand lipopolysaccharide (LPS) stimulates a proinflammatory pathway dependent on the E3 ubiquitin ligase TRAF6 (tumor necrosis factor receptor-associated factor 6) and the kinase TAK1 (transforming growth factor β-activated kinase 1), whereas TLR4 signaling at endosomes stimulates the production of type I interferons (IFNs) through a pathway that depends on TRAF3 and the kinase TBK1 (TANK-binding kinase-1). We found that the nonreceptor tyrosine kinase Syk partially mediated the endocytosis of TLR4, but it also played a dual role in TLR4-mediated signaling. LPS-dependent stimulation of TLR4 in Syk-deficient macrophages led to enhanced activation of TAK1 and increased production of proinflammatory cytokines compared to that in wild-type macrophages. In contrast, Syk-deficient macrophages exhibited decreased TLR4-dependent activation of TBK1 signaling and production of type I IFNs. We found that Syk was present in both TRAF6- and TRAF3-containing signaling complexes; however, the LPS-dependent, lysine 63-linked ubiquitination of TRAF6 and TRAF3 was oppositely regulated by Syk. We identified the domains of Syk that interacted with TRAF3, TRAF6, TAK1, and TBK1, factors activated by multiple TLRs, which suggests that Syk may act as a common regulator of various TLR responses. Together, our results demonstrate the opposing regulatory roles of Syk in TLR-mediated TRAF6 and TRAF3 signaling pathways, which suggests that Syk may fine-tune the innate immune response to lessen inflammation.
Collapse
Affiliation(s)
- Ying-Cing Lin
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| | | | | | | | | |
Collapse
|
40
|
Helicobacter pylori VacA suppresses Lactobacillus acidophilus-induced interferon beta signaling in macrophages via alterations in the endocytic pathway. mBio 2013; 4:e00609-12. [PMID: 23760466 PMCID: PMC3685213 DOI: 10.1128/mbio.00609-12] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Helicobacter pylori causes chronic gastritis and avoids elimination by the immune system of the infected host. The commensal bacterium Lactobacillus acidophilus has been suggested to exert beneficial effects as a supplement during H. pylori eradication therapy. In the present study, we applied whole-genome microarray analysis to compare the immune responses induced in murine bone marrow-derived macrophages (BMDMs) stimulated with L. acidophilus, H. pylori, or both bacteria in combination. While L. acidophilus induced a Th1-polarizing response characterized by high expression of interferon beta (IFN-β) and interleukin 12 (IL-12), H. pylori strongly induced the innate cytokines IL-1β and IL-1α. In BMDMs prestimulated with L. acidophilus, H. pylori blocked the expression of L. acidophilus-induced IFN-β and IL-12 and suppressed the expression of key regulators of the Rho, Rac, and Cdc42 GTPases. The inhibition of L. acidophilus-induced IFN-β was independent of H. pylori viability and the virulence factor CagPAI; however, a vacuolating cytotoxin (vacA) mutant was unable to block IFN-β. Confocal microscopy demonstrated that the addition of H. pylori to L. acidophilus-stimulated BMDMs redirects intracellular processing, leading to an accumulation of L. acidophilus in the endosomal and lysosomal compartments. Thus, our findings indicate that H. pylori inhibits the development of a strong Th1-polarizing response in BMDMs stimulated with L. acidophilus by blocking the production of IFN-β in a VacA-dependent manner. We suggest that this abrogation is caused by a redirection of the endocytotic pathway in the processing of L. acidophilus. Approximately half of the world’s population is infected with Helicobacter pylori. The factors that allow this pathogen to persist in the stomach and cause chronic infections have not yet been fully elucidated. In particular, how H. pylori avoids killing by macrophages, one of the main types of immune cell underlying the epithelium, remains elusive. Here we have shown that the H. pylori virulence factor VacA plays a key role by blocking the activation of innate cytokines induced by the probiotic Lactobacillus acidophilus in macrophages and suppresses the expression of key regulators required for the organization and dynamics of the intracellular cytoskeleton. Our results identify potential targets for the treatment of H. pylori infection and vaccination, since specific inhibition of the toxin VacA possibly allows the activation of an efficient immune response and thereby eradication of H. pylori in the host.
Collapse
|
41
|
|