1
|
Wińska P, Widło Ł, Senkara E, Koronkiewicz M, Cieśla JM, Krzyśko A, Skierka K, Cieśla J. Inhibition of Protein Kinase CK2 Affects Thymidylate Synthesis Cycle Enzyme Level and Distribution in Human Cancer Cells. Front Mol Biosci 2022; 9:847829. [PMID: 35281258 PMCID: PMC8914513 DOI: 10.3389/fmolb.2022.847829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
Thymidylate synthase (TS), dihydrofolate reductase (DHFR), and serine hydroxymethyltransferase (SHMT) constitute the thymidylate synthesis cycle providing thymidylate for DNA synthesis and repair. Our previous studies indicated that TS and DHFR are the substrates of protein kinase CK2. This work has been aimed at the elucidation of the effect of CK2 activity on cell cycle progression, thymidylate synthesis enzyme expression and localization, and the role of CK2-mediated TS phosphorylation in in vitro di- and trimolecular complex formation. The results were obtained by means of western blot, confocal microscopy, flow cytometry, quantitative polymerase chain reaction (QPCR), quartz crystal microbalance with dissipation monitoring (QCM-D), and microthermophoresis (MST). Our research indicates that CK2 inhibition does not change the levels of the transcripts; however, it affects the protein levels of DHFR and TS in both tested cell lines, i.e., A549 and CCRF-CEM, and the level of SHMT1 in CCRF-CEM cells. Moreover, we show that CK2-mediated phosphorylation of TS enables the protein (pTS) interaction with SHMT1 and leads to the stability of the tri-complex containing SHMT1, DHFR, and pTS. Our results suggest an important regulatory role of CK2-mediated phosphorylation for inter- and intracellular protein level of enzymes involved in the thymidylate biosynthesis cycle.
Collapse
Affiliation(s)
- Patrycja Wińska
- Chair of Drug and Cosmetics Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Warsaw, Poland
- *Correspondence: Patrycja Wińska, ; Joanna Cieśla,
| | - Łukasz Widło
- Chair of Drug and Cosmetics Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Warsaw, Poland
| | - Elżbieta Senkara
- Chair of Drug and Cosmetics Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Warsaw, Poland
| | | | - Jarosław M. Cieśla
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Alicja Krzyśko
- Chair of Drug and Cosmetics Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Warsaw, Poland
| | - Katarzyna Skierka
- Chair of Drug and Cosmetics Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Warsaw, Poland
| | - Joanna Cieśla
- Chair of Drug and Cosmetics Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Warsaw, Poland
- *Correspondence: Patrycja Wińska, ; Joanna Cieśla,
| |
Collapse
|
2
|
Saadane A, Du Y, Thoreson WB, Miyagi M, Lessieur EM, Kiser J, Wen X, Berkowitz BA, Kern TS. Photoreceptor Cell Calcium Dysregulation and Calpain Activation Promote Pathogenic Photoreceptor Oxidative Stress and Inflammation in Prodromal Diabetic Retinopathy. THE AMERICAN JOURNAL OF PATHOLOGY 2021; 191:1805-1821. [PMID: 34214506 PMCID: PMC8579242 DOI: 10.1016/j.ajpath.2021.06.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 05/20/2021] [Accepted: 06/15/2021] [Indexed: 12/13/2022]
Abstract
This study tested the hypothesis that diabetes promotes a greater than normal cytosolic calcium level in rod cells that activates a Ca2+-sensitive protease, calpain, resulting in oxidative stress and inflammation, two pathogenic factors of early diabetic retinopathy. Nondiabetic and 2-month diabetic C57Bl/6J and calpain1 knockout (Capn1-/-) mice were studied; subgroups were treated with a calpain inhibitor (CI). Ca2+ content was measured in photoreceptors using Fura-2. Retinal calpain expression was studied by quantitative RT-PCR and immunohistochemistry. Superoxide and expression of inflammatory proteins were measured using published methods. Proteomic analysis was conducted on photoreceptors isolated from untreated diabetic mice or treated daily with CI for 2 months. Cytosolic Ca2+ content was increased twofold in photoreceptors of diabetic mice as compared with nondiabetic mice. Capn1 expression increased fivefold in photoreceptor outer segments of diabetic mice. Pharmacologic inhibition or genetic deletion of Capn1 significantly suppressed diabetes-induced oxidative stress and expression of proinflammatory proteins in retina. Proteomics identified a protein (WW domain-containing oxidoreductase [WWOX]) whose expression was significantly increased in photoreceptors from mice diabetic for 2 months and was inhibited with CI. Knockdown of Wwox using specific siRNA in vitro inhibited increase in superoxide caused by the high glucose. These results suggest that reducing Ca2+ accumulation, suppressing calpain activation, and/or reducing Wwox up-regulation are novel targets for treating early diabetic retinopathy.
Collapse
Affiliation(s)
- Aicha Saadane
- Department of Ophthalmology, University of California, Irvine, Irvine, California.
| | - Yunpeng Du
- Department of Ophthalmology, University of California, Irvine, Irvine, California
| | - Wallace B Thoreson
- Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, Nebraska; Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska
| | - Masaru Miyagi
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio
| | - Emma M Lessieur
- Department of Ophthalmology, University of California, Irvine, Irvine, California
| | - Jianying Kiser
- Department of Ophthalmology, University of California, Irvine, Irvine, California
| | - Xiangyi Wen
- Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, Nebraska
| | - Bruce A Berkowitz
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan
| | - Timothy S Kern
- Department of Ophthalmology, University of California, Irvine, Irvine, California; Veterans Administration Medical Center Research Service, Long Beach, California
| |
Collapse
|
3
|
Regulation of stability and inhibitory activity of the tumor suppressor SEF through casein-kinase II-mediated phosphorylation. Cell Signal 2021; 86:110085. [PMID: 34280495 DOI: 10.1016/j.cellsig.2021.110085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 11/23/2022]
Abstract
Inflammation and cancer are intimately linked. A key mediator of inflammation is the transcription-factor NF-κB/RelA:p50. SEF (also known as IL-17RD) is a feedback antagonist of NF-κB/RelA:p50 that is emerging as an important link between inflammation and cancer. SEF acts as a buffer to prevent excessive NF-κB activity by sequestering NF-κB/RelA:p50 in the cytoplasm of unstimulated cells, and consequently attenuating the NF-κB response upon pro-inflammatory cytokine stimulation. SEF contributes to cancer progression also via modulating other signaling pathways, including those triggered by growth-factors. Despite its important role in human physiology and pathology, mechanisms that regulate SEF biochemical properties and inhibitory activity are unknown. Here we show that human SEF is an intrinsically labile protein that is stabilized via CK2-mediated phosphorylation, and identified the residues whom phosphorylation by CK2 stabilizes hSEF. Unlike endogenous SEF, ectopic SEF was rapidly degraded when overexpressed but was stabilized in the presence of excess CK2, suggesting a mechanism for limiting SEF levels depending upon CK2 processivity. Additionally, phosphorylation by CK2 potentiated hSef interaction with NF-κB in cell-free binding assays. Most importantly, we identified a CK2 phosphorylation site that was indispensable for SEF inhibition of pro-inflammatory cytokine signaling but was not required for SEF inhibition of growth-factor signaling. To our knowledge, this is the first demonstration of post-translational modifications that regulate SEF at multiple levels to optimize its inhibitory activity in a specific signaling context. These findings may facilitate the design of SEF variants for treating cytokine-dependent pathologies, including cancer and chronic inflammation.
Collapse
|
4
|
Chojnacki K, Wińska P, Karatsai O, Koronkiewicz M, Milner-Krawczyk M, Wielechowska M, Rędowicz MJ, Bretner M, Borowiecki P. Synthesis of Novel Acyl Derivatives of 3-(4,5,6,7-Tetrabromo-1 H-benzimidazol-1-yl)propan-1-ols-Intracellular TBBi-Based CK2 Inhibitors with Proapoptotic Properties. Int J Mol Sci 2021; 22:6261. [PMID: 34200807 PMCID: PMC8230474 DOI: 10.3390/ijms22126261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/01/2021] [Accepted: 06/07/2021] [Indexed: 12/09/2022] Open
Abstract
Protein kinase CK2 has been considered as an attractive drug target for anti-cancer therapy. The synthesis of N-hydroxypropyl TBBi and 2MeTBBi derivatives as well as their respective esters was carried out by using chemoenzymatic methods. Concomitantly with kinetic studies toward recombinant CK2, the influence of the obtained compounds on the viability of two human breast carcinoma cell lines (MCF-7 and MDA-MB-231) was evaluated using MTT assay. Additionally, an intracellular inhibition of CK2 as well as an induction of apoptosis in the examined cells after the treatment with the most active compounds were studied by Western blot analysis, phase-contrast microscopy and flow cytometry method. The results of the MTT test revealed potent cytotoxic activities for most of the newly synthesized compounds (EC50 4.90 to 32.77 µM), corresponding to their solubility in biological media. We concluded that derivatives with the methyl group decrease the viability of both cell lines more efficiently than their non-methylated analogs. Furthermore, inhibition of CK2 in breast cancer cells treated with the tested compounds at the concentrations equal to their EC50 values correlates well with their lipophilicity since derivatives with higher values of logP are more potent intracellular inhibitors of CK2 with better proapoptotic properties than their parental hydroxyl compounds.
Collapse
Affiliation(s)
- Konrad Chojnacki
- Chair of Drug and Cosmetics Biotechnology, Faculty of Chemistry, Warsaw University of Technology, 00-664 Warsaw, Poland; (K.C.); (M.M.-K.); (M.W.); (M.B.); (P.B.)
| | - Patrycja Wińska
- Chair of Drug and Cosmetics Biotechnology, Faculty of Chemistry, Warsaw University of Technology, 00-664 Warsaw, Poland; (K.C.); (M.M.-K.); (M.W.); (M.B.); (P.B.)
| | - Olena Karatsai
- Laboratory of Molecular Basis of Cell Motility, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland; (O.K.); (M.J.R.)
| | - Mirosława Koronkiewicz
- Department of Drug Biotechnology and Bioinformatics, National Medicines Institute, 00-725 Warsaw, Poland;
| | - Małgorzata Milner-Krawczyk
- Chair of Drug and Cosmetics Biotechnology, Faculty of Chemistry, Warsaw University of Technology, 00-664 Warsaw, Poland; (K.C.); (M.M.-K.); (M.W.); (M.B.); (P.B.)
| | - Monika Wielechowska
- Chair of Drug and Cosmetics Biotechnology, Faculty of Chemistry, Warsaw University of Technology, 00-664 Warsaw, Poland; (K.C.); (M.M.-K.); (M.W.); (M.B.); (P.B.)
| | - Maria Jolanta Rędowicz
- Laboratory of Molecular Basis of Cell Motility, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland; (O.K.); (M.J.R.)
| | - Maria Bretner
- Chair of Drug and Cosmetics Biotechnology, Faculty of Chemistry, Warsaw University of Technology, 00-664 Warsaw, Poland; (K.C.); (M.M.-K.); (M.W.); (M.B.); (P.B.)
| | - Paweł Borowiecki
- Chair of Drug and Cosmetics Biotechnology, Faculty of Chemistry, Warsaw University of Technology, 00-664 Warsaw, Poland; (K.C.); (M.M.-K.); (M.W.); (M.B.); (P.B.)
| |
Collapse
|
5
|
A reaction-diffusion network model predicts a dual role of Cactus/IκB to regulate Dorsal/NFκB nuclear translocation in Drosophila. PLoS Comput Biol 2021; 17:e1009040. [PMID: 34043616 PMCID: PMC8189453 DOI: 10.1371/journal.pcbi.1009040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 06/09/2021] [Accepted: 05/03/2021] [Indexed: 11/19/2022] Open
Abstract
Dorsal-ventral patterning of the Drosophila embryo depends on the NFκB superfamily transcription factor Dorsal (Dl). Toll receptor activation signals for degradation of the IκB inhibitor Cactus (Cact), leading to a ventral-to-dorsal nuclear Dl gradient. Cact is critical for Dl nuclear import, as it binds to and prevents Dl from entering the nuclei. Quantitative analysis of cact mutants revealed an additional Cact function to promote Dl nuclear translocation in ventral regions of the embryo. To investigate this dual Cact role, we developed a predictive model based on a reaction-diffusion regulatory network. This network distinguishes non-uniform Toll-dependent Dl nuclear import and Cact degradation, from the Toll-independent processes of Cact degradation and reversible nuclear-cytoplasmic Dl flow. In addition, it incorporates translational control of Cact levels by Dl. Our model successfully reproduces wild-type data and emulates the Dl nuclear gradient in mutant dl and cact allelic combinations. Our results indicate that the dual role of Cact depends on the dynamics of Dl-Cact trimers along the dorsal-ventral axis: In the absence of Toll activation, free Dl-Cact trimers retain Dl in the cytoplasm, limiting the flow of Dl into the nucleus; in ventral-lateral regions, Dl-Cact trimers are recruited by Toll activation into predominant signaling complexes and promote Dl nuclear translocation. Simulations suggest that the balance between Toll-dependent and Toll-independent processes are key to this dynamics and reproduce the full assortment of Cact effects. Considering the high evolutionary conservation of these pathways, our analysis should contribute to understanding NFκB/c-Rel activation in other contexts such as in the vertebrate immune system and disease. In Drosophila, Toll pathway establishes spatially distinct gene expression territories that define the embryonic dorsal-ventral axis. Toll activation leads to degradation of the IκB inhibitor Cactus, releasing the NFκB superfamily transcription factor Dorsal for nuclear entry. Recently, quantitative analysis of cact mutants revealed that Cact displays an additional function to promote Dl nuclear translocation in ventral regions of the embryo. To understand this novel activity, we developed a predictive theoretical model that shows that the kinetics of Dorsal-Cactus complex formation prior to their recruitment to Toll-signaling complexes is an essential regulatory hub. Cactus controls the balance between the recruitment of these complexes by active Toll receptor and association-dissociation events that generate free Dorsal for direct nuclear import.
Collapse
|
6
|
Cohen S. Role of calpains in promoting desmin filaments depolymerization and muscle atrophy. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118788. [DOI: 10.1016/j.bbamcr.2020.118788] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 06/21/2020] [Accepted: 06/23/2020] [Indexed: 12/15/2022]
|
7
|
Flavones and flavonols may have clinical potential as CK2 inhibitors in cancer therapy. Med Hypotheses 2020; 141:109723. [DOI: 10.1016/j.mehy.2020.109723] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 03/27/2020] [Accepted: 04/08/2020] [Indexed: 01/16/2023]
|
8
|
Li Q, Zong Y, Li K, Jie X, Hong J, Zhou X, Wu B, Li Z, Zhang S, Wu G, Meng R. Involvement of endothelial CK2 in the radiation induced perivascular resistant niche (PVRN) and the induction of radioresistance for non-small cell lung cancer (NSCLC) cells. Biol Res 2019; 52:22. [PMID: 30992075 PMCID: PMC6466699 DOI: 10.1186/s40659-019-0231-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 04/06/2019] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Tumor microenvironment (TME) plays a vital role in determining the outcomes of radiotherapy. As an important component of TME, vascular endothelial cells are involved in the perivascular resistance niche (PVRN), which is formed by inflammation or cytokine production induced by ionizing radiation (IR). Protein kinase CK2 is a constitutively active serine/threonine kinase which plays a vital role in cell proliferation and inflammation. In this study, we investigated the potential role of CK2 in PVRN after IR exposure. RESULT Specific CK2 inhibitors, Quinalizarin and CX-4945, were employed to effectively suppressed the kinase activity of CK2 in human umbilical vein endothelial cells (HUVECs) without affecting their viability. Results showing that conditioned medium from IR-exposed HUVECs increased cell viability of A549 and H460 cells, and the pretreatment of CK2 inhibitors slowed down such increment. The secretion of IL-8 and IL-6 in HUVECs was induced after exposure with IR, but significantly inhibited by the addition of CK2 inhibitors. Furthermore, IR exposure elevated the nuclear phosphorylated factor-κB (NF-κB) p65 expression in HUVECs, which was a master factor regulating cytokine production. But when pretreated with CK2 inhibitors, such elevation was significantly suppressed. CONCLUSION This study indicated that protein kinase CK2 is involved in the key process of the IR induced perivascular resistant niche, namely cytokine production, by endothelial cells, which finally led to radioresistance of non-small cell lung cancer cells. Thus, the inhibition of CK2 may be a promising way to improve the outcomes of radiation in non-small cell lung cancer cells.
Collapse
Affiliation(s)
- Qianwen Li
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yan Zong
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ke Li
- Pharmacy Department, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiaohua Jie
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jiaxin Hong
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiaoshu Zhou
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Bian Wu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zhenyu Li
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Sheng Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Gang Wu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Rui Meng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
9
|
Randriamboavonjy V, Kyselova A, Fleming I. Redox Regulation of Calpains: Consequences on Vascular Function. Antioxid Redox Signal 2019; 30:1011-1026. [PMID: 30266074 DOI: 10.1089/ars.2018.7607] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
SIGNIFICANCE Calpains (CAPNs) are a family of calcium-activated cysteine proteases. The ubiquitous isoforms CAPN1 and CAPN2 have been involved in the maintenance of vascular integrity, but uncontrolled CAPN activation plays a role in the pathogenesis of vascular diseases. Recent Advances: It is well accepted that chronic and acute overproduction of reactive oxygen species (ROS) is associated with the development of vascular diseases. There is increasing evidence that ROS can also affect the CAPN activity, suggesting CAPN as a potential link between oxidative stress and vascular disease. CRITICAL ISSUES The physiopathological relevance of ROS in regulating the CAPN activity is not fully understood but seems to involve direct effects on CAPNs, redox modifications of CAPN substrates, as well as indirect effect on CAPNs via changes in Ca2+ levels. Finally, CAPNs can also stimulate ROS production; however, data showing in which context ROS are the causes or the consequences of CAPN activation are missing. FUTURE DIRECTIONS Detailed characterization of the molecular mechanisms underlying the regulation of the different members of the CAPN system by specific ROS would help understanding the pathophysiological role of CAPN in the modulation of the vascular function. Moreover, given that CAPNs have been found in different cellular compartments such as mitochondria and nucleus as well as in the extracellular space, identification of new CAPN targets as well as their functional consequences would add new insights in the function of these enigmatic proteases.
Collapse
Affiliation(s)
- Voahanginirina Randriamboavonjy
- 1 Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany.,2 German Center of Cardiovascular Research (DZHK), Partner Site Rhein-Main, Frankfurt am Main, Germany
| | - Anastasia Kyselova
- 1 Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany.,2 German Center of Cardiovascular Research (DZHK), Partner Site Rhein-Main, Frankfurt am Main, Germany
| | - Ingrid Fleming
- 1 Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany.,2 German Center of Cardiovascular Research (DZHK), Partner Site Rhein-Main, Frankfurt am Main, Germany
| |
Collapse
|
10
|
Aweida D, Rudesky I, Volodin A, Shimko E, Cohen S. GSK3-β promotes calpain-1-mediated desmin filament depolymerization and myofibril loss in atrophy. J Cell Biol 2018; 217:3698-3714. [PMID: 30061109 PMCID: PMC6168250 DOI: 10.1083/jcb.201802018] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 06/06/2018] [Accepted: 07/16/2018] [Indexed: 12/16/2022] Open
Abstract
Phosphorylation by protein kinase GSK3-β is essential for desmin filament depolymerization by calpain-1 and the resulting myofibril destruction in muscle atrophy. Myofibril breakdown is a fundamental cause of muscle wasting and inevitable sequel of aging and disease. We demonstrated that myofibril loss requires depolymerization of the desmin cytoskeleton, which is activated by phosphorylation. Here, we developed a mass spectrometry–based kinase-trap assay and identified glycogen synthase kinase 3-β (GSK3-β) as responsible for desmin phosphorylation. GSK3-β inhibition in mice prevented desmin phosphorylation and depolymerization and blocked atrophy upon fasting or denervation. Desmin was phosphorylated by GSK3-β 3 d after denervation, but depolymerized only 4 d later when cytosolic Ca2+ levels rose. Mass spectrometry analysis identified GSK3-β and the Ca2+-specific protease, calpain-1, bound to desmin and catalyzing its disassembly. Consistently, calpain-1 down-regulation prevented loss of phosphorylated desmin and blocked atrophy. Thus, phosphorylation of desmin filaments by GSK3-β is a key molecular event required for calpain-1–mediated depolymerization, and the subsequent myofibril destruction. Consequently, GSK3-β represents a novel drug target to prevent myofibril breakdown and atrophy.
Collapse
Affiliation(s)
- Dina Aweida
- Faculty of Biology, Technion Institute of Technology, Haifa, Israel
| | - Inga Rudesky
- Faculty of Biology, Technion Institute of Technology, Haifa, Israel
| | | | - Eitan Shimko
- Faculty of Biology, Technion Institute of Technology, Haifa, Israel
| | - Shenhav Cohen
- Faculty of Biology, Technion Institute of Technology, Haifa, Israel
| |
Collapse
|
11
|
Kidney Androgen-Regulated Protein (KAP) Transgenic Mice Are Protected Against High-Fat Diet Induced Metabolic Syndrome. Sci Rep 2017; 7:16102. [PMID: 29170528 PMCID: PMC5701062 DOI: 10.1038/s41598-017-16487-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 11/14/2017] [Indexed: 12/18/2022] Open
Abstract
Metabolic Syndrome (MS) is reaching epidemic proportions with significant social and economical burden worldwide. Since the molecular basis of MS remains poorly defined, we investigated the impact of KAP, a kidney specific androgen-regulated gene, in the development of high fat-diet (hfd)-induced MS. Tg mice overexpressing KAP specifically in proximal tubule cells of the kidney exhibited reduced body weight and lower liver and adipose tissue weight compared to control littermates when fed a hfd. KAP Tg mice showed diminished adipocyte hypertrophy and reduced hepatic steatosis, significantly correlating with expression of relevant molecular markers and lower lipid content in liver. KAP transgenic were protected from hfd-induced insulin resistance, increased blood pressure and exhibited lower IL-6 serum levels and diminished expression of inflammatory markers in the adipose. Moreover, KAP was localized in the secretory pathway of proximal tubule cells and it is released to the extracellular media, preventing IL-6 induction and STAT-3 activation upon TNFα stimulation. We conclude that KAP, which might act as a hormone-like product in extra-renal tissues, protects Tg mice against hfd-induced MS by preventing inflammatory related events that are mediated, in part, through the IL-6 pathway.
Collapse
|
12
|
Li Z, Li M, Du M, Shen QW, Zhang D. Dephosphorylation enhances postmortem degradation of myofibrillar proteins. Food Chem 2017; 245:233-239. [PMID: 29287365 DOI: 10.1016/j.foodchem.2017.09.108] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 09/12/2017] [Accepted: 09/20/2017] [Indexed: 11/19/2022]
Abstract
Protein degradation is primarily responsible for postmortem meat tenderization, which might be affected by phosphorylation. The objective of this study was to investigate the effect of phosphorylation on myofibrillar proteins degradation in muscle during postmortem. Here we modulated the phosphorylation status of protein by protein kinase inhibitor and phosphatase inhibitor, and the effect of these inhibitors on myofibrillar protein degradation was evaluated. Generally, myofibril fragmentation index of samples with lower phosphorylation level was higher. Troponin T and heat shock protein 27 were degraded faster in protein kinase inhibited (low phosphorylation level) muscle, compared with the other two groups, while the degradation of desmin was not affected by inhibitors. Meanwhile, myosin heavy chain, actin and tropomyosin showed limited degradation in postmortem muscle. This study showed that dephosphorylation enhances the degradation of some myofibrillar proteins, indicating that protein phosphorylation may play an important role in postmortem meat tenderization.
Collapse
Affiliation(s)
- Zheng Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, PR China.
| | - Meng Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, PR China
| | - Manting Du
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, PR China
| | - Qingwu W Shen
- College of Food Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, PR China
| | - Dequan Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, PR China.
| |
Collapse
|
13
|
Cardoso MA, Fontenele M, Lim B, Bisch PM, Shvartsman SY, Araujo HM. A novel function for the IκB inhibitor Cactus in promoting Dorsal nuclear localization and activity in the Drosophila embryo. Development 2017; 144:2907-2913. [PMID: 28705899 DOI: 10.1242/dev.145557] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 07/05/2017] [Indexed: 12/29/2022]
Abstract
The evolutionarily conserved Toll signaling pathway controls innate immunity across phyla and embryonic patterning in insects. In the Drosophila embryo, Toll is required to establish gene expression domains along the dorsal-ventral axis. Pathway activation induces degradation of the IκB inhibitor Cactus, resulting in a ventral-to-dorsal nuclear gradient of the NFκB effector Dorsal. Here, we investigate how cactus modulates Toll signals through its effects on the Dorsal gradient and on Dorsal target genes. Quantitative analysis using a series of loss- and gain-of-function conditions shows that the ventral and lateral aspects of the Dorsal gradient can behave differently with respect to Cactus fluctuations. In lateral and dorsal embryo domains, loss of Cactus allows more Dorsal to translocate to the nucleus. Unexpectedly, cactus loss-of-function alleles decrease Dorsal nuclear localization ventrally, where Toll signals are high. Overexpression analysis suggests that this ability of Cactus to enhance Toll stems from the mobilization of a free Cactus pool induced by the Calpain A protease. These results indicate that Cactus acts to bolster Dorsal activation, in addition to its role as a NFκB inhibitor, ensuring a correct response to Toll signals.
Collapse
Affiliation(s)
- Maira Arruda Cardoso
- Instituto de Ciências Biomédicas, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil.,Instituto de Biofísica Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil
| | - Marcio Fontenele
- Instituto de Ciências Biomédicas, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil.,Institute of Molecular Entomology, Brazil
| | - Bomyi Lim
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Paulo Mascarello Bisch
- Instituto de Biofísica Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil
| | - Stanislav Y Shvartsman
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Helena Marcolla Araujo
- Instituto de Ciências Biomédicas, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil .,Instituto de Biofísica Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil
| |
Collapse
|
14
|
Yamaguchi R, Sakamoto A, Yamamoto T, Narahara S, Sugiuchi H, Hisada A, Katoh T, Yamaguchi Y. Di-(2-ethylhexyl) phthalate suppresses IL-12p40 production by GM-CSF-dependent macrophages via the PPARα/TNFAIP3/TRAF6 axis after lipopolysaccharide stimulation. Hum Exp Toxicol 2017; 37:596-607. [PMID: 28673093 DOI: 10.1177/0960327117714038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Activation of peroxisome proliferator-activated receptor α (PPARα) by di-(2-ethylhexyl) phthalate (DEHP) has an anti-inflammatory effect. This study investigated the potential combined influence of PPARα, tumor necrosis factor α-induced protein 3 (TNFAIP3/A20), and tumor necrosis factor receptor-associated factor 6 (TRAF6) on interleukin (IL)-12p40 production by macrophages exposed to DEHP and stimulated with lipopolysaccharide (LPS). LPS upregulated IL-12p40 expression by granulocyte-macrophage colony-stimulating factor-dependent macrophages (on day 9 of culture), whereas adding DEHP to cultures significantly attenuated the response of IL-12p40 to LPS stimulation. PPARα protein was also reduced by DEHP. Interestingly, transfection of macrophages with small interfering RNA (siRNA) duplexes for PPARα, TNFAIP3/A20, or dual oxidase 2 restored the response of IL-12p40 protein to LPS stimulation in the presence of DEHP. siRNAs for various protein kinase Cs (PKCs) (α, β, γ, or δ) also restored IL-12p40 production by macrophages exposed to LPS and DEHP. While LPS upregulated both IL-12p40 and TNFAIP3/A20 production, adding DEHP to cultures dramatically reduced IL-12p40 and TNFAIP3/A20 levels. Silencing of PKCα reduced TNFAIP3/A20 production, whereas PKCγ siRNA (but not PKCβ or δ siRNA) significantly increased TNFAIP3/A20. TRAF6 was also attenuated by macrophages with DEHP. The PPARα/TNFAIP3/TRAF6 axis may have an important role in the mechanism through which DEHP reduces IL-12p40 production by LPS-stimulated macrophages.
Collapse
Affiliation(s)
- R Yamaguchi
- 1 Department of Public Health, Faculty of Life Sciences, Kumamoto University School of Medicine, Kumamoto, Japan.,2 Graduate School of Medical Science, Kumamoto Health Science University, Kumamoto, Japan
| | - A Sakamoto
- 2 Graduate School of Medical Science, Kumamoto Health Science University, Kumamoto, Japan
| | - T Yamamoto
- 2 Graduate School of Medical Science, Kumamoto Health Science University, Kumamoto, Japan
| | - S Narahara
- 2 Graduate School of Medical Science, Kumamoto Health Science University, Kumamoto, Japan
| | - H Sugiuchi
- 2 Graduate School of Medical Science, Kumamoto Health Science University, Kumamoto, Japan
| | - A Hisada
- 1 Department of Public Health, Faculty of Life Sciences, Kumamoto University School of Medicine, Kumamoto, Japan
| | - T Katoh
- 1 Department of Public Health, Faculty of Life Sciences, Kumamoto University School of Medicine, Kumamoto, Japan
| | - Y Yamaguchi
- 2 Graduate School of Medical Science, Kumamoto Health Science University, Kumamoto, Japan
| |
Collapse
|
15
|
Epidermal growth factor promotes cyclin G2 degradation via calpain-mediated proteolysis in gynaecological cancer cells. PLoS One 2017. [PMID: 28640887 PMCID: PMC5481008 DOI: 10.1371/journal.pone.0179906] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Cyclin G2 (CCNG2) is an atypical cyclin that functions to inhibit cell cycle progression and is often dysregulated in human cancers. We have previously shown that cyclin G2 is highly unstable and can be degraded through the ubiquitin/proteasome pathway. Furthermore, cyclin G2 contains a PEST domain, which has been suggested to act as a signal for degradation by multiple proteases. In this study, we determined if calpains, a family of calcium-dependent proteases, are also involved in cyclin G2 degradation. The addition of calpain inhibitors or silencing of calpain expression by siRNAs strongly enhanced cyclin G2 levels. On the other hand, incubation of cell lysates with purified calpains or increasing the intracellular calcium concentration resulted in a decrease in cyclin G2 levels. Interestingly, the effect of calpain was found to be dependent on the phosphorylation of cyclin G2. Using a kinase inhibitor library, we found that Epidermal Growth Factor (EGF) Receptor is involved in cyclin G2 degradation and treatment with its ligand, EGF, induced cyclin G2 degradation. In addition, the presence of the PEST domain is necessary for calpain and EGF action. When the PEST domain was completely removed, calpain or EGF treatment failed to trigger degradation of cyclin G2. Taken together, these novel findings demonstrate that EGF-induced, calpain-mediated proteolysis contributes to the rapid destruction of cyclin G2 and that the PEST domain is critical for EGF/calpain actions.
Collapse
|
16
|
Nuñez de Villavicencio-Diaz T, Rabalski AJ, Litchfield DW. Protein Kinase CK2: Intricate Relationships within Regulatory Cellular Networks. Pharmaceuticals (Basel) 2017; 10:ph10010027. [PMID: 28273877 PMCID: PMC5374431 DOI: 10.3390/ph10010027] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 02/25/2017] [Accepted: 03/02/2017] [Indexed: 01/20/2023] Open
Abstract
Protein kinase CK2 is a small family of protein kinases that has been implicated in an expanding array of biological processes. While it is widely accepted that CK2 is a regulatory participant in a multitude of fundamental cellular processes, CK2 is often considered to be a constitutively active enzyme which raises questions about how it can be a regulatory participant in intricately controlled cellular processes. To resolve this apparent paradox, we have performed a systematic analysis of the published literature using text mining as well as mining of proteomic databases together with computational assembly of networks that involve CK2. These analyses reinforce the notion that CK2 is involved in a broad variety of biological processes and also reveal an extensive interplay between CK2 phosphorylation and other post-translational modifications. The interplay between CK2 and other post-translational modifications suggests that CK2 does have intricate roles in orchestrating cellular events. In this respect, phosphorylation of specific substrates by CK2 could be regulated by other post-translational modifications and CK2 could also have roles in modulating other post-translational modifications. Collectively, these observations suggest that the actions of CK2 are precisely coordinated with other constituents of regulatory cellular networks.
Collapse
Affiliation(s)
| | - Adam J Rabalski
- Department of Biochemistry, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada.
| | - David W Litchfield
- Department of Biochemistry, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada.
- Department of Oncology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada.
| |
Collapse
|
17
|
Li Z, Li X, Gao X, Shen QW, Du M, Zhang D. Phosphorylation prevents in vitro myofibrillar proteins degradation by μ-calpain. Food Chem 2016; 218:455-462. [PMID: 27719935 DOI: 10.1016/j.foodchem.2016.09.048] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 09/04/2016] [Accepted: 09/06/2016] [Indexed: 11/15/2022]
Abstract
Myofibrillar proteins degradation contributes to meat tenderisation during post-mortem ageing. Protein phosphorylation has been revealed to be associated with meat tenderness in recent years. This study was undertaken to determine the impact of myofibrillar proteins phosphorylation on the degradation susceptibility by μ-calpain. Myofibrillar proteins were first incubated with protein kinase A (PKA) or alkaline phosphatase (AP) to increase or decrease the phosphorylation level, following μ-calpain hydrolysis. Myosin heavy chain, actin, desmin and troponin T showed different levels of degradation in control, AP and PKA groups under different Ca2+ concentrations. Generally, more degradation products were detected with the increase of Ca2+ concentration. Compared to the control, the protein degradation was higher in AP-treated group and lower in PKA-treated group. This study shows that phosphorylation prevents proteolytic susceptibility of myofibrillar proteins to degradation by μ-calpain, indicating that protein phosphorylation plays an important role in meat tenderisation during post-mortem ageing.
Collapse
Affiliation(s)
- Zheng Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, PR China.
| | - Xin Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, PR China
| | - Xing Gao
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, PR China
| | - Qingwu W Shen
- College of Food Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, PR China
| | - Manting Du
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, PR China
| | - Dequan Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, PR China.
| |
Collapse
|
18
|
DUBOIS NADEGE, WILLEMS MARIE, NGUYEN-KHAC MINHTUAN, KROONEN JEROME, GOFFART NICOLAS, DEPREZ MANUEL, BOURS VINCENT, ROBE PIERREA. Constitutive activation of casein kinase 2 in glioblastomas: Absence of class restriction and broad therapeutic potential. Int J Oncol 2016; 48:2445-52. [DOI: 10.3892/ijo.2016.3490] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 03/18/2016] [Indexed: 11/06/2022] Open
|
19
|
Wu Y, Cruz LN, Szestak T, Laing G, Molyneux GR, Garcia CRS, Craig AG. An external sensing system in Plasmodium falciparum-infected erythrocytes. Malar J 2016; 15:103. [PMID: 26893139 PMCID: PMC4759932 DOI: 10.1186/s12936-016-1144-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 02/04/2016] [Indexed: 11/17/2022] Open
Abstract
Background A number of experiments have previously indicated that Plasmodium falciparum-infected erythrocytes (pRBC) were able to sense host environment. The basis of this ability to detect external cues is not known but in screening signalling molecules from pRBC using commercial antibodies, a 34 kDa phosphorylated molecule that possesses such ability was identified. Methods The pRBC were exposed to different culture conditions and proteins were extracted for 1D or 2D gel electrophoresis followed by Western blot. The localization of 34 kDa protein was examined by biochemical fractionation followed by Western blot. High-resolution mass spectrometric analysis of immune precipitants was used to identify this protein and real-time quantitative reverse transcriptase polymerase chain reaction was used for detecting mRNA expression level. Results The 34 kDa protein was called PfAB4 has immediate responses (dephosphorylation and rapid turnover) to host environmental stimuli such as serum depletion, osmolality change and cytokine addition. PfAB4 is expressed constitutively throughout the erythrocytic lifecycle with dominant expression in trophozoites 30 h post-infection. Tumour necrosis factor (TNF) treatment induced a transient detectable dephosphorylation of PfAB4 in the ItG strain (2 min after addition) and the level of expression and phosphorylation returned to normal within 1–2 h. PfAB4 localized dominantly in pRBC cytoplasm, with a transient shift to the nucleus under TNF stimulation as shown by biochemical fractionation. High-resolution mass spectrometric analysis of immune precipitants of AB4 antibodies revealed a 34 kDa PfAB4 component as a mixture of proliferating cellular nuclear antigen-1 (PCNA1) and exported protein-2 (EXP2), along with a small number of other inconsistently identified peptides. Different parasite strains have different PfAB4 expression levels, but no significant association between mRNA and PfAB4 levels was seen, indicating that the differences may be at the post-transcriptional, presumably phosphorylation, level. A triple serine phosphorylated PCNA1 peptide was identified from the PfAB4 high expression strain only, providing further evidence that the identity of PfAB4 is PCNA1 in P.falciparum. Conclusion A protein element in the human malaria parasite that responds to external cues, including the pro-inflammatory cytokine TNF have been discovered. Treatment results in a transient change in phosphorylation status of the response element, which also migrates from the parasite cytoplasm to the nucleus. The response element has been identified as PfPCNA1. This sensing response could be regulated by a parasite checkpoint system and be analogous to bacterial two-component signal transduction systems. Electronic supplementary material The online version of this article (doi:10.1186/s12936-016-1144-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yang Wu
- Department of Parasitology, Liverpool School of Tropical Medicine, Liverpool, UK.
| | - Laura N Cruz
- Department of Physiology, Instituto de Biociências, Universidade de São Paulo, São Paulo, São Paulo, Brazil.
| | - Tadge Szestak
- Department of Parasitology, Liverpool School of Tropical Medicine, Liverpool, UK.
| | - Gavin Laing
- Department of Parasitology, Liverpool School of Tropical Medicine, Liverpool, UK.
| | - Gemma R Molyneux
- Department of Parasitology, Liverpool School of Tropical Medicine, Liverpool, UK.
| | - Celia R S Garcia
- Department of Physiology, Instituto de Biociências, Universidade de São Paulo, São Paulo, São Paulo, Brazil.
| | - Alister G Craig
- Department of Parasitology, Liverpool School of Tropical Medicine, Liverpool, UK.
| |
Collapse
|
20
|
Kharatmal SB, Singh JN, Sharma SS. Calpain inhibitor, MDL 28170 confer electrophysiological, nociceptive and biochemical improvement in diabetic neuropathy. Neuropharmacology 2015; 97:113-21. [DOI: 10.1016/j.neuropharm.2015.05.040] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 05/14/2015] [Accepted: 05/27/2015] [Indexed: 10/23/2022]
|
21
|
Buffolo M, Batista Possidonio AC, Mermelstein C, Araujo H. A conserved role for calpains during myoblast fusion. Genesis 2015; 53:417-30. [DOI: 10.1002/dvg.22870] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 06/17/2015] [Accepted: 06/25/2015] [Indexed: 11/06/2022]
Affiliation(s)
- Marcio Buffolo
- Laboratório de Diferenciação Muscular e Citoesqueleto, Instituto De Ciências Biomédicas, Universidade Federal Do Rio De Janeiro; Rio De Janeiro Brazil
- Laboratório de Biologia Molecular do Desenvolvimento, Instituto De Ciências Biomédicas, Universidade Federal Do Rio De Janeiro; Rio De Janeiro Brazil
| | - Ana Claudia Batista Possidonio
- Laboratório de Diferenciação Muscular e Citoesqueleto, Instituto De Ciências Biomédicas, Universidade Federal Do Rio De Janeiro; Rio De Janeiro Brazil
| | - Claudia Mermelstein
- Laboratório de Diferenciação Muscular e Citoesqueleto, Instituto De Ciências Biomédicas, Universidade Federal Do Rio De Janeiro; Rio De Janeiro Brazil
| | - Helena Araujo
- Laboratório de Biologia Molecular do Desenvolvimento, Instituto De Ciências Biomédicas, Universidade Federal Do Rio De Janeiro; Rio De Janeiro Brazil
| |
Collapse
|
22
|
Du M, Liu J, Chen X, Xie Y, Yuan C, Xiang Y, Sun B, Lan K, Chen M, James SJ, Zhang Y, Zhong J, Xiao H. Casein kinase II controls TBK1/IRF3 activation in IFN response against viral infection. THE JOURNAL OF IMMUNOLOGY 2015; 194:4477-88. [PMID: 25810395 DOI: 10.4049/jimmunol.1402777] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 02/19/2015] [Indexed: 01/12/2023]
Abstract
By sensing viral nucleic acids, host innate receptors elicit signaling pathways converging on TBK1-IFN regulatory factor (IRF)3 axis in mediating IFN-αβ induction and defense mechanisms. In contrast, viruses have evolved with diverse immune evasion/interference mechanisms to undermine innate receptor signaling and IFN response. In this regard, approaches enabling host to overcome such immune evasion/interference mechanisms are urgently needed to combat infections by epidemic/pandemic viruses. In this study, we report that protein kinase CK2 serves as a key component controlling TBK1 and IRF3 activation in IFN-inducing TLR, RIG-I-like receptors, and cGAS/STING signaling pathways. Accordingly, knocking down of CK2 expression or genetic ablation of its kinase activity resulted in elevated IFN-αβ response in response to infection by DNA and RNA viruses. Moreover, PP2A was identified as one of the intermediate phosphatases responsible for CK2-regulated IFN response, suggesting that CK2 may regulate TBK1 and IRF3 activation indirectly. Importantly, blockade of CK2 activity by small molecule inhibitor was able to activate TBK1, whereby eliciting effective host defense mechanisms against hepatitis C virus infection. Taken together, our results identify CK2 as a novel regulator of TBK1 and IRF3 and suggest that targeting CK2 by small molecular inhibitor may be a viable approach to prevent and treat viral infections.
Collapse
Affiliation(s)
- Min Du
- Unit of Immune Signaling and Regulation, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jinghua Liu
- Unit of Immune Signaling and Regulation, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xia Chen
- Unit of Immune Signaling and Regulation, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yadong Xie
- Unit of Immune Signaling and Regulation, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Chuanping Yuan
- Unit of Immune Signaling and Regulation, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yu Xiang
- Unit of Viral Hepatitis, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Bing Sun
- Unit of Molecular Virology, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ke Lan
- Unit of Tumor Virology, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Mingzhou Chen
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Sharmy J James
- Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597; Immunology Program, Life Sciences Institute, National University of Singapore, Singapore 117597; and
| | - Yongliang Zhang
- Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597; Immunology Program, Life Sciences Institute, National University of Singapore, Singapore 117597; and
| | - Jin Zhong
- Unit of Viral Hepatitis, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Hui Xiao
- Unit of Immune Signaling and Regulation, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China; Vaccine Center, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
23
|
Iron overload-modulated nuclear factor kappa-B activation in human endometrial stromal cells as a mechanism postulated in endometriosis pathogenesis. Fertil Steril 2014; 103:439-47. [PMID: 25500022 DOI: 10.1016/j.fertnstert.2014.10.046] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 10/19/2014] [Accepted: 10/24/2014] [Indexed: 12/27/2022]
Abstract
OBJECTIVE To evaluate the effect of iron overload on nuclear factor kappa-B (NF-κB) activation in human endometrial stromal cells (ESCs). DESIGN Experimental study. SETTING University hospital research laboratory. PATIENT(S) Ten healthy women. INTERVENTION(S) Isolated ESCs from endometrial biopsies were incubated with 50 μM FeSO(4) or vehicle. The NF-κB inhibitor [5-(p-fluorophenyl)-2-ureido] thiophene-3-carboxamide (TPCA-1), which inhibits IKKβ, the kinase of IκBα (inhibitory protein of NF-κB), was used to prevent iron overload-stimulated NF-κB changes in ESCs. MAIN OUTCOME MEASURE(S) NF-κB activation was assessed by p65:DNA-binding activity immunodetection assay. IκBα, p65, and intercellular adhesion molecule (ICAM)-1 proteins expression was evaluated by Western blots. ESC soluble ICAM (sICAM)-1 secretion was measured by ELISA using conditioned medium. RESULT(S) Iron overload increased p65:DNA-binding activity and decreased IκBα and p65 cytoplasmic expression in ESCs after 30 minutes of incubation as compared with the basal condition. ESC ICAM-1 expression and sICAM-1 secretion were higher after 24 hours of iron overload treatment than in the absence of treatment. TPCA-1 prevented the iron overload-induced increase of p65:DNA binding and IκBα degradation. CONCLUSION(S) Iron overload activates IKKβ in ESCs, stimulating the NF-κB pathway and increasing ICAM-1 expression and sICAM-1 secretion. These results suggest that iron overload induces a proendometriotic phenotype on healthy ESCs, which could participate in endometriosis pathogenesis and development.
Collapse
|
24
|
Santos MS, Foss SM, Park CK, Voglmaier SM. Protein interactions of the vesicular glutamate transporter VGLUT1. PLoS One 2014; 9:e109824. [PMID: 25334008 PMCID: PMC4198130 DOI: 10.1371/journal.pone.0109824] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 09/08/2014] [Indexed: 11/18/2022] Open
Abstract
Exocytotic release of glutamate depends upon loading of the neurotransmitter into synaptic vesicles by vesicular glutamate transporters, VGLUTs. The major isoforms, VGLUT1 and 2, exhibit a complementary pattern of expression in synapses of the adult rodent brain that correlates with the probability of release and potential for plasticity. Indeed, expression of different VGLUT protein isoforms confers different properties of release probability. Expression of VGLUT1 or 2 protein also determines the kinetics of synaptic vesicle recycling. To identify molecular determinants that may be related to reported differences in VGLUT trafficking and glutamate release properties, we investigated some of the intrinsic differences between the two isoforms. VGLUT1 and 2 exhibit a high degree of sequence homology, but differ in their N- and C-termini. While the C-termini of VGLUT1 and 2 share a dileucine-like trafficking motif and a proline-, glutamate-, serine-, and threonine-rich PEST domain, only VGLUT1 contains two polyproline domains and a phosphorylation consensus sequence in a region of acidic amino acids. The interaction of a VGLUT1 polyproline domain with the endocytic protein endophilin recruits VGLUT1 to a fast recycling pathway. To identify trans-acting cellular proteins that interact with the distinct motifs found in the C-terminus of VGLUT1, we performed a series of in vitro biochemical screening assays using the region encompassing the polyproline motifs, phosphorylation consensus sites, and PEST domain. We identify interactors that belong to several classes of proteins that modulate cellular function, including actin cytoskeletal adaptors, ubiquitin ligases, and tyrosine kinases. The nature of these interactions suggests novel avenues to investigate the modulation of synaptic vesicle protein recycling.
Collapse
Affiliation(s)
- Magda S. Santos
- Department of Psychiatry, University of California San Francisco, School of Medicine, San Francisco, California, United States of America
| | - Sarah M. Foss
- Department of Psychiatry, University of California San Francisco, School of Medicine, San Francisco, California, United States of America
- Graduate Program in Cell Biology, University of California San Francisco, School of Medicine, San Francisco, California, United States of America
| | - C. Kevin Park
- Department of Psychiatry, University of California San Francisco, School of Medicine, San Francisco, California, United States of America
| | - Susan M. Voglmaier
- Department of Psychiatry, University of California San Francisco, School of Medicine, San Francisco, California, United States of America
| |
Collapse
|
25
|
Kim KJ, Cho KD, Jang KY, Kim HA, Kim HK, Lee HK, Im SY. Platelet-activating factor enhances tumour metastasis via the reactive oxygen species-dependent protein kinase casein kinase 2-mediated nuclear factor-κB activation. Immunology 2014; 143:21-32. [PMID: 24628121 DOI: 10.1111/imm.12283] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2013] [Revised: 03/06/2014] [Accepted: 03/11/2014] [Indexed: 12/18/2022] Open
Abstract
Platelet-activating factor (PAF) promotes tumour metastasis via activation of the transcription factor nuclear factor-κB (NF-κB). We here investigated the role of the protein kinase CK2 (formerly Casein Kinase 2 or II) in PAF-induced NF-κB activation and tumour metastasis, given that PAF has been reported to increase CK2 activity, and that CK2 plays a key role in NF-κB activation. PAF increased CK2 activity, phosphorylation and protein expression in vivo as well as in vitro. CK2 inhibitors inhibited the PAF-mediated NF-κB activation and expression of NF-κB-dependent pro-inflammatory cytokines and anti-apoptotic factors. Pre-treatment with the antioxidant N-Acetyl-L-Cysteine (NAC) resulted in a significant inhibition in PAF-induced enhancement of CK2 activity, phosphorylation and protein expression in vivo as well as in vitro. H2 O2 and known reactive oxygen species inducers, lipopolysaccharide (LPS) and tumour necrosis factor-α (TNF-α) enhanced CK2 activity, phosphorylation and protein expression, which was again inhibited by antioxidant. PAF, LPS and TNF-α induced increased CK2 activity, phosphorylationand protein expression, which were inhibited by p38 inhibitor. PAF, LPS or TNF-α increased pulmonary metastasis of B16F10, which was inhibited by antioxidants, CK2 inhibitor and p38 inhibitor. Our data suggest that (i) reactive oxygen species activate CK2 via p38, which, in turn, induces NF-κB activation, and (ii) PAF, LPS and TNF-α increase pulmonary tumour metastasis via the induction of the reactive oxygen species (ROS)/p38/CK2/NF-κB pathway.
Collapse
Affiliation(s)
- Kyoung-Jin Kim
- Department of Biological Sciences, College of Natural Sciences, Chonnam National University, Gwangju, Korea
| | | | | | | | | | | | | |
Collapse
|
26
|
Li X, Luo R, Chen R, Song L, Zhang S, Hua W, Chen H. Cleavage of IκBα by calpain induces myocardial NF-κB activation, TNF-α expression, and cardiac dysfunction in septic mice. Am J Physiol Heart Circ Physiol 2014; 306:H833-43. [PMID: 24441549 DOI: 10.1152/ajpheart.00893.2012] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recent studies in septic models have shown that myocardial calpain activity and TNF-α expression increase during sepsis and that inhibition of calpain activation downregulates myocardial TNF-α expression and improves cardiac dysfunction. However, the mechanism underlying this pathological process is unclear. Thus, in the present study, we aimed to explore whether IκBα/NF-κB signaling linked myocardial calpain activity and TNF-α expression in septic mice. Adult male mice were injected with LPS (4 mg/kg ip) to induce sepsis. Myocardial calpain activity, IκBα/NF-κB signaling activity, and TNF-α expression were assessed, and myocardial function was evaluated using the Langendorff system. In septic mice, myocardial calpain activity and TNF-α expression were increased and IκBα protein was degraded. Furthermore, NF-κB was activated, as indicated by increased NF-κB p65 phosphorylation, cleavage of p105 into p50, and its nuclear translocation. Administration of the calpain inhibitors calpain inhibitor Ш and PD-150606 prevented the LPS-induced degradation of myocardial IκBα, NF-κB activation, and TNF-α expression and ultimately improved myocardial function. In calpastatin transgenic mice, an endogenous calpain inhibitor and cultured neonatal mouse cardiomyocytes overexpressing calpastatin also inhibited calpain activity, IκBα protein degradation, and NF-κB activation after LPS treatment. In conclusion, myocardial calpain activity was increased in septic mice. Calpain induced myocardial NF-κB activation, TNF-α expression, and myocardial dysfunction in septic mice through IκBα protein cleavage.
Collapse
Affiliation(s)
- Xiaoping Li
- Cardiac Arrhythmia Center, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
27
|
Prado GN, Romero JR, Rivera A. Endothelin-1 receptor antagonists regulate cell surface-associated protein disulfide isomerase in sickle cell disease. FASEB J 2013; 27:4619-29. [PMID: 23913858 PMCID: PMC3804753 DOI: 10.1096/fj.13-228577] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 07/09/2013] [Indexed: 01/29/2023]
Abstract
Increased endothelin-1 (ET-1) levels, disordered thiol protein status, and erythrocyte hydration status play important roles in sickle cell disease (SCD) through unresolved mechanisms. Protein disulfide isomerase (PDI) is an oxidoreductase that mediates thiol/disulfide interchange reactions. We provide evidence that PDI is present in human and mouse erythrocyte membranes and that selective blockade with monoclonal antibodies against PDI leads to reduced Gardos channel activity (1.6±0.03 to 0.56±0.02 mmol·10(13) cell(-1)·min(-1), P<0.001) and density of sickle erythrocytes (D50: 1.115±0.001 to 1.104±0.001 g/ml, P=0.012) with an IC50 of 4 ng/ml. We observed that erythrocyte associated-PDI activity was increased in the presence of ET-1 (3.1±0.2 to 5.6±0.4%, P<0.0001) through a mechanism that includes casein kinase II. Consistent with these results, in vivo treatment of BERK sickle transgenic mice with ET-1 receptor antagonists lowered circulating and erythrocyte associated-PDI activity (7.1±0.3 to 5.2±0.2%, P<0.0001) while improving hematological parameters and Gardos channel activity. Thus, our results suggest that PDI is a novel target in SCD that regulates erythrocyte volume and oxidative stress and may contribute to cellular adhesion and endothelial activation leading to vasoocclusion as observed in SCD.
Collapse
Affiliation(s)
- Gregory N Prado
- 1Department of Laboratory Medicine, Bader 7, Boston Children's Hospital, 300 Longwood Ave., Boston, MA 02115, USA.
| | | | | |
Collapse
|
28
|
Fontenele M, Lim B, Oliveira D, Buffolo M, Perlman DH, Schupbach T, Araujo H. Calpain A modulates Toll responses by limited Cactus/IκB proteolysis. Mol Biol Cell 2013; 24:2966-80. [PMID: 23864715 PMCID: PMC3771957 DOI: 10.1091/mbc.e13-02-0113] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Calcium-dependent cysteine proteases of the calpain family are modulatory proteases that cleave their substrates in a limited manner. Among their substrates, calpains target vertebrate and invertebrate IκB proteins. Because proteolysis by calpains potentially generates novel protein functions, it is important to understand how this affects NFκB activity. We investigate the action of Calpain A (CalpA) on the Drosophila melanogaster IκB homologue Cactus in vivo. CalpA alters the absolute amounts of Cactus protein. Our data indicate, however, that CalpA uses additional mechanisms to regulate NFκB function. We provide evidence that CalpA interacts physically with Cactus, recognizing a Cactus pool that is not bound to Dorsal, a fly NFκB/Rel homologue. We show that proteolytic cleavage by CalpA generates Cactus fragments lacking an N-terminal region required for Toll responsiveness. These fragments are generated in vivo and display properties distinct from those of full-length Cactus. We propose that CalpA targets free Cactus, which is incorporated into and modulates Toll-responsive complexes in the embryo and immune system.
Collapse
Affiliation(s)
- Marcio Fontenele
- Institute for Biomedical Sciences, Federal University of Rio de Janeiro, CEP 21941-902 Rio de Janeiro, Brazil Chemistry Institute, Federal University of Rio de Janeiro, CEP 21941-902 Rio de Janeiro, Brazil Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544 Princeton Collaborative Proteomics and Mass Spectrometry Center, Princeton University, Princeton, NJ 08544 Molecular Biology Department, Princeton University, Princeton, NJ 08544 Howard Hughes Medical Institute, Chevy Chase, MD 20815
| | | | | | | | | | | | | |
Collapse
|
29
|
Kroonen J, Artesi M, Capraro V, Nguyen-Khac MT, Willems M, Chakravarti A, Bours V, Robe PA. Casein kinase 2 inhibition modulates the DNA damage response but fails to radiosensitize malignant glioma cells. Int J Oncol 2012; 41:776-82. [PMID: 22614258 DOI: 10.3892/ijo.2012.1489] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Accepted: 03/23/2012] [Indexed: 11/06/2022] Open
Abstract
Inhibitors of casein kinase 2 (CK2), a regulator of cell proliferation and mediator of the DNA damage response, are being evaluated in clinical trials for the treatment of cancers. Apigenin was capable of inhibiting the activation of CK2 following γ irradiation in LN18 and U87 malignant glioma cells. Apigenin and siRNA-mediated CK2 protein depletion further inhibited NF-κB activation and altered the Tyr68 phosphorylation of Chk2 kinase, a DNA damage response checkpoint kinase, following irradiation. However, CK2 inhibition did not decrease the ability of these glioma cells to repair double-strand DNA breaks, as assessed by COMET assays and γ-H2Ax staining. Likewise, apigenin and siRNA-induced depletion of CK2 failed to sensitize glioma cells to the cytotoxic effect of 2 to 10 G-rays of γ irradiation, as assessed by clonogenic assays. These results contrast with those found in other cancer types, and urge to prudence regarding the inclusion of malignant glioma patients in clinical trials that assess the radiosensitizing role of CK2 inhibitors in solid cancers.
Collapse
Affiliation(s)
- Jérôme Kroonen
- Department of Human Genetics and GIGA Research Center, University of Liège, Liege, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Randriamboavonjy V, Fleming I. All cut up! The consequences of calpain activation on platelet function. Vascul Pharmacol 2012; 56:210-5. [DOI: 10.1016/j.vph.2012.02.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Revised: 01/15/2012] [Accepted: 02/16/2012] [Indexed: 11/29/2022]
|
31
|
Phosphorylation prevents C/EBPβ from the calpain-dependent degradation. Biochem Biophys Res Commun 2012; 419:550-5. [PMID: 22369944 DOI: 10.1016/j.bbrc.2012.02.058] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 02/10/2012] [Indexed: 10/28/2022]
Abstract
CCAAT/enhancer-binding protein (C/EBP) β plays an important role in proliferation and differentiation of 3T3-L1 preadipocytes. C/EBPβ is sequentially phosphorylated during the 3T3-L1 adipocyte differentiation program, first by MAPK/Cyclin A/cdk2 on Thr(188) and subsequently by GSK3β on Ser(184) or Thr(179). Dual phosphorylation is critical for the gain of DNA binding activity of C/EBPβ. In this manuscript, we found that phosphorylation also contributed to the stability of C/EBPβ. Both ex vivo and in vitro experiments showed that phosphorylation by MAPK/Cyclin A/cdk2 and GSK3β protected C/EBPβ from μ-calpain-mediated proteolysis, while phosphorylation on Thr(188) by MAPK/Cyclin A/cdk2 contributed more to the stabilization of C/EBPβ, Further studies indicated that phosphorylation mimic C/EBPβ was insensitive to both calpain accelerator and calpain inhibitor. Thus, phosphorylation might contribute to the stability as well as the gain of DNA binding activity of C/EBPβ.
Collapse
|
32
|
Avni D, Glucksam Y, Zor T. The phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 modulates cytokine expression in macrophages via p50 nuclear factor κB inhibition, in a PI3K-independent mechanism. Biochem Pharmacol 2011; 83:106-14. [PMID: 22005520 DOI: 10.1016/j.bcp.2011.09.025] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Revised: 09/26/2011] [Accepted: 09/28/2011] [Indexed: 02/05/2023]
Abstract
The Phosphatidylinositol 3-kinase (PI3K) inhibitor, LY294002 (LY2), has been previously reported to inhibit nuclear factor κB (NFκB) activity, in a PI3K-independent mechanism. The goals of the current research were to determine the specificity of LY2 regarding NFκB subunits, and to identify relevant modulation of cytokine expression in LPS-stimulated macrophages. We found that LY2 specifically diminished the level of p50, but not p65, NFκB in the nucleus of LPS-stimulated mouse RAW264.7 macrophages and human THP-1 monocytes. This activity of LY2 was mimicked by its PI3K-inert analog LY303511 (LY3), but not by another PI3K inhibitor - wortmannin. We further show that LY2 inhibited LPS-induced IL-10 expression by RAW264.7 macrophages, in a PI3K-independent mechanism. Moreover, using a deletion mutant of an IL-10 promoter reporter gene we demonstrate that the activity of the NFκB enhancer site at the IL-10 promoter is regulated by LY2 in a PI3K-independent manner. Finally, both LY2 and LY3 elevated TNFα production in the LPS tolerant state which is regulated by p50 NFκB homodimers, but not before tolerance development. The effects of LY2 and LY3 on p50 translocation and on cytokine production in LPS-stimulated macrophages are thus consistent with specific PI3K-independent inhibition of p50 NFκB homodimer activity by LY2.
Collapse
Affiliation(s)
- Dorit Avni
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, Tel-Aviv University, Israel.
| | | | | |
Collapse
|
33
|
KAP degradation by calpain is associated with CK2 phosphorylation and provides a novel mechanism for cyclosporine A-induced proximal tubule injury. PLoS One 2011; 6:e25746. [PMID: 21980535 PMCID: PMC3182248 DOI: 10.1371/journal.pone.0025746] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Accepted: 09/12/2011] [Indexed: 11/19/2022] Open
Abstract
The use of cyclosporine A (CsA) is limited by its severe nephrotoxicity that includes reversible vasoconstrictor effects and proximal tubule cell injury, the latter associated whith chronic kidney disease progression. The mechanisms of CsA-induced tubular injury, mainly on the S3 segment, have not been completely elucidated. Kidney androgen-regulated protein (KAP) is exclusively expressed in kidney proximal tubule cells, interacts with the CsA-binding protein cyclophilin B and its expression diminishes in kidneys of CsA-treated mice. Since we reported that KAP protects against CsA toxicity in cultured proximal tubule cells, we hypothesized that low KAP levels found in kidneys of CsA-treated mice might correlate with proximal tubule cell injury. To test this hypothesis, we used KAP Tg mice developed in our laboratory and showed that these mice are more resistant to CsA-induced tubular injury than control littermates. Furthermore, we found that calpain, which was activated by CsA in cell cultures and kidney, is involved in KAP degradation and observed that phosphorylation of serine and threonine residues found in KAP PEST sequences by protein kinase CK2 enhances KAP degradation by calpain. Moreover, we also observed that CK2 inhibition protected against CsA-induced cytotoxicity. These findings point to a novel mechanism for CsA-induced kidney toxicity that might be useful in developing therapeutic strategies aimed at preventing tubular cell damage while maintaining the immunosuppressive effects of CsA.
Collapse
|
34
|
Kang NI, Yoon HY, Kim HA, Kim KJ, Han MK, Lee YR, Hwang PH, Soh BY, Shin SJ, Im SY, Lee HK. Protein kinase CK2/PTEN pathway plays a key role in platelet-activating factor-mediated murine anaphylactic shock. THE JOURNAL OF IMMUNOLOGY 2011; 186:6625-32. [PMID: 21531890 DOI: 10.4049/jimmunol.1100007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Platelet-activating factor (PAF) is a major mediator in the induction of fatal hypovolemic shock in murine anaphylaxis. This PAF-mediated effect has been reported to be associated with PI3K/Akt-dependent eNOS-derived NO. The phosphatase and tensin homolog deleted on chromosome 10 (PTEN) is phosphatidylinositol phosphate phosphatase, which negatively controls PI3K by dephosphorylating the signaling lipid, phosphatidylinositol 3,4,5-triphosphate. In this study, we examined the possible involvement of PTEN in PAF-mediated anaphylactic shock. Induction of anaphylaxis or PAF injection resulted in a rapid decrease in PTEN activity, followed by increases in PI3K activity and phosphorylation of Akt and eNOS. Systemic administration of adenoviruses carrying PTEN cDNA (adenoviral PTEN), but not the control AdLacZ, not only attenuated anaphylactic symptoms, but also reversed anaphylaxis- or PAF-induced changes in PTEN and PI3K activities, as well as phosphorylation of Akt and eNOS. We found that the decreased PTEN activity was associated with PTEN phosphorylation, the latter effect being prevented by the protein kinase CK2 inhibitor, DMAT. DMAT also inhibited anaphylactic symptoms as well as the anaphylaxis- or PAF-mediated PTEN/PI3K/Akt/eNOS signaling cascade. CK2 activity was increased by PAF. The present data provide, as the key mechanism underlying anaphylactic shock, PAF triggers the upstream pathway CK2/PTEN, which ultimately leads to the activation of PI3K/Akt/eNOS. Therefore, CK2/PTEN may be a potent target in the control of anaphylaxis and other many PAF-mediated pathologic conditions.
Collapse
Affiliation(s)
- Nam-In Kang
- Department of Immunology, Chonbuk National University Medical School, Jeonju 561-180, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Zhang L, Fujita T, Wu G, Xiao X, Wan Y. Phosphorylation of the anaphase-promoting complex/Cdc27 is involved in TGF-beta signaling. J Biol Chem 2011; 286:10041-50. [PMID: 21209074 DOI: 10.1074/jbc.m110.205518] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Loss of TGF-β-induced growth inhibition is a hallmark of many human tumors. Previous studies implied that activation of the anaphase-promoting complex (APC/cyclosome) is involved in the TGF-β signaling pathway, which facilitates the destruction of SnoN, a transcriptional co-suppressor, which leads in turn to the transactivation of TGF-β-responsive genes for cell cycle arrest. The function of APC was demonstrated in TGF-β signal transduction, but the mechanism by which it is activated in response to TGF-β signaling remains unclear. We report here that phosphorylation of Cdc27, a core subunit of APC, in response to TGF-β signaling can facilitate the activation of APC. We have demonstrated that casein kinase II (CKII) is involved in the phosphorylation of Cdc27 in response to TGF-β signaling. Depletion of CKII by shRNA abolishes the TGF-β-induced phosphorylation of Cdc27 and subsequent degradation of SnoN. Disruptive mutation of Cdc27 (S154A) attenuates TGF-β-induced SnoN degradation. In addition, expression of a phosphorylation-resistant Cdc27 mutant significantly attenuates TGF-β-induced growth inhibition. Together, the results suggest that phosphorylation of Cdc27 by CKII is involved in TGF-β-induced activation of APC.
Collapse
Affiliation(s)
- Liyong Zhang
- Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine and University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania 15213, USA
| | | | | | | | | |
Collapse
|
36
|
Lee YH, Schiemann WP. Fibromodulin suppresses nuclear factor-kappaB activity by inducing the delayed degradation of IKBA via a JNK-dependent pathway coupled to fibroblast apoptosis. J Biol Chem 2010; 286:6414-22. [PMID: 21156791 DOI: 10.1074/jbc.m110.168682] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Fibulin-5 (FBLN5) belongs to the Fibulin family of secreted extracellular matrix proteins, and our laboratory first established FBLN5 as a novel target for TGF-β in fibroblasts and endothelial cells. To better understand the pathophysiology of FBLN5, we carried out microarray analysis to identify fibroblast genes whose expressions were regulated by FBLN5 and TGF-β. In doing so, we identified fibromodulin (Fmod) as a novel target gene of FBLN5, and we validated the differential expression of Fmod and 12 other FBLN5-regulated genes by semi-quantitative real time PCR. Fmod belongs to the small leucine-rich family of proteoglycans, which are important constituents of mammalian extracellular matrices. Interestingly, parental 3T3-L1 fibroblasts displayed high levels of nuclear factor-κB (NF-κB) activity, although those engineered to express Fmod constitutively exhibited significantly reduced NF-κB activity, suggesting that Fmod functions to inhibit NF-κB signaling. By monitoring alterations in the activation of NF-κB and the degradation of its inhibitor, IκBα, we demonstrate for the first time that Fmod contributes to the constitutive degradation of IκBα protein in 3T3-L1 fibroblasts. Mechanistically, we observed Fmod to delay the degradation of IκBα by promoting the following: (i) activation of c-Jun N-terminal kinase; (ii) inhibition of calpain and casein kinase 2 activity; and (iii) induction of fibroblast apoptosis. Taken together, our study identified a novel function for Fmod in directing extracellular signaling, particularly the regulation of NF-κB activity and cell survival.
Collapse
Affiliation(s)
- Yong-Hun Lee
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | |
Collapse
|
37
|
Trembley JH, Chen Z, Unger G, Slaton J, Kren BT, Van Waes C, Ahmed K. Emergence of protein kinase CK2 as a key target in cancer therapy. Biofactors 2010; 36:187-95. [PMID: 20533398 PMCID: PMC2916697 DOI: 10.1002/biof.96] [Citation(s) in RCA: 156] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Protein kinase CK2, a protein serine/threonine kinase, plays a global role in activities related to cell growth, cell death, and cell survival. CK2 has a large number of potential substrates localized in diverse locations in the cell including, for example, NF-kappaB as an important downstream target of the kinase. In addition to its involvement in cell growth and proliferation it is also a potent suppressor of apoptosis, raising its key importance in cancer cell phenotype. CK2 interacts with diverse pathways which illustrates the breadth of its impact on the cellular machinery of both cell growth and cell death giving it the status of a "master regulator" in the cell. With respect to cancer, CK2 has been found to be dysregulated in all cancers examined demonstrating increased protein expression levels and nuclear localization in cancer cells compared with their normal counterparts. We originally proposed CK2 as a potentially important target for cancer therapy. Given the ubiquitous and essential for cell survival nature of the kinase, an important consideration would be to target it specifically in cancer cells while sparing normal cells. Towards that end, our design of a tenascin based sub-50 nm (i.e., less than 50 nm size) nanocapsule in which an anti-CK2 therapeutic agent can be packaged is highly promising because this formulation can specifically deliver the cargo intracellularly to the cancer cells in vivo. Thus, appropriate strategies to target CK2 especially by molecular approaches may lead to a highly feasible and effective approach to eradication of a given cancer.
Collapse
Affiliation(s)
- Janeen H. Trembley
- Cellular and Molecular Biochemistry Research Laboratory, Research Service, Minneapolis V.A. Medical Center, Department of Laboratory Medicine and Pathology, University of Minnesota
| | - Zhong Chen
- Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, Bethesda, MD
| | | | - Joel Slaton
- Cellular and Molecular Biochemistry Research Laboratory, Research Service, Minneapolis V.A. Medical Center, Department of Laboratory Medicine and Pathology, University of Minnesota
- Department of Urology, University of Minnesota, Minneapolis, MN
- The Masonic Cancer Center, University of Minnesota, Minneapolis, MN
| | - Betsy T. Kren
- Cellular and Molecular Biochemistry Research Laboratory, Research Service, Minneapolis V.A. Medical Center, Department of Laboratory Medicine and Pathology, University of Minnesota
- Department of Medicine, University of Minnesota, Minneapolis, MN
| | - Carter Van Waes
- Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, Bethesda, MD
| | - Khalil Ahmed
- Cellular and Molecular Biochemistry Research Laboratory, Research Service, Minneapolis V.A. Medical Center, Department of Laboratory Medicine and Pathology, University of Minnesota
- Department of Urology, University of Minnesota, Minneapolis, MN
- The Masonic Cancer Center, University of Minnesota, Minneapolis, MN
- Department of Otolaryngology, University of Minnesota, Minneapolis, MN
- Address for correspondence: Khalil Ahmed, Ph.D., Research Service (151), V.A. Medical Center, Department of Laboratory Medicine and Pathology, University of Minnesota, One Veterans Drive, Minneapolis, MN 55417; Phone: 612-467-2594; Fax: 612-725-2093;
| |
Collapse
|
38
|
Brown MS, Diallo OT, Hu M, Ehsanian R, Yang X, Arun P, Lu H, Korman V, Unger G, Ahmed K, Van Waes C, Chen Z. CK2 modulation of NF-kappaB, TP53, and the malignant phenotype in head and neck cancer by anti-CK2 oligonucleotides in vitro or in vivo via sub-50-nm nanocapsules. Clin Cancer Res 2010; 16:2295-307. [PMID: 20371694 DOI: 10.1158/1078-0432.ccr-09-3200] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
PURPOSE The aim of this study is to investigate the expression of CK2 subunits and CK2 effects on NF-kappaB-mediated and TP53-mediated signal activation and gene expression, the malignant phenotype, and chemosensitivity in head and neck squamous cell carcinoma (HNSCC) in vitro and in vivo. EXPERIMENTAL DESIGN Protein expression of CK2 subunits was investigated by Western blot and immunohistochemistry. CK2 subunits were knocked down by small interfering RNA, and NF-kappaB activation was examined using DNA binding, Western blot, and luciferase reporter assays. Gene expression was measured by quantitative reverse transcription-PCR. Cell growth, survival, motility, and sensitivity to cisplatin were measured by MTT, flow cytometry, and migration assays. In vivo targeting of CK2alpha/alpha' in HNSCC xenograft models was achieved using anti-CK2alpha/alpha' oligodeoxynucleotide encapsulated in sub-50-nm tenfibgen nanocapsules. RESULTS CK2 subunit proteins were overexpressed in HNSCC lines and tissues. Knockdown of CK2 subunits differentially inhibited IkappaBalpha degradation, NF-kappaB nuclear localization, phosphorylation, DNA binding, and reporter activity. CK2 subunits modulated gene expression and the malignant phenotype involved in cell cycle and migration, whereas CK2alpha is critical to promote proliferation, antiapoptosis, and cisplatin resistance in vitro. Furthermore, in vivo delivery of anti-CK2alpha/alpha' oligodeoxynucleotide nanocapsules significantly suppressed tumor growth in HNSCC xenograft models, in association with modulation of CK2 and NF-kappaB regulated molecules, TP53 family proteins, and induction of apoptosis. CONCLUSIONS Our study reveals a novel role of CK2 in coregulating NF-kappaB activation, TP53/p63 expression, and downstream gene expression. Downregulation of CK2 in HNSCC models in vitro and in vivo shows antitumor effects as well as sensitization to cisplatin.
Collapse
MESH Headings
- Animals
- Apoptosis
- Blotting, Western
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/metabolism
- Carcinoma, Squamous Cell/pathology
- Casein Kinase II/antagonists & inhibitors
- Casein Kinase II/genetics
- Casein Kinase II/metabolism
- Cell Cycle
- Cell Movement
- Cell Proliferation
- Head and Neck Neoplasms/genetics
- Head and Neck Neoplasms/metabolism
- Head and Neck Neoplasms/pathology
- Humans
- Luciferases/metabolism
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- NF-kappa B/genetics
- NF-kappa B/metabolism
- Nanocapsules
- Oligonucleotides, Antisense/pharmacology
- Phenotype
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Small Interfering/pharmacology
- Reverse Transcriptase Polymerase Chain Reaction
- Tumor Cells, Cultured
- Tumor Suppressor Protein p53/genetics
- Tumor Suppressor Protein p53/metabolism
- Wound Healing
Collapse
Affiliation(s)
- Matthew S Brown
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, Maryland 20892-1419, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Schneider CC, Hessenauer A, Montenarh M, Götz C. p53 is dispensable for the induction of apoptosis after inhibition of protein kinase CK2. Prostate 2010; 70:126-34. [PMID: 19760628 DOI: 10.1002/pros.21044] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Protein kinase CK2 is a ubiquitously expressed heterotetramer consisting of two catalytic alpha/alpha' and two regulatory beta subunits. Expression of CK2 is highly elevated in tumor cells where it protects cells from apoptosis. A variety of different compounds were tested as inhibitors of protein kinase CK2 in order to find new therapy strategies. To analyze the role of p53 in the response to CK2 inhibition we used one of the most specific CK2 inhibitors available, TBB, in different prostate cancer cell lines. METHODS We treated prostate cancer cells with the CK2 inhibitor TBB and determined its effect on CK2 activity by an in vitro phosphorylation assay and its effect on viability by an MTT assay. Furthermore, we analyzed changes in the expression of p53 and PARP cleavage by Western Blot analysis. RESULTS Inhibition of CK2 by TBB led to a decrease in cell viability and apoptosis in two cell lines which express wild-type p53 whereas two other cell lines expressing mutant or no p53 failed to show signs of apoptosis. Moreover, cell lines expressing wild-type p53 showed an increase of the amount of p53 and of its transactivation efficiency. However, down-regulation of p53 by RNAi showed that p53 is not necessary for the induction of apoptosis. CONCLUSIONS Wild-type p53 is not necessary for the induction of apoptosis by TBB in prostate cancer cells.
Collapse
Affiliation(s)
- Carolin C Schneider
- Medizinische Biochemie und Molekularbiologie, Universität des Saarlandes, Homburg, Germany
| | | | | | | |
Collapse
|
40
|
Abstract
NF-κB transcription factors are critical regulators of many biological processes such as innate and adaptive immune responses, inflammation, cell proliferation and programmed cell death. This versatility necessitates a highly complex and tightly coordinated control of the signaling pathways leading to their activation. Here, we review the role of proteolysis in the regulation of NF-κB activity, more specifically the contribution of the well-known ubiquitin-proteasome system and the involvement of proteolytic activity of caspases and calpains.
Collapse
|
41
|
Gloire G, Piette J. Redox regulation of nuclear post-translational modifications during NF-kappaB activation. Antioxid Redox Signal 2009; 11:2209-22. [PMID: 19203223 DOI: 10.1089/ars.2009.2463] [Citation(s) in RCA: 160] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The transcription factor NF-kappaB controls the expression of hundreds of genes involved in the regulation of the immune/inflammatory response, development, and apoptosis. In resting cells, NF-kappaB proteins are sequestered in the cytoplasm through their tight association with IkappaB proteins. NF-kappaB activation relies on the signal-induced IkappaB phosphorylation and degradation, thereby allowing the nuclear translocation of NF-kappaB proteins. In the nucleus, several post-translational modifications of NF-kappaB and chromatin remodeling of target genes are mandatory for NF-kappaB DNA binding and full transcription. Since 1991, reactive oxygen species (ROS) have been implicated in NF-kappaB activation. ROS enhance the cytoplasmic signaling pathways leading to NF-kappaB nuclear translocation, but reduction/oxidation (redox) also controls several key steps in the nuclear phase of the NF-kappaB program, including chromatin remodeling, recruitment of co-activators, and DNA binding. Here we describe the redox regulation of NF-kappaB activity in the nucleus.
Collapse
Affiliation(s)
- Geoffrey Gloire
- GIGA-Research (B34), Unit of Signal Transduction, Laboratory of Virology and Immunology, University of Liège, Liège, Belgium
| | | |
Collapse
|
42
|
Fontenele M, Carneiro K, Agrellos R, Oliveira D, Oliveira-Silva A, Vieira V, Negreiros E, Machado E, Araujo H. The Ca2+-dependent protease Calpain A regulates Cactus/I kappaB levels during Drosophila development in response to maternal Dpp signals. Mech Dev 2009; 126:737-51. [PMID: 19442719 DOI: 10.1016/j.mod.2009.04.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2009] [Revised: 04/24/2009] [Accepted: 04/27/2009] [Indexed: 11/15/2022]
Abstract
Regulation of NF kappaB activity is central to many processes during development and disease. Activation of NF kappaB family members depends on degradation of inhibitory I kappaB proteins. In Drosophila, a nuclear gradient of the NF kappaB/c-rel protein Dorsal subdivides the embryonic dorsal-ventral axis, defining the extent and location of mesodermal and ectodermal territories. Activation of the Toll pathway directs Dorsal nuclear translocation by inducing proteosomal degradation of the I kappaB homologue Cactus. Another mechanism that impacts on Dorsal activation involves the Toll-independent pathway, which regulates constitutive Cactus degradation. We have shown that the BMP protein Decapentaplegic (Dpp) inhibits Cactus degradation independent of Toll. Here we report on a novel element of this pathway: the calcium-dependent protease Calpain A. Calpain A knockdowns increase Cactus levels, shifting the Dorsal gradient and dorsal-ventral patterning. As shown for mammalian I kappaB, this effect requires PEST sequences in the Cactus C-terminus, implying a conserved role for calpains. Alteration of Calpain A or dpp results in similar effects on Dorsal target genes. Epistatic analysis confirms Calpain A activity is regulated by Dpp, indicating that Dpp signals increase Cactus levels through Calpain A inhibition, thereby interfering with Dorsal activation. This mechanism may allow coordination of Toll, BMP and Ca(2+) signals, conferring precision to Dorsal-target expression domains.
Collapse
Affiliation(s)
- M Fontenele
- Institute for Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Mendes SDS, Candi A, Vansteenbrugge M, Pignon MR, Bult H, Boudjeltia KZ, Munaut C, Raes M. Microarray analyses of the effects of NF-kappaB or PI3K pathway inhibitors on the LPS-induced gene expression profile in RAW264.7 cells: synergistic effects of rapamycin on LPS-induced MMP9-overexpression. Cell Signal 2009; 21:1109-22. [PMID: 19285553 DOI: 10.1016/j.cellsig.2009.02.025] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2008] [Revised: 02/09/2009] [Accepted: 02/13/2009] [Indexed: 12/25/2022]
Abstract
Lipopolysaccharide (LPS) activates a broad range of signalling pathways including mainly NF-kappaB and the MAPK cascade, but recent evidence suggests that LPS stimulation also activates the PI3K pathway. To unravel the specific roles of both pathways in LPS signalling and gene expression profiling, we investigated the effects of different inhibitors of NF-kappaB (BAY 11-7082), PI3K (wortmannin and LY294002) but also of mTOR (rapamycin), a kinase acting downstream of PI3K/Akt, in LPS-stimulated RAW264.7 macrophages, analyzing their effects on the LPS-induced gene expression profile using a low density DNA microarray designed to monitor the expression of pro-inflammatory genes. After statistical and hierarchical cluster analyses, we determined five clusters of genes differentially affected by the four inhibitors used. In the fifth cluster corresponding to genes upregulated by LPS and mainly affected by BAY 11-7082, the gene encoding MMP9 displayed a particular expression profile, since rapamycin drastically enhanced the LPS-induced upregulation at both the mRNA and protein levels. Rapamycin also enhanced the LPS-induced NF-kappaB transactivation as determined by a reporter assay, phosphorylation of the p38 and Erk1/2 MAPKs, and counteracted PPAR activity. These results suggest that mTOR could negatively regulate the effects of LPS on the NF-kappaB and MAPK pathways. We also performed real-time RT-PCR assays on mmp9 expression using rosiglitazone (agonist of PPARgamma), PD98059 (inhibitor of Erk 1/2) and SB203580 (inhibitor of p38(MAPK)), that were able to counteract the rapamycin mediated overexpression of mmp9 in response to LPS. Our results suggest a new pathway involving mTOR for regulating specifically mmp9 in LPS-stimulated RAW264.7 cells.
Collapse
Affiliation(s)
- Sofia Dos Santos Mendes
- University of Namur-FUNDP, Research Unit in Cellular Biology, Rue de Bruxelles 61, Namur, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Markovina S, Callander NS, O'Connor SL, Kim J, Werndli JE, Raschko M, Leith CP, Kahl BS, Kim K, Miyamoto S. Bortezomib-resistant nuclear factor-kappaB activity in multiple myeloma cells. Mol Cancer Res 2008; 6:1356-64. [PMID: 18708367 DOI: 10.1158/1541-7786.mcr-08-0108] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Bortezomib (Velcade/PS341), a proteasome inhibitor used in the treatment of multiple myeloma (MM), can inhibit activation of nuclear factor-kappaB (NF-kappaB), a family of transcription factors often deregulated and constitutively activated in primary MM cells. NF-kappaB can be activated via several distinct mechanisms, including the proteasome inhibitor-resistant (PIR) pathway. It remains unknown what fraction of primary MM cells harbor constitutive NF-kappaB activity maintained by proteasome-dependent mechanisms. Here, we report an unexpected finding that constitutive NF-kappaB activity in 10 of 14 primary MM samples analyzed is refractory to inhibition by bortezomib. Moreover, when MM cells were cocultured with MM patient-derived bone marrow stromal cells (BMSC), microenvironment components critical for MM growth and survival, further increases in NF-kappaB activity were observed that were also refractory to bortezomib. Similarly, MM-BMSCs caused PIR NF-kappaB activation in the RPMI8226 MM cell line, leading to increased NF-kappaB-dependent transcription and resistance to bortezomib-induced apoptosis. Our findings show that primary MM cells frequently harbor PIR NF-kappaB activity that is further enhanced by the presence of patient-derived BMSCs. They also suggest that this activity is likely relevant to the drug resistance development in some patients. Further elucidation of the mechanism of PIR NF-kappaB regulation could lead to the identification of novel diagnostic biomarkers and/or therapeutic targets for MM treatment.
Collapse
|
45
|
Kil IS, Kim SY, Park JW. Glutathionylation regulates IkappaB. Biochem Biophys Res Commun 2008; 373:169-73. [PMID: 18555796 DOI: 10.1016/j.bbrc.2008.06.007] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2008] [Accepted: 06/05/2008] [Indexed: 10/21/2022]
Abstract
Although there has been considerable interest in the regulation of NFkappaB activation by glutathionylation, the possibility of IkappaB as a target for glutathionylation has not been investigated. We now report that Cys(189) of IkappaB alpha is a target for S-glutathionylation. This modification is reversed by thiols such as dithiothreitol and GSH. The glutathionylated IkappaB alpha appears to be significantly less susceptible than is native protein to phosphorylation by IkappaB kinase and casein kinase II, as well as to in vitro ubiquitination. This finding suggests that glutathionylation plays a regulatory role, presumably through structural alterations. HeLa cells treated with oxidant inducing GSH oxidation such as diamide showed the accumulation of glutathionylated IkappaB alpha. This mechanism suggests an alternative modification to the redox regulation of cysteine in IkappaB alpha and a possible mechanism in the regulation of NFkappaB activation.
Collapse
Affiliation(s)
- In Sup Kil
- School of Life Sciences and Biotechnology, College of Natural Sciences, Kyungpook National University, Taegu 702-701, Republic of Korea
| | | | | |
Collapse
|
46
|
Sarno S, Pinna LA. Protein kinase CK2 as a druggable target. MOLECULAR BIOSYSTEMS 2008; 4:889-94. [PMID: 18704226 DOI: 10.1039/b805534c] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
CK2 is probably the most pleiotropic Ser/Thr protein kinase with hundreds of endogenous substrates already known, which are implicated in a variety of cellular functions. At variance with most protein kinases whose activity is turned on only in response to specific stimuli, and whose genetic alterations often underlie pathological situations, CK2 is not susceptible to tight regulation and there are no mutations known to affect its constitutive activity. Nevertheless an abnormally high level of CK2 is invariably found in tumours, and solid arguments have accumulated suggesting that CK2 plays a global pro-survival function, which under special circumstances creates a cellular environment particularly favourable to the development and potentiation of the tumour phenotype. Therefore any strategy aimed at attenuating CK2 activity may represent a "master key" for the treatment of different neoplastic diseases. Waiting for the clarification of the epigenetic mechanisms promoting the rise of CK2 in cells predisposed to develop a tumour phenotype, a useful pharmacological aid can come from the improvement of a number of fairly potent and selective CK2 inhibitors already available.
Collapse
Affiliation(s)
- Stefania Sarno
- Department of Biological Chemistry, University of Padua and Venetian Institute for Molecular Medicine (VIMM), Padua, Italy
| | | |
Collapse
|
47
|
Singh NN, Ramji DP. Protein kinase CK2, an important regulator of the inflammatory response? J Mol Med (Berl) 2008; 86:887-97. [PMID: 18437331 DOI: 10.1007/s00109-008-0352-0] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2008] [Revised: 03/11/2008] [Accepted: 03/12/2008] [Indexed: 01/01/2023]
Abstract
Casein kinase 2 (CK2) is a highly conserved serine-threonine kinase that uses both adenosine triphosphate and guanosine triphosphate as phosphate donors. This constitutively active and ubiquitously expressed enzyme is often present as a tetrameric holoenzyme complex of two catalytic subunits (alpha and/or alpha') and two regulatory beta subunits. The enzyme is known to phosphorylate more than 300 substrates and controls a wide range of processes, including the regulation of cell cycle, apoptosis, transformation, and circadian rhythm. Several lines of recent evidence also suggest a potentially important role for CK2 in the control of the inflammatory response. This review will give an overview of CK2 and its regulation and describe the evidence implicating its role in inflammation.
Collapse
Affiliation(s)
- Nishi N Singh
- Cardiff School of Biosciences, Cardiff University, Cardiff, UK
| | | |
Collapse
|
48
|
Boncoeur E, Roque T, Bonvin E, Saint-Criq V, Bonora M, Clement A, Tabary O, Henrion-Caude A, Jacquot J. Cystic fibrosis transmembrane conductance regulator controls lung proteasomal degradation and nuclear factor-kappaB activity in conditions of oxidative stress. THE AMERICAN JOURNAL OF PATHOLOGY 2008; 172:1184-94. [PMID: 18372427 DOI: 10.2353/ajpath.2008.070310] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cystic fibrosis is a lethal inherited disorder caused by mutations in a single gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR) protein, resulting in progressive oxidative lung damage. In this study, we evaluated the role of CFTR in the control of ubiquitin-proteasome activity and nuclear factor (NF)-kappaB/IkappaB-alpha signaling after lung oxidative stress. After a 64-hour exposure to hyperoxia-mediated oxidative stress, CFTR-deficient (cftr(-/-)) mice exhibited significantly elevated lung proteasomal activity compared with wild-type (cftr(+/+)) animals. This was accompanied by reduced lung caspase-3 activity and defective degradation of NF-kappaB inhibitor IkappaB-alpha. In vitro, human CFTR-deficient lung cells exposed to oxidative stress exhibited increased proteasomal activity and decreased NF-kappaB-dependent transcriptional activity compared with CFTR-sufficient lung cells. Inhibition of the CFTR Cl(-) channel by CFTR(inh-172) in the normal bronchial immortalized cell line 16HBE14o- increased proteasomal degradation after exposure to oxidative stress. Caspase-3 inhibition by Z-DQMD in CFTR-sufficient lung cells mimicked the response profile of increased proteasomal degradation and reduced NF-kappaB activity observed in CFTR-deficient lung cells exposed to oxidative stress. Taken together, these results suggest that functional CFTR Cl(-) channel activity is crucial for regulation of lung proteasomal degradation and NF-kappaB activity in conditions of oxidative stress.
Collapse
|
49
|
Liu TL, Shimada H, Ochiai T, Shiratori T, Lin SE, Kitagawa M, Harigaya K, Maki M, Oka M, Abe T, Takiguchi M, Hiwasa T. Enhancement of chemosensitivity toward peplomycin by calpastatin-stabilized NF-kappaB p65 in esophageal carcinoma cells: possible involvement of Fas/Fas-L synergism. Apoptosis 2007; 11:1025-37. [PMID: 16547594 DOI: 10.1007/s10495-006-6353-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Chemosensitivity to anticancer drugs was compared between two human esophageal carcinoma cell lines, T.Tn and YES-6 cells. T.Tn cells were more resistant than YES-6 cells to peplomycin (PEP) but not to the other anticancer drugs such as camptothecin, mitomycin C and cytosine arabinoside. Western blot analysis showed higher expression levels of m-calpain and activated mu-calpain in T.Tn cells than in YES-6 cells. On the other hand, YES-6 cells showed a high expression level of calpastatin, which is a calpain-specific endogenous inhibitor. To investigate whether calpain activity was involved in the chemosensitivity, T.Tn cells were transfected with calpastatin cDNA in an inducible expression vector. The induction of calpastatin was accompanied by increased chemosensitivity to PEP. The increases in calpastatin levels were followed by serial increases in the expression levels of NF-kappaB p65 and Fas. Since purified m- or mu-calpain degraded NF-kappaB p65 in vitro, it is possible that calpastatin suppressed calpain-mediated degradation of NF-kappaB p65. Fas ligand (Fas-L) protein levels increased after treatment of the parental T.Tn and calpastatin-transfected cells with PEP, suggesting the synergism between calpastatin-induced Fas and PEP-induced Fas-L. These results suggest that calpain/calpastatin expression levels are effective markers for predicting the sensitivity of human esophageal carcinoma cells to PEP.
Collapse
Affiliation(s)
- T-L Liu
- Department of Biochemistry and Genetics, Graduate School of Medicine, Chiba University, Chiba, 260-8670, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Guttmann R. Recent developments in the therapeutic targeting of calpains in neurodegeneration. Expert Opin Ther Pat 2007. [DOI: 10.1517/13543776.17.10.1203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|