1
|
Haorah J, Malaroviyam S, Iyappan H, Samikkannu T. Neurological impact of HIV/AIDS and substance use alters brain function and structure. Front Med (Lausanne) 2025; 11:1505440. [PMID: 39839621 PMCID: PMC11747747 DOI: 10.3389/fmed.2024.1505440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 12/17/2024] [Indexed: 01/23/2025] Open
Abstract
Human immunodeficiency virus (HIV) infection is the cause of acquired immunodeficiency syndrome (AIDS). Combination antiretroviral therapy (cART) has successfully controlled AIDS, but HIV-associated neurocognitive disorders (HANDs) remain prevalent among people with HIV. HIV infection is often associated with substance use, which promotes HIV transmission and viral replication and exacerbates HANDs even in the era of cART. Thus, the comorbid effects of substance use exacerbate the neuropathogenesis of HANDs. Unraveling the mechanism(s) of this comorbid exacerbation at the molecular, cell-type, and brain region levels may provide a better understanding of HAND persistence. This review aims to highlight the comorbid effects of HIV and substance use in specific brain regions and cell types involved in the persistence of HANDs. This review includes an overview of post-translational modifications, alterations in microglia-specific biomarkers, and possible mechanistic pathways that may link epigenomic modifications to functional protein alterations in microglia. The impairment of the microglial proteins that are involved in neural circuit function appears to contribute to the breakdown of cellular communication and neurodegeneration in HANDs. The epigenetic modification of N-terminal acetylation is currently understudied, which is discussed in brief to demonstrate the important role of this epigenetic modification in infected microglia within specific brain regions. The discussion also explores whether combined antiretroviral therapy is effective in preventing HIV infection or substance-use-mediated post-translational modifications and protein alterations in the persistence of neuropathogenesis in HANDs.
Collapse
Affiliation(s)
| | | | | | - Thangavel Samikkannu
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University, College Station, TX, United States
| |
Collapse
|
2
|
Calado M, Ferreira R, Pires D, Santos-Costa Q, Anes E, Brites D, Azevedo-Pereira JM. Unravelling the triad of neuroinvasion, neurodissemination, and neuroinflammation of human immunodeficiency virus type 1 in the central nervous system. Rev Med Virol 2024; 34:e2534. [PMID: 38588024 DOI: 10.1002/rmv.2534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/05/2024] [Accepted: 03/28/2024] [Indexed: 04/10/2024]
Abstract
Since the identification of human immunodeficiency virus type 1 (HIV-1) in 1983, many improvements have been made to control viral replication in the peripheral blood and to treat opportunistic infections. This has increased life expectancy but also the incidence of age-related central nervous system (CNS) disorders and HIV-associated neurodegeneration/neurocognitive impairment and depression collectively referred to as HIV-associated neurocognitive disorders (HAND). HAND encompasses a spectrum of different clinical presentations ranging from milder forms such as asymptomatic neurocognitive impairment or mild neurocognitive disorder to a severe HIV-associated dementia (HAD). Although control of viral replication and suppression of plasma viral load with combination antiretroviral therapy has reduced the incidence of HAD, it has not reversed milder forms of HAND. The objective of this review, is to describe the mechanisms by which HIV-1 invades and disseminates in the CNS, a crucial event leading to HAND. The review will present the evidence that underlies the relationship between HIV infection and HAND. Additionally, recent findings explaining the role of neuroinflammation in the pathogenesis of HAND will be discussed, along with prospects for treatment and control.
Collapse
Affiliation(s)
- Marta Calado
- Host-Pathogen Interactions Unit, Research Institute for Medicines, iMed-ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - Rita Ferreira
- Host-Pathogen Interactions Unit, Research Institute for Medicines, iMed-ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - David Pires
- Host-Pathogen Interactions Unit, Research Institute for Medicines, iMed-ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
- Center for Interdisciplinary Research in Health, Católica Medical School, Universidade Católica Portuguesa, Estrada Octávio Pato, Rio de Mouro, Portugal
| | - Quirina Santos-Costa
- Host-Pathogen Interactions Unit, Research Institute for Medicines, iMed-ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - Elsa Anes
- Host-Pathogen Interactions Unit, Research Institute for Medicines, iMed-ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - Dora Brites
- Neuroinflammation, Signaling and Neuroregeneration Unit, Research Institute for Medicines, iMed-ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - José Miguel Azevedo-Pereira
- Host-Pathogen Interactions Unit, Research Institute for Medicines, iMed-ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
3
|
Liu Y, Hu G, Jia Y, Qin L, Xu L, Chang Y, Li B, Li H. Wnt10b knockdown regulates the relative balance of adipose tissue-resident T cells and inhibits white fat deposition. Mol Biol Rep 2024; 51:272. [PMID: 38302806 DOI: 10.1007/s11033-024-09249-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 01/12/2024] [Indexed: 02/03/2024]
Abstract
BACKGROUND Wnt10b is one of critical Wnt family members that being involved in networks controlling stemness, pluripotency and cell fate decisions. However, its role in adipose-resident T lymphocytes and further in fat metabolism yet remains largely unknown. METHODS AND RESULTS In the present study, we demonstrated a distinctive effect for Wnt10b on the relative balance of T lymphocytes in adipose tissue by using a Wnt10b knockdown mouse model. Wnt10b knockdown led to a reduction of adipose-resident CD4+ T cells and an elevation of Foxp3+/CD4+ Treg cells. Wnt10b-knockdown mice fed with standard diet showed less white fat deposition owing to the suppressed adipogenic process. Moreover, under high fat diet conditions, Wnt10b knockdown resulted in an alleviated obesity symptoms, as well as an improvement of glucose homeostasis and hepatic steatosis. CONCLUSIONS Collectively, we reveal an unexpected and novel function for Wnt10b in mediating the frequency of adipose-resident T cell subsets, that when knockdown skewing toward a Treg-dominated phenotype and further improving fat metabolism.
Collapse
Affiliation(s)
- Yan Liu
- College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Geng Hu
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, 271018, China
| | - Yanxin Jia
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, 271018, China
| | - Lining Qin
- College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Longfei Xu
- College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Yaxin Chang
- College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Bin Li
- College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Haifang Li
- College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China.
| |
Collapse
|
4
|
Albalawi YA, Shull T, Virdi AK, Subra C, Mitchell J, Slike BM, Jian N, Krebs SJ, Sacdalan C, Ratnaratorn N, Hsu DC, Phanuphak N, Spudich S, Trautmann L, Al-Harthi L. CD4 dim CD8 bright T cells are inversely associated with neuro-inflammatory markers among people with HIV. AIDS 2024; 38:1-7. [PMID: 37792358 PMCID: PMC10715695 DOI: 10.1097/qad.0000000000003743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 08/24/2023] [Accepted: 09/19/2023] [Indexed: 10/05/2023]
Abstract
OBJECTIVE HIV-associated neuroinflammation persists in the brain despite suppressive combination antiretroviral therapy (cART). We evaluated associations between a subset of CD8 + T cells, termed CD4 dim CD8 bright T cells, and soluble markers of immune activation and/or neuroinflammation in the cerebrospinal fluid (CSF) and plasma of people with HIV (PWH). DESIGN Fifteen cART-naive PWH were enrolled and underwent blood draw, lumbar puncture for CSF collection, and neuropsychological tests at week 0 (pre-cART) and 24 weeks after cART initiation. METHODS CSF and peripheral blood T cells were evaluated with flow cytometry and soluble markers of immune activation were measured by multiplex and singleplex assays. Spearman bootstrap correlation coefficients with 10 000 resamples were computed and reported with corresponding 95% confidence intervals (CIs) for each marker of interest and T-cell type. RESULTS The frequency of CSF CD4 dim CD8 bright T cells at week 0 was inversely related with CSF neopterin. In contrast, at week 24, CSF CD4 - CD8 + T cells were positively correlated with CSF s100β, a marker of brain injury. In the blood, at week 0, CD4 dim CD8 bright T cells were inversely correlated with MCP-1, IP-10, IL-8, IL-6, G-CSF, and APRIL and positively correlated with plasma RANTES and MMP1. At week 0, the frequency of blood CD4 - CD8 + were positively correlated with CRP and BAFF. CONCLUSION CD4 dim CD8 bright T cells are associated with some anti-inflammatory properties, whereas CD4 - CD8 + T cells may contribute to inflammation and injury. Assessing the contrast between these two cell populations in neuroHIV may inform targeted therapeutic intervention to reduce neuroinflammation and associated neurocognitive impairment.
Collapse
Affiliation(s)
- Yasmeen A. Albalawi
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, Illinois, USA
- Department of Biology, College of Science, Jouf University, Sakaka, Aljouf, Saudi Arabia
| | - Tanner Shull
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, Illinois, USA
- Division of Epidemiology and Biostatistics, University of Illinois Chicago, School of Public Health, Chicago, Illinois
| | - Amber K. Virdi
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, Illinois, USA
| | - Caroline Subra
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland
| | - Julie Mitchell
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Bonnie M. Slike
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland
| | - Ningbo Jian
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland
| | - Shelly J. Krebs
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring
| | - Carlo Sacdalan
- SEARCH Research Foundation
- Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | | | - Denise C. Hsu
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland
| | | | - Serena Spudich
- Department of Neurology, Yale University, New Haven, Connecticut, USA
| | - Lydie Trautmann
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland
| | - Lena Al-Harthi
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, Illinois, USA
| |
Collapse
|
5
|
Virdi AK, Ho S, Seaton MS, Olali AZ, Narasipura SD, Barbian HJ, Olivares LJ, Gonzalez H, Winchester LC, Podany AT, Ross RD, Al-Harthi L, Wallace J. An Efficient Humanized Mouse Model for Oral Anti-Retroviral Administration. Cells 2023; 12:1034. [PMID: 37048107 PMCID: PMC10093470 DOI: 10.3390/cells12071034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/21/2023] [Accepted: 03/24/2023] [Indexed: 03/31/2023] Open
Abstract
HIV anti-retrovirals (ARVs) have vastly improved the life expectancy of people living with HIV (PLWH). However, toxic effects attributed to long-term ARV use also contribute to HIV-related co-morbidities such as heart disease, bone loss and HIV-associated neurocognitive disorders (HAND). Unfortunately, mouse models used to study the effects of ARVs on viral suppression, toxicity and HIV latency/tissue reservoirs have not been widely established. Here, we demonstrate an effective mouse model utilizing immune-compromised mice, reconstituted with infected human peripheral blood mononuclear cell (PBMCs). ARVs areincorporated into mouse chow and administered daily with combination ARV regimens includingAtripla (efavirenz, tenofovir disoproxil fumarate, and emtricitabine) and Triumeq (abacavir, dolutegravir and lamivudine). This model measures HIV-infected human cell trafficking, and ARV penetration throughout most relevant HIV organs and plasma, with a large amount of trafficking to the secondary lymphoid organs. Furthermore, the HIV viral load within each organ and the plasma was reduced in ARV treated vs. untreated control. Overall, we have demonstrated a mouse model that is relatively easy and affordable to establish and utilize to study ARVs' effect on various tissues, including the co-morbid conditions associated with PLWH, such as HAND, and other toxic effects.
Collapse
Affiliation(s)
- Amber K. Virdi
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL 60612, USA
| | - Sang Ho
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL 60612, USA
| | - Melanie S. Seaton
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL 60612, USA
| | - Arnold Z. Olali
- Center for Mitochondrial and Epigenomic Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Srinivas D. Narasipura
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL 60612, USA
| | - Hannah J. Barbian
- Department of Internal Medicine, Division of Infectious Diseases, Rush Medical College, Chicago, IL 60612, USA
| | - Leannie J. Olivares
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL 60612, USA
| | - Hemil Gonzalez
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL 60612, USA
- Department of Internal Medicine, Division of Infectious Diseases, Rush Medical College, Chicago, IL 60612, USA
| | - Lee C. Winchester
- UNMC Center for Drug Discovery, University of Nebraska Medical Center, Omaha, NE 68182, USA
| | - Anthony T. Podany
- UNMC Center for Drug Discovery, University of Nebraska Medical Center, Omaha, NE 68182, USA
| | - Ryan D. Ross
- Department of Anatomy & Cell Biology, Rush University Medical Center, Chicago, IL 60612, USA
| | - Lena Al-Harthi
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL 60612, USA
| | - Jennillee Wallace
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
6
|
Wahl A, Al-Harthi L. HIV infection of non-classical cells in the brain. Retrovirology 2023; 20:1. [PMID: 36639783 PMCID: PMC9840342 DOI: 10.1186/s12977-023-00616-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 01/02/2023] [Indexed: 01/15/2023] Open
Abstract
HIV-associated neurological disorders (HAND) affect up to 50% of people living with HIV (PLWH), even in the era of combination antiretroviral therapy (cART). HIV-DNA can be detected in the cerebral spinal fluid (CSF) of approximately half of aviremic ART-suppressed PLWH and its presence is associated with poorer neurocognitive performance. HIV DNA + and HIV RNA + cells have also been observed in postmortem brain tissue of individuals with sustained cART suppression. In this review, we provide an overview of how HIV invades the brain and HIV infection of resident brain glial cells (astrocytes and microglia). We also discuss the role of resident glial cells in persistent neuroinflammation and HAND in PLWH and their potential contribution to the HIV reservoir. HIV eradication strategies that target persistently infected glia cells will likely be needed to achieve HIV cure.
Collapse
Affiliation(s)
- Angela Wahl
- grid.10698.360000000122483208International Center for the Advancement of Translational Science, University of North Carolina at Chapel Hill, Chapel Hill, NC USA ,grid.10698.360000000122483208Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC USA ,grid.10698.360000000122483208Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| | - Lena Al-Harthi
- grid.240684.c0000 0001 0705 3621Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL USA
| |
Collapse
|
7
|
Abstract
CD4dim CD8bright T cells are a mature population of CD8+ T cells that upon activation upregulate CD4 dimly on their surface. Expression of CD4 on these cells suggests that they can be an additional source of HIV neuroinvasion and persistence in the brain. We used HIV-infected NOD/SCID/IL-2rcγ-/- (NSG) humanized mice to track CD4dim CD8bright T cell homing to the brain and define their role in HIV dissemination into the brain. We report here that CD4dim CD8bright T cells are found in the brain at a median frequency of 2.6% and in the spleen at median frequency of 7.6% of CD3+ T cells. In the brain, 10 to 20% of CD4dim CD8bright T cells contain integrated provirus, which is infectious as demonstrated by viral outgrowth assay. CD4dim CD8bright T cells in the brain exhibited significantly higher expression of the brain homing receptors CX3CR1 and CXCR3 in comparison to their single-positive CD8+ T cell counterpart. Blocking lymphocyte trafficking into the brain of humanized mice via anti-VLA4 and anti-LFA1 antibodies reduced CD4dim CD8bright T cell trafficking into the brain by 60% and diminished brain HIV proviral DNA by 72%. Collectively, our findings demonstrate that CD4dim CD8bright T cells can home to the brain and support productive HIV replication. These studies also reveal for the first time that CD4dim CD8bright T cells are capable of HIV neuroinvasion and are a reservoir for HIV. IMPORTANCE We report here a seminal finding of a novel population of T cells, termed CD4dim CD8bright T cells, that plays a role in HIV neuroinvasion and is a reservoir for HIV in the brain.
Collapse
|
8
|
T-lymphocyte activation markers in patients with HIV-1-associated neurocognitive disorder. J Neurovirol 2022; 28:404-409. [DOI: 10.1007/s13365-022-01075-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 03/01/2022] [Accepted: 03/16/2022] [Indexed: 10/18/2022]
|
9
|
Abstract
The CD8+ T cell noncytotoxic antiviral response (CNAR) was discovered during studies of asymptomatic HIV-infected subjects more than 30 years ago. In contrast to CD8+ T cell cytotoxic lymphocyte (CTL) activity, CNAR suppresses HIV replication without target cell killing. This activity has characteristics of innate immunity: it acts on all retroviruses and thus is neither epitope specific nor HLA restricted. The HIV-associated CNAR does not affect other virus families. It is mediated, at least in part, by a CD8+ T cell antiviral factor (CAF) that blocks HIV transcription. A variety of assays used to measure CNAR/CAF and the effects on other retrovirus infections are described. Notably, CD8+ T cell noncytotoxic antiviral responses have now been observed with other virus families but are mediated by different cytokines. Characterizing the protein structure of CAF has been challenging despite many biologic, immunologic, and molecular studies. It represents a low-abundance protein that may be identified by future next-generation sequencing approaches. Since CNAR/CAF is a natural noncytotoxic activity, it could provide promising strategies for HIV/AIDS therapy, cure, and prevention.
Collapse
Affiliation(s)
- Maelig G Morvan
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Fernando C Teque
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, San Francisco, California, USA
| | | | - Jay A Levy
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
10
|
Al-Harthi L, Campbell E, Schneider JA, Bennett DA. What HIV in the Brain Can Teach Us About SARS-CoV-2 Neurological Complications? AIDS Res Hum Retroviruses 2021; 37:255-265. [PMID: 32683890 PMCID: PMC8035916 DOI: 10.1089/aid.2020.0161] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the etiologic agent of COVID-19, a disease that as of July 10, 2020, has infected >12 million people and killed >500,000. COVID-19 infection leads to acute respiratory distress syndrome in a subset of patients and is a primary driver of acute morbidity in infected persons. However, it is becoming increasingly clear that SARS-CoV-2 infection drives dysfunction and pathology outside the lungs, including reports of renal, cardiac, and neurological complications. In this study, we summarize the known incidence and evidence of neurological complications associated with SARS-CoV-2 infection and other pathogenic coronaviruses. These studies describe a poorly understood spectrum of COVID-19 central nervous system symptoms, ranging from common and subclinical issues such as anosmia and headache to more concerning reports of stroke and encephalopathy. We discuss potential mechanisms of pathogenesis, including a discussion of how the understanding of neurological complications known to occur in HIV-1 patients may provide insight into SARS-CoV-2-associated neurological manifestations. Specifically, three hypotheses are discussed that are informed by decades of knowledge about HIV pathogenesis in the brain, which include a potential direct viral effect, an indirect viral effect, and/or a neuroimmune axis effect. Individually or in combination these potential effects may contribute to COVID-19 neurological complications.
Collapse
Affiliation(s)
- Lena Al-Harthi
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, Illinois, USA
| | - Edward Campbell
- Department of Microbiology and Immunology, Loyola University, Chicago, Illinois, USA
| | - Julie A. Schneider
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, Illinois, USA
| | - David A. Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, Illinois, USA
| |
Collapse
|
11
|
Volkers SM, Meisel C, Terhorst-Molawi D, Burbach GJ, Schürmann D, Suttorp N, Sander LE. Clonal expansion of CD4 +CD8 + T cells in an adult patient with Mycoplasma pneumoniae-associated Erythema multiforme majus. Allergy Asthma Clin Immunol 2021; 17:17. [PMID: 33568212 PMCID: PMC7877069 DOI: 10.1186/s13223-021-00520-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 01/27/2021] [Indexed: 01/15/2023] Open
Abstract
Background Erythema multiforme (EM) is an acute, immune-mediated mucocutaneous disease, most often preceded by herpes simplex virus (HSV) infection or reactivation. Mycoplasma pneumoniae (Mp) is considered the second major trigger of EM and is often associated with an atypical and more severe presentation of disease, characterized by prominent mucosal involvement. However, contrary to HSV-associated Erythema multiforme (HAEM), immunological mechanisms of Mp-associated EM remain unclear. Case presentation We present the case of a 50-year-old male patient presenting with community-acquired pneumonia (CAP) and erythema multiforme majus (EMM). Acute Mp infection was diagnosed by seroconversion, with no evidence of HSV infection as a cause of EMM. We performed immune phenotyping of blister fluid (BF) and peripheral blood (PB) T cells and detected a clonally expanded TCRVβ2+ T cell population that was double positive for CD4 and CD8, and expressed the cytotoxic markers granulysin and perforin. This CD4+CD8+ population comprised up to 50.7% of BF T cells and 24.9% of PB T cells. Two years prior to the onset of disease, the frequency of PB CD4+CD8+T cells had been within normal range and it gradually returned to baseline levels with the resolution of symptoms, suggesting an involvement of this population in EMM disease pathophysiology. Conclusions This report is the first to provide a phenotypic description of lesional T cells in Mp-associated EMM. Characterizing the local immune response might help to address pathophysiological questions and warrants further systematic research.
Collapse
Affiliation(s)
- Sarah M Volkers
- Department of Infectious Diseases and Respiratory Medicine, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Christian Meisel
- Institute of Medical Immunology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Immunology, Labor Berlin-Charité Vivantes GmbH, Berlin, Germany
| | - Dorothea Terhorst-Molawi
- Department of Dermatology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Guido J Burbach
- Dermatology/Dermato-Oncology Out-Patient Clinic, Vivantes Ambulatory Health Care Centers Berlin-Spandau, Berlin, Germany
| | - Dirk Schürmann
- Department of Infectious Diseases and Respiratory Medicine, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Norbert Suttorp
- Department of Infectious Diseases and Respiratory Medicine, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,German Center for Lung Research (DZL), Berlin, Germany
| | - Leif E Sander
- Department of Infectious Diseases and Respiratory Medicine, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany. .,German Center for Lung Research (DZL), Berlin, Germany.
| |
Collapse
|
12
|
Virdi AK, Wallace J, Barbian H, Richards MH, Ritz EM, Sha B, Al-Harthi L. CD32 is enriched on CD4dimCD8bright T cells. PLoS One 2020; 15:e0239157. [PMID: 32960910 PMCID: PMC7508398 DOI: 10.1371/journal.pone.0239157] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 08/25/2020] [Indexed: 12/30/2022] Open
Abstract
CD4dimCD8bright T cells, a genuine population of CD8+ T cells, are highly activated and cytolytic. Recently, the low affinity IgG Fc fragment receptor CD32a was described as marker of HIV latency while others reported that CD32a is associated with T cell activation. Given that we have previously established that CD4dimCD8bright T cells are highly activated, mediate anti-HIV responses, and are infected by HIV, we assessed here CD32 expression on CD4dimCD8bright T cells in context of HIV. CD32 frequency on peripheral CD4dimCD8bright and CD4+ T cells was determined by flow cytometry among HIV negative and HIV positive patients. We report that among HIV- individuals, mean CD32 percent expression was 60% on CD4dimCD8bright T cells and 17% on CD4+ T cells (p<0.01). Among HIV+ patients, mean CD32 percent expression was 54% on CD4dimCD8bright T cells and 12% on CD4+ T cells (p<0.001). CD32 expression on CD4dimCD8bright T cells did not correlate with CD4 count and viral load and was not different by HIV serostatus. CD32 was also higher on other double positive T cell populations in both HIV negative and HIV positive donors in comparison to their single positive T cell counterpart. Together, these studies indicate that CD32 is enriched on double positive T cells regardless of HIV serostatus. The functional role of CD32 on these double positive T cells remains to be elucidated.
Collapse
Affiliation(s)
- Amber K. Virdi
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL, United States of America
| | - Jennillee Wallace
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL, United States of America
| | - Hannah Barbian
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL, United States of America
| | - Maureen H. Richards
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL, United States of America
| | - Ethan M. Ritz
- Biostatistics and Bioinformatics Core, Rush University Medical Center, Chicago, IL, United States of America
| | - Beverly Sha
- Infectious Diseases Division, Rush Medical College, Chicago, IL, United States of America
| | - Lena Al-Harthi
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL, United States of America
- * E-mail:
| |
Collapse
|
13
|
Abstract
PURPOSE OF REVIEW The purpose of this review is to summarize the current knowledge on the role of CD4+ T lymphocytes leading to HIV assault and persistence in the central nervous system (CNS) and the elimination of HIV-infected CNS resident cells by CD8+ T lymphocytes. RECENT FINDINGS HIV targets the CNS early in infection, and HIV-infected individuals suffer from mild forms of neurological impairments even under antiretroviral therapy (ART). CD4+ T cells and monocytes mediate HIV entry into the brain and constitute a source for HIV persistence and neuronal damage. HIV-specific CD8+ T cells are also massively recruited in the CNS in acute infection to control viral replication but cannot eliminate HIV-infected cells within the CNS. This review summarizes the involvement of CD4+ T cells in seeding and maintaining HIV infection in the brain and describes the involvement of CD8+ T cells in HIV neuropathogenesis, playing a role still to be deciphered, either beneficial in eliminating HIV-infected cells or deleterious in releasing inflammatory cytokines.
Collapse
|
14
|
Chilunda V, Calderon TM, Martinez-Aguado P, Berman JW. The impact of substance abuse on HIV-mediated neuropathogenesis in the current ART era. Brain Res 2019; 1724:146426. [PMID: 31473221 PMCID: PMC6889827 DOI: 10.1016/j.brainres.2019.146426] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 08/16/2019] [Accepted: 08/28/2019] [Indexed: 12/21/2022]
Abstract
Approximately 37 million people worldwide are infected with human immunodeficiency virus (HIV). One highly significant complication of HIV infection is the development of HIV-associated neurocognitive disorders (HAND) in 15-55% of people living with HIV (PLWH), that persists even in the antiretroviral therapy (ART) era. The entry of HIV into the central nervous system (CNS) occurs within 4-8 days after peripheral infection. This establishes viral reservoirs that may persist even in the presence of ART. Once in the CNS, HIV infects resident macrophages, microglia, and at low levels, astrocytes. In response to chronic infection and cell activation within the CNS, viral proteins, inflammatory mediators, and host and viral neurotoxic factors produced over extended periods of time result in neuronal injury and loss, cognitive deficits and HAND. Substance abuse is a common comorbidity in PLWH and has been shown to increase neuroinflammation and cognitive disorders. Additionally, it has been associated with poor ART adherence, and increased viral load in the cerebrospinal fluid (CSF), that may also contribute to increased neuroinflammation and neuronal injury. Studies have examined mechanisms that contribute to neuroinflammation and neuronal damage in PLWH, and how substances of abuse exacerbate these effects. This review will focus on how substances of abuse, with an emphasis on methamphetamine (meth), cocaine, and opioids, impact blood brain barrier (BBB) integrity and transmigration of HIV-infected and uninfected monocytes across the BBB, as well as their effects on monocytes/macrophages, microglia, and astrocytes within the CNS. We will also address how these substances of abuse may contribute to HIV-mediated neuropathogenesis in the context of suppressive ART. Additionally, we will review the effects of extracellular dopamine, a neurotransmitter that is increased in the CNS by substances of abuse, on HIV neuropathogenesis and how this may contribute to neuroinflammation, neuronal insult, and HAND in PLWH with active substance use. Lastly, we will discuss some potential therapies to limit CNS inflammation and damage in HIV-infected substance abusers.
Collapse
Affiliation(s)
- Vanessa Chilunda
- Department of Pathology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, USA
| | - Tina M Calderon
- Department of Pathology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, USA
| | - Pablo Martinez-Aguado
- Department of Pathology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, USA
| | - Joan W Berman
- Department of Pathology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, USA; Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, USA.
| |
Collapse
|
15
|
Araman C, 't Hart BA. Neurodegeneration meets immunology - A chemical biology perspective. Bioorg Med Chem 2019; 27:1911-1924. [PMID: 30910473 DOI: 10.1016/j.bmc.2019.03.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 03/14/2019] [Accepted: 03/19/2019] [Indexed: 11/16/2022]
Affiliation(s)
- C Araman
- Leiden Institute of Chemistry and the Institute for Chemical Immunology, Leiden University, Leiden, The Netherlands.
| | - B A 't Hart
- University of Groningen, Department of Biomedical Sciences of Cells and Systems, University Medical Centre, Groningen, The Netherlands; Department Anatomy and Neuroscience, Free University Medical Center (VUmc), Amsterdam, The Netherlands.
| |
Collapse
|
16
|
Chae WJ, Bothwell ALM. Canonical and Non-Canonical Wnt Signaling in Immune Cells. Trends Immunol 2018; 39:830-847. [PMID: 30213499 DOI: 10.1016/j.it.2018.08.006] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 08/12/2018] [Accepted: 08/15/2018] [Indexed: 12/18/2022]
Abstract
Cell differentiation, proliferation, and death are vital for immune homeostasis. Wnt signaling plays essential roles in processes across species. The roles of Wnt signaling proteins and Wnt ligands have been studied in the past, but the context-dependent mechanisms and functions of these pathways in immune responses remain unclear. Recent findings regarding the role of Wnt ligands and Wnt signaling in immune cells and their immunomodulatory mechanisms suggest that Wnt ligands and signaling are significant in regulating immune responses. We introduce recent key findings and future perspectives on Wnt ligands and their signaling pathways in immune cells as well as the immunological roles and functions of Wnt antagonists.
Collapse
Affiliation(s)
- Wook-Jin Chae
- Department of Immunobiology, Yale University School of Medicine, 300 Cedar Street, New Haven, CT 06520, USA.
| | - Alfred L M Bothwell
- Department of Immunobiology, Yale University School of Medicine, 300 Cedar Street, New Haven, CT 06520, USA.
| |
Collapse
|
17
|
Yu C, Narasipura SD, Richards MH, Hu XT, Yamamoto B, Al-Harthi L. HIV and drug abuse mediate astrocyte senescence in a β-catenin-dependent manner leading to neuronal toxicity. Aging Cell 2017; 16:956-965. [PMID: 28612507 PMCID: PMC5595688 DOI: 10.1111/acel.12593] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2017] [Indexed: 12/27/2022] Open
Abstract
Emerging evidence suggests that cell senescence plays an important role in aging-associated diseases including neurodegenerative diseases. HIV leads to a spectrum of neurologic diseases collectively termed HIV-associated neurocognitive disorders (HAND). Drug abuse, particularly methamphetamine (meth), is a frequently abused psychostimulant among HIV+ individuals and its abuse exacerbates HAND. The mechanism by which HIV and meth lead to brain cell dysregulation is not entirely clear. In this study, we evaluated the impact of HIV and meth on astrocyte senescence using in vitro and several animal models. Astrocytes constitute up to 50% of brain cells and play a pivotal role in marinating brain homeostasis. We show here that HIV and meth induce significant senescence of primary human fetal astrocytes, as evaluated by induction of senescence markers (β-galactosidase and p16INK4A ), senescence-associated morphologic changes, and cell cycle arrest. HIV- and meth-mediated astrocyte senescence was also demonstrated in three small animal models (humanized mouse model of HIV/NSG-huPBMCs, HIV-transgenic rats, and in a meth administration rat model). Senescent astrocytes in turn mediated neuronal toxicity. Further, we show that β-catenin, a pro-survival/proliferation transcriptional co-activator, is downregulated by HIV and meth in human astrocytes and this downregulation promotes astrocyte senescence while induction of β-catenin blocks HIV- and meth-mediated astrocyte senescence. These studies, for the first time, demonstrate that HIV and meth induce astrocyte senescence and implicate the β-catenin pathway as potential therapeutic target to overcome astrocyte senescence.
Collapse
Affiliation(s)
- Chunjiang Yu
- Department of Immunology and Microbiology; Rush University Medical Center; Chicago IL 60612 USA
| | - Srinivas D. Narasipura
- Department of Immunology and Microbiology; Rush University Medical Center; Chicago IL 60612 USA
| | - Maureen H. Richards
- Department of Immunology and Microbiology; Rush University Medical Center; Chicago IL 60612 USA
| | - Xiu-Ti Hu
- Department of Pharmacology; Rush University Medical Center; Chicago IL 60612 USA
| | - Bryan Yamamoto
- Department of Pharmacology and Toxicology; Indiana University School of Medicine; Indianapolis IN 46202 USA
| | - Lena Al-Harthi
- Department of Immunology and Microbiology; Rush University Medical Center; Chicago IL 60612 USA
| |
Collapse
|
18
|
Loret EP, Darque A, Jouve E, Loret EA, Nicolino-Brunet C, Morange S, Castanier E, Casanova J, Caloustian C, Bornet C, Coussirou J, Boussetta J, Couallier V, Blin O, Dussol B, Ravaux I. Intradermal injection of a Tat Oyi-based therapeutic HIV vaccine reduces of 1.5 log copies/mL the HIV RNA rebound median and no HIV DNA rebound following cART interruption in a phase I/II randomized controlled clinical trial. Retrovirology 2016; 13:21. [PMID: 27036656 PMCID: PMC4818470 DOI: 10.1186/s12977-016-0251-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 03/13/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND A Tat Oyi vaccine preparation was administered with informed consent to 48 long-term HIV-1 infected volunteers whose viral loads had been suppressed by antiretroviral therapy (cART). These volunteers were randomized in double-blind method into four groups (n = 12) that were injected intradermally with 0, 11, 33, or 99 µg of synthetic Tat Oyi proteins in buffer without adjuvant at times designated by month 0 (M0), M1 and M2, respectively. The volunteers then underwent a structured treatment interruption between M5 and M7. RESULTS The primary outcomes of this phase I/IIa clinical trial were the safety and lowering the extent of HIV RNA rebound after cART interruption. Only one undesirable event possibly due to vaccination was observed. The 33 µg dose was most effective at lowering the extent of HIV RNA and DNA rebound (Mann and Whitney test, p = 0.07 and p = 0.001). Immune responses against Tat were increased at M5 and this correlated with a low HIV RNA rebound at M6 (p = 0.01). CONCLUSION This study suggests in vivo that extracellular Tat activates and protects HIV infected cells. The Tat Oyi vaccine in association with cART may provide an efficient means of controlling the HIV-infected cell reservoir.
Collapse
Affiliation(s)
- Erwann P Loret
- ETRAV Laboratory, Faculty of Pharmacy, Centre National de la Recherche Scientifique (CNRS), Aix Marseille University, 27 Boulevard Jean Moulin, 13385, Marseille, France.
| | - Albert Darque
- ETRAV Laboratory, Faculty of Pharmacy, Centre National de la Recherche Scientifique (CNRS), Aix Marseille University, 27 Boulevard Jean Moulin, 13385, Marseille, France.,Pharmacie Usage Interne, AP-HM, UHC «la Conception», 147 Bd Baille, 13385, Marseille, France
| | - Elisabeth Jouve
- Centre de Pharmacologie Clinique et Evaluations Thérapeutiques (AP-HM), UHC «la Timone», 28 Boulevard Jean Moulin, 13385, Marseille, France
| | - Elvenn A Loret
- ETRAV Laboratory, Faculty of Pharmacy, Centre National de la Recherche Scientifique (CNRS), Aix Marseille University, 27 Boulevard Jean Moulin, 13385, Marseille, France
| | - Corinne Nicolino-Brunet
- ETRAV Laboratory, Faculty of Pharmacy, Centre National de la Recherche Scientifique (CNRS), Aix Marseille University, 27 Boulevard Jean Moulin, 13385, Marseille, France
| | - Sophie Morange
- Centre d'Investigation Clinique, Assistance Publique -Hôpitaux de Marseille (AP-HM), University Hospital Center (UHC) «la Conception», 147 Bd Baille, 13385, Marseille, France
| | - Elisabeth Castanier
- Centre d'Investigation Clinique, Assistance Publique -Hôpitaux de Marseille (AP-HM), University Hospital Center (UHC) «la Conception», 147 Bd Baille, 13385, Marseille, France
| | - Josiane Casanova
- Centre d'Investigation Clinique, Assistance Publique -Hôpitaux de Marseille (AP-HM), University Hospital Center (UHC) «la Conception», 147 Bd Baille, 13385, Marseille, France
| | - Christine Caloustian
- Centre d'Investigation Clinique, Assistance Publique -Hôpitaux de Marseille (AP-HM), University Hospital Center (UHC) «la Conception», 147 Bd Baille, 13385, Marseille, France
| | - Charléric Bornet
- Pharmacie Usage Interne, AP-HM, UHC «la Conception», 147 Bd Baille, 13385, Marseille, France
| | - Julie Coussirou
- Pharmacie Usage Interne, AP-HM, UHC «la Conception», 147 Bd Baille, 13385, Marseille, France
| | - Jihen Boussetta
- Pharmacie Usage Interne, AP-HM, UHC «la Conception», 147 Bd Baille, 13385, Marseille, France
| | - Vincent Couallier
- Unité Mixte de Recherche CNRS 5251, Institut de Mathématique de Bordeaux, CNRS, Bordeaux 2 University, 33000, Bordeaux, France
| | - Olivier Blin
- Centre de Pharmacologie Clinique et Evaluations Thérapeutiques (AP-HM), UHC «la Timone», 28 Boulevard Jean Moulin, 13385, Marseille, France
| | - Bertrand Dussol
- Centre d'Investigation Clinique, Assistance Publique -Hôpitaux de Marseille (AP-HM), University Hospital Center (UHC) «la Conception», 147 Bd Baille, 13385, Marseille, France
| | - Isabelle Ravaux
- ETRAV Laboratory, Faculty of Pharmacy, Centre National de la Recherche Scientifique (CNRS), Aix Marseille University, 27 Boulevard Jean Moulin, 13385, Marseille, France
| |
Collapse
|
19
|
Xie L, Lin W, Dai K. Recent Advances in αβ T Cell Biology: Wnt Signaling, Notch Signaling, Hedgehog Signaling and Their Translational Perspective. AIMS MEDICAL SCIENCE 2016. [DOI: 10.3934/medsci.2016.3.312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
20
|
Lin W, Dai K, Xie L. Recent Advances in αβ T Cell Biology: Wnt Signaling, Notch Signaling, Hedgehog Signaling and Their Translational Perspective. AIMS MEDICAL SCIENCE 2016. [DOI: 10.3934/medsci.2016.4.312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|