1
|
Yu J, Meneses-Salas E, Johnson JL, Manenti S, Kbaich MA, Chen D, Askari K, He J, Shukla A, Shaji B, Gonzalez-Quintial R, Croker BA, Zhang J, Hoffman H, Kiosses WB, Hedrick C, Pestonjamasp K, Wineinger N, Baccala R, Catz SD. Defective endomembrane dynamics in Rab27a deficiency impairs nucleic acid sensing and cytokine secretion in immune cells. Cell Rep 2024; 43:114598. [PMID: 39126651 DOI: 10.1016/j.celrep.2024.114598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 05/16/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
Endosomal Toll-like receptors (eTLRs) are essential for the sensing of non-self through RNA and DNA detection. Here, using spatiotemporal analysis of vesicular dynamics, super-resolution microscopy studies, and functional assays, we show that endomembrane defects associated with the deficiency of the small GTPase Rab27a cause delayed eTLR ligand recognition, defective early signaling, and impaired cytokine secretion. Rab27a-deficient neutrophils show retention of eTLRs in amphisomes and impaired ligand internalization. Extracellular signal-regulated kinase (ERK) signaling and β2-integrin upregulation, early responses to TLR7 and TLR9 ligands, are defective in Rab27a deficiency. CpG-stimulated Rab27a-deficient neutrophils present increased tumor necrosis factor alpha (TNF-α) secretion and decreased secretion of a selected group of mediators, including interleukin (IL)-10. In vivo, CpG-challenged Rab27a-null mice show decreased production of type I interferons (IFNs) and IFN-γ, and the IFN-α secretion defect is confirmed in Rab27a-null plasmacytoid dendritic cells. Our findings have significant implications for immunodeficiency, inflammation, and CpG adjuvant vaccination.
Collapse
Affiliation(s)
- Juan Yu
- Department of Molecular and Cellular Biology, Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Elsa Meneses-Salas
- Department of Molecular and Cellular Biology, Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jennifer L Johnson
- Department of Molecular and Cellular Biology, Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Susanna Manenti
- Department of Molecular and Cellular Biology, Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Mouad Ait Kbaich
- Department of Molecular and Cellular Biology, Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Danni Chen
- Department of Molecular and Cellular Biology, Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Kasra Askari
- Department of Molecular and Cellular Biology, Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jing He
- Department of Molecular and Cellular Biology, Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Aparna Shukla
- Department of Molecular and Cellular Biology, Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Binchu Shaji
- Department of Molecular and Cellular Biology, Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Rosana Gonzalez-Quintial
- Department of Autoimmunity & Viral Immunopathology, San Diego BioMed Institute, San Diego, CA 92121, USA
| | - Ben A Croker
- Department of Pediatrics, University of California San Diego; La Jolla, CA 92093, USA
| | - Jinzhong Zhang
- Department of Molecular and Cellular Biology, Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Hal Hoffman
- Department of Pediatrics, University of California San Diego; La Jolla, CA 92093, USA
| | - William B Kiosses
- Division of Inflammation Biology, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Catherine Hedrick
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Kersi Pestonjamasp
- Department of Molecular and Cellular Biology, Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Nathan Wineinger
- Scripps Research Translational Institute, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Roberto Baccala
- Department of Autoimmunity & Viral Immunopathology, San Diego BioMed Institute, San Diego, CA 92121, USA
| | - Sergio D Catz
- Department of Molecular and Cellular Biology, Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
2
|
Lu F, Verleg SMNE, Groven RVM, Poeze M, van Griensven M, Blokhuis TJ. Is there a role for N1-N2 neutrophil phenotypes in bone regeneration? A systematic review. Bone 2024; 181:117021. [PMID: 38253189 DOI: 10.1016/j.bone.2024.117021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 01/02/2024] [Accepted: 01/17/2024] [Indexed: 01/24/2024]
Abstract
PURPOSE This review aims to provide an overview of the multiple functions of neutrophils, with the recognition of the inflammatory (N1) and regenerative (N2) phenotypes, in relation to fracture healing. METHODS A literature search was performed using the PubMed database. The quality of the articles was evaluated using critical appraisal checklists. RESULTS Thirty one studies were included in this review. These studies consistently support that neutrophils exert both beneficial and detrimental effects on bone regeneration, influenced by Tumor Necrosis Factor-α (TNF-α), Interleukin 8 (IL-8), mast cells, and macrophages. The N2 phenotype has recently emerged as one promoter of bone healing. The N1 phenotype has progressively been connected with inflammatory neutrophils during fracture healing. CONCLUSIONS This review has pinpointed various aspects and mechanisms of neutrophil influence on bone healing. The recognition of N1 and N2 neutrophil phenotypes potentially shed new light on the dynamic shifts taking place within the Fracture Hematoma (FH).
Collapse
Affiliation(s)
- Fangzhou Lu
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, the Netherlands; Division of Trauma Surgery, Department of Surgery, Maastricht University Medical Center, P. Debyelaan 25, 6229 HX Maastricht, the Netherlands.
| | - Samai M N E Verleg
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, the Netherlands; Division of Trauma Surgery, Department of Surgery, Maastricht University Medical Center, P. Debyelaan 25, 6229 HX Maastricht, the Netherlands.
| | - Rald V M Groven
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, the Netherlands; Division of Trauma Surgery, Department of Surgery, Maastricht University Medical Center, P. Debyelaan 25, 6229 HX Maastricht, the Netherlands.
| | - Martijn Poeze
- Division of Trauma Surgery, Department of Surgery, Maastricht University Medical Center, P. Debyelaan 25, 6229 HX Maastricht, the Netherlands.
| | - Martijn van Griensven
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, the Netherlands.
| | - Taco J Blokhuis
- Division of Trauma Surgery, Department of Surgery, Maastricht University Medical Center, P. Debyelaan 25, 6229 HX Maastricht, the Netherlands.
| |
Collapse
|
3
|
Bert S, Nadkarni S, Perretti M. Neutrophil-T cell crosstalk and the control of the host inflammatory response. Immunol Rev 2023; 314:36-49. [PMID: 36326214 PMCID: PMC10952212 DOI: 10.1111/imr.13162] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
While fundamental in their innate role in combating infection and responding to injury, neutrophils are emerging as key modulators of adaptive immune responses. Such functions are attained via both soluble and nonsoluble effectors that enable at least two major downstream outcomes: first, to mediate and control acute inflammatory responses and second, to regulate adaptive immunity and ultimately promoting the development and maintenance of immune tolerance either by releasing immuno-modulatory factors, including cytokines, or by directly interacting with cells of the adaptive immune system. Herein, we review these novel properties of neutrophils and redefine the pathophysiological functions of these fascinating multi-tasking cells, exploring the different mechanisms through which neutrophils are able to either enhance and orchestrate T cell pro-inflammatory responses or inhibit T cell activity to maintain immune tolerance.
Collapse
Affiliation(s)
- Serena Bert
- The William Harvey Research InstituteQueen Mary University of LondonLondonUK
| | - Suchita Nadkarni
- The William Harvey Research InstituteQueen Mary University of LondonLondonUK
| | - Mauro Perretti
- The William Harvey Research InstituteQueen Mary University of LondonLondonUK
| |
Collapse
|
4
|
Antuamwine BB, Bosnjakovic R, Hofmann-Vega F, Wang X, Theodosiou T, Iliopoulos I, Brandau S. N1 versus N2 and PMN-MDSC: A critical appraisal of current concepts on tumor-associated neutrophils and new directions for human oncology. Immunol Rev 2022; 314:250-279. [PMID: 36504274 DOI: 10.1111/imr.13176] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Research on tumor-associated neutrophils (TAN) currently surges because of the well-documented strong clinical relevance of tumor-infiltrating neutrophils. This relevance is illustrated by strong correlations between high frequencies of intratumoral neutrophils and poor outcome in the majority of human cancers. Recent high-dimensional analysis of murine neutrophils provides evidence for unexpected plasticity of neutrophils in murine models of cancer and other inflammatory non-malignant diseases. New analysis tools enable deeper insight into the process of neutrophil differentiation and maturation. These technological and scientific developments led to the description of an ever-increasing number of distinct transcriptional states and associated phenotypes in murine models of disease and more recently also in humans. At present, functional validation of these different transcriptional states and potential phenotypes in cancer is lacking. Current functional concepts on neutrophils in cancer rely mainly on the myeloid-derived suppressor cell (MDSC) concept and the dichotomous and simple N1-N2 paradigm. In this manuscript, we review the historic development of those concepts, critically evaluate these concepts against the background of our own work and provide suggestions for a refinement of current concepts in order to facilitate the transition of TAN research from experimental insight to clinical translation.
Collapse
Affiliation(s)
- Benedict Boateng Antuamwine
- Experimental and Translational Research, Department of Otorhinolaryngology, University Hospital Essen, Essen, Germany
| | - Rebeka Bosnjakovic
- Experimental and Translational Research, Department of Otorhinolaryngology, University Hospital Essen, Essen, Germany
| | - Francisca Hofmann-Vega
- Experimental and Translational Research, Department of Otorhinolaryngology, University Hospital Essen, Essen, Germany
| | - Xi Wang
- Experimental and Translational Research, Department of Otorhinolaryngology, University Hospital Essen, Essen, Germany
| | - Theodosios Theodosiou
- Department of Basic Sciences, School of Medicine, University of Crete, Heraklion, Greece
| | - Ioannis Iliopoulos
- Department of Basic Sciences, School of Medicine, University of Crete, Heraklion, Greece
| | - Sven Brandau
- Experimental and Translational Research, Department of Otorhinolaryngology, University Hospital Essen, Essen, Germany.,German Cancer Consortium, Partner Site Essen-Düsseldorf, Essen, Germany
| |
Collapse
|
5
|
Fonseca S, Carvalho AL, Miquel-Clopés A, Jones EJ, Juodeikis R, Stentz R, Carding SR. Extracellular vesicles produced by the human gut commensal bacterium Bacteroides thetaiotaomicron elicit anti-inflammatory responses from innate immune cells. Front Microbiol 2022; 13:1050271. [PMID: 36439842 PMCID: PMC9684339 DOI: 10.3389/fmicb.2022.1050271] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 10/25/2022] [Indexed: 07/24/2023] Open
Abstract
Bacterial extracellular vesicles (BEVs) produced by gut commensal bacteria have been proposed to play an important role in maintaining host homeostasis via interactions with the immune system. Details of the mediators and pathways of BEV-immune cell interactions are however incomplete. In this study, we provide evidence for the anti-inflammatory and immunomodulatory properties of extracellular vesicles produced by the prominent human gut commensal bacterium Bacteroides thetaiotaomicron (Bt BEVs) and identify the molecular mechanisms underlying their interaction with innate immune cells. Administration of Bt BEVs to mice treated with colitis-inducing dextran sodium sulfate (DSS) ameliorates the symptoms of intestinal inflammation, improving survival rate and reducing weight loss and disease activity index scores, in association with upregulation of IL-10 production in colonic tissue and in splenocytes. Pre-treatment (conditioning) of murine bone marrow derived monocytes (BMDM) with Bt BEVs resulted in higher ratio of IL-10/TNFα production after an LPS challenge when compared to LPS pre-conditioned or non-conditioned BMDM. Using the THP-1 monocytic cell line the interactions between Bt BEVs and monocytes/macrophages were shown to be mediated primarily by TLR2. Histone (H3K4me1) methylation analysis showed that Bt BEVs induced epigenetic reprogramming which persisted after infectious challenge, as revealed by increased levels of H3K4me1 in Bt BEV-conditioned LPS-challenged BMDM. Collectively, our findings highlight the important role of Bt BEVs in maintaining host immune homeostasis and raise the promising possibility of considering their use in immune therapies.
Collapse
Affiliation(s)
- Sonia Fonseca
- Gut Microbes and Health, Quadram Institute Bioscience, Norwich, United Kingdom
| | - Ana L. Carvalho
- Gut Microbes and Health, Quadram Institute Bioscience, Norwich, United Kingdom
- Department of Women’s and Children’s Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | | | - Emily J. Jones
- Gut Microbes and Health, Quadram Institute Bioscience, Norwich, United Kingdom
| | - Rokas Juodeikis
- Gut Microbes and Health, Quadram Institute Bioscience, Norwich, United Kingdom
| | - Régis Stentz
- Gut Microbes and Health, Quadram Institute Bioscience, Norwich, United Kingdom
| | - Simon R. Carding
- Gut Microbes and Health, Quadram Institute Bioscience, Norwich, United Kingdom
- Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| |
Collapse
|
6
|
Zheng Y, Sefik E, Astle J, Karatepe K, Öz HH, Solis AG, Jackson R, Luo HR, Bruscia EM, Halene S, Shan L, Flavell RA. Human neutrophil development and functionality are enabled in a humanized mouse model. Proc Natl Acad Sci U S A 2022; 119:e2121077119. [PMID: 36269862 PMCID: PMC9618085 DOI: 10.1073/pnas.2121077119] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 08/09/2022] [Indexed: 02/03/2023] Open
Abstract
Mice with a functional human immune system serve as an invaluable tool to study the development and function of the human immune system in vivo. A major technological limitation of all current humanized mouse models is the lack of mature and functional human neutrophils in circulation and tissues. To overcome this, we generated a humanized mouse model named MISTRGGR, in which the mouse granulocyte colony-stimulating factor (G-CSF) was replaced with human G-CSF and the mouse G-CSF receptor gene was deleted in existing MISTRG mice. By targeting the G-CSF cytokine-receptor axis, we dramatically improved the reconstitution of mature circulating and tissue-infiltrating human neutrophils in MISTRGGR mice. Moreover, these functional human neutrophils in MISTRGGR are recruited upon inflammatory and infectious challenges and help reduce bacterial burden. MISTRGGR mice represent a unique mouse model that finally permits the study of human neutrophils in health and disease.
Collapse
Affiliation(s)
- Yunjiang Zheng
- Department of Immunobiology, Yale University, New Haven, CT 06520
| | - Esen Sefik
- Department of Immunobiology, Yale University, New Haven, CT 06520
| | - John Astle
- Department of Immunobiology, Yale University, New Haven, CT 06520
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Kutay Karatepe
- Department of Cell Biology, Yale University, New Haven, CT 06520
- Yale Stem Cell Center, Yale University, New Haven, CT 06520
| | - Hasan H. Öz
- Section of Pediatric Pulmonology, Allergy, Immunology & Sleep Medicine, Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06520
| | - Angel G. Solis
- Department of Immunobiology, Yale University, New Haven, CT 06520
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104
| | - Ruaidhrí Jackson
- Department of Immunobiology, Yale University, New Haven, CT 06520
- Department of Immunology, Harvard Medical School, Boston, MA 02115
| | - Hongbo R. Luo
- Department of Laboratory Medicine, The Stem Cell Program, Boston Children’s Hospital, Boston, MA 02115
- Department of Pathology, Harvard Medical School, Boston, MA 02115
| | - Emanuela M. Bruscia
- Section of Pediatric Pulmonology, Allergy, Immunology & Sleep Medicine, Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06520
| | - Stephanie Halene
- Section of Hematology, Department of Internal Medicine, Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT 06520
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06520
| | - Liang Shan
- Department of Immunobiology, Yale University, New Haven, CT 06520
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO 63110
| | - Richard A. Flavell
- Department of Immunobiology, Yale University, New Haven, CT 06520
- Howard Hughes Medical Institute (HHMI), New Haven, CT 06520
| |
Collapse
|
7
|
Montaldo E, Lusito E, Bianchessi V, Caronni N, Scala S, Basso-Ricci L, Cantaffa C, Masserdotti A, Barilaro M, Barresi S, Genua M, Vittoria FM, Barbiera G, Lazarevic D, Messina C, Xue E, Marktel S, Tresoldi C, Milani R, Ronchi P, Gattillo S, Santoleri L, Di Micco R, Ditadi A, Belfiori G, Aleotti F, Naldini MM, Gentner B, Gardiman E, Tamassia N, Cassatella MA, Hidalgo A, Kwok I, Ng LG, Crippa S, Falconi M, Pettinella F, Scapini P, Naldini L, Ciceri F, Aiuti A, Ostuni R. Cellular and transcriptional dynamics of human neutrophils at steady state and upon stress. Nat Immunol 2022; 23:1470-1483. [PMID: 36138183 PMCID: PMC7615267 DOI: 10.1038/s41590-022-01311-1] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 08/10/2022] [Indexed: 02/04/2023]
Abstract
Traditionally viewed as poorly plastic, neutrophils are now recognized as functionally diverse; however, the extent and determinants of neutrophil heterogeneity in humans remain unclear. We performed a comprehensive immunophenotypic and transcriptome analysis, at a bulk and single-cell level, of neutrophils from healthy donors and patients undergoing stress myelopoiesis upon exposure to growth factors, transplantation of hematopoietic stem cells (HSC-T), development of pancreatic cancer and viral infection. We uncover an extreme diversity of human neutrophils in vivo, reflecting the rates of cell mobilization, differentiation and exposure to environmental signals. Integrated control of developmental and inducible transcriptional programs linked flexible granulopoietic outputs with elicitation of stimulus-specific functional responses. In this context, we detected an acute interferon (IFN) response in the blood of patients receiving HSC-T that was mirrored by marked upregulation of IFN-stimulated genes in neutrophils but not in monocytes. Systematic characterization of human neutrophil plasticity may uncover clinically relevant biomarkers and support the development of diagnostic and therapeutic tools.
Collapse
Affiliation(s)
- Elisa Montaldo
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy.
| | - Eleonora Lusito
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Valentina Bianchessi
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Nicoletta Caronni
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Serena Scala
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Luca Basso-Ricci
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Carla Cantaffa
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alice Masserdotti
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Mattia Barilaro
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Simona Barresi
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Marco Genua
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Francesco Maria Vittoria
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giulia Barbiera
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Dejan Lazarevic
- Center for Omics Sciences (COSR), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Carlo Messina
- Hematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Elisabetta Xue
- Hematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Sarah Marktel
- Hematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Cristina Tresoldi
- Molecular Hematology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Raffaella Milani
- Immunohematology and Transfusion Medicine Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Paola Ronchi
- Immunohematology and Transfusion Medicine Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Salvatore Gattillo
- Immunohematology and Transfusion Medicine Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Luca Santoleri
- Immunohematology and Transfusion Medicine Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Raffaella Di Micco
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Andrea Ditadi
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giulio Belfiori
- Pancreas Translational and Clinical Research Center, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Francesca Aleotti
- Pancreas Translational and Clinical Research Center, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Matteo Maria Naldini
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Bernhard Gentner
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Elisa Gardiman
- Section of General Pathology, Department of Medicine, University of Verona, Verona, Italy
| | - Nicola Tamassia
- Section of General Pathology, Department of Medicine, University of Verona, Verona, Italy
| | | | - Andrés Hidalgo
- Area of Cell and Developmental Biology, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| | - Immanuel Kwok
- Singapore Immunology Network (SIgN), A*STAR, Biopolis, Singapore, Singapore
| | - Lai Guan Ng
- Singapore Immunology Network (SIgN), A*STAR, Biopolis, Singapore, Singapore
| | - Stefano Crippa
- Pancreas Translational and Clinical Research Center, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Massimo Falconi
- Pancreas Translational and Clinical Research Center, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Francesca Pettinella
- Section of General Pathology, Department of Medicine, University of Verona, Verona, Italy
| | - Patrizia Scapini
- Section of General Pathology, Department of Medicine, University of Verona, Verona, Italy
| | - Luigi Naldini
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Fabio Ciceri
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Hematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Alessandro Aiuti
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Renato Ostuni
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy.
- Vita-Salute San Raffaele University, Milan, Italy.
| |
Collapse
|
8
|
Current Understanding of the Neutrophil Transcriptome in Health and Disease. Cells 2021; 10:cells10092406. [PMID: 34572056 PMCID: PMC8469435 DOI: 10.3390/cells10092406] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 12/23/2022] Open
Abstract
Neutrophils are key cells of the innate immune system. It is now understood that this leukocyte population is diverse in both the basal composition and functional plasticity. Underlying this plasticity is a post-translational framework for rapidly achieving early activation states, but also a transcriptional capacity that is becoming increasingly recognized by immunologists. Growing interest in the contribution of neutrophils to health and disease has resulted in more efforts to describe their transcriptional activity. Whilst initial efforts focused predominantly on understanding the existing biology, investigations with advanced methods such as single cell RNA sequencing to understand interactions of the entire immune system are revealing higher flexibility in neutrophil transcription than previously thought possible and multiple transition states. It is now apparent that neutrophils utilise many forms of RNA in the regulation of their function. This review collates current knowledge on the nuclei structure and gene expression activity of human neutrophils across homeostasis and disease, before highlighting knowledge gaps that are research priority areas.
Collapse
|
9
|
Role of S100A8/A9 for Cytokine Secretion, Revealed in Neutrophils Derived from ER-Hoxb8 Progenitors. Int J Mol Sci 2021; 22:ijms22168845. [PMID: 34445548 PMCID: PMC8396251 DOI: 10.3390/ijms22168845] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/11/2021] [Accepted: 08/13/2021] [Indexed: 11/17/2022] Open
Abstract
S100A9, a Ca2+-binding protein, is tightly associated to neutrophil pro-inflammatory functions when forming a heterodimer with its S100A8 partner. Upon secretion into the extracellular environment, these proteins behave like damage-associated molecular pattern molecules, which actively participate in the amplification of the inflammation process by recruitment and activation of pro-inflammatory cells. Intracellular functions have also been attributed to the S100A8/A9 complex, notably its ability to regulate nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activation. However, the complete functional spectrum of S100A8/A9 at the intracellular level is far from being understood. In this context, we here investigated the possibility that the absence of intracellular S100A8/A9 is involved in cytokine secretion. To overcome the difficulty of genetically modifying neutrophils, we used murine neutrophils derived from wild-type and S100A9−/− Hoxb8 immortalized myeloid progenitors. After confirming that differentiated Hoxb8 neutrophil-like cells are a suitable model to study neutrophil functions, our data show that absence of S100A8/A9 led to a dysregulation of cytokine secretion after lipopolysaccharide (LPS) stimulation. Furthermore, we demonstrate that S100A8/A9-induced cytokine secretion was regulated by the nuclear factor kappa B (NF-κB) pathway. These results were confirmed in human differentiated HL-60 cells, in which S100A9 was inhibited by shRNAs. Finally, our results indicate that the degranulation process could be involved in the regulation of cytokine secretion by S100A8/A9.
Collapse
|
10
|
Induction of OCT2 contributes to regulate the gene expression program in human neutrophils activated via TLR8. Cell Rep 2021; 35:109143. [PMID: 34010659 DOI: 10.1016/j.celrep.2021.109143] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 03/27/2021] [Accepted: 04/26/2021] [Indexed: 12/23/2022] Open
Abstract
The transcription factors (TFs) that regulate inducible genes in activated neutrophils are not yet completely characterized. Herein, we show that the genomic distribution of the histone modification H3K27Ac, as well as PU.1 and C/EBPβ, two myeloid-lineage-determining TFs (LDTFs), significantly changes in human neutrophils treated with R848, a ligand of Toll-like receptor 8 (TLR8). Interestingly, differentially acetylated and LDTF-marked regions reveal an over-representation of OCT-binding motifs that are selectively bound by OCT2/POU2F2. Analysis of OCT2 genomic distribution in primary neutrophils and of OCT2-depletion in HL-60-differentiated neutrophils proves the requirement for OCT2 in contributing to promote, along with nuclear factor κB (NF-κB) and activator protein 1 (AP-1), the TLR8-induced gene expression program in neutrophils. Altogether, our data demonstrate that neutrophils, upon activation via TLR8, profoundly reprogram their chromatin status, ultimately displaying cell-specific, prolonged transcriptome changes. Data also show an unexpected role for OCT2 in amplifying the transcriptional response to TLR8-mediated activation.
Collapse
|
11
|
Neutrophils in Tuberculosis: Cell Biology, Cellular Networking and Multitasking in Host Defense. Int J Mol Sci 2021; 22:ijms22094801. [PMID: 33946542 PMCID: PMC8125784 DOI: 10.3390/ijms22094801] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/28/2021] [Accepted: 04/28/2021] [Indexed: 12/20/2022] Open
Abstract
Neutrophils readily infiltrate infection foci, phagocytose and usually destroy microbes. In tuberculosis (TB), a chronic pulmonary infection caused by Mycobacterium tuberculosis (Mtb), neutrophils harbor bacilli, are abundant in tissue lesions, and their abundances in blood correlate with poor disease outcomes in patients. The biology of these innate immune cells in TB is complex. Neutrophils have been assigned host-beneficial as well as deleterious roles. The short lifespan of neutrophils purified from blood poses challenges to cell biology studies, leaving intracellular biological processes and the precise consequences of Mtb–neutrophil interactions ill-defined. The phenotypic heterogeneity of neutrophils, and their propensity to engage in cellular cross-talk and to exert various functions during homeostasis and disease, have recently been reported, and such observations are newly emerging in TB. Here, we review the interactions of neutrophils with Mtb, including subcellular events and cell fate upon infection, and summarize the cross-talks between neutrophils and lung-residing and -recruited cells. We highlight the roles of neutrophils in TB pathophysiology, discussing recent findings from distinct models of pulmonary TB, and emphasize technical advances that could facilitate the discovery of novel neutrophil-related disease mechanisms and enrich our knowledge of TB pathogenesis.
Collapse
|
12
|
González LA, Melo-González F, Sebastián VP, Vallejos OP, Noguera LP, Suazo ID, Schultz BM, Manosalva AH, Peñaloza HF, Soto JA, Parker D, Riedel CA, González PA, Kalergis AM, Bueno SM. Characterization of the Anti-Inflammatory Capacity of IL-10-Producing Neutrophils in Response to Streptococcus pneumoniae Infection. Front Immunol 2021; 12:638917. [PMID: 33995357 PMCID: PMC8113954 DOI: 10.3389/fimmu.2021.638917] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 04/06/2021] [Indexed: 12/14/2022] Open
Abstract
Neutrophils are immune cells classically defined as pro-inflammatory effector cells. However, current accumulated evidence indicates that neutrophils have more versatile immune-modulating properties. During acute lung infection with Streptococcus pneumoniae in mice, interleukin-10 (IL-10) production is required to temper an excessive lung injury and to improve survival, yet the cellular source of IL-10 and the immunomodulatory role of neutrophils during S. pneumoniae infection remain unknown. Here we show that neutrophils are the main myeloid cells that produce IL-10 in the lungs during the first 48 h of infection. Importantly, in vitro assays with bone-marrow derived neutrophils confirmed that IL-10 can be induced by these cells by the direct recognition of pneumococcal antigens. In vivo, we identified the recruitment of two neutrophil subpopulations in the lungs following infection, which exhibited clear morphological differences and a distinctive profile of IL-10 production at 48 h post-infection. Furthermore, adoptive transfer of neutrophils from WT mice into IL-10 knockout mice (Il10-/-) fully restored IL-10 production in the lungs and reduced lung histopathology. These results suggest that IL-10 production by neutrophils induced by S. pneumoniae limits lung injury and is important to mediate an effective immune response required for host survival.
Collapse
Affiliation(s)
- Liliana A González
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Felipe Melo-González
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Valentina P Sebastián
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Omar P Vallejos
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Loreani P Noguera
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Isidora D Suazo
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Bárbara M Schultz
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Andrés H Manosalva
- Servicio de Anatomía Patológica, Hospital Barros Luco Trudeau, Santiago, Chile
| | - Hernán F Peñaloza
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Jorge A Soto
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Dane Parker
- Department of Pathology, Immunology and Laboratory Medicine, Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ, United States
| | - Claudia A Riedel
- Millennium Institute on Immunology and Immunotherapy, Departamento de Biología Celular, Facultad de Ciencias Biológicas y Facultad de Medicina, Universidad Andrés Bello, Santiago, Chile
| | - Pablo A González
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis M Kalergis
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Susan M Bueno
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
13
|
Cassatella MA, Gardiman E, Arruda-Silva F, Bianchetto-Aguilera F, Gasperini S, Bugatti M, Vermi W, Larousserie F, Devergne O, Tamassia N. Human neutrophils activated by TLR8 agonists, with or without IFNγ, synthesize and release EBI3, but not IL-12, IL-27, IL-35, or IL-39. J Leukoc Biol 2020; 108:1515-1526. [PMID: 32480433 DOI: 10.1002/jlb.3ma0520-054r] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 05/08/2020] [Indexed: 12/14/2022] Open
Abstract
The IL-12 family of cytokines plays crucial functions in innate and adaptive immunity. These cytokines include heterodimers sharing distinct α (IL-12A, IL-23A, and IL-27A) with two β (IL-12B and Epstein-Barr virus induced gene 3 [EBI3]) chains, respectively, IL-12 (IL-12B plus IL-12A) and IL-23 (IL-12B plus IL-23A) sharing IL-12B, IL-27 (EBI3 plus IL-27A), IL-35 (EBI3 plus IL-12A), and IL-39 (EBI3 plus IL-23A) sharing EBI3. In this context, we have recently reported that highly pure neutrophils incubated with TLR8 agonists produce functional IL-23. Previously, we showed that neutrophils incubated with LPS plus IFNγ for 20 h produce IL-12. Herein, we investigated whether highly pure, TLR8-activated, neutrophils produce EBI3, and in turn IL-27, IL-35, and IL-39, the IL-12 members containing it. We report that neutrophils incubated with TLR8 ligands, TNFα and, to a lesser extent, LPS, produce and release remarkable amounts of EBI3, but not IL-27A, consequently excluding the possibility for an IL-27 production. We also report a series of unsuccessful experiments performed to investigate whether neutrophil-derived EBI3 associates with IL-23A to form IL-39. Furthermore, we show that neutrophils incubated with IFNγ in combination with either TLR8 or TLR4 ligands express/produce neither IL-12, nor IL-35, due to the inability of IFNγ, contrary to previous findings, to activate IL12A transcription. Even IL-27 was undetectable in supernatants harvested from IFNγ plus R848-treated neutrophils, although they were found to accumulate IL27A transcripts. Finally, by immunohistochemistry experiments, EBI3-positive neutrophils were found in discrete pathologies only, including diverticulitis, cholecystitis, Gorham disease, and Bartonella Henselae infection, implying a specific role of neutrophil-derived EBI3 in vivo.
Collapse
Affiliation(s)
- Marco A Cassatella
- Department of Medicine, Section of General Pathology, University of Verona, Verona, Italy
| | - Elisa Gardiman
- Department of Medicine, Section of General Pathology, University of Verona, Verona, Italy
| | - Fabio Arruda-Silva
- Department of Medicine, Section of General Pathology, University of Verona, Verona, Italy
| | | | - Sara Gasperini
- Department of Medicine, Section of General Pathology, University of Verona, Verona, Italy
| | - Mattia Bugatti
- Department of Molecular and Translational Medicine, Section of Pathology, University of Brescia, Brescia, Italy
| | - William Vermi
- Department of Molecular and Translational Medicine, Section of Pathology, University of Brescia, Brescia, Italy
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Frederique Larousserie
- Sorbonne Université, INSERM, CNRS, Centre d'Immunologie et des Maladies Infectieuses, Paris, France
- Département de Pathologie, Hôpital Cochin, AP-HP, Université de Paris, Paris, France
| | - Odile Devergne
- Sorbonne Université, INSERM, CNRS, Centre d'Immunologie et des Maladies Infectieuses, Paris, France
| | - Nicola Tamassia
- Department of Medicine, Section of General Pathology, University of Verona, Verona, Italy
| |
Collapse
|
14
|
Siwapornchai N, Lee JN, Tchalla EYI, Bhalla M, Yeoh JH, Roggensack SE, Leong JM, Bou Ghanem EN. Extracellular adenosine enhances the ability of PMNs to kill Streptococcus pneumoniae by inhibiting IL-10 production. J Leukoc Biol 2020; 108:867-882. [PMID: 32017200 DOI: 10.1002/jlb.4ma0120-115rr] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 01/14/2020] [Accepted: 01/17/2020] [Indexed: 12/18/2022] Open
Abstract
Polymorphonuclear leukocytes (PMNs) are crucial for initial control of Streptococcus pneumoniae (pneumococcus) lung infection; however, as the infection progresses their persistence in the lungs becomes detrimental. Here we explored why the antimicrobial efficacy of PMNs declines over the course of infection. We found that the progressive inability of PMNs to control infection correlated with phenotypic differences characterized by a decrease in CD73 expression, an enzyme required for production of extracellular adenosine (EAD). EAD production by CD73 was crucial for the ability of both murine and human PMNs to kill S. pneumoniae. In exploring the mechanisms by which CD73 controlled PMN function, we found that CD73 mediated its antimicrobial activity by inhibiting IL-10 production. PMNs from wild-type mice did not increase IL-10 production in response to S. pneumoniae; however, CD73-/- PMNs up-regulated IL-10 production upon pneumococcal infection in vitro and during lung challenge. IL-10 inhibited the ability of WT PMNs to kill pneumococci. Conversely, blocking IL-10 boosted the bactericidal activity of CD73-/- PMNs as well as host resistance of CD73-/- mice to pneumococcal pneumonia. CD73/IL-10 did not affect apoptosis, bacterial uptake, and intracellular killing or production of antimicrobial neutrophil elastase and myeloperoxidase. Rather, inhibition of IL-10 production by CD73 was important for optimal reactive oxygen species (ROS) production by PMNs. ROS contributed to PMN antimicrobial function as their removal or detoxification impaired the ability of PMNs to efficiently kill S. pneumoniae. This study demonstrates that CD73 controls PMN antimicrobial phenotype during S. pneumoniae infection.
Collapse
Affiliation(s)
- Nalat Siwapornchai
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - James N Lee
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Essi Y I Tchalla
- Department of Microbiology and Immunology, University at Buffalo School of Medicine, Buffalo, New York, USA
| | - Manmeet Bhalla
- Department of Microbiology and Immunology, University at Buffalo School of Medicine, Buffalo, New York, USA
| | - Jun Hui Yeoh
- Department of Microbiology and Immunology, University at Buffalo School of Medicine, Buffalo, New York, USA
| | - Sara E Roggensack
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - John M Leong
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Elsa N Bou Ghanem
- Department of Microbiology and Immunology, University at Buffalo School of Medicine, Buffalo, New York, USA
| |
Collapse
|
15
|
Abstract
Venous blood provides a ready source of large numbers of unstimulated granulocytes and mononuclear cells. Exploiting the differences in the relative densities of the leukocytes circulating in venous blood, one can separate leukocytes from erythrocytes as well as isolate the individual leukocyte populations in high purity for use in ex vivo studies. For selected functional studies, such as transcriptional analysis or cytokine quantitation, addition of an immunomagnetic negative selection step to the standard isolation protocol can yield highly purified human neutrophils.
Collapse
Affiliation(s)
- Silvie Kremserova
- Inflammation Program and Department of Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - William M Nauseef
- Inflammation Program and Department of Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
16
|
Abstract
Structured models of ontogenic, phenotypic and functional diversity have been instrumental for a renewed understanding of the biology of immune cells, such as macrophages and lymphoid cells. However, there are no established models that can be used to define the diversity of neutrophils, the most abundant myeloid cells. This lack of an established model is largely due to the uniquely short lives of neutrophils, a consequence of their inability to divide once terminally differentiated, which has been perceived as a roadblock to functional diversity. This perception is rapidly evolving as multiple phenotypic and functional variants of neutrophils have been found, both in homeostatic and disease conditions. In this Opinion article, we present an overview of neutrophil heterogeneity and discuss possible mechanisms of diversification, including genomic regulation. We suggest that neutrophil heterogeneity is an important feature of immune pathophysiology, such that co-option of the mechanisms of diversification by cancer or other disorders contributes to disease progression.
Collapse
|
17
|
Zindel J, Kubes P. DAMPs, PAMPs, and LAMPs in Immunity and Sterile Inflammation. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2019; 15:493-518. [PMID: 31675482 DOI: 10.1146/annurev-pathmechdis-012419-032847] [Citation(s) in RCA: 431] [Impact Index Per Article: 86.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Recognizing the importance of leukocyte trafficking in inflammation led to some therapeutic breakthroughs. However, many inflammatory pathologies remain without specific therapy. This review discusses leukocytes in the context of sterile inflammation, a process caused by sterile (non-microbial) molecules, comprising damage-associated molecular patterns (DAMPs). DAMPs bind specific receptors to activate inflammation and start a highly optimized sequence of immune cell recruitment of neutrophils and monocytes to initiate effective tissue repair. When DAMPs are cleared, the recruited leukocytes change from a proinflammatory to a reparative program, a switch that is locally supervised by invariant natural killer T cells. In addition, neutrophils exit the inflammatory site and reverse transmigrate back to the bloodstream. Inflammation persists when the program switch or reverse transmigration fails, or when the coordinated leukocyte effort cannot clear the immunostimulatory molecules. The latter causes inappropriate leukocyte activation, a driver of many pathologies associated with poor lifestyle choices. We discuss lifestyle-associated inflammatory diseases and their corresponding immunostimulatory lifestyle-associated molecular patterns (LAMPs) and distinguish them from DAMPs.
Collapse
Affiliation(s)
- Joel Zindel
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta T2N 4N1, Canada; .,Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada.,Department of Visceral Surgery and Medicine, Department for BioMedical Research, University of Bern, CH-3008 Bern, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, CH-3012 Bern, Switzerland
| | - Paul Kubes
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta T2N 4N1, Canada; .,Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada.,Department of Microbiology, Immunology & Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| |
Collapse
|
18
|
Gideon HP, Phuah J, Junecko BA, Mattila JT. Neutrophils express pro- and anti-inflammatory cytokines in granulomas from Mycobacterium tuberculosis-infected cynomolgus macaques. Mucosal Immunol 2019; 12:1370-1381. [PMID: 31434990 PMCID: PMC6824993 DOI: 10.1038/s41385-019-0195-8] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 07/19/2019] [Accepted: 07/23/2019] [Indexed: 02/04/2023]
Abstract
Neutrophils are implicated in the pathogenesis of tuberculosis (TB), a disease caused by Mycobacterium tuberculosis infection, but the mechanisms by which they promote disease are not fully understood. Neutrophils can express cytokines that influence TB progression, and so we compared neutrophil and T-cell expression of the Th1 cytokines IFNγ and TNF, the Th2 cytokine IL-4, and regulatory cytokine IL-10 in M. tuberculosis-infected macaques to determine if neutrophil cytokine expression contributes to dysregulated immunity in TB. We found that peripheral blood neutrophils produced cytokines after stimulation by mycobacterial antigens and inactive and viable M. tuberculosis. M. tuberculosis antigen-stimulated neutrophils inhibited antigen-specific T-cell IFNγ production. In lung granulomas, neutrophil cytokine expression resembled T-cell cytokine expression, and although there was histologic evidence for neutrophil interaction with T cells, neutrophil cytokine expression was not correlated with T-cell cytokine expression or bacteria load. There was substantial overlap in the spatial arrangement of cytokine-expressing neutrophils and T cells, but IL-10-expressing neutrophils were also abundant in bacteria-rich areas between caseum and epithelioid macrophages. These results suggest that neutrophils contribute to the cytokine milieu in granulomas and may be important immunoregulatory cells in TB granulomas.
Collapse
Affiliation(s)
- Hannah P Gideon
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Jiayao Phuah
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Beth A Junecko
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Joshua T Mattila
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15261, USA.
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, 15261, USA.
| |
Collapse
|
19
|
Peiseler M, Kubes P. More friend than foe: the emerging role of neutrophils in tissue repair. J Clin Invest 2019; 129:2629-2639. [PMID: 31205028 DOI: 10.1172/jci124616] [Citation(s) in RCA: 208] [Impact Index Per Article: 41.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Neutrophils are the most abundant immune cells in humans and serve as first responders to a myriad of host perturbations. Equipped with a plethora of antimicrobial molecules, neutrophils invade sites of inflammation to eradicate pathogens and clear debris. Traditionally, neutrophils were thought to cause collateral tissue damage before dying at the site. However, the presence of neutrophil infiltration into sterile injuries (in the absence of infections) suggests additional roles for these cells. Now, the view of neutrophils as indiscriminate killers seems to be changing as evolving evidence suggests that neutrophils actively orchestrate resolution of inflammation and contribute to tissue repair. Novel concepts include the idea that neutrophils are key to revascularization and subsequently reverse-transmigrate back to the vasculature, actively leaving sites of tissue damage to re-home to functional niches in the lung and bone marrow. This Review scrutinizes the role of neutrophils in tissue damage and repair, discussing recent findings and raising unresolved questions around this intriguing immune cell.
Collapse
Affiliation(s)
- Moritz Peiseler
- Department of Pharmacology and Physiology.,Snyder Institute for Chronic Diseases, and
| | - Paul Kubes
- Department of Pharmacology and Physiology.,Snyder Institute for Chronic Diseases, and.,Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
20
|
Cassatella MA, Östberg NK, Tamassia N, Soehnlein O. Biological Roles of Neutrophil-Derived Granule Proteins and Cytokines. Trends Immunol 2019; 40:648-664. [PMID: 31155315 DOI: 10.1016/j.it.2019.05.003] [Citation(s) in RCA: 143] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 05/03/2019] [Accepted: 05/03/2019] [Indexed: 12/30/2022]
Abstract
Neutrophils, the most abundant white blood cells in human circulation, entertain intense interactions with other leukocyte subsets, platelets, and stromal cells. Molecularly, such interactions are typically communicated through proteins generated during granulopoiesis, stored in granules, or produced on demand. Here, we provide an overview of the mammalian regulation of granule protein production in the bone marrow and the de novo synthesis of cytokines by neutrophils recruited to tissues. In addition, we discuss some of the known biological roles of these protein messengers, and how neutrophil-borne granule proteins and cytokines can synergize to modulate inflammation and tumor development. Decoding the neutrophil interactome is important for therapeutically neutralizing individual proteins to putatively dampen inflammation, or for delivering modified neutrophil-borne proteins to boost host defense.
Collapse
Affiliation(s)
| | - Nataliya K Östberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Nicola Tamassia
- Department of Medicine, Section of General Pathology, University of Verona, Verona, Italy
| | - Oliver Soehnlein
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; Department of Medicine, Karolinska Institutet, Stockholm, Sweden; Institute for Cardiovascular Prevention (IPEK), Klinikum der LMU, München, Germany; German Centre for Cardiovascular Research (DZHK), Partner site, Munich, Germany.
| |
Collapse
|
21
|
Tamassia N, Arruda‐Silva F, Wright HL, Moots RJ, Gardiman E, Bianchetto‐Aguilera F, Gasperini S, Capone M, Maggi L, Annunziato F, Edwards SW, Cassatella MA. Human neutrophils activated via TLR8 promote Th17 polarization through IL‐23. J Leukoc Biol 2019; 105:1155-1165. [DOI: 10.1002/jlb.ma0818-308r] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 02/16/2019] [Accepted: 02/17/2019] [Indexed: 12/14/2022] Open
Affiliation(s)
- Nicola Tamassia
- Department of MedicineSection of General PathologyUniversity of Verona Verona Italy
| | - Fabio Arruda‐Silva
- Department of MedicineSection of General PathologyUniversity of Verona Verona Italy
- CAPES FoundationMinistry of Education of Brazil Brasilia DF Brazil
| | - Helen L. Wright
- Institute of Integrative BiologyUniversity of Liverpool Liverpool United Kindom
| | - Robert J. Moots
- Institute of Ageing and Chronic DiseaseUniversity of Liverpool Liverpool United Kindom
| | - Elisa Gardiman
- Department of MedicineSection of General PathologyUniversity of Verona Verona Italy
| | | | - Sara Gasperini
- Department of MedicineSection of General PathologyUniversity of Verona Verona Italy
| | - Manuela Capone
- Department of Experimental and Clinical Medicine and DENOTHE CenterUniversity of Florence Firenze Italy
| | - Laura Maggi
- Department of Experimental and Clinical Medicine and DENOTHE CenterUniversity of Florence Firenze Italy
| | - Francesco Annunziato
- Department of Experimental and Clinical Medicine and DENOTHE CenterUniversity of Florence Firenze Italy
| | - Steven W. Edwards
- Institute of Integrative BiologyUniversity of Liverpool Liverpool United Kindom
| | - Marco A. Cassatella
- Department of MedicineSection of General PathologyUniversity of Verona Verona Italy
| |
Collapse
|
22
|
Tamassia N, Bianchetto-Aguilera F, Arruda-Silva F, Gardiman E, Gasperini S, Calzetti F, Cassatella MA. Cytokine production by human neutrophils: Revisiting the "dark side of the moon". Eur J Clin Invest 2018; 48 Suppl 2:e12952. [PMID: 29772063 DOI: 10.1111/eci.12952] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 05/10/2018] [Indexed: 12/17/2022]
Abstract
Polymorphonuclear neutrophils are the most numerous leucocytes present in human blood, and function as crucial players in innate immune responses. Neutrophils are indispensable for the defence towards microbes, as they effectively counter them by releasing toxic enzymes, by synthetizing reactive oxygen species and by producing inflammatory mediators. Interestingly, recent findings have highlighted an important role of neutrophils also as promoters of the resolution of inflammation process, indicating that their biological functions go well beyond simple pathogen killing. Consistently, data from the last decades have highlighted that neutrophils may even contribute to the development of adaptive immunity by performing previously unanticipated functions, including the capacity to extend their survival, directly interact with other leucocytes or cell types, and produce and release a variety of cytokines. In this article, we will summarize the main features of, as well as emphasize some important concepts on, the production of cytokines by human neutrophils.
Collapse
Affiliation(s)
- Nicola Tamassia
- Department of Medicine, Section of General Pathology, University of Verona, Verona, Italy
| | | | - Fabio Arruda-Silva
- Department of Medicine, Section of General Pathology, University of Verona, Verona, Italy.,CAPES Foundation, Ministry of Education of Brazil, Brasilia, Brazil
| | - Elisa Gardiman
- Department of Medicine, Section of General Pathology, University of Verona, Verona, Italy
| | - Sara Gasperini
- Department of Medicine, Section of General Pathology, University of Verona, Verona, Italy
| | - Federica Calzetti
- Department of Medicine, Section of General Pathology, University of Verona, Verona, Italy
| | - Marco A Cassatella
- Department of Medicine, Section of General Pathology, University of Verona, Verona, Italy
| |
Collapse
|
23
|
Hajishengallis G, Korostoff JM. Revisiting the Page & Schroeder model: the good, the bad and the unknowns in the periodontal host response 40 years later. Periodontol 2000 2018; 75:116-151. [PMID: 28758305 DOI: 10.1111/prd.12181] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In their classic 1976 paper, Page & Schroeder described the histopathologic events and the types of myeloid cells and lymphocytes involved in the initiation and progression of inflammatory periodontal disease. The staging of periodontal disease pathogenesis as 'initial', 'early', 'established' and 'advanced' lesions productively guided subsequent research in the field and remains fundamentally valid. However, major advances regarding the cellular and molecular mechanisms underlying the induction, regulation and effector functions of immune and inflammatory responses necessitate a reassessment of their work and its integration with emerging new concepts. We now know that each type of leukocyte is actually represented by functionally distinct subsets with different, or even conflicting, roles in immunity and inflammation. Unexpectedly, neutrophils, traditionally regarded as merely antimicrobial effectors in acute conditions and protagonists of the 'initial' lesion, are currently appreciated for their functional versatility and critical roles in chronic inflammation. Moreover, an entirely new field of study, osteoimmunology, has emerged and sheds light on the impact of immunoinflammatory events on the skeletal system. These developments and the molecular dissection of crosstalk interactions between innate and adaptive leukocytes, as well as between the immune system and local homeostatic mechanisms, offer a more nuanced understanding of the host response in periodontitis, with profound implications for treatment. At the same time, deeper insights have generated new questions, many of which remain unanswered. In this review, 40 years after Page & Schroeder proposed their model, we summarize enduring and emerging advances in periodontal disease pathogenesis.
Collapse
|
24
|
Tamassia N, Arruda-Silva F, Calzetti F, Lonardi S, Gasperini S, Gardiman E, Bianchetto-Aguilera F, Gatta LB, Girolomoni G, Mantovani A, Vermi W, Cassatella MA. A Reappraisal on the Potential Ability of Human Neutrophils to Express and Produce IL-17 Family Members In Vitro: Failure to Reproducibly Detect It. Front Immunol 2018; 9:795. [PMID: 29719541 PMCID: PMC5913333 DOI: 10.3389/fimmu.2018.00795] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 04/03/2018] [Indexed: 12/20/2022] Open
Abstract
Neutrophils are known to perform a series of effector functions that are crucial for the innate and adaptive responses, including the synthesis and secretion of a variety of cytokines. In light of the controversial data in the literature, the main objective of this study was to more in-depth reevaluate the capacity of human neutrophils to express and produce cytokines of the IL-17 family in vitro. By reverse transcription quantitative real-time PCR, protein measurement via commercial ELISA, immunohistochemistry (IHC) and immunofluorescence (IF), flow cytometry, immunoblotting, chromatin immunoprecipitation (ChIP), and ChIP-seq experiments, we found that highly pure (>99.7%) populations of human neutrophils do not express/produce IL-17A, IL-17F, IL-17AF, or IL-17B mRNA/protein upon incubation with a variety of agonists. Similar findings were observed by analyzing neutrophils isolated from active psoriatic patients. In contrast with published studies, IL-17A and IL-17F mRNA expression/production was not even found when neutrophils were incubated with extremely high concentrations of IL-6 plus IL-23, regardless of their combination with inactivated hyphae or conidia from Aspergillus fumigatus. Consistently, no deposition of histone marks for active (H3K27Ac) and poised (H3K4me1) genomic regulatory elements was detected at the IL-17A and IL-17F locus of resting and IL-6 plus IL-23-stimulated neutrophils, indicating a closed chromatin conformation. Concurrent experiments revealed that some commercial anti-IL-17A and anti-IL-17B antibodies (Abs), although staining neutrophils either spotted on cytospin slides or present in inflamed tissue samples by IHC/IF, do not recognize intracellular protein having the molecular weight corresponding to IL-17A or IL-17B, respectively, in immunoblotting experiments of whole neutrophil lysates. By contrast, the same Abs were found to more specifically recognize other intracellular proteins of neutrophils, suggesting that their ability to positively stain neutrophils in cytospin preparations and, eventually, tissue samples derives from IL-17A- or IL-17B-independent detections. In sum, our data confirm and extend, also at epigenetic level, previous findings on the inability of highly purified populations of human neutrophils to express/produce IL-17A, IL-17B, and IL-17F mRNAs/proteins in vitro, at least under the experimental conditions herein tested. Data also provide a number of justifications explaining, in part, why it is possible to false positively detect IL-17A+-neutrophils.
Collapse
Affiliation(s)
- Nicola Tamassia
- Department of Medicine, Section of General Pathology, University of Verona, Verona, Italy
| | - Fabio Arruda-Silva
- Department of Medicine, Section of General Pathology, University of Verona, Verona, Italy.,CAPES Foundation, Ministry of Education of Brazil, Brasilia, Brazil
| | - Federica Calzetti
- Department of Medicine, Section of General Pathology, University of Verona, Verona, Italy
| | - Silvia Lonardi
- Department of Molecular and Translational Medicine, Section of Pathology, University of Brescia, Brescia, Italy
| | - Sara Gasperini
- Department of Medicine, Section of General Pathology, University of Verona, Verona, Italy
| | - Elisa Gardiman
- Department of Medicine, Section of General Pathology, University of Verona, Verona, Italy
| | | | - Luisa Benerini Gatta
- Department of Molecular and Translational Medicine, Section of Pathology, University of Brescia, Brescia, Italy
| | - Giampiero Girolomoni
- Department of Medicine, Section of Dermatology and Venereology, University of Verona, Verona, Italy
| | - Alberto Mantovani
- Humanitas Clinical and Research Center, Rozzano, Italy.,Humanitas University, Pieve Emanuele, Italy.,The William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - William Vermi
- Department of Molecular and Translational Medicine, Section of Pathology, University of Brescia, Brescia, Italy
| | - Marco A Cassatella
- Department of Medicine, Section of General Pathology, University of Verona, Verona, Italy
| |
Collapse
|
25
|
Blagojević V, Kovačević-Jovanović V, Ćuruvija I, Petrović R, Vujnović I, Vujić V, Stanojević S. Rat strain differences in peritoneal immune cell response to selected gut microbiota: A crossroad between tolerance and autoimmunity? Life Sci 2018; 197:147-157. [DOI: 10.1016/j.lfs.2018.02.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 02/06/2018] [Accepted: 02/07/2018] [Indexed: 02/06/2023]
|
26
|
Dos Santos PF, Van Weyenbergh J, Delgobo M, Oliveira Patricio DD, Ferguson BJ, Guabiraba R, Dierckx T, Menezes SM, Báfica A, Mansur DS. ISG15-Induced IL-10 Is a Novel Anti-Inflammatory Myeloid Axis Disrupted during Active Tuberculosis. THE JOURNAL OF IMMUNOLOGY 2018; 200:1434-1442. [PMID: 29311364 DOI: 10.4049/jimmunol.1701120] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 12/11/2017] [Indexed: 12/26/2022]
Abstract
IFN-stimulated gene 15 (ISG15) deficiency in humans leads to severe IFNopathies and mycobacterial disease, the latter being previously attributed to its extracellular cytokine-like activity. In this study, we demonstrate a novel role for secreted ISG15 as an IL-10 inducer, unique to primary human monocytes. A balanced ISG15-induced monocyte/IL-10 versus lymphoid/IFN-γ expression, correlating with p38 MAPK and PI3K signaling, was found using targeted in vitro and ex vivo systems analysis of human transcriptomic datasets. The specificity and MAPK/PI3K-dependence of ISG15-induced monocyte IL-10 production was confirmed in vitro using CRISPR/Cas9 knockout and pharmacological inhibitors. Moreover, this ISG15/IL-10 axis was amplified in leprosy but disrupted in human active tuberculosis (TB) patients. Importantly, ISG15 strongly correlated with inflammation and disease severity during active TB, suggesting its potential use as a biomarker, awaiting clinical validation. In conclusion, this study identifies a novel anti-inflammatory ISG15/IL-10 myeloid axis that is disrupted in active TB.
Collapse
Affiliation(s)
- Paula Fernandes Dos Santos
- Laboratório de Imunobiologia, Departamento de Microbiologia, Imunologia e Parasitologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Santa Catarina CEP 88040-900, Brazil
| | - Johan Van Weyenbergh
- Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory for Clinical and Epidemiological Virology, KU Leuven - University of Leuven, 3000 Leuven, Belgium
| | - Murilo Delgobo
- Laboratório de Imunobiologia, Departamento de Microbiologia, Imunologia e Parasitologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Santa Catarina CEP 88040-900, Brazil
| | - Daniel de Oliveira Patricio
- Laboratório de Imunobiologia, Departamento de Microbiologia, Imunologia e Parasitologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Santa Catarina CEP 88040-900, Brazil
| | - Brian J Ferguson
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, United Kingdom; and
| | - Rodrigo Guabiraba
- Infectiologie et Santé Publique, Institut National de la Recherche Agronomique, Université François Rabelais de Tours, 37380 Nouzilly, France
| | - Tim Dierckx
- Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory for Clinical and Epidemiological Virology, KU Leuven - University of Leuven, 3000 Leuven, Belgium
| | - Soraya Maria Menezes
- Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory for Clinical and Epidemiological Virology, KU Leuven - University of Leuven, 3000 Leuven, Belgium
| | - André Báfica
- Laboratório de Imunobiologia, Departamento de Microbiologia, Imunologia e Parasitologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Santa Catarina CEP 88040-900, Brazil;
| | - Daniel Santos Mansur
- Laboratório de Imunobiologia, Departamento de Microbiologia, Imunologia e Parasitologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Santa Catarina CEP 88040-900, Brazil;
| |
Collapse
|
27
|
Meng X, Sun W, Ren Y, Xiao Y, Zhao P, Lu W, Hua L, Wang L, Wang L, Yu Y. Protective role of surface Toll-like receptor 9 expressing neutrophils in local inflammation during systemic inflammatory response syndrome in mice. Mol Immunol 2017; 90:74-86. [PMID: 28704709 DOI: 10.1016/j.molimm.2017.07.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 06/22/2017] [Accepted: 07/01/2017] [Indexed: 12/24/2022]
Abstract
Clinically, systemic inflammatory response syndrome (SIRS) occurs after serious trauma or sepsis. In sepsis, neutrophils are the major effector cells responsible for eliminating pathogens. However, the role of neutrophils in development of SIRS, especially in local inflammatory area, is controversial. In this study, we established a SIRS mouse model characterized with cytokine-mediated lethal shock by intraperitoneal injection of oligodexynucleotides containing CpG motifs (CpG ODN) in D-galactosamine (D-GalN) sensitized mice based on our previous work and found that abundant neutrophils were rapidly recruited into the peritoneal cavity, where some neutrophils expressed surface TLR9 (sTLR9), defined as sTLR9+ neutrophils. Along with the progression of SIRS, the expression of sTLR9 in sTLR9+ neutrophils isolated from peritoneal lavage cells (PLCs) was declined in accompany with an increase in the level of the inflammatory cytokine TNFα and a decrease in the level of the anti-inflammatory cytokine IL-10 in Ly6G+ PLCs. When using CCT ODN, an oligodeoxynucleotide with CCT repeats, which we have previously shown to be capable of rescuing mice from lethal shock, the expression of sTLR9 on neutrophils was significantly elevated. Adoptive therapy using early recruited neutrophil-rich PLCs containing sTLR9+ neutrophils that express high levels of sTLR9, could rescue mice from SIRS. Overall, the data reveal that the early recruited sTLR9+ neutrophils may, at least in the area of local inflammation, play a protective role during SIRS development and provide a method to rescue the patients with severe SIRS via the up-regulation of sTLR9 levels on the surface of neutrophils or via adoptive therapy with protective sub-populations of neutrophils.
Collapse
Affiliation(s)
- Xiuping Meng
- Department of Immunology, College of Basic Medical Sciences, Norman Bethune Health Science Center, Jilin University, Changchun, Jilin, China; Department of Endodontics, School and Hospital of Stomatology, Jilin University, Changchun, Jilin, China
| | - Wei Sun
- Department of Molecular Biology, College of Basic Medical Sciences, Norman Bethune Health Science Center, Jilin University, Changchun, Jilin, China
| | - Yunjia Ren
- Department of Endodontics, School and Hospital of Stomatology, Jilin University, Changchun, Jilin, China; Department of Molecular Biology, College of Basic Medical Sciences, Norman Bethune Health Science Center, Jilin University, Changchun, Jilin, China
| | - Yue Xiao
- Department of Molecular Biology, College of Basic Medical Sciences, Norman Bethune Health Science Center, Jilin University, Changchun, Jilin, China
| | - Peiyan Zhao
- Department of Molecular Biology, College of Basic Medical Sciences, Norman Bethune Health Science Center, Jilin University, Changchun, Jilin, China
| | - Wenting Lu
- Department of Molecular Biology, College of Basic Medical Sciences, Norman Bethune Health Science Center, Jilin University, Changchun, Jilin, China
| | - Li Hua
- Department of Immunology, College of Basic Medical Sciences, Norman Bethune Health Science Center, Jilin University, Changchun, Jilin, China
| | - Luowei Wang
- Department of Molecular Biology, College of Basic Medical Sciences, Norman Bethune Health Science Center, Jilin University, Changchun, Jilin, China
| | - Liying Wang
- Department of Molecular Biology, College of Basic Medical Sciences, Norman Bethune Health Science Center, Jilin University, Changchun, Jilin, China.
| | - Yongli Yu
- Department of Immunology, College of Basic Medical Sciences, Norman Bethune Health Science Center, Jilin University, Changchun, Jilin, China.
| |
Collapse
|
28
|
Monticelli S, Natoli G. Transcriptional determination and functional specificity of myeloid cells: making sense of diversity. Nat Rev Immunol 2017; 17:595-607. [DOI: 10.1038/nri.2017.51] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
29
|
Eruslanov EB, Singhal S, Albelda SM. Mouse versus Human Neutrophils in Cancer: A Major Knowledge Gap. Trends Cancer 2017; 3:149-160. [PMID: 28718445 DOI: 10.1016/j.trecan.2016.12.006] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 12/19/2016] [Accepted: 12/20/2016] [Indexed: 01/06/2023]
Abstract
Many types of cancer recruit neutrophils that could have protumor or antitumor effects on tumor development. Numerous findings in murine models suggest a predominantly protumoral role for neutrophils in cancer development. However, there are fundamental differences between mouse and human tumors in the evolution of tumors, genetic diversity, immune response, and also in the intrinsic biology of neutrophils that might have a profound impact on tumor development and the function of these cells. A crucial difference is that the majority of mouse tumor models lack the prolonged initial phases of multistage tumor evolution present in humans when antitumoral mechanisms are activated. In this review, we discuss the challenges specific to cross-species extrapolation of neutrophil function during mouse versus human tumor development.
Collapse
Affiliation(s)
- Evgeniy B Eruslanov
- Division of Thoracic Surgery, Department of Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Sunil Singhal
- Division of Thoracic Surgery, Department of Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Division of Thoracic Surgery, Department of Surgery, Philadelphia VA Medical Center, Philadelphia, PA 19104, USA
| | - Steven M Albelda
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
30
|
Streata I, Weiner J, Iannaconne M, McEwen G, Ciontea MS, Olaru M, Capparelli R, Ioana M, Kaufmann SHE, Dorhoi A. The CARD9 Polymorphisms rs4077515, rs10870077 and rs10781499 Are Uncoupled from Susceptibility to and Severity of Pulmonary Tuberculosis. PLoS One 2016; 11:e0163662. [PMID: 27684065 PMCID: PMC5042433 DOI: 10.1371/journal.pone.0163662] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 09/12/2016] [Indexed: 01/09/2023] Open
Abstract
Genetic variants in the CARD9 gene predispose to inflammatory disorders and chronic infectious diseases. Tuberculosis (TB), a chronic infectious disease affecting the lung, is lethal in Card9-deficient mice. We hypothesized that polymorphisms in the CARD9 gene influence TB progression and disease-associated lung damage in humans. We tested genotype distributions of the CARD9 polymorphisms rs4077515, rs10781499 and rs10870077 in TB patients and healthy subjects in a Caucasian cohort. SNPs were in linkage disequilibrium and none of the haplotypes was significantly enriched in the TB group. We determined total and differential leukocyte count, erythrocyte sedimentation rate and plasma abundance of cytokines and chemokines as markers for systemic inflammation and scored chest X-rays to assess lung involvement in TB subjects. Most disease parameters segregated independently of the CARD9 haplotypes. In contrast to multifactorial chronic inflammation, selected genetic variants in the CARD9 gene leave host responses apparently unaffected in TB, at least in the population analyzed here.
Collapse
Affiliation(s)
- Ioana Streata
- University of Medicine and Pharmacy of Craiova, Human Genomics Laboratory, 200638 Craiova, Romania
| | - January Weiner
- Max Planck Institute for Infection Biology, 10117 Berlin, Germany
| | - Marco Iannaconne
- University of Naples Federico II, Department of Agriculture, 80055 Naples, Italy
| | - Gayle McEwen
- Max Planck Institute for Infection Biology, 10117 Berlin, Germany
| | | | - Marian Olaru
- “Tudor Vladimirescu” Pneumophtisiology Hospital Runcu, 217390 Gorj, Romania
| | - Rosanna Capparelli
- University of Naples Federico II, Department of Agriculture, 80055 Naples, Italy
| | - Mihai Ioana
- University of Medicine and Pharmacy of Craiova, Human Genomics Laboratory, 200638 Craiova, Romania
| | - Stefan H. E. Kaufmann
- Max Planck Institute for Infection Biology, 10117 Berlin, Germany
- * E-mail: (AD); (SHEK)
| | - Anca Dorhoi
- Max Planck Institute for Infection Biology, 10117 Berlin, Germany
- * E-mail: (AD); (SHEK)
| |
Collapse
|
31
|
The importance of being "pure" neutrophils. J Allergy Clin Immunol 2016; 139:352-355.e6. [PMID: 27567327 DOI: 10.1016/j.jaci.2016.06.025] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 05/10/2016] [Accepted: 06/03/2016] [Indexed: 12/17/2022]
|
32
|
Peñaloza HF, Schultz BM, Nieto PA, Salazar GA, Suazo I, Gonzalez PA, Riedel CA, Alvarez-Lobos MM, Kalergis AM, Bueno SM. Opposing roles of IL-10 in acute bacterial infection. Cytokine Growth Factor Rev 2016; 32:17-30. [PMID: 27522641 DOI: 10.1016/j.cytogfr.2016.07.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Accepted: 07/14/2016] [Indexed: 12/16/2022]
Abstract
Interleukin-10 (IL-10) is recognized as an anti-inflammatory cytokine that downmodulates inflammatory immune responses at multiple levels. In innate cells, production of this cytokine is usually triggered after pathogen recognition receptor (PRR) engagement by pathogen-associated molecular patterns (PAMPs) or damage-associated molecular patters (DAMPs), as well as by other soluble factors. Importantly, IL-10 is frequently secreted during acute bacterial infections and has been described to play a key role in infection resolution, although its effects can significantly vary depending on the infecting bacterium. While the production of IL-10 might favor host survival in some cases, it may also result harmful for the host in other circumstances, as it can prevent appropriate bacterial clearance. In this review we discuss the role of IL-10 in bacterial clearance and propose that this cytokine is required to recover from infection caused by extracellular or highly pro-inflammatory bacteria. Altogether, we propose that IL-10 drives excessive suppression of the immune response upon infection with intracellular bacteria or in non-inflammatory bacterial infections, which ultimately favors bacterial persistence and dissemination within the host. Thus, the nature of the bacterium causing infection is an important factor that needs to be taken into account when considering new immunotherapies that consist on the modulation of inflammation, such as IL-10. Indeed, induction of this cytokine may significantly improve the host's immune response to certain bacteria when antibiotics are not completely effective.
Collapse
Affiliation(s)
- Hernán F Peñaloza
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Chile
| | - Barbara M Schultz
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Chile
| | - Pamela A Nieto
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Chile
| | - Geraldyne A Salazar
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Chile
| | - Isidora Suazo
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Chile
| | - Pablo A Gonzalez
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Chile
| | - Claudia A Riedel
- Millennium Institute on Immunology and Immunotherapy, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas y Facultad de Medicina, Universidad Andrés Bello, Chile
| | - Manuel M Alvarez-Lobos
- Departamento de Gastroenterología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Chile
| | - Alexis M Kalergis
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Chile; Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Chile; INSERM U1064, Nantes, France
| | - Susan M Bueno
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Chile; INSERM U1064, Nantes, France.
| |
Collapse
|
33
|
Epigenetic regulation of neutrophil development and function. Semin Immunol 2016; 28:83-93. [PMID: 27084194 DOI: 10.1016/j.smim.2016.04.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 04/01/2016] [Accepted: 04/04/2016] [Indexed: 12/14/2022]
Abstract
In addition to performing well-defined effector functions, neutrophils are now recognized as versatile and sophisticated cells with critical immunoregulatory roles. These include the release of a variety of proinflammatory or immunosuppressive cytokines, as well as the expression of genes with regulatory functions. Neutrophils share broad transcriptional features with monocytes, in keeping with the close developmental relation between the two cell types. However, neutrophil-specific gene expression patterns conferring cell type-specific responses to bacterial, viral or fungal components have been identified. Accumulating evidence suggest that these differences reflect the peculiar epigenomic and regulatory landscapes of neutrophils and monocytes, in turn controlled by the specific lineage-determining transcription factors shaping their identity. In this review, we will describe current knowledge on how neutrophil identity and function are controlled at the molecular level, focusing on transcriptional and chromatin regulation of neutrophil development and activation in response to inflammatory stimuli.
Collapse
|
34
|
The role of neutrophils in inflammation resolution. Semin Immunol 2016; 28:137-45. [DOI: 10.1016/j.smim.2016.03.007] [Citation(s) in RCA: 170] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 03/11/2016] [Accepted: 03/15/2016] [Indexed: 01/29/2023]
|
35
|
Tecchio C, Cassatella MA. Neutrophil-derived chemokines on the road to immunity. Semin Immunol 2016; 28:119-28. [PMID: 27151246 PMCID: PMC7129466 DOI: 10.1016/j.smim.2016.04.003] [Citation(s) in RCA: 154] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 04/04/2016] [Accepted: 04/05/2016] [Indexed: 12/12/2022]
Abstract
During recent years, it has become clear that polymorphonuclear neutrophils are remarkably versatile cells, whose functions go far beyond phagocytosis and killing. In fact, besides being involved in primary defense against infections-mainly through phagocytosis, generation of toxic molecules, release of toxic enzymes and formation of extracellular traps-neutrophils have been shown to play a role in finely regulating the development and the evolution of inflammatory and immune responses. These latter neutrophil-mediated functions occur by a variety of mechanisms, including the production of newly manufactured cytokines. Herein, we provide a general overview of the chemotactic cytokines/chemokines that neutrophils can potentially produce, either under inflammatory/immune reactions or during their activation in more prolonged processes, such as in tumors. We highlight recent observations generated from studying human or rodent neutrophils in vitro and in vivo models. We also discuss the biological significance of neutrophil-derived chemokines in the context of infectious, neoplastic and immune-mediated diseases. The picture that is emerging is that, given their capacity to produce and release chemokines, neutrophils exert essential functions in recruiting, activating and modulating the activities of different leukocyte populations.
Collapse
Affiliation(s)
- Cristina Tecchio
- Department of Medicine, Section of Hematology and Bone Marrow Transplant Unit, University of Verona, Verona, Italy.
| | - Marco A Cassatella
- Department of Medicine, Section of General Pathology, University of Verona, Verona, Italy.
| |
Collapse
|
36
|
Induction of human IL-10-producing neutrophils by LPS-stimulated Treg cells and IL-10. Mucosal Immunol 2016; 9:364-78. [PMID: 26220165 DOI: 10.1038/mi.2015.66] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 06/23/2015] [Indexed: 02/04/2023]
Abstract
Recent evidence has revealed an unsuspected suppressive role played by neutrophils during microbial infections. An especially intriguing aspect of this role is the ability of neutrophils to produce interleukin (IL)-10 following interaction with lipopolysaccharide (LPS)-stimulated regulatory T (Treg) cells. The present study demonstrates that generation of IL-10 in neutrophils induced by LPS-stimulated Treg cells required direct cell-cell contact. This effect was dependent on the binding of CD11b and intercellular adhesion molecule 1. Neither stimulation of neutrophils with LPS nor their culture with unstimulated Treg cells, CD3/CD28 monoclonal antibodies-stimulated Treg cells, or T conventional cells affected intracellular IL-10 expression. IL-10-positive neutrophils were also induced by exogenous IL-10, providing an example of a positive feedback loop. Both LPS-stimulated Treg cells and exogenous IL-10 exclusively promoted posttranslational modifications of histones, H3K4me3 and H3Ac Lys4, that activate IL-10 genomic locus in neutrophils, while the promoter of IL-10 gene was inactive in resting, LPS-stimulated neutrophils, following blocking of direct interaction with LPS-stimulated Treg cells or in LPS-preactivated neutrophils incubated with LPS-stimulated Treg cells. We additionally confirmed the presence of IL-10-producing neutrophils in vivo in patients with periodontal abscess induced by Gram-negative bacteria, as opposed to neutrophils isolated from the site of aseptic inflammation in patients with neuromyelitis optica.
Collapse
|
37
|
Immune and regulatory functions of neutrophils in inflammatory bone loss. Semin Immunol 2016; 28:146-58. [PMID: 26936034 DOI: 10.1016/j.smim.2016.02.002] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 02/06/2016] [Accepted: 02/14/2016] [Indexed: 02/06/2023]
Abstract
Although historically viewed as merely anti-microbial effectors in acute infection or injury, neutrophils are now appreciated to be functionally versatile with critical roles also in chronic inflammation. Periodontitis, a chronic inflammatory disease that destroys the tooth-supporting gums and bone, is particularly affected by alterations in neutrophil numbers or function, as revealed by observations in monogenic disorders and relevant mouse models. Besides being a significant debilitating disease and health burden in its own right, periodontitis is thus an attractive model to dissect uncharted neutrophil-associated (patho)physiological pathways. Here, we summarize recent evidence that neutrophils can contribute to inflammatory bone loss not only through the typical bystander injury dogma but intriguingly also through their absence from the affected tissue, where they normally perform important immunomodulatory functions. Moreover, we discuss recent advances in the interactions of neutrophils with the vascular endothelium and - upon extravasation - with bacteria, and how the dysregulation of these interactions leads to inflammatory tissue damage. Overall, neutrophils have both protective and destructive roles in periodontitis, as they are involved in both the maintenance of periodontal tissue homeostasis and the induction of inflammatory bone loss. This highlights the importance of developing approaches that promote or sustain a fine balance between homeostatic immunity and inflammatory pathology.
Collapse
|
38
|
Wilson GJ, Marakalala MJ, Hoving JC, van Laarhoven A, Drummond RA, Kerscher B, Keeton R, van de Vosse E, Ottenhoff THM, Plantinga TS, Alisjahbana B, Govender D, Besra GS, Netea MG, Reid DM, Willment JA, Jacobs M, Yamasaki S, van Crevel R, Brown GD. The C-type lectin receptor CLECSF8/CLEC4D is a key component of anti-mycobacterial immunity. Cell Host Microbe 2015; 17:252-9. [PMID: 25674984 PMCID: PMC4334100 DOI: 10.1016/j.chom.2015.01.004] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 06/06/2014] [Accepted: 12/30/2014] [Indexed: 12/19/2022]
Abstract
The interaction of microbes with pattern recognition receptors (PRRs) is essential for protective immunity. While many PRRs that recognize mycobacteria have been identified, none is essentially required for host defense in vivo. Here, we have identified the C-type lectin receptor CLECSF8 (CLEC4D, MCL) as a key molecule in anti-mycobacterial host defense. Clecsf8−/− mice exhibit higher bacterial burdens and increased mortality upon M. tuberculosis infection. Additionally, Clecsf8 deficiency is associated with exacerbated pulmonary inflammation, characterized by enhanced neutrophil recruitment. Clecsf8−/− mice show reduced mycobacterial uptake by pulmonary leukocytes, but infection with opsonized bacteria can restore this phagocytic defect as well as decrease bacterial burdens. Notably, a CLECSF8 polymorphism identified in humans is associated with an increased susceptibility to pulmonary tuberculosis. We conclude that CLECSF8 plays a non-redundant role in anti-mycobacterial immunity in mouse and in man. Clecsf8 is required for anti-mycobacterial immunity Clecsf8 mediates non-opsonic mycobacterial recognition by pulmonary leukocytes Loss of Clecsf8 results in increased inflammation, bacterial burdens, and mortality A human CLECSF8 polymorphism is associated with increased susceptibility to TB
Collapse
Affiliation(s)
- Gillian J Wilson
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Mohlopheni J Marakalala
- Division of Immunology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, 792 Cape Town, South Africa
| | - Jennifer C Hoving
- Division of Immunology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, 792 Cape Town, South Africa
| | - Arjan van Laarhoven
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen 6525 GA, the Netherlands
| | - Rebecca A Drummond
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Bernhard Kerscher
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Roanne Keeton
- Division of Immunology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, 792 Cape Town, South Africa
| | - Esther van de Vosse
- Department of Infectious Diseases, Leiden University Medical Center, Leiden 2333 ZA, the Netherlands
| | - Tom H M Ottenhoff
- Department of Infectious Diseases, Leiden University Medical Center, Leiden 2333 ZA, the Netherlands
| | - Theo S Plantinga
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen 6525 GA, the Netherlands
| | | | - Dhirendra Govender
- Division of Anatomical Pathology, University of Cape Town, 7925 Cape Town, South Africa
| | - Gurdyal S Besra
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Mihai G Netea
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen 6525 GA, the Netherlands
| | - Delyth M Reid
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Janet A Willment
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Muazzam Jacobs
- Division of Immunology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, 792 Cape Town, South Africa
| | - Sho Yamasaki
- Division of Molecular Immunology, Medical Institute of Bioregulation, Kyushu University, Fukuoka 108-8639, Japan
| | - Reinout van Crevel
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen 6525 GA, the Netherlands
| | - Gordon D Brown
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK; Division of Immunology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, 792 Cape Town, South Africa.
| |
Collapse
|
39
|
Thomas HB, Moots RJ, Edwards SW, Wright HL. Whose Gene Is It Anyway? The Effect of Preparation Purity on Neutrophil Transcriptome Studies. PLoS One 2015; 10:e0138982. [PMID: 26401909 PMCID: PMC4581699 DOI: 10.1371/journal.pone.0138982] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 09/08/2015] [Indexed: 01/07/2023] Open
Abstract
Protocols for the isolation of neutrophils from whole blood often result in neutrophil preparations containing low numbers (~5%) of contaminating leukocytes, and it is possible that these contaminating cells contribute to highly sensitive assays that measure neutrophil gene expression (e.g. qPCR). We investigated the contribution of contaminating leukocytes on the transcriptome profile of human neutrophils following stimulation with inflammatory cytokines (GM-CSF, TNFα), using RNA-Seq. Neutrophils were isolated using Polymorphprep or the StemCell untouched neutrophil isolation kit (negative selection of “highly pure” neutrophils). The level of contamination was assessed by morphology and flow cytometry. The major source of contamination in Polymorphprep neutrophil preparations was from eosinophils and was highly donor dependent. Contaminating cells were largely, but not completely, absent in neutrophil suspensions prepared using negative selection, but the overall yield of neutrophils was decreased by around 50%. RNA-seq analysis identified only 25 genes that were significantly differentially-expressed between Polymorphprep and negatively-selected neutrophils across all three treatment groups (untreated, GM-CSF, TNFα). The expression levels of 34 cytokines/chemokines both before and after GM-CSF or TNFα treatment were not significantly different between neutrophil isolation methods and therefore not affected by contributions from non-neutrophil cell types. This work demonstrates that low numbers (<5%) of contaminating leukocytes in neutrophil preparations contribute very little to the overall gene expression profile of cytokine-stimulated neutrophils, and that protocols for the isolation of highly pure neutrophils result in significantly lower yields of cells which may hinder investigations where large numbers of cells are required or where volumes of blood are limited.
Collapse
Affiliation(s)
- Huw B. Thomas
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Robert J. Moots
- Institute of Ageing and Chronic Disease, University Hospital Aintree, University of Liverpool, Liverpool, United Kingdom
| | - Steven W. Edwards
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Helen L. Wright
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
- * E-mail:
| |
Collapse
|
40
|
Chen WCW, Baily JE, Corselli M, Díaz ME, Sun B, Xiang G, Gray GA, Huard J, Péault B. Human myocardial pericytes: multipotent mesodermal precursors exhibiting cardiac specificity. Stem Cells 2015; 33:557-73. [PMID: 25336400 DOI: 10.1002/stem.1868] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 09/08/2014] [Accepted: 09/29/2014] [Indexed: 12/20/2022]
Abstract
Perivascular mesenchymal precursor cells (i.e., pericytes) reside in skeletal muscle where they contribute to myofiber regeneration; however, the existence of similar microvessel-associated regenerative precursor cells in cardiac muscle has not yet been documented. We tested whether microvascular pericytes within human myocardium exhibit phenotypes and multipotency similar to their anatomically and developmentally distinct counterparts. Fetal and adult human heart pericytes (hHPs) express canonical pericyte markers in situ, including CD146, NG2, platelet-derived growth factor receptor (PDGFR) β, PDGFRα, alpha-smooth muscle actin, and smooth muscle myosin heavy chain, but not CD117, CD133, and desmin, nor endothelial cell (EC) markers. hHPs were prospectively purified to homogeneity from ventricular myocardium by flow cytometry, based on a combination of positive- (CD146) and negative-selection (CD34, CD45, CD56, and CD117) cell lineage markers. Purified hHPs expanded in vitro were phenotypically similar to human skeletal muscle-derived pericytes (hSkMPs). hHPs express mesenchymal stem/stromal cell markers in situ and exhibited osteo-, chondro-, and adipogenic potentials but, importantly, no ability for skeletal myogenesis, diverging from pericytes of all other origins. hHPs supported network formation with/without ECs in Matrigel cultures; hHPs further stimulated angiogenic responses under hypoxia, markedly different from hSkMPs. The cardiomyogenic potential of hHPs was examined following 5-azacytidine treatment and neonatal cardiomyocyte coculture in vitro, and intramyocardial transplantation in vivo. Results indicated cardiomyocytic differentiation in a small fraction of hHPs. In conclusion, human myocardial pericytes share certain phenotypic and developmental similarities with their skeletal muscle homologs, yet exhibit different antigenic, myogenic, and angiogenic properties. This is the first example of an anatomical restriction in the developmental potential of pericytes as native mesenchymal stem cells.
Collapse
Affiliation(s)
- William C W Chen
- Department of Bioengineering, University of Pittsburgh, Pennsylvania, USA; Department of Orthopedic Surgery, University of Pittsburgh, Pennsylvania, USA; Stem Cell Research Centre, University of Pittsburgh, Pennsylvania, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
The resolution of inflammation: Principles and challenges. Semin Immunol 2015; 27:149-60. [PMID: 25911383 DOI: 10.1016/j.smim.2015.03.014] [Citation(s) in RCA: 263] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 03/27/2015] [Accepted: 03/30/2015] [Indexed: 12/11/2022]
Abstract
The concept that chemokines, cytokines and pro-inflammatory mediators act in a co-ordinated fashion to drive the initiation of the inflammatory reaction is well understood. The significance of such networks acting during the resolution of inflammation however is poorly appreciated. In recent years, specific pro-resolving mediators were discovered which activate resolution pathways to return tissues to homeostasis. These mediators are diverse in nature, and include specialized lipid mediators (lipoxins, resolvins, protectins and maresins) proteins (annexin A1, galectins) and peptides, gaseous mediators including hydrogen sulphide, a purine (adenosine), as well as neuromodulator release under the control of the vagus nerve. Functionally, they can act to limit further leukocyte recruitment, induce neutrophil apoptosis and enhance efferocytosis by macrophages. They can also switch macrophages from classical to alternatively activated cells, promote the return of non-apoptotic cells to the lymphatics and help initiate tissue repair mechanisms and healing. Within this review we highlight the essential cellular aspects required for successful tissue resolution, briefly discuss the pro-resolution mediators that drive these processes and consider potential challenges faced by researchers in the quest to discover how inflammation resolves and why chronic inflammation persists.
Collapse
|
42
|
Chromatin remodelling and autocrine TNFα are required for optimal interleukin-6 expression in activated human neutrophils. Nat Commun 2015; 6:6061. [PMID: 25616107 DOI: 10.1038/ncomms7061] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 12/09/2014] [Indexed: 12/24/2022] Open
Abstract
Controversy currently exists about the ability of human neutrophils to produce IL-6. Here, we show that the chromatin organization of the IL-6 genomic locus in human neutrophils is constitutively kept in an inactive configuration. However, we also show that upon exposure to stimuli that trigger chromatin remodelling at the IL-6 locus, such as ligands for TLR8 or, less efficiently, TLR4, highly purified neutrophils express and secrete IL-6. In TLR8-activated neutrophils, but not monocytes, IL-6 expression is preceded by the induction of a latent enhancer located 14 kb upstream of the IL-6 transcriptional start site. In addition, IL-6 induction is potentiated by endogenous TNFα, which prolongs the synthesis of the IκBζ co-activator and sustains C/EBPβ recruitment and histone acetylation at IL-6 regulatory regions. Altogether, these data clarify controversial literature on the ability of human neutrophils to generate IL-6 and uncover chromatin-dependent layers of regulation of IL-6 in these cells.
Collapse
|
43
|
Tecchio C, Micheletti A, Cassatella MA. Neutrophil-derived cytokines: facts beyond expression. Front Immunol 2014; 5:508. [PMID: 25374568 PMCID: PMC4204637 DOI: 10.3389/fimmu.2014.00508] [Citation(s) in RCA: 470] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 09/29/2014] [Indexed: 12/21/2022] Open
Abstract
Polymorphonuclear neutrophils, besides their involvement in primary defense against infections - mainly through phagocytosis, generation of toxic molecules, release of enzymes, and formation of extracellular traps - are also becoming increasingly important for their contribution to the fine regulation in development of inflammatory and immune responses. These latter functions of neutrophils occur, in part, via their de novo production and release of a large variety of cytokines, including chemotactic cytokines (chemokines). Accordingly, the improvement in technologies for molecular and functional cell analysis, along with concomitant advances in cell purification techniques, have allowed the identification of a continuously growing list of neutrophil-derived cytokines, as well as the characterization of their biological implications in vitro and/or in vivo. This short review summarizes crucial concepts regarding the modalities of expression, release, and regulation of neutrophil-derived cytokines. It also highlights examples illustrating the potential implications of neutrophil-derived cytokines according to recent observations made in humans and/or in experimental animal models.
Collapse
Affiliation(s)
- Cristina Tecchio
- Section of Hematology, Department of Medicine, School of Medicine, University of Verona , Verona , Italy
| | - Alessandra Micheletti
- Section of General Pathology, Department of Pathology and Diagnostics, School of Medicine, University of Verona , Verona , Italy
| | - Marco A Cassatella
- Section of General Pathology, Department of Pathology and Diagnostics, School of Medicine, University of Verona , Verona , Italy
| |
Collapse
|
44
|
Abstract
It is now widely recognized that neutrophils are highly versatile and sophisticated cells that display de novo synthetic capacity and may greatly extend their lifespan. In addition, concepts such as "neutrophil heterogeneity" and "neutrophil plasticity" have started to emerge, implying that, under pathological conditions, neutrophils may differentiate into discrete subsets defined by distinct phenotypic and functional profiles. A number of studies have shown that neutrophils act as effectors in both innate and adaptive immunoregulatory networks. In fact, once recruited into inflamed tissues, neutrophils engage into complex bidirectional interactions with macrophages, natural killer, dendritic and mesenchymal stem cells, B and T lymphocytes, or platelets. As a result of this cross-talk, mediated either by contact-dependent mechanisms or cell-derived soluble factors, neutrophils and target cells reciprocally modulate their survival and activation status. Altogether, these novel aspects of neutrophil biology have shed new light not only on the potential complex roles that neutrophils play during inflammation and immune responses, but also in the pathogenesis of several inflammatory disorders including infection, autoimmunity, and cancer.
Collapse
|
45
|
Theron AJ, Steel HC, Tintinger GR, Feldman C, Anderson R. Can the anti-inflammatory activities of β2-agonists be harnessed in the clinical setting? DRUG DESIGN DEVELOPMENT AND THERAPY 2013; 7:1387-98. [PMID: 24285920 PMCID: PMC3840775 DOI: 10.2147/dddt.s50995] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Beta2-adrenoreceptor agonists (β2-agonists) are primarily bronchodilators, targeting airway smooth muscle and providing critical symptomatic relief in conditions such as bronchial asthma and chronic obstructive pulmonary disease. These agents also possess broad-spectrum, secondary, anti-inflammatory properties. These are mediated largely, though not exclusively, via interactions with adenylyl cyclase-coupled β2-adrenoreceptors on a range of immune and inflammatory cells involved in the immunopathogenesis of acute and chronic inflammatory disorders of the airways. The clinical relevance of the anti-inflammatory actions of β2-agonists, although often effective in the experimental setting, remains contentious. The primary objectives of the current review are: firstly, to assess the mechanisms, both molecular and cell-associated, that may limit the anti-inflammatory efficacy of β2-agonists; secondly, to evaluate pharmacological strategies, several of which are recent and innovative, that may overcome these limitations. These are preceded by a consideration of the various types of β2-agonists, their clinical applications, and spectrum of anti-inflammatory activities, particularly those involving adenosine 3',5'-cyclic adenosine monophosphate-activated protein kinase-mediated clearance of cytosolic calcium, and altered gene expression in immune and inflammatory cells.
Collapse
Affiliation(s)
- Annette J Theron
- Medical Research Council Unit for Inflammation and Immunity, Department of Immunology, Faculty of Health Sciences, University of Pretoria, South Africa ; Tshwane Academic Division of the National Health Laboratory Service, Pretoria, South Africa
| | | | | | | | | |
Collapse
|
46
|
Moretti S, Bozza S, Massi-Benedetti C, Prezioso L, Rossetti E, Romani L, Aversa F, Pitzurra L. An immunomodulatory activity of micafungin in preclinical aspergillosis. J Antimicrob Chemother 2013; 69:1065-74. [DOI: 10.1093/jac/dkt457] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
|
47
|
Cabas I, Rodenas MC, Abellán E, Meseguer J, Mulero V, García-Ayala A. Estrogen signaling through the G protein-coupled estrogen receptor regulates granulocyte activation in fish. THE JOURNAL OF IMMUNOLOGY 2013; 191:4628-39. [PMID: 24062489 DOI: 10.4049/jimmunol.1301613] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Neutrophils are major participants in innate host responses. It is well known that estrogens have an immune-modulatory role, and some evidence exists that neutrophil physiology can be altered by these molecules. Traditionally, estrogens act via classical nuclear estrogen receptors, but the identification of a G protein-coupled estrogen receptor (GPER), a membrane estrogen receptor that binds estradiol and other estrogens, has opened up the possibility of exploring additional estrogen-mediated effects. However, information on the importance of GPER for immunity, especially, in neutrophils is scant. In this study, we report that gilthead seabream (Sparus aurata L.) acidophilic granulocytes, which are the functional equivalent of mammalian neutrophils, express GPER at both mRNA and protein levels. By using a GPER selective agonist, G1, it was found that GPER activation in vitro slightly reduced the respiratory burst of acidophilic granulocytes and drastically altered the expression profile of several genes encoding major pro- and anti-inflammatory mediators. In addition, GPER signaling in vivo modulated adaptive immunity. Finally, a cAMP analog mimicked the effects of G1 in the induction of the gene coding for PG-endoperoxide synthase 2 and in the induction of CREB phosphorylation, whereas pharmacological inhibition of protein kinase A superinduced PG-endoperoxide synthase 2. Taken together, our results demonstrate for the first time, to our knowledge, that estrogens are able to modulate vertebrate granulocyte functions through a GPER/cAMP/protein kinase A/CREB signaling pathway and could establish therapeutic targets for several immune disorders in which estrogens play a prominent role.
Collapse
Affiliation(s)
- Isabel Cabas
- Department of Cell Biology and Histology, Faculty of Biology, Regional Campus of International Excellence "Campus Mare Nostrum," University of Murcia, 30100 Murcia, Spain
| | | | | | | | | | | |
Collapse
|
48
|
Epigenetic control of cytokine gene expression: regulation of the TNF/LT locus and T helper cell differentiation. Adv Immunol 2013; 118:37-128. [PMID: 23683942 DOI: 10.1016/b978-0-12-407708-9.00002-9] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Epigenetics encompasses transient and heritable modifications to DNA and nucleosomes in the native chromatin context. For example, enzymatic addition of chemical moieties to the N-terminal "tails" of histones, particularly acetylation and methylation of lysine residues in the histone tails of H3 and H4, plays a key role in regulation of gene transcription. The modified histones, which are physically associated with gene regulatory regions that typically occur within conserved noncoding sequences, play a functional role in active, poised, or repressed gene transcription. The "histone code" defined by these modifications, along with the chromatin-binding acetylases, deacetylases, methylases, demethylases, and other enzymes that direct modifications resulting in specific patterns of histone modification, shows considerable evolutionary conservation from yeast to humans. Direct modifications at the DNA level, such as cytosine methylation at CpG motifs that represses promoter activity, are another highly conserved epigenetic mechanism of gene regulation. Furthermore, epigenetic modifications at the nucleosome or DNA level can also be coupled with higher-order intra- or interchromosomal interactions that influence the location of regulatory elements and that can place them in an environment of specific nucleoprotein complexes associated with transcription. In the mammalian immune system, epigenetic gene regulation is a crucial mechanism for a range of physiological processes, including the innate host immune response to pathogens and T cell differentiation driven by specific patterns of cytokine gene expression. Here, we will review current findings regarding epigenetic regulation of cytokine genes important in innate and/or adaptive immune responses, with a special focus upon the tumor necrosis factor/lymphotoxin locus and cytokine-driven CD4+ T cell differentiation into the Th1, Th2, and Th17 lineages.
Collapse
|
49
|
Hahn S, Giaglis S, Chowdhury CS, Chowdury CS, Hösli I, Hasler P. Modulation of neutrophil NETosis: interplay between infectious agents and underlying host physiology. Semin Immunopathol 2013; 35:439-53. [PMID: 23649713 PMCID: PMC3685704 DOI: 10.1007/s00281-013-0380-x] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 04/24/2013] [Indexed: 12/12/2022]
Abstract
The ability of neutrophils and other leucocyte members of the innate immune system to expel their DNA into the extracellular environment in a controlled manner in order to trap and kill pathogenic microorganisms lead to a paradigm shift in our understanding of host microbe interactions. Surprisingly, the neutrophil extracellular trap (NET) cast by neutrophils is very wide and extends to the entrapment of viruses as well as multicellular eukaryotic parasites. Not unexpectedly, it has emerged that pathogenic microorganisms can employ a wide array of strategies to avoid ensnarement, including expression of DNAse enzymes that destroy the lattice backbone of NETs. Alternatively, they may use molecular mimicry to avoid detection or trigger events leading to the expression of immune modulatory cytokines such as IL-10, which dampen the NETotic response of neutrophils. In addition, the host microenvironment may contribute to the innate immune response by the production of lectin-like molecules that bind to bacteria and promote their entrapment on NETs. An example of this is the production of surfactant protein D by the lung epithelium. In addition, pregnancy provides a different challenge, as the mother needs to mount an effective response against pathogens, without harming her unborn child. An examination of these decoy and host response mechanisms may open the path for new therapies to treat pathologies mediated by overt NETosis.
Collapse
Affiliation(s)
- Sinuhe Hahn
- Department of Biomedicine, University Hospital Basel, Basel, Switzerland.
| | | | | | | | | | | |
Collapse
|
50
|
Thomas CJ, Schroder K. Pattern recognition receptor function in neutrophils. Trends Immunol 2013; 34:317-28. [DOI: 10.1016/j.it.2013.02.008] [Citation(s) in RCA: 129] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 02/26/2013] [Accepted: 02/28/2013] [Indexed: 12/13/2022]
|