1
|
Prause HC, Berk D, Alves-de-Souza C, Hansen PJ, Larsen TO, Marko D, Favero GD, Place A, Varga E. How relevant are sterols in the mode of action of prymnesins? AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 276:107080. [PMID: 39276607 DOI: 10.1016/j.aquatox.2024.107080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 09/02/2024] [Accepted: 09/02/2024] [Indexed: 09/17/2024]
Abstract
Prymnesins, produced by the haptophyte Prymnesium parvum, are considered responsible for fish kills when this species blooms. Although their toxic mechanism is not fully understood, membrane disruptive properties have been ascribed to A-type prymnesins. Currently it is suggested that pore-formation is the underlying cause of cell disruption. Here the hypothesis that A-, B-, and C-type prymnesins interact with sterols in order to create pores was tested. Prymnesin mixtures containing various analogs of the same type were applied in hemolysis and cytotoxicity assays using Atlantic salmon Salmo salar erythrocytes or rainbow trout RTgill-W1 cells. The hemolytic potency of the prymnesin types reflected their cytotoxic potential, with approximate concentrations reaching 50 % hemolysis (HC50) of 4 nM (A-type), 54 nM (C-type), and 600 nM (B-type). Variabilities in prymnesin profiles were shown to influence potency. Prymnesin-A (3 Cl) + 2 pentose + hexose was likely responsible for the strong toxicity of A-type samples. Co-incubation with cholesterol and epi-cholesterol pre-hemolysis reduced the potential by about 50 % irrespective of sterol concentration, suggesting interactions with sterols. However, this effect was not observed in RTgill-W1 toxicity. Treatment of RTgill-W1 cells with 10 µM lovastatin or 10 µM methyl-β-cyclodextrin-cholesterol modified cholesterol levels by 20-30 %. Regardless, prymnesin cytotoxicity remained unaltered in the modified cells. SPR data showed that B-type prymnesins likely bound with a single exponential decay while A-types seemed to have a more complex binding. Overall, interaction with cholesterol appeared to play only a partial role in the cytotoxic mechanism of pore-formation. It is suggested that prymnesins initially interact with cholesterol and stabilize pores through a subsequent, still unknown mechanism possibly including other membrane lipids or proteins.
Collapse
Affiliation(s)
- Hélène-Christine Prause
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währinger Str. 38-40, 1090 Vienna, Austria; Vienna Doctoral School in Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 42, 1090 Vienna Austria
| | - Deniz Berk
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währinger Str. 38-40, 1090 Vienna, Austria
| | - Catharina Alves-de-Souza
- Departamento de Oceanografía, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción 4030000, Chile; Centro de Investigación Oceanográfica COPAS Coastal, Universidad de Concepción, Concepción, Chile
| | - Per J Hansen
- Marine Biological Section, Department of Biology, University of Copenhagen, Strandpromenaden 5, 3000 Elsinore, Denmark
| | - Thomas O Larsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 221, 2800 Kgs. Lyngby, Denmark
| | - Doris Marko
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währinger Str. 38-40, 1090 Vienna, Austria
| | - Giorgia Del Favero
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währinger Str. 38-40, 1090 Vienna, Austria; Core Facility Multimodal Imaging, Faculty of Chemistry, University of Vienna, Währinger Str. 38-42, 1090 Vienna, Austria
| | - Allen Place
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, 701 E. Pratt Street, Baltimore, MD 21202, USA
| | - Elisabeth Varga
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währinger Str. 38-40, 1090 Vienna, Austria; Unit Food Hygiene and Technology, Centre for Food Science and Veterinary Public Health, Clinical Department for Farm Animals and Food System Science, University of Veterinary Medicine, Vienna, Veterinärplatz 1, 1210 Vienna, Austria.
| |
Collapse
|
2
|
Luo R, Qian D, Yang D, Cheng Y, Li J, Liu L, Li Y, Lei Q, Chang X, Liu Y, Xu G, Ge S. Circulating soluble CD30 is associated with renal tertiary lymphoid structures and the progression of IgA nephropathy. Clin Chim Acta 2024; 557:117888. [PMID: 38527714 DOI: 10.1016/j.cca.2024.117888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/22/2024] [Accepted: 03/22/2024] [Indexed: 03/27/2024]
Abstract
BACKGROUND Renal tertiary lymphoid structures (TLSs) are involved in renal pathology and prognosis of IgA nephropathy (IgAN). CD30 and its ligands participate in the formation of renal TLSs. However, the relationship between circulating CD30 and renal prognosis is unclear. The objective of this study was to evaluate the relationship between circulating CD30 and prognosis in patients with IgAN. METHODS We conducted a retrospective study including 351 patients with biopsy proved IgAN. We collected clinical and pathologic features at the time of biopsy and recorded renal follow-up outcomes. Circulating CD30 levels in IgAN patients at the time of biopsy were measured via enzyme-linked immunosorbent assay (ELISA). The association between elevated CD30 levels and the composite endpoint (defined as a ≥ 50 % decline in eGFR from baseline, end-stage renal disease, or death) was investigated using Cox regression analysis. RESULTS During a median follow-up period of 5.12 years, 44 (12.5 %) patients in the cohort reached the composite endpoint. Kaplan-Meier survival curve analysis revealed a significant association between higher circulating CD30 levels and a poorer renal prognosis (log-rank P < 0.001). Cox regression analysis showed that high CD30 was an independent factor for the composite endpoints in multivariable-adjusted models (HR 3.397, 95 % CI: 1.230-9.384, P = 0.018). These associations were also observed in a subgroup of patients with concomitant renal TLSs formation (10.443, 95 % CI: 1.680-65.545, P = 0.012), proteinuria > 1 g/d (HR 12.287, 95 % CI: 1.499-100.711, P = 0.019), and female patients (HR 22.372, 95 % CI: 1.797-278.520, P = 0.016). CONCLUSION Elevated level of circulating CD30 is an independent risk factor for renal disease progression in patients with IgAN.
Collapse
Affiliation(s)
- Ran Luo
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Duo Qian
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dan Yang
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yichun Cheng
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junhua Li
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liu Liu
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yueqiang Li
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qing Lei
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoyan Chang
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanyan Liu
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gang Xu
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Shuwang Ge
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
3
|
Shi Y, Ruan H, Xu Y, Zou C. Cholesterol, Eukaryotic Lipid Domains, and an Evolutionary Perspective of Transmembrane Signaling. Cold Spring Harb Perspect Biol 2023; 15:a041418. [PMID: 37604587 PMCID: PMC10626259 DOI: 10.1101/cshperspect.a041418] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
Transmembrane signaling is essential for complex life forms. Communication across a bilayer lipid barrier is elaborately organized to convey precision and to fine-tune strength. Looking back, the steps that it has taken to enable this seemingly mundane errand are breathtaking, and with our survivorship bias, Darwinian. While this review is to discuss eukaryotic membranes in biological functions for coherence and theoretical footing, we are obliged to follow the evolution of the biological membrane through time. Such a visit is necessary for our hypothesis that constraints posited on cellular functions are mainly via the biomembrane, and relaxation thereof in favor of a coordinating membrane environment is the molecular basis for the development of highly specialized cellular activities, among them transmembrane signaling. We discuss the obligatory paths that have led to eukaryotic membrane formation, its intrinsic ability to signal, and how it set up the platform for later integration of protein-based receptor activation.
Collapse
Affiliation(s)
- Yan Shi
- Department of Basic Medical Sciences, Tsinghua-Peking University Joint Center for Life Sciences, School of Medicine; Institute for Immunology, Tsinghua University, Beijing 100084, China
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute, University of Calgary, Calgary, Alberta T2N 4Z6, Canada
| | - Hefei Ruan
- Department of Basic Medical Sciences, Tsinghua-Peking University Joint Center for Life Sciences, School of Medicine; Institute for Immunology, Tsinghua University, Beijing 100084, China
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yanni Xu
- Department of Basic Medical Sciences, Tsinghua-Peking University Joint Center for Life Sciences, School of Medicine; Institute for Immunology, Tsinghua University, Beijing 100084, China
| | - Chunlin Zou
- Department of Basic Medical Sciences, Tsinghua-Peking University Joint Center for Life Sciences, School of Medicine; Institute for Immunology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
4
|
Maja M, Tyteca D. Alteration of cholesterol distribution at the plasma membrane of cancer cells: From evidence to pathophysiological implication and promising therapy strategy. Front Physiol 2022; 13:999883. [PMID: 36439249 PMCID: PMC9682260 DOI: 10.3389/fphys.2022.999883] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/10/2022] [Indexed: 11/11/2022] Open
Abstract
Cholesterol-enriched domains are nowadays proposed to contribute to cancer cell proliferation, survival, death and invasion, with important implications in tumor progression. They could therefore represent promising targets for new anticancer treatment. However, although diverse strategies have been developed over the years from directly targeting cholesterol membrane content/distribution to adjusting sterol intake, all approaches present more or less substantial limitations. Those data emphasize the need to optimize current strategies, to develop new specific cholesterol-targeting anticancer drugs and/or to combine them with additional strategies targeting other lipids than cholesterol. Those objectives can only be achieved if we first decipher (i) the mechanisms that govern the formation and deformation of the different types of cholesterol-enriched domains and their interplay in healthy cells; (ii) the mechanisms behind domain deregulation in cancer; (iii) the potential generalization of observations in different types of cancer; and (iv) the specificity of some alterations in cancer vs. non-cancer cells as promising strategy for anticancer therapy. In this review, we will discuss the current knowledge on the homeostasis, roles and membrane distribution of cholesterol in non-tumorigenic cells. We will then integrate documented alterations of cholesterol distribution in domains at the surface of cancer cells and the mechanisms behind their contribution in cancer processes. We shall finally provide an overview on the potential strategies developed to target those cholesterol-enriched domains in cancer therapy.
Collapse
|
5
|
Marten AD, Tift CT, Tree MO, Bakke J, Conway MJ. Chronic depletion of vertebrate lipids in Aedes aegypti cells dysregulates lipid metabolism and inhibits innate immunity without altering dengue infectivity. PLoS Negl Trop Dis 2022; 16:e0010890. [PMID: 36279305 PMCID: PMC9632908 DOI: 10.1371/journal.pntd.0010890] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 11/03/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022] Open
Abstract
Aedes aegypti is the primary vector of dengue virus (DENV) and other arboviruses. Previous literature suggests that vertebrate and invertebrate lipids and the nutritional status of mosquitoes modify virus infection. Here, we developed a vertebrate lipid-depleted Ae. aegypti cell line to investigate if chronic depletion of vertebrate lipids normally present in a blood meal and insect cell culture medium would impact cell growth and virus infection. Chronic depletion of vertebrate lipids reduced cell size and proliferation, although cells retained equivalent total intracellular lipids per cell by reducing lipolysis and modifying gene expression related to sugar and lipid metabolism. Downregulation of innate immunity genes was also observed. We hypothesized that chronic depletion of vertebrate lipids would impact virus infection; however, the same amount of DENV was produced per cell. This study reveals how Ae. aegypti cells adapt in the absence of vertebrate lipids, and how DENV can replicate equally well in cells that contain predominately vertebrate or invertebrate lipids. Aedes aegypti is a major threat to public health. Ae. aegypti is the primary vector of dengue virus types 1–4 (DENV 1–4), zika virus (ZIKV), chikungunya virus (CHIKV), and yellow fever virus (YFV). Ae. aegypti acquires arboviruses from a vertebrate host during blood feeding. Blood feeding introduces vertebrate-specific factors into the mosquito that may be important for both mosquito and virus. This study reveals that Ae. aegypti adapts to depletion of vertebrate lipids by inhibiting lipolysis and promoting de novo synthesis of invertebrate lipids, and that DENV can replicate equally well without high concentrations of cholesterol and other vertebrate lipid species. Understanding how disease vectors adapt to nutritional changes will identify novel strategies for vector control and disease mitigation.
Collapse
Affiliation(s)
- Andrew D. Marten
- Foundational Sciences, Central Michigan University College of Medicine, Mt. Pleasant, Michigan, United States of America
| | - Clara T. Tift
- Foundational Sciences, Central Michigan University College of Medicine, Mt. Pleasant, Michigan, United States of America
| | - Maya O. Tree
- Foundational Sciences, Central Michigan University College of Medicine, Mt. Pleasant, Michigan, United States of America
| | - Jesse Bakke
- Foundational Sciences, Central Michigan University College of Medicine, Mt. Pleasant, Michigan, United States of America
| | - Michael J. Conway
- Foundational Sciences, Central Michigan University College of Medicine, Mt. Pleasant, Michigan, United States of America
- * E-mail:
| |
Collapse
|
6
|
Wójtowicz K, Czogalla A, Trombik T, Łukaszewicz M. Surfactin cyclic lipopeptides change the plasma membrane composition and lateral organization in mammalian cells. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1863:183730. [PMID: 34419486 DOI: 10.1016/j.bbamem.2021.183730] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 07/10/2021] [Accepted: 08/13/2021] [Indexed: 02/07/2023]
Abstract
The specific structure and composition of the cell plasma membrane (PM) is crucial for many cellular processes and can be targeted by various substances with potential medical applications. In this context, biosurfactants (BS) constitute a promising group of natural compounds that possess several biological functions, including anticancer activity. Despite the efficiency of BS, their mode of action had never been elucidated before. Here, we demonstrate the influence of cyclic lipopeptide surfactin (SU) on the PM of CHO-K1 cells. Both FLIM and svFCS experiments show that even a low concentration of SU causes significant changes in the membrane fluidity and dynamic molecular organization. Further, we demonstrate that SU causes a relevant dose-dependent reduction of cellular cholesterol by extracting it from the PM. Finally, we show that CHO-25RA cells characterized by increased cholesterol levels are more sensitive to SU treatment than CHO-K1 cells. We propose that sterols organizing the PM raft nanodomains, constitute a potential target for SU and other biosurfactants. In our opinion, the anticancer activity of biosurfactants is directly related with the higher cholesterol content found in many cancer cells.
Collapse
Affiliation(s)
- Karolina Wójtowicz
- Department of Biotransformation, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | - Aleksander Czogalla
- Department of Cytobiochemistry, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | - Tomasz Trombik
- Department of Biophysics, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland.
| | - Marcin Łukaszewicz
- Department of Biotransformation, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland.
| |
Collapse
|
7
|
Loch L, Onofre TS, Rodrigues JPF, Yoshida N. Shedding of Trypanosoma cruzi Surface Molecules That Regulate Host Cell Invasion Involves Phospholipase C and Increases Upon Sterol Depletion. Front Cell Infect Microbiol 2021; 11:769722. [PMID: 34737979 PMCID: PMC8560688 DOI: 10.3389/fcimb.2021.769722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 09/27/2021] [Indexed: 12/05/2022] Open
Abstract
Metacyclic trypomastigote (MT) forms of Trypanosoma cruzi have been shown to release into medium gp82 and gp90, the stage-specific surface molecules that regulate host cell invasion, either in vesicles or in soluble form. Here, we found that during interaction of poorly invasive G strain with the host cell, gp82 and gp90 were released in vesicle-like forms, whereas no such release by highly invasive CL strain was observed. Shedding of vesicles of varying sizes by CL and G strains was visualized by scanning electron microscopy, and the protein profile of conditioned medium (CM) of the two strains was similar, but the content of gp82 and gp90 differed, with both molecules being detected in G strain as bands of high intensity in Western blotting, whereas in CL strain, they were barely detectable. Confocal images revealed a distinct distribution of gp82 and gp90 on MT surface of CL and G strains. In cell invasion assays, addition of G strain CM resulted in decreased CL strain internalization. Depletion of gp82 in G strain CM, by treatment with specific mAb-coupled magnetic beads, increased its inhibitory effect on CL strain invasion, in contrast to CM depleted in gp90. The effect of cholesterol-depleting drug methyl-β-cyclodextrin (MβCD) on gp82 and gp90 release by MTs was also examined. G strain MTs, untreated or treated with MβCD, were incubated in serum-containing medium or in nutrient-depleted PBS++, and the CM generated under these conditions was analyzed by Western blotting. In PBS++, gp82 and gp90 were released at lower levels by untreated MTs, as compared with MβCD-treated parasites. CM from untreated and MβCD-treated G strain, generated in PBS++, inhibited CL strain internalization. Treatment of CL strain MTs with MβCD resulted in increased gp82 and gp90 shedding and in decreased host cell invasion. The involvement of phospholipase C (PLC) on gp82 and gp90 shedding was also investigated. The CM from G strain MTs pretreated with specific PLC inhibitor contained lower levels of gp82 and gp90, as compared with untreated parasites. Our results contribute to shed light on the mechanism by which T. cruzi releases surface molecules implicated in host cell invasion.
Collapse
Affiliation(s)
- Leonardo Loch
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Thiago Souza Onofre
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - João Paulo Ferreira Rodrigues
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Nobuko Yoshida
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
8
|
Dispatching plasma membrane cholesterol and Sonic Hedgehog dispatch: two sides of the same coin? Biochem Soc Trans 2021; 49:2455-2463. [PMID: 34515747 PMCID: PMC8589413 DOI: 10.1042/bst20210918] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/19/2021] [Accepted: 08/26/2021] [Indexed: 11/19/2022]
Abstract
Vertebrate and invertebrate Hedgehog (Hh) morphogens signal over short and long distances to direct cell fate decisions during development and to maintain tissue homeostasis after birth. One of the most important questions in Hh biology is how such Hh signaling to distant target cells is achieved, because all Hh proteins are secreted as dually lipidated proteins that firmly tether to the outer plasma membrane leaflet of their producing cells. There, Hhs multimerize into light microscopically visible storage platforms that recruit factors required for their regulated release. One such recruited release factor is the soluble glycoprotein Scube2 (Signal sequence, cubulin domain, epidermal-growth-factor-like protein 2), and maximal Scube2 function requires concomitant activity of the resistance-nodulation-division (RND) transporter Dispatched (Disp) at the plasma membrane of Hh-producing cells. Although recently published cryo-electron microscopy-derived structures suggest possible direct modes of Scube2/Disp-regulated Hh release, the mechanism of Disp-mediated Hh deployment is still not fully understood. In this review, we discuss suggested direct modes of Disp-dependent Hh deployment and relate them to the structural similarities between Disp and the related RND transporters Patched (Ptc) and Niemann-Pick type C protein 1. We then discuss open questions and perspectives that derive from these structural similarities, with particular focus on new findings that suggest shared small molecule transporter functions of Disp to deplete the plasma membrane of cholesterol and to modulate Hh release in an indirect manner.
Collapse
|
9
|
Manikowski D, Ehring K, Gude F, Jakobs P, Froese J, Grobe K. Hedgehog lipids: Promotors of alternative morphogen release and signaling?: Conflicting findings on lipidated Hedgehog transport and signaling can be explained by alternative regulated mechanisms to release the morphogen. Bioessays 2021; 43:e2100133. [PMID: 34611914 DOI: 10.1002/bies.202100133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/27/2021] [Accepted: 09/06/2021] [Indexed: 12/19/2022]
Abstract
Two posttranslational lipid modifications present on all Hedgehog (Hh) morphogens-an N-terminal palmitate and a C-terminal cholesterol-are established and essential regulators of Hh biofunction. Yet, for several decades, the question of exactly how both lipids contribute to Hh signaling remained obscure. Recently, cryogenic electron microscopy revealed different modes by which one or both lipids may contribute directly to Hh binding and signaling to its receptor Patched1 (Ptc). Some of these modes demand that the established release factor Dispatched1 (Disp) extracts dual-lipidated Hh from the cell surface, and that another known upstream signaling modulator called Scube2 chaperones the dual-lipidated morphogen to Ptc. By mechanistically and biochemically aligning this concept with established in vivo and recent in vitro findings, this reflection identifies remaining questions in lipidated Hh transport and evaluates additional mechanisms of Disp- and Scube2-regulated release of a second bioactive Hh fraction that has one or both lipids removed.
Collapse
Affiliation(s)
- Dominique Manikowski
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, North Rhine-Westphalia, Germany
| | - Kristina Ehring
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, North Rhine-Westphalia, Germany
| | - Fabian Gude
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, North Rhine-Westphalia, Germany
| | - Petra Jakobs
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, North Rhine-Westphalia, Germany
| | - Jurij Froese
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, North Rhine-Westphalia, Germany
| | - Kay Grobe
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, North Rhine-Westphalia, Germany
| |
Collapse
|
10
|
Molecular Diffusion of ABCA1 at the Cell Surface of Living Cells Assessed by svFCS. MEMBRANES 2021; 11:membranes11070498. [PMID: 34209140 PMCID: PMC8306713 DOI: 10.3390/membranes11070498] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/23/2021] [Accepted: 06/29/2021] [Indexed: 11/17/2022]
Abstract
Extensive studies showed the crucial role of ATP binding cassette (ABC) transporter ABCA1 in organizing the lipid microenvironment at the plasma membrane (PM) of living cells. However, the exact role of this protein in terms of lipid redistribution and lateral reorganization of the PM is still being discussed. Here, we took advantage of the spot variation fluorescence correlation spectroscopy (svFCS) to investigate the molecular dynamics of the ABCA1 expressed at the PM of Chinese hamster ovary cells (CHO-K1). We confirmed that this protein is strongly confined into the raft nanodomains. Next, in agreement with our previous observations, we showed that amphotericin B does not affect the diffusion properties of an active ABCA1 in contrary to inactive mutant ABCA1MM. We also evidenced that ApoA1 influences the molecular diffusion properties of ABCA1. Finally, we showed that the molecular confinement of ABCA1 depends on the cholesterol content in the PM, but presumably, this is not the only factor responsible for that. We concluded that the molecular dynamics of ABCA1 strongly depends on its activity and the PM composition. We hypothesize that other factors than lipids (i.e., proteins) are responsible for the strong confinement of ABCA1 in PM nanodomains which possibility has to be elucidated.
Collapse
|
11
|
Oz M, Lorke DE, Kabbani N. A comprehensive guide to the pharmacologic regulation of angiotensin converting enzyme 2 (ACE2), the SARS-CoV-2 entry receptor. Pharmacol Ther 2021; 221:107750. [PMID: 33275999 PMCID: PMC7854082 DOI: 10.1016/j.pharmthera.2020.107750] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 02/06/2023]
Abstract
The recent emergence of coronavirus disease-2019 (COVID-19) as a global pandemic has prompted scientists to address an urgent need for defining mechanisms of disease pathology and treatment. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent for COVID-19, employs angiotensin converting enzyme 2 (ACE2) as its primary target for cell surface attachment and likely entry into the host cell. Thus, understanding factors that may regulate the expression and function of ACE2 in the healthy and diseased body is critical for clinical intervention. Over 66% of all adults in the United States are currently using a prescription drug and while earlier findings have focused on possible upregulation of ACE2 expression through the use of renin angiotensin system (RAS) inhibitors, mounting evidence suggests that various other widely administered drugs used in the treatment of hypertension, heart failure, diabetes mellitus, hyperlipidemias, coagulation disorders, and pulmonary disease may also present a varied risk for COVID-19. Specifically, we summarize mechanisms on how heparin, statins, steroids and phytochemicals, besides their established therapeutic effects, may also interfere with SARS-CoV-2 viral entry into cells. We also describe evidence on the effect of several vitamins, phytochemicals, and naturally occurring compounds on ACE2 expression and activity in various tissues and disease models. This comprehensive review aims to provide a timely compendium on the potential impact of commonly prescribed drugs and pharmacologically active compounds on COVID-19 pathology and risk through regulation of ACE2 and RAS signaling.
Collapse
Key Words
- adam17, a disintegrin and metalloprotease 17
- ace, angiotensin i converting enzyme
- ace-inh., angiotensin i converting enzyme inhibitor
- ampk, amp-activated protein kinase
- ang-ii, angiotensin ii
- arb, angiotensin ii type 1-receptor blocker
- ards, acute respiratory distress syndrome
- at1-r, angiotensin ii type 1-receptor
- βarb, β-adrenergic receptor blockers
- bk, bradykinin
- ccb, calcium channel blockers
- ch25h, cholesterol-25-hydroxylase
- copd, chronic obstructive lung disease
- cox, cyclooxygenase
- covid-19, coronavirus disease-2019
- dabk, [des-arg9]-bradykinin
- erk, extracellular signal-regulated kinase
- 25hc, 25-hydroxycholesterol
- hs, heparan sulfate
- hspg, heparan sulfate proteoglycan
- ibd, inflammatory bowel disease
- map, mitogen-activated protein
- mers, middle east respiratory syndrome
- mrb, mineralocorticoid receptor blocker
- nos, nitric oxide synthase
- nsaid, non-steroid anti-inflammatory drug
- ras, renin-angiotensin system
- sars-cov, severe acute respiratory syndrome coronavirus
- sh, spontaneously hypertensive
- s protein, spike protein
- sirt1, sirtuin 1
- t2dm, type 2 diabetes mellitus
- tcm, traditional chinese medicine
- tmprss2, transmembrane protease, serine 2
- tnf, tumor necrosis factor
- ufh, unfractionated heparin
Collapse
Affiliation(s)
- Murat Oz
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Kuwait University, Safat 13110, Kuwait.
| | - Dietrich Ernst Lorke
- Department of Anatomy and Cellular Biology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates; Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Nadine Kabbani
- School of Systems Biology, George Mason University, Fairfax, VA 22030, USA
| |
Collapse
|
12
|
Abstract
With advancements of modern biophysical tools and superresolution imaging, cell biology is entering a new phase of research with technological power fitting for membrane dynamics analyses. However, our current knowledge base of cellular signaling events is mostly built on a network of protein interactions, which is incompatible with the essential roles of membrane activities in those events. The lack of a theoretical platform is rendering biophysical analyses of membrane biology supplementary to the protein-centric paradigm. We hypothesize a framework of signaling events mediated by lipid dynamics and argue that this is the evolutionarily obligatory developmental path of cellular complexity buildup. In this framework, receptors are the late comers, integrating into the pre-existing membrane based signaling events using their lipid interface as the point of entry. We further suggest that the reason for cell surface receptors to remain silent at the resting state is via the suppression effects of their surrounding lipids. The avoidance of such a suppression, via ligand binding or lipid domain disruption, enables the receptors to autonomously integrate themselves into the preexisting networks of signaling cascades.
Collapse
Affiliation(s)
- Yan Shi
- Tsinghua-Peking University Joint Center for Life Sciences, Tsinghua University, Beijing, China.,Department of Basic Medical Sciences, Tsinghua University, Beijing, China.,Institute for Immunology, Tsinghua University, Beijing, China.,Beijing Key Lab for Immunological Research on Chronic Diseases, School of Medicine, Tsinghua University, Beijing, China.,Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute, University of Calgary, Calgary, AB, Canada
| | - Hefei Ruan
- Tsinghua-Peking University Joint Center for Life Sciences, Tsinghua University, Beijing, China.,Department of Basic Medical Sciences, Tsinghua University, Beijing, China.,Institute for Immunology, Tsinghua University, Beijing, China.,Beijing Key Lab for Immunological Research on Chronic Diseases, School of Medicine, Tsinghua University, Beijing, China
| |
Collapse
|
13
|
Guo W, Wang X, Li Y, Bai O. Function and regulation of lipid signaling in lymphomagenesis: A novel target in cancer research and therapy. Crit Rev Oncol Hematol 2020; 154:103071. [PMID: 32810718 DOI: 10.1016/j.critrevonc.2020.103071] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 07/23/2020] [Accepted: 07/29/2020] [Indexed: 12/14/2022] Open
Abstract
To survive under the challenging conditions, cancer cells adapt their own metabolic mechanism(s) to be able steady supplying energy and metabolites for synthesis of new biomass. Aberrant lipid metabolism in cancer cells becomes a hall marker of carcinogenesis. Epidemiologic evidence indicates that fat intake, in particular saturated or animal fat, may increase the risk of lymphoma. Understanding the specific alterations of lymphoma metabolism becomes essential to address malignant transformation, progression, and therapeutic approaches. This review is focused on the lipid metabolism, with emphasis on fatty acid synthase, lipid rafts, exosomes, and metabolic diseases, in distinct lymphoma entities.
Collapse
Affiliation(s)
- Wei Guo
- Department of Hematology, Cancer Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Xingtong Wang
- Department of Hematology, Cancer Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yan Li
- Division of Surgical Oncology, Department of Surgery, School of Medicine, University of Louisville, Louisville, KY 40202, United States.
| | - Ou Bai
- Department of Hematology, Cancer Center, The First Hospital of Jilin University, Changchun, Jilin, China.
| |
Collapse
|
14
|
Lopes PH, van den Berg CW, Tambourgi DV. Sphingomyelinases D From Loxosceles Spider Venoms and Cell Membranes: Action on Lipid Rafts and Activation of Endogenous Metalloproteinases. Front Pharmacol 2020; 11:636. [PMID: 32477123 PMCID: PMC7237637 DOI: 10.3389/fphar.2020.00636] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 04/21/2020] [Indexed: 01/01/2023] Open
Abstract
Loxosceles spider venom contains Sphingomyelinase D (SMase D), the key toxin causing pathology. SMase D hydrolyzes the main component of lipid rafts, sphingomyelin, which changes the membrane microenvironment resulting in the activation of endogenous metalloproteinase from the ADAMs family. Alterations in membrane microenvironment of lipid rafts contribute to the activation of several cell surface molecules. Serine proteinases convertases acting on the pro-domain of membrane metalloproteinases, such as ADAMs, increase the cleavage and the release of proteins ectodomains and receptors located at the cell surface areas containing lipid rafts. We, therefore, investigated the interaction of SMases D with these membrane microdomains (lipid rafts) in human keratinocytes, to better understand the molecular mechanism of SMases D action, and identify the ADAM(s) responsible for the cleavage of cell surface molecules. Using specific inhibitors, we observed that ADAMs 10 and 17 are activated in the cell membrane after SMase D action. Furthermore, proproteins convertases, such as furin, are involved in the SMase D induced ADAMs activation. One of the signaling pathways that may be involved in the activation of these proteases is the MAPK pathway, since phosphorylation of ERK1/2 was observed in cells treated with SMase D. Confocal analysis showed a strong colocalization between SMase D and GM1 ganglioside present in rafts. Analysis of structural components of rafts, such as caveolin-1 and flotillin-1, showed that the action of SMase D on cell membranes leads to a reduction in caveolin-1, which is possibly degraded by toxin-induced superoxide production in cells. The action of the toxin also results in flotilin-1 increased detection in the cell membrane. These results indicate that SMases D from Loxosceles venoms alter membrane rafts structure, leading to the activation of membrane bound proteases, which may explain why the lipase action of this toxin can result in proteolytic cleavage of cell surface proteins, ultimately leading to pathology.
Collapse
Affiliation(s)
| | - Carmen W. van den Berg
- Centre for Medical Education, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | | |
Collapse
|
15
|
Specification of positional identity in forebrain organoids. Nat Biotechnol 2019; 37:436-444. [PMID: 30936566 PMCID: PMC6447454 DOI: 10.1038/s41587-019-0085-3] [Citation(s) in RCA: 226] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 02/22/2019] [Indexed: 01/28/2023]
Abstract
Human brain organoids generated with current technologies recapitulate histological features of the human brain, but they lack a reproducible topographic organization. During development, spatial topography is determined by gradients of signaling molecules released from discrete signaling centers. We hypothesized that introduction of a signaling center into forebrain organoids would specify the positional identity of neural tissue in a distance-dependent manner. Here, we present a system to trigger a sonic hedgehog (SHH) protein gradient in developing forebrain organoids that enables ordered self-organization along dorso-ventral and antero-posterior positional axes. SHH-patterned forebrain organoids establish major forebrain subdivisions that are positioned with in vivo-like topography. Consistent with its behavior in vivo, SHH exhibits long-range signaling activity in organoids. Finally, we use SHH-patterned cerebral organoids as a tool to study the role of cholesterol metabolism in SHH signaling. Together, this work identifies inductive signaling as an effective organizing strategy to recapitulate in vivo-like topography in human brain organoids.
Collapse
|
16
|
Chimento A, Casaburi I, Avena P, Trotta F, De Luca A, Rago V, Pezzi V, Sirianni R. Cholesterol and Its Metabolites in Tumor Growth: Therapeutic Potential of Statins in Cancer Treatment. Front Endocrinol (Lausanne) 2018; 9:807. [PMID: 30719023 PMCID: PMC6348274 DOI: 10.3389/fendo.2018.00807] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 12/21/2018] [Indexed: 12/13/2022] Open
Abstract
Cholesterol is essential for cell function and viability. It is a component of the plasma membrane and lipid rafts and is a precursor for bile acids, steroid hormones, and Vitamin D. As a ligand for estrogen-related receptor alpha (ESRRA), cholesterol becomes a signaling molecule. Furthermore, cholesterol-derived oxysterols activate liver X receptors (LXRs) or estrogen receptors (ERs). Several studies performed in cancer cells reveal that cholesterol synthesis is enhanced compared to normal cells. Additionally, high serum cholesterol levels are associated with increased risk for many cancers, but thus far, clinical trials with 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors (statins) have had mixed results. Statins inhibit cholesterol synthesis within cells through the inhibition of HMG-CoA reductase, the rate-limiting enzyme in the mevalonate and cholesterol synthetic pathway. Many downstream products of mevalonate have a role in cell proliferation, since they are required for maintenance of membrane integrity; signaling, as some proteins to be active must undergo prenylation; protein synthesis, as isopentenyladenine is an essential substrate for the modification of certain tRNAs; and cell-cycle progression. In this review starting from recent acquired findings on the role that cholesterol and its metabolites fulfill in the contest of cancer cells, we discuss the results of studies focused to investigate the use of statins in order to prevent cancer growth and metastasis.
Collapse
|
17
|
Chemaly M, McGilligan V, Gibson M, Clauss M, Watterson S, Alexander HD, Bjourson AJ, Peace A. Role of tumour necrosis factor alpha converting enzyme (TACE/ADAM17) and associated proteins in coronary artery disease and cardiac events. Arch Cardiovasc Dis 2017; 110:700-711. [DOI: 10.1016/j.acvd.2017.08.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 08/13/2017] [Accepted: 08/16/2017] [Indexed: 02/07/2023]
|
18
|
Reiss K, Bhakdi S. The plasma membrane: Penultimate regulator of ADAM sheddase function. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017. [PMID: 28624437 DOI: 10.1016/j.bbamcr.2017.06.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND ADAM10 and ADAM17 are the best characterized members of the ADAM (A Disintegrin and Metalloproteinase) - family of transmembrane proteases. Both are involved diverse physiological and pathophysiological processes. ADAMs are known to be regulated by posttranslational mechanisms. However, emerging evidence indicates that the plasma membrane with its unique dynamic properties may additionally play an important role in controlling sheddase function. SCOPE OF REVIEW Membrane events that could contribute to regulation of ADAM-function are summarized. MAJOR CONCLUSIONS Surface expression of peptidolytic activity should be differentiated from ADAM-sheddase function since the latter additionally requires that the protease finds its substrate in the lipid bilayer. We propose that this is achieved through horizontal and vertical reorganization of membrane nanoarchitecture coordinately occurring at the sites of sheddase activation. Reshuffling of nanodomains thereby guides traffic of enzyme and substrate to each other. For ADAM17 phosphatidylserine exposure is required to then induce its shedding function. GENERAL SIGNIFICANCE The novel concept that physicochemical properties of the lipid bilayer govern the action of ADAM-proteases may be extendable to other functional proteins that act at the cell surface. This article is part of a Special Issue entitled: Proteolysis as a Regulatory Event in Pathophysiology edited by Stefan Rose-John.
Collapse
Affiliation(s)
- Karina Reiss
- Dept. of Dermatology, University of Kiel, 24105 Kiel, Germany.
| | - Sucharit Bhakdi
- Dept. of Dermatology, University of Kiel, 24105 Kiel, Germany
| |
Collapse
|
19
|
Marín ND, García LF. The role of CD30 and CD153 (CD30L) in the anti-mycobacterial immune response. Tuberculosis (Edinb) 2016; 102:8-15. [PMID: 28061955 DOI: 10.1016/j.tube.2016.10.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 10/10/2016] [Accepted: 10/29/2016] [Indexed: 12/01/2022]
Abstract
The establishment of a protective T-cell response against mycobacterial infections involves different co-stimulatory molecules and their respective ligands. Among these molecules the Tumor Necrosis Factor Receptor Super-family (TNFRSF) and the Tumor Necrosis Factor Super-family (TNFSF) are known to be important members. This review analyzes the evidence that CD30 and CD153 (CD30L), members of the TNFRSF and TNSF, play key roles in the T cell-dependent anti-mycobacterial immune response. Mice deficient in either CD30 or CD153, or treated with antibodies blocking the effects or CD30 and CD153, and infected with M.avium or M.bovis BCG exhibit higher bacterial burden, abnormal inflammatory responses with decreased Th1 responses, this is evidenced by the reduced number of IFN-γ-producing cells. Recent evidence also showed that CD30+ CD153+ Tγδ cells participate in the early stages of M.bovis BCG infection by producing IL-17A. In humans, stimulation of T-cells with mycobacterial antigens induces CD30 expression mainly by CD4+ cells; CD30+ cells have been demonstrated in tissues of patients with tuberculosis (TB) and in positive tuberculin skin test reactions. In addition, the levels of soluble CD30 are increased in serum and BAL of TB patients and these levels seems to correlate with the severity of the disease. These findings suggest that CD30/CD153 interactions during the anti-mycobacterial immune response are important for the establishment and maintenance of a protective response. Further studies would be required to determine whether these molecules may be good clinical biomarkers or potential targets for immune manipulation.
Collapse
Affiliation(s)
- Nancy D Marín
- Grupo de Inmunología Celular e Inmunogenética, Sede de Investigación Universitaria, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia; Escuela de Microbiología, Universidad de Antioquia, Medellín, Colombia
| | - Luis F García
- Grupo de Inmunología Celular e Inmunogenética, Sede de Investigación Universitaria, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia.
| |
Collapse
|
20
|
Abu-Arish A, Pandzic E, Goepp J, Matthes E, Hanrahan JW, Wiseman PW. Cholesterol modulates CFTR confinement in the plasma membrane of primary epithelial cells. Biophys J 2016; 109:85-94. [PMID: 26153705 DOI: 10.1016/j.bpj.2015.04.042] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 04/23/2015] [Indexed: 01/01/2023] Open
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) is a plasma-membrane anion channel that, when mutated, causes the disease cystic fibrosis. Although CFTR has been detected in a detergent-resistant membrane fraction prepared from airway epithelial cells, suggesting that it may partition into cholesterol-rich membrane microdomains (lipid rafts), its compartmentalization has not been demonstrated in intact cells and the influence of microdomains on CFTR lateral mobility is unknown. We used live-cell imaging, spatial image correlation spectroscopy, and k-space image correlation spectroscopy to examine the aggregation state of CFTR and its dynamics both within and outside microdomains in the plasma membrane of primary human bronchial epithelial cells. These studies were also performed during treatments that augment or deplete membrane cholesterol. We found two populations of CFTR molecules that were distinguishable based on their dynamics at the cell surface. One population showed confinement and had slow dynamics that were highly cholesterol dependent. The other, more abundant population was less confined and diffused more rapidly. Treatments that deplete the membrane of cholesterol caused the confined fraction and average number of CFTR molecules per cluster to decrease. Elevating cholesterol had the opposite effect, increasing channel aggregation and the fraction of channels displaying confinement, consistent with CFTR recruitment into cholesterol-rich microdomains with dimensions below the optical resolution limit. Viral infection caused the nanoscale microdomains to fuse into large platforms and reduced CFTR mobility. To our knowledge, these results provide the first biophysical evidence for multiple CFTR populations and have implications for regulation of their surface expression and channel function.
Collapse
Affiliation(s)
| | - Elvis Pandzic
- Physics, McGill University, Montreal, Quebec, Canada
| | - Julie Goepp
- Physiology, McGill University, Montreal, Quebec, Canada
| | | | | | - Paul W Wiseman
- Chemistry & Physics, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
21
|
Dekky B, Wahart A, Sartelet H, Féré M, Angiboust JF, Dedieu S, Piot O, Devy J, Emonard H. Cellular Cholesterol Distribution Influences Proteolytic Release of the LRP-1 Ectodomain. Front Pharmacol 2016; 7:25. [PMID: 26903870 PMCID: PMC4751253 DOI: 10.3389/fphar.2016.00025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 01/26/2016] [Indexed: 11/13/2022] Open
Abstract
Low-density lipoprotein receptor-related protein-1 (LRP-1) is a multifunctional matricellular receptor composed of a large ligand-binding subunit (515-kDa α-chain) associated with a short trans-membrane subunit (85-kDa β-chain). LRP-1, which exhibits both endocytosis and cell signaling properties, plays a key role in tumor invasion by regulating the activity of proteinases such as matrix metalloproteinases (MMPs). LRP-1 is shed at the cell surface by proteinases such as membrane-type 1 MMP (MT1-MMP) and a disintegrin and metalloproteinase-12 (ADAM-12). Here, we show by using biophysical, biochemical, and cellular imaging approaches that efficient extraction of cell cholesterol and increased LRP-1 shedding occur in MDA-MB-231 breast cancer cells but not in MDA-MB-435 cells. Our data show that cholesterol is differently distributed in both cell lines; predominantly intracellularly for MDA-MB-231 cells and at the plasma membrane for MDA-MB-435 cells. This study highlights the relationship between the rate and cellular distribution of cholesterol and its impact on LRP-1 shedding modulation. Altogether, our data strongly suggest that the increase of LRP-1 shedding upon cholesterol depletion induces a higher accessibility of the sheddase substrate, i.e., LRP-1, at the cell surface rather than an increase of expression of the enzyme.
Collapse
Affiliation(s)
- Bassil Dekky
- Laboratoire de Signalisation et Récepteurs Matriciels, UFR de Sciences Exactes et Naturelles, Université de Reims Champagne-ArdenneReims, France; CNRS, Matrice Extracellulaire et Dynamique Cellulaire, UMR 7369Reims, France
| | - Amandine Wahart
- Laboratoire de Signalisation et Récepteurs Matriciels, UFR de Sciences Exactes et Naturelles, Université de Reims Champagne-ArdenneReims, France; CNRS, Matrice Extracellulaire et Dynamique Cellulaire, UMR 7369Reims, France
| | - Hervé Sartelet
- Laboratoire de Signalisation et Récepteurs Matriciels, UFR de Sciences Exactes et Naturelles, Université de Reims Champagne-ArdenneReims, France; CNRS, Matrice Extracellulaire et Dynamique Cellulaire, UMR 7369Reims, France
| | - Michaël Féré
- CNRS, Matrice Extracellulaire et Dynamique Cellulaire, UMR 7369Reims, France; MéDIAN-Biophotonique et Technologies pour la Santé, UFR de Pharmacie, Université de Reims Champagne-ArdenneReims, France; Plateforme d'Imagerie Cellulaire et Tissulaire, Université de Reims Champagne-ArdenneReims, France
| | - Jean-François Angiboust
- CNRS, Matrice Extracellulaire et Dynamique Cellulaire, UMR 7369Reims, France; MéDIAN-Biophotonique et Technologies pour la Santé, UFR de Pharmacie, Université de Reims Champagne-ArdenneReims, France; Plateforme d'Imagerie Cellulaire et Tissulaire, Université de Reims Champagne-ArdenneReims, France
| | - Stéphane Dedieu
- Laboratoire de Signalisation et Récepteurs Matriciels, UFR de Sciences Exactes et Naturelles, Université de Reims Champagne-ArdenneReims, France; CNRS, Matrice Extracellulaire et Dynamique Cellulaire, UMR 7369Reims, France
| | - Olivier Piot
- CNRS, Matrice Extracellulaire et Dynamique Cellulaire, UMR 7369Reims, France; MéDIAN-Biophotonique et Technologies pour la Santé, UFR de Pharmacie, Université de Reims Champagne-ArdenneReims, France; Plateforme d'Imagerie Cellulaire et Tissulaire, Université de Reims Champagne-ArdenneReims, France
| | - Jérôme Devy
- Laboratoire de Signalisation et Récepteurs Matriciels, UFR de Sciences Exactes et Naturelles, Université de Reims Champagne-ArdenneReims, France; CNRS, Matrice Extracellulaire et Dynamique Cellulaire, UMR 7369Reims, France
| | - Hervé Emonard
- Laboratoire de Signalisation et Récepteurs Matriciels, UFR de Sciences Exactes et Naturelles, Université de Reims Champagne-ArdenneReims, France; CNRS, Matrice Extracellulaire et Dynamique Cellulaire, UMR 7369Reims, France
| |
Collapse
|
22
|
Gioia M, Vindigni G, Testa B, Raniolo S, Fasciglione GF, Coletta M, Biocca S. Membrane Cholesterol Modulates LOX-1 Shedding in Endothelial Cells. PLoS One 2015; 10:e0141270. [PMID: 26495844 PMCID: PMC4619672 DOI: 10.1371/journal.pone.0141270] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 10/05/2015] [Indexed: 11/19/2022] Open
Abstract
The lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) is a scavenger receptor responsible for ox-LDL recognition, binding and internalization, which is up-regulated during atherogenesis. Its activation triggers endothelium dysfunction and induces inflammation. A soluble form of LOX-1 has been identified in the human blood and its presence considered a biomarker of cardiovascular diseases. We recently showed that cholesterol-lowering drugs inhibit ox-LDL binding and internalization, rescuing the ox-LDL induced apoptotic phenotype in primary endothelial cells. Here we have investigated the molecular bases of human LOX-1 shedding by metalloproteinases and the role of cell membrane cholesterol on the regulation of this event by modulating its level with MβCD and statins. We report that membrane cholesterol affects the release of different forms of LOX-1 in cells transiently and stably expressing human LOX-1 and in a human endothelial cell line (EA.hy926). In particular, our data show that i) cholesterol depletion triggers the release of LOX-1 in exosomes as a full-length transmembrane isoform and as a truncated ectodomain soluble fragment (sLOX-1); ii) endothelial cells secrete a soluble metalloproteinase which induces LOX-1 ectodomain shedding and iii) long term statins treatment enhances sLOX-1 proteolytic shedding.
Collapse
Affiliation(s)
- Magda Gioia
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata, Via Montpellier 1, 00133, Rome, Italy
| | - Giulia Vindigni
- Department of Systems Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133, Rome, Italy
| | - Barbara Testa
- Department of Systems Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133, Rome, Italy
| | - Sofia Raniolo
- Department of Systems Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133, Rome, Italy
| | - Giovanni Francesco Fasciglione
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata, Via Montpellier 1, 00133, Rome, Italy
| | - Massimiliano Coletta
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata, Via Montpellier 1, 00133, Rome, Italy
| | - Silvia Biocca
- Department of Systems Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133, Rome, Italy
| |
Collapse
|
23
|
DeBerge MP, Ely KH, Wright PF, Thorp EB, Enelow RI. Shedding of TNF receptor 2 by effector CD8⁺ T cells by ADAM17 is important for regulating TNF-α availability during influenza infection. J Leukoc Biol 2015; 98:423-34. [PMID: 26019295 PMCID: PMC4763598 DOI: 10.1189/jlb.3a0914-432rr] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 05/04/2015] [Accepted: 05/08/2015] [Indexed: 11/24/2022] Open
Abstract
Elevated levels of solTNFR2 are observed in a variety of human pathophysiological conditions but regulation of TNFR2 levels during disease is not well understood. We found that solTNFR2 levels were increased following influenza infection or live-attenuated influenza virus challenge in mice and humans, respectively. As influenza-specific CD8(+) T cells up-regulated expression of TNFR2 after infection in mice, we hypothesized that CD8(+) T cells contributed, in part, to solTNFR2 production after influenza infection and were interested in the mechanisms by which CD8(+) T cells regulate TNFR2 shedding. Activation of these cells by TCR stimulation resulted in enhanced shedding of TNFR2 that required actin remodeling and lipid raft formation and was dependent on MAPK/ERK signaling. Furthermore, we identified ADAM17 as the protease responsible for TNFR2 shedding by CD8(+) T cells, with ADAM17 and TNFR2 required in "cis" for shedding to occur. We observed similar activation thresholds for TNF-α expression and TNFR2 shedding, suggesting that solTNFR2 functioned, in part, to regulate solTNF-α levels. Production of solTNFR2 by activated CD8(+) T cells reduced the availability of solTNF-α released by these cells, and TNFR2 blockade during influenza infection in mice enhanced the levels of solTNF-α, supporting this hypothesis. Taken together, this study identifies critical cellular mechanisms regulating TNFR2 shedding on CD8(+) T cells and demonstrates that TNFR2 contributes, in part, to the regulation of TNF-α levels during infection.
Collapse
Affiliation(s)
- Matthew P DeBerge
- *Department of Pathology, Feinberg School of Medicine at Northwestern University, Chicago, Illinois, USA; Departments of Medicine, Pediatrics, and Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - Kenneth H Ely
- *Department of Pathology, Feinberg School of Medicine at Northwestern University, Chicago, Illinois, USA; Departments of Medicine, Pediatrics, and Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - Peter F Wright
- *Department of Pathology, Feinberg School of Medicine at Northwestern University, Chicago, Illinois, USA; Departments of Medicine, Pediatrics, and Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - Edward B Thorp
- *Department of Pathology, Feinberg School of Medicine at Northwestern University, Chicago, Illinois, USA; Departments of Medicine, Pediatrics, and Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - Richard I Enelow
- *Department of Pathology, Feinberg School of Medicine at Northwestern University, Chicago, Illinois, USA; Departments of Medicine, Pediatrics, and Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| |
Collapse
|
24
|
Morancho B, Martínez-Barriocanal Á, Villanueva J, Arribas J. Role of ADAM17 in the non-cell autonomous effects of oncogene-induced senescence. Breast Cancer Res 2015; 17:106. [PMID: 26260680 PMCID: PMC4532141 DOI: 10.1186/s13058-015-0619-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 07/16/2015] [Indexed: 01/07/2023] Open
Abstract
Introduction Cellular senescence is a terminal cell proliferation arrest that can be triggered by oncogenes. One of the traits of oncogene-induced senescence (OIS) is the so-called senescence-associated secretory phenotype or senescence secretome. Depending on the context, the non-cell autonomous effects of OIS may vary from tumor suppression to promotion of metastasis. Despite being such a physiological and pathologically relevant effector, the mechanisms of generation of the senescence secretome are largely unknown. Methods We analyzed by label-free proteomics the secretome of p95HER2-induced senescent cells and compared the levels of the membrane-anchored proteins with their transcript levels. Then, protein and RNA levels of ADAM17 were evaluated by using Western blot and reverse transcription-polymerase chain reaction, its localization by using biotin labeling and immunofluorescence, and its activity by using alkaline phosphatase-tagged substrates. The p95HER2-expressing cell lines, senescent MCF7 and proliferating MCF10A, were analyzed to study ADAM17 regulation. Finally, we knocked down ADAM17 to determine its contribution to the senescence-associated secretome. The effect of this secretome was evaluated in migration assays in vitro and in nude mice by assessing the metastatic ability of orthotopically co-injected non-senescent cells. Results Using breast cancer cells expressing p95HER2, a constitutively active fragment of the proto-oncogene HER2 that induces OIS, we show that the extracellular domains of a variety of membrane-bound proteins form part of the senescence secretome. We determine that these proteins are regulated transcriptionally and, in addition, that their shedding is limited by the protease ADAM17. The activity of the sheddase is constrained, at least in part, by the accumulation of cellular cholesterol. The blockade of ADAM17 abrogates several prometastatic effects of the p95HER2-induced senescence secretome, both in vitro and in vivo. Conclusions Considering these findings, we conclude that ectodomain shedding is tightly regulated in oncogene-induced senescent cells by integrating transcription of the shedding substrates with limiting ADAM17 activity. The remaining activity of ADAM17 contributes to the non-cell autonomous protumorigenic effects of p95HER2-induced senescent cells. Because ADAM17 is druggable, these results represent an approximation to the pharmacological regulation of the senescence secretome. Electronic supplementary material The online version of this article (doi:10.1186/s13058-015-0619-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Beatriz Morancho
- Preclinical Research Program, Vall d'Hebron Institute of Oncology (VHIO), Psg. Vall d'Hebron 119-129, Barcelona, 08035, Spain.
| | - Águeda Martínez-Barriocanal
- Preclinical Research Program, Vall d'Hebron Institute of Oncology (VHIO), Psg. Vall d'Hebron 119-129, Barcelona, 08035, Spain.
| | - Josep Villanueva
- Preclinical Research Program, Vall d'Hebron Institute of Oncology (VHIO), Psg. Vall d'Hebron 119-129, Barcelona, 08035, Spain.
| | - Joaquín Arribas
- Preclinical Research Program, Vall d'Hebron Institute of Oncology (VHIO), Psg. Vall d'Hebron 119-129, Barcelona, 08035, Spain. .,Department of Biochemistry and Molecular Biology, Building M, Campus UAB, Bellaterra (Cerdanyola del Valles), Barcelona, 08193, Spain. .,Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluis Companys 23, Barcelona, 08010, Spain.
| |
Collapse
|
25
|
Targeting CD13 (aminopeptidase-N) in turn downregulates ADAM17 by internalization in acute myeloid leukaemia cells. Oncotarget 2015; 5:8211-22. [PMID: 25246708 PMCID: PMC4226678 DOI: 10.18632/oncotarget.1788] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Secreted matrix metalloproteinases (MMP)-2 and MMP-9 and membrane-anchored aminopeptidase-N/CD13 are abnormally expressed in human acute myeloid leukaemia (AML). We previously showed that CD13 ligation by anti-CD13 monoclonal antibodies can induce apoptosis in AML cells. Here, we assessed ADAM17 expression in primary blood blasts CD13+CD33+ from patients with AML. Primary AML cells expressed ADAM17 transcript and its surface expression was higher in subtype M4 (myelomonocytic) and M5 (monocytic) AML specimens than in M0 and M1/M2 (early and granulocytic) specimens. In AML cell lines defining distinct AML subfamilies (HL-60/M2, NB4/M3, THP-1/M5, U937/M5) and primary AML cells cultured ex vivo, anti-CD13 antibodies downregulated surface CD13 and ADAM17 without affecting MMP-2/-9 release. Knockdown of CD13 by siRNA prevented anti-CD13-mediated ADAM17 downregulation, indicating that CD13 is required for ADAM17 downregulation. Soluble ADAM17 was not detected in the medium of anti-CD13 treated cells, suggesting that ADAM17 was not shed. After ligation by anti-CD13, CD13 and ADAM17 were internalized. Subsequently, we found that ADAM17 interacts with CD13. We postulate that the interaction of ADAM17 with CD13 and its downregulation following CD13 engagement has important implications in AML for the known roles of ADAM17 in tumour-associated cell growth, migration and invasion.
Collapse
|
26
|
Ebsen H, Lettau M, Kabelitz D, Janssen O. Subcellular localization and activation of ADAM proteases in the context of FasL shedding in T lymphocytes. Mol Immunol 2015; 65:416-28. [PMID: 25745808 DOI: 10.1016/j.molimm.2015.02.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 01/20/2015] [Accepted: 02/08/2015] [Indexed: 10/23/2022]
Abstract
The "A Disintegrin And Metalloproteinases" (ADAMs) form a subgroup of the metzincin endopeptidases. Proteolytically active members of this protein family act as sheddases and govern key processes in development and inflammation by regulating cell surface expression and release of cytokines, growth factors, adhesion molecules and their receptors. In T lymphocytes, ADAM10 sheds the death factor Fas Ligand (FasL) and thereby regulates T cell activation, death and effector function. Although FasL shedding by ADAM10 was confirmed in several studies, its regulation is still poorly defined. We recently reported that ADAM10 is highly abundant on T cells whereas its close relative ADAM17 is expressed at low levels and transiently appears at the cell surface upon stimulation. Since FasL is also stored intracellularly and brought to the plasma membrane upon stimulation, we addressed where the death factor gets exposed to ADAM proteases. We report for the first time that both ADAM10 and ADAM17 are associated with FasL-containing secretory lysosomes. Moreover, we demonstrate that TCR/CD3/CD28-stimulation induces a partial positioning of both proteases and FasL to lipid rafts and only the activation-induced raft-positioning results in FasL processing. TCR/CD3/CD28-induced FasL proteolysis is markedly affected by reducing both ADAM10 and ADAM17 protein levels, indicating that in human T cells also ADAM17 is implicated in FasL processing. Since FasL shedding is affected by cholesterol depletion and by inhibition of Src kinases or palmitoylation, we conclude that it requires mobilization and co-positioning of ADAM proteases in lipid raft-like platforms associated with an activation of raft-associated Src-family kinases.
Collapse
Affiliation(s)
- Henriette Ebsen
- University of Kiel, Institute of Immunology, University Hospital Schleswig-Holstein Campus Kiel, Arnold-Heller-Str. 3 Bldg 17, D-24105 Kiel, Germany
| | - Marcus Lettau
- University of Kiel, Institute of Immunology, University Hospital Schleswig-Holstein Campus Kiel, Arnold-Heller-Str. 3 Bldg 17, D-24105 Kiel, Germany
| | - Dieter Kabelitz
- University of Kiel, Institute of Immunology, University Hospital Schleswig-Holstein Campus Kiel, Arnold-Heller-Str. 3 Bldg 17, D-24105 Kiel, Germany
| | - Ottmar Janssen
- University of Kiel, Institute of Immunology, University Hospital Schleswig-Holstein Campus Kiel, Arnold-Heller-Str. 3 Bldg 17, D-24105 Kiel, Germany.
| |
Collapse
|
27
|
Jakobs P, Exner S, Schürmann S, Pickhinke U, Bandari S, Ortmann C, Kupich S, Schulz P, Hansen U, Seidler DG, Grobe K. Scube2 enhances proteolytic Shh processing from the surface of Shh-producing cells. J Cell Sci 2014; 127:1726-37. [PMID: 24522195 DOI: 10.1242/jcs.137695] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
All morphogens of the Hedgehog (Hh) family are synthesized as dual-lipidated proteins, which results in their firm attachment to the surface of the cell in which they were produced. Thus, Hh release into the extracellular space requires accessory protein activities. We suggested previously that the proteolytic removal of N- and C-terminal lipidated peptides (shedding) could be one such activity. More recently, the secreted glycoprotein Scube2 (signal peptide, cubulin domain, epidermal-growth-factor-like protein 2) was also implicated in the release of Shh from the cell membrane. This activity strictly depended on the CUB domains of Scube2, which derive their name from the complement serine proteases and from bone morphogenetic protein-1/tolloid metalloproteinases (C1r/C1s, Uegf and Bmp1). CUB domains function as regulators of proteolytic activity in these proteins. This suggested that sheddases and Scube2 might cooperate in Shh release. Here, we confirm that sheddases and Scube2 act cooperatively to increase the pool of soluble bioactive Shh, and that Scube2-dependent morphogen release is unequivocally linked to the proteolytic processing of lipidated Shh termini, resulting in truncated soluble Shh. Thus, Scube2 proteins act as protease enhancers in this setting, revealing newly identified Scube2 functions in Hh signaling regulation.
Collapse
Affiliation(s)
- Petra Jakobs
- The Institute for Physiological Chemistry and Pathobiochemistry, Westfälische Wilhelms Universität Münster, Waldeyerstrasse 15, D-48149 Münster, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
The histone deacetylase inhibitor LBH589 (panobinostat) modulates the crosstalk of lymphocytes with Hodgkin lymphoma cell lines. PLoS One 2013; 8:e79502. [PMID: 24278143 PMCID: PMC3836980 DOI: 10.1371/journal.pone.0079502] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 09/24/2013] [Indexed: 11/19/2022] Open
Abstract
Epigenetic changes have been implicated in the malignant phenotype of Hodgkin Reed Sternberg (HRS) cells in Hodgkin lymphoma (HL), where HRS survival and proliferation depends on the microenvironment. The histone-deacetylase (HDAC) inhibitor LBH589 (panobinostat) showed clinical efficacy but its impact on the HRS microenvironment is unclear. Hence, we analysed the effects of LBH589 on lymphocytes and also potential combination therapies. In lymphocyte-target cell killing assays, LBH589-treatment triggered an enhanced lymphocyte-dependent lysis of HL cells despite of mild lymphocytopenic effects. In co-culture experiments of lymphocytes with HL cells, LBH589 suppressed the IFNgamma-release but increased the TNFalpha secretion. Recombinant TNFalpha boosted the lymphocyte-dependent lysis of HL target cells. In HL cell lines, LBH589 induced cell death, autophagy, and an increase of MICA/B that are ligands to natural killer cell receptors. The combination of LBH589 with Brentuximab Vedotin was inefficient due to down-regulation of CD30 as a target. Combination with gemcitabine revealed highly significant effects, suggesting a potential combination for future therapy. Based on these data we suggest that LBH589 favourably modulates the cytokine network and lymphocyte activity in the HL microenvironment.
Collapse
|
29
|
Padro CJ, Shawler TM, Gormley MG, Sanders VM. Adrenergic regulation of IgE involves modulation of CD23 and ADAM10 expression on exosomes. THE JOURNAL OF IMMUNOLOGY 2013; 191:5383-97. [PMID: 24140643 DOI: 10.4049/jimmunol.1301019] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Soluble CD23 plays a role in the positive regulation of an IgE response. Engagement of the β2 adrenergic receptor (β2AR) on a B cell is known to enhance the level of both soluble CD23 and IgE, although the mechanism by which this occurs is not completely understood. In this study, we report that, in comparison with a CD40 ligand/IL-4-primed murine B cell alone, β2AR engagement on a primed B cell increased gene expression of a disintegrin and metalloproteinase (ADAM)10, which is the primary sheddase of CD23, as well as protein expression of both CD23 and ADAM10, in a protein kinase A- and p38 MAPK-dependent manner, and promoted the localization of these proteins to exosomes as early as 2 d after priming, as determined by both Western blot and flow cytometry and confirmed by electron microscopy. In comparison with isolated exosomes released from primed B cells alone, the transfer of exosomes released from β2AR agonist-exposed primed B cells to cultures of recipient primed B cells resulted in an increase in the level of IgE produced per cell, without affecting the number of cells producing IgE, as determined by ELISPOT. These effects still occurred when a β2AR antagonist was added along with the transfer to block residual agonist, and they failed to occur when exosomes were isolated from β2AR-deficient B cells. These findings suggest that the mechanism responsible for mediating the β2AR-induced increase in IgE involves a shuttling of the β2AR-induced increase in CD23 and ADAM10 proteins to exosomes that subsequently mediate an increase in IgE.
Collapse
Affiliation(s)
- Caroline J Padro
- Biomedical Sciences Graduate Program, The Ohio State University Wexner College of Medicine, Columbus, OH 43210
| | | | | | | |
Collapse
|
30
|
Heuss SF, Tarantino N, Fantini J, Ndiaye-Lobry D, Moretti J, Israël A, Logeat F. A glycosphingolipid binding domain controls trafficking and activity of the mammalian notch ligand delta-like 1. PLoS One 2013; 8:e74392. [PMID: 24069306 PMCID: PMC3771905 DOI: 10.1371/journal.pone.0074392] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 08/01/2013] [Indexed: 01/12/2023] Open
Abstract
The activity of Notch ligands is tightly regulated by trafficking events occurring both before and after ligand-receptor interaction. In particular endocytosis and recycling have been shown to be required for full signaling activity of the ligands before they encounter the Notch receptor. However little is known about the precise endocytic processes that contribute to ligand internalization. Here we demonstrate that endocytosis contributes to Dll1 signaling activity by preserving the ligand from shedding and degradation. We further show that the glycosphingolipid-binding motif originally identified in Drosophila Notch ligands is conserved in mammals and is necessary for Dll1 internalization. Mutation of its conserved tryptophan residue results in a Dll1 molecule which is rapidly inactivated by shedding and degradation, does not recycle to the cell surface and does not activate Notch signaling. Finally, silencing in the signal-sending cells of glucosylceramide synthase, the enzyme implicated in the initial phase of glycosphingolipid synthesis, down-regulates Notch activation. Our data indicate that glycosphingolipids, by interacting with Dll1, may act as functional co-factors to promote its biological activity.
Collapse
Affiliation(s)
- Sara Farrah Heuss
- Unité de Signalisation Moléculaire et Activation Cellulaire, URA CNRS 2582, Institut Pasteur, Paris, France
| | | | | | | | | | | | | |
Collapse
|
31
|
Ohlig S, Pickhinke U, Sirko S, Bandari S, Hoffmann D, Dreier R, Farshi P, Götz M, Grobe K. An emerging role of Sonic hedgehog shedding as a modulator of heparan sulfate interactions. J Biol Chem 2012; 287:43708-19. [PMID: 23118222 DOI: 10.1074/jbc.m112.356667] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Major developmental morphogens of the Hedgehog (Hh) family act at short range and long range to direct cell fate decisions in vertebrate and invertebrate tissues. To this end, Hhs are released from local sources and act at a distance on target cells that express the Hh receptor Patched. However, morphogen secretion and spreading are not passive processes because all Hhs are synthesized as dually (N- and C-terminal) lipidated proteins that firmly tether to the surface of producing cells. On the cell surface, Hhs associate with each other and with heparan sulfate (HS) proteoglycans. This raises the question of how Hh solubilization and spreading is achieved. We recently discovered that Sonic hedgehog (Shh) is solubilized by proteolytic processing (shedding) of lipidated peptide termini in vitro. Because unprocessed N termini block Patched receptor binding sites in the cluster, we further suggested that their proteolytic removal is required for simultaneous Shh activation. In this work we confirm inactivity of unprocessed protein clusters and demonstrate restored biological Shh function upon distortion or removal of N-terminal amino acids and peptides. We further show that N-terminal Shh processing targets and inactivates the HS binding Cardin-Weintraub (CW) motif, resulting in soluble Shh clusters with their HS binding capacities strongly reduced. This may explain the ability of Shh to diffuse through the HS-containing extracellular matrix, whereas other HS-binding proteins are quickly immobilized. Our in vitro findings are supported by the presence of CW-processed Shh in murine brain samples, providing the first in vivo evidence for Shh shedding and subsequent solubilization of N-terminal-truncated proteins.
Collapse
Affiliation(s)
- Stefanie Ohlig
- Institute for Physiological Chemistry and Pathobiochemistry, University Hospital Münster, Waldeyerstrasse 15, D-48149 Münster, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Wang J, Ohno-Matsui K, Morita I. Cholesterol enhances amyloid β deposition in mouse retina by modulating the activities of Aβ-regulating enzymes in retinal pigment epithelial cells. Biochem Biophys Res Commun 2012; 424:704-9. [PMID: 22796523 DOI: 10.1016/j.bbrc.2012.07.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Accepted: 07/06/2012] [Indexed: 10/28/2022]
Abstract
Subretinally-deposited amyloid β (Aβ) is a main contributor of developing age-related macular degeneration (AMD). However, the mechanism causing Aβ deposition in AMD eyes is unknown. Hypercholesterolemia is a significant risk for developing AMD. Thus, we investigated the effects of cholesterol on Aβ production in retinal pigment epithelial (RPE) cells in vitro and in the mouse retina in vivo. RPE cells isolated from senescent (12-month-old) C57BL/6 mice were treated with 10μg/ml cholesterol for 48h. Aβ amounts in culture supernatants were measured by ELISA. Activity and expression of enzymes and proteins that regulate Aβ production were examined by activity assay and real time PCR. The retina of mice fed cholesterol-enriched diet was examined by transmission electron microscopy. Cholesterol significantly increased Aβ production in cultured RPE cells. Activities of Aβ degradation enzyme; neprilysin (NEP) and anti-amyloidogenic secretase; α-secretase were significantly decreased in cell lysates of cholesterol-treated RPE cells compared to non-treated cells, but there was no change in the activities of β- or γ-secretase. mRNA levels of NEP and α-secretase (ADAM10 and ADAM17) were significantly lower in cholesterol-treated RPE cells than non-treated cells. Senescent (12-month-old) mice fed cholesterol-enriched chow developed subRPE deposits containing Aβ, whereas age-matched mice fed standard rodent chow diet did not. Activities and mRNA levels of NEP and α-secretase were significantly lower in native RPE cells freshly isolated from cholesterol-enriched chow fed mice compared to standard rodent chow fed mice. These findings suggest that cholesterol enhances subretinal Aβ accumulation by modulating the activities of enzymes degrading and processing Aβ in RPE cells in senescent subjects.
Collapse
Affiliation(s)
- Jiying Wang
- Department of Ophthalmology and Visual Science, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | | | | |
Collapse
|
33
|
Novel aspects of the apolipoprotein-E receptor family: regulation and functional role of their proteolytic processing. ACTA ACUST UNITED AC 2012. [DOI: 10.1007/s11515-011-1186-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
34
|
D'Alessio A, Esposito B, Giampietri C, Ziparo E, Pober JS, Filippini A. Plasma membrane microdomains regulate TACE-dependent TNFR1 shedding in human endothelial cells. J Cell Mol Med 2012; 16:627-36. [PMID: 21645239 PMCID: PMC3202671 DOI: 10.1111/j.1582-4934.2011.01353.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Accepted: 05/20/2011] [Indexed: 12/01/2022] Open
Abstract
Upon stimulation by histamine, human vascular endothelial cells (EC) shed a soluble form of tumour necrosis factor receptor 1 (sTNFR1) that binds up free TNF, dampening the inflammatory response. Shedding occurs through proteolytic cleavage of plasma membrane-expressed TNFR1 catalysed by TNF-α converting enzyme (TACE). Surface expressed TNFR1 on EC is largely sequestered into specific plasma membrane microdomains, the lipid rafts/caveolae. The purpose of this study was to determine the role of these domains in TACE-mediated TNFR1 shedding in response to histamine. Human umbilical vein endothelial cells derived EA.hy926 cells respond to histamine via H1 receptors to shed TNFR1. Both depletion of cholesterol by methyl-β-cyclodextrin and small interfering RNA knockdown of the scaffolding protein caveolin-1 (cav-1), treatments that disrupt caveolae, reduce histamine-induced shedding of membrane-bound TNFR1. Moreover, immunoblotting of discontinuous sucrose gradient fractions show that TACE, such as TNFR1, is present within low-density membrane fractions, concentrated within caveolae, in unstimulated EA.hy926 endothelial cells and co-immunoprecipitates with cav-1. Silencing of cav-1 reduces the levels of both TACE and TNFR1 protein and displaces TACE, from low-density membrane fractions where TNFR1 remains. In summary, we show that endothelial lipid rafts/caveolae co-localize TACE to surface expressed TNFR1, promoting efficient shedding of sTNFR1 in response to histamine.
Collapse
Affiliation(s)
- Alessio D'Alessio
- Istituto Pasteur-Fondazione Cenci Bolognetti, Department of Anatomy, Histology, Forensic Medicine and Orthopedics-Section of Histology and Medical Embryology, Sapienza University of Rome, Rome, Italy.
| | | | | | | | | | | |
Collapse
|
35
|
Li J, Liu B, Gao X, Ma Z, CaoSong T, Mei YA, Zheng Y. Overexpression of sigma-1 receptor inhibits ADAM10 and ADAM17 mediated shedding in vitro. Protein Cell 2012; 3:153-9. [PMID: 22322890 PMCID: PMC4875409 DOI: 10.1007/s13238-012-2006-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Accepted: 12/29/2011] [Indexed: 10/14/2022] Open
Abstract
The sigma-1 receptor is a molecular chaperone protein highly enriched in the brain. Recent studies linked it to many diseases, such as drug addition, Alzheimer's disease, stroke, depression, and even cancer. Sigma-1 receptor is enriched in lipid rafts, which are membrane microdomains essential in signaling processes. One of those signaling processes is ADAM17- and ADAM10-dependent ectodomain shedding. By using an alkaline phosphatase tagged substrate reporter system, we have shown that ADAM10-dependent BTC shedding was very sensitive to both membrane lipid component change and sigma-1 receptor agonist DHEAS treatment while ADAM17-dependent HB-EGF shedding was not; and overexpression of sigma-1 receptor diminished ADAM17- and ADAM10-dependent shedding. Our results indicate that sigma-1 receptor plays an important role in modifying the function of transmembrane proteases.
Collapse
Affiliation(s)
- Juan Li
- School of Life Sciences, Fudan University, Shanghai, 200433 China
| | - Bin Liu
- School of Life Sciences, Fudan University, Shanghai, 200433 China
| | - Xiaofei Gao
- School of Life Sciences, Fudan University, Shanghai, 200433 China
| | - Zhixing Ma
- School of Life Sciences, Fudan University, Shanghai, 200433 China
| | - Tianyi CaoSong
- School of Life Sciences, Fudan University, Shanghai, 200433 China
| | - Yan-ai Mei
- School of Life Sciences, Fudan University, Shanghai, 200433 China
| | - Yufang Zheng
- School of Life Sciences, Fudan University, Shanghai, 200433 China
| |
Collapse
|
36
|
The role of lipid rafts in cancer cell adhesion and migration. Int J Cell Biol 2011; 2012:763283. [PMID: 22253629 PMCID: PMC3255102 DOI: 10.1155/2012/763283] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Revised: 09/20/2011] [Accepted: 09/21/2011] [Indexed: 01/06/2023] Open
Abstract
Lipid rafts are cholesterol-enriched microdomains of the cell membrane and possess a highly dynamic nature. They have been involved in various cellular functions including the regulation of cell adhesion and membrane signaling through proteins within lipid rafts. The dynamic features of the cancer cell surface may modulate the malignant phenotype of cancer, including adhesion disorders and aggressive phenotypes of migration and invasion. Recently, it was demonstrated that lipid rafts play critical roles in cancer cell adhesion and migration. This article summarizes the important roles of lipid rafts in cancer cell adhesion and migration, with a focus on the current state of knowledge. This article will improve the understanding of cancer progression and lead to the development of novel targets for cancer therapy.
Collapse
|
37
|
Sato K, Tanabe C, Yonemura Y, Watahiki H, Zhao Y, Yagishita S, Ebina M, Suo S, Futai E, Murata M, Ishiura S. Localization of mature neprilysin in lipid rafts. J Neurosci Res 2011; 90:870-7. [DOI: 10.1002/jnr.22796] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Revised: 08/17/2011] [Accepted: 08/24/2011] [Indexed: 12/11/2022]
|
38
|
Fessler MB, Parks JS. Intracellular lipid flux and membrane microdomains as organizing principles in inflammatory cell signaling. THE JOURNAL OF IMMUNOLOGY 2011; 187:1529-35. [PMID: 21810617 DOI: 10.4049/jimmunol.1100253] [Citation(s) in RCA: 219] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Lipid rafts and caveolae play a pivotal role in organization of signaling by TLR4 and several other immune receptors. Beyond the simple cataloguing of signaling events compartmentalized by these membrane microdomains, recent studies have revealed the surprisingly central importance of dynamic remodeling of membrane lipid domains to immune signaling. Simple interventions upon membrane lipid, such as changes in cholesterol loading or crosslinking of raft lipids, are sufficient to induce micrometer-scale reordering of membranes and their protein cargo with consequent signal transduction. In this review, using TLR signaling in the macrophage as a central focus, we discuss emerging evidence that environmental and genetic perturbations of membrane lipid regulate protein signaling, illustrate how homeostatic flow of cholesterol and other lipids through rafts regulates the innate immune response, and highlight recent attempts to harness these insights toward therapeutic development.
Collapse
Affiliation(s)
- Michael B Fessler
- Laboratory of Respiratory Biology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA.
| | | |
Collapse
|
39
|
Zhang Y, Chertov O, Zhang J, Hassan R, Pastan I. Cytotoxic activity of immunotoxin SS1P is modulated by TACE-dependent mesothelin shedding. Cancer Res 2011; 71:5915-22. [PMID: 21775520 PMCID: PMC3165076 DOI: 10.1158/0008-5472.can-11-0466] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Mesothelin is a cell-surface tumor-associated antigen expressed in several human cancers. The limited expression of mesothelin on normal tissues and its high expression in many cancers make it an attractive candidate for targeted therapies using monoclonal antibodies, immunoconjugates, and immunotoxins. Mesothelin is actively shed from the cell surface and is present in the serum of patients with malignant mesothelioma, which could negatively affect the response to these therapies. We have found that mesothelin sheddase activity is mediated by a TNF-α converting enzyme (TACE), a member of the matrix metalloproteinase/a disintegrin and metalloprotease family. We showed that EGF and TIMP-3 act through TACE as endogenous regulators of mesothelin shedding. We also found that reducing shedding significantly improved the in vitro cytotoxicity of immunotoxin SS1P, which targets mesothelin and is currently in clinical trials for the treatment of patients with mesothelioma and lung cancer. Our findings provide a mechanistic understanding of mesothelin shedding and could help improve mesothelin-based targeted therapies.
Collapse
Affiliation(s)
- Yujian Zhang
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Oleg Chertov
- Protein Chemistry Laboratory, Advanced Technology Program, SAIC-Frederick, Inc., National Cancer Institute, Frederick, Maryland
| | - Jingli Zhang
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Raffit Hassan
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Ira Pastan
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
40
|
Degnin CR, Laederich MB, Horton WA. Ligand activation leads to regulated intramembrane proteolysis of fibroblast growth factor receptor 3. Mol Biol Cell 2011; 22:3861-73. [PMID: 21865593 PMCID: PMC3192865 DOI: 10.1091/mbc.e11-01-0080] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
FGFR3 is implicated in several human diseases. Following activation and endocytosis, FGFR3 undergoes sequential ectodomain and intramembrane cleavages to generate a soluble cytoplasmic fragment that can translocate to the nucleus. Fibroblast growth factor receptor 3 (FGFR3) is a major negative regulator of bone growth that inhibits the proliferation and differentiation of growth plate chondrocytes. Activating mutations of its c isoform cause dwarfism in humans; somatic mutations can drive oncogenic transformation in multiple myeloma and bladder cancer. How these distinct activities arise is not clear. FGFR3 was previously shown to undergo proteolytic cleavage in the bovine rib growth plate, but this was not explored further. Here, we show that FGF1 induces regulated intramembrane proteolysis (RIP) of FGFR3. The ectodomain is proteolytically cleaved (S1) in response to ligand-induced receptor activation, but unlike most RIP target proteins, it requires endocytosis and does not involve a metalloproteinase. S1 cleavage generates a C-terminal domain fragment that initially remains anchored in the membrane, is phosphorylated, and is spatially distinct from the intact receptor. Ectodomain cleavage is followed by intramembrane cleavage (S2) to generate a soluble intracellular domain that is released into the cytosol and can translocate to the nucleus. We identify the S1 cleavage site and show that γ-secretase mediates the S2 cleavage event. In this way we demonstrate a mechanism for the nuclear localization of FGFR3 in response to ligand activation, which may occur in both development and disease.
Collapse
Affiliation(s)
- Catherine R Degnin
- Research Center, Shriners Hospital for Children, Portland, OR 97239, USA
| | | | | |
Collapse
|
41
|
Banfi C, Brioschi M, Lento S, Pirillo A, Galli S, Cosentino S, Tremoli E, Mussoni L. Statins prevent tissue factor induction by protease-activated receptors 1 and 2 in human umbilical vein endothelial cells in vitro. J Thromb Haemost 2011; 9:1608-19. [PMID: 21605334 DOI: 10.1111/j.1538-7836.2011.04366.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Protease-activated receptors (PARs) are G-protein-coupled receptors that function in hemostasis and thrombosis, as well as in the inflammatory and proliferative responses triggered by tissue injury. We have previously shown that PAR1 or PAR2 occupancy by specific PAR-agonist peptides (PAR-APs) induces tissue factor (TF) expression in human umbilical vein endothelial cells (HUVECs), where TF regulation by PAR1 (but not by PAR2) requires intact endothelial caveolin-enriched membrane microdomains in which PAR1 and caveolin-1 associate. OBJECTIVES The aim of this study was to determine the effects of cholesterol-lowering agents (statins) and cholesterol-loading lipoprotein on PAR1-AP-mediated and PAR2-AP-mediated TF induction in HUVECs. RESULTS Statins completely prevented TF induction by PAR-APs in an isoprenoid-independent manner, induced the delocalization of PAR1 from caveolin-enriched membrane microdomains without affecting PAR1 mRNA, and decreased PAR2 mRNA and protein levels. Statins also prevented PAR-AP-mediated extracellular signal-related kinase 1/2 activation, which is crucial for TF induction. The redistribution of PAR1 is accompanied by the relocation of the membrane microdomain-associated G-protein α, caveolin-1, and Src, which we previously showed to play a key role in signal transduction and TF induction. Conversely, cholesterol loading potently amplified PAR1-AP-induced TF, probably as a result of the increased abundance of PAR1 and the Src and G-protein α signaling molecules in the caveolin-1-enriched fraction, without affecting PAR1 mRNA. CONCLUSIONS As PARs have important functions in hemostasis, cancer, thrombosis, and inflammatory processes, our findings that statins prevent TF induction by PAR-APs altering the membrane localization of PAR1 and the expression of PAR2 suggest that they may provide health benefits other than reducing atherosclerosis.
Collapse
Affiliation(s)
- C Banfi
- Centro Cardiologico Monzino IRCCS, Milan, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Selvais C, D'Auria L, Tyteca D, Perrot G, Lemoine P, Troeberg L, Dedieu S, Noël A, Nagase H, Henriet P, Courtoy PJ, Marbaix E, Emonard H. Cell cholesterol modulates metalloproteinase-dependent shedding of low-density lipoprotein receptor-related protein-1 (LRP-1) and clearance function. FASEB J 2011; 25:2770-81. [PMID: 21518850 DOI: 10.1096/fj.10-169508] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Low-density lipoprotein receptor-related protein-1 (LRP-1) is a plasma membrane scavenger and signaling receptor, composed of a large ligand-binding subunit (515-kDa α-chain) linked to a shorter transmembrane subunit (85-kDa β-chain). LRP-1 cell-surface level and function are controlled by proteolytic shedding of its ectodomain. Here, we identified ectodomain sheddases in human HT1080 cells and demonstrated regulation of the cleavage by cholesterol by comparing the classical fibroblastoid type with a spontaneous epithelioid variant, enriched ∼ 2-fold in cholesterol. Two membrane-associated metalloproteinases were involved in LRP-1 shedding: a disintegrin and metalloproteinase-12 (ADAM-12) and membrane-type 1 matrix metalloproteinase (MT1-MMP). Although both variants expressed similar levels of LRP-1, ADAM-12, MT1-MMP, and specific tissue inhibitor of metalloproteinases-2 (TIMP-2), LRP-1 shedding from epithelioid cells was ∼4-fold lower than from fibroblastoid cells. Release of the ectodomain was triggered by cholesterol depletion in epithelioid cells and impaired by cholesterol overload in fibroblastoid cells. Modulation of LRP-1 shedding on clearance was reflected by accumulation of gelatinases (MMP-2 and MMP-9) in the medium. We conclude that cholesterol exerts an important control on LRP-1 levels and function at the plasma membrane by modulating shedding of its ectodomain, and therefore represents a novel regulator of extracellular proteolytic activities.
Collapse
Affiliation(s)
- Charlotte Selvais
- Cell Biology Laboratory, de Duve Institute, UCL-75.41, 75 avenue Hippocrate, B-1200 Bruxelles, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Takaguri A, Shirai H, Kimura K, Hinoki A, Eguchi K, Carlile-Klusacek M, Yang B, Rizzo V, Eguchi S. Caveolin-1 negatively regulates a metalloprotease-dependent epidermal growth factor receptor transactivation by angiotensin II. J Mol Cell Cardiol 2011; 50:545-51. [PMID: 21172357 PMCID: PMC3035769 DOI: 10.1016/j.yjmcc.2010.12.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 11/22/2010] [Accepted: 12/11/2010] [Indexed: 10/18/2022]
Abstract
A metalloprotease, ADAM17, mediates the generation of mature ligands for the epidermal growth factor receptor (EGFR). This is the key signaling step by which angiotensin II (AngII) induces EGFR transactivation leading to hypertrophy and migration of vascular smooth muscle cells (VSMCs). However, the regulatory mechanism of ADAM17 activity remains largely unclear. Here we hypothesized that caveolin-1 (Cav1), the major structural protein of a caveolae, a membrane microdomain, is involved in the regulation of ADAM17. In cultured VSMCs, infection of adenovirus encoding Cav1 markedly inhibited AngII-induced EGFR ligand shedding, EGFR transactivation, ERK activation, hypertrophy and migration, but not intracellular Ca(2+) elevation. Methyl-β-cyclodextrin and filipin, reagents that disrupt raft structure, both stimulated an EGFR ligand shedding and EGFR transactivation in VSMCs. In addition, non-detergent sucrose gradient membrane fractionations revealed that ADAM17 cofractionated with Cav1 in lipid rafts. These results suggest that lipid rafts and perhaps caveolae provide a negative regulatory environment for EGFR transactivation linked to vascular remodeling induced by AngII. These novel findings may provide important information to target cardiovascular diseases under the enhanced renin angiotensin system.
Collapse
MESH Headings
- ADAM Proteins/metabolism
- ADAM17 Protein
- Angiotensin II/metabolism
- Animals
- Calcium/metabolism
- Caveolin 1/genetics
- Caveolin 1/metabolism
- Cell Movement/physiology
- Cells, Cultured
- ErbB Receptors/antagonists & inhibitors
- ErbB Receptors/genetics
- ErbB Receptors/metabolism
- Extracellular Signal-Regulated MAP Kinases/antagonists & inhibitors
- Extracellular Signal-Regulated MAP Kinases/metabolism
- Filipin/pharmacology
- Gene Transfer Techniques
- Hypertrophy/metabolism
- Membrane Microdomains/drug effects
- Membrane Microdomains/metabolism
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Rats
- Rats, Sprague-Dawley
- Receptor, Angiotensin, Type 1/metabolism
- Signal Transduction
- Transcriptional Activation
- Ventricular Remodeling/genetics
- Ventricular Remodeling/physiology
- beta-Cyclodextrins/pharmacology
Collapse
Affiliation(s)
- Akira Takaguri
- Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA, USA
- Departments of Physiology, Temple University School of Medicine, Philadelphia, PA, USA
| | - Heigoro Shirai
- Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA, USA
- Departments of Physiology, Temple University School of Medicine, Philadelphia, PA, USA
| | - Keita Kimura
- Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA, USA
- Departments of Physiology, Temple University School of Medicine, Philadelphia, PA, USA
| | - Akinari Hinoki
- Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA, USA
- Departments of Physiology, Temple University School of Medicine, Philadelphia, PA, USA
| | - Kunie Eguchi
- Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA, USA
- Departments of Physiology, Temple University School of Medicine, Philadelphia, PA, USA
| | - MaryEllen Carlile-Klusacek
- Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA, USA
- Departments of Anatomy and Cell Biology, Temple University School of Medicine, Philadelphia, PA, USA
| | - Baohua Yang
- Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA, USA
- Departments of Anatomy and Cell Biology, Temple University School of Medicine, Philadelphia, PA, USA
| | - Victor Rizzo
- Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA, USA
- Departments of Anatomy and Cell Biology, Temple University School of Medicine, Philadelphia, PA, USA
| | - Satoru Eguchi
- Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA, USA
- Departments of Physiology, Temple University School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
44
|
Kveiborg M, Instrell R, Rowlands C, Howell M, Parker PJ. PKCα and PKCδ regulate ADAM17-mediated ectodomain shedding of heparin binding-EGF through separate pathways. PLoS One 2011; 6:e17168. [PMID: 21386996 PMCID: PMC3046143 DOI: 10.1371/journal.pone.0017168] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Accepted: 01/24/2011] [Indexed: 12/29/2022] Open
Abstract
Epidermal growth factor receptor (EGFR) signalling is initiated by the release of EGFR-ligands from membrane-anchored precursors, a process termed ectodomain shedding. This proteolytic event, mainly executed by A Disintegrin And Metalloproteases (ADAMs), is regulated by a number of signal transduction pathways, most notably those involving protein kinase C (PKC). However, the molecular mechanisms of PKC-dependent ectodomain shedding of EGFR-ligands, including the involvement of specific PKC isoforms and possible functional redundancy, are poorly understood. To address this issue, we employed a cell-based system of PMA-induced PKC activation coupled with shedding of heparin binding (HB)-EGF. In agreement with previous studies, we demonstrated that PMA triggers a rapid ADAM17-mediated release of HB-EGF. However, PMA-treatment also results in a protease-independent loss of cell surface HB-EGF. We identified PKCα as the key participant in the activation of ADAM17 and suggest that it acts in parallel with a pathway linking PKCδ and ERK activity. While PKCα specifically regulated PMA-induced shedding, PKCδ and ERK influenced both constitutive and inducible shedding by apparently affecting the level of HB-EGF on the cell surface. Together, these findings indicate the existence of multiple modes of regulation controlling EGFR-ligand availability and subsequent EGFR signal transduction.
Collapse
Affiliation(s)
- Marie Kveiborg
- Protein Phosphorylation Laboratory, Cancer Research UK, London Research Institute, London, United Kingdom.
| | | | | | | | | |
Collapse
|
45
|
Murai T, Maruyama Y, Mio K, Nishiyama H, Suga M, Sato C. Low cholesterol triggers membrane microdomain-dependent CD44 shedding and suppresses tumor cell migration. J Biol Chem 2011; 286:1999-2007. [PMID: 21087933 PMCID: PMC3023496 DOI: 10.1074/jbc.m110.184010] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Revised: 10/24/2010] [Indexed: 01/08/2023] Open
Abstract
CD44 is a cell surface adhesion molecule for hyaluronan and is implicated in tumor invasion and metastasis. Proteolytic cleavage of CD44 plays a critical role in the migration of tumor cells and is regulated by factors present in the tumor microenvironment, such as hyaluronan oligosaccharides and epidermal growth factor. However, molecular mechanisms underlying the proteolytic cleavage on membranes remain poorly understood. In this study, we demonstrated that cholesterol depletion with methyl-β-cyclodextrin, which disintegrates membrane lipid rafts, enhances CD44 shedding mediated by a disintegrin and metalloproteinase 10 (ADAM10) and that cholesterol depletion disorders CD44 localization to the lipid raft. We also evaluated the effect of long term cholesterol reduction using a statin agent and demonstrated that statin enhances CD44 shedding and suppresses tumor cell migration on a hyaluronan-coated substrate. Our results indicate that membrane lipid organization regulates CD44 shedding and propose a possible molecular mechanism by which cholesterol reduction might be effective for preventing and treating the progression of malignant tumors.
Collapse
Affiliation(s)
- Toshiyuki Murai
- Department of Immunology and Microbiology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan.
| | | | | | | | | | | |
Collapse
|
46
|
Ectodomain shedding of the Notch ligand Jagged1 is mediated by ADAM17, but is not a lipid-raft-associated event. Biochem J 2010; 432:283-94. [PMID: 20819075 DOI: 10.1042/bj20100321] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Notch signalling is an evolutionarily conserved pathway involved in cell-fate specification. The initiating event in this pathway is the binding of a Notch receptor to a DSL (Delta/Serrate/Lag-2) ligand on neighbouring cells triggering the proteolytic cleavage of Notch within its extracellular juxtamembrane region; a process known as proteolytic 'shedding' and catalysed by members of the ADAM (a disintegrin and metalloproteinase) family of enzymes. Jagged1 is a Notch-binding DSL ligand which is also shed by an ADAM-like activity raising the possibility of bi-directional cell-cell Notch signalling. In the present study we have unequivocally identified the sheddase responsible for shedding Jagged1 as ADAM17, the activity of which has previously been shown to be localized within specialized microdomains of the cell membrane known as 'lipid rafts'. However, we have shown that replacing the transmembrane and cytosolic regions of Jagged1 with a GPI (glycosylphosphatidylinositol) anchor, thereby targeting the protein to lipid rafts, did not enhance its shedding. Furthermore, the Jagged1 holoprotein, its ADAM-cleaved C-terminal fragment and ADAM17 were not enriched in raft preparations devoid of contaminating non-raft proteins. We have also demonstrated that wild-type Jagged1 and a truncated polypeptide-anchored variant lacking the cytosolic domain were subject to similar constitutive and phorbol ester-regulated shedding. Collectively these data demonstrate that Jagged1 is shed by ADAM17 in a lipid-raft-independent manner, and that the cytosolic domain of the former protein is not a pre-requisite for either constitutive or regulated shedding.
Collapse
|
47
|
Hayashida K, Bartlett AH, Chen Y, Park PW. Molecular and cellular mechanisms of ectodomain shedding. Anat Rec (Hoboken) 2010; 293:925-37. [PMID: 20503387 DOI: 10.1002/ar.20757] [Citation(s) in RCA: 147] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The extracellular domain of several membrane-anchored proteins is released from the cell surface as soluble proteins through a regulated proteolytic mechanism called ectodomain shedding. Cells use ectodomain shedding to actively regulate the expression and function of surface molecules, and modulate a wide variety of cellular and physiological processes. Ectodomain shedding rapidly converts membrane-associated proteins into soluble effectors and, at the same time, rapidly reduces the level of cell surface expression. For some proteins, ectodomain shedding is also a prerequisite for intramembrane proteolysis, which liberates the cytoplasmic domain of the affected molecule and associated signaling factors to regulate transcription. Ectodomain shedding is a process that is highly regulated by specific agonists, antagonists, and intracellular signaling pathways. Moreover, only about 2% of cell surface proteins are released from the surface by ectodomain shedding, indicating that cells selectively shed their protein ectodomains. This review will describe the molecular and cellular mechanisms of ectodomain shedding, and discuss its major functions in lung development and disease.
Collapse
Affiliation(s)
- Kazutaka Hayashida
- Division of Respiratory Diseases, Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | |
Collapse
|
48
|
Guardiola-Serrano F, Rossin A, Cahuzac N, Lückerath K, Melzer I, Mailfert S, Marguet D, Zörnig M, Hueber AO. Palmitoylation of human FasL modulates its cell death-inducing function. Cell Death Dis 2010; 1:e88. [PMID: 21368861 PMCID: PMC3035908 DOI: 10.1038/cddis.2010.62] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Fas ligand (FasL) is a transmembrane protein that regulates cell death in Fas-bearing cells. FasL-mediated cell death is essential for immune system homeostasis and the elimination of viral or transformed cells. Because of its potent cytotoxic activity, FasL expression at the cell surface is tightly regulated, for example, via processing by ADAM10 and SPPL2a generating soluble FasL and the intracellular fragments APL (ADAM10-processed FasL form) and SPA (SPPL2a-processed APL). In this study, we report that FasL processing by ADAM10 counteracts Fas-mediated cell death and is strictly regulated by membrane localization, interactions and modifications of FasL. According to our observations, FasL processing occurs preferentially within cholesterol and sphingolipid-rich nanodomains (rafts) where efficient Fas–FasL contact occurs, Fas receptor and FasL interaction is also required for efficient FasL processing, and FasL palmitoylation, which occurs within its transmembrane domain, is critical for efficient FasL-mediated killing and FasL processing.
Collapse
Affiliation(s)
- F Guardiola-Serrano
- University of Nice-Sophia Antipolis, Centre National de la Recherche Scientifique, Equipe labelisée La Ligue, Institute of Developmental Biology and Cancer, UMR, Nice, France
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Rozenova KA, Deevska GM, Karakashian AA, Nikolova-Karakashian MN. Studies on the role of acid sphingomyelinase and ceramide in the regulation of tumor necrosis factor alpha (TNFalpha)-converting enzyme activity and TNFalpha secretion in macrophages. J Biol Chem 2010; 285:21103-13. [PMID: 20236926 PMCID: PMC2898350 DOI: 10.1074/jbc.m109.080671] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Revised: 03/15/2010] [Indexed: 11/06/2022] Open
Abstract
Acid sphingomyelinase (ASMase) has been proposed to mediate lipopolysaccharide (LPS) signaling in various cell types. This study shows that ASMase is a negative regulator of LPS-induced tumor necrosis factor alpha (TNFalpha) secretion in macrophages. ASMase-deficient (asm(-/-)) mice and isolated peritoneal macrophages produce severalfold more TNFalpha than their wild-type (asm(+/+)) counterparts when stimulated with LPS, whereas the addition of exogenous ceramides or sphingomyelinase reduces the differences. The underlying mechanism for these effects is not transcriptional but post-translational. The TNFalpha-converting enzyme (TACE) catalyzes the maturation of the 26-kDa precursor (pro-TNFalpha) to an active 17-kDa form (soluble (s)TNFalpha). In mouse peritoneal macrophages, the activity of TACE was the rate-limiting factor regulating TNFalpha production. A substantial portion of the translated pro-TNFalpha was not processed to sTNFalpha; instead, it was rapidly internalized and degraded in the lysosomes. TACE activity was 2-3-fold higher in asm(-/-) macrophages as compared with asm(+/+) macrophages and was suppressed when cells were treated with exogenous ceramide and sphingomyelinase. Indirect immunofluorescence analyses revealed distinct TNFalpha-positive structures in the close vicinity of the plasma membrane in asm(-/-) but not in asm(+/+) macrophages. asm(-/-) cells also had a higher number of early endosomal antigen 1-positive early endosomes. Experiments that involved inhibitors of TACE, endocytosis, and lysosomal proteolysis suggest that in the asm(-/-) cells a significant portion of pro-TNFalpha was sequestered within the early endosomes, and instead of undergoing lysosomal proteolysis, it was recycled to the plasma membrane and processed to sTNFalpha.
Collapse
Affiliation(s)
- Krasimira A. Rozenova
- From the Department of Physiology, University of Kentucky College of Medicine, Lexington, Kentucky 40536
| | - Gergana M. Deevska
- From the Department of Physiology, University of Kentucky College of Medicine, Lexington, Kentucky 40536
| | - Alexander A. Karakashian
- From the Department of Physiology, University of Kentucky College of Medicine, Lexington, Kentucky 40536
| | | |
Collapse
|
50
|
Stoeck A, Shang L, Dempsey PJ. Sequential and gamma-secretase-dependent processing of the betacellulin precursor generates a palmitoylated intracellular-domain fragment that inhibits cell growth. J Cell Sci 2010; 123:2319-31. [PMID: 20530572 PMCID: PMC2886747 DOI: 10.1242/jcs.060830] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2010] [Indexed: 12/20/2022] Open
Abstract
Betacellulin (BTC) belongs to the family of epidermal growth factor (EGF)-like growth factors that are expressed as transmembrane precursors and undergo proteolytic ectodomain shedding to release soluble mature ligands. BTC is a dual-specificity ligand for ErbB1 and ErbB4 receptors, and can activate unique signal-transduction pathways that are beneficial for the function, survival and regeneration of pancreatic beta-cells. We have previously shown that BTC precursor (proBTC) is cleaved by ADAM10 to generate soluble ligand and a stable, transmembrane remnant (BTC-CTF). In this study, we analyzed the fate of the BTC-CTF in greater detail. We demonstrated that proBTC is cleaved by ADAM10 to produce BTC-CTF, which then undergoes intramembrane processing by presenilin-1- and/or presenilin-2-dependent gamma-secretase to generate an intracellular-domain fragment (BTC-ICD). We found that the proBTC cytoplasmic domain is palmitoylated and that palmitoylation is not required for ADAM10-dependent cleavage but is necessary for the stability and gamma-secretase-dependent processing of BTC-CTF to generate BTC-ICD. Additionally, palmitoylation is required for nuclear-membrane localization of BTC-ICD, as demonstrated by the redistribution of non-palmitoylated BTC-ICD mutant to the nucleoplasm. Importantly, a novel receptor-independent role for BTC-ICD signaling is suggested by the ability of BTC-ICD to inhibit cell growth in vitro.
Collapse
Affiliation(s)
- Alexander Stoeck
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, MI 48109, USA
| | - Li Shang
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, MI 48109, USA
| | - Peter J. Dempsey
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|