1
|
Bosch P, Zhao SS, Nikiphorou E. The association between comorbidities and disease activity in spondyloarthritis - A narrative review. Best Pract Res Clin Rheumatol 2023; 37:101857. [PMID: 37541813 DOI: 10.1016/j.berh.2023.101857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/19/2023] [Accepted: 07/19/2023] [Indexed: 08/06/2023]
Abstract
Comorbidities, including cardiovascular disease, osteoporosis, and depression, are more prevalent in patients with spondyloarthritis (SpA) than in the general population. Clinical and laboratory markers of disease activity are associated with numerous of these comorbidities, and studies suggest that the treatment of SpA can have a positive impact on comorbidities; conversely, managing comorbidities can improve disease activity. Therefore, the screening of comorbidities is considered a core component of a rheumatology consultation, and treatment should be performed in liaison with other health professionals (e.g. general physicians). Validated tools and questionnaires can be used for not only the detection but also the monitoring of potential comorbidities. Understanding whether a comorbidity is a separate disease entity, linked to SpA or its treatment, or an extra-musculoskeletal manifestation of the disease is important to identify the most appropriate treatment options.
Collapse
Affiliation(s)
- Philipp Bosch
- Clinical Department of Rheumatology and Immunology, Medical University of Graz, Graz, Austria.
| | - Sizheng Steven Zhao
- Centre for Epidemiology Versus Arthritis, Division of Musculoskeletal and Dermatological Science, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Elena Nikiphorou
- Center for Rheumatic Diseases, King's College London, London, United Kingdom; Rheumatology Department, King's College Hospital, London, United Kingdom
| |
Collapse
|
2
|
Muraduzzaman AKM, Illing PT, Mifsud NA, Purcell AW. Understanding the Role of HLA Class I Molecules in the Immune Response to Influenza Infection and Rational Design of a Peptide-Based Vaccine. Viruses 2022; 14:2578. [PMID: 36423187 PMCID: PMC9695287 DOI: 10.3390/v14112578] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/04/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022] Open
Abstract
Influenza A virus is a respiratory pathogen that is responsible for regular epidemics and occasional pandemics that result in substantial damage to life and the economy. The yearly reformulation of trivalent or quadrivalent flu vaccines encompassing surface glycoproteins derived from the current circulating strains of the virus does not provide sufficient cross-protection against mismatched strains. Unlike the current vaccines that elicit a predominant humoral response, vaccines that induce CD8+ T cells have demonstrated a capacity to provide cross-protection against different influenza strains, including novel influenza viruses. Immunopeptidomics, the mass spectrometric identification of human-leukocyte-antigen (HLA)-bound peptides isolated from infected cells, has recently provided key insights into viral peptides that can serve as potential T cell epitopes. The critical elements required for a strong and long-living CD8+ T cell response are related to both HLA restriction and the immunogenicity of the viral peptide. This review examines the importance of HLA and the viral immunopeptidome for the design of a universal influenza T-cell-based vaccine.
Collapse
Affiliation(s)
| | | | - Nicole A. Mifsud
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Anthony W. Purcell
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
3
|
Frede N, Rieger E, Lorenzetti R, Nieters A, Venhoff AC, Hentze C, von Deimling M, Bartholomä N, Thiel J, Voll RE, Venhoff N. Respiratory tract infections and risk factors for infection in a cohort of 330 patients with axial spondyloarthritis or psoriatic arthritis. Front Immunol 2022; 13:1040725. [PMID: 36389682 PMCID: PMC9644024 DOI: 10.3389/fimmu.2022.1040725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/13/2022] [Indexed: 08/06/2023] Open
Abstract
Respiratory tract infections (RTIs) are the most common infections in patients with rheumatic diseases under immunosuppressive treatment and may contribute to morbidity and mortality as well as increased healthcare costs. However, to date only limited data on infection risk in spondyloarthritis (SpA) patients are available. In this study we assessed the occurrence of respiratory tract infections in a monocentric real-world cohort consisting of 330 patients (168 psoriatic arthritis and 162 axial spondyloarthritis patients) and determined factors associated with increased infection risk. Out of 330 SpA patients, 89.3% had suffered from ≥ 1 upper respiratory tract infection (URTI) and 31.1% from ≥ 1 lower respiratory tract infection (LRTI) within the last two years. The most common URTIs were rhinitis and laryngitis/pharyngitis with 87.3% and 36.1%, respectively. Bronchitis constituted the most common LRTI, reported in 29.7% of patients. In a multivariate binomial logistic regression model occurrence of LRTI was associated with chronic lung disease (OR 17.44, p=0.006), glucocorticoid therapy (OR 9.24, p=0.012), previous history of severe airway infections (OR 6.82, p=0.013), and number of previous biological therapies (OR 1.72, p=0.017), whereas HLA B27 positivity was negatively associated (OR 0.29, p=0.025). Female patients reported significantly more LRTIs than male patients (p=0.006) and had a higher rate of antibiotic therapy (p=0.009). There were no significant differences between axSpA and PsA patients regarding infection frequency or antibiotic use. 45.4% of patients had required antibiotics for respiratory tract infections. Antibiotic therapy was associated with smoking (OR 3.40, p=0.008), biological therapy (OR 3.38, p=0.004), sleep quality (OR 1.13, p<0.001) and age (OR 0.96, p=0.030). Hypogammaglobulinemia (IgG<7g/l) was rare (3.4%) in this SpA cohort despite continuous immunomodulatory treatment. Awareness of these risk factors will assist physicians to identify patients with an increased infection risk, who will benefit from additional preventive measures, such as vaccination and smoking cessation or adjustment of DMARD therapy.
Collapse
Affiliation(s)
- Natalie Frede
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Eva Rieger
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Raquel Lorenzetti
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Alexandra Nieters
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ana C. Venhoff
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Carolin Hentze
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Marcus von Deimling
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Nora Bartholomä
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jens Thiel
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Division of Rheumatology and Clinical Immunology, Medical University Graz, Graz, Austria
| | - Reinhard E. Voll
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Nils Venhoff
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
4
|
Tsybalova LM, Stepanova LA, Ramsay ES, Vasin AV. Influenza B: Prospects for the Development of Cross-Protective Vaccines. Viruses 2022; 14:1323. [PMID: 35746794 PMCID: PMC9228933 DOI: 10.3390/v14061323] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/09/2022] [Accepted: 06/12/2022] [Indexed: 01/04/2023] Open
Abstract
In this review, we analyze the epidemiological and ecological features of influenza B, one of the most common and severe respiratory infections. The review presents various strategies for cross-protective influenza B vaccine development, including recombinant viruses, virus-like particles, and recombinant proteins. We provide an overview of viral proteins as cross-protective vaccine targets, along with other updated broadly protective vaccine strategies. The importance of developing such vaccines lies not only in influenza B prevention, but also in the very attractive prospect of eradicating the influenza B virus in the human population.
Collapse
Affiliation(s)
- Liudmila M. Tsybalova
- Smorodintsev Research Institute of Influenza, Prof. Popova Str., 15/17, 197376 St. Petersburg, Russia; (L.A.S.); (E.S.R.); or (A.V.V.)
| | - Liudmila A. Stepanova
- Smorodintsev Research Institute of Influenza, Prof. Popova Str., 15/17, 197376 St. Petersburg, Russia; (L.A.S.); (E.S.R.); or (A.V.V.)
| | - Edward S. Ramsay
- Smorodintsev Research Institute of Influenza, Prof. Popova Str., 15/17, 197376 St. Petersburg, Russia; (L.A.S.); (E.S.R.); or (A.V.V.)
| | - Andrey V. Vasin
- Smorodintsev Research Institute of Influenza, Prof. Popova Str., 15/17, 197376 St. Petersburg, Russia; (L.A.S.); (E.S.R.); or (A.V.V.)
- Research Institute of Influenza named after A.A. Smorodintsev, Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya, 29, 195251 St. Petersburg, Russia
| |
Collapse
|
5
|
Broad-Based Influenza-Specific CD8 + T Cell Response without the Typical Immunodominance Hierarchy and Its Potential Implication. Viruses 2021; 13:v13061080. [PMID: 34198851 PMCID: PMC8229067 DOI: 10.3390/v13061080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/27/2021] [Accepted: 06/02/2021] [Indexed: 11/25/2022] Open
Abstract
Syngeneic murine systems have pre-fixed MHC, making them an imperfect model for investigating the impact of MHC polymorphism on immunodominance in influenza A virus (IAV) infections. To date, there are few studies focusing on MHC allelic differences and its impact on immunodominance even though it is well documented that an individual’s HLA plays a significant role in determining immunodominance hierarchy. Here, we describe a broad-based CD8+ T cell response in a healthy individual to IAV infection rather than a typical immunodominance hierarchy. We used a systematic antigen screen approach combined with epitope prediction to study such a broad CD8+ T cell response to IAV infection. We show CD8+ T cell responses to nine IAV proteins and identify their minimal epitope sequences. These epitopes are restricted to HLA-B*44:03, HLA-A*24:02 and HLA-A*33:03 and seven out of the nine epitopes are novel (NP319–330# (known and demonstrated minimal epitope positions are subscripted; otherwise, amino acid positions are shown as normal text (for example NP 319–330 or NP 313–330)), M1124–134, M27–15, NA337–346, PB239–49, HA445–453 and NS1195–203). Additionally, most of these novel epitopes are highly conserved among H1N1 and H3N2 strains that circulated in Australia and other parts of the world.
Collapse
|
6
|
Leite MDM, Gonzalez-Galarza FF, Silva BCCD, Middleton D, Santos EJMD. Predictive immunogenetic markers in COVID-19. Hum Immunol 2021; 82:247-254. [PMID: 33546902 PMCID: PMC7817393 DOI: 10.1016/j.humimm.2021.01.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 11/22/2020] [Accepted: 01/04/2021] [Indexed: 02/05/2023]
Abstract
Immunorelevant genes are among the most probable modulators of coronavirus disease 2019 (COVID-19) progression and prognosis. However, in the few months of the pandemic, data generated on host genetics has been scarce. The present study retrieved data sets of HLA-B alleles, KIR genes and functional single nucleotide polymorphisms (SNPs) in cytokines related to COVID-19 cytokine storm from two publicly available databases: Allele Frequency Net Database and Ensembl, and correlated these frequency data with Case Fatality Rate (CFR) and Daily Death Rates (DDR) across countries. Correlations of eight HLA-B alleles and polymorphisms in three cytokine genes (IL6, IL10, and IL12B) were observed and were mainly associated with DDR. Additionally, HLA-B correlations suggest that differences in allele affinities to SARS-CoV-2 peptides are also associated with DDR. These results may provide rationale for future host genetic marker surveys on COVID-19.
Collapse
Affiliation(s)
- Mauro de Meira Leite
- Genetics of Complex Diseases Laboratory, Federal University of Pará, Belém, Brazil; Programa de Pós-Graduação em Biologia de Agentes Infecciosos e Parasitários, Belém, Brazil.
| | - Faviel F Gonzalez-Galarza
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK; Center for Biomedical Research, Faculty of Medicine, Autonomous University of Coahuila, Torreon, Mexico
| | - Bruno Conde Costa da Silva
- Genetics of Complex Diseases Laboratory, Federal University of Pará, Belém, Brazil; Programa de Pós-Graduação em Biologia de Agentes Infecciosos e Parasitários, Belém, Brazil
| | - Derek Middleton
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Eduardo José Melo Dos Santos
- Genetics of Complex Diseases Laboratory, Federal University of Pará, Belém, Brazil; Programa de Pós-Graduação em Biologia de Agentes Infecciosos e Parasitários, Belém, Brazil
| |
Collapse
|
7
|
Rosenbaum JT, Hamilton H, Weisman MH, Reveille JD, Winthrop KL, Choi D. The Effect of HLA-B27 on Susceptibility and Severity of COVID-19. J Rheumatol 2020; 48:621-622. [PMID: 33060311 DOI: 10.3899/jrheum.200939] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- James T Rosenbaum
- Departments of Medicine, Ophthalmology, and Cell Biology, Oregon Health & Science University, Portland, Oregon, USA; .,Legacy Devers Eye Institute, Portland, Oregon, USA
| | | | | | - John D Reveille
- Department of Medicine, University of Texas, Houston, Texas, USA
| | - Kevin L Winthrop
- OHSU-PSU School of Public Health and Departments of Medicine and Ophthalmology, Oregon Health & Science University, Portland, Oregon, USA
| | - Dongseok Choi
- OHSU-PSU School of Public Health and Departments of Medicine and Ophthalmology, Oregon Health & Science University, Portland, Oregon, USA
| |
Collapse
|
8
|
Ochoa EE, Huda R, Scheibel SF, Nichols JE, Mock DJ, El-Daher N, Domurat FM, Roberts NJ. HLA-associated protection of lymphocytes during influenza virus infection. Virol J 2020; 17:128. [PMID: 32831108 PMCID: PMC7444183 DOI: 10.1186/s12985-020-01406-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 08/18/2020] [Indexed: 01/18/2023] Open
Abstract
Background Heterozygosity at HLA class I loci is generally considered beneficial for host defense. We report here an element of HLA class I homozygosity that may or may not help preserve its existence in populations but which could indicate a new avenue for antiviral research. Methods Lymphocytes from serologically HLA-homozygous or -heterozygous donors were examined for synthesis of influenza virus proteins and RNA after exposure to virus as peripheral blood mononuclear cells. The virus-exposed lymphocytes were also examined for internalization of the virus after exposure, and for susceptibility to virus-specific cytotoxic T lymphocytes in comparison with virus-exposed monocytes/macrophages and unseparated peripheral blood mononuclear cells. Results were compared using two-tailed Fisher’s exact test. Results Serologically-defined HLA-A2-homozygous lymphocytes, in contrast to heterozygous lymphocytes, did not synthesize detectable influenza virus RNA or protein after exposure to the virus. HLA-A2-homozygous lymphocytes, including both homozygous and heterozygous donors by genetic sequence subtyping, did internalize infectious virus but were not susceptible to lysis by autologous virus-specific cytotoxic T lymphocytes (“fratricide”). Similar intrinsic resistance to influenza virus infection was observed with HLA-A1- and HLA-A11-homozygous lymphocytes and with HLA-B-homozygous lymphocytes. Conclusions A significant proportion of individuals within a population that is characterized by common expression of HLA class I alleles may possess lymphocytes that are not susceptible to influenza virus infection and thus to mutual virus-specific lysis. Further study may identify new approaches to limit influenza virus infection.
Collapse
Affiliation(s)
- Eliana E Ochoa
- Division of Infectious Diseases, Department of Internal Medicine and the Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Ruksana Huda
- Division of Infectious Diseases, Department of Internal Medicine and the Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Steven F Scheibel
- Infectious Diseases Unit, University of Rochester School of Medicine, Rochester, NY, USA
| | - Joan E Nichols
- Division of Infectious Diseases, Department of Internal Medicine and the Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - David J Mock
- Infectious Diseases Unit, University of Rochester School of Medicine, Rochester, NY, USA
| | - Nayef El-Daher
- Infectious Diseases Unit, University of Rochester School of Medicine, Rochester, NY, USA
| | - Frank M Domurat
- Infectious Diseases Unit, University of Rochester School of Medicine, Rochester, NY, USA
| | - Norbert J Roberts
- Division of Infectious Diseases, Department of Internal Medicine and the Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA. .,Infectious Diseases Unit, University of Rochester School of Medicine, Rochester, NY, USA. .,Division of Infectious Diseases and Immunology, Department of Medicine, New York University School of Medicine, 462 First Ave, Room A619, New York, NY, 10016, USA.
| |
Collapse
|
9
|
Sant S, Quiñones-Parra SM, Koutsakos M, Grant EJ, Loudovaris T, Mannering SI, Crowe J, van de Sandt CE, Rimmelzwaan GF, Rossjohn J, Gras S, Loh L, Nguyen THO, Kedzierska K. HLA-B*27:05 alters immunodominance hierarchy of universal influenza-specific CD8+ T cells. PLoS Pathog 2020; 16:e1008714. [PMID: 32750095 PMCID: PMC7428290 DOI: 10.1371/journal.ppat.1008714] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 08/14/2020] [Accepted: 06/18/2020] [Indexed: 12/15/2022] Open
Abstract
Seasonal influenza virus infections cause 290,000–650,000 deaths annually and severe morbidity in 3–5 million people. CD8+ T-cell responses towards virus-derived peptide/human leukocyte antigen (HLA) complexes provide the broadest cross-reactive immunity against human influenza viruses. Several universally-conserved CD8+ T-cell specificities that elicit prominent responses against human influenza A viruses (IAVs) have been identified. These include HLA-A*02:01-M158-66 (A2/M158), HLA-A*03:01-NP265-273, HLA-B*08:01-NP225-233, HLA-B*18:01-NP219-226, HLA-B*27:05-NP383-391 and HLA-B*57:01-NP199-207. The immunodominance hierarchies across these universal CD8+ T-cell epitopes were however unknown. Here, we probed immunodominance status of influenza-specific universal CD8+ T-cells in HLA-I heterozygote individuals expressing two or more universal HLAs for IAV. We found that while CD8+ T-cell responses directed towards A2/M158 were generally immunodominant, A2/M158+CD8+ T-cells were markedly diminished (subdominant) in HLA-A*02:01/B*27:05-expressing donors following ex vivo and in vitro analyses. A2/M158+CD8+ T-cells in non-HLA-B*27:05 individuals were immunodominant, contained optimal public TRBV19/TRAV27 TCRαβ clonotypes and displayed highly polyfunctional and proliferative capacity, while A2/M158+CD8+ T cells in HLA-B*27:05-expressing donors were subdominant, with largely distinct TCRαβ clonotypes and consequently markedly reduced avidity, proliferative and polyfunctional efficacy. Our data illustrate altered immunodominance patterns and immunodomination within human influenza-specific CD8+ T-cells. Accordingly, our work highlights the importance of understanding immunodominance hierarchies within individual donors across a spectrum of prominent virus-specific CD8+ T-cell specificities prior to designing T cell-directed vaccines and immunotherapies, for influenza and other infectious diseases. Annual influenza infections cause significant morbidity and morbidity globally. Established T-cell immunity directed at conserved viral regions provides some protection against influenza viruses and promotes rapid recovery, leading to better clinical outcomes. Killer CD8+ T-cells recognising viral peptides in a context of HLA-I glycoproteins, provide the broadest ever reported immunity across distinct influenza strains and subtypes. We asked whether the expression of certain HLA-I alleles affects CD8+ T cells responses. Our study clearly illustrates altered immunodominance hierarchies and immunodomination within broadly-cross-reactive influenza-specific CD8+ T-cells in individuals expressing two or more universal HLA-I alleles, key for T cell-directed vaccines and immunotherapies.
Collapse
Affiliation(s)
- Sneha Sant
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
| | - Sergio M. Quiñones-Parra
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
| | - Marios Koutsakos
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
| | - Emma J. Grant
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
| | - Thomas Loudovaris
- Immunology and Diabetes Unit, St Vincent’s Institute of Medical Research, Fitzroy, Victoria, Australia
| | - Stuart I. Mannering
- Immunology and Diabetes Unit, St Vincent’s Institute of Medical Research, Fitzroy, Victoria, Australia
| | - Jane Crowe
- Deepdene Surgery, Deepdene, Victoria, Australia
| | - Carolien E. van de Sandt
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Guus F. Rimmelzwaan
- National Influenza Center and Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Jamie Rossjohn
- Infection and Immunity Program & Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Australian Research Council Centre of Excellence for Advanced Molecular Imaging, Monash University, Clayton, Victoria, Australia
- Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff, United Kingdom
| | - Stephanie Gras
- Infection and Immunity Program & Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Australian Research Council Centre of Excellence for Advanced Molecular Imaging, Monash University, Clayton, Victoria, Australia
| | - Liyen Loh
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
| | - Thi H. O. Nguyen
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
- * E-mail: (THON); (KK)
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
- * E-mail: (THON); (KK)
| |
Collapse
|
10
|
Li X, Zhang L, Liu Y, Ma L, Zhang N, Xia C. Structures of the MHC-I molecule BF2*1501 disclose the preferred presentation of an H5N1 virus-derived epitope. J Biol Chem 2020; 295:5292-5306. [PMID: 32152225 PMCID: PMC7170506 DOI: 10.1074/jbc.ra120.012713] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/06/2020] [Indexed: 01/05/2023] Open
Abstract
Lethal infections by strains of the highly-pathogenic avian influenza virus (HPAIV) H5N1 pose serious threats to both the poultry industry and public health worldwide. A lack of confirmed HPAIV epitopes recognized by cytotoxic T lymphocytes (CTLs) has hindered the utilization of CD8+ T-cell-mediated immunity and has precluded the development of effectively diversified epitope-based vaccination approaches. In particular, an HPAIV H5N1 CTL-recognized epitope based on the peptide MHC-I-β2m (pMHC-I) complex has not yet been designed. Here, screening a collection of selected peptides of several HPAIV strains against a specific pathogen-free pMHC-I (pBF2*1501), we identified a highly-conserved HPAIV H5N1 CTL epitope, named HPAIV-PA123-130 We determined the structure of the BF2*1501-PA123-130 complex at 2.1 Å resolution to elucidate the molecular mechanisms of a preferential presentation of the highly-conserved PA123-130 epitope in the chicken B15 lineage. Conformational characteristics of the PA123-130 epitope with a protruding Tyr-7 residue indicated that this epitope has great potential to be recognized by specific TCRs. Moreover, significantly increased numbers of CD8+ T cells specific for the HPAIV-PA123-130 epitope in peptide-immunized chickens indicated that a repertoire of CD8+ T cells can specifically respond to this epitope. We anticipate that the identification and structural characterization of the PA123-130 epitope reported here could enable further studies of CTL immunity against HPAIV H5N1. Such studies may aid in the development of vaccine development strategies using well-conserved internal viral antigens in chickens.
Collapse
Affiliation(s)
- Xiaoying Li
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing 100094, People's Republic of China; School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, People's Republic of China
| | - Lijie Zhang
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing 100094, People's Republic of China
| | - Yanjie Liu
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing 100094, People's Republic of China; Key Laboratory for Insect-Pollinator Biology of the Ministry of Agriculture, Institute of Apiculture, Chinese Academy of Agricultural Sciences, Beijing 100093, People's Republic of China
| | - Lizhen Ma
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing 100094, People's Republic of China
| | - Nianzhi Zhang
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing 100094, People's Republic of China
| | - Chun Xia
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing 100094, People's Republic of China; Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, China Agricultural University, Beijing 100094, People's Republic of China.
| |
Collapse
|
11
|
Di Carluccio AR, Triffon CF, Chen W. Perpetual complexity: predicting human CD8 + T-cell responses to pathogenic peptides. Immunol Cell Biol 2018; 96:358-369. [PMID: 29424002 DOI: 10.1111/imcb.12019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 02/01/2018] [Accepted: 02/02/2018] [Indexed: 01/17/2023]
Abstract
The accurate prediction of human CD8+ T-cell epitopes has great potential clinical and translational implications in the context of infection, cancer and autoimmunity. Prediction algorithms have traditionally focused on calculated peptide affinity for the binding groove of MHC-I. However, over the years it has become increasingly clear that the ultimate T-cell recognition of MHC-I-bound peptides is governed by many contributing factors within the complex antigen presentation pathway. Recent advances in next-generation sequencing and immunnopeptidomics have increased the precision of HLA-I sub-allele classification, and have led to the discovery of peptide processing events and individual allele-specific binding preferences. Here, we review some of the discoveries that initiated the development of peptide prediction algorithms, and outline some of the current available online tools for CD8+ T-cell epitope prediction.
Collapse
Affiliation(s)
- Anthony R Di Carluccio
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Cristina F Triffon
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Weisan Chen
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| |
Collapse
|
12
|
Hyun SJ, Sohn HJ, Lee HJ, Lee SD, Kim S, Sohn DH, Hong CH, Choi H, Cho HI, Kim TG. Comprehensive Analysis of Cytomegalovirus pp65 Antigen-Specific CD8 + T Cell Responses According to Human Leukocyte Antigen Class I Allotypes and Intraindividual Dominance. Front Immunol 2017; 8:1591. [PMID: 29209324 PMCID: PMC5702484 DOI: 10.3389/fimmu.2017.01591] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 11/06/2017] [Indexed: 11/24/2022] Open
Abstract
To define whether individual human leukocyte antigen (HLA) class I allotypes are used preferentially in human cytomegalovirus (CMV)-specific cytotoxic T lymphocyte responses, CD8+ T cell responses restricted by up to six HLA class I allotypes in an individual were measured in parallel using K562-based artificial antigen-presenting cells expressing both CMV pp65 antigen and one of 32 HLA class I allotypes (7 HLA-A, 14 HLA-B, and 11 HLA-C) present in 50 healthy Korean donors. The CD8+ T cell responses to pp65 in the HLA-C allotypes were lower than responses to those in HLA-A and -B allotypes and there was no difference between the HLA-A and HLA-B loci. HLA-A*02:01, -B*07:02, and -C*08:01 showed the highest magnitude and frequency of immune responses to pp65 at each HLA class I locus. However, HLA-A*02:07, -B*59:01, -B*58:01, -B*15:11, -C*03:02, and -C*02:02 did not show any immune responses. Although each individual has up to six different HLA allotypes, 46% of the donors showed one allotype, 24% showed two allotypes, and 2% showed three allotypes that responded to pp65. Interestingly, the frequencies of HLA-A alleles were significantly correlated with the positivity of specific allotypes. Our results demonstrate that specific HLA class I allotypes are preferentially used in the CD8+ T cell immune response to pp65 and that a hierarchy among HLA class I allotypes is present in an individual.
Collapse
Affiliation(s)
- Seung-Joo Hyun
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Hyun-Jung Sohn
- Catholic Hematopoietic Stem Cell Bank, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Hyun-Joo Lee
- Catholic Hematopoietic Stem Cell Bank, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Seon-Duk Lee
- Catholic Hematopoietic Stem Cell Bank, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Sueon Kim
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Dae-Hee Sohn
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Cheol-Hwa Hong
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Haeyoun Choi
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Hyun-Il Cho
- Catholic Hematopoietic Stem Cell Bank, College of Medicine, The Catholic University of Korea, Seoul, South Korea.,College of Medicine, Cancer Research Institute, The Catholic University of Korea, Seoul, South Korea
| | - Tai-Gyu Kim
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, South Korea.,Catholic Hematopoietic Stem Cell Bank, College of Medicine, The Catholic University of Korea, Seoul, South Korea.,College of Medicine, Cancer Research Institute, The Catholic University of Korea, Seoul, South Korea
| |
Collapse
|
13
|
Koutsakos M, Nguyen THO, Barclay WS, Kedzierska K. Knowns and unknowns of influenza B viruses. Future Microbiol 2015; 11:119-35. [PMID: 26684590 DOI: 10.2217/fmb.15.120] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Influenza B viruses (IBVs) circulate annually along with influenza A (IAV) strains during seasonal epidemics. IBV can dominate influenza seasons and cause severe disease, particularly in children and adolescents. Research has revealed interesting aspects of IBV and highlighted the importance of these viruses in clinical settings. Yet, many important questions remain unanswered. In this review, the clinical relevance of IBV is emphasized, unique features in epidemiology, host range and virology are highlighted and gaps in knowledge pinpointed. Multiple aspects of IBV epidemiology, evolution, virology and immunology are discussed. Future research into IBV is needed to understand how we can prevent severe disease in high-risk groups, especially children and elderly.
Collapse
Affiliation(s)
- Marios Koutsakos
- Department of Microbiology & Immunology, University of Melbourne, at the Peter Doherty Institute for Infection & Immunity, Parkville VIC 3010, Australia
| | - Thi H O Nguyen
- Department of Microbiology & Immunology, University of Melbourne, at the Peter Doherty Institute for Infection & Immunity, Parkville VIC 3010, Australia
| | - Wendy S Barclay
- Section of Virology, Faculty of Medicine, Wright Fleming Institute, Imperial College London, Norfolk Place, London W2 1PG, UK
| | - Katherine Kedzierska
- Department of Microbiology & Immunology, University of Melbourne, at the Peter Doherty Institute for Infection & Immunity, Parkville VIC 3010, Australia
| |
Collapse
|
14
|
van de Sandt CE, Dou Y, Vogelzang-van Trierum SE, Westgeest KB, Pronk MR, Osterhaus ADME, Fouchier RAM, Rimmelzwaan GF, Hillaire MLB. Influenza B virus-specific CD8+ T-lymphocytes strongly cross-react with viruses of the opposing influenza B lineage. J Gen Virol 2015; 96:2061-2073. [PMID: 25900135 DOI: 10.1099/vir.0.000156] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Influenza B viruses fall in two antigenically distinct lineages (B/Victoria/2/1987 and B/Yamagata/16/1988 lineage) that co-circulate with influenza A viruses of the H3N2 and H1N1 subtypes during seasonal epidemics. Infections with influenza B viruses contribute considerably to morbidity and mortality in the human population. Influenza B virus neutralizing antibodies, elicited by natural infections or vaccination, poorly cross-react with viruses of the opposing influenza B lineage. Therefore, there is an increased interest in identifying other correlates of protection which could aid the development of broadly protective vaccines. blast analysis revealed high sequence identity of all viral proteins. With two online epitope prediction algorithms, putative conserved epitopes relevant for study subjects used in the present study were predicted. The cross-reactivity of influenza B virus-specific polyclonal CD8+ cytotoxic T-lymphocyte (CTL) populations obtained from HLA-typed healthy study subjects, with intra-lineage drift variants and viruses of the opposing lineage, was determined by assessing their in vitro IFN-γ response and lytic activity. Here, we show for the first time, to the best of our knowledge, that CTLs directed to viruses of the B/Victoria/2/1987 lineage cross-react with viruses of the B/Yamagata/16/1988 lineage and vice versa.
Collapse
Affiliation(s)
| | - YingYing Dou
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| | | | - Kim B Westgeest
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Mark R Pronk
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Albert D M E Osterhaus
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands.,ViroClinics Biosciences BV, Rotterdam, The Netherlands
| | - Ron A M Fouchier
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Guus F Rimmelzwaan
- ViroClinics Biosciences BV, Rotterdam, The Netherlands.,Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| | | |
Collapse
|
15
|
Ovsyannikova IG, Pankratz VS, Larrabee BR, Jacobson RM, Poland GA. HLA genotypes and rubella vaccine immune response: additional evidence. Vaccine 2014; 32:4206-13. [PMID: 24837503 DOI: 10.1016/j.vaccine.2014.04.091] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 03/26/2014] [Accepted: 04/28/2014] [Indexed: 10/25/2022]
Abstract
Recent population-based studies have demonstrated the genetic heritability of rubella vaccine response and assessed that the HLA system may explain about 20% of the inter-individual variance in humoral immune response to this vaccine. Our earlier studies compared HLA allelic associations with rubella vaccine-specific antibodies between two smaller cohorts of healthy Rochester, MN, children (346 and 396 subjects) after two doses of rubella-containing vaccine. This study found that specific HLA alleles were consistently associated with rubella-specific antibody titers (B*27:05, DPA1*02:01, and DPB1*04:01 alleles). The current study examined HLA associations in an independent larger cohort of 1012 healthy San Diego, CA, subjects (age 19-40 years) after rubella vaccine in order to replicate our previous findings in the Rochester subjects. Two HLA associations of comparable magnitudes were consistently observed between B*27:05 (median NT50 Rochester cohort 48.9, p=0.067; San Diego cohort 54.8, p=0.047) and DPB1*04:01 (median NT50 Rochester cohort 61.6, p<0.001; San Diego cohort 70.8, p=0.084) alleles and rubella virus-neutralizing antibody titers. Additional HLA alleles resulted in consistent effects on IL-6 production in both cohorts, but did not meet criteria for statistical significance. Our data suggest these HLA alleles play a role in rubella vaccine-induced immunity and provide the basis for future studies that may explain the mechanism(s) by which these HLA polymorphisms affect immune responses to rubella vaccine.
Collapse
Affiliation(s)
- Inna G Ovsyannikova
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN 55905, USA; Program in Translational Immunovirology and Biodefense, Mayo Clinic, Rochester, MN 55905, USA
| | - V Shane Pankratz
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Beth R Larrabee
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Robert M Jacobson
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN 55905, USA; Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Gregory A Poland
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN 55905, USA; Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN 55905, USA; Program in Translational Immunovirology and Biodefense, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
16
|
Sorrentino R, Böckmann RA, Fiorillo MT. HLA-B27 and antigen presentation: at the crossroads between immune defense and autoimmunity. Mol Immunol 2013; 57:22-7. [PMID: 23916069 DOI: 10.1016/j.molimm.2013.06.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 06/17/2013] [Accepted: 06/18/2013] [Indexed: 10/26/2022]
Abstract
The HLA-B27 is historically studied as a susceptibility factor in spondyloarthropathies and, primarily, in ankylosing spondylitis (AS). Over the recent years however, it has been rediscovered as protective factor against some severe viral infections. This is due to the high capacity of virus-specific, HLA-B27-restricted CD8+ T cells for both intrinsic (i.e. polyfunctionality, high avidity, low sensitivity to Treg cell-mediated suppression) and extrinsic (i.e. rapid and efficient antigen processing and presentation) factors. It is tempting to speculate that these two aspects are not independent and that the association of B27 molecules to autoimmunity is the downside of this superior functional efficacy which, in given genetic backgrounds and environmental conditions, can support a chronic inflammation leading to spondyloarthropathies. Still, the pathogenic role of HLA-B27 molecules in AS is elusive. Here, we focus on the biology of HLA-B27 from the genetics to the biochemistry and to the structural/dynamical properties of B27:peptide complexes as obtained from atomistic molecular dynamics simulation. Overall, the results point at the antigen presentation as the key event in the disease pathogenesis. In particular, an extensive comparison of HLA-B*2705 and B*2709 molecules, that differ in a single amino acid (Asp116 to His116) and are differentially associated with AS, indicates that position 116 is crucial for shaping the entire peptide-presenting groove.
Collapse
Affiliation(s)
- Rosa Sorrentino
- Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza, University of Rome, Italy; Department of Biology and Biotechnology "C. Darwin", Sapienza, University of Rome, Italy
| | | | | |
Collapse
|
17
|
Subbarao K, Matsuoka Y. The prospects and challenges of universal vaccines for influenza. Trends Microbiol 2013; 21:350-8. [PMID: 23685068 DOI: 10.1016/j.tim.2013.04.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 04/04/2013] [Accepted: 04/15/2013] [Indexed: 12/25/2022]
Abstract
Vaccination is the most effective way to reduce the impact of epidemic as well as pandemic influenza. However, the licensed inactivated influenza vaccine induces strain-specific immunity and must be updated annually. When novel viruses appear, matched vaccines are not likely to be available in time for the first wave of a pandemic. Yet, the enormous diversity of influenza A viruses in nature makes it impossible to predict which subtype or strain will cause the next pandemic. Several recent scientific advances have generated renewed enthusiasm and hope for universal vaccines that will induce broad protection from a range of influenza viruses.
Collapse
Affiliation(s)
- Kanta Subbarao
- National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health, Bethesda, MD, USA.
| | | |
Collapse
|
18
|
Hillaire MLB, Vogelzang-van Trierum SE, Kreijtz JHCM, de Mutsert G, Fouchier RAM, Osterhaus ADME, Rimmelzwaan GF. Human T-cells directed to seasonal influenza A virus cross-react with 2009 pandemic influenza A (H1N1) and swine-origin triple-reassortant H3N2 influenza viruses. J Gen Virol 2012; 94:583-592. [PMID: 23152369 DOI: 10.1099/vir.0.048652-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Virus-specific CD8(+) T-cells contribute to protective immunity against influenza A virus (IAV) infections. As the majority of these cells are directed to conserved viral proteins, they may afford protection against IAVs of various subtypes. The present study assessed the cross-reactivity of human CD8(+) T-lymphocytes, induced by infection with seasonal A (H1N1) or A (H3N2) influenza virus, with 2009 pandemic influenza A (H1N1) virus [A(H1N1)pdm09] and swine-origin triple-reassortant A (H3N2) [A(H3N2)v] viruses that are currently causing an increasing number of human cases in the USA. It was demonstrated that CD8(+) T-cells induced after seasonal IAV infections exerted lytic activity and produced gamma interferon upon in vitro restimulation with A(H1N1)pdm09 and A(H3N2)v influenza A viruses. Furthermore, CD8(+) T-cells directed to A(H1N1)pdm09 virus displayed a high degree of cross-reactivity with A(H3N2)v viruses. It was concluded that cross-reacting T-cells had the potential to afford protective immunity against A(H1N1)pdm09 viruses during the pandemic and offer some degree of protection against infection with A(H3N2)v viruses.
Collapse
Affiliation(s)
- Marine L B Hillaire
- Department of Viroscience, Erasmus Medical Center, 3000 CA Rotterdam, The Netherlands
| | | | - Joost H C M Kreijtz
- Department of Viroscience, Erasmus Medical Center, 3000 CA Rotterdam, The Netherlands
| | - Gerrie de Mutsert
- Department of Viroscience, Erasmus Medical Center, 3000 CA Rotterdam, The Netherlands
| | - Ron A M Fouchier
- Department of Viroscience, Erasmus Medical Center, 3000 CA Rotterdam, The Netherlands
| | - Albert D M E Osterhaus
- Viroclinics Biosciences BV, 3015 GE Rotterdam, The Netherlands.,Department of Viroscience, Erasmus Medical Center, 3000 CA Rotterdam, The Netherlands
| | - Guus F Rimmelzwaan
- Viroclinics Biosciences BV, 3015 GE Rotterdam, The Netherlands.,Department of Viroscience, Erasmus Medical Center, 3000 CA Rotterdam, The Netherlands
| |
Collapse
|
19
|
La Gruta N, Kelso A, Brown LE, Chen W, Jackson DC, Turner SJ. Role of CD8(+) T-cell immunity in influenza infection: potential use in future vaccine development. Expert Rev Respir Med 2012; 3:523-37. [PMID: 20477341 DOI: 10.1586/ers.09.44] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Continued circulation of the highly pathogenic avian H5N1 influenza A virus has many people worried that an influenza pandemic is imminent. Compounding this is the realization that H5N1 vaccines based on current influenza vaccine technology (designed to generate protective antibody responses) may be suboptimal at providing protection. As a consequence, there is recent interest in vaccine strategies that elicit cellular immunity, particularly the cytotoxic T lymphocyte response, in an effort to provide protection against a potential pandemic. A major issue is the lack of information about the precise role that these 'hitmen' of the immune system have in protecting against both pandemic and seasonal influenza. We need to know more about how the induction and maintenance of cytotoxic T lymphocytes after influenza infection can impact protection from further infection. The challenge is then to use this information in the design of vaccines that will protect against pandemic influenza and will help optimize CD8(+) killer T-cell responses in other infections.
Collapse
Affiliation(s)
- Nicole La Gruta
- Department of Microbiology and Immunology, The University of Melbourne, Royal Parade, Parkville, Victoria 3010, Australia
| | | | | | | | | | | |
Collapse
|
20
|
Cross-allele cytotoxic T lymphocyte responses against 2009 pandemic H1N1 influenza A virus among HLA-A24 and HLA-A3 supertype-positive individuals. J Virol 2012; 86:13281-94. [PMID: 23015716 DOI: 10.1128/jvi.01841-12] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Lack of a universal vaccine against all serotypes of influenza A viruses and recent progress on T cell-related vaccines against influenza A virus illuminate the important role of human leukocyte antigen (HLA)-restricted cytotoxic T lymphocytes (CTLs) in anti-influenza virus immunity. However, the diverse HLA alleles among humans complicate virus-specific cellular immunity research, and elucidation of cross-HLA allele T cell responses to influenza virus specificity requires further detailed work. An ideal CTL epitope-based vaccine would cover a broad spectrum of epitope antigens presented by most, if not all, of the HLAs. Here, we evaluated the 2009 pandemic influenza A (H1N1) virus-specific T cell responses among the HLA-A24(+) population using a rationally designed peptide pool during the 2009 pandemic. Unexpectedly, cross-HLA allele T cell responses against the influenza A virus peptides were detected among both HLA-A11(+) and HLA-A24(+) donors. Furthermore, we found cross-responses in the entire HLA-A3 supertype population (including HLA-A11, -A31, -A33, and -A30). The cross-allele antigenic peptides within the peptide pool were identified and characterized, and the crystal structures of the major histocompatibility complex (MHC)-peptide complexes were determined. The subsequent HLA-A24-defined cross-allele peptides recognized by the HLA-A11(+) population were shown to mildly bind to the HLA-A*1101 molecule. Together with the structural models, these results partially explain the cross-allele responses. Our findings elucidate the promiscuity of the cross-allele T cell responses against influenza A viruses and are beneficial for the development of a T cell epitope-based vaccine applied in a broader population.
Collapse
|
21
|
Understanding the T cell immune response in SARS coronavirus infection. Emerg Microbes Infect 2012; 1:e23. [PMID: 26038429 PMCID: PMC3636424 DOI: 10.1038/emi.2012.26] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Revised: 07/02/2012] [Accepted: 07/06/2012] [Indexed: 12/17/2022]
Abstract
The severe acute respiratory syndrome (SARS) epidemic started in late 2002 and swiftly spread across 5 continents with a mortality rate of around 10%. Although the epidemic was eventually controlled through the implementation of strict quarantine measures, there continues a need to investigate the SARS coronavirus (SARS-CoV) and develop interventions should it re-emerge. Numerous studies have shown that neutralizing antibodies against the virus can be found in patients infected with SARS-CoV within days upon the onset of illness and lasting up to several months. In contrast, there is little data on the kinetics of T cell responses during SARS-CoV infection and little is known about their role in the recovery process. However, recent studies in mice suggest the importance of T cells in viral clearance during SARS-CoV infection. Moreover, a growing number of studies have investigated the memory T cell responses in recovered SARS patients. This review covers the available literature on the emerging importance of T cell responses in SARS-CoV infection, particularly on the mapping of cytotoxic T lymphocyte (CTL) epitopes, longevity, polyfunctionality and human leukocyte antigen (HLA) association as well as their potential implications on treatment and vaccine development.
Collapse
|
22
|
Abstract
A clear understanding of immunity in individuals infected with influenza virus is critical for the design of effective vaccination and treatment strategies. Whereas myriad studies have teased apart innate and adaptive immune responses to influenza infection in murine models, much less is known about human immunity as a result of the ethical and technical constraints of human research. Still, these murine studies have provided important insights into the critical correlates of protection and pathogenicity in human infection and helped direct the human studies that have been conducted. Here, we examine and review the current literature on immunity in humans infected with influenza virus, noting evidence offered by select murine studies and suggesting directions in which future research is most warranted.
Collapse
Affiliation(s)
- Christine M Oshansky
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | | |
Collapse
|
23
|
Wiwanitkit V. T-cell epitope finding on EPHA2 for further glioma vaccine development: An immunomics study. J Pediatr Neurosci 2011; 6:2-3. [PMID: 21977079 PMCID: PMC3173908 DOI: 10.4103/1817-1745.84398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Background: Glioma is a deadly neurological tumor. For modern management of glioma, glioma vaccinotherapy is the new concept. Materials and Methods: Based on present biomedical technique, the identification of T-cell epitopes via MHC mapping can help clarify the inter-relationship of tumor and immune system. This process can be performed using advanced immunoinformatics technique. Results: Here, the author performs an immunoinformatics analysis to find alternative epitopes for glioma-related antigen, EPHA2. Conclusion: After complete manipulation on EPHA2 molecules, the five best epitopes were derived.
Collapse
|
24
|
Induction of virus-specific cytotoxic T lymphocytes as a basis for the development of broadly protective influenza vaccines. J Biomed Biotechnol 2011; 2011:939860. [PMID: 22007149 PMCID: PMC3189652 DOI: 10.1155/2011/939860] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Revised: 07/01/2011] [Accepted: 08/02/2011] [Indexed: 11/18/2022] Open
Abstract
There is considerable interest in the development of broadly protective influenza vaccines because of the continuous emergence of antigenic drift variants of seasonal influenza viruses and the threat posed by the emergence of antigenically distinct pandemic influenza viruses. It has been recognized more than three decades ago that influenza A virus-specific cytotoxic T lymphocytes recognize epitopes located in the relatively conserved proteins like the nucleoprotein and that they cross-react with various subtypes of influenza A viruses. This implies that these CD8+ T lymphocytes may contribute to protective heterosubtypic immunity induced by antecedent influenza A virus infections. In the present paper, we review the evidence for the role of virus-specific CD8+ T lymphocytes in protective immunity against influenza virus infections and discuss vaccination strategies that aim at the induction of cross-reactive virus-specific T-cell responses.
Collapse
|
25
|
Weiskopf D, Yauch LE, Angelo MA, John DV, Greenbaum JA, Sidney J, Kolla RV, De Silva AD, de Silva AM, Grey H, Peters B, Shresta S, Sette A. Insights into HLA-restricted T cell responses in a novel mouse model of dengue virus infection point toward new implications for vaccine design. THE JOURNAL OF IMMUNOLOGY 2011; 187:4268-79. [PMID: 21918184 DOI: 10.4049/jimmunol.1101970] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The frequency of dengue virus (DENV) infection has increased dramatically in the last few decades, and the lack of a vaccine has led to significant morbidity and mortality worldwide. To date, a convenient murine system to study human T cell responses to DENV has not been available. Mice transgenic for HLA are widely used to model human immune responses, and it has been shown that mouse-passaged DENV is able to replicate to significant levels in IFN-α/βR(-/-) mice. To cover a wide range of HLA phenotypes, we backcrossed IFN-α/βR(-/-) mice with HLA A*0201, A*0101, A*1101, B*0702, and DRB1*0101-transgenic mice. A DENV proteome-wide screen identified a total of 42 epitopes across all HLA-transgenic IFN-α/βR(-/-) strains tested. In contrast, only eight of these elicited responses in the corresponding IFN-α/βR(+/+) mice. We were able to identify T cell epitopes from 9 out of the 10 DENV proteins. However, the majority of responses were derived from the highly conserved nonstructural proteins NS3 and NS5. The relevance of this model is further demonstrated by the fact that most of the epitopes identified in our murine system are also recognized by PBMC from DENV-exposed human donors, and a dominance of HLA B*0702-restricted responses has been detected in both systems. Our results provide new insights into HLA-restricted T cell responses against DENV, and we describe in this study a novel murine model that allows the investigation of T cell-mediated immune mechanisms relevant to vaccine design.
Collapse
Affiliation(s)
- Daniela Weiskopf
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Berger CT, Frahm N, Price DA, Mothe B, Ghebremichael M, Hartman KL, Henry LM, Brenchley JM, Ruff LE, Venturi V, Pereyra F, Sidney J, Sette A, Douek DC, Walker BD, Kaufmann DE, Brander C. High-functional-avidity cytotoxic T lymphocyte responses to HLA-B-restricted Gag-derived epitopes associated with relative HIV control. J Virol 2011; 85:9334-45. [PMID: 21752903 PMCID: PMC3165743 DOI: 10.1128/jvi.00460-11] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Accepted: 06/30/2011] [Indexed: 12/20/2022] Open
Abstract
Virus-specific cytotoxic T lymphocytes (CTL) with high levels of functional avidity have been associated with viral clearance in hepatitis C virus infection and with enhanced antiviral protective immunity in animal models. However, the role of functional avidity as a determinant of HIV-specific CTL efficacy remains to be assessed. Here we measured the functional avidities of HIV-specific CTL responses targeting 20 different, optimally defined CTL epitopes restricted by 13 different HLA class I alleles in a cohort comprising 44 HIV controllers and 68 HIV noncontrollers. Responses restricted by HLA-B alleles and responses targeting epitopes located in HIV Gag exhibited significantly higher functional avidities than responses restricted by HLA-A or HLA-C molecules (P = 0.0003) or responses targeting epitopes outside Gag (P < 0.0001). The functional avidities of Gag-specific and HLA-B-restricted responses were higher in HIV controllers than in noncontrollers (P = 0.014 and P = 0.018) and were not restored in HIV noncontrollers initiating antiretroviral therapy. T-cell receptor (TCR) analyses revealed narrower TCR repertoires in higher-avidity CTL populations, which were dominated by public TCR sequences in HIV controllers. Together, these data link the presence of high-avidity Gag-specific and HLA-B-restricted CTL responses with viral suppression in vivo and provide new insights into the immune parameters that mediate spontaneous control of HIV infection.
Collapse
Affiliation(s)
- Christoph T. Berger
- Ragon Institute of Massachusetts General Hospital, MIT and Harvard, Boston, Massachusetts
| | - Nicole Frahm
- Fred Hutchinson Cancer Research Center/NIAID HIV Vaccine Trials Network (HVTN), Seattle, Washington
| | - David A. Price
- Human Immunology Section, Vaccine Research Center, NIAID, NIH, Bethesda, Maryland
- Department of Infection, Immunity and Biochemistry, Cardiff University School of Medicine, Cardiff, Wales, United Kingdom
| | - Beatriz Mothe
- Lluita contra la Sida Foundation, Hospital Germans Trias i Pujol, Universitat Autònoma de Badalona, Barcelona, Spain
- IrsiCaixa AIDS Research Institute-HIVACAT, Hospital Germans Trias i Pujol, Badalona, Barcelona, Spain
| | - Musie Ghebremichael
- Ragon Institute of Massachusetts General Hospital, MIT and Harvard, Boston, Massachusetts
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Kari L. Hartman
- Ragon Institute of Massachusetts General Hospital, MIT and Harvard, Boston, Massachusetts
| | - Leah M. Henry
- Ragon Institute of Massachusetts General Hospital, MIT and Harvard, Boston, Massachusetts
| | - Jason M. Brenchley
- Human Immunology Section, Vaccine Research Center, NIAID, NIH, Bethesda, Maryland
| | - Laura E. Ruff
- Human Immunology Section, Vaccine Research Center, NIAID, NIH, Bethesda, Maryland
| | - Vanessa Venturi
- Computational Biology Group, Centre for Vascular Research, University of New South Wales, Kensington, New South Wales, Australia
| | - Florencia Pereyra
- Ragon Institute of Massachusetts General Hospital, MIT and Harvard, Boston, Massachusetts
| | - John Sidney
- La Jolla Institute for Allergy and Immunology, La Jolla, California
| | - Alessandro Sette
- La Jolla Institute for Allergy and Immunology, La Jolla, California
| | - Daniel C. Douek
- Human Immunology Section, Vaccine Research Center, NIAID, NIH, Bethesda, Maryland
| | - Bruce D. Walker
- Ragon Institute of Massachusetts General Hospital, MIT and Harvard, Boston, Massachusetts
- Howard Hughes Medical Institute, Chevy Chase, Maryland
| | - Daniel E. Kaufmann
- Ragon Institute of Massachusetts General Hospital, MIT and Harvard, Boston, Massachusetts
| | - Christian Brander
- Ragon Institute of Massachusetts General Hospital, MIT and Harvard, Boston, Massachusetts
- IrsiCaixa AIDS Research Institute-HIVACAT, Hospital Germans Trias i Pujol, Badalona, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avancats (ICREA), Barcelona, Spain
| |
Collapse
|
27
|
Tan ACL, La Gruta NL, Zeng W, Jackson DC. Precursor frequency and competition dictate the HLA-A2-restricted CD8+ T cell responses to influenza A infection and vaccination in HLA-A2.1 transgenic mice. THE JOURNAL OF IMMUNOLOGY 2011; 187:1895-902. [PMID: 21765016 DOI: 10.4049/jimmunol.1100664] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The human HLA-A2-restricted CD8(+) T cell response to influenza A virus (IAV) is largely directed against the matrix protein-derived M1(58-66) epitope and represents an archetypal example of CD8(+) T cell immunodominance. In this study, we examined the CD8(+) T cell hierarchy to M1(58-66) and two subdominant IAV-specific epitopes: NS1(122-130) and PA(46-55) in HLA-A2(+) human subjects and HLA-A2.1 transgenic (HHD) mice. Using epitope-based lipopeptides, we show that the CD8(+) T cell hierarchy induced by IAV infection could also be induced by lipopeptide vaccination in a context outside of viral infection when the Ag load is equalized. In the HHD HLA-A2.1 mouse model, we show that the naive T cell precursor frequencies, and competition at the Ag presentation level, can predict the IAV-specific CD8(+) T cell hierarchy. Immunization of mice with subdominant epitopes alone was unable to overcome the dominance of the M1(58-66)-specific response in the face of IAV challenge; however, a multiepitope vaccination strategy was most effective at generating a broad and multispecific response to infection.
Collapse
Affiliation(s)
- Amabel C L Tan
- Department of Microbiology and Immunology, University of Melbourne, Parkville 3010, Victoria, Australia
| | | | | | | |
Collapse
|
28
|
Dudareva S, Schweiger B, Thamm M, Höhle M, Stark K, Krause G, Buda S, Haas W. Prevalence of antibodies to 2009 pandemic influenza A (H1N1) virus in German adult population in pre- and post-pandemic period. PLoS One 2011; 6:e21340. [PMID: 21701598 PMCID: PMC3119048 DOI: 10.1371/journal.pone.0021340] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Accepted: 05/26/2011] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND In order to detect levels of pre-existing cross-reactive antibodies in different age groups and to measure age-specific infection rates of the influenza A (H1N1) 2009 pandemic in Germany, we conducted a seroprevalence study based on samples from an ongoing nationwide representative health survey. METHODOLOGY/PRINCIPAL FINDINGS We analysed 845 pre-pandemic samples collected between 25 Nov 2008 and 28 Apr 2009 and 757 post-pandemic samples collected between 12 Jan 2010 and 24 Apr 2010. Reactive antibodies against 2009 pandemic influenza A (H1N1) virus (pH1N1) were detected using a haemagglutination inhibition test (antigen A/California/7/2009). Proportions of samples with antibodies at titre ≥ 40 and geometric mean of the titres (GMT) were calculated and compared among 6 age groups (18-29, 30-39, 40-49, 50-59, 60-69, ≥ 70 years). The highest proportions of cross-reactive antibodies at titre ≥ 40 before the pandemic were observed among 18-29 year olds, 12.5% (95% CI 7.3-19.5%). The highest increase in seroprevalence between pre- and post-pandemic was also observed among 18-29 year olds, 29.9% (95% CI 16.7-43.2%). Effects of sampling period (pre- and post-pandemic), age, sex, and prior influenza immunization on titre were investigated with Tobit regression analysis using three birth cohorts (after 1976, between 1957 and 1976, and before 1957). The GMT increased between the pre- and post-pandemic period by a factor of 10.2 (95% CI 5.0-20.7) in the birth cohort born after 1976, 6.3 (95% CI 3.3-11.9) in those born between 1957 and 1976 and 2.4 (95% CI 1.3-4.3) in those born before 1957. CONCLUSIONS/SIGNIFICANCE We demonstrate that infection rates differed among age groups and that the measured pre-pandemic level of cross-reactive antibodies towards pH1N1 did not add information in relation to protection and prediction of the most affected age groups among adults in the pandemic.
Collapse
Affiliation(s)
- Sandra Dudareva
- European Programme for Intervention Epidemiology Training (EPIET), European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Systematic identification of immunodominant CD8+ T-cell responses to influenza A virus in HLA-A2 individuals. Proc Natl Acad Sci U S A 2011; 108:9178-83. [PMID: 21562214 DOI: 10.1073/pnas.1105624108] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Immunodominant T-cell responses are important for virus clearance. However, the identification of immunodominant T-cell peptide + HLA glycoprotein epitopes has been hindered by the extent of HLA polymorphism and the limitations of predictive algorithms. A simple, systematic approach has been used here to screen for immunodominant CD8(+) T-cell specificities. The analysis targeted healthy HLA-A2(+) donors to allow comparison with responses to the well-studied influenza matrix protein 1 epitope. Although influenza matrix protein 1 was consistently detected in all individual samples in our study, the response to this epitope was only immunodominant in three of eight, whereas for the other five, prominent CD8(+) T-cell responses tended to focus on various peptides from the influenza nucleoprotein that were not presented by HLA-A2. Importantly, with the four immunodominant T-cell epitopes identified here, only one would have been detected by the current prediction programs. The other three peptides would have been either considered too long or classified as not containing typical HLA binding motifs. Our data stress the importance of systematic analysis for discovering HLA-dependent, immunodominant CD8(+) T-cell epitopes derived from viruses and tumors. Focusing on HLA-A2 and predictive algorithms may be too limiting as we seek to develop targeted immunotherapy and vaccine strategies that depend on T cell-mediated immunity.
Collapse
|
30
|
Abstract
This article summarizes the proceedings of a one-day international workshop held in July 2009 on the role of HLA-B27 in the pathogenesis of ankylosing spondylitis (AS) and related disorders. HLA-B27 is found in about 90% of patients with AS, with an odds ratio of about 100, but the mechanism underlying this association is not known. There are currently 3 major mechanistic hypotheses for this association: (1) T cell recognition of one or more B27 presented peptides; (2) B27 heavy-chain misfolding that induces an unfolded protein response; and (3) innate immune recognition of cell-surface expressed B27 heavy-chain dimers. None of these hypotheses accounts for the tissue specificity of the inflammation characteristic of AS. These hypotheses were discussed in the context of known epidemiologic, biochemical, structural, and immunologic differences among HLA-B27 subtypes; data from the HLA-B27 transgenic rat model of spondyloarthritis; the growing list of other genes that have been found to be associated with AS; and other data on the pathogenesis of spondyloarthritis. Proposed directions for future research include expanded efforts to define similarities and differences among the B27 subtypes; further development of animal models; identifying the interactions of B27 with the products of other genes associated with AS; and continued investigation into the pathogenesis of spondyloarthritis.
Collapse
|
31
|
Wahl A, Schafer F, Bardet W, Hildebrand WH. HLA class I molecules reflect an altered host proteome after influenza virus infection. Hum Immunol 2010; 71:14-22. [PMID: 19748539 DOI: 10.1016/j.humimm.2009.08.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2009] [Revised: 08/25/2009] [Accepted: 08/31/2009] [Indexed: 12/01/2022]
Abstract
Class I HLA sample and display peptides from thousands of endogenous proteins at the cell surface. During infection, the influenza virus modifies the host cell proteome by triggering host antiviral responses, hijacking host processes, and inhibiting host mRNA processing. In turn, the catalog of HLA class I peptides that decorate the surface of an infected cell is positioned to reflect an altered host cell proteome. To understand the host-encoded peptides presented by class I molecules after influenza infection, we compared by mass spectrometry (MS) the peptides eluted from the HLA of naive and infected cells. We identified 20 peptide ligands unique to infected cells and 347 peptides with increased presentation after infection. Infection with different influenza strains demonstrated that proteome changes are predominantly strain-specific, with few individual cellular interactions observed for multiple viral strains. Modeling by pathway analysis, however, revealed that strain specific host peptide changes represent different routes to the same destination; host changes mediated by influenza are found predominantly clustered around HLA-B, ACTB, HSP90AB1, CDK2, and ANXA2. The class I HLA proteome scanning of influenza-infected cells therefore indicates how divergent strains of influenza pursue alternate routes to access the same host cell processes.
Collapse
Affiliation(s)
- Angela Wahl
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | | | | | | |
Collapse
|
32
|
Rao X, Costa AICAF, van Baarle D, Kesmir C. A comparative study of HLA binding affinity and ligand diversity: implications for generating immunodominant CD8+ T cell responses. THE JOURNAL OF IMMUNOLOGY 2009; 182:1526-32. [PMID: 19155500 DOI: 10.4049/jimmunol.182.3.1526] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Conventional CD8(+) T cell responses against intracellular infectious agents are initiated upon recognition of pathogen-derived peptides presented at the cell surface of infected cells in the context of MHC class I molecules. Among the major MHC class I loci, HLA-B is the swiftest evolving and the most polymorphic locus. Additionally, responses restricted by HLA-B molecules tend to be dominant, and most associations with susceptibility or protection against infectious diseases have been assigned to HLA-B alleles. To assess whether the differences in responses mediated via two major HLA class I loci, HLA-B and HLA-A, may already begin at the Ag presentation level, we have analyzed the diversity and binding affinity of their peptide repertoire by making use of curated pathogen-derived epitope data retrieved from the Immune Epitope Database and Analysis Resource, as well as in silico predicted epitopes. In contrast to our expectations, HLA-B alleles were found to have a less diverse peptide repertoire, which points toward a more restricted binding motif, and the respective average peptide binding affinity was shown to be lower than that of HLA-A-restricted epitopes. This unexpected observation gives rise to new hypotheses concerning the mechanisms underlying immunodominance of CD8(+) T cell responses.
Collapse
Affiliation(s)
- Xiangyu Rao
- Department of Theoretical Biology/Bioinformatics, Utrecht University, Utrecht, The Netherlands
| | | | | | | |
Collapse
|
33
|
HLA class I molecules consistently present internal influenza epitopes. Proc Natl Acad Sci U S A 2009; 106:540-5. [PMID: 19122146 DOI: 10.1073/pnas.0811271106] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Cytotoxic T lymphocytes (CTL) limit influenza virus replication and prevent morbidity and mortality upon recognition of HLA class I presented epitopes on the surface of virus infected cells, yet the number and origin of the viral epitopes that decorate the infected cell are unknown. To understand the presentation of influenza virus ligands by human MHC class I molecules, HLA-B*0702-presented viral peptides were directly identified following influenza infection. After transfection with soluble class I molecules, peptide ligands unique to infected cells were eluted from isolated MHC molecules and identified by comparative mass spectrometry (MS). Then CTL were gathered following infection with influenza and viral peptides were tested for immune recognition. We found that the class I molecule B*0702 presents 3-6 viral ligands following infection with different strains of influenza. Peptide ligands derived from the internal viral nucleoprotein (NP(418-426) and NP(473-481)) and from the internal viral polymerase subunit PB1 (PB1(329-337)) were presented by B*0702 following infection with each of 3 different influenza strains; ligands NP(418-426), NP(473-481), and PB1(329-337) derived from internal viral proteins were consistently revealed by class I HLA. In contrast, ligands derived from hemagglutinin (HA) and matrix protein (M1) were presented intermittently on a strain-by-strain basis. When tested for immune recognition, HLA-B*0702 transgenic mice responded to NP(418-426) and PB1(329-337) consistently and NP(473-481) intermittently while ligands from HA and M1 were not recognized. These data demonstrate an emerging pattern whereby class I HLA reveal a handful of internal viral ligands and whereby CTL recognize consistently presented influenza ligands.
Collapse
|
34
|
Lee LYH, Ha DLA, Simmons C, de Jong MD, Chau NVV, Schumacher R, Peng YC, McMichael AJ, Farrar JJ, Smith GL, Townsend AR, Askonas BA, Rowland-Jones S, Dong T. Memory T cells established by seasonal human influenza A infection cross-react with avian influenza A (H5N1) in healthy individuals. J Clin Invest 2008; 118:3478-90. [PMID: 18802496 PMCID: PMC2542885 DOI: 10.1172/jci32460] [Citation(s) in RCA: 243] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2007] [Accepted: 07/30/2008] [Indexed: 11/17/2022] Open
Abstract
The threat of avian influenza A (H5N1) infection in humans remains a global health concern. Current influenza vaccines stimulate antibody responses against the surface glycoproteins but are ineffective against strains that have undergone significant antigenic variation. An alternative approach is to stimulate pre-existing memory T cells established by seasonal human influenza A infection that could cross-react with H5N1 by targeting highly conserved internal proteins. To determine how common cross-reactive T cells are, we performed a comprehensive ex vivo analysis of cross-reactive CD4+ and CD8+ memory T cell responses to overlapping peptides spanning the full proteome of influenza A/Viet Nam/CL26/2005 (H5N1) and influenza A/New York/232/2004 (H3N2) in healthy individuals from the United Kingdom and Viet Nam. Memory CD4+ and CD8+ T cells isolated from the majority of participants exhibited human influenza-specific responses and showed cross-recognition of at least one H5N1 internal protein. Participant CD4+ and CD8+ T cells recognized multiple synthesized influenza peptides, including peptides from the H5N1 strain. Matrix protein 1 (M1) and nucleoprotein (NP) were the immunodominant targets of cross-recognition. In addition, cross-reactive CD4+ and CD8+ T cells recognized target cells infected with recombinant vaccinia viruses expressing either H5N1 M1 or NP. Thus, vaccine formulas inducing heterosubtypic T cell-mediated immunity may confer broad protection against avian and human influenza A viruses.
Collapse
Affiliation(s)
- Laurel Yong-Hwa Lee
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom.
Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Ho Chi Minh City, Viet Nam.
Department of Virology, Faculty of Medicine, Imperial College London, London, United Kingdom.
Molecular Immunology Group, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Do Lien Anh Ha
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom.
Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Ho Chi Minh City, Viet Nam.
Department of Virology, Faculty of Medicine, Imperial College London, London, United Kingdom.
Molecular Immunology Group, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Cameron Simmons
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom.
Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Ho Chi Minh City, Viet Nam.
Department of Virology, Faculty of Medicine, Imperial College London, London, United Kingdom.
Molecular Immunology Group, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Menno D. de Jong
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom.
Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Ho Chi Minh City, Viet Nam.
Department of Virology, Faculty of Medicine, Imperial College London, London, United Kingdom.
Molecular Immunology Group, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Nguyen Van Vinh Chau
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom.
Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Ho Chi Minh City, Viet Nam.
Department of Virology, Faculty of Medicine, Imperial College London, London, United Kingdom.
Molecular Immunology Group, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Reto Schumacher
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom.
Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Ho Chi Minh City, Viet Nam.
Department of Virology, Faculty of Medicine, Imperial College London, London, United Kingdom.
Molecular Immunology Group, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Yan Chun Peng
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom.
Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Ho Chi Minh City, Viet Nam.
Department of Virology, Faculty of Medicine, Imperial College London, London, United Kingdom.
Molecular Immunology Group, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Andrew J. McMichael
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom.
Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Ho Chi Minh City, Viet Nam.
Department of Virology, Faculty of Medicine, Imperial College London, London, United Kingdom.
Molecular Immunology Group, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Jeremy J. Farrar
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom.
Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Ho Chi Minh City, Viet Nam.
Department of Virology, Faculty of Medicine, Imperial College London, London, United Kingdom.
Molecular Immunology Group, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Geoffrey L. Smith
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom.
Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Ho Chi Minh City, Viet Nam.
Department of Virology, Faculty of Medicine, Imperial College London, London, United Kingdom.
Molecular Immunology Group, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Alain R.M. Townsend
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom.
Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Ho Chi Minh City, Viet Nam.
Department of Virology, Faculty of Medicine, Imperial College London, London, United Kingdom.
Molecular Immunology Group, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Brigitte A. Askonas
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom.
Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Ho Chi Minh City, Viet Nam.
Department of Virology, Faculty of Medicine, Imperial College London, London, United Kingdom.
Molecular Immunology Group, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Sarah Rowland-Jones
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom.
Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Ho Chi Minh City, Viet Nam.
Department of Virology, Faculty of Medicine, Imperial College London, London, United Kingdom.
Molecular Immunology Group, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Tao Dong
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom.
Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Ho Chi Minh City, Viet Nam.
Department of Virology, Faculty of Medicine, Imperial College London, London, United Kingdom.
Molecular Immunology Group, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| |
Collapse
|
35
|
Rimmelzwaan GF, Fouchier RAM, Osterhaus ADME. Influenza virus-specific cytotoxic T lymphocytes: a correlate of protection and a basis for vaccine development. Curr Opin Biotechnol 2008; 18:529-36. [PMID: 18083548 DOI: 10.1016/j.copbio.2007.11.002] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2007] [Revised: 10/30/2007] [Accepted: 11/12/2007] [Indexed: 10/22/2022]
Abstract
Since influenza A viruses of the H5N1 subtype continue to circulate in wild and domestic birds and cause an ever increasing number of human cases, it is feared that H5N1 viruses may cause the next influenza pandemic. Therefore, there is considerable interest in the development of vaccines that confer protection against infections with these viruses or ideally, protection against influenza viruses of different subtypes. For the development of broad-protective vaccines the induction of virus-specific cytotoxic T lymphocytes (CTL) may be an important target, since it has been demonstrated that CTL contribute to protective immunity and are largely directed to epitopes shared by influenza viruses of various subtypes. In the present paper, the possibility to develop (cross-reactive) CTL-inducing vaccines is discussed.
Collapse
Affiliation(s)
- Guus F Rimmelzwaan
- Erasmus Medical Center, Department of Virology, Rotterdam, The Netherlands
| | | | | |
Collapse
|
36
|
Association of Chlamydia pneumoniae infection with HLA-B*35 in patients with coronary artery disease. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2007; 15:55-9. [PMID: 17989341 DOI: 10.1128/cvi.00163-07] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The immune system may interplay between Chlamydia pneumoniae infection and coronary artery disease (CAD). Major histocompatibility complex genes regulate innate and adaptive immunity. Patients with CAD (n = 100) and controls (n = 74) were enrolled. Human leukocyte antigens (HLA-A, HLA-B, and HLA-DRB1), four lymphotoxin alpha single-nucleotide polymorphisms, and complement C4A and C4B allotypes were typed, and their haplotypes were inferred. The presence of serum C. pneumoniae immunoglobulin A (IgA) (titer, > or =40) or IgG (titer, > or =128) antibodies or immune complex (IC)-bound IgG antibodies (titer, > or =2) was considered to be a serological marker suggesting chronic C. pneumoniae infection. C. pneumoniae IgA antibodies were found more frequently in patients than in controls (P = 0.04). Among the patients, multiple logistic regression analysis showed the HLA-B*35 allele to be the strongest-risk gene for C. pneumoniae infection (odds ratio, 7.88; 95% confidence interval, 2.44 to 25.43; P = 0.0006). Markers of C. pneumoniae infection were found more frequently in patients with the HLA-A*03-B*35 haplotype than in those without the haplotype (P = 0.007 for IgA; P = 0.008 for IgG; P = 0.002 for IC). Smokers with HLA-B*35 or HLA-A*03-B*35 had markers of C. pneumoniae infection that appeared more often than in smokers without these genes (P = 0.003 and P = 0.001, respectively). No associations were found in controls. In conclusion, HLA-B*35 may be the link between chronic C. pneumoniae infection and CAD.
Collapse
|
37
|
Predicted epitopes of Lig A of Leptospira interrogans by bioinformatics method: a clue for further vaccine development. Vaccine 2006; 25:2768-70. [PMID: 17239493 DOI: 10.1016/j.vaccine.2006.12.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2006] [Revised: 12/06/2006] [Accepted: 12/12/2006] [Indexed: 11/17/2022]
Abstract
Leptospirosis is an important tropical infection. Providing sufficient antibiotic drugs and development and approval of new vaccines are the control of the possible emerging pandemic of this pathogen. For Leptospira interrogans, leptospiral Ig-like A (LigA) LigA may have value in serodiagnosis or as a protective immunogen in novel vaccines. Here, the author reports the preliminary data from the computation analysis of Lig A to find potential T-cell epitopes using a new bioinformatics tool. Among all alleles, the results from A0203, A0301 and DRB0101 show significant lower IC50 than other alleles. The 307FCISIFLSM315 corresponding to DRB0101 allele is the peptide with the best binding affinity. The determined peptides are useful for further vaccine development because it can reduce the time and minimize the total number of required tests to find the possible proper epitopes, the target for vaccine development.
Collapse
|
38
|
Yewdell JW. Confronting complexity: real-world immunodominance in antiviral CD8+ T cell responses. Immunity 2006; 25:533-43. [PMID: 17046682 DOI: 10.1016/j.immuni.2006.09.005] [Citation(s) in RCA: 283] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Antiviral CD8(+) T cells respond to only a minute fraction of the potential peptide determinants encoded by viral genomes. Immunogenic determinants can be ordered into highly reproducible hierarchies based on the magnitude of cognate CD8(+) T cell responses. Until recently, this phenomenon, termed immunodominance, was largely defined and characterized in model systems utilizing a few strains of inbred mice infected with a handful of viruses with limited coding capacity. Here, I review work that has extended immunodominance studies to viruses of greater complexity and to the real world of human antiviral immunity.
Collapse
Affiliation(s)
- Jonathan W Yewdell
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland 20892, USA.
| |
Collapse
|
39
|
Wojcechowskyj JA, Yant LJ, Wiseman RW, O'Connor SL, O'Connor DH. Control of simian immunodeficiency virus SIVmac239 is not predicted by inheritance of Mamu-B*17-containing haplotypes. J Virol 2006; 81:406-10. [PMID: 17079280 PMCID: PMC1797263 DOI: 10.1128/jvi.01636-06] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
It is well established that host genetics, especially major histocompatibility complex (MHC) genes, are important determinants of human immunodeficiency virus disease progression. Studies with simian immunodeficiency virus (SIV)-infected Indian rhesus macaques have associated Mamu-B*17 with control of virus replication. Using microsatellite haplotyping of the 5-Mb MHC region, we compared disease progression among SIVmac239-infected Indian rhesus macaques that possess Mamu-B*17-containing MHC haplotypes that are identical by descent. We discovered that SIV-infected animals possessing identical Mamu-B*17-containing haplotypes had widely divergent disease courses. Our results demonstrate that the inheritance of a particular Mamu-B*17-containing haplotype is not sufficient to predict SIV disease outcome.
Collapse
Affiliation(s)
- Jason A Wojcechowskyj
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, 555 Science Dr., Madison, WI 53711, USA
| | | | | | | | | |
Collapse
|
40
|
Predicted epitopes of H5N1 bird flu virus by bioinformatics method: a clue for further vaccine development. Chin Med J (Engl) 2006. [DOI: 10.1097/00029330-200610020-00017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
41
|
Boon ACM, de Mutsert G, Fouchier RAM, Osterhaus ADME, Rimmelzwaan GF. The hypervariable immunodominant NP418-426 epitope from the influenza A virus nucleoprotein is recognized by cytotoxic T lymphocytes with high functional avidity. J Virol 2006; 80:6024-32. [PMID: 16731941 PMCID: PMC1472604 DOI: 10.1128/jvi.00009-06] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Recently it was shown that influenza A viruses can accumulate mutations in epitopes associated with escape from recognition by human virus-specific cytotoxic T lymphocytes (CTL). It is unclear what drives diversification of CTL epitopes and why certain epitopes are variable and others remain conserved. It has been shown that simian immunodeficiency virus-specific CTL that recognize their epitope with high functional avidity eliminate virus-infected cells efficiently and drive diversification of CTL epitopes. T-cell functional avidity is defined by the density of major histocompatibility complex class I peptide complexes required to activate specific CTL. We hypothesized that functional avidity of CTL contributes to epitope diversification and escape from CTL also for influenza viruses. To test this hypothesis, the functional avidity of polyclonal CTL populations specific for nine individual epitopes was determined. To this end, peripheral blood mononuclear cells from HLA-A- and -B-genotyped individuals were stimulated in vitro with influenza virus-infected cells to allow expansion of virus-specific CTL, which were used to determine the functional avidity of CTL specific for nine individual epitopes in enzyme-linked immunospot assays. We found that the functional avidity for the respective epitopes varied widely. Furthermore, the functional avidity of CTL specific for the hypervariable NP(418-426) epitope was significantly higher than that of CTL recognizing other epitopes (P < 0.01). It was speculated that the high functional avidity of NP(418-426)-specific CTL was responsible for the diversification of this influenza A virus CTL epitope.
Collapse
Affiliation(s)
- Adrianus C M Boon
- Department of Virology, Erasmus MC, P.O. Box 1738, 3000 DR Rotterdam, The Netherlands
| | | | | | | | | |
Collapse
|
42
|
Brander C, Frahm N, Walker BD. The challenges of host and viral diversity in HIV vaccine design. Curr Opin Immunol 2006; 18:430-7. [PMID: 16777397 DOI: 10.1016/j.coi.2006.05.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2006] [Accepted: 05/31/2006] [Indexed: 02/03/2023]
Abstract
Rational HIV vaccine design is crucially dependent on a number of factors, including a detailed understanding of the immune responses that control infection in individuals that have non-progressing disease, the impact of host genetics on these responses, and the degree of immunological cross-reactivity between the vaccine immunogen and the encountered virus antigens. Significant progress has been made in a number of these areas over the past five years, which might help in the generation of a more effective immunogen design and will provide opportunities for novel vaccine delivery options. However, the understanding of immune response(s) that can mediate protection from infection or, if infection ensues, that slow the rate of HIV disease progression is still incomplete and will require detailed studies in unprecedentedly large populations infected with different HIV clades, combining advances in virology, immunology, human host genetics and bioinformatics analyses for the optimal design of vaccine immunogens.
Collapse
Affiliation(s)
- Christian Brander
- Partners AIDS Research Center, Massachusetts General Hospital, Harvard Medical School Charlestown, 02192, USA.
| | | | | |
Collapse
|
43
|
Bihl F, Frahm N, Di Giammarino L, Sidney J, John M, Yusim K, Woodberry T, Sango K, Hewitt HS, Henry L, Linde CH, Chisholm JV, Zaman TM, Pae E, Mallal S, Walker BD, Sette A, Korber BT, Heckerman D, Brander C. Impact of HLA-B Alleles, Epitope Binding Affinity, Functional Avidity, and Viral Coinfection on the Immunodominance of Virus-Specific CTL Responses. THE JOURNAL OF IMMUNOLOGY 2006; 176:4094-101. [PMID: 16547245 DOI: 10.4049/jimmunol.176.7.4094] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Immunodominance is variably used to describe either the most frequently detectable response among tested individuals or the strongest response within a single individual, yet factors determining either inter- or intraindividual immunodominance are still poorly understood. More than 90 individuals were tested against 184 HIV- and 92 EBV-derived, previously defined CTL epitopes. The data show that HLA-B-restricted epitopes were significantly more frequently recognized than HLA-A- or HLA-C-restricted epitopes. HLA-B-restricted epitopes also induced responses of higher magnitude than did either HLA-A- or HLA-C-restricted epitopes, although this comparison only reached statistical significance for EBV epitopes. For both viruses, the magnitude and frequency of recognition were correlated with each other, but not with the epitope binding affinity to the restricting HLA allele. The presence or absence of HIV coinfection did not impact EBV epitope immunodominance patterns significantly. Peptide titration studies showed that the magnitude of responses was associated with high functional avidity, requiring low concentration of cognate peptide to respond in in vitro assays. The data support the important role of HLA-B alleles in antiviral immunity and afford a better understanding of the factors contributing to inter- and intraindividual immunodominance.
Collapse
Affiliation(s)
- Florian Bihl
- Partners AIDS Research Center, Massachusetts General Hospital, Charlestown, 02129, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Boon ACM, de Mutsert G, Fouchier RAM, Osterhaus ADME, Rimmelzwaan GF. Functional profile of human influenza virus-specific cytotoxic T lymphocyte activity is influenced by interleukin-2 concentration and epitope specificity. Clin Exp Immunol 2005; 142:45-52. [PMID: 16178855 PMCID: PMC1809493 DOI: 10.1111/j.1365-2249.2005.02880.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2005] [Indexed: 12/17/2022] Open
Abstract
The ability of influenza A virus-specific cytotoxic T lymphocytes (CTL) to degranulate and produce cytokines upon antigenic restimulation was studied in four HLA-A*0101 and HLA-A*0201 positive subjects. Peripheral blood mononuclear cells of these subjects were stimulated with influenza A virus in the presence of high or low interleukin (IL)-2 concentrations. CD8(+) T cell populations specific for the HLA-A*0101 restricted epitope NP(44-52) and the HLA-A*0201 restricted epitope M1(58-66) were identified by positive staining with tetramers of peptide major histocompatibility complexes (MHC) (NP-Tm and M1-Tm, respectively). Within these populations, the proportion of cells mobilizing CD107a, or expressing interferon (IFN)-gamma and tumour necrosis factor-(TNF)-alpha upon short-term peptide restimulation was determined by flow cytometry. Independent of IL-2 concentrations, large subject-dependent differences in the mobilization of CD107a and expression of IFN-gamma and TNF-alpha by both NP- and M1-specific T cells were observed. In two of the four subjects, the functional profile of NP-Tm(+) and M1-Tm(+) cells differed considerably. Overall, no difference in the proportion of NP-Tm(+) or M1-Tm(+) cells expressing CD107a was observed. The proportion of M1-Tm(+) cells that produced IFN-gamma (P < 0.05) was larger than for NP-Tm(+) cells, independent of IL-2 concentration. When cultured under IL-2(hi) concentrations higher TNF-alpha expression was also observed in M1-Tm(+) cells (P < 0.05). The IL-2 concentration during expansion of virus-specific cells had a profound effect on the functionality of both M1-Tm(+) and NP-Tm(+) cells.
Collapse
Affiliation(s)
- A C M Boon
- Department of Virology and WHO National Influenza Center, Erasmus Medical Center, Rotterdam, the Netherlands
| | | | | | | | | |
Collapse
|
45
|
Oerke S, Höhn H, Zehbe I, Pilch H, Schicketanz KH, Hitzler WE, Neukirch C, Freitag K, Maeurer MJ. Naturally processed and HLA-B8-presented HPV16 E7 epitope recognized by T cells from patients with cervical cancer. Int J Cancer 2005; 114:766-78. [PMID: 15609316 DOI: 10.1002/ijc.20794] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Several major histocompatibility complex (MHC) alleles have been reported to present peptides derived from the HPV16 E7 oncoprotein to T cells. We describe an overrepresentation of the HLA-B8 allele (28.44%) in cervical cancer patients as compared to the MHC class I allele frequency in a local healthy control population (18.80%) and the identification of an HLA-B8-binding peptide TLHEYMLDL (HPV16 E7(7-15)), which is able to drive HPV16 E7-specific and MHC class I-restricted T-cell responses in peripheral blood lymphocytes from healthy individuals. TLHEYMLDL-specific T cells recognize the naturally processed and presented peptide on HPV16+ cervical cancer cells transfected with the HLA-B8 gene defined by IFN-gamma production. This peptide epitope is also recognized by freshly harvested tumor-infiltrating T cells or T cells from tumor-draining lymph nodes from patients with cervical cancer determined by flow cytometry as well as by tetramer in situ staining. HLA-B8-restricted HPV E7(7-15)-specific T cells reside predominantly in the CD8+ CD45RA+ CCR7+ precursor or in the differentiated CD8+ CD45RA+ CCR7- T-cell population.
Collapse
Affiliation(s)
- Sebastian Oerke
- Department of Medical Microbiology, University of Mainz, Mainz, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|