1
|
Kotsubo Y, Hara A, Hayashi R, Iwasa Y. Age-dependence of food allergy due to decreased supply of naïve T cells. J Theor Biol 2025; 602-603:112060. [PMID: 39929322 DOI: 10.1016/j.jtbi.2025.112060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/06/2025] [Accepted: 01/28/2025] [Indexed: 03/01/2025]
Abstract
Food allergies to eggs and cow's milk are common during infancy but often undergo desensitization during childhood. To investigate the age dependence of food allergies, we develop a simple mathematical model focusing on T helper 2 cells (Th2) causing allergies and induced regulatory T cells (iTreg) suppressing them. We assume as follows: Both types of cells differentiate from naïve T cells reactive to specific food allergens, with the rate of supply from the thymus decreasing with age. Naïve T cells are activated by allergens in peripheral tissues, differentiating into both Th2 and iTreg cells. The activation rate of Th2 cells is reduced by iTreg cells. Th2 cells promote allergies while iTreg cells help mitigate them. Analyses show that food allergies may develop at one age and resolve at a later age. Negative selection in the thymus reduces the number of naïve T cells that react to proteins resembling components of the body. As a result, allergies to these substances tend to start and resolve earlier in life than those to dissimilar materials. Food allergy starting at an older age tends to have a longer duration if the rate of naïve T cell supply decreases according to a hyperbolic (instead of exponential) function of age.
Collapse
Affiliation(s)
- Yuna Kotsubo
- Department of Biology, Faculty of Science, Kyushu University, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Akane Hara
- School of Pharmacy and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama City 930-0194, Japan.
| | - Rena Hayashi
- Department of Biology, Faculty of Science, Kyushu University, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Yoh Iwasa
- Department of Biology, Faculty of Science, Kyushu University, Nishi-ku, Fukuoka 819-0395, Japan.
| |
Collapse
|
2
|
Fotopoulou F, Rodríguez-Correa E, Dussiau C, Milsom MD. Reconsidering the usual suspects in age-related hematologic disorders: is stem cell dysfunction a root cause of aging? Exp Hematol 2025; 143:104698. [PMID: 39725143 DOI: 10.1016/j.exphem.2024.104698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/16/2024] [Accepted: 12/18/2024] [Indexed: 12/28/2024]
Abstract
Aging exerts a profound impact on the hematopoietic system, leading to increased susceptibility to infections, autoimmune diseases, chronic inflammation, anemia, thrombotic events, and hematologic malignancies. Within the field of experimental hematology, the functional decline of hematopoietic stem cells (HSCs) is often regarded as a primary driver of age-related hematologic conditions. However, aging is clearly a complex multifaceted process involving not only HSCs but also mature blood cells and their interactions with other tissues. This review reappraises an HSC-centric view of hematopoietic aging by exploring how the entire hematopoietic hierarchy, from stem cells to mature cells, contributes to age-related disorders. It highlights the decline of both innate and adaptive immunity, leading to increased susceptibility to infections and cancer, and the rise of autoimmunity as peripheral immune cells undergo aging-induced changes. It explores the concept of "inflammaging," where persistent, low-grade inflammation driven by old immune cells creates a cycle of tissue damage and disease. Additionally, this review delves into the roles of inflammation and homeostatic regulation in age-related conditions such as thrombotic events and anemia, arguing that these issues arise from broader dysfunctions rather than stemming from HSC functional attrition alone. In summary, this review highlights the importance of taking a holistic approach to studying hematopoietic aging and its related pathologies. By looking beyond just stem cells and considering the full spectrum of age-associated changes, one can better capture the complexity of aging and attempt to develop preventative or rejuvenation strategies that target multiple facets of this process.
Collapse
Affiliation(s)
- Foteini Fotopoulou
- Division of Experimental Hematology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Experimental Hematology Group, Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM), Heidelberg, Germany
| | - Esther Rodríguez-Correa
- Division of Experimental Hematology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Experimental Hematology Group, Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM), Heidelberg, Germany
| | - Charles Dussiau
- Division of Experimental Hematology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Experimental Hematology Group, Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM), Heidelberg, Germany; Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Michael D Milsom
- Division of Experimental Hematology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Experimental Hematology Group, Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM), Heidelberg, Germany.
| |
Collapse
|
3
|
Ng YY, Tay A. Exploring Lymph Node Stroma Ageing: Immune Implications and Future Directions. Aging Cell 2025:e70000. [PMID: 39954244 DOI: 10.1111/acel.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/28/2024] [Accepted: 01/21/2025] [Indexed: 02/17/2025] Open
Abstract
Ageing is an inevitable biological process that impacts the immune system, leading to immunosenescence and inflammaging, which contribute to increased susceptibility to infections, autoimmune diseases and cancers in individuals over the age of 65. This review focuses on the ageing of lymph node stromal cells (LNSCs), which are crucial for maintaining lymph node (LN) structure and function. Age-related changes in LNs, such as fibrosis and lipomatosis, disrupt the LN architecture and reduce immune cell recruitment and function, impairing immune responses to infections and vaccinations. The review discusses the structural and functional decline of various LNSC subsets, including fibroblastic reticular cells (FRCs), lymphatic endothelial cells (LECs) and blood endothelial cells (BECs), highlighting their roles in immune cell activation and homeostasis. Potential strategies to restore aged LNSC function, such as enhancing LNSC activation during vaccination and using senotherapeutics, are explored. Outstanding questions regarding the mechanisms of LNSC ageing and how ageing of the LN stroma might impact autoimmune disorders are also addressed. This review aims to stimulate further research into the characterisation of aged LNSCs and the development of therapeutic interventions to improve immune function in the older adults.
Collapse
Affiliation(s)
- Yu Yang Ng
- Department of Biomedical Engineering, National University of Singapore, Singapore City, Singapore
| | - Andy Tay
- Department of Biomedical Engineering, National University of Singapore, Singapore City, Singapore
- Institute for Health Innovation & Technology, National University of Singapore, Singapore City, Singapore
- Tissue Engineering Programme, National University of Singapore, Singapore City, Singapore
| |
Collapse
|
4
|
Ziogas DC, Theocharopoulos C, Aravantinou K, Boukouris AE, Stefanou D, Anastasopoulou A, Lialios PP, Lyrarakis G, Gogas H. Clinical benefit of immune checkpoint inhibitors in elderly cancer patients: Current evidence from immunosenescence pathophysiology to clinical trial results. Crit Rev Oncol Hematol 2025; 208:104635. [PMID: 39889861 DOI: 10.1016/j.critrevonc.2025.104635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 01/20/2025] [Accepted: 01/21/2025] [Indexed: 02/03/2025] Open
Abstract
The age-related decline in immunity appears to be associated not only with cancer development but also with differential responses to immune checkpoint inhibitors (ICIs). Despite their increasing utility across various malignancies and therapeutic settings, limited data -derived primarily from subgroup analyses of randomized controlled trials (RCTs), pooled meta-analyses, and retrospective studies- are available on the effects of aging on their efficacy and toxicity. Immunosenescence, characterized by the progressive decline of the function of the immune system, and inflammaging, a state of persistent low-grade sterile inflammation, may influence ICI outcomes. Additionally, the incidence, severity, and subtypes of immune-related adverse events (irAEs) may differ between older and younger individuals due to loss of immunotolerance. In the current review, starting from a a comprehensive discussion of the pathophysiology of immunosenescence, we proceed to critically review age-related retrospective and randomized evidence supporting FDA-approved ICIs. We highlight similarities or differences across age groups and the clinical benefit of ICIs in elderly versus younger cancer patients. The optimal integration of ICIs in geriatric oncology necessitates greater inclusion of this patient demographic in RCTs along with real-world data in order to acquire robust data which will guide evidence-based treatment decisions for this population.
Collapse
Affiliation(s)
- Dimitrios C Ziogas
- First Department of Medicine, National and Kapodistrian University of Athens School of Medicine, Athens, Greece.
| | - Charalampos Theocharopoulos
- First Department of Medicine, National and Kapodistrian University of Athens School of Medicine, Athens, Greece.
| | - Katerina Aravantinou
- First Department of Medicine, National and Kapodistrian University of Athens School of Medicine, Athens, Greece.
| | - Aristeidis E Boukouris
- First Department of Medicine, National and Kapodistrian University of Athens School of Medicine, Athens, Greece.
| | - Dimitra Stefanou
- First Department of Medicine, National and Kapodistrian University of Athens School of Medicine, Athens, Greece.
| | - Amalia Anastasopoulou
- First Department of Medicine, National and Kapodistrian University of Athens School of Medicine, Athens, Greece.
| | - Panagiotis-Petros Lialios
- First Department of Medicine, National and Kapodistrian University of Athens School of Medicine, Athens, Greece.
| | - George Lyrarakis
- First Department of Medicine, National and Kapodistrian University of Athens School of Medicine, Athens, Greece.
| | - Helen Gogas
- First Department of Medicine, National and Kapodistrian University of Athens School of Medicine, Athens, Greece.
| |
Collapse
|
5
|
Rodríguez IJ, Parra-López CA. Markers of immunosenescence in CMV seropositive healthy elderly adults. FRONTIERS IN AGING 2025; 5:1436346. [PMID: 39916725 PMCID: PMC11798936 DOI: 10.3389/fragi.2024.1436346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 12/31/2024] [Indexed: 02/09/2025]
Abstract
A significant increase in life expectancy has accompanied the growth of the world's population. Approximately 10% of the global population are adults over 60, and it is estimated that 2050 this figure will double. This increase in the proportion of older adults leads to a more significant burden of age-related diseases. Immunosenescence predisposes elderly individuals to a higher incidence of infectious and chronic non-communicable diseases with higher mortality rates. Despite advances in research, it is necessary to evaluate the cellular characteristics of the aging immune system in populations with a high incidence of latent viruses such as cytomegalovirus (CMV). In this sense, this work aimed to identify senescence markers in cells of the innate and adaptive immune system in healthy older adults with CMV infection. We observed that older adults present an increase in the population of CD14+CD16+ intermediate monocytes, an expansion of CD56neg NK cells with an increase in the expression of CD57, as well as a decrease in the naïve CD4+ and CD8+ T cells, accompanied by an increased expression of senescence markers CD57 and KLRG1 in effector CD8+ T cells.
Collapse
Affiliation(s)
- Ivón Johanna Rodríguez
- Grupo de profundización en Kinesioterapia, Departamento de Movimiento Corporal Humano, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Carlos Alberto Parra-López
- Grupo de Inmunología y Medicina Traslacional, Departamento de Microbiología, Universidad Nacional de Colombia, Bogotá, Colombia
| |
Collapse
|
6
|
Poulios P, Skampouras S, Piperi C. Deciphering the role of cytokines in aging: Biomarker potential and effective targeting. Mech Ageing Dev 2025; 224:112036. [PMID: 39832637 DOI: 10.1016/j.mad.2025.112036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/02/2025] [Accepted: 01/16/2025] [Indexed: 01/22/2025]
Abstract
Aging is often characterized by chronic inflammation, immune system dysregulation, and cellular senescence with chronically elevated levels of pro-inflammatory cytokines. These small glycoproteins are mainly secreted by immune cells, mediating intercellular communication and immune system modulation through inflammatory signaling. Their pro- and anti-inflammatory effects make them a noteworthy research topic as well as a promising ally in combating inflammation and the aging process. Cytokines exert a synergistic role in aging and disease and may prove useful biomarkers of tissue-specific dysregulation, disease diagnosis and monitoring, presenting potential therapeutic options as anti-inflammatory and senolytic medications. In this review, we address the cellular and molecular mechanisms implicating cytokines in the aging process and related diseases, highlighting their biomarker potential. We focus on the current therapeutic strategies, including specific pharmaceutical agents, supplements, a balanced diet, and healthy habits such as exercise, stress management, and caloric restriction.
Collapse
Affiliation(s)
- Panagiotis Poulios
- Department of Biological Chemistry, School of Medicine, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - Stamoulis Skampouras
- Department of Biological Chemistry, School of Medicine, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - Christina Piperi
- Department of Biological Chemistry, School of Medicine, National and Kapodistrian University of Athens, Athens 11527, Greece.
| |
Collapse
|
7
|
Teschendorff AE, Horvath S. Epigenetic ageing clocks: statistical methods and emerging computational challenges. Nat Rev Genet 2025:10.1038/s41576-024-00807-w. [PMID: 39806006 DOI: 10.1038/s41576-024-00807-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/20/2024] [Indexed: 01/16/2025]
Abstract
Over the past decade, epigenetic clocks have emerged as powerful machine learning tools, not only to estimate chronological and biological age but also to assess the efficacy of anti-ageing, cellular rejuvenation and disease-preventive interventions. However, many computational and statistical challenges remain that limit our understanding, interpretation and application of epigenetic clocks. Here, we review these computational challenges, focusing on interpretation, cell-type heterogeneity and emerging single-cell methods, aiming to provide guidelines for the rigorous construction of interpretable epigenetic clocks at cell-type and single-cell resolution.
Collapse
Affiliation(s)
- Andrew E Teschendorff
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
| | | |
Collapse
|
8
|
Yang Y, Fan L, Li M, Wang Z. Immune senescence: A key player in cancer biology. Semin Cancer Biol 2025; 108:71-82. [PMID: 39675646 DOI: 10.1016/j.semcancer.2024.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/30/2024] [Accepted: 12/10/2024] [Indexed: 12/17/2024]
Abstract
With the rapid development of immunological techniques in recent years, our understanding of immune senescence has gradually deepened, but the role of immune senescence in cancer biology remains incompletely elucidated. Understanding these mechanisms and interactions is crucial for the development of tumor biology. This review examines five key areas: the classification and main features of immune senescence, factors influencing immune cell senescence in cancer, the reciprocal causal cycle between immune senescence and malignancy, and the potential of immune senescence as a target for cancer immunotherapy.
Collapse
Affiliation(s)
- Yanru Yang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Pathology, School of Basic Medicine and Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Linni Fan
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Pathology, School of Basic Medicine and Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Mingyang Li
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Pathology, School of Basic Medicine and Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Zhe Wang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Pathology, School of Basic Medicine and Xijing Hospital, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
9
|
Johansson A, Ho NPY, Takizawa H. Microbiome and Hemato-immune Aging. Exp Hematol 2025; 141:104685. [PMID: 39581302 DOI: 10.1016/j.exphem.2024.104685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/17/2024] [Accepted: 11/16/2024] [Indexed: 11/26/2024]
Abstract
The microbiome is a highly complex and diverse symbiotic component that undergoes dynamic changes with the organismal aging. Microbial perturbations, termed dysbiosis, exert strong influence on dysregulating the bone marrow niche and subsequently promoting the aging of hematopoietic and immune system. Accumulating studies have revealed the substantial impact of intestinal microbiome on the initiation and progression of age-related hematologic alteration and diseases, such as clonal hematopoiesis and blood cancers. Current therapeutic approaches to restore the altered microbiome diversity target specific pathobionts and are demonstrated to improve clinical outcomes of antihematologic malignancy treatments. In this review, we discuss the interplay between the microbiome and the hemato-immune system during aging process. We also shed light on the emerging therapeutic strategies to tackle the dysbiosis for amelioration of aging and disease progression.
Collapse
Affiliation(s)
- Alban Johansson
- Laboratory of Stem Cell Stress, International Research Center for Medical Sciences, Kumamoto University, Japan
| | - Nicole Pui-Yu Ho
- Laboratory of Stem Cell Stress, International Research Center for Medical Sciences, Kumamoto University, Japan
| | - Hitoshi Takizawa
- Laboratory of Stem Cell Stress, International Research Center for Medical Sciences, Kumamoto University, Japan; Center for Metabolic Regulation of Healthy Aging, Kumamoto University, Japan.
| |
Collapse
|
10
|
Francavilla F, Intranuovo F, La Spada G, Lacivita E, Catto M, Graps EA, Altomare CD. Inflammaging and Immunosenescence in the Post-COVID Era: Small Molecules, Big Challenges. ChemMedChem 2024:e202400672. [PMID: 39651728 DOI: 10.1002/cmdc.202400672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 12/02/2024] [Accepted: 12/05/2024] [Indexed: 12/11/2024]
Abstract
Aging naturally involves a decline in biological functions, often triggering a disequilibrium of physiological processes. A common outcome is the altered response exerted by the immune system to counteract infections, known as immunosenescence, which has been recognized as a primary cause, among others, of the so-called long-COVID syndrome. Moreover, the uncontrolled immunoreaction leads to a state of subacute, chronic inflammatory state known as inflammaging, responsible in turn for the chronicization of concomitant pathologies in a self-sustaining process. Anti-inflammatory and immunosuppressant drugs are the current choice for the therapy of inflammaging in post-COVID complications, with contrasting results. The increasing knowledge of the biochemical pathways of inflammaging led to disclose new small molecules-based therapies directed toward different biological targets involved in inflammation, immunological response, and oxidative stress. Herein, paying particular attention to recent clinical data and preclinical literature, we focus on the role of endocannabinoid system in inflammaging, and the promising therapeutic option represented by the CB2R agonists, the role of novel ligands of the formyl peptide receptor 2 and ultimately the potential of newly discovered monoamine oxidase (MAO) inhibitors with neuroprotective activity in the treatment of immunosenescence.
Collapse
Affiliation(s)
- Fabio Francavilla
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy
| | - Francesca Intranuovo
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy
| | - Gabriella La Spada
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy
| | - Enza Lacivita
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy
| | - Marco Catto
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy
| | - Elisabetta Anna Graps
- ARESS Puglia - Agenzia Regionale strategica per la Salute ed il Sociale, Lungomare Nazario Sauro 33, 70121, Bari, Italy
| | - Cosimo Damiano Altomare
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy
| |
Collapse
|
11
|
Zhang Y, Guo J, Chen Z, Chang Y, Zhang X, Liu Z, Li X, Zha X, Sun G, Li Y. Triclocarban disrupts the activation and differentiation of human CD8 + T cells by suppressing the vitamin D receptor signaling. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136096. [PMID: 39383692 DOI: 10.1016/j.jhazmat.2024.136096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/04/2024] [Accepted: 10/05/2024] [Indexed: 10/11/2024]
Abstract
Triclocarban (TCC) is a widely applied environmental endocrine-disrupting chemical (EDC). Similar to most of EDCs, TCC potentially damages the immunity of various species. However, whether and how TCC impacts the adaptive immunity in mammals has yet to be determined. Herein, we discovered that TCC disrupts the activation and differentiation of CD8+ T cells in primary human peripheral blood samples, purified CD8+ T cells, and in mice in vivo. Mechanistically, TCC might block the activation of the vitamin D receptor (VDR) and reduce the synthesis of cholesterol, a precursor of vitamin D, resulting in inhibition of VDR signaling due to the suppression of both its ligand and the receptor itself by TCC. Our findings elucidate the hazard and potential mechanisms of TCC in mammalian adaptive immunity and highlighted VDR as a potential therapeutic target for the immunodeficiency caused by TCC.
Collapse
Affiliation(s)
- Yikai Zhang
- Guangdong Provincial Key Laboratory of Spine and Spinal Cord Reconstruction, The Fifth Affiliated Hospital of Jinan University (Heyuan Shenhe People's Hospital), Jinan University, Heyuan 517000, China; Department of Hematology, First Affiliated Hospital of Jinan University, Guangzhou 510632, China; Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, Jinan University, Guangzhou 510632, China
| | - Jiafan Guo
- Department of Clinical Laboratory, First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Zhixi Chen
- Department of Hematology, First Affiliated Hospital of Jinan University, Guangzhou 510632, China; Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, Jinan University, Guangzhou 510632, China
| | - Yiming Chang
- Department of Pediatrics, First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Xingwei Zhang
- Department of Clinical Laboratory, First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Zirui Liu
- Department of Hematology, First Affiliated Hospital of Jinan University, Guangzhou 510632, China; Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, Jinan University, Guangzhou 510632, China
| | - Xinye Li
- Department of Hematology, First Affiliated Hospital of Jinan University, Guangzhou 510632, China; Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, Jinan University, Guangzhou 510632, China
| | - Xianfeng Zha
- Department of Clinical Laboratory, First Affiliated Hospital of Jinan University, Guangzhou 510632, China.
| | - Guodong Sun
- Guangdong Provincial Key Laboratory of Spine and Spinal Cord Reconstruction, The Fifth Affiliated Hospital of Jinan University (Heyuan Shenhe People's Hospital), Jinan University, Heyuan 517000, China.
| | - Yangqiu Li
- Department of Hematology, First Affiliated Hospital of Jinan University, Guangzhou 510632, China; Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
12
|
Georgiev P, Han S, Huang AY, Nguyen TH, Drijvers JM, Creasey H, Pereira JA, Yao CH, Park JS, Conway TS, Fung ME, Liang D, Peluso M, Joshi S, Rowe JH, Miller BC, Freeman GJ, Sharpe AH, Haigis MC, Ringel AE. Age-Associated Contraction of Tumor-Specific T Cells Impairs Antitumor Immunity. Cancer Immunol Res 2024; 12:1525-1541. [PMID: 39186561 PMCID: PMC11532741 DOI: 10.1158/2326-6066.cir-24-0463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/14/2024] [Accepted: 08/21/2024] [Indexed: 08/28/2024]
Abstract
Progressive decline of the adaptive immune system with increasing age coincides with a sharp increase in cancer incidence. In this study, we set out to understand whether deficits in antitumor immunity with advanced age promote tumor progression and/or drive resistance to immunotherapy. We found that multiple syngeneic cancers grew more rapidly in aged versus young adult mice, driven by dysfunctional CD8+ T-cell responses. By systematically mapping immune cell profiles within tumors, we identified loss of tumor antigen-specific CD8+ T cells as a primary feature accelerating the growth of tumors in aged mice and driving resistance to immunotherapy. When antigen-specific T cells from young adult mice were administered to aged mice, tumor outgrowth was delayed and the aged animals became sensitive to PD-1 blockade. These studies reveal how age-associated CD8+ T-cell dysfunction may license tumorigenesis in elderly patients and have important implications for the use of aged mice as preclinical models of aging and cancer.
Collapse
Affiliation(s)
- Peter Georgiev
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts
- Gene Lay Institute of Immunology and Inflammation of Brigham and Women’s Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - SeongJun Han
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts
- Gene Lay Institute of Immunology and Inflammation of Brigham and Women’s Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Amy Y. Huang
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts
- Gene Lay Institute of Immunology and Inflammation of Brigham and Women’s Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Division of Population Sciences, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Thao H. Nguyen
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts
- Gene Lay Institute of Immunology and Inflammation of Brigham and Women’s Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Jefte M. Drijvers
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts
- Gene Lay Institute of Immunology and Inflammation of Brigham and Women’s Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Hannah Creasey
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts
- Gene Lay Institute of Immunology and Inflammation of Brigham and Women’s Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Joseph A. Pereira
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts
- Gene Lay Institute of Immunology and Inflammation of Brigham and Women’s Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Cong-Hui Yao
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts
- Gene Lay Institute of Immunology and Inflammation of Brigham and Women’s Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Joon Seok Park
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts
- Gene Lay Institute of Immunology and Inflammation of Brigham and Women’s Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Thomas S. Conway
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts
- Gene Lay Institute of Immunology and Inflammation of Brigham and Women’s Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Megan E. Fung
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts
- Gene Lay Institute of Immunology and Inflammation of Brigham and Women’s Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Dan Liang
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts
- Gene Lay Institute of Immunology and Inflammation of Brigham and Women’s Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Michael Peluso
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts
- Gene Lay Institute of Immunology and Inflammation of Brigham and Women’s Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Shakchhi Joshi
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts
- Gene Lay Institute of Immunology and Inflammation of Brigham and Women’s Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Jared H. Rowe
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts
- Gene Lay Institute of Immunology and Inflammation of Brigham and Women’s Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Brian C. Miller
- Division of Oncology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Gordon J. Freeman
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Arlene H. Sharpe
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts
- Gene Lay Institute of Immunology and Inflammation of Brigham and Women’s Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Marcia C. Haigis
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts
- Gene Lay Institute of Immunology and Inflammation of Brigham and Women’s Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Alison E. Ringel
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, Massachusetts
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
| |
Collapse
|
13
|
Chang ST, Chuang YF, Li AH, Fan YT, Liao MR, Chen IY, Hung RW, Yang TO, Chiu YL. Age-dependent immune profile in healthy individuals: an original study, systematic review and meta-analysis. Immun Ageing 2024; 21:75. [PMID: 39472926 PMCID: PMC11520839 DOI: 10.1186/s12979-024-00480-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 10/17/2024] [Indexed: 11/02/2024]
Abstract
BACKGROUND The circulatory peripheral immune system is the most convenient approach for determining an individual's immune status. Due to various reasons, while previous studies have addressed the critical impact of age, most individual studies did not analyze immunosenescence in a systemic manner, which complicates the possibility of building a reference range for age-dependent immune profiles for effective immune monitoring. To address this gap, this study analyzed a group of healthy individuals to establish age-specific reference ranges of the healthy circulatory immune profile, and a systematic review and meta-analysis were conducted to validate the findings and create generalizable immune cell reference ranges. RESULTS Our study recruited a total of 363 healthy Taiwanese adults (median age 42 years [IQR 30, 62], age range 21 to 87 years, 43.3% male), including 158 under 40 years old, 127 between 40-64 years old, and 78 over 64 years old. Significant age-related alterations were observed in both adaptive and innate immune cell subsets. CD8 + T cells decreased and CD4/CD8 ratio increased, with notable increases in NK cells. CD4 + T cells were less impacted by aging, while CD8 + T cells significantly lost CD28 and increased CD31 expression with age. A clear reverse trend in naïve and memory subsets of CD4 + and CD8 + T cells was observed. Detailed reference ranges for immune cell subsets in healthy Taiwanese adults were established. A systematic review included 7,425 adults and a meta-analysis of 12 eligible studies confirmed our findings in Taiwan, enhancing generalizability. CONCLUSIONS Combined with previous studies and original data through a systematic review and meta-analysis, we highlighted and quantified significant immune profile differences between older and younger individuals. The sex and age-specific reference ranges for peripheral immune cell subsets can serve as a basis for effective immune monitoring of various aging-related illnesses.
Collapse
Affiliation(s)
- Syuan-Ting Chang
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yi-Fang Chuang
- Institute of Public Health, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Psychiatry, Far Eastern Memorial Hospital, New Taipei, Taiwan
| | - Ai-Hsien Li
- Graduate Program in Biomedical Informatics and Graduate Institute of Medicine, Yuan Ze University, Taoyuan, Taiwan
- Health Management Center, Far Eastern Memorial Hospital, New Taipei, Taiwan
| | - Yang-Teng Fan
- Graduate Program in Biomedical Informatics and Graduate Institute of Medicine, Yuan Ze University, Taoyuan, Taiwan
| | - Man-Ru Liao
- Graduate Program in Biomedical Informatics and Graduate Institute of Medicine, Yuan Ze University, Taoyuan, Taiwan
- Health Management Center, Far Eastern Memorial Hospital, New Taipei, Taiwan
| | - I-Yu Chen
- Department of Medical Research, Far Eastern Memorial Hospital, New Taipei, Taiwan
| | - Ruo-Wei Hung
- Department of Medical Research, Far Eastern Memorial Hospital, New Taipei, Taiwan
| | - Tienyu Owen Yang
- Science Officer, Cancer Epidemiology Unit, Nuffield, Department of Population Health , University of Oxford, Richard Doll Building, Old Road Campus, Headington, Oxford, OX3 7LF, UK
| | - Yen-Ling Chiu
- Graduate Program in Biomedical Informatics and Graduate Institute of Medicine, Yuan Ze University, Taoyuan, Taiwan.
- Department of Medical Research, Far Eastern Memorial Hospital, New Taipei, Taiwan.
| |
Collapse
|
14
|
Bohacova P, Terekhova M, Tsurinov P, Mullins R, Husarcikova K, Shchukina I, Antonova AU, Echalar B, Kossl J, Saidu A, Francis T, Mannie C, Arthur L, Harridge SDR, Kreisel D, Mudd PA, Taylor AM, McNamara CA, Cella M, Puram SV, van den Broek T, van Wijk F, Eghtesady P, Artyomov MN. Multidimensional profiling of human T cells reveals high CD38 expression, marking recent thymic emigrants and age-related naive T cell remodeling. Immunity 2024; 57:2362-2379.e10. [PMID: 39321807 DOI: 10.1016/j.immuni.2024.08.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 06/21/2024] [Accepted: 08/28/2024] [Indexed: 09/27/2024]
Abstract
Thymic involution is a key factor in human immune aging, leading to reduced thymic output and a decline in recent thymic emigrant (RTE) naive T cells in circulation. Currently, the precise definition of human RTEs and their corresponding cell surface markers lacks clarity. Analysis of single-cell RNA-seq/ATAC-seq data distinguished RTEs by the expression of SOX4, IKZF2, and TOX and CD38 protein, whereby surface CD38hi expression universally identified CD8+ and CD4+ RTEs. We further determined the dynamics of RTEs and mature cells in a cohort of 158 individuals, including age-associated transcriptional reprogramming and shifts in cytokine production. Spectral cytometry profiling revealed two axes of aging common to naive CD8+ and CD4+ T cells: (1) a decrease in CD38++ cells (RTEs) and (2) an increase in CXCR3hi cells. Identification of RTEs enables direct assessment of thymic health. Furthermore, resolving the dynamics of naive T cell remodeling yields insight into vaccination and infection responsiveness throughout aging.
Collapse
Affiliation(s)
- Pavla Bohacova
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Marina Terekhova
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | - Riley Mullins
- Department of Otolaryngology-Head and Neck Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kamila Husarcikova
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Irina Shchukina
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Alina Ulezko Antonova
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Barbora Echalar
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jan Kossl
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Adam Saidu
- Department of Emergency Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Thomas Francis
- Centre for Human and Applied Physiological Sciences, School of Basic and Medical Biosciences, Faculty of Life Sciences & Medicine, King's College London, London SE1 1UL, UK
| | - Chelsea Mannie
- Division of Cardiothoracic Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Laura Arthur
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Stephen D R Harridge
- Centre for Human and Applied Physiological Sciences, School of Basic and Medical Biosciences, Faculty of Life Sciences & Medicine, King's College London, London SE1 1UL, UK
| | - Daniel Kreisel
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Philip A Mudd
- Department of Emergency Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; The Andrew M. and Jane M. Bursky Center for Human Immunology & Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO 63110, USA; Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Angela M Taylor
- Department of Medicine, Cardiovascular Division, University of Virginia, Charlottesville, VA 22903, USA
| | - Coleen A McNamara
- Department of Medicine, Cardiovascular Division, University of Virginia, Charlottesville, VA 22903, USA; Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA 22903, USA
| | - Marina Cella
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Sidharth V Puram
- Department of Otolaryngology-Head and Neck Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA; Rob Ebert and Greg Stubblefield Head and Neck Tumor Center at Siteman Cancer Center, St. Louis, MO 63110, USA
| | - Theo van den Broek
- Center for Translational Immunology, University Medical Centre Utrecht, Utrecht University, Utrecht 3584CX, the Netherlands
| | - Femke van Wijk
- Center for Translational Immunology, University Medical Centre Utrecht, Utrecht University, Utrecht 3584CX, the Netherlands
| | - Pirooz Eghtesady
- Division of Cardiothoracic Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Maxim N Artyomov
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
15
|
Cil E, Gomes F. Toxicity of Cancer Immunotherapies in Older Patients: Does Age Make a Difference? Drugs Aging 2024; 41:787-794. [PMID: 39368044 DOI: 10.1007/s40266-024-01149-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/12/2024] [Indexed: 10/07/2024]
Abstract
The use of immunotherapy agents especially immune checkpoint inhibitors is growing, and toxicities known as immune-related adverse events affecting any organ system may develop as a consequence of the treatment. With an ageing population, a considerable number of patients who will receive these therapies will be older adults. However, older patients who have highly heterogenous clinical characteristics, age-related changes in the immune system, a higher prevalence of comorbidities and frailty have been poorly represented in clinical trials, leaving gaps in understanding the safety of immune checkpoint inhibitor agents in this subgroup. Therefore, the safety of immune checkpoint inhibitors is a primary point of consideration when treating older patients with cancer. The available evidence is conflicting, but it generally suggests that the incidence of immune-related adverse events is not necessarily higher in older patients, but it may have a different profile. It is important to also note that the management of immune-related adverse events can be a challenge in these patients, owing to the risks associated with the use of corticosteroids and a reduced physiological reserve. A comprehensive characterisation of immune ageing, potential biomarkers to predict immune-related adverse events, the use of measures for frailty, enrolling older patients with cancer to clinical trials and analysis of real-world data are necessary to improve the evidence-based decision making for immune checkpoint inhibitor treatment in a geriatric oncology population.
Collapse
Affiliation(s)
- Emine Cil
- The Christie NHS Foundation Trust, 550 Wilmslow Road, Manchester, M20 4BX, UK
| | - Fabio Gomes
- The Christie NHS Foundation Trust, 550 Wilmslow Road, Manchester, M20 4BX, UK.
| |
Collapse
|
16
|
Shi J, Zhang M, Zhang L, Yu X, Sun L, Liu J, Zhao Y, Zheng W. Shelterin dysfunction promotes CD4+ T cell senescence in Behçet's disease. Rheumatology (Oxford) 2024; 63:2819-2827. [PMID: 38145496 DOI: 10.1093/rheumatology/kead703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/26/2023] [Accepted: 12/16/2023] [Indexed: 12/27/2023] Open
Abstract
OBJECTIVES To investigate the potential role of shelterin dysfunction in naïve CD4+ T cells in the pathogenesis of Behçet's disease (BD). METHODS Naïve CD4+ T cells were isolated from 40 BD patients and 40 sex- and age-matched healthy controls (HC). Senescent profiles, shelterin subunits expression, telomere length, telomerase activity and critical DNA damage response (DDR) were evaluated. Telomere repeat factor-2 (TRF2) silencing was conducted for further validation. RESULTS Compared with HC, BD patients had significantly decreased naïve CD4+ T cells, increased cell apoptosis, senescence, and productions of TNF-α and IFN-γ upon activation. Notably, BD naïve CD4+ T cells had shortened telomere, impaired telomerase activity, and expressed lower levels of shelterin subunits TRF2, TRF1- and TRF2-Interacting Nuclear Protein 2 (TIN2) and Repressor/Activator Protein 1 (RAP1). Furthermore, BD naïve CD4+ T cells exhibited significantly increased DDR, evidenced by elevated phosphorylated ataxia telangiectasia (AT) mutated (pATM), phosphorylated p53 (pp53) and p21. Finally, TRF2 silencing markedly upregulated DDR, apoptosis and proinflammatory cytokines production in HC naïve CD4+ T cells. CONCLUSION Our study demonstrated that TRF2 deficiency in BD naïve CD4+ T cells promoted cell apoptosis and senescence, leading to proinflammatory cytokines overproduction. Therefore, restoring TRF2 might be a promising therapeutic strategy for BD.
Collapse
Affiliation(s)
- Jing Shi
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College; National Clinical Research Center for Dermatologic and Immunologic Diseases, Ministry of Science & Technology, Beijing, China
- Department of Allergy, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Menghao Zhang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College; National Clinical Research Center for Dermatologic and Immunologic Diseases, Ministry of Science & Technology, Beijing, China
| | - Lili Zhang
- Department of Rheumatology, Linyi People's Hospital, Linyi, Shandong, China
| | - Xin Yu
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College; National Clinical Research Center for Dermatologic and Immunologic Diseases, Ministry of Science & Technology, Beijing, China
| | - Luxi Sun
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Beijing, China
| | - Jinjing Liu
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College; National Clinical Research Center for Dermatologic and Immunologic Diseases, Ministry of Science & Technology, Beijing, China
| | - Yan Zhao
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College; National Clinical Research Center for Dermatologic and Immunologic Diseases, Ministry of Science & Technology, Beijing, China
| | - Wenjie Zheng
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College; National Clinical Research Center for Dermatologic and Immunologic Diseases, Ministry of Science & Technology, Beijing, China
| |
Collapse
|
17
|
Markov NS, Ren Z, Senkow KJ, Grant RA, Gao CA, Malsin ES, Sichizya L, Kihshen H, Helmin KA, Jovisic M, Arnold JM, Pérez-Leonor XG, Abdala-Valencia H, Swaminathan S, Nwaezeapu J, Kang M, Rasmussen L, Ozer EA, Lorenzo-Redondo R, Hultquist JF, Simons LM, Rios-Guzman E, Misharin AV, Wunderink RG, Budinger GRS, Singer BD, Morales-Nebreda L. Distinctive evolution of alveolar T cell responses is associated with clinical outcomes in unvaccinated patients with SARS-CoV-2 pneumonia. Nat Immunol 2024; 25:1607-1622. [PMID: 39138384 PMCID: PMC11490290 DOI: 10.1038/s41590-024-01914-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 07/03/2024] [Indexed: 08/15/2024]
Abstract
The evolution of T cell molecular signatures in the distal lung of patients with severe pneumonia is understudied. Here, we analyzed T cell subsets in longitudinal bronchoalveolar lavage fluid samples from 273 patients with severe pneumonia, including unvaccinated patients infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) or with respiratory failure not linked to pneumonia. In patients with SARS-CoV-2 pneumonia, activation of interferon signaling pathways, low activation of the NF-κB pathway and preferential targeting of spike and nucleocapsid proteins early after intubation were associated with favorable outcomes, whereas loss of interferon signaling, activation of NF-κB-driven programs and specificity for the ORF1ab complex late in disease were associated with mortality. These results suggest that in patients with severe SARS-CoV-2 pneumonia, alveolar T cell interferon responses targeting structural SARS-CoV-2 proteins characterize individuals who recover, whereas responses against nonstructural proteins and activation of NF-κB are associated with poor outcomes.
Collapse
Affiliation(s)
- Nikolay S Markov
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Ziyou Ren
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Karolina J Senkow
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Rogan A Grant
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Catherine A Gao
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Elizabeth S Malsin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Lango Sichizya
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Hermon Kihshen
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Kathryn A Helmin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Milica Jovisic
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Jason M Arnold
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Xóchitl G Pérez-Leonor
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Hiam Abdala-Valencia
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Suchitra Swaminathan
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Julu Nwaezeapu
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Mengjia Kang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Luke Rasmussen
- Division of Health and Biomedical Informatics, Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Egon A Ozer
- Division of Infectious Diseases, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Center for Pathogen Genomics and Microbial Evolution, Institute for Global Health, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Ramon Lorenzo-Redondo
- Division of Infectious Diseases, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Center for Pathogen Genomics and Microbial Evolution, Institute for Global Health, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Judd F Hultquist
- Division of Infectious Diseases, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Center for Pathogen Genomics and Microbial Evolution, Institute for Global Health, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Lacy M Simons
- Division of Infectious Diseases, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Center for Pathogen Genomics and Microbial Evolution, Institute for Global Health, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Estefany Rios-Guzman
- Division of Infectious Diseases, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Center for Pathogen Genomics and Microbial Evolution, Institute for Global Health, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Alexander V Misharin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Richard G Wunderink
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - G R Scott Budinger
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Benjamin D Singer
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Luisa Morales-Nebreda
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
- Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
18
|
Sureshchandra S, Henderson J, Levendosky E, Bhattacharyya S, Kastenschmidt JM, Sorn AM, Mitul MT, Benchorin A, Batucal K, Daugherty A, Murphy SJ, Thakur C, Trask D, Ahuja G, Zhong Q, Moisan A, Tiffeau-Mayer A, Saligrama N, Wagar LE. Tissue determinants of the human T cell receptor repertoire. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.17.608295. [PMID: 39229002 PMCID: PMC11370363 DOI: 10.1101/2024.08.17.608295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
98% of T cells reside in tissues, yet nearly all human T cell analyses are performed from peripheral blood. We single-cell sequenced 5.7 million T cells from ten donors' autologous blood and tonsils and sought to answer key questions about T cell receptor biology previously unanswerable by smaller-scale experiments. We identified distinct clonal expansions and distributions in blood compared to tonsils, with surprisingly low (1-7%) clonal sharing. These few shared clones exhibited divergent phenotypes across bodily sites. Analysis of antigen-specific CD8 T cells revealed location as a main determinant of frequency, phenotype, and immunodominance. Finally, diversity estimates from the tissue recalibrates current repertoire diversity estimates, and we provide a refined estimate of whole-body repertoire. Given the tissue-restricted nature of T cell phenotypes, functions, differentiation, and clonality revealed by this dataset, we conclude that tissue analyses are crucial for accurate repertoire analysis and monitoring changes after perturbing therapies.
Collapse
Affiliation(s)
- Suhas Sureshchandra
- Department of Physiology & Biophysics, Institute for Immunology, Center for Virus Research, Vaccine Research & Development Center, and Cancer Research Institute, University of California Irvine, Irvine, CA, USA
| | - James Henderson
- Division of Infection & Immunity, Institute for the Physics of Living Systems, University College London, London, UK
| | - Elizabeth Levendosky
- Department of Neurology Bursky Center for Human Immunology and Immunotherapy Programs; Hope Center for Neurological Disorders; Center for Brain Immunology and Glia (BIG), Siteman Cancer Center, Washington University School of Medicine, St. Louis, 63110, USA
| | - Sankalan Bhattacharyya
- Division of Infection & Immunity, Institute for the Physics of Living Systems, University College London, London, UK
| | - Jenna M Kastenschmidt
- Department of Physiology & Biophysics, Institute for Immunology, Center for Virus Research, Vaccine Research & Development Center, and Cancer Research Institute, University of California Irvine, Irvine, CA, USA
| | - Andrew M Sorn
- Department of Physiology & Biophysics, Institute for Immunology, Center for Virus Research, Vaccine Research & Development Center, and Cancer Research Institute, University of California Irvine, Irvine, CA, USA
| | - Mahina Tabassum Mitul
- Department of Physiology & Biophysics, Institute for Immunology, Center for Virus Research, Vaccine Research & Development Center, and Cancer Research Institute, University of California Irvine, Irvine, CA, USA
| | - Aviv Benchorin
- Department of Physiology & Biophysics, Institute for Immunology, Center for Virus Research, Vaccine Research & Development Center, and Cancer Research Institute, University of California Irvine, Irvine, CA, USA
| | - Kyle Batucal
- Department of Physiology & Biophysics, Institute for Immunology, Center for Virus Research, Vaccine Research & Development Center, and Cancer Research Institute, University of California Irvine, Irvine, CA, USA
| | - Allyssa Daugherty
- Department of Neurology Bursky Center for Human Immunology and Immunotherapy Programs; Hope Center for Neurological Disorders; Center for Brain Immunology and Glia (BIG), Siteman Cancer Center, Washington University School of Medicine, St. Louis, 63110, USA
| | - Samuel Jh Murphy
- Department of Neurology Bursky Center for Human Immunology and Immunotherapy Programs; Hope Center for Neurological Disorders; Center for Brain Immunology and Glia (BIG), Siteman Cancer Center, Washington University School of Medicine, St. Louis, 63110, USA
- Medical Scientist Training Program, Washington University School of Medicine; St. Louis, 63110, USA
| | - Chandrani Thakur
- Department of Neurology Bursky Center for Human Immunology and Immunotherapy Programs; Hope Center for Neurological Disorders; Center for Brain Immunology and Glia (BIG), Siteman Cancer Center, Washington University School of Medicine, St. Louis, 63110, USA
| | - Douglas Trask
- Department of Otolaryngology and Head & Neck Surgery, University of California Irvine, Irvine, CA, USA
| | - Gurpreet Ahuja
- Department of Otolaryngology, Children's Hospital of Orange County, Orange, CA, USA
| | - Qiu Zhong
- Department of Otolaryngology, Children's Hospital of Orange County, Orange, CA, USA
| | - Annie Moisan
- Roche Pharma Research & Early Development (pRED), Basel, Switzerland
| | - Andreas Tiffeau-Mayer
- Division of Infection & Immunity, Institute for the Physics of Living Systems, University College London, London, UK
| | - Naresha Saligrama
- Department of Neurology Bursky Center for Human Immunology and Immunotherapy Programs; Hope Center for Neurological Disorders; Center for Brain Immunology and Glia (BIG), Siteman Cancer Center, Washington University School of Medicine, St. Louis, 63110, USA
| | - Lisa E Wagar
- Department of Physiology & Biophysics, Institute for Immunology, Center for Virus Research, Vaccine Research & Development Center, and Cancer Research Institute, University of California Irvine, Irvine, CA, USA
| |
Collapse
|
19
|
Roesner LM, Gupta MK, Kopfnagel V, van Unen N, Kemmling Y, Heise JK, Castell S, Jiang X, Riemann L, Traidl S, Lange B, Sühs KW, Illig T, Strowig T, Li Y, Förster R, Huehn J, Schulz TF, Werfel T. The RESIST Senior Individuals Cohort: Design, participant characteristics and aims. GeroScience 2024:10.1007/s11357-024-01299-6. [PMID: 39141284 DOI: 10.1007/s11357-024-01299-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 07/22/2024] [Indexed: 08/15/2024] Open
Abstract
The number of older adults worldwide is growing exponentially. However, while living longer, older individuals are more susceptible to both non-infectious and infectious diseases, at least in part due to alterations of the immune system. Here, we report on a prospective cohort study investigating the influence of age on immune responses and susceptibility to infection. The RESIST Senior Individuals (SI) cohort was established as a general population cohort with a focus on the elderly, enrolling an age- and sex-stratified sample of 650 individuals (n = 100 20-39y, n = 550 61-94y, 2019-2023, Hannover, Germany). It includes clinical, demographic, and lifestyle data and also extensive biomaterial sampling. Initial insights indicate that the SI cohort exhibits characteristics of the aging immune system and the associated susceptibility to infection, thereby providing a suitable platform for the decoding of age-related alterations of the immune system and unraveling the molecular mechanisms underlying the impaired immune responsiveness in aging populations by exploring comprehensive, unbiased multi-omics datasets.
Collapse
Affiliation(s)
- Lennart Matthias Roesner
- Department of Dermatology and Allergy, Hannover Medical School (MHH), Hannover, Germany.
- Cluster of Excellence RESIST (EXC 2155, Hannover Medical School (MHH), Hannover, Germany.
| | - Manoj Kumar Gupta
- Department of Computational Biology of Individualised Medicine, Centre for Individualised Infection Medicine (CiiM), a Joint Venture Between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
- TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture Between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
| | - Verena Kopfnagel
- Hannover Unified Biobank (HUB), Hannover Medical School (MHH), Hannover, Germany
| | - Nienke van Unen
- Department of Computational Biology of Individualised Medicine, Centre for Individualised Infection Medicine (CiiM), a Joint Venture Between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
- TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture Between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
| | - Yvonne Kemmling
- Department for Epidemiology, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Jana-Kristin Heise
- Department for Epidemiology, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Stephanie Castell
- Department for Epidemiology, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Xun Jiang
- Department of Computational Biology of Individualised Medicine, Centre for Individualised Infection Medicine (CiiM), a Joint Venture Between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
- TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture Between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
| | - Lennart Riemann
- Institute of Immunology, Hannover Medical School (MHH), Hannover, Germany
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Stephan Traidl
- Department of Dermatology and Allergy, Hannover Medical School (MHH), Hannover, Germany
| | - Berit Lange
- Department for Epidemiology, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Kurt-Wolfram Sühs
- Department of Neurology, Hannover Medical School (MHH), Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155, Hannover Medical School (MHH), Hannover, Germany
| | - Thomas Illig
- Hannover Unified Biobank (HUB), Hannover Medical School (MHH), Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155, Hannover Medical School (MHH), Hannover, Germany
| | - Till Strowig
- Department of Microbial Immune Regulation, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
- Cluster of Excellence RESIST (EXC 2155, Hannover Medical School (MHH), Hannover, Germany
| | - Yang Li
- Department of Computational Biology of Individualised Medicine, Centre for Individualised Infection Medicine (CiiM), a Joint Venture Between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
- TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture Between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155, Hannover Medical School (MHH), Hannover, Germany
| | - Reinhold Förster
- Institute of Immunology, Hannover Medical School (MHH), Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155, Hannover Medical School (MHH), Hannover, Germany
| | - Jochen Huehn
- Department Experimental Immunology, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
- Cluster of Excellence RESIST (EXC 2155, Hannover Medical School (MHH), Hannover, Germany
| | - Thomas Friedrich Schulz
- Institute of Virology, Hannover Medical School (MHH), Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155, Hannover Medical School (MHH), Hannover, Germany
| | - Thomas Werfel
- Department of Dermatology and Allergy, Hannover Medical School (MHH), Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155, Hannover Medical School (MHH), Hannover, Germany
| |
Collapse
|
20
|
Quin C, DeJong EN, McNaughton AJM, Buttigieg MM, Basrai S, Abelson S, Larché MJ, Rauh MJ, Bowdish DME. Chronic TNF in the aging microenvironment exacerbates Tet2 loss-of-function myeloid expansion. Blood Adv 2024; 8:4169-4180. [PMID: 38924753 PMCID: PMC11334836 DOI: 10.1182/bloodadvances.2023011833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 06/11/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
ABSTRACT Somatic mutations in the TET2 gene occur more frequently with age, imparting an intrinsic hematopoietic stem cells (HSCs) advantage and contributing to a phenomenon termed clonal hematopoiesis of indeterminate potential (CHIP). Individuals with TET2-mutant CHIP have a higher risk of developing myeloid neoplasms and other aging-related conditions. Despite its role in unhealthy aging, the extrinsic mechanisms driving TET2-mutant CHIP clonal expansion remain unclear. We previously showed an environment containing tumor necrosis factor (TNF) favors TET2-mutant HSC expansion in vitro. We therefore postulated that age-related increases in TNF also provide an advantage to HSCs with TET2 mutations in vivo. To test this hypothesis, we generated mixed bone marrow chimeric mice of old wild-type (WT) and TNF-/- genotypes reconstituted with WT CD45.1+ and Tet2-/- CD45.2+ HSCs. We show that age-associated increases in TNF dramatically increased the expansion of Tet2-/- cells in old WT recipient mice, with strong skewing toward the myeloid lineage. This aberrant myelomonocytic advantage was mitigated in old TNF-/- recipient mice, suggesting that TNF signaling is essential for the expansion Tet2-mutant myeloid clones. Examination of human patients with rheumatoid arthritis with clonal hematopoiesis revealed that hematopoietic cells carrying certain mutations, including in TET2, may be sensitive to reduced TNF bioactivity following blockade with adalimumab. This suggests that targeting TNF may reduce the burden of some forms of CHIP. To our knowledge, this is the first evidence to demonstrate that TNF has a causal role in driving TET2-mutant CHIP in vivo. These findings highlight TNF as a candidate therapeutic target to control TET2-mutant CHIP.
Collapse
Affiliation(s)
- Candice Quin
- Department of Medicine, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
- Firestone Institute for Respiratory Health, St. Joseph’s Healthcare Hamilton, Hamilton, ON, Canada
- Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, United Kingdom
| | - Erica N. DeJong
- Department of Medicine, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
- Firestone Institute for Respiratory Health, St. Joseph’s Healthcare Hamilton, Hamilton, ON, Canada
| | - Amy J. M. McNaughton
- Department of Pathology and Molecular Medicine, Faculty of Health Sciences, Queen’s University, Kingston, ON, Canada
| | - Marco M. Buttigieg
- Department of Pathology and Molecular Medicine, Faculty of Health Sciences, Queen’s University, Kingston, ON, Canada
| | - Salman Basrai
- Ontario Institute for Cancer Research, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Sagi Abelson
- Ontario Institute for Cancer Research, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Maggie J. Larché
- Department of Medicine, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Michael J. Rauh
- Department of Pathology and Molecular Medicine, Faculty of Health Sciences, Queen’s University, Kingston, ON, Canada
| | - Dawn M. E. Bowdish
- Department of Medicine, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
- Firestone Institute for Respiratory Health, St. Joseph’s Healthcare Hamilton, Hamilton, ON, Canada
| |
Collapse
|
21
|
Tomusiak A, Floro A, Tiwari R, Riley R, Matsui H, Andrews N, Kasler HG, Verdin E. Development of an epigenetic clock resistant to changes in immune cell composition. Commun Biol 2024; 7:934. [PMID: 39095531 PMCID: PMC11297166 DOI: 10.1038/s42003-024-06609-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 07/14/2024] [Indexed: 08/04/2024] Open
Abstract
Epigenetic clocks are age predictors that use machine-learning models trained on DNA CpG methylation values to predict chronological or biological age. Increases in predicted epigenetic age relative to chronological age (epigenetic age acceleration) are connected to aging-associated pathologies, and changes in epigenetic age are linked to canonical aging hallmarks. However, epigenetic clocks rely on training data from bulk tissues whose cellular composition changes with age. Here, we found that human naive CD8+ T cells, which decrease in frequency during aging, exhibit an epigenetic age 15-20 years younger than effector memory CD8+ T cells from the same individual. Importantly, homogenous naive T cells isolated from individuals of different ages show a progressive increase in epigenetic age, indicating that current epigenetic clocks measure two independent variables, aging and immune cell composition. To isolate the age-associated cell intrinsic changes, we created an epigenetic clock, the IntrinClock, that did not change among 10 immune cell types tested. IntrinClock shows a robust predicted epigenetic age increase in a model of replicative senescence in vitro and age reversal during OSKM-mediated reprogramming.
Collapse
Affiliation(s)
- Alan Tomusiak
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, 94945, CA, USA
- Department of Gerontology, University of Southern California, 3715 McClintock Ave, Los Angeles, 90089, CA, USA
| | - Ariel Floro
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, 94945, CA, USA
- Department of Gerontology, University of Southern California, 3715 McClintock Ave, Los Angeles, 90089, CA, USA
| | - Ritesh Tiwari
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, 94945, CA, USA
| | - Rebeccah Riley
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, 94945, CA, USA
| | - Hiroyuki Matsui
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, 94945, CA, USA
| | - Nicolas Andrews
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, 94945, CA, USA
| | - Herbert G Kasler
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, 94945, CA, USA
| | - Eric Verdin
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, 94945, CA, USA.
| |
Collapse
|
22
|
Li N, Li Y, Yu T, Gou M, Chen W, Wang X, Tong J, Chen S, Tan S, Wang Z, Tian B, Li CSR, Tan Y. Immunosenescence-related T cell phenotypes and white matter in schizophrenia patients with tardive dyskinesia. Schizophr Res 2024; 269:36-47. [PMID: 38723519 DOI: 10.1016/j.schres.2024.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 03/18/2024] [Accepted: 04/22/2024] [Indexed: 06/17/2024]
Abstract
Schizophrenia patients with tardive dyskinesia (TD) are associated with accelerated biological aging, immunological dysfunction, and premature morbidity and mortality. Older individuals are particularly vulnerable to TD development. As a characteristic of immunosenescence, alterations in the relative proportions of naïve or memory T cell subpopulations may be negatively or positively associated with brain structure abnormalities; however, whether these changes are correlated with TD remains unclear. In this study, we investigated correlations between distributions of T cell phenotypes and brain structure abnormalities (especially white matter) in schizophrenia patients with (TD) and without (NTD) TD (n = 50 and 58, respectively) relative to healthy controls (HC, n = 41). Immune markers, including naïve (CD45RA+), memory (CD45RO+), and apoptotic (CD95+) CD4+ and CD8+ T cells, were examined by flow cytometry, as were the intracellular levels of cytokines (interferon (IFN)-γ, interleukin (IL)-6, IL-1β, and tumor necrosis factor (TNF)-α) in CD8 + CD45RA + CD95+ and CD8 + CD45RO + CD95+ T cells. MRI was employed to evaluate the fractional anisotropy (FA) of white matter tracts and subcortical volumes, following published routines. The percentage of CD8 + CD45RO + CD95+ T cells was higher in TD compared with NTD and HC groups and correlated with the choroid plexus volume in TD group. The intracellular level of IFN-γ in CD8 + CD45RO + CD95+ T cells, the FA of the fornix/stria terminalis, and the pallidum volume were correlated with orofacial TD, whereas the FAs of the inferior fronto-occipital fasciculus, cingulum, and superior longitudinal fasciculus were correlated with limb-truncal TD. These findings provide preliminary evidence that the association between immunosenescence-related T cell subpopulations and brain structure may underline the pathological process of TD.
Collapse
Affiliation(s)
- Na Li
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing, PR China
| | - Yanli Li
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing, PR China
| | - Ting Yu
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing, PR China
| | - Mengzhuang Gou
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing, PR China
| | - Wenjin Chen
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing, PR China
| | - Xiaoying Wang
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing, PR China
| | - Jinghui Tong
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing, PR China
| | - Song Chen
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing, PR China
| | - Shuping Tan
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing, PR China
| | - Zhiren Wang
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing, PR China
| | - Baopeng Tian
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing, PR China
| | - Chiang-Shan R Li
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Yunlong Tan
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing, PR China.
| |
Collapse
|
23
|
Cheng KW, Yen CH, Chang R, Wei JCC, Wang SI. Real-World Assessment of Recommended COVID-19 Vaccination Waiting Period after Chemotherapy. Vaccines (Basel) 2024; 12:678. [PMID: 38932407 PMCID: PMC11209144 DOI: 10.3390/vaccines12060678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/14/2024] [Accepted: 06/15/2024] [Indexed: 06/28/2024] Open
Abstract
There is a knowledge gap concerning the proper timing for COVID-19 vaccination in cancer patients undergoing chemotherapy. We aimed to evaluate the suitability of the guidelines that recommend waiting at least three months after undergoing chemotherapy before receiving a COVID-19 vaccine. This retrospective cohort study used aggregated data from the TriNetX US Collaboratory network. Participants were grouped into two groups based on the interval between chemotherapy and vaccination. The primary outcome assessed was infection risks, including COVID-19; skin, intra-abdominal, and urinary tract infections; pneumonia; and sepsis. Secondary measures included healthcare utilization and all causes of mortality. Kaplan-Meier analysis and the Cox proportional hazard model were used to calculate the cumulative incidence and hazard ratio (HR) and 95% confidence intervals for the outcomes. The proportional hazard assumption was tested with the generalized Schoenfeld approach. Four subgroup analyses (cancer type, vaccine brand, sex, age) were conducted. Sensitivity analyses were performed to account for competing risks and explore three distinct time intervals. Patients receiving a vaccine within three months after chemotherapy had a higher risk of COVID-19 infection (HR: 1.428, 95% CI: 1.035-1.970), urinary tract infection (HR: 1.477, 95% CI: 1.083-2.014), and sepsis (HR: 1.854, 95% CI: 1.091-3.152) compared to those who adhered to the recommendations. Hospital inpatient service utilization risk was also significantly elevated for the within three months group (HR: 1.692, 95% CI: 1.354-2.115). Adhering to a three-month post-chemotherapy waiting period reduces infection and healthcare utilization risks for cancer patients receiving a COVID-19 vaccine.
Collapse
Affiliation(s)
- Kai-Wen Cheng
- Department of Emergency Medicine, China Medical University Hospital, Taichung 40447, Taiwan;
| | - Chi-Hua Yen
- School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan;
- Department of Family and Community Medicine, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Renin Chang
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung 81362, Taiwan;
- Department of Recreation and Sports Management, Tajen University, Pintung 90741, Taiwan
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
| | - James Cheng-Chung Wei
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
- Department of Nursing, Chung Shan Medical University, Taichung 40201, Taiwan
- Department of Allergy, Immunology & Rheumatology, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
- Graduate Institute of Integrated Medicine, China Medical University, Taichung 40447, Taiwan
- Office of Research and Development, Asia University, Taichung 41354, Taiwan
| | - Shiow-Ing Wang
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
- Center for Health Data Science, Department of Medical Research, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| |
Collapse
|
24
|
Chen ACY, Jaiswal S, Martinez D, Yerinde C, Ji K, Miranda V, Fung ME, Weiss SA, Zschummel M, Taguchi K, Garris CS, Mempel TR, Hacohen N, Sen DR. The aged tumor microenvironment limits T cell control of cancer. Nat Immunol 2024; 25:1033-1045. [PMID: 38745085 PMCID: PMC11500459 DOI: 10.1038/s41590-024-01828-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 03/27/2024] [Indexed: 05/16/2024]
Abstract
The etiology and effect of age-related immune dysfunction in cancer is not completely understood. Here we show that limited priming of CD8+ T cells in the aged tumor microenvironment (TME) outweighs cell-intrinsic defects in limiting tumor control. Increased tumor growth in aging is associated with reduced CD8+ T cell infiltration and function. Transfer of T cells from young mice does not restore tumor control in aged mice owing to rapid induction of T cell dysfunction. Cell-extrinsic signals in the aged TME drive a tumor-infiltrating age-associated dysfunctional (TTAD) cell state that is functionally, transcriptionally and epigenetically distinct from canonical T cell exhaustion. Altered natural killer cell-dendritic cell-CD8+ T cell cross-talk in aged tumors impairs T cell priming by conventional type 1 dendritic cells and promotes TTAD cell formation. Aged mice are thereby unable to benefit from therapeutic tumor vaccination. Critically, myeloid-targeted therapy to reinvigorate conventional type 1 dendritic cells can improve tumor control and restore CD8+ T cell immunity in aging.
Collapse
Affiliation(s)
- Alex C Y Chen
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, USA
| | - Sneha Jaiswal
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
- Carnegie Mellon University, Pittsburgh, PA, USA
| | - Daniela Martinez
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, USA
| | - Cansu Yerinde
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, USA
| | - Keely Ji
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, USA
| | - Velita Miranda
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | - Megan E Fung
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Sarah A Weiss
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Maria Zschummel
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, USA
| | - Kazuhiro Taguchi
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, USA
| | - Christopher S Garris
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA, USA
- Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - Thorsten R Mempel
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, USA
| | - Nir Hacohen
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Debattama R Sen
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
25
|
Watanabe T, Yazaki M, Yazaki T, Furukawa M, Izumo N. Senotherapeutic effect of Agrimonia pilosa Ledeb. in targeting senescent cells in naturally aged mice. FOOD BIOSCI 2024; 59:103903. [DOI: 10.1016/j.fbio.2024.103903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
26
|
Kommoju V, Mariaselvam CM, Bulusu SN, Ganapathy CK, Narasimhan PB, Thabah MM, Negi VS. Conventional Tregs in treatment-naïve rheumatoid arthritis are deficient in suppressive function with an increase in percentage of CXCR3 and CCR6 expressing Tregs. Immunol Res 2024; 72:396-408. [PMID: 38151700 DOI: 10.1007/s12026-023-09444-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 11/26/2023] [Indexed: 12/29/2023]
Abstract
In rheumatoid arthritis (RA), immune homeostasis is maintained by T regulatory cells (Tregs) that in an inflammatory milieu can change towards T-helper-like phenotypes (Th-like Tregs). Our aim was to examine the phenotypic and functional characteristics of CD4+CD25+CD127lo/- Tregs, Th-like Tregs and T effector (Teff) cells in the peripheral blood (PB) and synovial fluid (SF) of treatment-naïve early RA, as compared to osteoarthritis (OA) and healthy control (HC) peripheral blood. Frequencies of Tregs, CXCR3, CCR6 expressing Tregs (Th-like Tregs), and Teff cells were analyzed using flow cytometry in RA (n = 80), OA (n = 20), and HC (n = 40). Cytokine concentrations of the respective T cell subsets in plasma and SF were measured using flow cytometric bead array. Tregs sorted from RA and HC PB using magnetic beads were analyzed for functional capacities by CFSE proliferation assay and FOXP3 gene expression using real-time PCR. We observed that the frequencies of Th17 cells in PB and SF were significantly higher in RA when compared to HC, whereas Tregs were lower in PB and high in SF compared to HC and OA respectively. Th1- and Th17-related pro-inflammatory cytokines IL12p70, INF-γ, TNF-α, and IL-6, and IL-17A were significantly higher in the plasma and SF of RA. Tregs expressing CXCR3 (Th1-like Tregs) and CCR6 (Th17-like Treg) were significantly higher in PB and SF of RA compared to controls and was positively associated with seropositivity and disease activity. Treg cells isolated from peripheral blood of RA showed decreased function and reduced FOXP3 gene expression compared to HC. In our study, we have demonstrated higher frequencies of Th1 and Th17 cells and increased circulatory and SF pro-inflammatory cytokines (IL12P70, INF-γ, IL-6, IL-17A, and TNF-α) in RA. This inflammatory milieu might alter total Tregs frequencies and influence conversion of Tregs into Th-like Tregs.
Collapse
Affiliation(s)
- Vallayyachari Kommoju
- Department of Clinical Immunology, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Pondicherry, 605 006, India
| | - Christina Mary Mariaselvam
- Department of Clinical Immunology, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Pondicherry, 605 006, India
| | - Sree Nethra Bulusu
- Department of Clinical Immunology, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Pondicherry, 605 006, India
| | - Chengappa Kavadichanda Ganapathy
- Department of Clinical Immunology, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Pondicherry, 605 006, India
| | - Prakash Babu Narasimhan
- Department of Clinical Immunology, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Pondicherry, 605 006, India
| | - Molly Mary Thabah
- Department of Clinical Immunology, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Pondicherry, 605 006, India
| | - Vir Singh Negi
- Department of Clinical Immunology, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Pondicherry, 605 006, India.
- All India Institute of Medical Sciences, Bilaspur, Himachal Pradesh, India.
| |
Collapse
|
27
|
Vasantharekha R, Priyanka HP, Nair RS, Hima L, Pratap UP, Srinivasan AV, ThyagaRajan S. Alterations in Immune Responses Are Associated with Dysfunctional Intracellular Signaling in Peripheral Blood Mononuclear Cells of Men and Women with Mild Cognitive Impairment and Alzheimer's disease. Mol Neurobiol 2024; 61:2964-2977. [PMID: 37957423 DOI: 10.1007/s12035-023-03764-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/02/2023] [Indexed: 11/15/2023]
Abstract
Deficits in the neuroendocrine-immune network in the periphery associated with the onset and progression of mild cognitive impairment (MCI) and Alzheimer's disease (AD) have not been extensively studied. The present study correlatively examines the association between cell-mediated immune responses, stress hormones, amyloid precursor protein (APP) expression, peripheral blood mononuclear cells (PBMC), and intracellular signaling molecules in the pathophysiology of MCI and AD compared to adults. Serum APP, lymphocyte proliferation, total cholinesterase (TChE), butyrylcholinesterase (BChE) activities, cytokines (IL-2, IFN-γ, IL-6, and TNF-α), and intracellular signaling molecules (p-ERK, p-CREB, and p-Akt) were measured in the PBMCs of adult, old, MCI, and AD men and women initially and after 3 years in the same population. An age- and disease-associated decline in mini-mental state examination (MMSE) scores and lymphocyte proliferation of MCI and AD men and women were observed. An age- and disease-related increase in serum APP, cortisol levels, and TChE activity were observed in men and women. Enhanced production of Th1 cytokine, IL-2, pro-inflammatory cytokines, and suppressed intracellular transcription factors may promote the inflammatory environment in MCI and AD patients. The expression of CREB and Akt was lower in MCI and AD men, while the expression of p-ERK was higher, and p-CREB was lower in MCI and AD women after 3 years. These results suggest that changes in specific intracellular signaling pathways may influence alterations in cell-mediated immunity to promote disease progression in MCI and AD patients.
Collapse
Affiliation(s)
- Ramasamy Vasantharekha
- Integrative Medicine Laboratory, Department of Biotechnology, SRM Institute of Science & Technology, Kattankulathur, 603203, Tamil Nadu, India.
| | - Hannah P Priyanka
- Institute of Advanced Research in Health Sciences, Tamil Nadu Government Multi Super Speciality Hospital, Omandurar Government Estate, Chennai, Tamil Nadu, India
| | - Rahul S Nair
- Institute of Advanced Research in Health Sciences, Tamil Nadu Government Multi Super Speciality Hospital, Omandurar Government Estate, Chennai, Tamil Nadu, India
| | - Lalgi Hima
- Integrative Medicine Laboratory, Department of Biotechnology, SRM Institute of Science & Technology, Kattankulathur, 603203, Tamil Nadu, India
| | - Uday P Pratap
- Integrative Medicine Laboratory, Department of Biotechnology, SRM Institute of Science & Technology, Kattankulathur, 603203, Tamil Nadu, India
| | | | - Srinivasan ThyagaRajan
- Integrative Medicine Laboratory, Department of Biotechnology, SRM Institute of Science & Technology, Kattankulathur, 603203, Tamil Nadu, India
| |
Collapse
|
28
|
Zhou F, Wang Z, Zhang G, Wu Y, Xiong Y. Immunosenescence and inflammaging: Conspiracies against alveolar bone turnover. Oral Dis 2024; 30:1806-1817. [PMID: 37288702 DOI: 10.1111/odi.14642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 05/11/2023] [Accepted: 05/27/2023] [Indexed: 06/09/2023]
Abstract
OBJECTIVE Inflammaging and immunosenescence are characteristics of senescent immune system alterations. This review provides insights into inflammaging and immunosenescence in periodontitis and focuses on the innerlink of inflammaging and immunosenescence in alveolar bone turnover from a perspective of cell-cell interaction. METHODS This review is conducted by a narrative approach to discuss the effect of inflammaging and immunosenescence in aging-related alveolar bone loss. A comprehensive literature research in PubMed and Google was applied to identify reports in English. RESULTS Inflammaging is concerned with abnormal M1 polarization and increasing circulating inflammatory cytokines, while immunosenescence involves reduced infection and vaccine responses, depressed antimicrobial function, and infiltration of aged B cells and memory T cells. TLR-mediated inflammaging and altered adaptive immunity significantly affect alveolar bone turnover and aggravate aging-related alveolar bone loss. Besides, energy consumption also plays a vital role in aged immune and skeletal system of periodontitis. CONCLUSIONS Senescent immune system exerts a significant function in aging-related alveolar bone loss. Inflammaging and immunosenescence interact functionally and mechanistically, which affects alveolar bone turnover. Therefore, further clinical treatment strategies targeting alveolar bone loss could be based on the specific molecular mechanism connecting inflammaging, immunosenescence, and alveolar bone turnover.
Collapse
Affiliation(s)
- Feng Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhanqi Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Guorui Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yingying Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yi Xiong
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
29
|
Mangiola S, Milton M, Ranathunga N, Li-Wai-Suen C, Odainic A, Yang E, Hutchison W, Garnham A, Iskander J, Pal B, Yadav V, Rossello J, Carey VJ, Morgan M, Bedoui S, Kallies A, Papenfuss AT. A multi-organ map of the human immune system across age, sex and ethnicity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.08.542671. [PMID: 38746418 PMCID: PMC11092463 DOI: 10.1101/2023.06.08.542671] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Understanding tissue biology's heterogeneity is crucial for advancing precision medicine. Despite the centrality of the immune system in tissue homeostasis, a detailed and comprehensive map of immune cell distribution and interactions across human tissues and demographics remains elusive. To fill this gap, we harmonised data from 12,981 single-cell RNA sequencing samples and curated 29 million cells from 45 anatomical sites to create a comprehensive compositional and transcriptional healthy map of the healthy immune system. We used this resource and a novel multilevel modelling approach to track immune ageing and test differences across sex and ethnicity. We uncovered conserved and tissue-specific immune-ageing programs, resolved sex-dependent differential ageing and identified ethnic diversity in clinically critical immune checkpoints. This study provides a quantitative baseline of the immune system, facilitating advances in precision medicine. By sharing our immune map, we hope to catalyse further breakthroughs in cancer, infectious disease, immunology and precision medicine.
Collapse
Affiliation(s)
- S Mangiola
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - M Milton
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - N Ranathunga
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Csn Li-Wai-Suen
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - A Odainic
- The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, 53127 Bonn, Germany
| | - E Yang
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - W Hutchison
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - A Garnham
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - J Iskander
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - B Pal
- Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria, Australia
| | - V Yadav
- Systems Biology of Aging Laboratory, Columbia University; New York, USA
| | - Jfj Rossello
- Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, VIC 3052, Australia
- Novo Nordisk Foundation Center for Stem Cell Medicine, Murdoch Children's Research Institute, Melbourne, VIC 3052, Australia
- Department of Clinical Pathology, University of Melbourne, Melbourne, VIC, Australia
- Australian Regenerative Medicine Institute, Monash University, Victoria, Australia
| | - V J Carey
- Channing Division of Network Medicine, Mass General Brigham, Harvard Medical School, Harvard University, Boston, USA
| | - M Morgan
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, NY, USA
| | - S Bedoui
- The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - A Kallies
- The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - A T Papenfuss
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
30
|
Hou Y, Chen M, Bian Y, Hu Y, Chuan J, Zhong L, Zhu Y, Tong R. Insights into vaccines for elderly individuals: from the impacts of immunosenescence to delivery strategies. NPJ Vaccines 2024; 9:77. [PMID: 38600250 PMCID: PMC11006855 DOI: 10.1038/s41541-024-00874-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 03/28/2024] [Indexed: 04/12/2024] Open
Abstract
Immunosenescence increases the risk and severity of diseases in elderly individuals and leads to impaired vaccine-induced immunity. With aging of the global population and the emerging risk of epidemics, developing adjuvants and vaccines for elderly individuals to improve their immune protection is pivotal for healthy aging worldwide. Deepening our understanding of the role of immunosenescence in vaccine efficacy could accelerate research focused on optimizing vaccine delivery for elderly individuals. In this review, we analyzed the characteristics of immunosenescence at the cellular and molecular levels. Strategies to improve vaccination potency in elderly individuals are summarized, including increasing the antigen dose, preparing multivalent antigen vaccines, adding appropriate adjuvants, inhibiting chronic inflammation, and inhibiting immunosenescence. We hope that this review can provide a review of new findings with regards to the impacts of immunosenescence on vaccine-mediated protection and inspire the development of individualized vaccines for elderly individuals.
Collapse
Affiliation(s)
- Yingying Hou
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Min Chen
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Yuan Bian
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Yuan Hu
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Junlan Chuan
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Lei Zhong
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| | - Yuxuan Zhu
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| | - Rongsheng Tong
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| |
Collapse
|
31
|
Malik A, Szpunar S, Sharma M, Johnson LB, Saravolatz L, Bhargava A. Predictors of prolonged length of stay in adult patients with respiratory syncytial virus infections - a multi-center historical cohort study. Front Microbiol 2024; 15:1385439. [PMID: 38638901 PMCID: PMC11024437 DOI: 10.3389/fmicb.2024.1385439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 03/20/2024] [Indexed: 04/20/2024] Open
Abstract
Objectives Several studies have reported risk factors for severe disease and mortality in hospitalized adults with RSV infections. There is limited information available regarding the factors that affect the duration of a patient's hospital length of stay (LOS). Methods This was a multicenter historical cohort study of adult patients hospitalized for laboratory-confirmed RSV in Southeast Michigan between January 2017 and December 2021. Hospitalized patients were identified using the International Classification of Diseases, Tenth Revision 10 codes for RSV infection. Mean LOS was computed; prolonged LOS was defined as greater than the mean. Results We included 360 patients with a mean age (SD) of 69.9 ± 14.7 years, 63.6% (229) were female and 63.3% (228) of white race. The mean hospital LOS was 7.1 ± 5.4 days. Factors associated with prolonged LOS in univariable analysis were old age, body mass index (BMI), smoking status, Charlson Weighted Index of Comorbidity (CWIC), home oxygen, abnormal chest x-ray (CXR), presence of sepsis, use of oxygen, and antibiotics at the time of presentation. Predictors for prolonged LOS on admission in multivariable analysis were age on admission (p < 0.001), smoking status (p = 0.001), CWIC (p = 0.038) and abnormal CXR (p = 0.043). Interpretation Our study found that age on admission, smoking history, higher CWIC and abnormal CXR on admission were significantly associated with prolonged LOS among adult patients hospitalized with RSV infection. These findings highlight the significance of promptly recognizing and implementing early interventions to mitigate the duration of hospitalization for adult patients suffering from RSV infection.
Collapse
Affiliation(s)
- Ambreen Malik
- Division of Infectious Diseases, Department of Internal Medicine, Ascension St. John Hospital, Detroit, MI, United States
| | - Susan Szpunar
- Department of Biomedical Investigations and Research, Ascension St. John Hospital, Detroit, MI, United States
| | - Mamta Sharma
- Division of Infectious Diseases, Department of Internal Medicine, Ascension St. John Hospital, Detroit, MI, United States
| | - Leonard B. Johnson
- Division of Infectious Diseases, Department of Internal Medicine, Ascension St. John Hospital, Detroit, MI, United States
- Thomas Mackey Center for Infectious Disease Research, Ascension St. John Hospital, Detroit, MI, United States
| | - Louis Saravolatz
- Division of Infectious Diseases, Department of Internal Medicine, Ascension St. John Hospital, Detroit, MI, United States
- Thomas Mackey Center for Infectious Disease Research, Ascension St. John Hospital, Detroit, MI, United States
| | - Ashish Bhargava
- Division of Infectious Diseases, Department of Internal Medicine, Ascension St. John Hospital, Detroit, MI, United States
- Thomas Mackey Center for Infectious Disease Research, Ascension St. John Hospital, Detroit, MI, United States
| |
Collapse
|
32
|
Chebly A, Khalil C, Kuzyk A, Beylot-Barry M, Chevret E. T-cell lymphocytes' aging clock: telomeres, telomerase and aging. Biogerontology 2024; 25:279-288. [PMID: 37917220 DOI: 10.1007/s10522-023-10075-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 10/13/2023] [Indexed: 11/04/2023]
Abstract
Aging is the decline of physiological capabilities required for life maintenance and reproduction over time. The human immune cells, including T-cells lymphocytes, undergo dramatic aging-related changes, including those related to telomeres and telomerase. It was demonstrated that telomeres and telomerase play crucial roles in T-cell differentiation, aging, and diseases, including a well-documented link between short telomeres and telomerase activation demonstrated in several T-cells malignancies. Herein, we provide a comprehensive review of the literature regarding T-cells' telomeres and telomerase in health and age related-diseases.
Collapse
Affiliation(s)
- Alain Chebly
- Jacques Loiselet Center for Medical Genetics and Genomics (CGGM), Faculty of Medicine, Saint Joseph University, Beirut, Lebanon.
- Higher Institute of Public Health, Saint Joseph University, Beirut, Lebanon.
| | - Charbel Khalil
- Reviva Stem Cell Platform for Research and Applications Center, Bsalim, Lebanon
- Bone Marrow Transplant Unit, Burjeel Medical City, Abu Dhabi, United Arab Emirates
- Lebanese American University School of Medicine, Beirut, Lebanon
| | - Alexandra Kuzyk
- Division of Dermatology, Department of Internal Medicine, University of Calgary, Calgary, AB, Canada
| | - Marie Beylot-Barry
- Dermatology Department, Bordeaux University Hospital, Bordeaux, France
- Univ. Bordeaux, INSERM, BRIC, U1312, 33000, Bordeaux, France
| | - Edith Chevret
- Univ. Bordeaux, INSERM, BRIC, U1312, 33000, Bordeaux, France
| |
Collapse
|
33
|
Cui Q, Li W, Wang D, Wang S, Liu A, Zhang G, Yang Y, Ge T, He G, Yu J. Immune signature and phagocytosis of circulating DC subsets in healthy adults during aging. Int Immunopharmacol 2024; 130:111715. [PMID: 38382263 DOI: 10.1016/j.intimp.2024.111715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 02/11/2024] [Accepted: 02/14/2024] [Indexed: 02/23/2024]
Abstract
Dendritic cells (DC) play a pivotal role in the onset and progression of immunosenescence-associated diseases, serving as a link between innate and adaptive immunity. Thus, there is a need to establish reference ranges for DC subset levels in healthy adults and investigate the potential impact of age on DC subset levels and phagocytic activity. Single-platform multi-color flow cytometry was performed to assess the proportions of circulating conventional type 1 DC (cDC1), conventional type 2 DC (cDC2), and plasmacytoid DC (pDC), as well as the percentages of CD80, CD86, CD83, PD-L1, and CD32 in cDC1, cDC2, and pDC. Reference ranges were established based on age and gender, and the percentage of circulating DC subsets in different age groups was compared. In addition, circulating DC were enriched using a magnetic bead sorting kit and co-cultured with polystyrene (PS) beads, categorized by age groups, followed by the evaluation of PS bead phagocytosis using light microscopy and flow cytometry. The results indicated that the percentages of circulating cDC1, cDC2, and CD32+cDC2 decreased with age (P < 0.05) and revealed age-related impairment in phagocytic percentage of cDC2 (P < 0.05). These findings provide a deeper understanding of the impact of age on the phenotype and phagocytic activity of DC subsets, shedding light on their role and function in immunosenescence.
Collapse
Affiliation(s)
- Qian Cui
- Central Laboratory, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; Graduate School of Tianjin University of Traditional Chinese Medicine, Tianjin, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Wentao Li
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China; Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Dong Wang
- Central Laboratory, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; Graduate School of Tianjin University of Traditional Chinese Medicine, Tianjin, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Shuangcui Wang
- Central Laboratory, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; Graduate School of Tianjin University of Traditional Chinese Medicine, Tianjin, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Aqing Liu
- Central Laboratory, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; Graduate School of Tianjin University of Traditional Chinese Medicine, Tianjin, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Guan Zhang
- Central Laboratory, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; Graduate School of Tianjin University of Traditional Chinese Medicine, Tianjin, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yanjie Yang
- Central Laboratory, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; Graduate School of Tianjin University of Traditional Chinese Medicine, Tianjin, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Ting Ge
- Central Laboratory, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; Graduate School of Tianjin University of Traditional Chinese Medicine, Tianjin, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Guixin He
- Central Laboratory, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; Graduate School of Tianjin University of Traditional Chinese Medicine, Tianjin, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Jianchun Yu
- Central Laboratory, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China.
| |
Collapse
|
34
|
Al-Danakh A, Safi M, Jian Y, Yang L, Zhu X, Chen Q, Yang K, Wang S, Zhang J, Yang D. Aging-related biomarker discovery in the era of immune checkpoint inhibitors for cancer patients. Front Immunol 2024; 15:1348189. [PMID: 38590525 PMCID: PMC11000233 DOI: 10.3389/fimmu.2024.1348189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 01/29/2024] [Indexed: 04/10/2024] Open
Abstract
Older patients with cancer, particularly those over 75 years of age, often experience poorer clinical outcomes compared to younger patients. This can be attributed to age-related comorbidities, weakened immune function, and reduced tolerance to treatment-related adverse effects. In the immune checkpoint inhibitors (ICI) era, age has emerged as an influential factor impacting the discovery of predictive biomarkers for ICI treatment. These age-linked changes in the immune system can influence the composition and functionality of tumor-infiltrating immune cells (TIICs) that play a crucial role in the cancer response. Older patients may have lower levels of TIICs infiltration due to age-related immune senescence particularly T cell function, which can limit the effectivity of cancer immunotherapies. Furthermore, age-related immune dysregulation increases the exhaustion of immune cells, characterized by the dysregulation of ICI-related biomarkers and a dampened response to ICI. Our review aims to provide a comprehensive understanding of the mechanisms that contribute to the impact of age on ICI-related biomarkers and ICI response. Understanding these mechanisms will facilitate the development of treatment approaches tailored to elderly individuals with cancer.
Collapse
Affiliation(s)
- Abdullah Al-Danakh
- Department of Urology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Mohammed Safi
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Yuli Jian
- Department of Biochemistry and Molecular Biology, Institute of Glycobiology, Dalian Medical University, Dalian, China
| | - Linlin Yang
- Department of Urology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Xinqing Zhu
- Department of Urology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Qiwei Chen
- Department of Urology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Kangkang Yang
- Institute for Genome Engineered Animal Models of Human Diseases, National Center of Genetically Engineered Animal Models for International Research, Dalian Medical University, Dalian, Liaoning, China
| | - Shujing Wang
- Department of Biochemistry and Molecular Biology, Institute of Glycobiology, Dalian Medical University, Dalian, China
| | - Jianjun Zhang
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Deyong Yang
- Department of Urology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
- Department of Surgery, Healinghands Clinic, Dalian, Liaoning, China
| |
Collapse
|
35
|
Pan YG, Bartolo L, Xu R, Patel B, Zarnitsyna V, Su L. Differentiation marker-negative CD4 + T cells persist after yellow fever virus vaccination and contribute to durable memory. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.11.584523. [PMID: 38559113 PMCID: PMC10979963 DOI: 10.1101/2024.03.11.584523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Factors that contribute to durable immunological memory remain incompletely understood. In our longitudinal analyses of CD4+ T cell responses to the yellow fever virus (YFV) vaccine by peptide-MHC tetramers, we unexpectedly found naïve phenotype virus-specific CD4+ T cells that persisted months to years after immunization. These Marker negative T cells (TMN) lacked CD95, CXCR3, CD11a, and CD49d surface protein expression, distinguishing them from previously discovered stem-cell memory T cells. Functionally, they resembled genuine naïve T cells upon in vitro stimulation. Single-cell TCR sequencing detected expanded clonotypes within the TMN subset and identified a shared repertoire with memory and effector T cells. T cells expressing TMN-associated TCRs were rare before vaccination, suggesting their expansion following vaccination. Longitudinal tracking of YFV-specific responses over the subsequent years revealed superior stability of the TMN subset and their association with the longevity of the overall population. The identification of these long-lived, antigen-experienced T cells may inform the design of durable T cell-based vaccines and engineered T cell therapies.
Collapse
Affiliation(s)
- Yi-Gen Pan
- Department of Medicine, Division of Rheumatology, Perelman School of Medicine, Institute for Immunology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Laurent Bartolo
- Department of Medicine, Division of Rheumatology, Perelman School of Medicine, Institute for Immunology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ruozhang Xu
- Department of Medicine, Division of Rheumatology, Perelman School of Medicine, Institute for Immunology, University of Pennsylvania, Philadelphia, PA 19104, USA
- Corporal Michael J Crescenz VA Medical Center, Philadelphia, PA, 19104, USA
| | - Bijal Patel
- Department of Medicine, Division of Rheumatology, Perelman School of Medicine, Institute for Immunology, University of Pennsylvania, Philadelphia, PA 19104, USA
- Corporal Michael J Crescenz VA Medical Center, Philadelphia, PA, 19104, USA
| | - Veronika Zarnitsyna
- Department of Microbiology and Immunology, Emory University, Atlanta, GA, USA
| | - Laura Su
- Department of Medicine, Division of Rheumatology, Perelman School of Medicine, Institute for Immunology, University of Pennsylvania, Philadelphia, PA 19104, USA
- Corporal Michael J Crescenz VA Medical Center, Philadelphia, PA, 19104, USA
| |
Collapse
|
36
|
Peng C, Jiang X, Jaeger M, van Houten P, van Herwaarden AE, Koeken VACM, Moorlag SJCFM, Mourits VP, Lemmers H, Dijkstra H, Koenen HJPM, Joosten I, van Cranenbroek B, Li Y, Joosten LAB, Netea MG, Netea-Maier RT, Xu CJ. 11-deoxycortisol positively correlates with T cell immune traits in physiological conditions. EBioMedicine 2024; 99:104935. [PMID: 38134621 PMCID: PMC10776925 DOI: 10.1016/j.ebiom.2023.104935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 12/07/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
BACKGROUND Endogenous steroid hormones have significant effects on inflammatory and immune processes, but the immunological activities of steroidogenesis precursors remain largely unexplored. METHODS We conducted a systematic approach to examine the association between steroid hormones profile and immune traits in a cohort of 534 healthy volunteers. Serum concentrations of steroid hormones and their precursors (cortisol, progesterone, testosterone, androstenedione, 11-deoxycortisol and 17-OH progesterone) were determined by liquid chromatography-tandem mass spectrometry. Immune traits were evaluated by quantifying cellular composition of the circulating immune system and ex vivo cytokine responses elicited by major human pathogens and microbial ligands. An independent cohort of 321 individuals was used for validation, followed by in vitro validation experiments. FINDINGS We observed a positive association between 11-deoxycortisol and lymphoid cellular subsets numbers and function (especially IL-17 response). The association with lymphoid cellularity was validated in an independent validation cohort. In vitro experiments showed that, as compared to androstenedione and 17-OH progesterone, 11-deoxycortisol promoted T cell proliferation and Candida-induced Th17 polarization at physiologically relevant concentrations. Functionally, 11-deoxycortisol-treated T cells displayed a more activated phenotype (PD-L1high CD25high CD62Llow CD127low) in response to CD3/CD28 co-stimulation, and downregulated expression of T-bet nuclear transcription factor. INTERPRETATION Our findings suggest a positive association between 11-deoxycortisol and T-cell function under physiological conditions. Further investigation is needed to explore the potential mechanisms and clinical implications. FUNDING Found in acknowledgements.
Collapse
Affiliation(s)
- Chunying Peng
- Division of Endocrinology, Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Xun Jiang
- Centre for Individualised Infection Medicine (CiiM), A Joint Venture Between the Helmholtz-Centre for Infection Research (HZI) and Hannover Medical School (MHH), Hannover, Germany; TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture Between the Helmholtz-Centre for Infection Research (HZI) and Hannover Medical School (MHH), Hannover, Germany
| | - Martin Jaeger
- Division of Endocrinology, Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Pepijn van Houten
- Division of Endocrinology, Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | | | - Valerie A C M Koeken
- Centre for Individualised Infection Medicine (CiiM), A Joint Venture Between the Helmholtz-Centre for Infection Research (HZI) and Hannover Medical School (MHH), Hannover, Germany; TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture Between the Helmholtz-Centre for Infection Research (HZI) and Hannover Medical School (MHH), Hannover, Germany; Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands; Research Centre Innovations in Care, Rotterdam University of Applied Science, Rotterdam, the Netherlands
| | - Simone J C F M Moorlag
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Vera P Mourits
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Heidi Lemmers
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Helga Dijkstra
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Hans J P M Koenen
- Laboratory Medical Immunology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Irma Joosten
- Laboratory Medical Immunology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Bram van Cranenbroek
- Laboratory Medical Immunology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Yang Li
- Centre for Individualised Infection Medicine (CiiM), A Joint Venture Between the Helmholtz-Centre for Infection Research (HZI) and Hannover Medical School (MHH), Hannover, Germany; TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture Between the Helmholtz-Centre for Infection Research (HZI) and Hannover Medical School (MHH), Hannover, Germany; Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Leo A B Joosten
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Medical Genetics, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Romana T Netea-Maier
- Division of Endocrinology, Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands.
| | - Cheng-Jian Xu
- Centre for Individualised Infection Medicine (CiiM), A Joint Venture Between the Helmholtz-Centre for Infection Research (HZI) and Hannover Medical School (MHH), Hannover, Germany; TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture Between the Helmholtz-Centre for Infection Research (HZI) and Hannover Medical School (MHH), Hannover, Germany; Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands.
| |
Collapse
|
37
|
Markov NS, Ren Z, Senkow KJ, Grant RA, Gao CA, Malsin ES, Sichizya L, Kihshen H, Helmin KA, Jovisic M, Arnold JM, Pérez-Leonor XG, Abdala-Valencia H, Swaminathan S, Nwaezeapu J, Kang M, Rasmussen L, Ozer EA, Lorenzo-Redondo R, Hultquist JF, Simons LM, Rios-Guzman E, Misharin AV, Wunderink RG, Budinger GS, Singer BD, Morales-Nebreda L. A distinctive evolution of alveolar T cell responses is associated with clinical outcomes in unvaccinated patients with SARS-CoV-2 pneumonia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.13.571479. [PMID: 38168346 PMCID: PMC10760069 DOI: 10.1101/2023.12.13.571479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Pathogen clearance and resolution of inflammation in patients with pneumonia require an effective local T cell response. Nevertheless, local T cell activation may drive lung injury, particularly during prolonged episodes of respiratory failure characteristic of severe SARS-CoV-2 pneumonia. While T cell responses in the peripheral blood are well described, the evolution of T cell phenotypes and molecular signatures in the distal lung of patients with severe pneumonia caused by SARS-CoV-2 or other pathogens is understudied. Accordingly, we serially obtained 432 bronchoalveolar lavage fluid samples from 273 patients with severe pneumonia and respiratory failure, including 74 unvaccinated patients with COVID-19, and performed flow cytometry, transcriptional, and T cell receptor profiling on sorted CD8+ and CD4+ T cell subsets. In patients with COVID-19 but not pneumonia secondary to other pathogens, we found that early and persistent enrichment in CD8+ and CD4+ T cell subsets correlated with survival to hospital discharge. Activation of interferon signaling pathways early after intubation for COVID-19 was associated with favorable outcomes, while activation of NF-κB-driven programs late in disease was associated with poor outcomes. Patients with SARS-CoV-2 pneumonia whose alveolar T cells preferentially targeted the Spike and Nucleocapsid proteins tended to experience more favorable outcomes than patients whose T cells predominantly targeted the ORF1ab polyprotein complex. These results suggest that in patients with severe SARS-CoV-2 pneumonia, alveolar T cell interferon responses targeting structural SARS-CoV-2 proteins characterize patients who recover, yet these responses progress to NF-κB activation against non-structural proteins in patients who go on to experience poor clinical outcomes.
Collapse
Affiliation(s)
- Nikolay S. Markov
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL USA
- Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Ziyou Ren
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL USA
- Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL USA
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Karolina J. Senkow
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL USA
- Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Rogan A. Grant
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL USA
- Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Catherine A. Gao
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL USA
- Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Elizabeth S. Malsin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL USA
- Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Lango Sichizya
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL USA
- Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Hermon Kihshen
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL USA
- Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Kathryn A. Helmin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL USA
- Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Milica Jovisic
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL USA
- Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Jason M. Arnold
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL USA
- Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | | | - Hiam Abdala-Valencia
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL USA
- Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Suchitra Swaminathan
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL USA
- Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Julu Nwaezeapu
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL USA
- Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Mengjia Kang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL USA
- Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Luke Rasmussen
- Division of Health and Biomedical Informatics, Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Egon A. Ozer
- Division of Infectious Diseases, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL USA
- Center for Pathogen Genomics and Microbial Evolution, Institute for Global Health, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Ramon Lorenzo-Redondo
- Division of Infectious Diseases, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL USA
- Center for Pathogen Genomics and Microbial Evolution, Institute for Global Health, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Judd F. Hultquist
- Division of Infectious Diseases, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL USA
- Center for Pathogen Genomics and Microbial Evolution, Institute for Global Health, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Lacy M. Simons
- Division of Infectious Diseases, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL USA
- Center for Pathogen Genomics and Microbial Evolution, Institute for Global Health, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Estefany Rios-Guzman
- Division of Infectious Diseases, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL USA
- Center for Pathogen Genomics and Microbial Evolution, Institute for Global Health, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Alexander V. Misharin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL USA
- Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Richard G. Wunderink
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL USA
- Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - G.R. Scott Budinger
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL USA
- Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Benjamin D. Singer
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL USA
- Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL USA
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL USA
- Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Luisa Morales-Nebreda
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL USA
- Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | | |
Collapse
|
38
|
Terekhova M, Swain A, Bohacova P, Aladyeva E, Arthur L, Laha A, Mogilenko DA, Burdess S, Sukhov V, Kleverov D, Echalar B, Tsurinov P, Chernyatchik R, Husarcikova K, Artyomov MN. Single-cell atlas of healthy human blood unveils age-related loss of NKG2C +GZMB -CD8 + memory T cells and accumulation of type 2 memory T cells. Immunity 2023; 56:2836-2854.e9. [PMID: 37963457 DOI: 10.1016/j.immuni.2023.10.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/11/2023] [Accepted: 10/19/2023] [Indexed: 11/16/2023]
Abstract
Extensive, large-scale single-cell profiling of healthy human blood at different ages is one of the critical pending tasks required to establish a framework for the systematic understanding of human aging. Here, using single-cell RNA/T cell receptor (TCR)/BCR-seq with protein feature barcoding, we profiled 317 samples from 166 healthy individuals aged 25-85 years old. From this, we generated a dataset from ∼2 million cells that described 55 subpopulations of blood immune cells. Twelve subpopulations changed with age, including the accumulation of GZMK+CD8+ T cells and HLA-DR+CD4+ T cells. In contrast to other T cell memory subsets, transcriptionally distinct NKG2C+GZMB-CD8+ T cells counterintuitively decreased with age. Furthermore, we found a concerted age-associated increase in type 2/interleukin (IL)4-expressing memory subpopulations across CD4+ and CD8+ T cell compartments (CCR4+CD8+ Tcm and Th2 CD4+ Tmem), suggesting a systematic functional shift in immune homeostasis with age. Our work provides novel insights into healthy human aging and a comprehensive annotated resource.
Collapse
Affiliation(s)
- Marina Terekhova
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Amanda Swain
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Pavla Bohacova
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Ekaterina Aladyeva
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Laura Arthur
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Anwesha Laha
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Denis A Mogilenko
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA; Department of Medicine, Department of Pathology, Microbiology, and Immunology, Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Samantha Burdess
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Vladimir Sukhov
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA; Computer Technologies Laboratory, ITMO University, Saint Petersburg 197101, Russia
| | - Denis Kleverov
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA; Computer Technologies Laboratory, ITMO University, Saint Petersburg 197101, Russia
| | - Barbora Echalar
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Petr Tsurinov
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA; JetBrains Research, 8021 Paphos, Cyprus
| | - Roman Chernyatchik
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA; JetBrains Research, 80639 Munich, Germany
| | - Kamila Husarcikova
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Maxim N Artyomov
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA.
| |
Collapse
|
39
|
Snyder ME, Anderson MR, Benvenuto LJ, Sutton RM, Bondonese A, Koshy R, Burke R, Clifford S, Craig A, Iasella CJ, Hannan SJ, Popescu I, Zhang Y, Sanchez PG, Alder JK, McDyer JF. Impact of age and telomere length on circulating T cells and rejection risk after lung transplantation for idiopathic pulmonary fibrosis. J Heart Lung Transplant 2023; 42:1666-1677. [PMID: 37544465 PMCID: PMC10839116 DOI: 10.1016/j.healun.2023.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 07/18/2023] [Accepted: 08/01/2023] [Indexed: 08/08/2023] Open
Abstract
BACKGROUND Most idiopathic pulmonary fibrosis (IPF) lung transplant recipients (IPF-LTRs) have short telomere (ST) length. Inherited mutations in telomere-related genes are associated with the development of T cell immunodeficiency. Despite this, IPF-LTRs with telomere-related rare variants are not protected from acute cellular rejection (ACR). We set out to determine the impact of both age and telomere length on the circulating T cell compartment and ACR burden of IPF-LTRs. METHODS We identified 106 IPF-LTRs who had telomere length testing using flowFISH (57 with short telomeres and 49 with long telomeres) as well as a subset from both cohorts who had cryopreserved PBMC at least 1 time point, 6 months posttransplantation. Circulating T cells from before transplantation and at 6 and 12 months posttransplantation were analyzed using multiparameter flow cytometry to study phenotype and functional capacity, and bulk T cell receptor sequencing was performed to study repertoire diversity. Linear regression was used to study the relationship of age and telomere length on early (within 1 year) and late (between 1 and 2 years) ACR. RESULTS IPF-LTRs with ST were found to have premature "aging" of their circulating T cell compartment, with age-agnostic elevations in posttransplant terminal differentiation of CD8+ T cells, increased granzyme B positivity of both CD8+ and CD4+ T cells, upregulation of the exhaustion marker, CD57, and chemotactic protein CCR5, and enhanced T cell receptor clonal expansion. Additionally, we found a significant decline in early ACR burden with increasing age, but only in the ST cohort. CONCLUSIONS IPF-LTRs with ST have premature "aging" of their circulating T cell compartment posttransplantation and a clear age-related decline in ACR burden.
Collapse
Affiliation(s)
- Mark E Snyder
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA; Starzl Transplantation Institute, Pittsburgh, Pennsylvania.
| | - Michaela R Anderson
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Luke J Benvenuto
- Department of Medicine, Columbia University Irving Medical Center, New York, New York
| | - Rachel M Sutton
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Anna Bondonese
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ritchie Koshy
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Robin Burke
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sarah Clifford
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Andrew Craig
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Carlo J Iasella
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Pharmacology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Stefanie J Hannan
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Iulia Popescu
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yingze Zhang
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Pablo G Sanchez
- Department of Cardiothoracic Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jonathan K Alder
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - John F McDyer
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Starzl Transplantation Institute, Pittsburgh, Pennsylvania.
| |
Collapse
|
40
|
Cappelletti P, Gallo G, Marino R, Palaniappan S, Corbo M, Savoia C, Feligioni M. From cardiovascular system to brain, the potential protective role of Mas Receptors in COVID-19 infection. Eur J Pharmacol 2023; 959:176061. [PMID: 37775018 DOI: 10.1016/j.ejphar.2023.176061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 10/01/2023]
Abstract
Coronavirus disease 2019 (COVID-19) has been declared a new pandemic in March 2020. Although most patients are asymptomatic, those with underlying cardiovascular comorbidities may develop a more severe systemic infection which is often associated with fatal pneumonia. Nonetheless, neurological and cardiovascular manifestations could be present even without respiratory symptoms. To date, no COVID-19-specific drugs are able for preventing or treating the infection and generally, the symptoms are relieved with general anti-inflammatory drugs. Angiotensin-converting-enzyme 2 (ACE2) may function as the receptor for virus entry within the cells favoring the progression of infection in the organism. On the other hand, ACE2 is a relevant enzyme in renin angiotensin system (RAS) cascade fostering Ang1-7/Mas receptor activation which promotes protective effects in neurological and cardiovascular systems. It is known that RAS is composed by two functional countervailing axes the ACE/AngII/AT1 receptor and the ACE/AngII/AT2 receptor which counteracts the actions mediated by AngII/AT1 receptor by inducing anti-inflammatory, antioxidant and anti-growth functions. Subsequently an "alternative" ACE2/Ang1-7/Mas receptor axis has been described with functions similar to the latter protective arm. Here, we discuss the neurological and cardiovascular effects of COVID-19 highlighting the role of the stimulation of the RAS "alternative" protective arm in attenuating pulmonary, cerebral and cardiovascular damages. In conclusion, only two clinical trials are running for Mas receptor agonists but few other molecules are in preclinical phase and if successful these drugs might represent a successful strategy for the treatment of the acute phase of COVID-19 infection.
Collapse
Affiliation(s)
- Pamela Cappelletti
- Department of Neuro-Rehabilitation Sciences, Casa di Cura Igea, Milan, Italy.
| | - Giovanna Gallo
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Psychology, Sant'Andrea Hospital, Sapienza University of Rome, Rome, Italy
| | - Rachele Marino
- European Brain Research Institute (EBRI) Rita Levi Montalcini Foundation, Rome, Italy
| | | | - Massimo Corbo
- Department of Neuro-Rehabilitation Sciences, Casa di Cura Igea, Milan, Italy
| | - Carmine Savoia
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Psychology, Sant'Andrea Hospital, Sapienza University of Rome, Rome, Italy
| | - Marco Feligioni
- Department of Neuro-Rehabilitation Sciences, Casa di Cura Igea, Milan, Italy; European Brain Research Institute (EBRI) Rita Levi Montalcini Foundation, Rome, Italy.
| |
Collapse
|
41
|
Hu Y, Liu Y, Zheng H, Liu L. Risk Factors for Long COVID in Older Adults. Biomedicines 2023; 11:3002. [PMID: 38002002 PMCID: PMC10669899 DOI: 10.3390/biomedicines11113002] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/05/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
As time has passed following the COVID-19 pandemic, individuals infected with SARS-CoV-2 have gradually exhibited a variety of symptoms associated with long COVID in the postacute phase of infection. Simultaneously, in many countries worldwide, the process of population aging has been accelerating. Within this context, the elderly population has not only become susceptible and high-risk during the acute phase of COVID-19 but also has considerable risks when confronting long COVID. Elderly individuals possess specific immunological backgrounds, and during the process of aging, their immune systems can enter a state known as "immunosenescence". This further exacerbates "inflammaging" and the development of various comorbidities in elderly individuals, rendering them more susceptible to long COVID. Additionally, long COVID can inflict both physical and mental harm upon elderly people, thereby reducing their overall quality of life. Consequently, the impact of long COVID on elderly people should not be underestimated. This review seeks to summarize the infection characteristics and intrinsic factors of older adults during the COVID-19 pandemic, with a focus on the physical and mental impact of long COVID. Additionally, it aims to explore potential strategies to mitigate the risk of long COVID or other emerging infectious diseases among older adults in the future.
Collapse
Affiliation(s)
| | | | | | - Longding Liu
- Key Laboratory of Systemic Innovative Research on Virus Vaccines, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China; (Y.H.); (Y.L.); (H.Z.)
| |
Collapse
|
42
|
Quinn KM, Vicencio DM, La Gruta NL. The paradox of aging: Aging-related shifts in T cell function and metabolism. Semin Immunol 2023; 70:101834. [PMID: 37659169 DOI: 10.1016/j.smim.2023.101834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 08/17/2023] [Accepted: 08/17/2023] [Indexed: 09/04/2023]
Abstract
T cell survival, differentiation after stimulation, and function are intrinsically linked to distinct cellular metabolic states. The ability of T cells to readily transition between metabolic states enables flexibility to meet the changing energy demands defined by distinct effector states or T cell lineages. Immune aging is characterized, in part, by the loss of naïve T cells, accumulation of senescent T cells, severe dysfunction in memory phenotype T cells in particular, and elevated levels of inflammatory cytokines, or 'inflammaging'. Here, we review our current understanding of the phenotypic and functional changes that occur with aging in T cells, and how they relate to metabolic changes in the steady state and after T cell activation. We discuss the apparent contradictions in the aging T cell phenotype - where enhanced differentiation states and metabolic profiles in the steady state can correspond to a diminished capacity to adapt metabolically and functionally after T cell activation. Finally, we discuss key recent studies that indicate the enormous potential for aged T cell metabolism to induce systemic inflammaging and organism-wide multimorbidity, resulting in premature death.
Collapse
Affiliation(s)
- Kylie M Quinn
- School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology University, Bundoora, Victoria, Australia; Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Daniela M Vicencio
- Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia; Division of Biomedical Sciences, Warwick Medical School, The University of Warwick, Coventry, UK
| | - Nicole L La Gruta
- Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
43
|
Tan JHL, Hwang YY, Chin HX, Liu M, Tan SY, Chen Q. Towards a better preclinical cancer model - human immune aging in humanized mice. Immun Ageing 2023; 20:49. [PMID: 37752597 PMCID: PMC10523735 DOI: 10.1186/s12979-023-00374-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 09/14/2023] [Indexed: 09/28/2023]
Abstract
BACKGROUND Preclinical models are often used for cancer studies and evaluation of novel therapeutics. The relevance of these models has vastly improved with mice bearing a human immune system, especially in the context of immunotherapy. Nonetheless, cancer is an age-related disease, and studies often overlook the effects of aging. Here we have established a humanized mouse model of human immune aging to investigate the role of this phenomenon on liver tumor dynamics. METHODS Multiple organs and tissues (blood, thymus, lung, liver, spleen and bone marrow) were harvested from NOD-scid IL2rγ-/- (NIKO) mice reconstituted with human immune cells, over a period of 60 weeks post-birth, for immune profiling. Young and aging immune cells were compared for transcriptomic changes and functional differences. Effect of immune aging was investigated in a liver cancer humanized mouse model. RESULTS Focusing on the T cell population, which is central to cancer immunosurveillance and immunotherapy, we showed that the proportion of naïve T cells declined while memory subsets and senescent-like cells increased with age. RNA-sequencing revealed that downregulated genes were related to immune responses and processes, and this was corroborated by reduced cytokine production in aging T cells. Finally, we showed faster liver tumor growth in aging than younger humanized mice, which could be attributed to specific pathways of aging T cell exhaustion. CONCLUSION Our work improves on existing humanized (immune) mouse model and highlights the importance of considering immune aging in liver cancer modeling.
Collapse
Affiliation(s)
- Joel H L Tan
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - You Yi Hwang
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, Immunos Level 3 & 4, Singapore, 138648, Republic of Singapore
| | - Hui Xian Chin
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, Immunos Level 3 & 4, Singapore, 138648, Republic of Singapore
| | - Min Liu
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Sue Yee Tan
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Qingfeng Chen
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore.
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, Immunos Level 3 & 4, Singapore, 138648, Republic of Singapore.
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore.
| |
Collapse
|
44
|
Wang Z, Wang C, Fei X, Wu H, Niu P, Shen C. Thymalfasin therapy accelerates COVID-19 pneumonia rehabilitation through anti-inflammatory mechanisms. Pneumonia (Nathan) 2023; 15:14. [PMID: 37743481 PMCID: PMC10518946 DOI: 10.1186/s41479-023-00116-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/03/2023] [Indexed: 09/26/2023] Open
Abstract
INTRODUCTION Thymosin drugs are commonly used for the treatment of viral infections due to their immunomodulatory effects. The comprehensive clinical efficacy of Thymalfasin therapy for COVID-19 associated pneumonia is not yet fully researched, another issue, whether the use of thymosin drugs can reduce the rate of COVID-19 progression to severe pneumonia has not been well documented. The aim of the present study was to multi-angle evaluate the clinical efficacy of Thymalfasin therapy for COVID-19 pneumonia by retrospective review of the clinical data of 338 inpatients with common COVID-19 infection who received treatment in our hospital. METHODS The primary index of observation was whether progression to severe pneumonia occurred within a week after admission, and the secondary indexes were the length of hospital stay, time of negative conversion of COVID-19 antigen, the number of peripheral lymphocytes and white blood cells (WBC), and C-reactive protein (CRP) and procalcitonin (PCT) levels,and the control of pneumonia related symptoms, for example, fever, listlessness, inflammatory exudate area shown on lung CT (%). RESULTS The length of hospital stay of patients in Thymalfasin group was significantly shorter than that of patients in the control group (p < 0.01). The proportion of relief of pneumonia related symptoms (fever, fatigue) in the Thymalfasin therapy group was significantly higher than that in the control group, and the inflammatory exudate area shown on CT was significantly lower than that in the control group (p < 0.05). Multivariate logistic regression analysis showed that the use of Thymalfasin was an independent protective factor affecting the progression to severe pneumonia. Multifactorial Cox model analysis indicated that negative conversion of COVID-19 antigen was significantly faster in patients using Thymalfasin and younger patients. CONCLUSION Thymalfasin therapy has shown excellent clinical efficacy in the treatment of COVID-19 pneumonia, it can reduce inflammatory reactions, promote the relief of COVID-19 pneumonia related symptoms such as fever and fatigue, facilitate effusion absorption, and accelerate COVID-19 pneumonia recovery. Thymalfasin can prevent progression of common COVID-19 infection to severe pneumonia via multiple immunity-enhancing and anti-inflammatory protective mechanisms.
Collapse
Affiliation(s)
- Zirui Wang
- Department of Respiratory and Critical Medicine, the Fifth People's Hospital of Wujiang District, Suzhou, 215211, JS, China
| | - Cong Wang
- Department of Respiratory and Critical Medicine, the Fifth People's Hospital of Wujiang District, Suzhou, 215211, JS, China
| | - Xiaohua Fei
- Information Centre, the Fifth People's Hospital of Wujiang District, Suzhou, 215211, JS, China
| | - Haixing Wu
- Department of Pharmacy, the Fifth People's Hospital of Wujiang District, Suzhou, 215211, JS, China
| | - Peiqin Niu
- Department of Medical Record Statistics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China.
| | - Changxing Shen
- Department of Integrated Traditional Chinese and Western Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 200072, Shanghai, China.
| |
Collapse
|
45
|
Shapiro MR, Dong X, Perry DJ, McNichols JM, Thirawatananond P, Posgai AL, Peters LD, Motwani K, Musca RS, Muir A, Concannon P, Jacobsen LM, Mathews CE, Wasserfall CH, Haller MJ, Schatz DA, Atkinson MA, Brusko MA, Bacher R, Brusko TM. Human immune phenotyping reveals accelerated aging in type 1 diabetes. JCI Insight 2023; 8:e170767. [PMID: 37498686 PMCID: PMC10544250 DOI: 10.1172/jci.insight.170767] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/19/2023] [Indexed: 07/29/2023] Open
Abstract
The proportions and phenotypes of immune cell subsets in peripheral blood undergo continual and dramatic remodeling throughout the human life span, which complicates efforts to identify disease-associated immune signatures in type 1 diabetes (T1D). We conducted cross-sectional flow cytometric immune profiling on peripheral blood from 826 individuals (stage 3 T1D, their first-degree relatives, those with ≥2 islet autoantibodies, and autoantibody-negative unaffected controls). We constructed an immune age predictive model in unaffected participants and observed accelerated immune aging in T1D. We used generalized additive models for location, shape, and scale to obtain age-corrected data for flow cytometry and complete blood count readouts, which can be visualized in our interactive portal (ImmScape); 46 parameters were significantly associated with age only, 25 with T1D only, and 23 with both age and T1D. Phenotypes associated with accelerated immunological aging in T1D included increased CXCR3+ and programmed cell death 1-positive (PD-1+) frequencies in naive and memory T cell subsets, despite reduced PD-1 expression levels on memory T cells. Phenotypes associated with T1D after age correction were predictive of T1D status. Our findings demonstrate advanced immune aging in T1D and highlight disease-associated phenotypes for biomarker monitoring and therapeutic interventions.
Collapse
Affiliation(s)
- Melanie R. Shapiro
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, and
- Diabetes Institute and
| | - Xiaoru Dong
- Diabetes Institute and
- Department of Biostatistics, College of Public Health and Health Professions, University of Florida, Gainesville, Florida, USA
| | - Daniel J. Perry
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, and
- Diabetes Institute and
| | - James M. McNichols
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, and
- Diabetes Institute and
| | - Puchong Thirawatananond
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, and
- Diabetes Institute and
| | - Amanda L. Posgai
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, and
- Diabetes Institute and
| | - Leeana D. Peters
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, and
- Diabetes Institute and
| | - Keshav Motwani
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, and
- Diabetes Institute and
| | - Richard S. Musca
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, and
- Diabetes Institute and
| | - Andrew Muir
- Department of Pediatrics, Emory University, Atlanta, Georgia, USA
| | - Patrick Concannon
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, and
- Diabetes Institute and
- Genetics Institute and
| | - Laura M. Jacobsen
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, and
- Diabetes Institute and
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Clayton E. Mathews
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, and
- Diabetes Institute and
| | - Clive H. Wasserfall
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, and
- Diabetes Institute and
| | - Michael J. Haller
- Diabetes Institute and
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Desmond A. Schatz
- Diabetes Institute and
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Mark A. Atkinson
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, and
- Diabetes Institute and
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Maigan A. Brusko
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, and
- Diabetes Institute and
| | - Rhonda Bacher
- Diabetes Institute and
- Department of Biostatistics, College of Public Health and Health Professions, University of Florida, Gainesville, Florida, USA
| | - Todd M. Brusko
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, and
- Diabetes Institute and
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
46
|
Garley M, Omeljaniuk WJ, Motkowski R, Ratajczak-Wrona W, JabŁOŃSka E, Filipkowski D, Charkiewicz AE. Immunoaging - the effect of age on serum levels of NET biomarkers in men: a pilot study. Int J Occup Med Environ Health 2023; 36:333-348. [PMID: 37681423 PMCID: PMC10664002 DOI: 10.13075/ijomeh.1896.02125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 05/25/2023] [Indexed: 09/09/2023] Open
Abstract
OBJECTIVES The study aimed to evaluate the impact of aging on the formation of neutrophil extracellular traps (NETs). The impaired formation of NETs is the cause of an abnormal innate immune response. MATERIAL AND METHODS The study included a total of 45 healthy male subjects of different age groups. Whole blood was collected from the subjects, and the concentration of myeloperoxidase (MPO), the main biocidal protein in NETs, was determined in serum using ELISA. The serum levels of circulating free DNA (cfDNA), which are the structural basis of NETs, were also measured by fluorescence. In addition, the white blood cell count was determined, whole blood smear was evaluated, and the neutrophillymphocyte ratio was calculated. The variations in the levels of NET biomarkers were analyzed in different age groups. RESULTS The low levels of MPO (243.70 ng/ml) and cfDNA (6.24 ng/100 μl) in boys indicated neutrophil insufficiency for NETosis in children. A progressive increase in the levels of MPO and cfDNA with age was observed among adolescents (420.91, p = 0.04; 13.55, p = 0.03, respectively), with the highest level noted in the healthy adult group (466.58, p = 0.01; 14.07, p = 0.01, respectively). The levels of the studied parameters were comparable in adolescents and young adults, which proved that the NETosis process was appropriate and suggested the attainment of neutrophil maturity for the release of NETs in adolescence. The levels of MPO and cfDNA were low in older men (225.46, p < 0.01; 5.19, p < 0.01, respectively) indicating impaired NET formation. CONCLUSIONS Data on the generation of NETs in different age groups obtained in this study can allow a better understanding of the ontogenesis of the immune system in terms of the course of NETosis, and also indicate the need to support nonspecific responses in children and adults. Further research should be performed to determine the possibility of regulating the NETosis process. Int J Occup Med Environ Health. 2023;36(3):333-48.
Collapse
Affiliation(s)
- Marzena Garley
- Medical University of Bialystok, Department of Immunology, Białystok, Poland
| | | | - RadosŁAw Motkowski
- Medical University of Bialystok, University Children's Clinical Hospital, Department of Pediatrics, Rheumatology, Immunology and Metabolic Bone Diseases, Białystok, Poland
| | | | - Ewa JabŁOŃSka
- Medical University of Bialystok, Department of Immunology, Białystok, Poland
| | - Daniel Filipkowski
- Medical University of Bialystok, Students' Scientific Society, Department of Immunology, Białystok, Poland
| | | |
Collapse
|
47
|
Sandstedt M, Chung RWS, Skoglund C, Lundberg AK, Östgren CJ, Ernerudh J, Jonasson L. Complete fatty degeneration of thymus associates with male sex, obesity and loss of circulating naïve CD8 + T cells in a Swedish middle-aged population. Immun Ageing 2023; 20:45. [PMID: 37653480 PMCID: PMC10470174 DOI: 10.1186/s12979-023-00371-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 08/17/2023] [Indexed: 09/02/2023]
Abstract
BACKGROUND Fatty degeneration of thymus (or thymus involution) has long been considered a normal ageing process. However, there is emerging evidence that thymic involution is linked to T cell aging, chronic inflammation and increased morbidity. Other factors, aside from chronological age, have been proposed to affect the involution rate. In the present study, we investigated the imaging characteristics of thymus on computed tomography (CT) in a Swedish middle-aged population. The major aims were to establish the prevalence of fatty degeneration of thymus and to determine its associations with demographic, lifestyle and clinical factors, as well as inflammation, T cell differentiation and thymic output. RESULTS In total, 1 048 randomly invited individuals (aged 50-64 years, 49% females) were included and thoroughly characterized. CT evaluation of thymus included measurements of attenuation, size and a 4-point scoring system, with scale 0-3 based on the ratio of fat and soft tissue. A majority, 615 (59%) showed complete fatty degeneration, 259 (25%) predominantly fatty attenuation, 105 (10%) half fatty and half soft-tissue attenuation, while 69 (6.6%) presented with a solid thymic gland with predominantly soft-tissue attenuation. Age, male sex, high BMI, abdominal obesity and low dietary intake of fiber were independently associated with complete fatty degeneration of thymus. Also, fatty degeneration of thymus as well as low CT attenuation values were independently related to lower proportion of naïve CD8+ T cells, which in turn was related to lower thymic output, assessed by T-cell receptor excision circle (TREC) levels. CONCLUSION Among Swedish middle-aged subjects, nearly two-thirds showed complete fatty degeneration of thymus on CT. This was linked to depletion of naïve CD8+ T cells indicating that CT scans of thymus might be used to estimate immunological aging. Furthermore, our findings support the intriguing concept that obesity as well as low fiber intake contribute to immunological aging, thereby raising the possibility of preventive strategies.
Collapse
Affiliation(s)
- Mårten Sandstedt
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
- Department of Radiology and Department of Health, Medicine and Caring Sciences, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - Rosanna W S Chung
- Department of Health, Medicine and Caring Sciences, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - Camilla Skoglund
- Department of Health, Medicine and Caring Sciences, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - Anna K Lundberg
- Department of Health, Medicine and Caring Sciences, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - Carl Johan Östgren
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
- Department of Health, Medicine and Caring Sciences, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - Jan Ernerudh
- Department of Clinical Immunology and Transfusion Medicine and Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - Lena Jonasson
- Department of Cardiology and Department of Health, Medicine and Caring Sciences, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden.
| |
Collapse
|
48
|
Pishel I. Immune system rejuvenation—approaches and real achievements. EXPLORATION OF IMMUNOLOGY 2023:325-340. [DOI: 10.37349/ei.2023.00105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/17/2023] [Indexed: 01/03/2025]
Abstract
Interest in the mechanisms of aging of the immune system has not faded over the past 100 years, and it is caused by the immune-mediated development of age-related pathology, including autoimmune organ damage, reduced vaccination efficiency, atherosclerosis, the development of cardiovascular pathology, etc. In contrast to many other organs and systems, the immune system aging begins at an early age and has more pronounced changes that lead to the development of secondary pathology, which significantly affects life expectancy. But an effective strategy to restore immune function has not been developed yet. During this time, the mechanisms of age-related dysfunction of organs and cells of both the adaptive and innate immune systems were studied in detail—thymus involution, a decrease in the potential of hematopoietic stem cells, impaired differentiation and functions of immunocompetent cells, as well as the ways of their interaction. Numerous potential therapeutic targets have been identified and various approaches have been used to implement such therapeutic interventions. The review is devoted to replacement therapy using transplantation of hematopoietic stem cells (HSCs) and young lymphoid cells and tissues, cellular and systemic factor exchange in heterochronic parabiosis, and some other widely used life extension approaches. It has been proven that cell therapy using young cells to rejuvenate the old immune system, unfortunately, often turns out to be ineffective because it does not eliminate the root cause of age-related changes. The phenomenon of inflamm-aging that develops with age can significantly affect both the aging of the organism in general and the functioning of immunocompetent cells in particular. Therefore, the most promising direction in the restoration of immune functions during aging is systemic approaches that have a complex effect on the organism as a whole and can slow down the aging process.
Collapse
Affiliation(s)
- Iryna Pishel
- Lab Applied Pharmacology and Toxicology, Bienta/Enamine Ltd, 02094 Kyiv, Ukraine
| |
Collapse
|
49
|
Yamauchi A, Yoshimoto S, Kudo A, Takagi S. Negative Influence of Aging on Differentiation and Proliferation of CD8 + T-Cells in Dogs. Vet Sci 2023; 10:541. [PMID: 37756063 PMCID: PMC10534501 DOI: 10.3390/vetsci10090541] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/24/2023] [Accepted: 08/22/2023] [Indexed: 09/28/2023] Open
Abstract
Immunosenescence is an age-related change in the immune system characterized by a reduction in naïve T-cells and an impaired proliferative capacity of CD8+ T-cells in older individuals. Recent research revealed the crucial impact of immunosenescence on the development and control of cancer, and aging is one of the causes that diminish the therapeutic efficacy of cancer immunotherapies targeting CD8+ T-cell activation. Despite dog cancer being defined as an age-related disease, there are few fundamental understandings regarding the relationship between aging and the canine immune system. Therefore, we aimed to elucidate the characteristics of immunosenescence in dogs and analyzed the effects of aging on the differentiation status and proliferation of canine CD8+ T cells using T-cell specific stimulation with anti-canine CD3/CD28 antibody-coated beads and interleukin-2. As a result, we found that older dogs have a lower proliferative capacity of CD8+ T-cells and a reduction in the naïve subset in their peripheral blood. Further analysis showed that older dogs had attenuated proliferation of the effector and central memory subsets. These results indicate the importance of maintaining less differentiated subsets to expand CD8+ T-cells in dogs and provide helpful insight into the development of dog immune therapies that require T-cell expansion ex vivo.
Collapse
Affiliation(s)
- Akinori Yamauchi
- Laboratory of Small Animal Surgery, Department of Veterinary Medicine, School of Veterinary Medicine, Azabu University, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara 252-5201, Kanagawa, Japan
| | - Sho Yoshimoto
- Laboratory of Small Animal Surgery, Department of Veterinary Medicine, School of Veterinary Medicine, Azabu University, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara 252-5201, Kanagawa, Japan
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ayano Kudo
- Laboratory of Small Animal Surgery, Department of Veterinary Medicine, School of Veterinary Medicine, Azabu University, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara 252-5201, Kanagawa, Japan
| | - Satoshi Takagi
- Laboratory of Small Animal Surgery, Department of Veterinary Medicine, School of Veterinary Medicine, Azabu University, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara 252-5201, Kanagawa, Japan
| |
Collapse
|
50
|
Li S, Hao L, Hu X. Natural products target glycolysis in liver disease. Front Pharmacol 2023; 14:1242955. [PMID: 37663261 PMCID: PMC10469892 DOI: 10.3389/fphar.2023.1242955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 08/10/2023] [Indexed: 09/05/2023] Open
Abstract
Mitochondrial dysfunction plays an important role in the occurrence and development of different liver diseases. Oxidative phosphorylation (OXPHOS) dysfunction and production of reactive oxygen species are closely related to mitochondrial dysfunction, forcing glycolysis to become the main source of energy metabolism of liver cells. Moreover, glycolysis is also enhanced to varying degrees in different liver diseases, especially in liver cancer. Therefore, targeting the glycolytic signaling pathway provides a new strategy for the treatment of non-alcoholic fatty liver disease (NAFLD) and liver fibrosis associated with liver cancer. Natural products regulate many steps of glycolysis, and targeting glycolysis with natural products is a promising cancer treatment. In this review, we have mainly illustrated the relationship between glycolysis and liver disease, natural products can work by targeting key enzymes in glycolysis and their associated proteins, so understanding how natural products regulate glycolysis can help clarify the therapeutic mechanisms these drugs use to inhibit liver disease.
Collapse
Affiliation(s)
- Shenghao Li
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Liyuan Hao
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaoyu Hu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|