1
|
Lee J, Jin Y, Wu W, Lee Y, Ha UH. Pseudomonas aeruginosa-derived DnaJ induces TLR2 expression through TLR10-mediated activation of the PI3K-SGK1 pathway in macrophages. Microbes Infect 2025:105481. [PMID: 39978578 DOI: 10.1016/j.micinf.2025.105481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 02/13/2025] [Accepted: 02/16/2025] [Indexed: 02/22/2025]
Abstract
TLR2 is a key component of the innate immune system, responsible for recognizing Gram-positive bacterial components and initiating inflammatory signaling cascades that activate defense responses. However, little is known about the regulatory effects of Pseudomonas aeruginosa (P. aeruginosa) on TLR2 expression. In this study, we investigated the potential link between P. aeruginosa-derived DnaJ and TLR2 expression in macrophages, as well as the activation of downstream signaling pathways. Our findings revealed that DnaJ significantly induced TLR2 expression in a dose- and time-dependent manner, predominantly affecting TLR2 with minimal impact on other TLRs, such as TLR4 and TLR5, which detect bacterial PAMPs. The DnaJ-mediated TLR2 induction was driven by activation of the PI3K-SGK1 signaling pathway, with TLR10 playing a crucial role in facilitating these effects. This increase in TLR2 expression led to enhanced production of inflammatory cytokines in response to secondary Staphylococcus aureus infections, indicating a role in boosting host defense mechanisms. In conclusion, these findings suggest that P. aeruginosa-derived DnaJ promotes TLR2 expression via TLR10-mediated activation of the PI3K-SGK1 pathway, thereby enhancing host immune responses against Gram-positive bacterial infections.
Collapse
Affiliation(s)
- Jaehoo Lee
- Department of Biotechnology and Bioinformatics, Korea University, Sejong, 30019, Republic of Korea; Interdisciplinary Graduate Program for Artificial Intelligence Smart Convergence Technology, Korea University, Sejong, 30019, Republic of Korea
| | - Yongxin Jin
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, Nankai University, Tianjin, 300071, China
| | - Weihui Wu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, Nankai University, Tianjin, 300071, China
| | - Yeji Lee
- Department of Biotechnology and Bioinformatics, Korea University, Sejong, 30019, Republic of Korea.
| | - Un-Hwan Ha
- Department of Biotechnology and Bioinformatics, Korea University, Sejong, 30019, Republic of Korea; Interdisciplinary Graduate Program for Artificial Intelligence Smart Convergence Technology, Korea University, Sejong, 30019, Republic of Korea.
| |
Collapse
|
2
|
Vafaeian A, Rajabi F, Rezaei N. Toll-like receptors in atopic dermatitis: pathogenesis and therapeutic implications. Heliyon 2025; 11:e42226. [PMID: 40007792 PMCID: PMC11850170 DOI: 10.1016/j.heliyon.2025.e42226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 01/18/2025] [Accepted: 01/22/2025] [Indexed: 02/27/2025] Open
Abstract
Toll-like receptors (TLR), the key players of the innate immune system, contribute to the pathogenesis of atopic dermatitis (AD) through multiple pathways. TLRs play a crucial role in delaying barrier repair, promoting Th2-mediated dermatitis, shifting the response toward Th1 in the chronic phase, and contributing to the establishment of the itch-scratch cycle, as well as mediating the effects of UV radiation. The dysregulation of proinflammatory and immunomodulatory effects of TLRs can be attributed to their ligand structures, receptor heterodimerization, the relative frequency of each TLR, interactions with other receptors/signalling pathways, cytokine milieu, and genetic polymorphisms. Current AD treatments like vitamin-D analogs, tacrolimus, and cyclosporine partially work through TLR modulation. Direct TLR stimulation using different compounds has shown therapeutic benefits in preclinical studies. However, significant challenges exist, including off-target effects due to ubiquitous TLR expression and complex roles in immune responses. Future directions include CRISPR-based gene editing to understand TLR functions, development of specific TLR modulators for targeted therapy, and machine learning applications to predict drug responses and identify novel ligands. Patient heterogeneity, including the presence or absence of polymorphisms, variations in TLR expression levels, and differences in immune responses, underscores the need for personalized therapeutic approaches.
Collapse
Affiliation(s)
- Ahmad Vafaeian
- Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Autoimmune Bullous Diseases Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Fateme Rajabi
- Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Center for Research & Training in Skin Diseases & Leprosy, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Sheffield, UK
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Rasquel-Oliveira FS, Ribeiro JM, Martelossi-Cebinelli G, Costa FB, Nakazato G, Casagrande R, Verri WA. Staphylococcus aureus in Inflammation and Pain: Update on Pathologic Mechanisms. Pathogens 2025; 14:185. [PMID: 40005560 PMCID: PMC11858194 DOI: 10.3390/pathogens14020185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 01/23/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
Staphylococcus aureus (S. aureus) is a Gram-positive bacterium of significant clinical importance, known for its versatility and ability to cause a wide array of infections, such as osteoarticular, pulmonary, cardiovascular, device-related, and hospital-acquired infections. This review describes the most recent evidence of the pathogenic potential of S. aureus, which is commonly part of the human microbiota but can lead to severe infections. The prevalence of pathogenic S. aureus in hospital and community settings contributes to substantial morbidity and mortality, particularly in individuals with compromised immune systems. The immunopathogenesis of S. aureus infections involves intricate interactions with the host immune and non-immune cells, characterized by various virulence factors that facilitate adherence, invasion, and evasion of the host's defenses. This review highlights the complexity of S. aureus infections, ranging from mild to life-threatening conditions, and underscores the growing public health concern posed by multidrug-resistant strains, including methicillin-resistant S. aureus (MRSA). This article aims to provide an updated perspective on S. aureus-related infections, highlighting the main diseases linked to this pathogen, how the different cell types, virulence factors, and signaling molecules are involved in the immunopathogenesis, and the future perspectives to overcome the current challenges to treat the affected individuals.
Collapse
Affiliation(s)
- Fernanda S. Rasquel-Oliveira
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Immunology, Parasitology and General Pathology, Center of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil; (F.S.R.-O.)
| | - Jhonatan Macedo Ribeiro
- Department of Microbiology, Center of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil (G.N.)
| | - Geovana Martelossi-Cebinelli
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Immunology, Parasitology and General Pathology, Center of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil; (F.S.R.-O.)
| | - Fernanda Barbosa Costa
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Immunology, Parasitology and General Pathology, Center of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil; (F.S.R.-O.)
| | - Gerson Nakazato
- Department of Microbiology, Center of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil (G.N.)
| | - Rubia Casagrande
- Department of Pharmaceutical Sciences, Center of Health Science, Londrina State University, Londrina 86038-440, PR, Brazil
| | - Waldiceu A. Verri
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Immunology, Parasitology and General Pathology, Center of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil; (F.S.R.-O.)
| |
Collapse
|
4
|
Woods RA, Guzman Vela S, Alonzo F. Gram-positive pathogens, inflammation, and the host lipid environment. Curr Opin Microbiol 2025; 83:102581. [PMID: 39922181 DOI: 10.1016/j.mib.2025.102581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/16/2025] [Accepted: 01/23/2025] [Indexed: 02/10/2025]
Abstract
The host lipid environment is a barrier to bacterial infection that comprises antimicrobial fatty acids and impermeable lipids that keep infectious agents from penetrating tissues. Bacterial and host lipids also signal to the immune system to regulate inflammation. Notably, bacterial lipids activate Toll-like receptors to initiate cytokine production, immune cell recruitment, and oxidative burst to control infection. Bacterial pathogens must adapt to the lipid environment, including bactericidal host fatty acids and inflammatory lipids, in ways that promote persistence in diverse tissues. Here, we discuss current advances in the understanding of Staphylococcus aureus lipid interactions that contribute to inflammation and innate immunity and consider the complex roles of host inflammatory lipids in driving immune defenses and antibacterial activity. In addition, we endeavor to introduce similar processes in other Gram-positive pathogens. These recent studies highlight the growing body of knowledge on the effects of lipid metabolism on host immunity and pathogenesis.
Collapse
Affiliation(s)
- Reginald A Woods
- Department of Microbiology and Immunology, University of Illinois at Chicago - College of Medicine, 835 S. Wolcott Avenue, Chicago, IL 60612, USA; Department of Pharmaceutical Sciences, University of Illinois at Chicago - Retzky College of Pharmacy, 833 S. Wood Street, Chicago, IL 60612, USA
| | - Sarai Guzman Vela
- Department of Microbiology and Immunology, University of Illinois at Chicago - College of Medicine, 835 S. Wolcott Avenue, Chicago, IL 60612, USA
| | - Francis Alonzo
- Department of Microbiology and Immunology, University of Illinois at Chicago - College of Medicine, 835 S. Wolcott Avenue, Chicago, IL 60612, USA.
| |
Collapse
|
5
|
Palumbo S, Irish J, Narendran N, Stern DA, Volpe S, Le CH, Starks R, Bosco A, Martinez FD, Chang EH. The rs6967330 minor allele in CDHR3 is a significant risk factor for severe acute exacerbations in chronic rhinosinusitis. J Allergy Clin Immunol 2025; 155:583-593. [PMID: 39389125 PMCID: PMC11805668 DOI: 10.1016/j.jaci.2024.09.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 09/12/2024] [Accepted: 09/25/2024] [Indexed: 10/12/2024]
Abstract
BACKGROUND Acute exacerbations of chronic rhinosinusitis (AECRS) are commonly triggered by rhinovirus (RV) infections with secondary bacterial infections. Risk factors for AECRS are not well understood. OBJECTIVE We sought to determine whether carriers of the minor allele rs6967330 (AA/AG) in the cadherin-related family member 3 (CDHR3) gene have an increased risk for RV infections in AECRS in vivo and identify CDHR3 genotype-dependent host responses to RV infection in differentiated nasal airway-liquid interface (ALI) cultures ex vivo. METHODS We performed a prospective year-long study of adult subjects with chronic rhinosinusitis by the rs6967330 genotype (AA/AG, n = 16; GG, n = 38). We contacted subjects every 2 weeks, and if they reported AECRS, then clinical data were collected. ALI cultures of adults with chronic rhinosinusitis (AG/AA, n = 19; GG, n = 19) were challenged with RV-A and RV-C. We measured viral copy numbers at 4 and 48 hours postinfection and RNA transcriptomes and cytokines at 48 hours postinfection. RESULTS Subjects with the minor allele had significantly higher rates of RV and bacterial infections than those with the major allele. ALI minor allele cultures had higher viral copy numbers of RV-A and RV-C after 48 hours compared with the major allele. Differentially expressed genes and pathways identified an upregulation of IL-10 and IL-4/IL-13 pathways and a significant downregulation of Toll-like receptor pathways in the minor allele cultures after RV-A and RV-C infection. Unsupervised hierarchical analysis of all differentially expressed genes suggested that allergic rhinitis had an additive effect on this response. CONCLUSIONS The rs6967330 minor allele is associated with increased RV-A and RV-C replication, downregulation of Toll-like receptor-mediated responses, and increased type-2 and cytokine and chemokine responses during RV infection.
Collapse
Affiliation(s)
- Sunny Palumbo
- Department of Otolaryngology, University of Arizona, Tucson, Ariz; Asthma and Airway Disease Research Center, University of Arizona, Tucson, Ariz
| | - Joseph Irish
- Department of Otolaryngology, University of Arizona, Tucson, Ariz; Asthma and Airway Disease Research Center, University of Arizona, Tucson, Ariz
| | - Nirushan Narendran
- Department of Otolaryngology, University of Arizona, Tucson, Ariz; Asthma and Airway Disease Research Center, University of Arizona, Tucson, Ariz
| | - Debra A Stern
- Asthma and Airway Disease Research Center, University of Arizona, Tucson, Ariz
| | - Sophia Volpe
- Department of Otolaryngology, University of Arizona, Tucson, Ariz; Asthma and Airway Disease Research Center, University of Arizona, Tucson, Ariz
| | - Christopher H Le
- Department of Otolaryngology, University of Arizona, Tucson, Ariz
| | - Rebekah Starks
- Asthma and Airway Disease Research Center, University of Arizona, Tucson, Ariz; Department of Immunobiology, University of Arizona College of Medicine, Tucson, Ariz
| | - Anthony Bosco
- Asthma and Airway Disease Research Center, University of Arizona, Tucson, Ariz; Department of Immunobiology, University of Arizona College of Medicine, Tucson, Ariz
| | - Fernando D Martinez
- Asthma and Airway Disease Research Center, University of Arizona, Tucson, Ariz
| | - Eugene H Chang
- Department of Otolaryngology, University of Arizona, Tucson, Ariz; Asthma and Airway Disease Research Center, University of Arizona, Tucson, Ariz.
| |
Collapse
|
6
|
Zou J, Gao J, Shang W, Fan X. Minocycline Ameliorates Staphylococcus aureus-Induced Neuroinflammation and Anxiety-like Behaviors by Regulating the TLR2 and STAT3 Pathways in Microglia. Brain Sci 2025; 15:128. [PMID: 40002461 PMCID: PMC11853265 DOI: 10.3390/brainsci15020128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 01/25/2025] [Accepted: 01/27/2025] [Indexed: 02/27/2025] Open
Abstract
Background: Anxiety disorders are the most common mental illnesses. S. aureus is a Gram-positive opportunistic pathogen most commonly associated with anxiety-like behaviors. Minocycline ameliorates Gram-negative bacterial LPS-induced anxiety-like behaviors by suppressing microglia activation. However, the effects of minocycline on anxiety-like behaviors caused by S. aureus infections have received little attention. In this study, we aimed to investigate the molecular mechanism and effect of minocycline on anxiety-like behaviors caused by S. aureus infection. Methods: BV2 and N9 microglial cells were treated in vitro. The effects of minocycline on lipoteichoic acid (LTA)-stimulated inflammatory responses, STAT3 activation, and GLS1 expression were assessed using Western blotting, and cytokine secretion was determined using an ELISA. A mouse model was used to evaluate the capacity of minocycline to ameliorate anxiety-like behaviors caused by S. aureus infection. Results: We found that ≥100 μmol/L of minocycline remarkably attenuated LTA-induced TLR2 signaling pathway activation and proinflammatory cytokine expression in microglial cells. Minocycline prevented LTA-stimulated STAT3 activation and GLS1 expression in vitro. LTA-induced TLR2, TNF-α, IL-6, and GLS1 expression was markedly reduced by the inhibition of STAT3 phosphorylation. Mice were pretreated with 50 mg/kg of minocycline, significantly attenuating microglial activation and neuroinflammation. Minocycline also effectively alleviated the anxiety-like behaviors induced by S. aureus infection. Conclusions: Our findings indicate that minocycline alleviates S. aureus infection-induced anxiety-like behaviors by suppressing microglia activation.
Collapse
Affiliation(s)
- Jiao Zou
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing 400038, China; (J.Z.); (J.G.)
| | - Junwei Gao
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing 400038, China; (J.Z.); (J.G.)
| | - Weilong Shang
- Key Laboratory of Microbial Engineering Under the Educational Committee in Chongqing, Department of Microbiology, College of Basic Medical Sciences, Third Military Medical University (Army Medical University), Chongqing 400038, China;
| | - Xiaotang Fan
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing 400038, China; (J.Z.); (J.G.)
| |
Collapse
|
7
|
Song Y, Ma Q, Luo J, Yang Z, Li J, Zhao J. Liushen Wan alleviates the virulence and inflammation of Staphylococcus aureus via NLRP3 inflammasome and TLR2-NF-κB/p38 MAPK signaling pathways. Int Immunopharmacol 2025; 144:113633. [PMID: 39566390 DOI: 10.1016/j.intimp.2024.113633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 10/25/2024] [Accepted: 11/11/2024] [Indexed: 11/22/2024]
Abstract
Infectious diseases have been a major threat to health worldwide, with bacterial infections being particularly prominent. Staphylococcus aureus (S. aureus) infections are associated with the most deaths. Inhibition of virulence factor and excessive inflammation induced by S. aureus has become a potential antibiotic alternative/synergistic therapy without causing greater survival pressure to prevent the emergence of "superbugs" in the future. Liushen Wan (LSW), a traditional Chinese medicine, used for multiple bacterial infectious diseases. In this work, we researched its therapeutic effect and explored the potential mechanism of LSW aiming at S. aureus in vivo and in vitro. Minimal inhibitory concentration (MIC) assay, hemolysis assay, invasion assay, staphyloxanthin assay and evolution of resistance assay were performed to show that LSW alleviated the virulence of S. aureus without suppressing S. aureus activity, and short-term use of LSW did not make bacteria resistant to it. Biofilm inhibition assay demonstrated that LSW inhibited the formation of biofilm and destroyed mature biofilm of S. aureus. In vitro experiments using RT-qPCR, ELISA and western blot analysis indicated LSW inhibited the inflammatory reaction triggered by HK-S. aureus and S. aureus through NLRP3 inflammasome and TLR2-NF-κB/p38 MAPK pathway. Moreover, LSW alleviated lung damage induced by S. aureus. Taken together, LSW is a promising antibacterial, anti-virulence and anti-inflammatory drug, which could provide the pharmacological basis on the traditional application of LSW for diseases associated with S. aureus infection in clinical.
Collapse
Affiliation(s)
- Yudi Song
- The Second Clinical School of Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510000, China
| | - Qinhai Ma
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, 510000, China
| | - Jincan Luo
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, 510000, China
| | - Zifeng Yang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, 510000, China; Guangzhou Laboratory, Guangzhou, Guangdong, 510000, China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau (SAR), 519020, China.
| | - Jiqiang Li
- The Second Affiliated Hospital Of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510000, China.
| | - Jin Zhao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, 510000, China.
| |
Collapse
|
8
|
Paludan SR, Pradeu T, Pichlmair A, Wray KB, Mikkelsen JG, Olagnier D, Mogensen TH. Early host defense against virus infections. Cell Rep 2024; 43:115070. [PMID: 39675007 DOI: 10.1016/j.celrep.2024.115070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/25/2024] [Accepted: 11/22/2024] [Indexed: 12/17/2024] Open
Abstract
Early host defense eliminates many viruses before infections are established while clearing others so they remain subclinical or cause only mild disease. The field of immunology has been shaped by broad concepts, including the pattern recognition theory that currently dominates innate immunology. Focusing on early host responses to virus infections, we analyze the literature to build a working hypothesis for the principles that govern the early line of cellular antiviral defense. Aiming to ultimately arrive at a criteria-based theory with strong explanatory power, we propose that both controlling infection and limiting inflammation are key drivers for the early cellular antiviral response. This response, which we suggest is exerted by a set of "microbe- and inflammation-restricting mechanisms," directly restrict viral replication while also counteracting inflammation. Exploring the mechanisms and physiological importance of the early layer of cellular antiviral defense may open further lines of research in immunology.
Collapse
Affiliation(s)
- Søren R Paludan
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; Center for Immunology of Viral Infections, Aarhus University, Aarhus, Denmark; Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - Thomas Pradeu
- CNRS UMR 5164 ImmunoConcept, University of Bordeaux, Bordeaux, France; Department of Biological and Medical Sciences, University of Bordeaux, Bordeaux, France; Chapman University, Orange, CA, USA
| | - Andreas Pichlmair
- Center for Immunology of Viral Infections, Aarhus University, Aarhus, Denmark; Technical University of Munich, School of Medicine, Institute of Virology, Munich, Germany; German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - K Brad Wray
- Center for Immunology of Viral Infections, Aarhus University, Aarhus, Denmark; Centre for Science Studies, Aarhus University, Aarhus, Denmark; Aarhus Institute of Advanced Studies, Aarhus University, Aarhus, Denmark
| | - Jacob Giehm Mikkelsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; Center for Immunology of Viral Infections, Aarhus University, Aarhus, Denmark
| | - David Olagnier
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; Center for Immunology of Viral Infections, Aarhus University, Aarhus, Denmark
| | - Trine H Mogensen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; Center for Immunology of Viral Infections, Aarhus University, Aarhus, Denmark; Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
9
|
Lin X, Zhao Z, Cai Y, He Y, Wang J, Liu N, Qin Y, Wu Y. MyD88 deficiency in mammary epithelial cells attenuates lipopolysaccharide (LPS)-induced mastitis in mice. Biochem Biophys Res Commun 2024; 739:150569. [PMID: 39186869 DOI: 10.1016/j.bbrc.2024.150569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/07/2024] [Accepted: 08/19/2024] [Indexed: 08/28/2024]
Abstract
Lactation mastitis is a debilitating inflammatory mammary disease in postpartum animals. Myeloid differentiation primary response protein MyD88 is the key downstream adapter for innate pattern recognition receptor toll-like receptor 4 (TLR4), which plays an important role in inflammation. However, the specific role of MyD88 in mammary epithelial cells in the progression of mastitis has not been investigated. In this study, lipopolysaccharide (LPS)-induced mouse mastitis model was used and cytokines such as Tnf-α, Il-1β, Il-6, Cxcl1, Cxcl2 and Ccl2 were significantly increased in inflammatory mammary gland as shown by real time-qPCR. However, the mice with MyD88-deficienet in mammary epithelial cells (cKO) showed a reduction in the expression of Tnf-α, Il-1β, Il-6, Cxcl1 and Cxcl2 in mammary gland compared with control mice, when subjected to LPS induced mastitis. Immunohistochemical staining of cleaved caspase-3 showed that the cell apoptosis induced by inflammation were decreased in MyD88 cKO mice. Furthermore, there were significantly fewer infiltrating inflammatory cells in alveolar lumen of MyD88 cKO mice, including Ly6G-positive neutrophils and F4/80-positive macrophages. RNA-seq in LPS treated mammary glands showed that MyD88 cKO mice had significantly downregulated inflammation-related genes and upregulated genes related to anti-inflammation processes and lipid metabolism compared with control mice. Thus, these results demonstrate that MyD88 in mammary epithelial cells is essential for mastitis progression. And this study not only has important implications for understanding the innate immune response in mammary epithelial cells, but also potentially helps the development of new therapeutic drugs for treating mastitis.
Collapse
Affiliation(s)
- Xinyi Lin
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing 100193, China; College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Zhifeng Zhao
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing 100193, China; College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yuqing Cai
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing 100193, China; College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yifeilong He
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing 100193, China; College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Jing Wang
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing 100193, China; College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Ning Liu
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing 100193, China; College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing 100193, China
| | - Yinghe Qin
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing 100193, China; College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing 100193, China.
| | - Yingjie Wu
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing 100193, China; College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
10
|
Najjar MK, Khan MS, Zhuang C, Chandra A, Lo HW. Interleukin-1 Receptor-Associated Kinase 1 in Cancer Metastasis and Therapeutic Resistance: Mechanistic Insights and Translational Advances. Cells 2024; 13:1690. [PMID: 39451208 PMCID: PMC11506742 DOI: 10.3390/cells13201690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/07/2024] [Accepted: 10/10/2024] [Indexed: 10/26/2024] Open
Abstract
Interleukin-1 Receptor Associated Kinase 1 (IRAK1) is a serine/threonine kinase that plays a critical role as a signaling transducer of the activated Toll-like receptor (TLR)/Interleukin-1 receptor (IL-1R) signaling pathway in both immune cells and cancer cells. Upon hyperphosphorylation by IRAK4, IRAK1 forms a complex with TRAF6, which results in the eventual activation of the NF-κB and MAPK pathways. IRAK1 can translocate to the nucleus where it phosphorylates STAT3 transcription factor, leading to enhanced IL-10 gene expression. In immune cells, activated IRAK1 coordinates innate immunity against pathogens and mediates inflammatory responses. In cancer cells, IRAK1 is frequently activated, and the activation is linked to the progression and therapeutic resistance of various types of cancers. Consequently, IRAK1 is considered a promising cancer drug target and IRAK1 inhibitors have been developed and evaluated preclinically and clinically. This is a comprehensive review that summarizes the roles of IRAK1 in regulating metastasis-related signaling pathways of importance to cancer cell proliferation, cancer stem cells, and dissemination. This review also covers the significance of IRAK1 in mediating cancer resistance to therapy and the underlying molecular mechanisms, including the evasion of apoptosis and maintenance of an inflammatory tumor microenvironment. Finally, we provide timely updates on the development of IRAK1-targeted therapy for human cancers.
Collapse
Affiliation(s)
- Mariana K. Najjar
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (M.K.N.); (M.S.K.); (C.Z.); (A.C.)
- Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Munazza S. Khan
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (M.K.N.); (M.S.K.); (C.Z.); (A.C.)
- Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Chuling Zhuang
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (M.K.N.); (M.S.K.); (C.Z.); (A.C.)
- Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Ankush Chandra
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (M.K.N.); (M.S.K.); (C.Z.); (A.C.)
| | - Hui-Wen Lo
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (M.K.N.); (M.S.K.); (C.Z.); (A.C.)
- Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
11
|
Nagarajan A, Scoggin K, Adams LG, Threadgill D, Andrews-Polymenis H. Identification of a genetic region linked to tolerance to MRSA infection using Collaborative Cross mice. PLoS Genet 2024; 20:e1011378. [PMID: 39178306 PMCID: PMC11407622 DOI: 10.1371/journal.pgen.1011378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 09/17/2024] [Accepted: 07/29/2024] [Indexed: 08/25/2024] Open
Abstract
Staphylococcus aureus (S. aureus) colonizes humans asymptomatically but can also cause opportunistic infections, ranging from mild skin infections to severe life-threatening conditions. Resistance and tolerance are two ways a host can survive an infection. Resistance is limiting the pathogen burden, while tolerance is limiting the health impact of a given pathogen burden. In previous work, we established that collaborative cross (CC) mouse line CC061 is highly susceptible to Methicillin-resistant S. aureus infection (MRSA, USA300), while CC024 is tolerant. To identify host genes involved in tolerance after S. aureus infection, we crossed CC061 mice and CC024 mice to generate F1 and F2 populations. Survival after MRSA infection in the F1 and F2 generations was 65% and 55% and followed a complex dominant inheritance pattern for the CC024 increased survival phenotype. Colonization in F2 animals was more extreme than in their parents, suggesting successful segregation of genetic factors. We identified a Quantitative Trait Locus (QTL) peak on chromosome 7 for survival and weight change after infection. In this QTL, the WSB/EiJ (WSB) allele was present in CC024 mice and contributed to their MRSA tolerant phenotype. Two genes, C5ar1 and C5ar2, have high-impact variants in this region. C5ar1 and C5ar2 are receptors for the complement factor C5a, an anaphylatoxin that can trigger a massive immune response by binding to these receptors. We hypothesize that C5a may have altered binding to variant receptors in CC024 mice, reducing damage caused by the cytokine storm and resulting in the ability to tolerate a higher pathogen burden and longer survival.
Collapse
Affiliation(s)
- Aravindh Nagarajan
- Interdisciplinary Program in Genetics and Genomics, Texas A&M University, College Station, Texas, United States of America
- Department of Microbial Pathogenesis and Immunology, Texas A&M University, College Station, Texas, United States of America
| | - Kristin Scoggin
- Interdisciplinary Program in Genetics and Genomics, Texas A&M University, College Station, Texas, United States of America
- Department of Microbial Pathogenesis and Immunology, Texas A&M University, College Station, Texas, United States of America
| | - L Garry Adams
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas, United States of America
| | - David Threadgill
- Interdisciplinary Program in Genetics and Genomics, Texas A&M University, College Station, Texas, United States of America
- Department of Molecular and Cellular Medicine, Texas A&M University, College Station, Texas, United States of America
- Texas A&M Institute for Genome Sciences and Society, Texas A&M University, College Station, Texas, United States of America
- Department of Biochemistry & Biophysics and Department of Nutrition, Texas A&M University, College Station, Texas, United States of America
| | - Helene Andrews-Polymenis
- Interdisciplinary Program in Genetics and Genomics, Texas A&M University, College Station, Texas, United States of America
- Department of Microbial Pathogenesis and Immunology, Texas A&M University, College Station, Texas, United States of America
| |
Collapse
|
12
|
Moghaddam MM, Behzadi E, Sedighian H, Goleij Z, Kachuei R, Heiat M, Fooladi AAI. Regulation of immune responses to infection through interaction between stem cell-derived exosomes and toll-like receptors mediated by microRNA cargoes. Front Cell Infect Microbiol 2024; 14:1384420. [PMID: 38756232 PMCID: PMC11096519 DOI: 10.3389/fcimb.2024.1384420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/22/2024] [Indexed: 05/18/2024] Open
Abstract
Infectious diseases are among the factors that account for a significant proportion of disease-related deaths worldwide. The primary treatment approach to combat microbial infections is the use of antibiotics. However, the widespread use of these drugs over the past two decades has led to the emergence of resistant microbial species, making the control of microbial infections a serious challenge. One of the most important solutions in the field of combating infectious diseases is the regulation of the host's defense system. Toll-like receptors (TLRs) play a crucial role in the first primary defense against pathogens by identifying harmful endogenous molecules released from dying cells and damaged tissues as well as invading microbial agents. Therefore, they play an important role in communicating and regulating innate and adaptive immunity. Of course, excessive activation of TLRs can lead to disruption of immune homeostasis and increase the risk of inflammatory reactions. Targeting TLR signaling pathways has emerged as a new therapeutic approach for infectious diseases based on host-directed therapy (HDT). In recent years, stem cell-derived exosomes have received significant attention as factors regulating the immune system. The regulation effects of exosomes on the immune system are based on the HDT strategy, which is due to their cargoes. In general, the mechanism of action of stem cell-derived exosomes in HDT is by regulating and modulating immunity, promoting tissue regeneration, and reducing host toxicity. One of their most important cargoes is microRNAs, which have been shown to play a significant role in regulating immunity through TLRs. This review investigates the therapeutic properties of stem cell-derived exosomes in combating infections through the interaction between exosomal microRNAs and Toll-like receptors.
Collapse
Affiliation(s)
- Mehrdad Moosazadeh Moghaddam
- Tissue Engineering and Regenerative Medicine Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Elham Behzadi
- The Academy of Medical Sciences of I.R. Iran, Tehran, Iran
| | - Hamid Sedighian
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Zoleikha Goleij
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Reza Kachuei
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mohammad Heiat
- Baqiyatallah Research Center for Gastroenterology and Liver Diseases (BRCGL), Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Abbas Ali Imani Fooladi
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Nagarajan A, Scoggin K, Gupta J, Aminian M, Adams LG, Kirby M, Threadgill D, Andrews-Polymenis H. Collaborative Cross mice have diverse phenotypic responses to infection with Methicillin-resistant Staphylococcus aureus USA300. PLoS Genet 2024; 20:e1011229. [PMID: 38696518 PMCID: PMC11108197 DOI: 10.1371/journal.pgen.1011229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 05/21/2024] [Accepted: 03/18/2024] [Indexed: 05/04/2024] Open
Abstract
Staphylococcus aureus (S. aureus) is an opportunistic pathogen causing diseases ranging from mild skin infections to life threatening conditions, including endocarditis, pneumonia, and sepsis. To identify host genes modulating this host-pathogen interaction, we infected 25 Collaborative Cross (CC) mouse strains with methicillin-resistant S. aureus (MRSA) and monitored disease progression for seven days using a surgically implanted telemetry system. CC strains varied widely in their response to intravenous MRSA infection. We identified eight 'susceptible' CC strains with high bacterial load, tissue damage, and reduced survival. Among the surviving strains, six with minimal colonization were classified as 'resistant', while the remaining six tolerated higher organ colonization ('tolerant'). The kidney was the most heavily colonized organ, but liver, spleen and lung colonization were better correlated with reduced survival. Resistant strains had higher pre-infection circulating neutrophils and lower post-infection tissue damage compared to susceptible and tolerant strains. We identified four CC strains with sexual dimorphism: all females survived the study period while all males met our euthanasia criteria earlier. In these CC strains, males had more baseline circulating monocytes and red blood cells. We identified several CC strains that may be useful as new models for endocarditis, myocarditis, pneumonia, and resistance to MRSA infection. Quantitative Trait Locus (QTL) analysis identified two significant loci, on Chromosomes 18 and 3, involved in early susceptibility and late survival after infection. We prioritized Npc1 and Ifi44l genes as the strongest candidates influencing survival using variant analysis and mRNA expression data from kidneys within these intervals.
Collapse
Affiliation(s)
- Aravindh Nagarajan
- Interdisciplinary Program in Genetics and Genomics, Texas A&M University, College Station, Texas, United States of America
- Department of Microbial Pathogenesis and Immunology, Texas A&M University, College Station, Texas, United States of America
| | - Kristin Scoggin
- Interdisciplinary Program in Genetics and Genomics, Texas A&M University, College Station, Texas, United States of America
- Department of Molecular and Cellular Medicine, Texas A&M University, College Station, Texas, United States of America
| | - Jyotsana Gupta
- Department of Microbial Pathogenesis and Immunology, Texas A&M University, College Station, Texas, United States of America
| | - Manuchehr Aminian
- Department of Mathematics, Colorado State University, Fort Collins, Colorado, United States of America
- Department of Mathematics and Statistics, California State Polytechnic University, Pomona, California, United States of America
| | - L. Garry Adams
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas, United States of America
| | - Michael Kirby
- Department of Mathematics, Colorado State University, Fort Collins, Colorado, United States of America
| | - David Threadgill
- Interdisciplinary Program in Genetics and Genomics, Texas A&M University, College Station, Texas, United States of America
- Department of Molecular and Cellular Medicine, Texas A&M University, College Station, Texas, United States of America
- Texas A&M Institute for Genome Sciences and Society, Texas A&M University, College Station, Texas, United States of America
- Department of Biochemistry & Biophysics and Department of Nutrition, Texas A&M University, College Station, Texas, United States of America
| | - Helene Andrews-Polymenis
- Interdisciplinary Program in Genetics and Genomics, Texas A&M University, College Station, Texas, United States of America
- Department of Microbial Pathogenesis and Immunology, Texas A&M University, College Station, Texas, United States of America
| |
Collapse
|
14
|
Chan JYH, Clow F, Pearson V, Langley RJ, Fraser JD, Radcliff FJ. Feasibility of using a combination of staphylococcal superantigen-like proteins 3, 7 and 11 in a fusion vaccine for Staphylococcus aureus. Immunol Cell Biol 2024; 102:365-380. [PMID: 38572664 DOI: 10.1111/imcb.12745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/07/2024] [Accepted: 03/18/2024] [Indexed: 04/05/2024]
Abstract
Staphylococcus aureus is a significant bacterial pathogen in both community and hospital settings, and the escalation of antimicrobial-resistant strains is of immense global concern. Vaccination is an inviting long-term strategy to curb staphylococcal disease, but identification of an effective vaccine has proved to be challenging. Three well-characterized, ubiquitous, secreted immune evasion factors from the staphylococcal superantigen-like (SSL) protein family were selected for the development of a vaccine. Wild-type SSL3, 7 and 11, which inhibit signaling through Toll-like receptor 2, cleavage of complement component 5 and neutrophil function, respectively, were successfully combined into a stable, active fusion protein (PolySSL7311). Vaccination of mice with an attenuated form of the PolySSL7311 protein stimulated significantly elevated specific immunoglobulin G and splenocyte proliferation responses to each component relative to adjuvant-only controls. Vaccination with PolySSL7311, but not a mixture of the individual proteins, led to a > 102 reduction in S. aureus tissue burden compared with controls after peritoneal challenge. Comparable antibody responses were elicited after coadministration of the vaccine in either AddaVax (an analog of MF59) or an Alum-based adjuvant; but only AddaVax conferred a significant reduction in bacterial load, aligning with other studies that suggest both cellular and humoral immune responses are necessary for protective immunity to S. aureus. Anti-sera from mice immunized with PolySSL7311, but not individual proteins, partially neutralized the functional activities of SSL7. This study confirms the importance of these SSLs for the survival of S. aureus in vivo and suggests that PolySSL7311 is a promising vaccine candidate.
Collapse
Affiliation(s)
- Janlin Ying Hui Chan
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Fiona Clow
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Victoria Pearson
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Ries J Langley
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - John D Fraser
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Fiona J Radcliff
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
15
|
Ghosh R, Bishayi B. Endogenous blocking of TLR2 along with TNF-α and IL-1β ameliorates the severity of the S. aureus arthritis via modulating STAT3/SOCS3 expressions in tissue resident macrophages. Microb Pathog 2024; 187:106518. [PMID: 38160988 DOI: 10.1016/j.micpath.2023.106518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/19/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
In vivo studies identifying a role of TLR2 in septic arthritis models are lacking. TNF-α played as the most important proinflammatory cytokine, and connected directly to the pathogenesis of bacterial arthritis. IL-1β is another central mediator cytokine in arthritis. It is therefore reasonable to question the role of neutralization of endogenous TNF-α and IL-1β along with TLR2 and associated downstream signaling as crucial mediators in the S. aureus -induced inflammatory arthritis. In reaction to an injury or a pathogen encounter, innate immune cells serve as the initial line of defense. TLR2 mediated entry of S. aureus into macrophage cells initiates an array of inflammatory cascades. After macrophage cell gets activated at the site inflammation, they generate elevated number of cytokines which includes TNF-α, IL-1β. This cytokines signals through STAT1/STAT3 mediated pathways. Thus, aim of this study was to discover how This bone damage could be altered by altering the STAT/STAT3/SOCS3 ratio by blocking TLR2, a particular S. aureus binding site, in conjunction with the use of IL-1 and TNF- antibodies for neutralizing endogenous IL-1β and TNF-α. Additionally, the role of local macrophages in therapy of arthritis was investigated in synovial and Splenic tissue. To comprehend the inflammatory milieu within the system, ROS and other antioxidant enzymes, along with the expression of mTOR in macrophage cells, were also taken into consideration. The detrimental impact of bacterial burden on synovial joints was reduced by simultaneously inhibiting TLR2, TNF-α, and IL-1β. Lowered IFN-γ decreases its sensitivity to STAT1 and lowered IL-6 reduces STAT3 expressions. Whereas, elevated IL-10 enhances SOSC3 expression, which thereby able to limits STAT1/STAT3 inter-conversion. As a result, NF-κB activity was downregulated.
Collapse
Affiliation(s)
- Rituparna Ghosh
- Department of Physiology, Immunology Laboratory, University of Calcutta, University Colleges of Science and Technology, 92 APC Road, Calcutta, 700009, West Bengal, India
| | - Biswadev Bishayi
- Department of Physiology, Immunology Laboratory, University of Calcutta, University Colleges of Science and Technology, 92 APC Road, Calcutta, 700009, West Bengal, India.
| |
Collapse
|
16
|
Rong N, Liu J. Development of animal models for emerging infectious diseases by breaking the barrier of species susceptibility to human pathogens. Emerg Microbes Infect 2023; 12:2178242. [PMID: 36748729 PMCID: PMC9970229 DOI: 10.1080/22221751.2023.2178242] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Outbreaks of emerging infectious diseases pose a serious threat to public health security, human health and economic development. After an outbreak, an animal model for an emerging infectious disease is urgently needed for studying the etiology, host immune mechanisms and pathology of the disease, evaluating the efficiency of vaccines or drugs against infection, and minimizing the time available for animal model development, which is usually hindered by the nonsusceptibility of common laboratory animals to human pathogens. Thus, we summarize the technologies and methods that induce animal susceptibility to human pathogens, which include viral receptor humanization, pathogen-targeted tissue humanization, immunodeficiency induction and screening for naturally susceptible animal species. Furthermore, the advantages and deficiencies of animal models developed using each method were analyzed, and these will guide the selection of susceptible animals and potentially reduce the time needed to develop animal models during epidemics.
Collapse
Affiliation(s)
- Na Rong
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, People’s Republic of China
| | - Jiangning Liu
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, People’s Republic of China, Jiangning Liu
| |
Collapse
|
17
|
Mytych JS, Pan Z, Lopez-Davis C, Redinger N, Lawrence C, Ziegler J, Popescu NI, James JA, Farris AD. Peptidoglycan from Bacillus anthracis Inhibits Human Macrophage Efferocytosis in Part by Reducing Cell Surface Expression of MERTK and TIM-3. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.30.535001. [PMID: 37066181 PMCID: PMC10103956 DOI: 10.1101/2023.03.30.535001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Bacillus anthracis peptidoglycan (PGN) is a major component of the bacterial cell wall and a key pathogen-associated molecular pattern (PAMP) contributing to anthrax pathology, including organ dysfunction and coagulopathy. Increases in apoptotic lymphocytes are a late-stage feature of anthrax and sepsis, suggesting there is a defect in apoptotic clearance. Here, we tested the hypothesis that B. anthracis PGN inhibits the capacity of human monocyte-derived macrophages (MΦ) to efferocytose apoptotic cells. Exposure of CD163+CD206+ MΦ to PGN for 24h impaired efferocytosis in a manner dependent on human serum opsonins but independent of complement component C3. PGN treatment reduced cell surface expression of the pro-efferocytic signaling receptors MERTK, TYRO3, AXL, integrin αVβ5, CD36 and TIM-3, whereas TIM-1, αVβ3, CD300b, CD300f, STABILIN-1 and STABILIN-2 were unaffected. ADAM17 is a major membrane-bound protease implicated in mediating efferocytotic receptor cleavage. We found multiple ADAM17-mediated substrates increased in PGN-treated supernatant suggesting involvement of membrane-bound proteases. ADAM17 inhibitors TAPI-0 and Marimastat prevented TNF release, indicating effective protease inhibition, and modestly increased cell-surface levels of MerTK and TIM-3 but only partially restored efferocytic capacity by PGN-treated MΦ. We conclude that human serum factors are required for optimal recognition of PGN by human MΦ and that B. anthracis PGN inhibits efferocytosis in part by reducing cell surface expression of MERTK and TIM-3.
Collapse
Affiliation(s)
- Joshua S Mytych
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, 825 NE 13 Street, Oklahoma City, OK 73104, USA
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, 1100 N Lindsay Avenue, Oklahoma City, OK 73104, USA
| | - Zijian Pan
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, 825 NE 13 Street, Oklahoma City, OK 73104, USA
| | - Charmaine Lopez-Davis
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, 825 NE 13 Street, Oklahoma City, OK 73104, USA
| | - Nancy Redinger
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, 825 NE 13 Street, Oklahoma City, OK 73104, USA
| | - Christina Lawrence
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, 825 NE 13 Street, Oklahoma City, OK 73104, USA
| | - Jadith Ziegler
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, 825 NE 13 Street, Oklahoma City, OK 73104, USA
| | - Narcis I. Popescu
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, 825 NE 13 Street, Oklahoma City, OK 73104, USA
| | - Judith A. James
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, 825 NE 13 Street, Oklahoma City, OK 73104, USA
| | - A. Darise Farris
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, 825 NE 13 Street, Oklahoma City, OK 73104, USA
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, 1100 N Lindsay Avenue, Oklahoma City, OK 73104, USA
| |
Collapse
|
18
|
Dudiki T, Veleeparambil M, Zhevlakova I, Biswas S, Klein EA, Ford P, Podrez EA, Byzova TV. Mechanism of Tumor-Platelet Communications in Cancer. Circ Res 2023; 132:1447-1461. [PMID: 37144446 PMCID: PMC10213120 DOI: 10.1161/circresaha.122.321861] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 04/20/2023] [Indexed: 05/06/2023]
Abstract
BACKGROUND Thrombosis is one of the main complications in cancer patients often leading to mortality. However, the mechanisms underlying platelet hyperactivation are poorly understood. METHODS Murine and human platelets were isolated and treated with small extracellular vesicles (sEVs) from various cancer cell lines. The effects of these cancer-sEVs on platelets were evaluated both in vitro and in vivo using various approaches, including the detection of cancer-sEV-specific markers in murine platelets and patient samples, measurement of platelet activation and thrombosis assays. Signaling events induced by cancer-sEVs and leading to platelet activation were identified, and the use of blocking antibodies to prevent thrombosis was demonstrated. RESULTS We demonstrate that platelets very effectively take up sEVs from aggressive cancer cells. The process of uptake is fast, proceeds effectively in circulation in mice, and is mediated by the abundant sEV membrane protein-CD63. The uptake of cancer-sEVs leads to the accumulation of cancer cell-specific RNA in platelets in vitro and in vivo. The human prostate cancer-sEV-specific RNA marker PCA3 is detected in platelets of ~70% of prostate cancer patients. This was markedly reduced after prostatectomy. In vitro studies showed that platelet uptake of cancer-sEVs induces strong platelet activation in a CD63-RPTPα (receptor-like protein tyrosine phosphatase alpha)-dependent manner. In contrast to physiological agonists ADP and thrombin, cancer-sEVs activate platelets via a noncanonical mechanism. Intravital studies demonstrated accelerated thrombosis both in murine tumor models and in mice that received intravenous injections of cancer-sEVs. The prothrombotic effects of cancer-sEVs were rescued by blocking CD63. CONCLUSIONS Tumors communicate with platelets by means of sEVs, which deliver cancer markers and activate platelets in a CD63-dependent manner leading to thrombosis. This emphasizes the diagnostic and prognostic value of platelet-associated cancer markers and identifies new pathways for intervention.
Collapse
Affiliation(s)
- Tejasvi Dudiki
- Department of Neurosciences, Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Manoj Veleeparambil
- Department of Neurosciences, Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Irina Zhevlakova
- Department of Neurosciences, Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Sudipta Biswas
- Department of Neurosciences, Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Eric A. Klein
- Glickman Urological and Kidney Institute, Cleveland Clinic Lerner College of Medicine, Education Institute, Cleveland Clinic, Cleveland, OH
| | - Peter Ford
- Department of Neurosciences, Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Eugene A. Podrez
- Department of Neurosciences, Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Tatiana V. Byzova
- Department of Neurosciences, Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| |
Collapse
|
19
|
Voltarelli VA, Alves de Souza RW, Miyauchi K, Hauser CJ, Otterbein LE. Heme: The Lord of the Iron Ring. Antioxidants (Basel) 2023; 12:antiox12051074. [PMID: 37237940 DOI: 10.3390/antiox12051074] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/26/2023] [Accepted: 05/03/2023] [Indexed: 05/28/2023] Open
Abstract
Heme is an iron-protoporphyrin complex with an essential physiologic function for all cells, especially for those in which heme is a key prosthetic group of proteins such as hemoglobin, myoglobin, and cytochromes of the mitochondria. However, it is also known that heme can participate in pro-oxidant and pro-inflammatory responses, leading to cytotoxicity in various tissues and organs such as the kidney, brain, heart, liver, and in immune cells. Indeed, heme, released as a result of tissue damage, can stimulate local and remote inflammatory reactions. These can initiate innate immune responses that, if left uncontrolled, can compound primary injuries and promote organ failure. In contrast, a cadre of heme receptors are arrayed on the plasma membrane that is designed either for heme import into the cell, or for the purpose of activating specific signaling pathways. Thus, free heme can serve either as a deleterious molecule, or one that can traffic and initiate highly specific cellular responses that are teleologically important for survival. Herein, we review heme metabolism and signaling pathways, including heme synthesis, degradation, and scavenging. We will focus on trauma and inflammatory diseases, including traumatic brain injury, trauma-related sepsis, cancer, and cardiovascular diseases where current work suggests that heme may be most important.
Collapse
Affiliation(s)
- Vanessa Azevedo Voltarelli
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Rodrigo W Alves de Souza
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Kenji Miyauchi
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Carl J Hauser
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Leo Edmond Otterbein
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
20
|
Hobai IA. CARDIOMYOCYTE REPROGRAMMING IN ANIMAL MODELS OF SEPTIC SHOCK. Shock 2023; 59:200-213. [PMID: 36730767 DOI: 10.1097/shk.0000000000002024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
ABSTRACT Cardiomyocyte reprogramming plays a pivotal role in sepsis-induced cardiomyopathy through the induction or overexpression of several factors and enzymes, ultimately leading to the characteristic decrease in cardiac contractility. The initial trigger is the binding of LPS to TLR-2, -3, -4, and -9 and of proinflammatory cytokines, such as TNF, IL-1, and IL-6, to their respective receptors. This induces the nuclear translocation of nuclear factors, such as NF-κB, via activation of MyD88, TRIF, IRAK, and MAPKs. Among the latter, ROS- and estrogen-dependent p38 and ERK 1/2 are proinflammatory, whereas JNK may play antagonistic, anti-inflammatory roles. Nuclear factors induce the synthesis of cytokines, which can amplify the inflammatory signal in a paracrine fashion, and of several effector enzymes, such as NOS-2, NOX-1, and others, which are ultimately responsible for the degradation of cardiomyocyte contractility. In parallel, the downregulation of enzymes involved in oxidative phosphorylation causes metabolic reprogramming, followed by a decrease in ATP production and the release of fragmented mitochondrial DNA, which may augment the process in a positive feedback loop. Other mediators, such as NO, ROS, the enzymes PI3K and Akt, and adrenergic stimulation may play regulatory roles, but not all signaling pathways that mediate cardiac dysfunction of sepsis do that by regulating reprogramming. Transcription may be globally modulated by miRs, which exert protective or amplifying effects. For all these mechanisms, differentiating between modulation of cardiomyocyte reprogramming versus systemic inflammation has been an ongoing but worthwhile experimental challenge.
Collapse
Affiliation(s)
- Ion A Hobai
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, 55 Fruit Street, GRB 444, Boston, MA
| |
Collapse
|
21
|
Chen Y, Cao B, Zheng W, Xu T. ACKR4a induces autophagy to block NF-κB signaling and apoptosis to facilitate Vibrio harveyi infection. iScience 2023; 26:106105. [PMID: 36843837 PMCID: PMC9947386 DOI: 10.1016/j.isci.2023.106105] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 12/03/2022] [Accepted: 01/27/2023] [Indexed: 02/04/2023] Open
Abstract
Autophagy and apoptosis are two recognized mechanisms of resistance to bacterial invasion. However, bacteria have likewise evolved the ability to evade immunity. In this study, we identify ACKR4a, a member of an atypical chemokine receptor family, as a suppressor of the NF-κB pathway, which cooperates with Beclin-1 to induce autophagy to inhibit NF-κB signaling and block apoptosis, facilitating Vibrio harveyi infection. Mechanistically, V. harveyi-induced Ap-1 activates ACKR4a transcription and expression. ACKR4a forms a complex with Beclin-1 and MyD88, respectively, inducing autophagy and transporting MyD88 into the lysosome for degradation to suppress inflammatory cytokine production. Meanwhile, ACKR4a-induced autophagy blocks apoptosis by inhibiting caspase8. This study proves for the first time that V. harveyi uses both autophagy and apoptosis to evade innate immunity, suggesting that V. harveyi has evolved the ability to against fish immunity.
Collapse
Affiliation(s)
- Ya Chen
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Baolan Cao
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Weiwei Zheng
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Tianjun Xu
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
- Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Corresponding author
| |
Collapse
|
22
|
Chen DY, Li BZ, Xu WB, Zhang YM, Li BW, Cheng YX, Xiao Y, Lin CY, Dong WR, Shu MA. The first identification of three AdIRAK2 genes from an evolutionarily important amphibian Andrias davidianus and their involvement in NF-κB activation and inflammatory responses. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 139:104585. [PMID: 36368593 DOI: 10.1016/j.dci.2022.104585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 10/24/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
Interleukin-1 receptor associated kinases (IRAK) is the most important downstream kinases of TLRs/IL-1R signaling pathway for signal transduction and activation of inflammatory response against pathogen infections. However, the molecular identification and function characterization of IRAK2 homologs in lower vertebrate remains obscure. In this study, three IRAK2 genes (AdIRAK2a, AdIRAKb and AdIRAK2c) and their respective transcripts were identified from the Chinese giant salamander Andrias davidianus. This is the first evidence that three different IRAK2 genes exist in an ancient amphibian species, which has never been reported in other vertebrates. The complete open reading frames (ORFs) of AdIRAK2a, AdIRAK2b and AdIRAK2c were 2112 bp, 1917 bp and 816 bp encoding deduced proteins of 703 amino acids (aa), 628 aa and 271 aa, respectively. All three AdIRAK2 proteins contained two predicted conserved functional domains, including a death domain (DD) and a serine/threonine protein kinases domain (KD). Phylogenetic analysis showed that the three AdIRAK2s clustered together with other known IRAK2 of vertebrates. The three AdIRAK2s were ubiquitously expressed in all tested tissues with a similar tissues distribution pattern. After challenge of Aeromonas hydrophila (A. hydrophila), Staphylococcus aureus (S.aureus), giant salamander iridovirus (GSIV, belonging to the genus Ranavirus in the family Iridoviridae) and polyinosinic:polycytidylic acid (poly(I:C)), the expression levels of all AdIRAK2s in blood were significantly altered, however, they exhibited distinct response patterns. Moreover, the results of over-expression and RNAi of AdIRAK2s implied the involvement of AdIRAK2s in triggering NF-κB-mediated signaling pathways and inflammatory responses. This study might provide a better understanding of the presence and immune regulation function of IRAK2 in amphibians and even in vertebrates.
Collapse
Affiliation(s)
- Da-Yong Chen
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Bang-Ze Li
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Wen-Bin Xu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yan-Mei Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Bing-Wu Li
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yuan-Xin Cheng
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yi Xiao
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Chen-Yang Lin
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Wei-Ren Dong
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Miao-An Shu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
23
|
Fortingo N, Melnyk S, Sutton SH, Watsky MA, Bollag WB. Innate Immune System Activation, Inflammation and Corneal Wound Healing. Int J Mol Sci 2022; 23:14933. [PMID: 36499260 PMCID: PMC9740891 DOI: 10.3390/ijms232314933] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/09/2022] [Accepted: 11/14/2022] [Indexed: 12/05/2022] Open
Abstract
Corneal wounds resulting from injury, surgeries, or other intrusions not only cause pain, but also can predispose an individual to infection. While some inflammation may be beneficial to protect against microbial infection of wounds, the inflammatory process, if excessive, may delay corneal wound healing. An examination of the literature on the effect of inflammation on corneal wound healing suggests that manipulations that result in reductions in severe or chronic inflammation lead to better outcomes in terms of corneal clarity, thickness, and healing. However, some acute inflammation is necessary to allow efficient bacterial and fungal clearance and prevent corneal infection. This inflammation can be triggered by microbial components that activate the innate immune system through toll-like receptor (TLR) pathways. In particular, TLR2 and TLR4 activation leads to pro-inflammatory nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB) activation. Similarly, endogenous molecules released from disrupted cells, known as damage-associated molecular patterns (DAMPs), can also activate TLR2, TLR4 and NFκB, with the resultant inflammation worsening the outcome of corneal wound healing. In sterile keratitis without infection, inflammation can occur though TLRs to impact corneal wound healing and reduce corneal transparency. This review demonstrates the need for acute inflammation to prevent pathogenic infiltration, while supporting the idea that a reduction in chronic and/or excessive inflammation will allow for improved wound healing.
Collapse
Affiliation(s)
- Nyemkuna Fortingo
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA 30907, USA
| | - Samuel Melnyk
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA 30907, USA
- James and Jean Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA 30907, USA
| | - Sarah H. Sutton
- Department of Medical Illustration, Augusta University, Augusta, GA 30907, USA
| | - Mitchell A. Watsky
- James and Jean Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA 30907, USA
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30907, USA
| | - Wendy B. Bollag
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA 30907, USA
- James and Jean Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA 30907, USA
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30907, USA
- Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
| |
Collapse
|
24
|
Petronglo JR, Putnam NE, Ford CA, Cruz-Victorio V, Curry JM, Butrico CE, Fulbright LE, Johnson JR, Peck SH, Fatah SR, Cassat JE. Context-Dependent Roles for Toll-Like Receptors 2 and 9 in the Pathogenesis of Staphylococcus aureus Osteomyelitis. Infect Immun 2022; 90:e0041722. [PMID: 36226943 PMCID: PMC9670883 DOI: 10.1128/iai.00417-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Staphylococcus aureus is the major causative agent of bacterial osteomyelitis, an invasive infection of bone. Inflammation generated by the immune response to S. aureus contributes to bone damage by altering bone homeostasis. Increases in the differentiation of monocyte lineage cells into bone-resorbing osteoclasts (osteoclastogenesis) promote bone loss in the setting of osteomyelitis. In this study, we sought to define the role of Toll-like receptor (TLR) signaling in the pathogenesis of S. aureus osteomyelitis. We hypothesized that S. aureus-sensing TLRs 2 and 9, both of which are known to alter osteoclastogenesis in vitro, promote pathological changes to bone, including increased osteoclast abundance, bone loss, and altered callus formation during osteomyelitis. Stimulation of osteoclast precursors with S. aureus supernatant increased osteoclastogenesis in a TLR2-dependent, but not a TLR9-dependent, manner. However, in vivo studies using a posttraumatic murine model of osteomyelitis revealed that TLR2-null mice experienced similar bone damage and increased osteoclastogenesis compared to wild type (WT) mice. Therefore, we tested the hypothesis that compensation between TLR2 and TLR9 contributes to osteomyelitis pathogenesis. We found that mice deficient in both TLR2 and TLR9 (Tlr2/9-/-) have decreased trabecular bone loss in response to infection compared to WT mice. However, osteoclastogenesis is comparable between WT and Tlr2/9-/- mice, suggesting that alternative mechanisms enhance osteoclastogenesis in vivo during osteomyelitis. Indeed, we discovered that osteoclast precursors intracellularly infected with S. aureus undergo significantly increased osteoclast formation, even in the absence of TLR2 and TLR9. These results suggest that TLR2 and TLR9 have context-dependent roles in the alteration of bone homeostasis during osteomyelitis.
Collapse
Affiliation(s)
- Jenna R. Petronglo
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Centergrid.412807.8, Nashville, Tennessee, USA
| | - Nicole E. Putnam
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Centergrid.412807.8, Nashville, Tennessee, USA
| | - Caleb A. Ford
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Virginia Cruz-Victorio
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Vanderbilt University Medical Centergrid.412807.8, Nashville, Tennessee, USA
| | - Jacob M. Curry
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Vanderbilt University Medical Centergrid.412807.8, Nashville, Tennessee, USA
| | - Casey E. Butrico
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Centergrid.412807.8, Nashville, Tennessee, USA
| | - Laura E. Fulbright
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Vanderbilt University Medical Centergrid.412807.8, Nashville, Tennessee, USA
| | - Joshua R. Johnson
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Centergrid.412807.8, Nashville, Tennessee, USA
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Centergrid.412807.8, Nashville, Tennessee, USA
| | - Sun H. Peck
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Centergrid.412807.8, Nashville, Tennessee, USA
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Centergrid.412807.8, Nashville, Tennessee, USA
| | - Sana R. Fatah
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Vanderbilt University Medical Centergrid.412807.8, Nashville, Tennessee, USA
| | - James E. Cassat
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Centergrid.412807.8, Nashville, Tennessee, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Vanderbilt University Medical Centergrid.412807.8, Nashville, Tennessee, USA
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Centergrid.412807.8, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation (VI4), Vanderbilt University Medical Centergrid.412807.8, Nashville, Tennessee, USA
| |
Collapse
|
25
|
Yoshimoto T, Kittaka M, Doan AAP, Urata R, Prideaux M, Rojas RE, Harding CV, Henry Boom W, Bonewald LF, Greenfield EM, Ueki Y. Osteocytes directly regulate osteolysis via MYD88 signaling in bacterial bone infection. Nat Commun 2022; 13:6648. [PMID: 36333322 PMCID: PMC9636212 DOI: 10.1038/s41467-022-34352-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022] Open
Abstract
The impact of bone cell activation on bacterially-induced osteolysis remains elusive. Here, we show that matrix-embedded osteocytes stimulated with bacterial pathogen-associated molecular patterns (PAMPs) directly drive bone resorption through an MYD88-regulated signaling pathway. Mice lacking MYD88, primarily in osteocytes, protect against osteolysis caused by calvarial injections of bacterial PAMPs and resist alveolar bone resorption induced by oral Porphyromonas gingivalis (Pg) infection. In contrast, mice with targeted MYD88 restoration in osteocytes exhibit osteolysis with inflammatory cell infiltration. In vitro, bacterial PAMPs induce significantly higher expression of the cytokine RANKL in osteocytes than osteoblasts. Mechanistically, activation of the osteocyte MYD88 pathway up-regulates RANKL by increasing binding of the transcription factors CREB and STAT3 to Rankl enhancers and by suppressing K48-ubiquitination of CREB/CREB binding protein and STAT3. Systemic administration of an MYD88 inhibitor prevents jawbone loss in Pg-driven periodontitis. These findings reveal that osteocytes directly regulate inflammatory osteolysis in bone infection, suggesting that MYD88 and downstream RANKL regulators in osteocytes are therapeutic targets for osteolysis in periodontitis and osteomyelitis.
Collapse
Affiliation(s)
- Tetsuya Yoshimoto
- Department of Biomedical Sciences and Comprehensive Care, Indiana University School of Dentistry, Indianapolis, IN, 46202-5126, USA
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, 46202-5126, USA
| | - Mizuho Kittaka
- Department of Biomedical Sciences and Comprehensive Care, Indiana University School of Dentistry, Indianapolis, IN, 46202-5126, USA
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, 46202-5126, USA
| | - Andrew Anh Phuong Doan
- Department of Biomedical Sciences and Comprehensive Care, Indiana University School of Dentistry, Indianapolis, IN, 46202-5126, USA
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, 46202-5126, USA
| | - Rina Urata
- Department of Biomedical Sciences and Comprehensive Care, Indiana University School of Dentistry, Indianapolis, IN, 46202-5126, USA
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, 46202-5126, USA
| | - Matthew Prideaux
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, 46202-5126, USA
- Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indianapolis, IN, 46202-5126, USA
| | | | - Clifford V Harding
- Department of Pathology, Case Western Reserve University & University Hospitals Cleveland Medical Center, Cleveland, OH, 44106-4960, USA
| | - W Henry Boom
- Department of Pathology, Case Western Reserve University & University Hospitals Cleveland Medical Center, Cleveland, OH, 44106-4960, USA
- Department of Medicine, Case Western Reserve University & University Hospitals Cleveland Medical Center, Cleveland, OH, 44106-4960, USA
- Department of Molecular Biology and Microbiology, Case Western Reserve University & University Hospitals Cleveland Medical Center, Cleveland, OH, 44106-4960, USA
| | - Lynda F Bonewald
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, 46202-5126, USA
- Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indianapolis, IN, 46202-5126, USA
| | - Edward M Greenfield
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, 46202-5126, USA
- Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indianapolis, IN, 46202-5126, USA
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202-5126, USA
| | - Yasuyoshi Ueki
- Department of Biomedical Sciences and Comprehensive Care, Indiana University School of Dentistry, Indianapolis, IN, 46202-5126, USA.
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, 46202-5126, USA.
| |
Collapse
|
26
|
Miyata S. Glial functions in the blood-brain communication at the circumventricular organs. Front Neurosci 2022; 16:991779. [PMID: 36278020 PMCID: PMC9583022 DOI: 10.3389/fnins.2022.991779] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
The circumventricular organs (CVOs) are located around the brain ventricles, lack a blood-brain barrier (BBB) and sense blood-derived molecules. This review discusses recent advances in the importance of CVO functions, especially glial cells transferring periphery inflammation signals to the brain. The CVOs show size-limited vascular permeability, allowing the passage of molecules with molecular weight <10,000. This indicates that the lack of an endothelial cell barrier does not mean the free movement of blood-derived molecules into the CVO parenchyma. Astrocytes and tanycytes constitute a dense barrier at the distal CVO subdivision, preventing the free diffusion of blood-derived molecules into neighboring brain regions. Tanycytes in the CVOs mediate communication between cerebrospinal fluid and brain parenchyma via transcytosis. Microglia and macrophages of the CVOs are essential for transmitting peripheral information to other brain regions via toll-like receptor 2 (TLR2). Inhibition of TLR2 signaling or depletion of microglia and macrophages in the brain eliminates TLR2-dependent inflammatory responses. In contrast to TLR2, astrocytes and tanycytes in the CVOs of the brain are crucial for initiating lipopolysaccharide (LPS)-induced inflammatory responses via TLR4. Depletion of microglia and macrophages augments LPS-induced fever and chronic sickness responses. Microglia and macrophages in the CVOs are continuously activated, even under normal physiological conditions, as they exhibit activated morphology and express the M1/M2 marker proteins. Moreover, the microglial proliferation occurs in various regions, such as the hypothalamus, medulla oblongata, and telencephalon, with a marked increase in the CVOs, due to low-dose LPS administration, and after high-dose LPS administration, proliferation is seen in most brain regions, except for the cerebral cortex and hippocampus. A transient increase in the microglial population is beneficial during LPS-induced inflammation for attenuating sickness response. Transient receptor potential receptor vanilloid 1 expressed in astrocytes and tanycytes of the CVOs is responsible for thermoregulation upon exposure to a warm environment less than 37°C. Alternatively, Nax expressed in astrocytes and tanycytes of the CVOs is crucial for maintaining body fluid homeostasis. Thus, recent findings indicate that glial cells in the brain CVOs are essential for initiating neuroinflammatory responses and maintaining body fluid and thermal homeostasis.
Collapse
|
27
|
Mohammad M, Ali A, Nguyen MT, Götz F, Pullerits R, Jin T. Staphylococcus aureus lipoproteins in infectious diseases. Front Microbiol 2022; 13:1006765. [PMID: 36262324 PMCID: PMC9574248 DOI: 10.3389/fmicb.2022.1006765] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/06/2022] [Indexed: 11/13/2022] Open
Abstract
Infections with the Gram-positive bacterial pathogen Staphylococcus aureus remain a major challenge for the healthcare system and demand new treatment options. The increasing antibiotic resistance of S. aureus poses additional challenges, consequently inflicting a huge strain in the society due to enormous healthcare costs. S. aureus expresses multiple molecules, including bacterial lipoproteins (Lpps), which play a role not only in immune response but also in disease pathogenesis. S. aureus Lpps, the predominant ligands of TLR2, are important for bacterial survival as they maintain the metabolic activity of the bacteria. Moreover, Lpps possess many diverse properties that are of vital importance for the bacteria. They also contribute to host cell invasion but so far their role in different staphylococcal infections has not been fully defined. In this review, we summarize the current knowledge about S. aureus Lpps and their distinct roles in various infectious disease animal models, such as septic arthritis, sepsis, and skin and soft tissue infections. The molecular and cellular response of the host to S. aureus Lpp exposure is also a primary focus.
Collapse
Affiliation(s)
- Majd Mohammad
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- *Correspondence: Majd Mohammad,
| | - Abukar Ali
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Minh-Thu Nguyen
- Section of Medical and Geographical Infectiology, Institute of Medical Microbiology, University Hospital of Münster, Münster, Germany
| | - Friedrich Götz
- Department of Microbial Genetics, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, Tübingen, Germany
| | - Rille Pullerits
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Immunology and Transfusion Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Tao Jin
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Rheumatology, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
28
|
Yang B, Luo W, Wang M, Tang Y, Zhu W, Jin L, Wang M, Wang Y, Zhang Y, Zuo W, Huang LJ, Zhao Y, Liang G. Macrophage-specific MyD88 deletion and pharmacological inhibition prevents liver damage in non-alcoholic fatty liver disease via reducing inflammatory response. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166480. [PMID: 35811033 DOI: 10.1016/j.bbadis.2022.166480] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/14/2022] [Accepted: 06/28/2022] [Indexed: 02/06/2023]
Abstract
Activation of the innate immune system through toll-like receptors (TLRs) has been repeatedly demonstrated in non-alcoholic fatty liver disease (NAFLD) and several TLRs have been shown to contribute. Myeloid differentiation primary response 88 (MyD88) is as an adapter protein for the activation of TLRs and bridges TLRs to NF-κB-mediated inflammation in macrophages. However, whether myeloid cell MyD88 contributes to NAFLD are largely unknown. To test this approach, we generated macrophage-specific MyD88 knockout mice and show that these mice are protected against high-fat diet (HFD)-induced hepatic injury, lipid accumulation, and fibrosis. These protective effects were associated with reduced macrophage numbers in liver tissues and surpassed inflammatory responses. In cultured macrophages, saturated fatty acid palmitate utilizes MyD88 to activate NF-κB and induce inflammatory and fibrogenic factors. In hepatocytes, these factors may cause lipid accumulation and a further elaboration of inflammatory cytokines. In hepatic stellate cells, macrophage-derived factors, especially TGF-β, cause activation and hepatic fibrosis. We further show that pharmacological inhibition of MyD88 is also able to reduce NAFLD injury in HFD-fed mice. Therefore, our study has provided empirical evidence that macrophage MyD88 participates in HFD-induced NAFLD and could be targeted to prevent the development and progression of NAFLD/NASH.
Collapse
Affiliation(s)
- Bin Yang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Wu Luo
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Medical Research Center, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Minxiu Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yelin Tang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Weiwei Zhu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Leiming Jin
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Meihong Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yi Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yi Zhang
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China
| | - Wei Zuo
- Affiliated Xiangshan Hospital of Wenzhou Medial University (Xiangshan First People's Hospital Medical and Health Group), Xiangshan, Zhejiang 315799, China
| | - Li-Jiang Huang
- Affiliated Xiangshan Hospital of Wenzhou Medial University (Xiangshan First People's Hospital Medical and Health Group), Xiangshan, Zhejiang 315799, China
| | - Yunjie Zhao
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Guang Liang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China.
| |
Collapse
|
29
|
Alradi MF, Lu S, Wang L, Han Z, Elradi SA, Khogali MK, Liu X, Wei X, Chen K, Li S, Feng C. Characterization and functional analysis of a myeloid differentiation factor 88 in Ostrinia furnacalis Guenée larvae infected by Bacillus thuringiensis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 135:104489. [PMID: 35781013 DOI: 10.1016/j.dci.2022.104489] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/23/2022] [Accepted: 06/25/2022] [Indexed: 06/15/2023]
Abstract
Myeloid differentiation factor 88 (MyD88) is a pivotal adapter protein involved in activating nuclear factor NF-κB of the Toll pathway in insect innate immunity. MyD88 has been extensively studied in vertebrates and Drosophila. However, the information ascribed to MyD88 in Lepidoptera is scarce. In the present study, an Ostrinia furnacalis MyD88 (OfMyD88) cDNA was cloned and functionally characterized (GenBank accession no. MN906311). The complete cDNA sequence of OfMyD88 is 804 bp, and contains a 630 bp open reading frame encoding 209 amino acid residues. OfMyD88 has the death domain (DD), an intermediate domain, and the Toll/interleukin 1 receptor (TIR) domain. OfMyD88 was widely expressed in immune-related tissues such as hemocytes, fat body, midgut, and integument, with the highest expression level in hemocytes, and the lowest expression level in integument. To clarify the immune function of MyD88, O. furnacalis larvae were challenged with Bacillus thuringiensis (Bt) through feeding. Bt oral infection had significantly up-regulated the expression of OfMyD88 and immune genes, including PPO2 (prophenoloxidase 2), Attacin, Gloverin, Cecropin, Moricin, GRP3 (β-1, 3-Glucan recognition protein 3), and Lysozyme, and increased the activities of PO and lysozyme in hemolymph of O. furnacalis larvae. Knockdown of OfMyD88 by RNA interference suppressed the expression levels of immune related genes, but not PPO2 in the larvae orally infected with Bt, suggesting that OfMyD88 is involved in defending against Bt invasion through the Toll signaling pathway, but does not affect the PPO expression in O. furnacalis larvae.
Collapse
Affiliation(s)
- Mohamed F Alradi
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, 225009, China; Department of Medical Entomology, College of Public and Environmental Health, University of Khartoum, Khartoum, Khartoum State, 13314, Sudan
| | - Shiqi Lu
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Libao Wang
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Zhaoyang Han
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Sana A Elradi
- Department of Physiology, College of Medicine, University of Khartoum, Khartoum, Khartoum State, 13314, Sudan
| | - Mawahib K Khogali
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, 225009, China; Department of Poultry Production, Faculty of Animal Production, University of Khartoum, Khartoum, Khartoum State, 13314, Sudan
| | - Xu Liu
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Xiangyi Wei
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Kangkang Chen
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Shuzhong Li
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Congjing Feng
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, 225009, China.
| |
Collapse
|
30
|
Roles of alpha-7 nicotinic acetylcholine receptors and spleen in the lung injury induced by a repeated saline lavage in rat. BMC Pulm Med 2022; 22:367. [PMID: 36167538 PMCID: PMC9513867 DOI: 10.1186/s12890-022-02151-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 09/12/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The study aimed to determine whether or notα7 nicotinic acetylcholine receptors (α7nAChR) induce anti-inflammatory effects directly in the lung or through the spleen pathway in a sterile model of lung injury by saline lavage. METHODS Male Sprague Dawley rats were divided into seven groups; Sham, splenectomy (SPX), saline lavage (LAV), LAV treated with α7nAChR agonist nicotine (LAV + NIC), and LAV treated with NIC and a selective α7nAChR antagonist MLA (LAV+MLA+NIC), LAV and splenectomy (LAV+SPX), and LAV+SPX treated with nicotine (LAV+SPX+NIC). Tracheostomy and catheterization of the femoral artery were performed under deep anesthesia. Animals were subjected to volume-controlled ventilation and lung injury by 10 repeated saline lavages. Splenectomy was achieved one week before the induction of lung injury. The recovery phase lasted for 3 h, and drugs were injected 1 h after the last lavage. RESULTS Mean arterial blood pressure (MBP), heart rate (HR), PaO2, PaO2/FiO2 ratio, and pH decreased, whereas, maximal inspiratory (MIP) and expiratory (MEP) pressures, and PaCO2 increased 1 h after the saline lavage. Nicotine corrected entirely all the above parameters in the LAV + NIC group. MLA or SPX prevented the effects of nicotine on the above parameters, except that MLA had no extra effect on MIP or MEP. In addition, nicotine improved lung compliance in the LAV + NIC and LAV + SPX + NIC groups, though it was inhibited by MLA in the LAV + MLA + NIC group. The increases of plasma and lung tissue malondialdehyde (MDA) in the LAV group were diminished by nicotine, whereas, MLA and SPX prevented these reductions. Besides, nicotine could reduce plasma MDA in the LAV + SPX + NIC group. Total BAL cell count, protein BAL/protein plasma ratio, and lung histological scores were attenuated by nicotine in the LAV + NIC group, whereas, MLA reversed the mentioned alterations in the LAV + MLA + NIC group. However, splenectomy could not stop the decreasing effect of nicotine on the total BAL cell in the LAV + SPX + NIC group. CONCLUSIONS In this study, we indicated that α7nAChR and spleen play roles in cholinergic anti-inflammatory pathways in saline lavage-induced lung injury. However, our results are in favor of at least some direct effects of α 7nAChR in the lung.
Collapse
|
31
|
Alby-Laurent F, Belaïdouni N, Blanchet B, Rousseau C, Llitjos JF, Sanquer S, Mira JP, Pène F, Toubiana J, Chiche JD. Low-dose mycophenolate mofetil improves survival in a murine model of Staphylococcus aureus sepsis by increasing bacterial clearance and phagocyte function. Front Immunol 2022; 13:939213. [PMID: 35936013 PMCID: PMC9351454 DOI: 10.3389/fimmu.2022.939213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
Regulators of TLRs signaling pathways play an important role in the control of the pro-inflammatory response that contributes to sepsis-induced tissue injury. Mycophenolate mofetil, an immunosuppressive drug inhibiting lymphocyte proliferation, has been reported to be a regulator of TLRs signaling pathways. Whether MMF used at infra-immunosuppressive doses has an impact on survival and on innate immune response in sepsis is unknown.C57BL/6J mice were infected intraperitoneally with 108 CFU Staphylococcus aureus, and treated or not with low-dose of MMF (20mg/kg/day during 4 days). Survival rate and bacterial clearance were compared. Cytokine levels, quantitative and qualitative cellular responses were assessed. S. aureus – infected mice treated with MMF exhibited improved survival compared to non-treated ones (48% vs 10%, p<0.001). With the dose used for all experiments, MMF did not show any effect on lymphocyte proliferation. MMF treatment also improved local and systemic bacterial clearance, improved phagocytosis activity of peritoneal macrophages resulting in decreased inflammatory cytokines secretion. MMF-treated mice showed enhanced activation of NF-κB seemed with a suspected TLR4-dependent mechanism. These results suggest that infra-immunosuppressive doses of MMF improve host defense during S. aureus sepsis and protects infected mice from fatal outcome by regulating innate immune responses. The signaling pathways involved could be TLR4-dependent. This work brings new perspectives in pathogenesis and therapeutic approaches of severe infections.
Collapse
Affiliation(s)
- Fanny Alby-Laurent
- Cochin Institute, Department of Infection, Immunity and Inflammation, Inserm U1016, Paris Descartes Sorbonne Paris Cité University UMR-S1016, Centre National de la Recherche Scientifique (CNRS) UMR 8104, Paris, France
| | - Nadia Belaïdouni
- Cochin Institute, Department of Infection, Immunity and Inflammation, Inserm U1016, Paris Descartes Sorbonne Paris Cité University UMR-S1016, Centre National de la Recherche Scientifique (CNRS) UMR 8104, Paris, France
| | - Benoit Blanchet
- Department of Pharmocology and Toxicology, Cochin Hospital, Assistance Publique des hôpitaux de Paris (APHP), Université de Paris, Paris, France
| | - Christophe Rousseau
- Cochin Institute, Department of Infection, Immunity and Inflammation, Inserm U1016, Paris Descartes Sorbonne Paris Cité University UMR-S1016, Centre National de la Recherche Scientifique (CNRS) UMR 8104, Paris, France
| | - Jean-François Llitjos
- Cochin Institute, Department of Infection, Immunity and Inflammation, Inserm U1016, Paris Descartes Sorbonne Paris Cité University UMR-S1016, Centre National de la Recherche Scientifique (CNRS) UMR 8104, Paris, France
- Medical Intensive Care Unit, Cochin Hospital, APHP, Université de Paris, Paris, France
| | - Sylvia Sanquer
- Metabolic and Proteomic Biochemistry Department, Necker-Enfants malades Hospital, Université de Paris, Paris, France
| | - Jean-Paul Mira
- Cochin Institute, Department of Infection, Immunity and Inflammation, Inserm U1016, Paris Descartes Sorbonne Paris Cité University UMR-S1016, Centre National de la Recherche Scientifique (CNRS) UMR 8104, Paris, France
- Medical Intensive Care Unit, Cochin Hospital, APHP, Université de Paris, Paris, France
| | - Frédéric Pène
- Cochin Institute, Department of Infection, Immunity and Inflammation, Inserm U1016, Paris Descartes Sorbonne Paris Cité University UMR-S1016, Centre National de la Recherche Scientifique (CNRS) UMR 8104, Paris, France
- Medical Intensive Care Unit, Cochin Hospital, APHP, Université de Paris, Paris, France
| | - Julie Toubiana
- Cochin Institute, Department of Infection, Immunity and Inflammation, Inserm U1016, Paris Descartes Sorbonne Paris Cité University UMR-S1016, Centre National de la Recherche Scientifique (CNRS) UMR 8104, Paris, France
- Department of General Pediatrics and Infectious Diseases, Necker-Enfants malades Hospital, APHP, Université de Paris, Paris, France
| | - Jean-Daniel Chiche
- Cochin Institute, Department of Infection, Immunity and Inflammation, Inserm U1016, Paris Descartes Sorbonne Paris Cité University UMR-S1016, Centre National de la Recherche Scientifique (CNRS) UMR 8104, Paris, France
- Medical Intensive Care Unit, Cochin Hospital, APHP, Université de Paris, Paris, France
- Department of Intensive Care Medicine, Hospital and University of Lausanne, Lausanne, Switzerland
- *Correspondence: Jean-Daniel Chiche,
| |
Collapse
|
32
|
Qu F, She Q, Li J, Zeng X, Li Y, Liu X, Ren L, Liu Z, Gao C, Lu X, Long M, Li X. Molecular Characterization of MyD88 in Anodonta woodiana and Its Involvement in the Innate Immune Response to Bacterial Infection. Front Immunol 2022; 13:925168. [PMID: 35757761 PMCID: PMC9226314 DOI: 10.3389/fimmu.2022.925168] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 05/16/2022] [Indexed: 12/18/2022] Open
Abstract
Myeloid differentiation factor 88 (MyD88) is a key adapter molecule in Toll-like receptor signal transduction that triggers downstream immune cascades involved in the host defense response to exogenous pathogens. However, the function of MyD88s in mollusks, especially in freshwater shellfish, remains poorly understood. In this study, a novel freshwater shellfish MyD88 (denoted AwMyD88) was characterized from Anodonta woodiana. The present AwMyD88 protein consists of 474 amino acids and contains a conserved a typical death domain (DD) and a conservative Toll/IL-1R (TIR) domain with three typical boxes. Quantitative real-time PCR (qRT-PCR) analysis showed that AwMyD88 was broadly expressed in all the examined tissues, and the highest expression level was observed in hemocytes of A. woodiana. When challenged with Aeromonas hydrophila and lipopolysaccharide (LPS), the mRNA expression levels of AwMyD88 were significantly induced in hemocytes of A. woodiana in vivo and in vitro. In addition, in vivo injection experiments revealed that MyD88 signaling pathway genes showed strong responsiveness to A. hydrophila challenge, and their expression levels were significantly upregulated in hemocytes. Knockdown of AwMyD88 reduced the transcript levels of immune related transcription factors (AwNF-κB and AwAP-1) and effectors (AwTNF, AwLYZ, AwDefense and AwAIF) during A. hydrophila infection. Moreover, subcellular localization analysis indicated that AwMyD88 was mainly localized to the cytoplasm in HEK293T cells. Finally, luciferase reporter assays revealed that AwMyD88 associates with AwTLR to activate the NF-κB and AP-1 signaling pathways in HEK293T cells. These results suggested that AwMyD88 might be involved in the host defense response to bacterial challenge, providing new insight into the immune function of the MyD88 signaling pathway in freshwater shellfish.
Collapse
Affiliation(s)
- Fufa Qu
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, China
| | - Qing She
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, China
| | - Jialing Li
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, China
| | - Xuan Zeng
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, China
| | - Yumiao Li
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, China
| | - Xinyu Liu
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, China
| | - Lingxin Ren
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, China
| | - Zhenzhen Liu
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, China
| | - Chaoran Gao
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, China
| | - Xinyu Lu
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, China
| | - Mengyao Long
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, China
| | - Xinya Li
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, China
| |
Collapse
|
33
|
Apigenin Attenuates Functional and Structural Alterations via Targeting NF-kB/Nrf2 Signaling Pathway in LPS-Induced Parkinsonism in Experimental Rats : Apigenin Attenuates LPS-Induced Parkinsonism in Experimental Rats. Neurotox Res 2022; 40:941-960. [PMID: 35608813 DOI: 10.1007/s12640-022-00521-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 05/04/2022] [Accepted: 05/13/2022] [Indexed: 10/18/2022]
Abstract
Parkinson's disease (PD) is a progressive hypokinetic movement disorder caused by selective degeneration of dopaminergic neurons in striatum and dopamine deficiency in a region of the midbrain. LPS is an endotoxin, used as animal model to induce microglial activation, neuroinflammation, oxidative stress, and neurotransmitter alteration with PD-like symptoms. Therefore, to prevent neuroinflammation and neurotransmitter changes and to restore normal brain physiology, we tried apigenin (AGN) alone and in combination with piperine (bioenhancer), in LPS experimental model of rats. In this study, rats were treated with single unilateral intranigral injection of LPS at a dose of 5 μg/5 μl on day 0. The oral administration of AGN (25 and 50 mg/kg; p.o.) alone, AGN (25 mg/kg; p.o.) in combination with piperine (2.5 mg/kg; p.o.), and bromocriptine (10mg/kg; p.o.) started from day 7th once in a day. Intranigral injection of LPS significantly altered body weight and behavioral parameters assessed on weekly basis. Furthermore, the biochemical and neuroinflammatory analysis confirmed (on day 22nd) increased level of nitrite, MDA, SOD, TNF-α, IL-1β, IL-6, and caspase-1, and decreased level of CAT, GSH, and complex-I. Furthermore, altered level of neurotransmitters (DA, GABA, and glutamate) and cellular changes were observed from histopathological and immunohistochemistry (NF-kB and Nrf-2) analysis. Treatment with AGN (25 and 50 mg/kg; p.o.) alone and AGN (25 mg/kg; p.o.) in combination with piperine (2.5 mg/kg; p.o.) significantly attenuated the alteration in body weight, motor impairments, oxidative stress, neuroinflammation, and neurotransmitters in rat brain. The neuroprotective effect of AGN against LPS-induced cell death is attributed by modulating NF-kB and Nrf2 signaling pathway in the striatum.
Collapse
|
34
|
The Influence of Antibiotic Resistance on Innate Immune Responses to Staphylococcus aureus Infection. Antibiotics (Basel) 2022; 11:antibiotics11050542. [PMID: 35625186 PMCID: PMC9138074 DOI: 10.3390/antibiotics11050542] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/13/2022] [Accepted: 04/18/2022] [Indexed: 11/16/2022] Open
Abstract
Staphylococcus aureus (S. aureus) causes a broad range of infections and is associated with significant morbidity and mortality. S. aureus produces a diverse range of cellular and extracellular factors responsible for its invasiveness and ability to resist immune attack. In recent years, increasing resistance to last-line anti-staphylococcal antibiotics daptomycin and vancomycin has been observed. Resistant strains of S. aureus are highly efficient in invading a variety of professional and nonprofessional phagocytes and are able to survive inside host cells. Eliciting immune protection against antibiotic-resistant S. aureus infection is a global challenge, requiring both innate and adaptive immune effector mechanisms. Dendritic cells (DC), which sit at the interface between innate and adaptive immune responses, are central to the induction of immune protection against S. aureus. However, it has been observed that S. aureus has the capacity to develop further antibiotic resistance and acquire increased resistance to immunological recognition by the innate immune system. In this article, we review the strategies utilised by S. aureus to circumvent antibiotic and innate immune responses, especially the interaction between S. aureus and DC, focusing on how this relationship is perturbed with the development of antibiotic resistance.
Collapse
|
35
|
Chiang CY, Lane DJ, Zou Y, Hoffman T, Pan J, Hampton J, Maginnis J, Nayak BP, D'Oro U, Valiante N, Miller AT, Cooke M, Wu T, Bavari S, Panchal RG. A Novel Toll-Like Receptor 2 Agonist Protects Mice in a Prophylactic Treatment Model Against Challenge With Bacillus anthracis. Front Microbiol 2022; 13:803041. [PMID: 35369443 PMCID: PMC8965344 DOI: 10.3389/fmicb.2022.803041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 02/02/2022] [Indexed: 11/23/2022] Open
Abstract
Current therapies for anthrax include the use of antibiotics (i.e., doxycycline, and ciprofloxacin), an anthrax vaccine (BioThrax) and Bacillus anthracis-specific, monoclonal antibody (mAb) (i.e., Raxibacumab and obiltoxaximab). In this study, we investigated the activity of immunomodulators, which potentiate inflammatory responses through innate immune receptors. The rationale for the use of innate immune receptor agonists as adjunctive immunomodulators for infectious diseases is based on the concept that augmentation of host defense should promote the antimicrobial mechanism of the host. Our aim was to explore the anti-B. anthracis effector function of Toll-like receptor (TLR) agonists using a mouse model. Amongst the six TLR ligands tested, Pam3CSK4 (TLR1/2 ligand) was the best at protecting mice from lethal challenge of B. anthracis. We then evaluated the activity of a novel TLR2 ligand, DA-98-WW07. DA-98-WW07 demonstrated enhanced protection in B. anthracis infected mice. The surviving mice that received DA-98-WW07 when re-challenged with B. anthracis 20 days post the first infection showed increased survival rate. Moreover, ciprofloxacin, when treated in adjunct with a suboptimal concentration of DA-98-WW07 demonstrated augmented activity in protecting mice from B. anthracis infection. Taken together, we report the prophylactic treatment potential of DA-98-WW07 for anthrax and the utility of immunomodulators in combination with an antibiotic to treat infections caused by the B. anthracis bacterium.
Collapse
Affiliation(s)
- Chih-Yuan Chiang
- Division of Molecular Biology, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| | - Douglas J Lane
- Division of Molecular Biology, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| | - Yefen Zou
- Genomics Institute of the Novartis Research Foundation, San Diego, CA, United States
| | - Tim Hoffman
- Genomics Institute of the Novartis Research Foundation, San Diego, CA, United States
| | - Jianfeng Pan
- Genomics Institute of the Novartis Research Foundation, San Diego, CA, United States
| | - Janice Hampton
- Genomics Institute of the Novartis Research Foundation, San Diego, CA, United States
| | - Jillian Maginnis
- Genomics Institute of the Novartis Research Foundation, San Diego, CA, United States
| | - Bishnu P Nayak
- Genomics Institute of the Novartis Research Foundation, San Diego, CA, United States
| | - Ugo D'Oro
- Novartis Vaccines and Diagnostics, Siena, Italy
| | | | - Andrew T Miller
- Genomics Institute of the Novartis Research Foundation, San Diego, CA, United States
| | - Michael Cooke
- Genomics Institute of the Novartis Research Foundation, San Diego, CA, United States
| | - Tom Wu
- Genomics Institute of the Novartis Research Foundation, San Diego, CA, United States
| | - Sina Bavari
- Division of Molecular Biology, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| | - Rekha G Panchal
- Division of Molecular Biology, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| |
Collapse
|
36
|
Peruń A, Gębicka M, Biedroń R, Skalska P, Józefowski S. The CD36 and SR-A/CD204 scavenger receptors fine-tune Staphylococcus aureus-stimulated cytokine production in mouse macrophages. Cell Immunol 2022; 372:104483. [DOI: 10.1016/j.cellimm.2022.104483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 12/20/2021] [Accepted: 01/11/2022] [Indexed: 11/03/2022]
|
37
|
Zhang QY, Xu SJ, Qian JC, Yang LB, Chen PQ, Wang Y, Hu X, Zhang YL, Luo W, Liang G. Pharmacological inhibition of MyD88 suppresses inflammation in tubular epithelial cells and prevents diabetic nephropathy in experimental mice. Acta Pharmacol Sin 2022; 43:354-366. [PMID: 34552217 PMCID: PMC8792016 DOI: 10.1038/s41401-021-00766-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 08/12/2021] [Indexed: 02/03/2023]
Abstract
Emerging evidence shows that chronic inflammation mediated by toll-like receptors (TLRs) contributes to diabetic nephropathy. Myeloid differentiation primary-response protein-88 (MyD88) is an essential adapter protein of all TLRs except TLR3 in innate immunity. It is unclear whether MyD88 could be a therapeutic target for diabetic nephropathy. Here, we used a new small-molecule MyD88 inhibitor, LM8, to examine the pharmacological inhibition of MyD88 in protecting kidneys from inflammatory injury in diabetes. We showed that MyD88 was significantly activated in the kidney of STZ-induced type 1 diabetic mice in tubular epithelial cells as well as in high glucose-treated rat tubular epithelial cells NRK-52E. In cultured tubular epithelial cells, we show that LM8 (2.5-10 μM) or MyD88 siRNA attenuated high-concentration glucose-induced inflammatory and fibrogenic responses through inhibition of MyD88-TLR4 interaction and downstream NF-κB activation. Treatment with LM8 (5, 10 mg/kg, i.g.) significantly reduced renal inflammation and fibrosis and preserved renal function in both type 1 and type 2 diabetic mice. These renoprotective effects were associated with reduced MyD88-TLR4 complex formation, suppressed NF-κB signaling, and prevention of inflammatory factor expression. Collectively, our results show that hyperglycemia activates MyD88 signaling cascade to induce renal inflammation, fibrosis, and dysfunction. Pharmacological inhibition of MyD88 may be a therapeutic approach to mitigate diabetic nephropathy and the inhibitor LM8 could be a potential candidate for such therapy.
Collapse
Affiliation(s)
- Qiu-yan Zhang
- grid.268099.c0000 0001 0348 3990Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035 China ,grid.268099.c0000 0001 0348 3990Medical Research Center, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325035 China
| | - Su-jing Xu
- grid.268099.c0000 0001 0348 3990Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035 China ,grid.268099.c0000 0001 0348 3990School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325027 China
| | - Jian-chang Qian
- grid.268099.c0000 0001 0348 3990Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035 China
| | - Li-bin Yang
- grid.268099.c0000 0001 0348 3990Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035 China
| | - Peng-qin Chen
- grid.268099.c0000 0001 0348 3990Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035 China
| | - Yi Wang
- grid.268099.c0000 0001 0348 3990Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035 China
| | - Xiang Hu
- grid.268099.c0000 0001 0348 3990Department of Endocrinology, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325035 China
| | - Ya-li Zhang
- grid.268099.c0000 0001 0348 3990Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035 China
| | - Wu Luo
- grid.268099.c0000 0001 0348 3990Medical Research Center, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325035 China
| | - Guang Liang
- grid.268099.c0000 0001 0348 3990Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035 China ,grid.506977.a0000 0004 1757 7957School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, 311399 China ,grid.410726.60000 0004 1797 8419Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001 China
| |
Collapse
|
38
|
Mahmud F, Roy R, Mohamed MF, Aboonabi A, Moric M, Ghoreishi K, Bayat M, Kuzel TM, Reiser J, Shafikhani SH. Therapeutic evaluation of immunomodulators in reducing surgical wound infection. FASEB J 2022; 36:e22090. [PMID: 34907595 PMCID: PMC9058973 DOI: 10.1096/fj.202101019r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 11/10/2021] [Accepted: 11/23/2021] [Indexed: 01/03/2023]
Abstract
Despite many advances in infection control practices, including prophylactic antibiotics, surgical site infections (SSIs) remain a significant cause of morbidity, prolonged hospitalization, and death worldwide. Our innate immune system possesses a multitude of powerful antimicrobial strategies which make it highly effective in combating bacterial, fungal, and viral infections. However, pathogens use various stealth mechanisms to avoid the innate immune system, which in turn buy them time to colonize wounds and damage tissues at surgical sites. We hypothesized that immunomodulators that can jumpstart and activate innate immune responses at surgical sites, would likely reduce infection at surgical sites. We used three immunomodulators; fMLP (formyl-Methionine-Lysine-Proline), CCL3 (MIP-1α), and LPS (Lipopolysaccharide), based on their documented ability to elicit strong inflammatory responses; in a surgical wound infection model with Pseudomonas aeruginosa to evaluate our hypothesis. Our data indicate that one-time topical treatment with these immunomodulators at low doses significantly increased proinflammatory responses in infected and uninfected surgical wounds and were as effective, (or even better), than a potent prophylactic antibiotic (Tobramycin) in reducing P. aeruginosa infection in wounds. Our data further show that immunomodulators did not have adverse effects on tissue repair and wound healing processes. Rather, they enhanced healing in both infected and uninfected wounds. Collectively, our data demonstrate that harnessing the power of the innate immune system by immunomodulators can significantly boost infection control and potentially stimulate healing. We propose that topical treatment with these immunomodulators at the time of surgery may have therapeutic potential in combating SSI, alone or in combination with prophylactic antibiotics.
Collapse
Affiliation(s)
- Foyez Mahmud
- Department of Medicine, Rush University Medical Center, Chicago, IL, USA,Division of Hematology/Oncology/Cell Therapy, Rush University Medical Center, Chicago, IL, USA
| | - Ruchi Roy
- Department of Medicine, Rush University Medical Center, Chicago, IL, USA,Division of Hematology/Oncology/Cell Therapy, Rush University Medical Center, Chicago, IL, USA
| | - Mohamed F. Mohamed
- Department of Medicine, Rush University Medical Center, Chicago, IL, USA,Division of Hematology/Oncology/Cell Therapy, Rush University Medical Center, Chicago, IL, USA
| | - Anahita Aboonabi
- Department of Medicine, Rush University Medical Center, Chicago, IL, USA,Division of Hematology/Oncology/Cell Therapy, Rush University Medical Center, Chicago, IL, USA
| | - Mario Moric
- Department of Anesthesiology, Rush University Medical Center, Chicago, IL, USA
| | | | - Mohammad Bayat
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Science, Tehran, Iran,Price Institute of Surgical Research, University of Louisville and Noveratech LLC. of Louisville, Louisville, KY, USA
| | - Timothy M. Kuzel
- Department of Medicine, Rush University Medical Center, Chicago, IL, USA,Division of Hematology/Oncology/Cell Therapy, Rush University Medical Center, Chicago, IL, USA
| | - Jochen Reiser
- Department of Medicine, Rush University Medical Center, Chicago, IL, USA
| | - Sasha H. Shafikhani
- Department of Medicine, Rush University Medical Center, Chicago, IL, USA,Division of Hematology/Oncology/Cell Therapy, Rush University Medical Center, Chicago, IL, USA,Cancer Center, Rush University Medical Center, Chicago, IL, USA,To whom correspondence should be addressed:
| |
Collapse
|
39
|
Cheung GYC, Bae JS, Otto M. Pathogenicity and virulence of Staphylococcus aureus. Virulence 2021; 12:547-569. [PMID: 33522395 PMCID: PMC7872022 DOI: 10.1080/21505594.2021.1878688] [Citation(s) in RCA: 605] [Impact Index Per Article: 151.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 01/13/2021] [Accepted: 01/15/2021] [Indexed: 12/15/2022] Open
Abstract
Staphylococcus aureus is one of the most frequent worldwide causes of morbidity and mortality due to an infectious agent. This pathogen can cause a wide variety of diseases, ranging from moderately severe skin infections to fatal pneumonia and sepsis. Treatment of S. aureus infections is complicated by antibiotic resistance and a working vaccine is not available. There has been ongoing and increasing interest in the extraordinarily high number of toxins and other virulence determinants that S. aureus produces and how they impact disease. In this review, we will give an overview of how S. aureus initiates and maintains infection and discuss the main determinants involved. A more in-depth understanding of the function and contribution of S. aureus virulence determinants to S. aureus infection will enable us to develop anti-virulence strategies to counteract the lack of an anti-S. aureus vaccine and the ever-increasing shortage of working antibiotics against this important pathogen.
Collapse
Affiliation(s)
- Gordon Y. C. Cheung
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, U.S. National Institutes of Health, Bethesda, Maryland, USA
| | - Justin S. Bae
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, U.S. National Institutes of Health, Bethesda, Maryland, USA
| | - Michael Otto
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, U.S. National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
40
|
Transcriptomic Analysis of the Effects of Chemokine Receptor CXCR3 Deficiency on Immune Responses in the Mouse Brain during Toxoplasma gondii Infection. Microorganisms 2021; 9:microorganisms9112340. [PMID: 34835465 PMCID: PMC8620038 DOI: 10.3390/microorganisms9112340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 11/06/2021] [Indexed: 11/16/2022] Open
Abstract
The obligate intracellular parasite Toxoplasma gondii infects warm-blooded animals, including humans. We previously revealed through a whole-brain transcriptome analysis that infection with T. gondii in mice causes immune response-associated genes to be upregulated, for instance, chemokines and chemokine receptors such as CXC chemokine receptor 3 (CXCR3) and its ligand CXC chemokine ligand 10 (CXCL10). Here, we describe the effect of CXCR3 on responses against T. gondii infection in the mouse brain. In vivo assays using CXCR3-deficient mice showed that the absence of CXCR3 delayed the normal recovery of body weight and increased the brain parasite burden, suggesting that CXCR3 plays a role in the control of pathology in the brain, the site where chronic infection occurs. Therefore, to further analyze the function of CXCR3 in the brain, we profiled the gene expression patterns of primary astrocytes and microglia by RNA sequencing and subsequent analyses. CXCR3 deficiency impaired the normal upregulation of immune-related genes during T. gondii infection, in astrocytes and microglia alike. Collectively, our results suggest that the immune-related genes upregulated by CXCR3 perform a particular role in controlling pathology when the host is chronically infected with T. gondii in the brain.
Collapse
|
41
|
Swartzwelter BJ, Michelini S, Frauenlob T, Barbero F, Verde A, De Luca AC, Puntes V, Duschl A, Horejs-Hoeck J, Italiani P, Boraschi D. Innate Memory Reprogramming by Gold Nanoparticles Depends on the Microbial Agents That Induce Memory. Front Immunol 2021; 12:751683. [PMID: 34804037 PMCID: PMC8600232 DOI: 10.3389/fimmu.2021.751683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 10/14/2021] [Indexed: 01/14/2023] Open
Abstract
Innate immune memory, the ability of innate cells to react in a more protective way to secondary challenges, is induced by exposure to infectious and other exogeous and endogenous agents. Engineered nanoparticles are particulate exogenous agents that, as such, could trigger an inflammatory reaction in monocytes and macrophages and could therefore be also able to induce innate memory. Here, we have evaluated the capacity of engineered gold nanoparticles (AuNPs) to induce a memory response or to modulate the memory responses induced by microbial agents. Microbial agents used were in soluble vs. particulate form (MDP and the gram-positive bacteria Staphylococcus aureus; β-glucan and the β-glucan-producing fungi C. albicans), and as whole microrganisms that were either killed (S. aureus, C. albicans) or viable (the gram-negative bacteria Helicobacter pylori). The memory response was assessed in vitro, by exposing human primary monocytes from 2-7 individual donors to microbial agents with or without AuNPs (primary response), then resting them for 6 days to allow return to baseline, and eventually challenging them with LPS (secondary memory response). Primary and memory responses were tested as production of the innate/inflammatory cytokine TNFα and other inflammatory and anti-inflammatory factors. While inactive on the response induced by soluble microbial stimuli (muramyl dipeptide -MDP-, β-glucan), AuNPs partially reduced the primary response induced by whole microorganisms. AuNPs were also unable to directly induce a memory response but could modulate stimulus-induced memory in a circumscribed fashion, limited to some agents and some cytokines. Thus, the MDP-induced tolerance in terms of TNFα production was further exacerbated by co-priming with AuNPs, resulting in a less inflammatory memory response. Conversely, the H. pylori-induced tolerance was downregulated by AuNPs only relative to the anti-inflammatory cytokine IL-10, which would lead to an overall more inflammatory memory response. These effects of AuNPs may depend on a differential interaction/association between the reactive particle surfaces and the microbial components and agents, which may lead to a change in the exposure profiles. As a general observation, however, the donor-to-donor variability in memory response profiles and reactivity to AuNPs was substantial, suggesting that innate memory depends on the individual history of exposures.
Collapse
Affiliation(s)
- Benjamin J. Swartzwelter
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Napoli, Italy
- Department Biosciences, Paris Lodron University of Salzburg (PLUS), Salzburg, Austria
| | - Sara Michelini
- Department Biosciences, Paris Lodron University of Salzburg (PLUS), Salzburg, Austria
| | - Tobias Frauenlob
- Department Biosciences, Paris Lodron University of Salzburg (PLUS), Salzburg, Austria
| | - Francesco Barbero
- Institut Català de Nanociència i Nanotecnologia (ICN2), Consejo Superior de Investigaciones Científicas (CSIC) and The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Alessandro Verde
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Napoli, Italy
| | - Anna Chiara De Luca
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Napoli, Italy
| | - Victor Puntes
- Institut Català de Nanociència i Nanotecnologia (ICN2), Consejo Superior de Investigaciones Científicas (CSIC) and The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Vall d’Hebron Research Institute (VHIR), Barcelona, Spain
- Institució Catalana de Recerca I Estudis Avançats (ICREA), Barcelona, Spain
| | - Albert Duschl
- Department Biosciences, Paris Lodron University of Salzburg (PLUS), Salzburg, Austria
| | - Jutta Horejs-Hoeck
- Department Biosciences, Paris Lodron University of Salzburg (PLUS), Salzburg, Austria
| | - Paola Italiani
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Napoli, Italy
| | - Diana Boraschi
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Napoli, Italy
- Stazione Zoologica Anton Dohrn, Napoli, Italy
- Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, China
| |
Collapse
|
42
|
Feng N, Liang L, Fan M, Du Y, Chen C, Jiang R, Yu D, Yang Y, Zhang M, Deng L, Li X, Geng N, Xian M, Qin Q, Li X, Tan Q, Luo F, Song F, Qi H, Xie Y, Guo F. Treating Autoimmune Inflammatory Diseases with an siERN1-Nanoprodrug That Mediates Macrophage Polarization and Blocks Toll-like Receptor Signaling. ACS NANO 2021; 15:15874-15891. [PMID: 34586802 DOI: 10.1021/acsnano.1c03726] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The clinical application of small interfering RNA (siRNA) drugs provides promising opportunities to develop treatment strategies for autoimmune inflammatory diseases. In this study, siRNAs targeting the endoplasmic reticulum to nucleus signaling 1 (ERN1) gene (siERN1) were screened. Two cationic polymers, polyethylenimine (PEI) and poly(β-amino amine) (PBAA), which can improve the efficiency of the siRNA transfection, were used as siERN1 delivery carriers. They were implemented to construct a nanodrug delivery system with macrophage-targeting ability and dual responsiveness for the treatment of autoimmune inflammatory diseases. In terms of the mechanism, siERN1 can regulate the intracellular calcium ion concentration by interfering with the function of inositol 1,4,5-trisphosphate receptor 1/3 (IP3R1/3) and thus inducing M2 polarization of macrophages. Furthermore, siERN1-nanoprodrug [FA (folic acid)-PEG-R(RKKRRQRRR)-NPs(ss-PBAA-PEI)@siERN1] acts as a conductor of macrophage polarization by controlling the calcium ion concentration and is an inhibitor of MyD88-dependent Toll-like receptor signaling. The results revealed that the FA-PEG-R-NPs@siERN1 has universal biocompatibility, long-term drug release responsiveness, superior targeting properties, and therapeutic effects in mouse collagen-induced arthritis and inflammatory bowel disease models. In conclusion, this study reveals a potential strategy to treat autoimmune inflammatory disorders.
Collapse
Affiliation(s)
- Naibo Feng
- Department of Cell Biology and Genetics, Core Facility of Development Biology, Chongqing Medical University, Chongqing 400016, China
| | - Li Liang
- Department of Cell Biology and Genetics, Core Facility of Development Biology, Chongqing Medical University, Chongqing 400016, China
| | - Mengtian Fan
- Department of Cell Biology and Genetics, Core Facility of Development Biology, Chongqing Medical University, Chongqing 400016, China
| | - Yu Du
- Department of Orthopedics, The 2nd Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Cheng Chen
- Department of Orthopedics, The 1st Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Rong Jiang
- Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing 400016, China
| | - Dongsheng Yu
- Department of Cell Biology and Genetics, Core Facility of Development Biology, Chongqing Medical University, Chongqing 400016, China
| | - Yuyou Yang
- Department of Cell Biology and Genetics, Core Facility of Development Biology, Chongqing Medical University, Chongqing 400016, China
| | - Mengying Zhang
- Department of Cell Biology and Genetics, Core Facility of Development Biology, Chongqing Medical University, Chongqing 400016, China
| | - Lin Deng
- Department of Cell Biology and Genetics, Core Facility of Development Biology, Chongqing Medical University, Chongqing 400016, China
| | - Xingyue Li
- Department of Cell Biology and Genetics, Core Facility of Development Biology, Chongqing Medical University, Chongqing 400016, China
| | - Nana Geng
- Department of Cell Biology and Genetics, Core Facility of Development Biology, Chongqing Medical University, Chongqing 400016, China
| | - Menglin Xian
- Department of Cell Biology and Genetics, Core Facility of Development Biology, Chongqing Medical University, Chongqing 400016, China
| | - Qizhong Qin
- Department of Cell Biology and Genetics, Core Facility of Development Biology, Chongqing Medical University, Chongqing 400016, China
| | - Xiaoli Li
- Department of Cell Biology and Genetics, Core Facility of Development Biology, Chongqing Medical University, Chongqing 400016, China
| | - Qiaoyan Tan
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Fengtao Luo
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Fangzhou Song
- Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing 400016, China
| | - Huabing Qi
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Yangli Xie
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Fengjin Guo
- Department of Cell Biology and Genetics, Core Facility of Development Biology, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
43
|
Ikeda R, Ushio N, Abdou AM, Furuoka H, Nishikawa Y. Toll-Like Receptor 2 is Involved in Abnormal Pregnancy in Mice Infected with Toxoplasma gondii During Late Pregnancy. Front Microbiol 2021; 12:741104. [PMID: 34675905 PMCID: PMC8524087 DOI: 10.3389/fmicb.2021.741104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/09/2021] [Indexed: 11/27/2022] Open
Abstract
Infection with Toxoplasma gondii during pregnancy causes failure of pregnancy maintenance, resulting in fetal death, abortion, stillbirth, or premature birth, but the mechanism of disease onset remains unclear. Although Toll-like receptor 2 (TLR2) is expressed on antigen-presenting cells and trophoblasts, the role of TLR2 in T. gondii infection during pregnancy is unknown. In this study, we investigated the role of TLR2 in congenital toxoplasmosis using TLR2-deficient (TLR2−/−) mice. T. gondii infection on gestational day 12.5 (Gd12.5) induced more abnormal pregnancy, including premature birth and stillbirth, in wild-type mice than in TLR2−/− mice. Multiple calcifications were observed in the placentas of the infected wild-type mice. At Gd18.5 (6days postinfection), the parasite numbers in the placenta and uterus and the histological changes did not differ significantly between the wild-type and TLR2−/− mice. However, T. gondii infection reduced the mRNA expression of interleukin-12p40 (IL-12p40) and increased IL-4 and IL-10 mRNAs in the placentas of the wild-type mice. In contrast, the placentas of the TLR2−/− mice showed no changes in the expression of these cytokines, including IL-6 and tumor necrosis factor α, in response to T. gondii infection. Serum interferon-γ levels were significantly lower in the infected TLR2−/− mice than in the infected wild-type mice on Gd18.5. Thus, the TLR2−/− mice were less susceptible to the induction of immune responses by T. gondii infection during late pregnancy. Therefore, TLR2 signaling may play a role in the development of disease states during pregnancy, specifically placental hypofunction.
Collapse
Affiliation(s)
- Rina Ikeda
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Nanako Ushio
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Ahmed M Abdou
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan.,Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - Hidefumi Furuoka
- Division of Pathobiological Science, Department of Basic Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Yoshifumi Nishikawa
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| |
Collapse
|
44
|
Lee GR, Gallo D, Alves de Souza RW, Tiwari-Heckler S, Csizmadia E, Harbison JD, Shankar S, Banner-Goodspeed V, Yaffe MB, Longhi MS, Hauser CJ, Otterbein LE. Trauma-induced heme release increases susceptibility to bacterial infection. JCI Insight 2021; 6:e150813. [PMID: 34520397 PMCID: PMC8564912 DOI: 10.1172/jci.insight.150813] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 09/09/2021] [Indexed: 12/01/2022] Open
Abstract
Infection is a common complication of major trauma that causes significantly increased morbidity and mortality. The mechanisms, however, linking tissue injury to increased susceptibility to infection remain poorly understood. To study this relationship, we present a potentially novel murine model in which a major liver crush injury is followed by bacterial inoculation into the lung. We find that such tissue trauma both impaired bacterial clearance and was associated with significant elevations in plasma heme levels. While neutrophil (PMN) recruitment to the lung in response to Staphylococcus aureus was unchanged after trauma, PMN cleared bacteria poorly. Moreover, PMN show > 50% less expression of TLR2, which is responsible, in part, for bacterial recognition. Administration of heme effectively substituted for trauma. Finally, day 1 trauma patients (n = 9) showed similar elevations in free heme compared with that seen after murine liver injury, and circulating PMN showed similar TLR2 reduction compared with volunteers (n = 6). These findings correlate to high infection rates.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Valerie Banner-Goodspeed
- Anesthesia, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Michael B Yaffe
- Department of Surgery and.,Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Maria Serena Longhi
- Anesthesia, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | | | | |
Collapse
|
45
|
Jiang H, Gu J, Zhao H, Joshi S, Perlmutter JS, Gropler RJ, Klein RS, Benzinger TLS, Tu Z. PET Study of Sphingosine-1-phosphate Receptor 1 Expression in Response to S. aureus Infection. Mol Imaging 2021; 2021:9982020. [PMID: 34934406 PMCID: PMC8654346 DOI: 10.1155/2021/9982020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 09/02/2021] [Indexed: 11/22/2022] Open
Abstract
Sphingosine-1-phosphate receptor 1 (S1PR1) plays a crucial role in infectious diseases. Targeting S1PR1 provides protection against pathogens, such as influenza viruses. This study is aimed at investigating S1PR1 in response to bacterial infection by assessing S1PR1 expression in S. aureus-infected mice. A rodent local muscle bacterial infection model was developed by injecting S. aureus to the lower hind limb of Balb/c mice. The changes of S1PR1 expression in response to bacterial infection and blocking treatment were assessed using ex vivo biodistribution and in vivo positron emission tomography (PET) after intravenous injection of an S1PR1-specific radiotracer [18F]TZ4877. The specificity of [18F]TZ4877 was assessed using S1PR1-specific antagonist, NIBR-0213, and S1PR1-specific DsiRNA pretreated the animals. Immunohistochemical studies were performed to confirm the increase of S1PR1 expression in response to infection. Ex vivo biodistribution data showed that the uptake of [18F]TZ4877 was increased 30.6%, 54.3%, 74.3%, and 115.3% in the liver, kidney, pancreas, and thymus of the infected mice, respectively, compared to that in normal control mice, indicating that S1PR1 is involved in the early immune response to bacterial infection. NIBR-0213 or S1PR1-specific DsiRNA pretreatment reduced the tissue uptake of [18F]TZ4877, suggesting that uptake of [18F]TZ4877 is specific. Our PET/CT study data also confirmed that infected mice have increased [18F]TZ4877 uptake in several organs comparing to that in normal control mice. Particularly, compared to control mice, a 39% increase of [18F]TZ4877 uptake was observed in the infected muscle of S. aureus mice, indicating that S1PR1 expression was directly involved in the inflammatory response to infection. Overall, our study suggested that S1PR1 plays an important role in the early immune response to bacterial infection. The uptake of [18F]TZ4877 is tightly correlated with the S1R1 expression in response to S. aureus infection. PET with S1PR1-specific radiotracer [18F]TZ4877 could provide a noninvasive tool for detecting the early S1PR1 immune response to infectious diseases.
Collapse
Affiliation(s)
- Hao Jiang
- Department of Radiology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Jiwei Gu
- Department of Radiology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Haiyang Zhao
- Department of Radiology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Sumit Joshi
- Department of Radiology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Joel S. Perlmutter
- Department of Radiology, Washington University School of Medicine, St Louis, MO 63110, USA
- Department of Neuroscience, Neurology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Robert J. Gropler
- Department of Radiology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Robyn S. Klein
- Department of Neuroscience, Neurology, Washington University School of Medicine, St Louis, MO 63110, USA
- Department of Medicine, Washington University School of Medicine, St Louis, MO 63110, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Tammie L. S. Benzinger
- Department of Radiology, Washington University School of Medicine, St Louis, MO 63110, USA
- Department of Neurological Surgery, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Zhude Tu
- Department of Radiology, Washington University School of Medicine, St Louis, MO 63110, USA
| |
Collapse
|
46
|
Kim HY, Song M, Gho YS, Kim H, Choi B. Extracellular vesicles derived from the periodontal pathogen Filifactor alocis induce systemic bone loss through Toll-like receptor 2. J Extracell Vesicles 2021; 10:e12157. [PMID: 34648247 PMCID: PMC8516034 DOI: 10.1002/jev2.12157] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 09/17/2021] [Accepted: 09/27/2021] [Indexed: 01/31/2023] Open
Abstract
Periodontitis is an inflammatory disease induced by local infection in tooth-supporting tissue. Periodontitis is associated with systemic bone diseases, but little is known about the mechanism of the causal effect of periodontitis on systemic bone resorption. Bacteria-derived extracellular vesicles (EVs) act as natural carriers of virulence factors that are responsible for systemic inflammation. In this study, we investigated the role of EVs derived from Filifactor alocis, a Gram-positive, anaerobic periodontal pathogen, in systemic bone loss and osteoclast differentiation. F. alocis EVs accumulated in the long bones of mice after intraperitoneal administration. These EVs induced proinflammatory cytokines, osteoclastogenesis, and bone resorption via Toll-like receptor 2 (TLR2). The phase separation of F. alocis EVs showed that amphiphilic molecules were responsible for the induced bone resorption and osteoclastogenesis. The osteoclastogenic effects of F. alocis EVs were reduced by lipoprotein lipase. Proteomic analysis of the amphiphilic molecules identified seven lipoproteins. Our results indicate that lipoprotein-like molecules in F. alocis EVs may contribute to systemic bone loss via TLR2.
Collapse
Affiliation(s)
- Hyun Young Kim
- Department of Oral Microbiology and ImmunologySchool of Dentistry, Seoul National UniversitySeoulRepublic of Korea
| | - Min‐Kyoung Song
- Department of Cell and Developmental BiologySchool of Dentistry, Seoul National UniversitySeoulRepublic of Korea
- Department of Internal MedicineSeoul National University HospitalSeoulRepublic of Korea
| | - Yong Song Gho
- Department of Life SciencesPohang University of Science and Technology (POSTECH)PohangRepublic of Korea
| | - Hong‐Hee Kim
- Department of Cell and Developmental BiologySchool of Dentistry, Seoul National UniversitySeoulRepublic of Korea
- Dental Research InstituteSeoul National UniversitySeoulRepublic of Korea
| | - Bong‐Kyu Choi
- Department of Oral Microbiology and ImmunologySchool of Dentistry, Seoul National UniversitySeoulRepublic of Korea
| |
Collapse
|
47
|
Wolff BS, Alshawi SA, Feng LR, Juneau PL, Saligan LN. Inflammation plays a causal role in fatigue-like behavior induced by pelvic irradiation in mice. Brain Behav Immun Health 2021; 15:100264. [PMID: 34589770 PMCID: PMC8474574 DOI: 10.1016/j.bbih.2021.100264] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 04/29/2021] [Indexed: 12/12/2022] Open
Abstract
Fatigue is a persistent and debilitating symptom following radiation therapy for prostate cancer. However, it is not well-understood how radiation targeted to a small region of the body can lead to broad changes in behavior. In this study, we used targeted pelvic irradiation of healthy male mice to test whether inflammatory signaling mediates changes in voluntary physical activity levels. First, we tested the relationship between radiation dose, blood cell counts, and fatigue-like behavior measured as voluntary wheel-running activity. Next, we used oral minocycline treatments to reduce inflammation and found that minocycline reduces, but does not eliminate, the fatigue-like behavioral changes induced by radiation. We also used a strain of mice lacking the MyD88 adaptor protein and found that these mice also showed less fatigue-like behavior than the wild-type controls. Finally, using serum and brain tissue samples, we determined changes in inflammatory signaling induced by irradiation in wild-type, minocycline treated, and MyD88 knockout mice. We found that irradiation increased serum levels of IL-6, a change that was partially reversed in mice treated with minocycline or lacking MyD88. Overall, our results suggest that inflammation plays a causal role in radiation-induced fatigue and that IL-6 may be an important mediator.
Collapse
Key Words
- CCL, chemokine (CC) ligand
- CD30 L, CD30 ligand
- CFS, chronic fatigue syndrome
- CRF, cancer-related fatigue
- CXCL, chemokine (CXC) ligand
- Cancer-related fatigue
- Cytokines
- FGF, fibroblast growth factor
- Fas-L, Fas Ligand
- Fatigue
- G-CSF, granulocyte colony-stimulating factor
- GM-CSF, granulocyte-macrophage colony-stimulating factor
- ICAM, intercellular adhesion molecule
- IFN, interferon
- IL, interleukin
- Inflammation
- LIF, leukemia inhibitory factor
- M-CSF, macrophage colony-stimulating factor
- MCV, mean corpuscular volume
- Minocycline
- MyD88, myeloid differentiation primary response 88 protein
- PDGF-bb, platelet-derived growth factor subunit B
- RANTES, regulated on activation normal T cell expressed and secreted
- RBC, red blood cell
- Radiotherapy
- TIMP, tissue inhibitor of metalloproteinases
- TLR, toll-like receptor
- TNF, tumor necrosis factor
- VEGF, vascular endothelial growth factor
- VWRA, voluntary wheel running activity
- Voluntary wheel-running activity
- WBC, white blood cell
- myd88
Collapse
Affiliation(s)
- Brian S Wolff
- National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, USA
| | - Sarah A Alshawi
- National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, USA
| | - Li Rebekah Feng
- National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, USA
| | - Paul L Juneau
- NIH Library, Office of Research Services, OD, National Institutes of Health, Bethesda, MD, USA/Contractor- Zimmerman Associates, Inc., Fairfax, VA, USA
| | - Leorey N Saligan
- National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
48
|
Suresh MK, Vasudevan AK, Biswas L, Biswas R. Protective efficacy of Alum adjuvanted Amidase protein vaccine against Staphylococcus aureus infection in multiple mouse models. J Appl Microbiol 2021; 132:1422-1434. [PMID: 34487603 DOI: 10.1111/jam.15291] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 08/05/2021] [Accepted: 08/23/2021] [Indexed: 12/20/2022]
Abstract
AIMS Staphylococcus aureus is an opportunistic pathogen of humans. No commercial vaccine is available to combat S. aureus infections. In this study, we have investigated the protective immune response generated by S. aureus non-covalently associated cell wall surface protein N-acetylmuramoyl-L-alanine amidase (AM) in combination with Alum (Al) and heat-killed S. aureus (hkSA) using murine models. METHODS AND RESULTS BALB/c mice were immunized with increasing concentrations of AM antigen or hkSA to determine their optimum concentration for vaccination. Fifty micrograms of AM and hkSA each were found to generate maximum anti-AM IgG antibody production. BALB/c mice were immunized next with 50 µg of AM, 50 µg of hKSA and 1 mg Al vaccine formulation. Vaccine efficacy was validated by challenging immunized BALB/c mice with S. aureus Newman and three clinical methicillin-resistant S. aureus strains. AM-hkSA-Al-immunized mice generated high anti-AM IgG antibody response with IgG1 and IgG2b as the predominant immunoglobulin subtypes. Increased survival (60%-90%) with decreased clinical disease symptoms was observed in the vaccinated BALB/c mice group. A significantly lower bacterial load and decreased kidney abscess formation was observed following the challenge with S. aureus in the vaccinated BALB/c mice group. Furthermore, the efficacy of AM-hkSA-Al vaccine was also validated using C57 BL/6 and Swiss albino mice. CONCLUSIONS Using murine infection models, we have demonstrated that AM-hkSA-Al vaccine would be effective in preventing S. aureus infections. SIGNIFICANCE AND IMPACT OF STUDY AM-hkSA-Al vaccine elicited strong immune response and may be considered for future vaccine design against S. aureus infections.
Collapse
Affiliation(s)
- Maneesha K Suresh
- Center for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, India
| | - Anil Kumar Vasudevan
- Department of Microbiology, Amrita Institute of Medical Sciences and Research Center, Amrita Vishwa Vidyapeetham, AIMS - Ponekkara, Cochin, India
| | - Lalitha Biswas
- Center for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, India
| | - Raja Biswas
- Center for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, India
| |
Collapse
|
49
|
Lentini G, Famà A, De Gaetano GV, Galbo R, Coppolino F, Venza M, Teti G, Beninati C. Role of Endosomal TLRs in Staphylococcus aureus Infection. THE JOURNAL OF IMMUNOLOGY 2021; 207:1448-1455. [PMID: 34362834 DOI: 10.4049/jimmunol.2100389] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 07/06/2021] [Indexed: 02/04/2023]
Abstract
Identification of the receptors involved in innate immune recognition of Staphylococcus aureus, a major cause of morbidity and mortality in humans, is essential to develop alternative strategies to treat infections caused by antibiotic-resistant strains. In the current study, we examine the role of endosomal TLRs, which sense the presence of prokaryotic-type nucleic acids, in anti-staphylococcal host defenses using infection models involving genetically defective mice. Single deficiencies in TLR7, 9, or 13 resulted in mild or no decrease in host defenses. However, the simultaneous absence of TLR7, 9, and 13 resulted in markedly increased susceptibility to cutaneous and systemic S. aureus infection concomitantly with decreased production of proinflammatory chemokines and cytokines, neutrophil recruitment to infection sites, and reduced production of reactive oxygen species. This phenotype was significantly more severe than that of mice lacking TLR2, which senses the presence of staphylococcal lipoproteins. Notably, the combined absence of TLR7, 9, and 13 resulted in complete abrogation of IL-12 p70 and IFN-β responses to staphylococcal stimulation in macrophages. Taken together, our data highlight the presence of a highly integrated endosomal detection system, whereby TLR7, 9, and 13 cooperate in sensing the presence of staphylococcal nucleic acids. We demonstrate that the combined absence of these receptors cannot be compensated for by cell surface-associated TLRs, such as TLR2, or cytosolic receptors. These data may be useful to devise strategies aimed at stimulating innate immune receptors to treat S. aureus infections.
Collapse
Affiliation(s)
- Germana Lentini
- Department of Human Pathology, University of Messina, Messina, Italy
| | - Agata Famà
- Department of Human Pathology, University of Messina, Messina, Italy
| | | | - Roberta Galbo
- Department of Chemical, Biological and Pharmaceutical Sciences, University of Messina, Messina, Italy
| | | | - Mario Venza
- Department of Biomedical, Dental and Imaging Sciences, University of Messina, Messina, Italy; and
| | | | - Concetta Beninati
- Department of Human Pathology, University of Messina, Messina, Italy
| |
Collapse
|
50
|
Xia P, Wu Y, Lian S, Yan L, Meng X, Duan Q, Zhu G. Research progress on Toll-like receptor signal transduction and its roles in antimicrobial immune responses. Appl Microbiol Biotechnol 2021; 105:5341-5355. [PMID: 34180006 PMCID: PMC8236385 DOI: 10.1007/s00253-021-11406-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/07/2021] [Accepted: 06/08/2021] [Indexed: 12/25/2022]
Abstract
When microorganisms invade a host, the innate immune system first recognizes the pathogen-associated molecular patterns of these microorganisms through pattern recognition receptors (PRRs). Toll-like receptors (TLRs) are known transmembrane PRRs existing in both invertebrates and vertebrates. Upon ligand recognition, TLRs initiate a cascade of signaling events; promote the pro-inflammatory cytokine, type I interferon, and chemokine expression; and play an essential role in the modulation of the host's innate and adaptive immunity. Therefore, it is of great significance to improve our understanding of antimicrobial immune responses by studying the role of TLRs and their signal molecules in the host's defense against invading microbes. This paper aims to summarize the specificity of TLRs in recognition of conserved microbial components, such as lipoprotein, lipopolysaccharide, flagella, endosomal nucleic acids, and other bioactive metabolites derived from microbes. This set of interactions helps to elucidate the immunomodulatory effect of TLRs and the signal transduction changes involved in the infectious process and provide a novel therapeutic strategy to combat microbial infections.
Collapse
Affiliation(s)
- Pengpeng Xia
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, 12th East Wenhui Road, Yangzhou, 225009 China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009 China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009 China
| | - Yunping Wu
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, 12th East Wenhui Road, Yangzhou, 225009 China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009 China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009 China
| | - Siqi Lian
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, 12th East Wenhui Road, Yangzhou, 225009 China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009 China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009 China
| | - Li Yan
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, 12th East Wenhui Road, Yangzhou, 225009 China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009 China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009 China
| | - Xia Meng
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, 12th East Wenhui Road, Yangzhou, 225009 China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009 China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009 China
| | - Qiangde Duan
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, 12th East Wenhui Road, Yangzhou, 225009 China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009 China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009 China
| | - Guoqiang Zhu
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, 12th East Wenhui Road, Yangzhou, 225009 China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009 China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009 China
| |
Collapse
|