1
|
Kalim M, Jing R, Guo W, Xing H, Lu Y. Functional diversity and regulation of IL-9-producing T cells in cancer immunotherapy. Cancer Lett 2024:217306. [PMID: 39426662 DOI: 10.1016/j.canlet.2024.217306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 10/21/2024]
Abstract
IL-9-producing T cells (T9) regulate immunological responses that affect various cellular biological processes, though their precise function remains fully understood. Previous studies have linked T9 cells to conditions such as allergic disorders, parasitic infection clearance, and various types of cancers. While the functional heterogeneity of IL-9 and T9 cells in cancer development has been documented, these cells present promising therapeutic opportunities for treating solid tumors. This review highlights the roles of IL-9 and T9 cells in cancer progression and treatment responses, focusing on potential discrepancies in IL-9/IL-9R signaling between murine tumors and cancer patients. Additionally, we discuss the regulation of tumor-specific Th9/Tc9 cell differentiation, the therapeutic potential of these cells, and current strategies to enhance their anti-tumor activities.
Collapse
Affiliation(s)
- Muhammad Kalim
- Houston Methodist Cancer Center/Weill Cornell Medicine, Houston, TX, USA, 77030
| | - Rui Jing
- Houston Methodist Cancer Center/Weill Cornell Medicine, Houston, TX, USA, 77030
| | - Wei Guo
- Houston Methodist Cancer Center/Weill Cornell Medicine, Houston, TX, USA, 77030
| | - Hui Xing
- Houston Methodist Cancer Center/Weill Cornell Medicine, Houston, TX, USA, 77030
| | - Yong Lu
- Houston Methodist Cancer Center/Weill Cornell Medicine, Houston, TX, USA, 77030.
| |
Collapse
|
2
|
Gao F, Mora MC, Constantinides M, Coënon L, Multrier C, Vaillant L, Peyroux J, Zhang T, Villalba M. Feeder cell training shapes the phenotype and function of in vitro expanded natural killer cells. MedComm (Beijing) 2024; 5:e740. [PMID: 39314886 PMCID: PMC11417427 DOI: 10.1002/mco2.740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 08/25/2024] [Accepted: 08/26/2024] [Indexed: 09/25/2024] Open
Abstract
Natural killer (NK) cells are candidates for adoptive cell therapy, and the protocols for their activation and expansion profoundly influence their function and fate. The complexity of NK cell origin and feeder cell cues impacts the heterogeneity of expanded NK (eNK) cells. To explore this, we compared the phenotype and function of peripheral blood-derived NK (PB-NK) and umbilical cord blood-derived NK (UCB-NK) cells activated by common feeder cell lines, including K562, PLH, and 221.AEH. After first encounter, most PB-NK cells showed degranulation independently of cytokines production. Meanwhile, most UCB-NK cells did both. We observed that each feeder cell line uniquely influenced the activation, expansion, and ultimate fate of PB eNK and UCB eNK cells, determining whether they became cytokine producers or killer cells. In addition, they also affected the functional performance of NK cell subsets after expansion, that is, expanded conventional NK (ecNK) and expanded FcRγ- NK (eg-NK) cells. Hence, the regulation of eNK cell function largely depends on the NK cell source and the chosen expansion system. These results underscore the significance of selecting feeder cells for NK cell expansion from various sources, notably for customized adoptive cell therapies to yield cytokine-producing or cytotoxic eNK cells.
Collapse
Affiliation(s)
- Fei Gao
- IRMBUniversity of MontpellierINSERMCHR MontpellierMontpellierFrance
- Department of PathologySchool of Basic MedicineCentral South UniversityChangshaChina
| | | | | | - Loïs Coënon
- IRMBUniversity of MontpellierINSERMCHR MontpellierMontpellierFrance
| | | | - Loïc Vaillant
- IRMBUniversity of MontpellierINSERMCHR MontpellierMontpellierFrance
| | - Julien Peyroux
- IRMBUniversity of MontpellierINSERMCHR MontpellierMontpellierFrance
| | - Tianxiang Zhang
- Department of ImmunobiologyYale University School of MedicineNew HavenConnecticutUSA
| | - Martin Villalba
- IRMBUniversity of MontpellierINSERMCHR MontpellierMontpellierFrance
- Institut du Cancer Avignon‐Provence Sainte CatherineAvignonFrance
- IRMBUniv MontpellierINSERMCHU MontpellierCNRSMontpellierFrance
| |
Collapse
|
3
|
Bahramloo M, Shahabi SA, Kalarestaghi H, Rafat A, Mazloumi Z, Samimifar A, Asl KD. CAR-NK cell therapy in AML: Current treatment, challenges, and advantage. Biomed Pharmacother 2024; 177:117024. [PMID: 38941897 DOI: 10.1016/j.biopha.2024.117024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 06/21/2024] [Indexed: 06/30/2024] Open
Abstract
Over the last decade, discovery of novel therapeutic method has been attention by the researchers and has changed the therapeutic perspective of hematological malignancies. Although NK cell play a pivotal role in the elimination of abnormal and cancerous cells, there are evidence that NK cell are disarm in hematological malignancy. Chimeric antigen receptor NK (CAR-NK) cell therapy, which includes the engineering of NK cells to detect tumor-specific antigens and, as a result, clear of cancerous cells, has created various clinical advantage for several human malignancies treatment. In the current review, we summarized NK cell dysfunction and CAR-NK cell based immunotherapy to treat AML patient.
Collapse
Affiliation(s)
- Mohammadmahdi Bahramloo
- Department of Medical Sciences, Student Research Committee, Islamic Azad University, Tabriz Branch, Tabriz, Iran
| | - Sina Alinejad Shahabi
- Department of Medical Sciences, Student Research Committee, Islamic Azad University, Tabriz Branch, Tabriz, Iran
| | - Hossein Kalarestaghi
- Research Laboratory for Embryology and Stem Cell, Department of Anatomical Sciences, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Ali Rafat
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Zeinab Mazloumi
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Arian Samimifar
- Department of Medical Sciences, Student Research Committee, Islamic Azad University, Tabriz Branch, Tabriz, Iran
| | - Khadijeh Dizaji Asl
- Department of Histopathology and Anatomy, Faculty of Medical Sciences, Tabriz Medical Sciences, Islamic Azad University, Tabriz, Iran.
| |
Collapse
|
4
|
Balint E, Feng E, Giles EC, Ritchie TM, Qian AS, Vahedi F, Montemarano A, Portillo AL, Monteiro JK, Trigatti BL, Ashkar AA. Bystander activated CD8 + T cells mediate neuropathology during viral infection via antigen-independent cytotoxicity. Nat Commun 2024; 15:896. [PMID: 38316762 PMCID: PMC10844499 DOI: 10.1038/s41467-023-44667-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 12/21/2023] [Indexed: 02/07/2024] Open
Abstract
Although many viral infections are linked to the development of neurological disorders, the mechanism governing virus-induced neuropathology remains poorly understood, particularly when the virus is not directly neuropathic. Using a mouse model of Zika virus (ZIKV) infection, we found that the severity of neurological disease did not correlate with brain ZIKV titers, but rather with infiltration of bystander activated NKG2D+CD8+ T cells. Antibody depletion of CD8 or blockade of NKG2D prevented ZIKV-associated paralysis, suggesting that CD8+ T cells induce neurological disease independent of TCR signaling. Furthermore, spleen and brain CD8+ T cells exhibited antigen-independent cytotoxicity that correlated with NKG2D expression. Finally, viral infection and inflammation in the brain was necessary but not sufficient to induce neurological damage. We demonstrate that CD8+ T cells mediate virus-induced neuropathology via antigen-independent, NKG2D-mediated cytotoxicity, which may serve as a therapeutic target for treatment of virus-induced neurological disease.
Collapse
Affiliation(s)
- Elizabeth Balint
- McMaster Immunology Research Centre, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Emily Feng
- McMaster Immunology Research Centre, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Elizabeth C Giles
- McMaster Immunology Research Centre, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Tyrah M Ritchie
- McMaster Immunology Research Centre, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Alexander S Qian
- Thrombosis and Atherosclerosis Research Institute, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton Health Sciences, Hamilton, ON, Canada
| | - Fatemeh Vahedi
- McMaster Immunology Research Centre, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Amelia Montemarano
- McMaster Immunology Research Centre, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Ana L Portillo
- McMaster Immunology Research Centre, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Jonathan K Monteiro
- McMaster Immunology Research Centre, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Bernardo L Trigatti
- Thrombosis and Atherosclerosis Research Institute, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton Health Sciences, Hamilton, ON, Canada
| | - Ali A Ashkar
- McMaster Immunology Research Centre, Department of Medicine, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
5
|
Ko E, Yoon T, Lee Y, Kim J, Park YB. ADSC secretome constrains NK cell activity by attenuating IL-2-mediated JAK-STAT and AKT signaling pathway via upregulation of CIS and DUSP4. Stem Cell Res Ther 2023; 14:329. [PMID: 37964351 PMCID: PMC10648656 DOI: 10.1186/s13287-023-03516-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 09/25/2023] [Indexed: 11/16/2023] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) have immunomodulatory properties and therapeutic effects on autoimmune diseases through their secreted factors, referred to as the secretome. However, the specific key factors of the MSC secretome and their mechanisms of action in immune cells have not been fully determined. Most in vitro experiments are being performed using immune cells, but experiments using natural killer (NK) cells have been neglected, and a few studies using NK cells have shown discrepancies in results. NK cells are crucial elements of the immune system, and adjustment of their activity is essential for controlling various pathological conditions. The aim of this study was to elucidate the role of the adipose tissue-derived stem cell (ADSC) secretome on NK cell activity. METHODS To obtain the ADSC secretome, we cultured ADSCs in medium and concentrated the culture medium using tangential flow filtration (TFF) capsules. We assessed NK cell viability and proliferation using CCK-8 and CFSE assays, respectively. We analyzed the effects of the ADSC secretome on NK cell activity and pathway-related proteins using a combination of flow cytometry, ELISA, cytotoxicity assay, CD107a assay, western blotting, and quantitative real-time PCR. To identify the composition of the ADSC secretome, we performed LC-MS/MS profiling and bioinformatics analysis. To elucidate the molecular mechanisms involved, we used mRNA sequencing to profile the transcriptional expression of human blood NK cells. RESULTS The ADSC secretome was found to restrict IL-2-mediated effector function of NK cells while maintaining proliferative potency. This effect was achieved through the upregulation of the inhibitory receptor CD96, as well as downregulation of activating receptors and IL-2 receptor subunits IL-2Rα and IL-2Rγ. These changes were associated with attenuated JAK-STAT and AKT pathways in NK cells, which were achieved through the upregulation of cytokine-inducible SH2-containing protein (CIS, encoded by Cish) and dual specificity protein phosphatase 4 (DUSP4). Furthermore, proteomic analysis revealed twelve novel candidates associated with the immunomodulatory effects of MSCs. CONCLUSIONS Our findings reveal a detailed cellular outcome and regulatory mechanism of NK cell activity by the ADSC secretome and suggest a therapeutic tool for treating NK-mediated inflammatory and autoimmune diseases using the MSC secretome.
Collapse
Affiliation(s)
- Eunhee Ko
- Division of Rheumatology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
- Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Taejun Yoon
- Division of Rheumatology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
- Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Yoojin Lee
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
- Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
- Department of Microbiology, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Jongsun Kim
- Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
- Department of Microbiology, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Yong-Beom Park
- Division of Rheumatology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.
- Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.
| |
Collapse
|
6
|
Cannon A, Pajulas A, Kaplan MH, Zhang J. The Dichotomy of Interleukin-9 Function in the Tumor Microenvironment. J Interferon Cytokine Res 2023; 43:229-245. [PMID: 37319357 PMCID: PMC10282829 DOI: 10.1089/jir.2023.0035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 04/25/2023] [Indexed: 06/17/2023] Open
Abstract
Interleukin 9 (IL-9) is a cytokine with potent proinflammatory properties that plays a central role in pathologies such as allergic asthma, immunity to parasitic infection, and autoimmunity. More recently, IL-9 has garnered considerable attention in tumor immunity. Historically, IL-9 has been associated with a protumor function in hematological malignancies and an antitumor function in solid malignancies. However, recent discoveries of the dynamic role of IL-9 in cancer progression suggest that IL-9 can act as both a pro- or antitumor factor in various hematological and solid malignancies. This review summarizes IL-9-dependent control of tumor growth, regulation, and therapeutic applicability of IL-9 blockade and IL-9-producing cells in cancer.
Collapse
Affiliation(s)
- Anthony Cannon
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Abigail Pajulas
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Mark H. Kaplan
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Brown Center for Immunotherapy, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Jilu Zhang
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
7
|
Zhao H, Gu Z, Wang Y, Wang M, Zhan Y, Zhao X, Cao Z. IL-9 neutralizing antibody suppresses allergic inflammation in ovalbumin-induced allergic rhinitis mouse model. Front Pharmacol 2022; 13:935943. [PMID: 36172190 PMCID: PMC9510626 DOI: 10.3389/fphar.2022.935943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 08/18/2022] [Indexed: 11/13/2022] Open
Abstract
Allergic rhinitis is mainly mediated by IgE after specific individuals are exposed to allergens. It is a common nasal mucosa disease of non-infectious chronic inflammatory disease and is often accompanied by asthma and conjunctivitis. In the study of allergic asthma, it was found that IL-9 participates in the pathogenic development of asthma. Because asthma and allergic rhinitis have the same airway and the same disease, it is inferred that IL-9 may also play an important role in allergic rhinitis. BALB/c mice received intranasal stimulation of ovalbumin (OVA) treatment at different times. The nasal mucosa of the mice were then sliced and stained with Sirius red and Toluidine blue, and eosinophils and mast cells in the mucosa were counted. ELISA was used to detect the expression of OVA-IgE in peripheral blood. The Th2 cell fraction in the mouse spleen was detected by flow cytometry. The expressions of IL-4, IL-5, IL-9, and IL-13 and their mRNA in mucosa were detected by real-time PCR and flow cytometry bead array analysis. Finally, the expression changes of Thymic stromal lymphopoietin related proteins and its mRNA, JAK1/2, and STAT5 proteins were detected by real-time PCR and Western blot. After the intervention with the IL-9 neutralizing antibody, the symptoms of allergic rhinitis in mice were significantly reduced. The expression of OVA-IgE in the peripheral blood of mice was inhibited, the fraction of Th2 cells in the spleen decreased, the related cytokines (IL-4, IL-5, and IL-13) were inhibited, and their functions decreased. The TSLP-OX40/OX40L signal pathway and JAK1/2-STAT5 signal are inhibited. IL-9 neutralizing antibody has a good therapeutic effect on the mouse model of allergic rhinitis, which may be related to the TSLP-OX40/OX40L pathway and JAK1/2-STAT5 signaling.
Collapse
Affiliation(s)
- He Zhao
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Zhaowei Gu
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
- *Correspondence: Zhaowei Gu,
| | - Yunxiu Wang
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Meng Wang
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yue Zhan
- Medical Research Center, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xin Zhao
- Department of Key Laboratory of Research and Application of Animal Models for Environmental and Metabolic Diseases, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Zhiwei Cao
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
8
|
Kim HJ, Ji YR, Lee YM. Crosstalk between angiogenesis and immune regulation in the tumor microenvironment. Arch Pharm Res 2022; 45:401-416. [PMID: 35759090 PMCID: PMC9250479 DOI: 10.1007/s12272-022-01389-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 05/25/2022] [Indexed: 12/15/2022]
Abstract
Cancer creates a complex tumor microenvironment (TME) composed of immune cells, stromal cells, blood vessels, and various other cellular and extracellular elements. It is essential for the development of anti-cancer combination therapies to understand and overcome this high heterogeneity and complexity as well as the dynamic interactions between them within the TME. Recent treatment strategies incorporating immune-checkpoint inhibitors and anti-angiogenic agents have brought many changes and advances in clinical cancer treatment. However, there are still challenges for immune suppressive tumors, which are characterized by a lack of T cell infiltration and treatment resistance. In this review, we will investigate the crosstalk between immunity and angiogenesis in the TME. In addition, we will look at strategies designed to enhance anti-cancer immunity, to convert "immune suppressive tumors" into "immune activating tumors," and the mechanisms by which these strategies enhance effector immune cell infiltration.
Collapse
Affiliation(s)
- Hei Jung Kim
- Vessel-Organ Interaction Research Center, VOICE (MRC), Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, Republic of Korea
| | - Young Rae Ji
- National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, USA
| | - You Mie Lee
- Vessel-Organ Interaction Research Center, VOICE (MRC), Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, Republic of Korea.
- Department of Molecular Pathophysiology, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, Republic of Korea.
| |
Collapse
|
9
|
Feng E, Balint E, Vahedi F, Ashkar AA. Immunoregulatory Functions of Interferons During Genital HSV-2 Infection. Front Immunol 2021; 12:724618. [PMID: 34484233 PMCID: PMC8416247 DOI: 10.3389/fimmu.2021.724618] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 08/02/2021] [Indexed: 12/04/2022] Open
Abstract
Herpes simplex virus type 2 (HSV-2) infection is one of the most prevalent sexually transmitted infections that disproportionately impacts women worldwide. Currently, there are no vaccines or curative treatments, resulting in life-long infection. The mucosal environment of the female reproductive tract (FRT) is home to a complex array of local immune defenses that must be carefully coordinated to protect against genital HSV-2 infection, while preventing excessive inflammation to prevent disease symptoms. Crucial to the defense against HSV-2 infection in the FRT are three classes of highly related and integrated cytokines, type I, II, and III interferons (IFN). These three classes of cytokines control HSV-2 infection and reduce tissue damage through a combination of directly inhibiting viral replication, as well as regulating the function of resident immune cells. In this review, we will examine how interferons are induced and their critical role in how they shape the local immune response to HSV-2 infection in the FRT.
Collapse
Affiliation(s)
| | | | | | - Ali A. Ashkar
- McMaster Immunology Research Centre, Department of Medicine, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
10
|
Asadzadeh R, Ahmadpoor P, Nafar M, Samavat S, Nikoueinejad H, Hosseinzadeh M, Mamizadeh N, Hatami S, Masoumi E, Amirzargar A. Association of IL-15 and IP-10 Serum Levels with Cytomegalovirus Infection, CMV Viral Load and Cyclosporine Level after Kidney Transplantation. Rep Biochem Mol Biol 2021; 10:216-223. [PMID: 34604411 PMCID: PMC8480297 DOI: 10.52547/rbmb.10.2.216] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/08/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Cytomegalovirus (CMV) infection is the most common complications following kidney transplantation. Natural killer (NK) cells demonstrated critical anti-viral role in controlling and elimination of CMV after transplantation. Interleukin-15 (IL-15) is a pleiotropic cytokine that promotes the activity of NK cells and strengthens the acquired immune system. Also, IP10 (CXCL10) is a chemotactic factor which regulates NK cell recruitment and antiviral immune response. We aimed to determine the correlation between the serum levels of IL-15 and IP-10 cytokines with CMV infection, CMV viral load, and cyclosporine as a major immunosuppressive treatment after transplantation. METHODS Fifty-eight kidney transplant recipient patients without evidence of CMV virus disease before transplantation surgery were included in the study. From the day of transplant surgery, the patients were evaluated based on the presence of CMV Ag pp65, CMV viral load, serum levels of IL-15 & IP-10, Cyclosporine levels (C0 & C2), Glomerular Filtration Rate (GFR), and hematological & biochemical Index, up to 75 days. RESULTS Comparison analysis of serum levels of IL-15 and IP-10 showed no significant association with CMV infection in kidney transplant recipients. In addition, CMV viral load and cyclosporine levels at C0 and C2 did not affect patients' IL-15 and IP-10 levels. CONCLUSION The levels of IP-10 and IL-15 cytokines are not affected with CMV infection, even if a viral infection occurs in the early days after transplantation or long afterwards. In addition, taking the different levels of cyclosporine did not affect the cytokines levels. Other mechanisms may play a role in maintaining the levels of these cytokines.
Collapse
Affiliation(s)
- Reza Asadzadeh
- Chronic Kidney Disease Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Pedram Ahmadpoor
- Urology and Nephrology Research Center, Shahid Labbafinejad Medical Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohsen Nafar
- Urology and Nephrology Research Center, Shahid Labbafinejad Medical Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Shima Samavat
- Urology and Nephrology Research Center, Shahid Labbafinejad Medical Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Hassan Nikoueinejad
- Nephrology and Urology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Morteza Hosseinzadeh
- Department of Immunology, School of Medicine, Ilam University of Medical Sciences, Ilam, Iran.
| | - Nahid Mamizadeh
- Department of Nephrology, School of Medicine, Ilam University of Medical Sciences, Ilam, Iran.
| | - Saeideh Hatami
- Department of Tissue Engineering and Regenerative Medicine, Iran university of Medical Sciences, Tehran, Iran.
| | - Elham Masoumi
- Department of Immunology, School of Medicine, Ilam University of Medical Sciences, Ilam, Iran.
| | - Aliakbar Amirzargar
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
11
|
Grudzien M, Pawlak A, Kutkowska J, Ziolo E, Wysokińska E, Hildebrand W, Obmińska-Mrukowicz B, Strzadala L, Rapak A. A newly established canine NK-type cell line and its cytotoxic properties. Vet Comp Oncol 2021; 19:567-577. [PMID: 33774906 DOI: 10.1111/vco.12695] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 12/30/2022]
Abstract
We established a canine natural killer (NK)-type cell line called CNK-89 derived from a dog with NK cell neoplasia. Immunophenotyping analysis showed positive staining for CD5, CD8, CD45, CD56, CD79a and NKp46, while negative for CD3, CD4, CD14, CD20, CD21, CD34, Thy1, IgG, IgM and MHCII. Polymerase chain reaction analysis revealed the presence of CD56, NKG2D, NKp30, NKp44, NKp46 and perforin, but the absence of CD16, Ly49 and granzyme B mRNA. Treating CNK-89 cells with IL-2 did not change the expression of activating receptors, TNFα and IFNγ secretion and cytotoxic activity, however, treatment with IL-12 alone or in combinations with IL-15, IL-18 and IL-21 caused an increase in granzyme B and CD16 mRNA, IFNγ secretion and cytotoxic properties of the CNK-89 cell line.
Collapse
Affiliation(s)
- Malgorzata Grudzien
- Laboratory of Tumor Molecular Immunobiology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Wroclaw, Poland
| | - Aleksandra Pawlak
- Department of Biochemistry, Pharmacology and Toxicology, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | - Justyna Kutkowska
- Laboratory of Tumor Molecular Immunobiology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Wroclaw, Poland
| | - Ewa Ziolo
- Laboratory of Tumor Molecular Immunobiology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Wroclaw, Poland
| | - Edyta Wysokińska
- Laboratory of Tumor Molecular Immunobiology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Wroclaw, Poland
| | | | - Bożena Obmińska-Mrukowicz
- Department of Biochemistry, Pharmacology and Toxicology, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | - Leon Strzadala
- Laboratory of Tumor Molecular Immunobiology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Wroclaw, Poland
| | - Andrzej Rapak
- Laboratory of Tumor Molecular Immunobiology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Wroclaw, Poland
| |
Collapse
|
12
|
Ochayon DE, Waggoner SN. The Effect of Unconventional Cytokine Combinations on NK-Cell Responses to Viral Infection. Front Immunol 2021; 12:645850. [PMID: 33815404 PMCID: PMC8017335 DOI: 10.3389/fimmu.2021.645850] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 03/01/2021] [Indexed: 12/30/2022] Open
Abstract
Cytokines are soluble and membrane-bound factors that dictate immune responses. Dogmatically, cytokines are divided into families that promote type 1 cell-mediated immune responses (e.g., IL-12) or type 2 humoral responses (e.g., IL-4), each capable of antagonizing the opposing family of cytokines. The discovery of additional families of cytokines (e.g., IL-17) has added complexity to this model, but it was the realization that immune responses frequently comprise mixtures of different types of cytokines that dismantled this black-and-white paradigm. In some cases, one type of response may dominate these mixed milieus in disease pathogenesis and thereby present a clear therapeutic target. Alternatively, synergistic or blended cytokine responses may obfuscate the origins of disease and perplex clinical decision making. Most immune cells express receptors for many types of cytokines and can mediate a myriad of functions important for tolerance, immunity, tissue damage, and repair. In this review, we will describe the unconventional effects of a variety of cytokines on the activity of a prototypical type 1 effector, the natural killer (NK) cell, and discuss how this may impact the contributions of these cells to health and disease.
Collapse
Affiliation(s)
- David E. Ochayon
- Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Stephen N. Waggoner
- Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
13
|
Pasvenskaite A, Liutkeviciene R, Gedvilaite G, Vilkeviciute A, Liutkevicius V, Uloza V. The Role of IL-9 Polymorphisms and Serum IL-9 Levels in Carcinogenesis and Survival Rate for Laryngeal Squamous Cell Carcinoma. Cells 2021; 10:cells10030601. [PMID: 33803218 PMCID: PMC8001846 DOI: 10.3390/cells10030601] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/02/2021] [Accepted: 03/05/2021] [Indexed: 11/16/2022] Open
Abstract
Recent studies have described the dichotomous function of IL-9 in various cancer diseases. However, its function has still not been analysed in laryngeal squamous cell carcinoma (LSCC). In the present study, we evaluated five single nucleotide polymorphisms (SNPs) of IL-9 (rs1859430, rs2069870, rs11741137, rs2069885, and rs2069884) and determined their associations with the patients' five-year survival rate. Additionally, we analysed serum IL-9 levels using an enzyme-linked immunosorbent assay. Three hundred LSCC patients and 533 control subjects were included in this study. A significant association between the patients' survival rate and distribution of IL-9 rs1859430 variants was revealed: patients carrying AA genotype had a higher risk of dying (p = 0.005). Haplotypes A-G-C-G-G of IL-9 (rs1859430, rs2069870, rs11741137, rs2069885, and rs2069884) were associated with 47% lower odds of LSCC occurrence (p = 0.035). Serum IL-9 levels were found detectable in three control group subjects (8.99 ± 12.03 pg/mL). In summary, these findings indicate that the genotypic distribution of IL-9 rs1859430 negatively influences the five-year survival rate of LSCC patients. The haplotypes A-G-C-G-G of IL-9 (rs1859430, rs2069870, rs11741137, rs2069885, and rs2069884) are associated with the lower odds of LSCC development.
Collapse
Affiliation(s)
- Agne Pasvenskaite
- Department of Otorhinolaryngology, Lithuanian University of Health Sciences (LUHS), LT-50161 Kaunas, Lithuania; (V.L.); (V.U.)
- Correspondence: ; Tel.: +370-6532-3034
| | - Rasa Liutkeviciene
- Neuroscience Institute, Lithuanian University of Health Sciences (LUHS), LT-50161 Kaunas, Lithuania; (R.L.); (G.G.); (A.V.)
| | - Greta Gedvilaite
- Neuroscience Institute, Lithuanian University of Health Sciences (LUHS), LT-50161 Kaunas, Lithuania; (R.L.); (G.G.); (A.V.)
| | - Alvita Vilkeviciute
- Neuroscience Institute, Lithuanian University of Health Sciences (LUHS), LT-50161 Kaunas, Lithuania; (R.L.); (G.G.); (A.V.)
| | - Vykintas Liutkevicius
- Department of Otorhinolaryngology, Lithuanian University of Health Sciences (LUHS), LT-50161 Kaunas, Lithuania; (V.L.); (V.U.)
| | - Virgilijus Uloza
- Department of Otorhinolaryngology, Lithuanian University of Health Sciences (LUHS), LT-50161 Kaunas, Lithuania; (V.L.); (V.U.)
| |
Collapse
|
14
|
Marathe S, Dhamija B, Kumar S, Jain N, Ghosh S, Dharikar JP, Srinivasan S, Das S, Sawant A, Desai S, Khan F, Syiemlieh A, Munde M, Nayak C, Gandhi M, Kumar A, Srivastava S, Venkatesh KV, Barthel SR, Purwar R. Multiomics Analysis and Systems Biology Integration Identifies the Roles of IL-9 in Keratinocyte Metabolic Reprogramming. J Invest Dermatol 2021; 141:1932-1942. [PMID: 33667432 DOI: 10.1016/j.jid.2021.02.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 01/28/2021] [Accepted: 02/19/2021] [Indexed: 01/06/2023]
Abstract
IL-9‒producing T cells are present in healthy skin as well as in the cutaneous lesions of inflammatory diseases and cancers. However, the roles of IL-9 in human skin during homeostasis and in the pathogenesis of inflammatory disorders remain obscure. In this study, we examined the roles of IL-9 in metabolic reprogramming of human primary keratinocytes (KCs). High-throughput quantitative proteomics revealed that IL-9 signaling in human primary KCs disrupts the electron transport chain by downregulating multiple electron transport chain proteins. Nuclear magnetic resonance-based metabolomics showed that IL-9 also reduced the production of tricarboxylic acid cycle intermediates in human primary KCs. An integration of multiomics data with systems-level analysis using the constraint-based MitoCore model predicted marked IL-9-dependent effects on central carbohydrate metabolism, particularly in relation to the glycolytic switch. Stable isotope metabolomics and biochemical assays confirmed increased glucose consumption and redirection of metabolic flux toward lactate by IL-9. Functionally, IL-9 inhibited ROS production by IFN-γ and promoted human primary KC survival by inhibiting apoptosis. In conclusion, our data reveal IL-9 as a master regulator of KC metabolic reprogramming and survival.
Collapse
Affiliation(s)
- Soumitra Marathe
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay (IIT Bombay), Mumbai, India
| | - Bhavuk Dhamija
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay (IIT Bombay), Mumbai, India
| | - Sushant Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay (IIT Bombay), Mumbai, India
| | - Nikita Jain
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay (IIT Bombay), Mumbai, India
| | - Sarbari Ghosh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay (IIT Bombay), Mumbai, India
| | - Jai Prakash Dharikar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay (IIT Bombay), Mumbai, India
| | - Sumana Srinivasan
- Department of Chemical Engineering, Indian Institute of Technology Bombay (IIT Bombay), Mumbai, India
| | - Sreya Das
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay (IIT Bombay), Mumbai, India
| | - Abhijeet Sawant
- Department of Plastic Surgery, Topiwala National Medical College & BYL Nair Charitable Hospital, Mumbai, India
| | - Saloni Desai
- Skin and Venereal Diseases Department, Topiwala National Medical College & BYL Nair Charitable Hospital, Mumbai, India
| | - Farhat Khan
- Skin and Venereal Diseases Department, Topiwala National Medical College & BYL Nair Charitable Hospital, Mumbai, India
| | - Abigail Syiemlieh
- Skin and Venereal Diseases Department, Topiwala National Medical College & BYL Nair Charitable Hospital, Mumbai, India
| | - Manohar Munde
- Skin and Venereal Diseases Department, Topiwala National Medical College & BYL Nair Charitable Hospital, Mumbai, India
| | - Chitra Nayak
- Skin and Venereal Diseases Department, Topiwala National Medical College & BYL Nair Charitable Hospital, Mumbai, India
| | - Mayuri Gandhi
- Centre for Research in Nanotechnology and Science (CRNTS), Indian Institute of Technology Bombay (IIT Bombay), Mumbai, India
| | - Ashutosh Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay (IIT Bombay), Mumbai, India
| | - Sanjeeva Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay (IIT Bombay), Mumbai, India
| | - K V Venkatesh
- Department of Chemical Engineering, Indian Institute of Technology Bombay (IIT Bombay), Mumbai, India
| | - Steven R Barthel
- Department of Dermatology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Rahul Purwar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay (IIT Bombay), Mumbai, India.
| |
Collapse
|
15
|
Lee YJ, Kim J. Resveratrol Activates Natural Killer Cells through Akt- and mTORC2-Mediated c-Myb Upregulation. Int J Mol Sci 2020; 21:ijms21249575. [PMID: 33339133 PMCID: PMC7765583 DOI: 10.3390/ijms21249575] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 12/17/2022] Open
Abstract
Natural killer (NK) cells are suitable targets for cancer immunotherapy owing to their potent cytotoxic activity. To maximize the therapeutic efficacy of cancer immunotherapy, adjuvants need to be identified. Resveratrol is a well-studied polyphenol with various potential health benefits, including antitumor effects. We previously found that resveratrol is an NK cell booster, suggesting that it can serve as an adjuvant for cancer immunotherapy. However, the molecular mechanism underlying the activation of NK cells by resveratrol remains unclear. The present study aimed to determine this mechanism. To this end, we investigated relevant pathways in NK cells using Western blot, real-time polymerase chain reaction, pathway inhibitor, protein/DNA array, and cytotoxicity analyses. We confirmed the synergistic effects of resveratrol and interleukin (IL)-2 on enhancing the cytolytic activity of NK cells. Resveratrol activated Akt by regulating Mammalian Target of Rapamycin (mTOR) Complex 2 (mTORC2) via phosphatase and tensin homolog (PTEN) and ribosomal protein S6 kinase beta-1 (S6K1). Moreover, resveratrol-mediated NK cell activation was more dependent on the mTOR pathway than the Akt pathway. Importantly, resveratrol increased the expression of c-Myb, a downstream transcription factor of Akt and mTORC2. Moreover, c-Myb was essential for resveratrol-induced NK cell activation in combination with IL-2. Our results demonstrate that resveratrol activates NK cells through Akt- and mTORC2-mediated c-Myb upregulation.
Collapse
Affiliation(s)
- Yoo-Jin Lee
- Department of Microbiology and Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul 08758, Korea;
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 08758, Korea
| | - Jongsun Kim
- Department of Microbiology and Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul 08758, Korea;
- Correspondence: ; Tel.: +82-2-2228-1814
| |
Collapse
|
16
|
Arianfar E, Shahgordi S, Memarian A. Natural Killer Cell Defects in Breast Cancer: A Key Pathway for Tumor Evasion. Int Rev Immunol 2020; 40:197-216. [PMID: 33258393 DOI: 10.1080/08830185.2020.1845670] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
As the most important innate immune component cancers invader, natural killer (NK) cells have a magnificent role in antitumor immunity without any prior sensitization. Different subsets of NK cells have distinct responses during tumor cell exposure, according to their phenotypes and environments. Their function is induced mainly by the activity of both inhibitory and activating receptors against cancerous cells. Since the immunosuppression in the tumor microenvironment of breast cancer patients has directly deteriorated the phenotype and disturbed the function of NK cells, recruiting compensatory mechanisms indicate promising outcomes for immunotherapeutic approaches. These evidences accentuate the importance of NK cell distinct features in protection against breast tumors. In this review, we discuss the several mechanisms involved in NK cells suppression which consequently promote tumor progression and disease recurrence in patients with breast cancer.
Collapse
Affiliation(s)
- Elaheh Arianfar
- Student Research Committee, Faculty of Medicine, Department of Immunology, Golestan University of Medical Sciences, Gorgan, Iran
| | - Sanaz Shahgordi
- Student Research Committee, Faculty of Medicine, Department of Immunology, Golestan University of Medical Sciences, Gorgan, Iran
| | - Ali Memarian
- Golestan Research Center of Gastroenterology and Hepatology, Golestan University of Medical Sciences, Gorgan, Iran.,Immunology department, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| |
Collapse
|
17
|
Guan P, Schaub R, Nichols KE, Das R. Combination of NKT14m and Low Dose IL-12 Promotes Invariant Natural Killer T Cell IFN-γ Production and Tumor Control. Int J Mol Sci 2020; 21:ijms21145085. [PMID: 32708464 PMCID: PMC7404385 DOI: 10.3390/ijms21145085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/08/2020] [Accepted: 07/16/2020] [Indexed: 12/26/2022] Open
Abstract
Invariant natural killer T (iNKT) cells are innate-like T lymphocytes characterized by the expression of an invariant T cell receptor (iTCR) that recognizes glycolipid antigens presented by the MHC I-like CD1d molecule. Following antigenic stimulation, iNKT cells rapidly produce large amounts of cytokines that can trans-activate dendritic cells (DC) and promote the anti-tumor functions of cytotoxic lymphocytes, such as natural killer (NK) and CD8 T cells. Additionally, iNKT cells can mediate robust and direct cytotoxicity against CD1d+ tumor targets. However, many tumors down-regulate CD1d and evade iNKT cell attack. To circumvent this critical barrier to iNKT cell anti-tumor activity, a novel monoclonal antibody (mAb), NKT14 has been recently developed. This agonistic antibody binds directly and specifically to the iTCR of murine iNKT cells. In the current study, we demonstrate that NKT14m mediates robust activation, cytokine production and degranulation of murine iNKT cells, in vitro. Consistently, NKT14m also promoted iNKT cell activation and immunomodulatory functions, in vivo. Finally, administration of NKT14m with low dose interleukin (IL)-12 further augmented iNKT cell IFN-γ production in vivo, and this combination conferred superior suppression of tumor cell growth compared to NKT14m or IL-12 alone. Together, these data demonstrate that a combination treatment consisting of low dose IL-12 and iTCR-specific mAb may be an attractive alternative to activate iNKT cell anti-tumor functions.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/administration & dosage
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/pharmacology
- Antigens, CD1d/immunology
- Cell Line, Tumor
- Cytokines/metabolism
- Cytotoxicity, Immunologic/drug effects
- Drug Synergism
- Drug Therapy, Combination/methods
- Immunomodulation/drug effects
- Interferon-gamma/metabolism
- Interleukin-12/pharmacology
- Lymphoma/drug therapy
- Lymphoma/immunology
- Mice
- Mice, Inbred C57BL
- Natural Killer T-Cells/drug effects
- Natural Killer T-Cells/immunology
- Natural Killer T-Cells/metabolism
- Receptors, Antigen, T-Cell/immunology
Collapse
Affiliation(s)
- Peng Guan
- Division of Oncology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA;
| | - Robert Schaub
- RGS Consulting, 118 Jeremy Hill Road Pelham, Pelham, NH 03076, USA;
| | - Kim E. Nichols
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA;
| | - Rupali Das
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
- Correspondence: ; Tel.: +1-517-884-5049; Fax: +1-517-355-5125
| |
Collapse
|
18
|
Kim H, Khanna V, Kucaba TA, Zhang W, Sehgal D, Ferguson DM, Griffith TS, Panyam J. TLR7/8 Agonist-Loaded Nanoparticles Augment NK Cell-Mediated Antibody-Based Cancer Immunotherapy. Mol Pharm 2020; 17:2109-2124. [PMID: 32383885 DOI: 10.1021/acs.molpharmaceut.0c00271] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Activated natural killer (NK) cells can kill malignant tumor cells via granule exocytosis and secretion of IFN-γ, a key regulator of the TH1 response. Thus, mobilization of NK cells can augment cancer immunotherapy, particularly when mediated through antibody-dependent cellular cytotoxicity (ADCC). Stimulation of toll-like receptor (TLR)7/8 activity in dendritic cells promotes pro-inflammatory cytokine secretion and costimulatory molecule upregulation, both of which can potentiate NK cell activation. However, currently available TLR7/8 agonists exhibit unfavorable pharmacokinetics, limiting their in vivo efficacy. To enable efficient delivery to antigen-presenting cells, we encapsulated a novel imidazoquinoline-based TLR7/8 agonist in pH-responsive polymeric NPs. Enhanced costimulatory molecule expression on dendritic cells and a stronger pro-inflammatory cytokine response were observed with a NP-encapsulated agonist, compared to that with the soluble form. Treatment with NP-encapsulated agonists resulted in stronger in vivo cytotoxicity and prolonged activation of NK cells compared to that with a soluble agonist. In addition, TLR7/8 agonist-loaded NPs potentiated stronger NK cell degranulation, which resulted in enhanced in vitro and in vivo ADCC mediated by the epidermal growth factor receptor-targeting antibody cetuximab. TLR7/8 agonist-loaded NP treatment significantly enhanced the antitumor efficacy of cetuximab and an anti-HER2/neu antibody in mouse tumor models. Collectively, our data show that a pH-responsive NP-encapsulating TLR7/8 agonist could be used as a potent immunostimulatory adjuvant for antibody-based cancer immunotherapy by promoting NK cell activation.
Collapse
Affiliation(s)
- Hyunjoon Kim
- Department of Pharmaceutics, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Vidhi Khanna
- Department of Pharmaceutics, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Tamara A Kucaba
- Department of Urology, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Wenqiu Zhang
- Department of Pharmaceutics, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Drishti Sehgal
- Department of Urology, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - David M Ferguson
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Thomas S Griffith
- Department of Urology, University of Minnesota, Minneapolis, Minnesota 55455, United States.,Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, United States.,Center for Immunology, University of Minnesota, Minneapolis, Minnesota 55455, United States.,Microbiology, Immunology, and Cancer Biology Graduate Program, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Jayanth Panyam
- Department of Pharmaceutics, University of Minnesota, Minneapolis, Minnesota 55455, United States.,Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
19
|
Abstract
Interleukin (IL)-9 is a pleiotropic cytokine, which can function as a positive or negative regulator of immune responses on multiple types of cells. The role of IL-9 was originally known in allergic disease and parasite infections. Interestingly, recent studies demonstrate its presence in the tumor tissues of mice and humans, and the association between IL-9 and tumor progression has been revisited following the discovery of T helper (Th) 9 cells. Tumor-specific Th9 cells are considered to be the main subset of CD4+ T cells that produce high level of IL-9 and exhibit an IL-9-dependent robust anti-cancer function in solid tumors. IL-9 exerts an unprecedented anti-tumor immunity not only by inducing innate and adaptive immune responses but also directly promoting apoptosis of tumor cells. The objective of this review is to summarize the latest advances regarding the anti-tumor mechanisms of IL-9 and Th9 cells.
Collapse
Affiliation(s)
- Ningbo Zheng
- Department of Microbiology & Immunology, Wake Forest School of Medicine , Winston-Salem, NC, USA
| | - Yong Lu
- Department of Microbiology & Immunology, Wake Forest School of Medicine , Winston-Salem, NC, USA
| |
Collapse
|
20
|
Kumar S, Dhamija B, Marathe S, Ghosh S, Dwivedi A, Karulkar A, Sharma N, Sengar M, Sridhar E, Bonda A, Thorat J, Tembhare P, Shet T, Gujral S, Bagal B, Laskar S, Jain H, Purwar R. The Th9 Axis Reduces the Oxidative Stress and Promotes the Survival of Malignant T Cells in Cutaneous T-Cell Lymphoma Patients. Mol Cancer Res 2020; 18:657-668. [PMID: 31996468 DOI: 10.1158/1541-7786.mcr-19-0894] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 12/09/2019] [Accepted: 01/24/2020] [Indexed: 11/16/2022]
Abstract
Immune dysfunction is critical in pathogenesis of cutaneous T-cell lymphoma (CTCL). Few studies have reported abnormal cytokine profile and dysregulated T-cell functions during the onset and progression of certain types of lymphoma. However, the presence of IL9-producing Th9 cells and their role in tumor cell metabolism and survival remain unexplored. With this clinical study, we performed multidimensional blood endotyping of CTCL patients before and after standard photo/chemotherapy and revealed distinct immune hallmarks of the disease. Importantly, there was a higher frequency of "skin homing" Th9 cells in CTCL patients with early (T1 and T2) and advanced-stage disease (T3 and T4). However, advanced-stage CTCL patients had severely impaired frequency of skin-homing Th1 and Th17 cells, indicating attenuated immunity. Treatment of CTCL patients with standard photo/chemotherapy decreased the skin-homing Th9 cells and increased the Th1 and Th17 cells. Interestingly, T cells of CTCL patients express IL9 receptor (IL9R), and there was negligible IL9R expression on T cells of healthy donors. Mechanistically, IL9/IL9R interaction on CD3+ T cells of CTCL patients and Jurkat cells reduced oxidative stress, lactic acidosis, and apoptosis and ultimately increased their survival. In conclusion, coexpression of IL9 and IL9R on T cells in CTCL patients indicates the autocrine-positive feedback loop of Th9 axis in promoting the survival of malignant T cells by reducing the oxidative stress. IMPLICATIONS: The critical role of Th9 axis in CTCL pathogenesis indicates that strategies targeting Th9 cells might harbor significant potential in developing robust CTCL therapy.
Collapse
Affiliation(s)
- Sushant Kumar
- Department of Biosciences & Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| | - Bhavuk Dhamija
- Department of Biosciences & Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| | - Soumitra Marathe
- Department of Biosciences & Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| | - Sarbari Ghosh
- Department of Biosciences & Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| | - Alka Dwivedi
- Department of Biosciences & Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| | - Atharva Karulkar
- Department of Biosciences & Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| | - Neha Sharma
- Medical oncology, Tata Memorial Hospital, Mumbai, Maharashtra, India
| | - Manju Sengar
- Medical oncology, Tata Memorial Hospital, Mumbai, Maharashtra, India
| | - Epari Sridhar
- Pathology, Tata Memorial Hospital, Mumbai, Maharashtra, India
| | - Avinash Bonda
- Medical oncology, Tata Memorial Hospital, Mumbai, Maharashtra, India
| | - Jayashree Thorat
- Medical oncology, Tata Memorial Hospital, Mumbai, Maharashtra, India
| | | | - Tanuja Shet
- Pathology, Tata Memorial Hospital, Mumbai, Maharashtra, India
| | - Sumeet Gujral
- Pathology, Tata Memorial Hospital, Mumbai, Maharashtra, India
| | - Bhausaheb Bagal
- Medical oncology, Tata Memorial Hospital, Mumbai, Maharashtra, India
| | - Siddhartha Laskar
- Radiation Oncology, Tata Memorial Hospital, Mumbai, Maharashtra, India
| | - Hasmukh Jain
- Medical oncology, Tata Memorial Hospital, Mumbai, Maharashtra, India
| | - Rahul Purwar
- Department of Biosciences & Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India.
| |
Collapse
|
21
|
Yang Y, Xu C, Tang S, Xia Z. Interleukin-9 Aggravates Isoproterenol-Induced Heart Failure by Activating Signal Transducer and Activator of Transcription 3 Signalling. Can J Cardiol 2020; 36:1770-1781. [PMID: 32621886 DOI: 10.1016/j.cjca.2020.01.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 12/18/2019] [Accepted: 01/08/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Previous studies have demonstrated that inflammation is closely related to the occurrence and development of heart failure (HF). As an inflammation-related cytokine, interleukin (IL)-9 has been reported to be involved in the development of cardiovascular diseases. However, the role of IL-9 in HF in response to isoproterenol (ISO) stimulation has barely been explored. Thus, this study aimed to investigate whether IL-9 participates in HF and the possible associated mechanisms. METHODS Chronic ISO infusion was used to establish an HF model, and the IL-9 levels in mice and isolated cardiomyocytes were measured. In addition, ISO-treated mice received an injection of recombinant mouse IL-9 (rIL-9) or an antimouse IL-9 neutralizing monoclonal antibody (mAb) to investigate the effects of IL-9 on cardiac function, hypertrophy, and fibrosis. RESULTS IL-9 levels were significantly increased in mice and isolated cardiomyocytes after ISO treatment. Treatment with rIL-9 resulted in aggravated cardiac dysfunction and amplified cardiac hypertrophy and fibrosis, whereas treatment with the anti-IL-9 neutralizing mAb ameliorated cardiac dysfunction and reduced cardiac hypertrophy and fibrosis in ISO-treated mice. In addition, ISO infusion-induced cardiac inflammation and cardiomyocyte apoptosis was aggravated by rIL-9 but prevented by the anti-IL-9 mAb. IL-9 did not activate signal transducer and activator of transcription (STAT)1 or STAT5 but induced STAT3 phosphorylation in ISO-induced HF. Moreover, S31-201, a specific STAT3 inhibitor, nearly abolished rIL-9-induced increases in cardiac dysfunction, hypertrophy, and fibrosis in response to ISO stimulation. CONCLUSIONS IL-9 aggravated cardiac dysfunction and amplified cardiac hypertrophy and fibrosis in the ISO-induced HF model by activating STAT3 signalling. These data indicate that blocking IL-9 may be an attractive pharmacotherapeutic strategy for the treatment of cardiac hypertrophy and fibrosis induced by chronic β-adrenergic receptor activation to limit the progression of HF.
Collapse
Affiliation(s)
- Yunzhao Yang
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Cheng Xu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Shaoqun Tang
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Zhongyuan Xia
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
22
|
Dysregulation of TLR9 in neonates leads to fatal inflammatory disease driven by IFN-γ. Proc Natl Acad Sci U S A 2020; 117:3074-3082. [PMID: 31980536 DOI: 10.1073/pnas.1911579117] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Recognition of self-nucleic acids by innate immune receptors can lead to the development of autoimmune and/or autoinflammatory diseases. Elucidating mechanisms associated with dysregulated activation of specific receptors may identify new disease correlates and enable more effective therapies. Here we describe an aggressive in vivo model of Toll-like receptor (TLR) 9 dysregulation, based on bypassing the compartmentalized activation of TLR9 in endosomes, and use it to uncover unique aspects of TLR9-driven disease. By inducing TLR9 dysregulation at different stages of life, we show that while dysregulation in adult mice causes a mild systemic autoinflammatory disease, dysregulation of TLR9 early in life drives a severe inflammatory disease resulting in neonatal fatality. The neonatal disease includes some hallmarks of macrophage activation syndrome but is much more severe than previously described models. Unlike TLR7-mediated disease, which requires type I interferon (IFN) receptor signaling, TLR9-driven fatality is dependent on IFN-γ receptor signaling. NK cells are likely key sources of IFN-γ in this model. We identify populations of macrophages and Ly6Chi monocytes in neonates that express high levels of TLR9 and low levels of TLR7, which may explain why TLR9 dysregulation is particularly consequential early in life, while symptoms of TLR7 dysregulation take longer to manifest. Overall, this study demonstrates that inappropriate TLR9 responses can drive a severe autoinflammatory disease under homeostatic conditions and highlights differences in the diseases resulting from inappropriate activation of TLR9 and TLR7.
Collapse
|
23
|
Kim D, Lee SH, Lee H, Kim SJ, Lee KH, Song SK. Analyses of the gene structure and function of olive flounder (Paralichthys olivaceus) interleukin 12 (IL-12). FISH & SHELLFISH IMMUNOLOGY 2019; 92:151-164. [PMID: 31108176 DOI: 10.1016/j.fsi.2019.05.033] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 05/13/2019] [Accepted: 05/17/2019] [Indexed: 06/09/2023]
Abstract
IL-12 is an important cytokine that connects the innate and adaptive immune systems. The complete gene structure of olive flounder IL-12 and its characteristics have not yet been formally reported. Here, we report the complete sequences of both subunits of olive flounder IL-12 (IL-12p35 and IL-12p40). In addition, its function was analyzed by generating the single-chain rIL-12 of which subunits were fused by a GS linker and the rIL-12-specific mouse antibody. The cDNA sequences of IL-12p35 and IL-12p40 were 1059 nucleotides and 1319 nucleotides, respectively. The analyses of their gene structures, deduced amino acid sequences, protein model structures, and phylogenetic trees confirmed the accurate identification of olive flounder IL-12. The protein structure model suggested that an inter-subunit disulfide bond might be formed between the Cys177 of p35 and Cys74 of p40 to link the subunits. Olive flounder expressed IL-12p40 at higher levels than IL-12p35 in the various tissues under natural conditions although both expression levels were low. However, when infected by Edwardsiella tarda or stimulated by LPS, the flounder expressed both of the subunit genes at similar maximized levels in 6 h and gradually reduced thereafter. Olive flounder PBMC induced with the rIL-12 increased IFN-γ and TNF-α expression but decreased IL-10 expression as did treatment with LPS. However, when the LPS-treated PBMC were neutralized with the rIL-12-specific antibody, the pattern of cytokine expression was precisely reversed. In conclusion, we have formally identified the gene structure and function of olive flounder IL-12.
Collapse
Affiliation(s)
- Daniel Kim
- School of Life Science, Handong University, 558 Handong-ro, Pohang-city, Gyeongbuk, 37554, South Korea
| | - Soon Ho Lee
- School of Life Science, Handong University, 558 Handong-ro, Pohang-city, Gyeongbuk, 37554, South Korea
| | - Hayoung Lee
- School of Life Science, Handong University, 558 Handong-ro, Pohang-city, Gyeongbuk, 37554, South Korea
| | - Seong-Jung Kim
- School of Life Science, Handong University, 558 Handong-ro, Pohang-city, Gyeongbuk, 37554, South Korea
| | - Kwan Hee Lee
- Immunus (Co. Ltd.) Nehemiah hall Rm. 301, Handong University, 558 Handong-ro, Pohang-city, Gyeongbuk, 37554, South Korea
| | - Seong Kyu Song
- School of Life Science, Handong University, 558 Handong-ro, Pohang-city, Gyeongbuk, 37554, South Korea.
| |
Collapse
|
24
|
El-Deeb NM, El-Adawi HI, El-Wahab AEA, Haddad AM, El Enshasy HA, He YW, Davis KR. Modulation of NKG2D, KIR2DL and Cytokine Production by Pleurotus ostreatus Glucan Enhances Natural Killer Cell Cytotoxicity Toward Cancer Cells. Front Cell Dev Biol 2019; 7:165. [PMID: 31457012 PMCID: PMC6700253 DOI: 10.3389/fcell.2019.00165] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 07/30/2019] [Indexed: 11/13/2022] Open
Abstract
Medicinal mushrooms have been used for centuries against cancer and infectious diseases. These positive biological effects of mushrooms are due in part to the indirect action of stimulating immune cells. The objective of the current study is to investigate the possible immunomodulatory effects of mushroom polysaccharides on NK cells against different cancer cells. In this current study, fruiting bodies isolated from cultured Pleurotus ostreatus were extracted and partially purified using DEAE ion-exchange chromatography. The activation action of the collected fractions on Natural Killer cells was quantified against three different cancer cell lines in the presence or absence of human recombinant IL2 using three different activation and co-culture conditions. The possible modes of action of mushroom polysaccharides against cancer cells were evaluated at the cellular and molecular levels. Our results indicate that P. ostreatus polysaccharides induced NK-cells cytotoxic effects against lung and breast cancer cells with the largest effect being against breast cancer cells (81.2%). NK cells activation for cytokine secretion was associated with upregulation of KIR2DL genes while the cytotoxic activation effect of NK cells against cancer cells correlated with NKG2D upregulation and induction of IFNγ and NO production. These cytotoxic effects were enhanced in the presence of IL2. Analysis of the most active partially purified fraction indicates that it is predominantly composed of glucans. These results indicate bioactive 6-linked glucans present in P. ostreatus extracts activate NK-cell cytotoxicity via regulation of activation and induction of IFNγ and NO. These studies establish a positive role for bioactive P. ostreatus polysaccharides in NK-cells activation and induction of an innate immune response against breast and lung cancer cells.
Collapse
Affiliation(s)
- Nehal M El-Deeb
- Biopharmaceutical Product Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-CITY), New Borg El-Arab City, Egypt.,Department of Immunology, Duke University Medical Center, Durham, NC, United States.,Department of Biology and Biotechnology Program, Indiana University, Bloomington, IN, United States
| | - Hala I El-Adawi
- Medical Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-CITY), New Borg El-Arab City, Egypt
| | - Abeer E Abd El-Wahab
- Medical Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-CITY), New Borg El-Arab City, Egypt
| | - Ahmed M Haddad
- Environmental Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-CITY), New Borg El-Arab City, Egypt
| | - Hesham A El Enshasy
- Institute of Bioproduct Development, Universiti Teknologi Malaysia, Johor Bahru, Malaysia.,Department of Bioprocess Engineering, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Johor Bahru, Malaysia
| | - You-Wen He
- Department of Immunology, Duke University Medical Center, Durham, NC, United States
| | - Keith R Davis
- Department of Biology and Biotechnology Program, Indiana University, Bloomington, IN, United States
| |
Collapse
|
25
|
The dichotomous function of interleukin-9 in cancer diseases. J Mol Med (Berl) 2019; 97:1377-1383. [PMID: 31396657 DOI: 10.1007/s00109-019-01826-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/09/2019] [Accepted: 07/25/2019] [Indexed: 12/20/2022]
Abstract
The pleiotropic function of the cytokine IL-9 is so far described in many inflammation processes and autoimmune diseases. But its role in cancer immunology is rather diverse as it can have a pro-tumorigenic function as well as anti-tumorigenic characteristics. In various disease models of cancer, this cytokine is involved in different signaling pathways triggering the expression of proteins involved in cell growth, migration, and transformation or repressing cells from the adaptive immune system to reject tumor growth. Additionally, there are even therapeutic approaches for IL-9 in cancer development. This review will give an overview of the various roles of IL-9 in different immune organs and cells and provide an insight in the current state of research in the IL-9-dependent cancer area.
Collapse
|
26
|
Hu CHD, Kosaka Y, Marcus P, Rashedi I, Keating A. Differential Immunomodulatory Effects of Human Bone Marrow-Derived Mesenchymal Stromal Cells on Natural Killer Cells. Stem Cells Dev 2019; 28:933-943. [DOI: 10.1089/scd.2019.0059] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Chia-Hsuan Donna Hu
- Cell Therapy Translational Research Laboratory, Princess Margaret Cancer Center, Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Yoko Kosaka
- Cell Therapy Translational Research Laboratory, Princess Margaret Cancer Center, Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Paula Marcus
- Cell Therapy Translational Research Laboratory, Princess Margaret Cancer Center, Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Iran Rashedi
- Cell Therapy Translational Research Laboratory, Princess Margaret Cancer Center, Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Armand Keating
- Cell Therapy Translational Research Laboratory, Princess Margaret Cancer Center, Krembil Research Institute, University Health Network, Toronto, ON, Canada
| |
Collapse
|
27
|
Chakraborty S, Kubatzky KF, Mitra DK. An Update on Interleukin-9: From Its Cellular Source and Signal Transduction to Its Role in Immunopathogenesis. Int J Mol Sci 2019; 20:E2113. [PMID: 31035677 PMCID: PMC6522352 DOI: 10.3390/ijms20092113] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 04/17/2019] [Accepted: 04/24/2019] [Indexed: 12/18/2022] Open
Abstract
Interleukin-9 (IL-9) is a pleiotropic cytokine and was primarily studied in the context of T helper 2 (TH2)-associated immuno-pathological conditions such as asthma and parasitic infections. There was a paradigm shift in the biology of IL-9 after the recent discovery of TH9 cells, a new subtype of TH cells which secrete IL-9 in copious amounts. This has resulted in renewed interest in this cytokine, which was neglected since discovery because it was considered it to be just another TH2 cytokine. Recent studies have shown that it has multiple cellular sources and is critically involved in the immune-pathogenesis of inflammatory diseases and in guarding immune tolerance. In this review, we will discuss its discovery, gene organization, cellular sources, and signaling pathways. Especially, we will give an update on the recent development regarding its relevance in the immune pathogenesis of human diseases.
Collapse
Affiliation(s)
- Sushmita Chakraborty
- Department of Transplant Immunology and Immunogenetics, All India Institute of Medical Sciences, New Delhi 1100029, India.
| | - Katharina F Kubatzky
- Zentrum für Infektiologie, Medizinische Mikrobiologie und Hygiene, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany.
| | - Dipendra Kumar Mitra
- Department of Transplant Immunology and Immunogenetics, All India Institute of Medical Sciences, New Delhi 1100029, India.
| |
Collapse
|
28
|
Lee JE, Zhu Z, Bai Q, Brady TJ, Xiao H, Wakefield MR, Fang Y. The Role of Interleukin-9 in Cancer. Pathol Oncol Res 2019; 26:2017-2022. [PMID: 31016637 DOI: 10.1007/s12253-019-00665-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 04/12/2019] [Indexed: 10/27/2022]
Abstract
Interluekin-9 (IL-9) is produced predominantly by helper T cells such as Th2 and Th9 cells. It normally functions through the activation of a JAK/STAT pathway and plays a critical role in immunity and the pathogenesis of cancer. In cancer, it yields different responses depending on the cancer cell line involved. This review is a summary of what is known about the involvement of IL-9 in various cancer cell lines as well as its role in immunity with a focus on allergic responses.
Collapse
Affiliation(s)
- Jacob E Lee
- Department of Microbiology, Immunology & Pathology, Des Moines University College of Osteopathic Medicine, Des Moines, Iowa, 50312, USA
| | - Ziwen Zhu
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO, USA
| | - Qian Bai
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO, USA
| | - Tucker J Brady
- Department of Microbiology, Immunology & Pathology, Des Moines University College of Osteopathic Medicine, Des Moines, Iowa, 50312, USA
| | - Huaping Xiao
- Department of Microbiology, Immunology & Pathology, Des Moines University College of Osteopathic Medicine, Des Moines, Iowa, 50312, USA.,The Affiliated Hospital of Xiangnan University, Chenzhou, Hunan, China
| | - Mark R Wakefield
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO, USA
| | - Yujiang Fang
- Department of Microbiology, Immunology & Pathology, Des Moines University College of Osteopathic Medicine, Des Moines, Iowa, 50312, USA. .,Department of Surgery, University of Missouri School of Medicine, Columbia, MO, USA.
| |
Collapse
|
29
|
Dayakar A, Chandrasekaran S, Kuchipudi SV, Kalangi SK. Cytokines: Key Determinants of Resistance or Disease Progression in Visceral Leishmaniasis: Opportunities for Novel Diagnostics and Immunotherapy. Front Immunol 2019; 10:670. [PMID: 31024534 PMCID: PMC6459942 DOI: 10.3389/fimmu.2019.00670] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Accepted: 03/12/2019] [Indexed: 12/31/2022] Open
Abstract
Leishmaniasis is a parasitic disease of humans, highly prevalent in parts of the tropics, subtropics, and southern Europe. The disease mainly occurs in three different clinical forms namely cutaneous, mucocutaneous, and visceral leishmaniasis (VL). The VL affects several internal organs and is the deadliest form of the disease. Epidemiology and clinical manifestations of VL are variable based on the vector, parasite (e.g., species, strains, and antigen diversity), host (e.g., genetic background, nutrition, diversity in antigen presentation and immunity) and the environment (e.g., temperature, humidity, and hygiene). Chemotherapy of VL is limited to a few drugs which is expensive and associated with profound toxicity, and could become ineffective due to the parasites developing resistance. Till date, there are no licensed vaccines for humans against leishmaniasis. Recently, immunotherapy has become an attractive strategy as it is cost-effective, causes limited side-effects and do not suffer from the downside of pathogens developing resistance. Among various immunotherapeutic approaches, cytokines (produced by helper T-lymphocytes) based immunotherapy has received great attention especially for drug refractive cases of human VL. Therefore, a comprehensive knowledge on the molecular interactions of immune cells or components and on cytokines interplay in the host defense or pathogenesis is important to determine appropriate immunotherapies for leishmaniasis. Here, we summarized the current understanding of a wide-spectrum of cytokines and their interaction with immune cells that determine the clinical outcome of leishmaniasis. We have also highlighted opportunities for the development of novel diagnostics and intervention therapies for VL.
Collapse
Affiliation(s)
| | | | - Suresh V Kuchipudi
- Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, United States
| | - Suresh K Kalangi
- Department of Biosciences, School of Sciences, Indrashil University, Mehsana, India
| |
Collapse
|
30
|
Yazdani R, Shapoori S, Rezaeepoor M, Sanaei R, Ganjalikhani-Hakemi M, Azizi G, Rae W, Aghamohammadi A, Rezaei N. Features and roles of T helper 9 cells and interleukin 9 in immunological diseases. Allergol Immunopathol (Madr) 2019; 47:90-104. [PMID: 29703631 DOI: 10.1016/j.aller.2018.02.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 01/28/2018] [Accepted: 02/09/2018] [Indexed: 02/08/2023]
Abstract
T helper 9 (TH9) cells are considered as newly classified helper T cells that have an important role in the regulation of immune responses. Since these cells preferentially produce IL-9, these cells are termed TH9 cells. Recently, the role of TH9 and its signature cytokine (IL-9) has been investigated in a wide range of diseases, including autoimmunity, allergy, infections, cancer and immunodeficiency. Herein, we review the most recent data concerning TH9 cells and IL-9 as well as their roles in disease. These insights suggest that TH9 cells are a future target for therapeutic intervention.
Collapse
|
31
|
Maywald M, Wang F, Rink L. Zinc supplementation plays a crucial role in T helper 9 differentiation in allogeneic immune reactions and non-activated T cells. J Trace Elem Med Biol 2018; 50:482-488. [PMID: 29439842 DOI: 10.1016/j.jtemb.2018.02.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 01/25/2018] [Accepted: 02/05/2018] [Indexed: 02/07/2023]
Abstract
T helper (Th) 9 cells play a critical role in immune-mediated diseases, including allergic airway inflammation, autoimmune diseases, and cancer development. Thus, the promotion or suppression of Th9 cell differentiation, transcriptional control, and function is very important for a healthy immune system. Interestingly, T cell maturation, differentiation and function are highly dependent on the individuals' zinc status. This is especially seen in zinc deficient individuals as in the elderly population often suffering of autoimmunity and increased incidence of infections. In this regard, this study examines the impact of zinc supplementation in pharmacological doses on Th9 differentiation in two in vitro models: 1) in mixed lymphocyte cultures (MLC) displaying allogeneic activated T cells in graft versus host disease, and 2) on non-activated resting T cells in peripheral blood mononuclear cells (PBMC). On the one hand, zinc supplementation significantly diminishes IL-4-induced Th9 differentiation in MLC thereby ameliorating this pro-inflammatory allogeneic immunoreaction. On the other hand, Th9 cells are induced in resting T cells in PBMC hence triggering the immunological defense. Thus, zinc supplementation can be considered as useful additive to dampen unwanted allogeneic immunoreactions. Moreover, the pro-inflammatory immune defense in non-reactive T cells can be strengthened, which is a frequent issue in the elderly population having a weakened immune response against invading pathogens.
Collapse
Affiliation(s)
- Martina Maywald
- Institute of Immunology, RWTH Aachen University Hospital, Pauwelsstr. 30, 52074 Aachen, Germany
| | - Fudi Wang
- Department of Nutrition, Precision Nutrition Innovation Center, School of Public Health, Zhengzhou University, Zhengzhou, China
| | - Lothar Rink
- Institute of Immunology, RWTH Aachen University Hospital, Pauwelsstr. 30, 52074 Aachen, Germany.
| |
Collapse
|
32
|
Qian J, Wang C, Wang B, Yang J, Wang Y, Luo F, Xu J, Zhao C, Liu R, Chu Y. The IFN-γ/PD-L1 axis between T cells and tumor microenvironment: hints for glioma anti-PD-1/PD-L1 therapy. J Neuroinflammation 2018; 15:290. [PMID: 30333036 PMCID: PMC6192101 DOI: 10.1186/s12974-018-1330-2] [Citation(s) in RCA: 176] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 10/09/2018] [Indexed: 01/07/2023] Open
Abstract
Background PD-L1 is an immune inhibitory receptor ligand that leads to T cell dysfunction and apoptosis by binding to its receptor PD-1, which works in braking inflammatory response and conspiring tumor immune evasion. However, in gliomas, the cause of PD-L1 expression in the tumor microenvironment is not yet clear. Besides, auxiliary biomarkers are urgently needed for screening possible responsive glioma patients for anti-PD-1/PD-L1 therapies. Methods The distribution of tumor-infiltrating T cells and PD-L1 expression was analyzed via immunofluorescence in orthotopic murine glioma model. The expression of PD-L1 in immune cell populations was detected by flow cytometry. Data excavated from TCGA LGG/GBM datasets and the Ivy Glioblastoma Atlas Project was used for in silico analysis of the correlation among genes and survival. Results The distribution of tumor-infiltrating T cells and PD-L1 expression, which parallels in murine orthotopic glioma model and human glioma microdissections, was interrelated. The IFN-γ level was positively correlated with PD-L1 expression in murine glioma. Further, IFN-γ induces PD-L1 expression on primary cultured microglia, bone marrow-derived macrophages, and GL261 glioma cells in vitro. Seven IFN-γ-induced genes, namely GBP5, ICAM1, CAMK2D, IRF1, SOCS3, CD44, and CCL2, were selected to calculate as substitute indicator for IFN-γ level. By combining the relative expression of the listed IFN-γ-induced genes, IFN-γ score was positively correlated with PD-L1 expression in different anatomic structures of human glioma and in glioma of different malignancies. Conclusion Our study identified the distribution of tumor-infiltrating T cells and PD-L1 expression in murine glioma model and human glioma samples. And we found that IFN-γ is an important cause of PD-L1 expression in the glioma microenvironment. Further, we proposed IFN-γ score aggregated from the expressions of the listed IFN-γ-induced genes as a complementary prognostic indicator for anti-PD-1/PD-L1 therapy. Electronic supplementary material The online version of this article (10.1186/s12974-018-1330-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jiawen Qian
- Department of Immunology, School of Basic Medical Sciences, and Institute of Biomedical Sciences, Fudan University, No. 138, Yi Xue Yuan Rd., Mail Box 226, Shanghai, 200032, People's Republic of China.,Biotherapy Research Center, Fudan University, Shanghai, 200032, China
| | - Chen Wang
- Department of Immunology, School of Basic Medical Sciences, and Institute of Biomedical Sciences, Fudan University, No. 138, Yi Xue Yuan Rd., Mail Box 226, Shanghai, 200032, People's Republic of China.,Biotherapy Research Center, Fudan University, Shanghai, 200032, China
| | - Bo Wang
- Department of Immunology, School of Basic Medical Sciences, and Institute of Biomedical Sciences, Fudan University, No. 138, Yi Xue Yuan Rd., Mail Box 226, Shanghai, 200032, People's Republic of China.,Biotherapy Research Center, Fudan University, Shanghai, 200032, China
| | - Jiao Yang
- Jiangsu Key Lab of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215000, China
| | - Yuedi Wang
- Department of Immunology, School of Basic Medical Sciences, and Institute of Biomedical Sciences, Fudan University, No. 138, Yi Xue Yuan Rd., Mail Box 226, Shanghai, 200032, People's Republic of China.,Biotherapy Research Center, Fudan University, Shanghai, 200032, China
| | - Feifei Luo
- Biotherapy Research Center, Fudan University, Shanghai, 200032, China
| | - Junying Xu
- Department of Immunology, School of Basic Medical Sciences, and Institute of Biomedical Sciences, Fudan University, No. 138, Yi Xue Yuan Rd., Mail Box 226, Shanghai, 200032, People's Republic of China.,Biotherapy Research Center, Fudan University, Shanghai, 200032, China
| | - Chujun Zhao
- Northfield Mount Hermon School, Mount Hermon, MA, 01354, USA
| | - Ronghua Liu
- Department of Immunology, School of Basic Medical Sciences, and Institute of Biomedical Sciences, Fudan University, No. 138, Yi Xue Yuan Rd., Mail Box 226, Shanghai, 200032, People's Republic of China
| | - Yiwei Chu
- Department of Immunology, School of Basic Medical Sciences, and Institute of Biomedical Sciences, Fudan University, No. 138, Yi Xue Yuan Rd., Mail Box 226, Shanghai, 200032, People's Republic of China. .,Biotherapy Research Center, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
33
|
Lin JX, Leonard WJ. The Common Cytokine Receptor γ Chain Family of Cytokines. Cold Spring Harb Perspect Biol 2018; 10:cshperspect.a028449. [PMID: 29038115 DOI: 10.1101/cshperspect.a028449] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Interleukin (IL)-2, IL-4, IL-7, IL-9, IL-15, and IL-21 form a family of cytokines based on their sharing the common cytokine receptor γ chain (γc), which was originally discovered as the third receptor component of the IL-2 receptor, IL-2Rγ. The IL2RG gene is located on the X chromosome and is mutated in humans with X-linked severe combined immunodeficiency (XSCID). The breadth of the defects in XSCID could not be explained solely by defects in IL-2 signaling, and it is now clear that γc is a shared receptor component of the six cytokines noted above, making XSCID a disease of defective cytokine signaling. Janus kinase (JAK)3 associates with γc, and JAK3-deficient SCID phenocopies XSCID, findings that served to stimulate the development of JAK3 inhibitors as immunosuppressants. γc family cytokines collectively control broad aspects of lymphocyte development, growth, differentiation, and survival, and these cytokines are clinically important, related to allergic and autoimmune diseases and cancer as well as immunodeficiency. In this review, we discuss the actions of these cytokines, their critical biological roles and signaling pathways, focusing mainly on JAK/STAT (signal transducers and activators of transcription) signaling, and how this information is now being used in clinical therapeutic efforts.
Collapse
Affiliation(s)
- Jian-Xin Lin
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892-1674
| | - Warren J Leonard
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892-1674
| |
Collapse
|
34
|
Geng W, Zhang W, Ma J. IL-9 exhibits elevated expression in osteonecrosis of femoral head patients and promotes cartilage degradation through activation of JAK-STAT signaling in vitro. Int Immunopharmacol 2018; 60:228-234. [DOI: 10.1016/j.intimp.2018.05.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 05/01/2018] [Accepted: 05/09/2018] [Indexed: 01/06/2023]
|
35
|
Shohan M, Elahi S, Shirzad H, Rafieian-Kopaei M, Bagheri N, Soltani E. Th9 Cells: Probable players in ulcerative colitis pathogenesis. Int Rev Immunol 2018; 37:192-205. [PMID: 29672174 DOI: 10.1080/08830185.2018.1457659] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
T lymphocytes represent an important part of adaptive immune system undertaking different functions to regulate immune responses. CD4+ T cells are the most important activator cells in inflammatory conditions. Depending on the type of induced cells and inflamed sites, expression and activity of different subtypes of helper T cells are changed. Recent studies have confirmed the existence of a new subset of helper T lymphocytes called Th9. Naive T cells can differentiate into Th9 subtypes if they are exposed simultaneously by interleukin (IL) 4 and transforming growth factor β and also secondary activation of a complicated network of transcription factors such as interferon regulatory factor 4 (IRF4) and Smads which are essential for adequate induction of this phenotype. Th9 cells specifically produce interleukin 9 and their probable roles in promoting intestinal inflammation are being investigated in human subjects and experimental models of ulcerative colitis (UC). Recently, infiltration of Th9 cells, overexpression of IL-9, and certain genes associated with Th9 differentiation have been demonstrated in inflammatory microenvironment of UC. Intestinal oversecretion of IL-9 protein is likely to break down epithelial barriers and compromise tolerance to certain commensal microorganisms which leads to inflammation. Th9 pathogenicity has not yet been adequately explored in UC and they are far from being considered as inflammatory cells in this milieu, therefore precise understanding the role of these newly identified cells in particular their potential role in gut pathogenesis may enable us to develop novel therapeutic approaches for inflammatory bowel disease. So, this article tries to discuss the latest knowledge on the above-mentioned field.
Collapse
Affiliation(s)
- Mojtaba Shohan
- a Department of Microbiology and Immunology , Faculty of Medicine, Shahrekord University of Medical Sciences , Shahrekord , Iran
| | - Shokrollah Elahi
- b Department of Dentistry , Department of Medical Microbiology and Immunology , Faculty of Medicine and Dentistry, University of Alberta , Edmonton , Alberta , Canada
| | - Hedayatollah Shirzad
- c Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences , Shahrekord , Iran
| | - Mahmoud Rafieian-Kopaei
- d Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences , Shahrekord , Iran
| | - Nader Bagheri
- a Department of Microbiology and Immunology , Faculty of Medicine, Shahrekord University of Medical Sciences , Shahrekord , Iran
| | - Emad Soltani
- a Department of Microbiology and Immunology , Faculty of Medicine, Shahrekord University of Medical Sciences , Shahrekord , Iran
| |
Collapse
|
36
|
Li X, Dong W, Nalin AP, Wang Y, Pan P, Xu B, Zhang Y, Tun S, Zhang J, Wang LS, He X, Caligiuri MA, Yu J. The natural product chitosan enhances the anti-tumor activity of natural killer cells by activating dendritic cells. Oncoimmunology 2018; 7:e1431085. [PMID: 29872557 DOI: 10.1080/2162402x.2018.1431085] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 01/17/2018] [Accepted: 01/18/2018] [Indexed: 10/18/2022] Open
Abstract
Natural products comprise an important class of biologically active molecules. Many of these compounds derived from natural sources exhibit specific physiologic or biochemical effects. An example of a natural product is chitosan, which is enriched in the shells of certain seafood that are frequently consumed worldwide. Like other natural products, chitosan has the potential for applications in clinical medicine and perhaps in cancer therapy. Toward this end, the immunomodulatory or anti-cancer properties of chitosan have yet to be reported. In this study, we discovered that chitosan enhanced the anti-tumor activity of natural killer (NK) cells by activating dendritic cells (DCs). In the presence of DCs, chitosan augmented IFN-γ production by human NK cells. Mechanistically, chitosan activated DCs to express pro-inflammatory cytokines such as interleukin (IL)-12 and IL-15, which in turn activated the STAT4 and NF-κB signaling pathways, respectively, in NK cells. Moreover, chitosan promoted NK cell survival, and also enhanced NK cell cytotoxicity against leukemia cells. Finally, a related in vivo study demonstrated that chitosan activated NK cells against B16F10 tumor cells in an immunocompetent syngeneic murine melanoma model. This effect was accompanied by in vivo upregulation of IL-12 and IL-15 in DCs, as well as increased IFN-γ production and cytolytic degranulation in NK cells. Collectively, our results demonstrate that chitosan activates DCs leading to enhanced capacity for immune surveillance by NK cells. We believe that our study has future clinical applications for chitosan in the prevention or treatment of cancer and infectious diseases.
Collapse
Affiliation(s)
- Xinxin Li
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA.,Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Wenjuan Dong
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Ansel P Nalin
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Yufeng Wang
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Pan Pan
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Bo Xu
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Yibo Zhang
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Steven Tun
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Jianying Zhang
- Center for Biostatistics, Department of Bioinformatics, The Ohio State University, Columbus, OH, USA
| | - Li-Shu Wang
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Xiaoming He
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Michael A Caligiuri
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA.,Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH, USA.,The James Cancer Hospital and Solove Research Institute, Columbus, OH, USA
| | - Jianhua Yu
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA.,Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH, USA.,The James Cancer Hospital and Solove Research Institute, Columbus, OH, USA
| |
Collapse
|
37
|
Abstract
IL-9 is a pleiotropic cytokine produced in different amounts by a wide variety of cells including mast cells, NKT cells, Th2, Th17, Treg, ILC2, and Th9 cells. Th9 cells are considered to be the main CD4+ T cells that produce IL-9. IL-9 exerts its effects on multiple types of cells and different tissues. To date, its main role has been found in the immune responses against parasites and pathogenesis of allergic diseases such as asthma and bronchial hyperreactivity. Additionally, it induces the proliferation of hematologic neoplasias, including Hodgkin's lymphoma in humans. However, IL-9 also has antitumor properties in solid tumors such as melanoma. The objective of this review is to describe IL-9, its function, sources, and methods of detection.
Collapse
Affiliation(s)
| | - Elizabeth Sanchez
- Department of Physiology, Universidad Nacional de Colombia, Bogotá, Colombia
| |
Collapse
|
38
|
Gong L, Huang Q, Fu A, Wu Y, Li Y, Xu X, Huang Y, Yu D, Li W. Spores of two probiotic Bacillus species enhance cellular immunity in BALB/C mice. Can J Microbiol 2018; 64:41-48. [DOI: 10.1139/cjm-2017-0373] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previous studies found that Bacillus subtilis BS02 and B. subtilis subsp. natto BS04 isolated in our laboratory could activate the immune response of murine macrophages in vitro. This study aims to investigate the effects of dietary supplementation with Bacillus species spores on the systemic cellular immune response in BALB/C mice. Results showed that both B. subtilis BS02 and B. subtilis natto BS04 enhanced the phagocytic function of the mononuclear phagocyte system (MPS) and the cytotoxicity of natural killer (NK) cells. In addition, B. subtilis BS02 could increase the respiratory burst activity of blood phagocytes. Furthermore, B. subtilis BS02 and B. subtilis natto BS04 increased the percentage of gamma-interferon-producing CD4+ cells and CD8+ T-cells, but only BS04 increased the percentage of CD3+ cells and CD3+ CD4+ cells in splenocytes. However, there were no effects on other subsets of splenic lymphocytes and mitogen-induced splenic lymphocyte proliferation. All data suggested that oral administration of B. subtilis BS02 or B. subtilis natto BS04 could significantly enhance cellular immunity in BALB/C mice by increasing phagocytic activity of MPS and cytotoxic activity of NK cells in a strain-specific manner.
Collapse
Affiliation(s)
- Li Gong
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Institute of Feed Science, College of Animal Science, Zhejiang University, 310058 Hangzhou, China
| | - Qin Huang
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Institute of Feed Science, College of Animal Science, Zhejiang University, 310058 Hangzhou, China
- College of Life Sciences and Ecology, Hainan Tropical Ocean University, Hainan Province, 572022 Sanya, China
| | - Aikun Fu
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Institute of Feed Science, College of Animal Science, Zhejiang University, 310058 Hangzhou, China
| | - YanPing Wu
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Institute of Feed Science, College of Animal Science, Zhejiang University, 310058 Hangzhou, China
| | - Yali Li
- School of Life Sciences, Hunan Normal University, 410006 Changsha, China
| | - Xiaogang Xu
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Institute of Feed Science, College of Animal Science, Zhejiang University, 310058 Hangzhou, China
| | - Yi Huang
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Institute of Feed Science, College of Animal Science, Zhejiang University, 310058 Hangzhou, China
- College of Animal Science and Technology, Guangxi University, 530005 Nanning, China
| | - Dongyou Yu
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Institute of Feed Science, College of Animal Science, Zhejiang University, 310058 Hangzhou, China
| | - Weifen Li
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Institute of Feed Science, College of Animal Science, Zhejiang University, 310058 Hangzhou, China
| |
Collapse
|
39
|
Keller CW, Freigang S, Lünemann JD. Reciprocal Crosstalk between Dendritic Cells and Natural Killer T Cells: Mechanisms and Therapeutic Potential. Front Immunol 2017; 8:570. [PMID: 28596767 PMCID: PMC5442181 DOI: 10.3389/fimmu.2017.00570] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 04/28/2017] [Indexed: 12/23/2022] Open
Abstract
Natural killer T cells carrying a highly conserved, semi-invariant T cell receptor (TCR) [invariant natural killer T (iNKT) cells] are a subset of unconventional T lymphocytes that recognize glycolipids presented by CD1d molecules. Although CD1d is expressed on a variety of hematopoietic and non-hematopoietic cells, dendritic cells (DCs) are key presenters of glycolipid antigen in vivo. When stimulated through their TCR, iNKT cells rapidly secrete copious amounts of cytokines and induce maturation of DCs, thereby facilitating coordinated stimulation of innate and adaptive immune responses. The bidirectional crosstalk between DCs and iNKT cells determines the functional outcome of iNKT cell-targeted responses and iNKT cell agonists are used and currently being evaluated as adjuvants to enhance the efficacy of antitumor immunotherapy. This review illustrates mechanistic underpinnings of reciprocal DCs and iNKT cell interactions and discusses how those can be harnessed for cancer therapy.
Collapse
Affiliation(s)
- Christian W Keller
- Institute of Experimental Immunology, Laboratory of Neuroinflammation, University of Zurich, Zurich, Switzerland
| | - Stefan Freigang
- Institute of Pathology, Laboratory of Immunopathology, University of Bern, Bern, Switzerland
| | - Jan D Lünemann
- Institute of Experimental Immunology, Laboratory of Neuroinflammation, University of Zurich, Zurich, Switzerland.,Department of Neurology, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
40
|
Wolf AS, Sherratt S, Riley EM. NK Cells: Uncertain Allies against Malaria. Front Immunol 2017; 8:212. [PMID: 28337195 PMCID: PMC5343013 DOI: 10.3389/fimmu.2017.00212] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Accepted: 02/15/2017] [Indexed: 12/24/2022] Open
Abstract
Until recently, studies of natural killer (NK) cells in infection have focused almost entirely on their role in viral infections. However, there is an increasing awareness of the potential for NK cells to contribute to the control of a wider range of pathogens, including intracellular parasites such as Plasmodium spp. Given the high prevalence of parasitic diseases in the developing world and the devastating effects these pathogens have on large numbers of vulnerable people, investigating interactions between NK cells and parasitized host cells presents the opportunity to reveal novel immunological mechanisms with the potential to aid efforts to eradicate these diseases. The capacity of NK cells to produce inflammatory cytokines early after malaria infection, as well as a possible role in direct cytotoxic killing of malaria-infected cells, suggests a beneficial impact of NK cells in this disease. However, NK cells may also contribute to overproduction of pro-inflammatory cytokines and the consequent immunopathology. As comparatively little is known about the role of NK cells later in the course of infection, and growing evidence suggests that heterogeneity in NK cell responses to malaria may be influenced by KIR/HLA interactions, a better understanding of the mechanisms by which NK cells might directly interact with parasitized cells may reveal a new role for these cells in the course of malaria infection.
Collapse
Affiliation(s)
- Asia-Sophia Wolf
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine , London , UK
| | - Samuel Sherratt
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine , London , UK
| | - Eleanor M Riley
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine , London , UK
| |
Collapse
|
41
|
Koch S, Sopel N, Finotto S. Th9 and other IL-9-producing cells in allergic asthma. Semin Immunopathol 2016; 39:55-68. [PMID: 27858144 DOI: 10.1007/s00281-016-0601-1] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 10/26/2016] [Indexed: 12/14/2022]
Abstract
Allergic asthma is a worldwide increasing chronic disease of the airways which affects more than 300 million people. It is associated with increased IgE, mast cell activation, airway hyperresponsiveness (AHR), mucus overproduction and remodeling of the airways. Previously, this pathological trait has been associated with T helper type 2 (Th2) cells. Recently, different CD4+ T cell subsets (Th17, Th9) as well as cells of innate immunity, like mast cells and innate lymphoid cells type 2 (ILC2s), which are all capable of producing the rediscovered cytokine IL-9, are known to contribute to this disease. Regarding Th9 cells, it is known that naïve T cells develop into IL-9-producing cells in the presence of interleukin-4 (IL-4) and transforming growth factor beta (TGFβ). Downstream of IL-4, several transcription factors like signal transducer and activator of transcription 6 (STAT6), interferon regulatory factor 4 (IRF4), GATA binding protein 3 (GATA3), basic leucine zipper transcription factor, ATF-like (BATF) and nuclear factor of activated T cells (NFAT) are activated. Additionally, the transcription factor PU.1, which is downstream of TGFβ signaling, also seems to be crucial in the development of Th9 cells. IL-9 is a pleiotropic cytokine that influences various distinct functions of different target cells such as T cells, B cells, mast cells and airway epithelial cells by activating STAT1, STAT3 and STAT5. Because of its pleiotropic functions, IL-9 has been demonstrated to be involved in several diseases, such as cancer, autoimmunity and other pathogen-mediated immune-regulated diseases. In this review, we focus on the role of Th9 and IL-9-producing cells in allergic asthma.
Collapse
Affiliation(s)
- Sonja Koch
- Department of Molecular Pneumology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Universitätsklinikum Erlangen, 91052, Erlangen, Germany
| | - Nina Sopel
- Department of Molecular Pneumology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Universitätsklinikum Erlangen, 91052, Erlangen, Germany
| | - Susetta Finotto
- Department of Molecular Pneumology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Universitätsklinikum Erlangen, 91052, Erlangen, Germany.
| |
Collapse
|
42
|
Maspi N, Abdoli A, Ghaffarifar F. Pro- and anti-inflammatory cytokines in cutaneous leishmaniasis: a review. Pathog Glob Health 2016; 110:247-260. [PMID: 27660895 DOI: 10.1080/20477724.2016.1232042] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Cutaneous leishmaniasis (CL) is caused by different species of the genus Leishmania. Pro- and anti-inflammatory cytokines play different roles in resistance/susceptibility and the immunopathogenesis of Leishmania infection. The balance and dynamic changes in cytokines may control or predict clinical outcome. T helper 1 (Th1) inflammatory cytokines (especially interferon-γ, tumor necrosis factor-α and interleukin-12) are the crucial factors in the initiation of protective immunity against L. major infection, whereas T helper 2 cytokines including IL-5, IL-4, and IL-13 facilitate the persistence of parasites by downregulating the Th1 immune response. On the other hand, aggravation of inflammatory reactions leads to collateral tissue damage and formation of ulcer. For this reason, immunity system such as T regulatory cells produce regulatory cytokines such as transforming growth factor-β and IL-10 to inhibit possible injures caused by increased inflammatory responses in infection site. In this article, we review the role of pro- and anti-inflammatory cytokines in the immunoprotection and immunopathology of CL.
Collapse
Affiliation(s)
- Nahid Maspi
- a Faculty of Medical Sciences, Department of Parasitology , Tarbiat Modares University , Tehran , Iran
| | - Amir Abdoli
- a Faculty of Medical Sciences, Department of Parasitology , Tarbiat Modares University , Tehran , Iran
| | - Fathemeh Ghaffarifar
- a Faculty of Medical Sciences, Department of Parasitology , Tarbiat Modares University , Tehran , Iran
| |
Collapse
|
43
|
Mansueto P, Vitale G, Di Lorenzo G, Rini GB, Mansueto S, Cillari E. Immunopathology of Leishmaniasis: An Update. Int J Immunopathol Pharmacol 2016; 20:435-45. [PMID: 17880757 DOI: 10.1177/039463200702000302] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Leishmaniasis represents a severe, increasing, public health problem. The perspective of its control is highly dependent on research progress, on therapeutic manipulations of the immune system, and on vaccine development. There is a correlation between the clinical outcome of Leishmania infection and the cytokine response profile. While a protective immune response against Leishmania has been clearly identified to be related to the influence of a type-1 response and IFN-γ production, the precise role of T helper (TH) 2 cytokines in non-healing infections requires further exploration. IL-4 and IL-13 (TH2 cytokines) can promote disease progression in cutaneous leishmaniasis, whereas IL-4 would appear to enhance protective type-1 responses in visceral leishmaniasis. Thus, the TH1/TH2 paradigm of resistance/susceptibility to intracellular parasites is probably an oversimplification of a more complicated network of regulatory/counter regulatory interactions. Moreover, the presence of antigen specific regulatory T cell subsets may provide an environment that contributes to the balance between TH1 and TH2 cells. Finally, the involvement of CD8+ T cells has been described, but the modality of their function in this kind of infection has not been so far elucidated.
Collapse
Affiliation(s)
- P Mansueto
- Dipartimento di Medicina Clinica e delle Patologie Emergenti, University of Palermo, Palermo, Italy
| | | | | | | | | | | |
Collapse
|
44
|
Natural killer cells enhance the immune surveillance of cancer. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2016. [DOI: 10.1016/j.ejmhg.2015.08.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
45
|
Hardcastle SL, Brenu EW, Johnston S, Nguyen T, Huth T, Ramos S, Staines D, Marshall-Gradisnik S. Serum Immune Proteins in Moderate and Severe Chronic Fatigue Syndrome/Myalgic Encephalomyelitis Patients. Int J Med Sci 2015; 12:764-72. [PMID: 26516304 PMCID: PMC4615236 DOI: 10.7150/ijms.12399] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 07/07/2015] [Indexed: 01/09/2023] Open
Abstract
Immunological dysregulation is present in Chronic Fatigue Syndrome/Myalgic Encephalomyelitis (CFS/ME), with recent studies also highlighting the importance of examining symptom severity. This research addressed this relationship between CFS/ME severity subgroups, assessing serum immunoglobulins and serum cytokines in severe and moderate CFS/ME patients. Participants included healthy controls (n= 22), moderately (n = 22) and severely (n=19) affected CFS/ME patients. The 1994 Fukuda Criteria defined CFS/ME and severity scales confirmed mobile and housebound CFS/ME patients as moderate and severe respectively. IL-1β was significantly reduced in severe compared with moderate CFS/ME patients. IL-6 was significantly decreased in moderate CFS/ME patients compared with healthy controls and severe CFS/ME patients. RANTES was significantly increased in moderate CFS/ME patients compared to severe CFS/ME patients. Serum IL-7 and IL-8 were significantly higher in the severe CFS/ME group compared with healthy controls and moderate CFS/ME patients. IFN-γ was significantly increased in severe CFS/ME patients compared with moderately affected patients. This was the first study to show cytokine variation in moderate and severe CFS/ME patients, with significant differences shown between CFS/ME symptom severity groups. This research suggests that distinguishing severity subgroups in CFS/ME research settings may allow for a more stringent analysis of the heterogeneous and otherwise inconsistent illness.
Collapse
Affiliation(s)
- Sharni Lee Hardcastle
- National Centre for Neuroimmunology and Emerging Diseases, 9.22, G40 Griffith Health Institute, School of Medical Science, Griffith University, Parklands Drive, 4222, Gold Coast, QLD, Australia
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Kostic M, Stojanovic I, Marjanovic G, Zivkovic N, Cvetanovic A. Deleterious versus protective autoimmunity in multiple sclerosis. Cell Immunol 2015; 296:122-32. [PMID: 25944389 DOI: 10.1016/j.cellimm.2015.04.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 04/18/2015] [Accepted: 04/22/2015] [Indexed: 10/23/2022]
Abstract
Multiple sclerosis (MS) is a chronic inflammatory and neurodegenerative disorder of central nervous system, in which myelin specific CD4(+) T cells have a central role in orchestrating pathological events involved in disease pathogenesis. There is compelling evidence that Th1, Th9 and Th17 cells, separately or in cooperation, could mediate deleterious autoimmune response in MS. However, the phenotype differences between Th cell subpopulations initially employed in MS pathogenesis are mainly reflected in the different patterns of inflammation introduction, which results in the development of characteristic pathological features (blood-brain barrier disruption, demyelination and neurodegeneration), clinically presented with MS symptoms. Although, autoimmunity was traditionally seen as deleterious, some studies indicated that autoimmunity mediated by Th2 cells and T regulatory cells could be protective by nature. The concept of protective autoimmunity in MS pathogenesis is still poorly understood, but could be of great importance in better understanding of MS immunology and therefore, creating better therapeutic strategies.
Collapse
Affiliation(s)
- Milos Kostic
- Department of Immunology, Medical Faculty, University of Nis, Blvd. Dr. Zorana Djindjica 81, 18000 Nis, Serbia.
| | - Ivana Stojanovic
- Department of Biochemistry, Medical Faculty, University of Nis, Blvd. Dr. Zorana Djindjica 81, 18000 Nis, Serbia
| | - Goran Marjanovic
- Department of Immunology, Medical Faculty, University of Nis, Blvd. Dr. Zorana Djindjica 81, 18000 Nis, Serbia
| | - Nikola Zivkovic
- Department of Pathology, Medical Faculty, University of Nis, Blvd. Dr. Zorana Djindjica 81, 18000 Nis, Serbia
| | - Ana Cvetanovic
- Clinic of Oncology, Clinical Centre, Blvd. Dr. Zorana Djindjica 48, 18000 Nis, Serbia
| |
Collapse
|
47
|
Jia L, Wu C. Differentiation, regulation and function of Th9 cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 841:181-207. [PMID: 25261208 DOI: 10.1007/978-94-017-9487-9_7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Naïve CD4(+) T cells are activated and differentiate to distinct lineages of T helper (Th) cells, which are involved in physiological and pathological processes by obtaining the potential to produce different lineage-specific cytokines that mediate adaptive immunity. In the past decade, our knowledge of Th cells has been significantly expanded with the findings of new lineages. Interleukin (IL)-9 producing T cells are recently identified. In consideration of the ability to preferentially secret IL-9, these cells are termed Th9 cells. Given the multiple function of IL-9, Th9 cells participate in the lesion of many diseases, such as allergic inflammation, tumor, and parasitosis. In this chapter, we will focus on the cytokines, co-stimulatory factors, and transcriptional signaling pathways, which regulate Th9 cells development as well as stability, plasticity, and the multiple roles of Th9 cells in vivo.
Collapse
Affiliation(s)
- Lei Jia
- Key Laboratory of Tropical Disease Control Research of Ministry of Education, Zhongshan School of Medicine, Institute of Immunology, Sun Yat-Sen University, 74th, Zhongshan 2nd Road, Guangzhou, 510080, China
| | | |
Collapse
|
48
|
Liou YH, Wang SW, Chang CL, Huang PL, Hou MS, Lai YG, Lee GA, Jiang ST, Tsai CY, Liao NS. Adipocyte IL-15 regulates local and systemic NK cell development. THE JOURNAL OF IMMUNOLOGY 2014; 193:1747-58. [PMID: 25009203 DOI: 10.4049/jimmunol.1400868] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
NK cell development and homeostasis require IL-15 produced by both hematopoietic and parenchymal cells. Certain hematopoietic IL-15 sources, such as macrophages and dendritic cells, are known, whereas the source of parenchymal IL-15 remains elusive. Using two types of adipocyte-specific Il15(-/-) mice, we identified adipocytes as a parenchymal IL-15 source that supported NK cell development nonredundantly. Both adipocyte-specific Il15(-/-) mice showed reduced IL-15 production specifically in the adipose tissue but impaired NK cell development in the spleen and liver in addition to the adipose tissue. We also found that the adipose tissue harbored NK progenitors as other niches (e.g. spleen) for NK cell development, and that NK cells derived from transplanted adipose tissue populated the recipient's spleen and liver. These findings suggest that adipocyte IL-15 contributes to systemic NK cell development by supporting NK cell development in the adipose tissue, which serves as a source of NK cells for other organs.
Collapse
Affiliation(s)
- Yae-Huei Liou
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 11490, Taiwan; and Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Szu-Wen Wang
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Chin-Ling Chang
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Po-Lin Huang
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Mau-Sheng Hou
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Yein-Gei Lai
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Gilbert Aaron Lee
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Si-Tse Jiang
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Ching-Yen Tsai
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Nan-Shih Liao
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 11490, Taiwan; and Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| |
Collapse
|
49
|
Nandagopal N, Ali AK, Komal AK, Lee SH. The Critical Role of IL-15-PI3K-mTOR Pathway in Natural Killer Cell Effector Functions. Front Immunol 2014; 5:187. [PMID: 24795729 PMCID: PMC4005952 DOI: 10.3389/fimmu.2014.00187] [Citation(s) in RCA: 148] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 04/08/2014] [Indexed: 11/25/2022] Open
Abstract
Natural killer (NK) cells were so named for their uniqueness in killing certain tumor and virus-infected cells without prior sensitization. Their functions are modulated in vivo by several soluble immune mediators; interleukin-15 (IL-15) being the most potent among them in enabling NK cell homeostasis, maturation, and activation. During microbial infections, NK cells stimulated with IL-15 display enhanced cytokine responses. This priming effect has previously been shown with respect to increased IFN-γ production in NK cells upon IL-12 and IL-15/IL-2 co-stimulation. In this study, we explored if this effect of IL-15 priming can be extended to various other cytokines and observed enhanced NK cell responses to stimulation with IL-4, IL-21, IFN-α, and IL-2 in addition to IL-12. Notably, we also observed elevated IFN-γ production in primed NK cells upon stimulation through the Ly49H activation receptor. Currently, the fundamental processes required for priming and whether these signaling pathways work collaboratively or independently for NK cell functions are poorly understood. To identify the key signaling events for NK cell priming, we examined IL-15 effects on NK cells in which the pathways emanating from IL-15 receptor activation were blocked with specific inhibitors. Our results demonstrate that the PI3K–AKT–mTOR pathway is critical for cytokine responses in IL-15 primed NK cells. Furthermore, this pathway is also implicated in a broad range of IL-15-induced NK cell effector functions such as proliferation and cytotoxicity. Likewise, NK cells from mice treated with rapamycin to block the mTOR pathway displayed defects in proliferation, and IFN-γ and granzyme B productions resulting in elevated viral burdens upon murine cytomegalovirus infection. Taken together, our data demonstrate the requirement of PI3K–mTOR pathway for enhanced NK cell functions by IL-15, thereby coupling the metabolic sensor mTOR to NK cell anti-viral responses.
Collapse
Affiliation(s)
- Neethi Nandagopal
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa , Ottawa, ON , Canada
| | - Alaa Kassim Ali
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa , Ottawa, ON , Canada
| | - Amandeep Kaur Komal
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa , Ottawa, ON , Canada
| | - Seung-Hwan Lee
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa , Ottawa, ON , Canada
| |
Collapse
|
50
|
Abstract
The mammalian intestine must manage to contain 100 trillion intestinal bacteria without inducing inappropriate immune responses to these microorganisms. The effects of the immune system on intestinal microorganisms are numerous and well-characterized, and recent research has determined that the microbiota influences the intestinal immune system as well. In this review, we first discuss the intestinal immune system and its role in containing and maintaining tolerance to commensal organisms. We next introduce a category of immune cells, the innate lymphoid cells, and describe their classification and function in intestinal immunology. Finally, we discuss the effects of the intestinal microbiota on innate lymphoid cells.
Collapse
|