1
|
Guo DZ, Chen Y, Meng Y, Bian JJ, Wang Y, Wang JF. Bidirectional Interaction of Sepsis and Sleep Disorders: The Underlying Mechanisms and Clinical Implications. Nat Sci Sleep 2024; 16:1665-1678. [PMID: 39444661 PMCID: PMC11498039 DOI: 10.2147/nss.s485920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 10/13/2024] [Indexed: 10/25/2024] Open
Abstract
Sepsis is defined as life-threatening organ injury induced by infection, with high incidence and mortality. Sleep disorder is prevalent in septic patients and approximately 50% of patients with sepsis may develop atypical sleep patterns, but many of them may have been underdiagnosed by physicians. Sleep disorders and sepsis exhibit a close bidirectional relationship, with each condition significantly influencing the other. Conversely, sleep deprivation, sleep dysrhythmia and sleep fragmentation have been shown to impact the outcome of sepsis. This review endeavors to offer a comprehensive understanding of the intricate mechanisms that underpin the interplay between sepsis and sleep disorders, in addition to exploring potential clinical intervention strategies that could enhance outcomes for patients suffering from sepsis.
Collapse
Affiliation(s)
- De-Zhi Guo
- School of Basic Medicine, Naval Medical University, Shanghai, People’s Republic of China
| | - Yu Chen
- School of Basic Medicine, Naval Medical University, Shanghai, People’s Republic of China
| | - Yan Meng
- Department of Intensive Care, Changhai Hospital, Naval Medical University, Shanghai, People’s Republic of China
| | - Jin-Jun Bian
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, People’s Republic of China
| | - Yi Wang
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, People’s Republic of China
| | - Jia-Feng Wang
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, People’s Republic of China
| |
Collapse
|
2
|
Nakanishi T, Mieda K, Kuramoto H, Takegawa D. Effect of interleukin-17A on inflammatory mediator production in interleukin-1β-stimulated human dental pulp fibroblasts. Eur J Oral Sci 2024; 132:e13019. [PMID: 39302740 DOI: 10.1111/eos.13019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 08/26/2024] [Indexed: 09/22/2024]
Abstract
In response to pro-inflammatory cytokines such as interleukin (IL)-1β, dental pulp fibroblasts produce various inflammatory mediators, including IL-6, IL-8, CC chemokine ligand 20 (CCL20), and CXC chemokine ligand 10 (CXCL10), leading to the progression of pulpitis. IL-17/IL-17A (IL-17A) is a pro-inflammatory cytokine secreted by T helper (Th) 17 cells following their recruitment to inflamed sites; however, the roles of IL-17A during pulpitis remain unclear. The purpose of this study was to investigate the effect of IL-17A on IL-6, IL-8, CCL20 and CXCL10 production by human dental pulp fibroblasts (HDPFs) in vitro. IL-17A at a concentration of 100 ng/ml induced the production of 10 times more IL-8 and 4 times more CXCL10, but not IL-6 and CCL20, compared to controls. Co-stimulation of HDPFs with IL-17A and IL-1β synergistically enhanced the production of IL-6, CCL20, IL-8 and CXCL10. IL-1β increased expression of IL-17 receptor/IL-17RA (IL-17R) on HDPFs. Moreover, the cell signal pathways of p38 mitogen-activated protein kinase (MAPK) and nuclear factor-κB (NF-κB) were more potently activated by simultaneous stimulation with IL-17A and IL-1β. These findings suggest that IL-17A participates in the progression of dental pulp inflammation through the enhanced production of inflammatory mediators in HDPFs.
Collapse
Affiliation(s)
- Tadashi Nakanishi
- Department of Regenerative Dental Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Katsuhiro Mieda
- Department of Regenerative Dental Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Hitomi Kuramoto
- Department of Regenerative Dental Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Daisuke Takegawa
- Department of Regenerative Dental Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| |
Collapse
|
3
|
Küstner MJ, Eckstein D, Brauer D, Mai P, Hampl J, Weise F, Schuhmann B, Hause G, Glahn F, Foth H, Schober A. Modular air-liquid interface aerosol exposure system (MALIES) to study toxicity of nanoparticle aerosols in 3D-cultured A549 cells in vitro. Arch Toxicol 2024; 98:1061-1080. [PMID: 38340173 PMCID: PMC10944414 DOI: 10.1007/s00204-023-03673-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 12/20/2023] [Indexed: 02/12/2024]
Abstract
We present a novel lung aerosol exposure system named MALIES (modular air-liquid interface exposure system), which allows three-dimensional cultivation of lung epithelial cells in alveolar-like scaffolds (MatriGrids®) and exposure to nanoparticle aerosols. MALIES consists of multiple modular units for aerosol generation, and can be rapidly assembled and commissioned. The MALIES system was proven for its ability to reliably produce a dose-dependent toxicity in A549 cells using CuSO4 aerosol. Cytotoxic effects of BaSO4- and TiO2-nanoparticles were investigated using MALIES with the human lung tumor cell line A549 cultured at the air-liquid interface. Experiments with concentrations of up to 5.93 × 105 (BaSO4) and 1.49 × 106 (TiO2) particles/cm3, resulting in deposited masses of up to 26.6 and 74.0 µg/cm2 were performed using two identical aerosol exposure systems in two different laboratories. LDH, resazurin reduction and total glutathione were measured. A549 cells grown on MatriGrids® form a ZO-1- and E-Cadherin-positive epithelial barrier and produce mucin and surfactant protein. BaSO4-NP in a deposited mass of up to 26.6 µg/cm2 resulted in mild, reversible damage (~ 10% decrease in viability) to lung epithelium 24 h after exposure. TiO2-NP in a deposited mass of up to 74.0 µg/cm2 did not induce any cytotoxicity in A549 cells 24 h and 72 h after exposure, with the exception of a 1.7 fold increase in the low exposure group in laboratory 1. These results are consistent with previous studies showing no significant damage to lung epithelium by short-term treatment with low concentrations of nanoscale BaSO4 and TiO2 in in vitro experiments.
Collapse
Affiliation(s)
- M J Küstner
- Department of Nano-Biosystems Engineering, Institute of Chemistry and Biotechnology, Ilmenau University of Technology, P.O. Box, 98684, Ilmenau, Germany
| | - D Eckstein
- Institute of Environmental Toxicology, Martin-Luther-University Halle-Wittenberg, 06108, Halle (Saale), Germany
| | - D Brauer
- Department of Nano-Biosystems Engineering, Institute of Chemistry and Biotechnology, Ilmenau University of Technology, P.O. Box, 98684, Ilmenau, Germany.
| | - P Mai
- Department of Nano-Biosystems Engineering, Institute of Chemistry and Biotechnology, Ilmenau University of Technology, P.O. Box, 98684, Ilmenau, Germany
| | - J Hampl
- Department of Nano-Biosystems Engineering, Institute of Chemistry and Biotechnology, Ilmenau University of Technology, P.O. Box, 98684, Ilmenau, Germany
| | - F Weise
- Department of Nano-Biosystems Engineering, Institute of Chemistry and Biotechnology, Ilmenau University of Technology, P.O. Box, 98684, Ilmenau, Germany
| | - B Schuhmann
- Institute of Environmental Toxicology, Martin-Luther-University Halle-Wittenberg, 06108, Halle (Saale), Germany
| | - G Hause
- Biocenter, Department of Electron Microscopy, Martin-Luther-University Halle-Wittenberg, 06099, Halle (Saale), Germany
| | - F Glahn
- Institute of Environmental Toxicology, Martin-Luther-University Halle-Wittenberg, 06108, Halle (Saale), Germany
| | - H Foth
- Institute of Environmental Toxicology, Martin-Luther-University Halle-Wittenberg, 06108, Halle (Saale), Germany
| | - A Schober
- Department of Nano-Biosystems Engineering, Institute of Chemistry and Biotechnology, Ilmenau University of Technology, P.O. Box, 98684, Ilmenau, Germany
| |
Collapse
|
4
|
Sang D, Lin K, Yang Y, Ran G, Li B, Chen C, Li Q, Ma Y, Lu L, Cui XY, Liu Z, Lv SQ, Luo M, Liu Q, Li Y, Zhang EE. Prolonged sleep deprivation induces a cytokine-storm-like syndrome in mammals. Cell 2023; 186:5500-5516.e21. [PMID: 38016470 DOI: 10.1016/j.cell.2023.10.025] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 08/17/2023] [Accepted: 10/25/2023] [Indexed: 11/30/2023]
Abstract
Most animals require sleep, and sleep loss induces serious pathophysiological consequences, including death. Previous experimental approaches for investigating sleep impacts in mice have been unable to persistently deprive animals of both rapid eye movement sleep (REMS) and non-rapid eye movement sleep (NREMS). Here, we report a "curling prevention by water" paradigm wherein mice remain awake 96% of the time. After 4 days of exposure, mice exhibit severe inflammation, and approximately 80% die. Sleep deprivation increases levels of prostaglandin D2 (PGD2) in the brain, and we found that elevated PGD2 efflux across the blood-brain-barrier-mediated by ATP-binding cassette subfamily C4 transporter-induces both accumulation of circulating neutrophils and a cytokine-storm-like syndrome. Experimental disruption of the PGD2/DP1 axis dramatically reduced sleep-deprivation-induced inflammation. Thus, our study reveals that sleep-related changes in PGD2 in the central nervous system drive profound pathological consequences in the peripheral immune system.
Collapse
Affiliation(s)
- Di Sang
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China; National Institute of Biological Sciences, Beijing, China
| | - Keteng Lin
- National Institute of Biological Sciences, Beijing, China; College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yini Yang
- Peking University School of Life Sciences, Beijing, China
| | - Guangdi Ran
- National Institute of Biological Sciences, Beijing, China; Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| | - Bohan Li
- Peking-Tsinghua Center for Life Sciences, Beijing, China; Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Chen Chen
- National Institute of Biological Sciences, Beijing, China
| | - Qi Li
- National Institute of Biological Sciences, Beijing, China; Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| | - Yan Ma
- National Institute of Biological Sciences, Beijing, China; Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| | - Lihui Lu
- National Institute of Biological Sciences, Beijing, China
| | - Xi-Yang Cui
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Zhibo Liu
- Peking-Tsinghua Center for Life Sciences, Beijing, China; Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Sheng-Qing Lv
- Department of Neurosurgery, Xinqiao Hospital, Chongqing, China
| | - Minmin Luo
- National Institute of Biological Sciences, Beijing, China; School of Life Sciences, Tsinghua University, Beijing, China; Chinese Institute for Brain Research, Beijing, China
| | - Qinghua Liu
- National Institute of Biological Sciences, Beijing, China; Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| | - Yulong Li
- Peking University School of Life Sciences, Beijing, China; Peking-Tsinghua Center for Life Sciences, Beijing, China; State Key Laboratory of Membrane Biology, Beijing, China; PKU-IDG/McGovern Institute for Brain Research, Beijing, China
| | - Eric Erquan Zhang
- National Institute of Biological Sciences, Beijing, China; Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China.
| |
Collapse
|
5
|
Boodhoo N, Matsuyama-Kato A, Raj S, Fazel F, St-Denis M, Sharif S. Effect of Pre-Treatment with a Recombinant Chicken Interleukin-17A on Vaccine Induced Immunity against a Very Virulent Marek's Disease Virus. Viruses 2023; 15:1633. [PMID: 37631976 PMCID: PMC10459749 DOI: 10.3390/v15081633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/23/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
The host response to pathogenic microbes can lead to expression of interleukin (IL)-17, which has antimicrobial and anti-viral activity. However, relatively little is known about the basic biological role of chicken IL-17A against avian viruses, particularly against Marek's disease virus (MDV). We demonstrate that, following MDV infection, upregulation of IL-17A mRNA and an increase in the frequency of IL-17A+ T cells in the spleen occur compared to control chickens. To elaborate on the role of chIL-17A in MD, the full-length chIL-17A coding sequence was cloned into a pCDNA3.1-V5/HIS TOPO plasmid. The effect of treatment with pcDNA:chIL-17A plasmid in combination with a vaccine (HVT) and very virulent(vv)MDV challenge or vvMDV infection was assessed. In combination with HVT vaccination, chickens that were inoculated with the pcDNA:chIL-17A plasmid had reduced tumor incidence compared to chickens that received the empty vector control or that were vaccinated only (66.6% in the HVT + empty vector group and 73.33% in HVT group versus 53.3% in the HVT + pcDNA:chIL-17A). Further analysis demonstrated that the chickens that received the HVT vaccine and/or plasmid expressing IL-17A had lower MDV-Meq transcripts in the spleen. In conclusion, chIL-17A can influence the immunity conferred by HVT vaccination against MDV infection in chickens.
Collapse
Affiliation(s)
| | | | | | | | | | - Shayan Sharif
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada; (N.B.); (A.M.-K.); (S.R.); (F.F.); (M.S.-D.)
| |
Collapse
|
6
|
Moos S, Regen T, Wanke F, Tian Y, Arendholz LT, Hauptmann J, Heinen AP, Bleul L, Bier K, El Malki K, Reinhardt C, Prinz I, Diefenbach A, Wolz C, Schittek B, Waisman A, Kurschus FC. IL-17 Signaling in Keratinocytes Orchestrates the Defense against Staphylococcus aureus Skin Infection. J Invest Dermatol 2023; 143:1257-1267.e10. [PMID: 36736996 DOI: 10.1016/j.jid.2023.01.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 12/05/2022] [Accepted: 01/05/2023] [Indexed: 02/04/2023]
Abstract
Keratinocytes (KCs) form the outer epithelial barrier of the body, protecting against invading pathogens. Mice lacking the IL-17RA or both IL-17A and IL-17F develop spontaneous Staphylococcusaureus skin infections. We found a marked expansion of T17 cells, comprised of RORγt-expressing γδ T cells and T helper 17 cells in the skin-draining lymph nodes of these mice. Contradictory to previous suggestions, this expansion was not a result of a direct negative feedback loop because we found no expansion of T17 cells in mice lacking IL-17 signaling specifically in T cells. Instead, we found that the T17 expansion depended on the microbiota and was observed only when KCs were deficient for IL-17RA signaling. Indeed, mice that lack IL-17RA only in KCs showed an increased susceptibility to experimental epicutaneous infection with S. aureus together with an accumulation of IL-17A-producing γδ T cells. We conclude that deficiency of IL-17RA on KCs leads to microbiota dysbiosis in the skin, which triggers the expansion of IL-17A-producing T cells. Our data show that KCs are the primary target cells of IL-17A and IL-17F, coordinating the defense against microbial invaders in the skin.
Collapse
Affiliation(s)
- Sonja Moos
- Department of Dermatology, Heidelberg University Hospital, Heidelberg, Germany; Institute for Molecular Medicine, Paul Klein Center for Immune Intervention, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Tommy Regen
- Institute for Molecular Medicine, Paul Klein Center for Immune Intervention, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Florian Wanke
- Institute for Molecular Medicine, Paul Klein Center for Immune Intervention, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany; Neuroscience and Rare Diseases (NRD), Discovery and Translational Area, Roche Pharma Research & Early Development (pRED), Roche Innovation Center, Basel, Switzerland
| | - Yizhu Tian
- Department of Dermatology, Heidelberg University Hospital, Heidelberg, Germany
| | - Lucas T Arendholz
- Department of Dermatology, Heidelberg University Hospital, Heidelberg, Germany
| | - Judith Hauptmann
- Institute for Molecular Medicine, Paul Klein Center for Immune Intervention, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - André P Heinen
- Institute for Molecular Medicine, Paul Klein Center for Immune Intervention, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Lisa Bleul
- Interfakultäres Institute for Microbiology, Infectious Diseases, Eberhard Karls University, Tübingen, Germany; Cluster of Excellence EXC 2124 "Controlling Microbes to Fight Infections", Eberhard Karls University, Tübingen, Germany
| | - Katharina Bier
- Division of Dermatooncology, Department of Dermatology, Eberhard Karls University, Tübingen, Germany
| | - Khalifa El Malki
- Institute for Molecular Medicine, Paul Klein Center for Immune Intervention, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany; Department of Pediatric Hematology/Oncology, Center for Pediatric and Adolescent Medicine, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Christoph Reinhardt
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partner Site RhineMain, 55131 Mainz, Germany
| | - Immo Prinz
- Institute of Immunology, Hannover Medical School, Hannover, Germany; Institute of Systems Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andreas Diefenbach
- Institute for Medical Microbiology and Hygiene, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany; Institute of Microbiology, Infectious Diseases and Immunology, Charite University Medical Center Berlin, Berlin, Germany
| | - Christiane Wolz
- Interfakultäres Institute for Microbiology, Infectious Diseases, Eberhard Karls University, Tübingen, Germany; Cluster of Excellence EXC 2124 "Controlling Microbes to Fight Infections", Eberhard Karls University, Tübingen, Germany
| | - Birgit Schittek
- Division of Dermatooncology, Department of Dermatology, Eberhard Karls University, Tübingen, Germany
| | - Ari Waisman
- Institute for Molecular Medicine, Paul Klein Center for Immune Intervention, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany; Focus Program Translational Neurosciences, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany; Research Center for Immunotherapy, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Florian C Kurschus
- Department of Dermatology, Heidelberg University Hospital, Heidelberg, Germany.
| |
Collapse
|
7
|
Losol P, Ji MH, Kim JH, Choi JP, Yun JE, Seo JH, Kim BK, Chang YS, Kim SH. Bronchial epithelial cells release inflammatory markers linked to airway inflammation and remodeling in response to TLR5 ligand flagellin. World Allergy Organ J 2023; 16:100786. [PMID: 37332524 PMCID: PMC10276272 DOI: 10.1016/j.waojou.2023.100786] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 04/25/2023] [Accepted: 05/16/2023] [Indexed: 06/20/2023] Open
Abstract
Background/Aims Flagellin, which is abundant in gram-negative bacteria, including Pseudomonas, is reported to influence on inflammatory responses in various lung diseases. However, its effect on airway epithelial cells in contribution to asthma pathogenesis is not elucidated yet. We aimed to investigate the effect of TLR5 ligand flagellin on the transcriptomic profile of primary human epithelial cells and to determine the markers of airway inflammation. Methods Normal human bronchial epithelial (NHBE) cells were grown and differentiated in air-liquid interface (ALI) culture for 14-16 days. The cells were treated with flagellin in vitro at 10 and 100 ng/ml for 3 and 24 h. The conditioned media and cells were harvested to validate inflammatory markers involved in airway inflammation using ELISA, Western blot, and quantitative PCR methods. RNA-sequencing was performed to investigate the transcriptional response to flagellin in ALI-NHBE cells. Results Altered transcriptional responses to flagellin in differentiated bronchial epithelial cells were determined, including genes encoding chemokines, matrix metalloproteinases, and antimicrobial biomolecules. Pathway analysis of the transcriptionally responsive genes revealed enrichment of signaling pathways. Flagellin induced the mRNA expressions of proinflammatory cytokines and chemokines, and secretion of GM-CSF, CXCL5, CCL5 and CXCL10. Flagellin enhanced the protein expression of MMP-13 in TGF-β1 and TGF-β2 pretreated cell lysates and Wnt/β-catenin signaling. Conclusions These findings suggest that flagellin could be a potent inducer of inflammatory markers that may contribute to airway inflammation and remodeling.
Collapse
Affiliation(s)
- Purevsuren Losol
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea
- Medical Research Center, Seoul National University, Seoul, South Korea
| | - Mi-Hong Ji
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Jin Hee Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Jun-Pyo Choi
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Jeong-Eun Yun
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Jang-Ho Seo
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Byung-Keun Kim
- Department of Internal Medicine, Korea University Medical Center Anam Hospital, Seoul, South Korea
| | - Yoon-Seok Chang
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea
- Medical Research Center, Seoul National University, Seoul, South Korea
| | - Sae-Hoon Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea
| |
Collapse
|
8
|
Silva S, Bicker J, Falcão A, Fortuna A. Air-liquid interface (ALI) impact on different respiratory cell cultures. Eur J Pharm Biopharm 2023; 184:62-82. [PMID: 36696943 DOI: 10.1016/j.ejpb.2023.01.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 09/24/2022] [Accepted: 01/19/2023] [Indexed: 01/23/2023]
Abstract
The intranasal route has been receiving greater attention from the scientific community not only for systemic drug delivery but also for the treatment of pulmonary and neurological diseases. Along with it, drug transport and permeability studies across the nasal mucosa have exponentially increased. Nevertheless, the translation of data from in vitro cell lines to in vivo studies is not always reliable, due to the difficulty in generating an in vitro model that resembles respiratory human physiology. Among all currently available methodologies, the air-liquid interface (ALI) method is advantageous to promote cell differentiation and optimize the morphological and histological characteristics of airway epithelium cells. Cells grown under ALI conditions, in alternative to submerged conditions, appear to provide relevant input for inhalation and pulmonary toxicology and complement in vivo experiments. Different methodologies and a variety of materials have been used to induce ALI conditions in primary cells and numerous cell lines. Until this day, with only exploratory results, no consensus has been reached regarding the validation of the ALI method, hampering data comparison. The present review describes the most adequate cell models of airway epithelium and how these models are differently affected by ALI conditions. It includes the evaluation of cellular features before and after ALI, and the application of the method in primary cell cultures, commercial 3D primary cells, cell lines and stem-cell derived models. A variety of these models have been recently applied for pharmacological studies against severe acute respiratory syndrome-coronavirus(-2) SARS-CoV(-2), namely primary cultures with alveolar type II epithelium cells and organotypic 3D models. The herein compiled data suggest that ALI conditions must be optimized bearing in mind the type of cells (nasal, bronchial, alveolar), their origin and the objective of the study.
Collapse
Affiliation(s)
- Soraia Silva
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; CIBIT - Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal
| | - Joana Bicker
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; CIBIT - Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal
| | - Amílcar Falcão
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; CIBIT - Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal
| | - Ana Fortuna
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; CIBIT - Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
9
|
Li A, Li Y, Wang Y, Wang Y, Li X, Qubi W, Xiong Y, Zhu J, Liu W, Lin Y. ACADL Promotes the Differentiation of Goat Intramuscular Adipocytes. Animals (Basel) 2023; 13:281. [PMID: 36670821 PMCID: PMC9854987 DOI: 10.3390/ani13020281] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/04/2023] [Accepted: 01/09/2023] [Indexed: 01/14/2023] Open
Abstract
Intramuscular fat (IMF) deposits help improve meat quality such as marbling, juicy, flavor and tenderness. Long-chain acyl-CoA dehydrogenase (ACADL) is a key enzyme for catalyzing fatty acid oxidation, and studies have shown ACADL is involved in the deposition and differentiation of intramuscular adipocytes. However, the effect of ACADL on intramuscular adipocytes differentiation in goats needs further study. In this study, to explore the mechanism of ACADL on the development of goat intramuscular adipocytes, we constructed an over-expression plasmids and a SI-RNA of ACADL to explore the function of ACADL on the development of goat IMF. It was found that overexpression of ACADL promoted the differentiation of goat intramuscular adipocytes, and promoted the expression of fat cell differentiation marker genes lipoprotein lipase (LPL), peroxisome proliferator activated receptor gamma (PPARγ), APETALA-2-like transcription factor gene (AP2), CCAT enhancer binding protein (CEBPα), preadipocyte Factor 1 (Pref-1) and CCAT enhancer binding protein (CEBPβ), and the opposite trend occurred after interference. In addition, we screened of this related tumor necrosis factor (TNF) signaling pathway by RNA-Seq. So, we validate the signaling pathway with inhibitor of TNF signaling pathway. In summary, these results indicate that ACADL promotes intramuscular adipocytes differentiation through activation TNF signaling pathway. This study provides an important basis for the mechanism of IMF development.
Collapse
Affiliation(s)
- An Li
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China; (A.L.); (Y.L.); (Y.W.); (Y.W.); (X.L.); (W.Q.); (Y.X.); (J.Z.); (W.L.)
- Key Laboratory of Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation, Southwest Minzu University, Chengdu 610041, China
- College of Animal Science and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China
| | - Yanyan Li
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China; (A.L.); (Y.L.); (Y.W.); (Y.W.); (X.L.); (W.Q.); (Y.X.); (J.Z.); (W.L.)
- Key Laboratory of Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation, Southwest Minzu University, Chengdu 610041, China
- College of Animal Science and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China
| | - Youli Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China; (A.L.); (Y.L.); (Y.W.); (Y.W.); (X.L.); (W.Q.); (Y.X.); (J.Z.); (W.L.)
- Key Laboratory of Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation, Southwest Minzu University, Chengdu 610041, China
- College of Animal Science and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China
| | - Yong Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China; (A.L.); (Y.L.); (Y.W.); (Y.W.); (X.L.); (W.Q.); (Y.X.); (J.Z.); (W.L.)
- Key Laboratory of Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation, Southwest Minzu University, Chengdu 610041, China
- College of Animal Science and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China
| | - Xin Li
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China; (A.L.); (Y.L.); (Y.W.); (Y.W.); (X.L.); (W.Q.); (Y.X.); (J.Z.); (W.L.)
- Key Laboratory of Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation, Southwest Minzu University, Chengdu 610041, China
- College of Animal Science and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China
| | - Wuqie Qubi
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China; (A.L.); (Y.L.); (Y.W.); (Y.W.); (X.L.); (W.Q.); (Y.X.); (J.Z.); (W.L.)
- Key Laboratory of Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation, Southwest Minzu University, Chengdu 610041, China
- College of Animal Science and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China
| | - Yan Xiong
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China; (A.L.); (Y.L.); (Y.W.); (Y.W.); (X.L.); (W.Q.); (Y.X.); (J.Z.); (W.L.)
- Key Laboratory of Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation, Southwest Minzu University, Chengdu 610041, China
- College of Animal Science and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China
| | - Jiangjiang Zhu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China; (A.L.); (Y.L.); (Y.W.); (Y.W.); (X.L.); (W.Q.); (Y.X.); (J.Z.); (W.L.)
- Key Laboratory of Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation, Southwest Minzu University, Chengdu 610041, China
| | - Wei Liu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China; (A.L.); (Y.L.); (Y.W.); (Y.W.); (X.L.); (W.Q.); (Y.X.); (J.Z.); (W.L.)
- Key Laboratory of Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation, Southwest Minzu University, Chengdu 610041, China
- College of Animal Science and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China
| | - Yaqiu Lin
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China; (A.L.); (Y.L.); (Y.W.); (Y.W.); (X.L.); (W.Q.); (Y.X.); (J.Z.); (W.L.)
- Key Laboratory of Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation, Southwest Minzu University, Chengdu 610041, China
- College of Animal Science and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China
| |
Collapse
|
10
|
Interleukin-17 Family Cytokines in Metabolic Disorders and Cancer. Genes (Basel) 2022; 13:genes13091643. [PMID: 36140808 PMCID: PMC9498678 DOI: 10.3390/genes13091643] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/04/2022] [Accepted: 09/07/2022] [Indexed: 02/07/2023] Open
Abstract
Interleukin-17 (IL-17) family cytokines are potent drivers of inflammatory responses. Although IL-17 was originally identified as a cytokine that induces protective effects against bacterial and fungal infections, IL-17 can also promote chronic inflammation in a number of autoimmune diseases. Research in the last decade has also elucidated critical roles of IL-17 during cancer development and treatment. Intriguingly, IL-17 seems to play a role in the risk of cancers that are associated with metabolic disorders. In this review, we summarize our current knowledge on the biochemical basis of IL-17 signaling, IL-17′s involvement in cancers and metabolic disorders, and postulate how IL-17 family cytokines may serve as a bridge between these two types of diseases.
Collapse
|
11
|
Periodontitis, Blood Pressure, and the Risk and Control of Arterial Hypertension: Epidemiological, Clinical, and Pathophysiological Aspects-Review of the Literature and Clinical Trials. Curr Hypertens Rep 2021; 23:27. [PMID: 33961166 PMCID: PMC8105217 DOI: 10.1007/s11906-021-01140-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/24/2021] [Indexed: 12/11/2022]
Abstract
Purpose of Review Arterial hypertension is an important risk factor for cardiovascular disease. In the world, about 45% of people suffer from arterial hypertension, while good blood pressure control is achieved by only approximately 50% of all hypertensive patients treated. The reason for the high prevalence of arterial hypertension and its poor control is low knowledge of hypertensinogenic factors. One such factor is periodontitis, which is a disease of social importance. Recent Findings It has been shown that the occurrence of periodontitis leads to an increase in blood pressure, increasing the risk of arterial hypertension. Periodontitis can also lead to ineffectiveness of antihypertensive treatment. Some interventional studies have shown that treatment of periodontitis reduced blood pressure in patients with arterial hypertension. The pathogenesis of arterial hypertension in periodontitis is complex and concerns mainly the impairment of the vasodilatation properties of the endothelium. Summary Hygiene and periodontitis treatment should be a method of preventing arterial hypertension and a method of increasing the effectiveness of antihypertensive treatment.
Collapse
|
12
|
Atzeni F, Carriero A, Boccassini L, D’Angelo S. Anti-IL-17 Agents in the Treatment of Axial Spondyloarthritis. Immunotargets Ther 2021; 10:141-153. [PMID: 33977094 PMCID: PMC8104974 DOI: 10.2147/itt.s259126] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/15/2021] [Indexed: 12/17/2022] Open
Abstract
Axial spondyloarthritis (axSpA) describes a group of chronic inflammatory rheumatic diseases primarily involving the axial skeleton. IL-17 is involved in the pathogenesis of numerous inflammatory diseases, including inflammatory arthritis. Until a few years ago, the only biological agents licensed for the treatment of axSpA and nr-axSpA were TNF inhibitors. However, as some patients did not respond to TNF inhibition or experienced secondary failure, the introduction of the first two IL-17 inhibitors (secukinumab [SEC] and ixekizumab [IXE]) has extended the treatment options, and there are now three others (bimekizumab, brodalumab and netakimab) in various stages of clinical development. The last ten years have seen the development of a number of therapeutic recommendations that aimed at improving the management of axSpA patients. The aim of this narrative review of the published literature concerning the role of IL-17 in the pathogenesis of SpA, and the role of IL-17 inhibitors in the treatment of axSpA, is to provide a comprehensive picture of the clinical efficacy and safety of the drugs themselves, and the treatment strategies recommended in the international guidelines.
Collapse
Affiliation(s)
- Fabiola Atzeni
- Rheumatology Unit, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Antonio Carriero
- Rheumatology Institute of Lucania (IReL), Rheumatology Department of Lucania, San Carlo Hospital of Potenza and Madonna delle Grazie Hospital of Matera, Potenza, Italy
- Translational and Clinical Medicine, Department of Medicine and Health Sciences, University of Molise, Campobasso, Italy
| | - Laura Boccassini
- Rheumatology Unit, Internal Medicine Department, ASST Fatebenefratelli-Sacco, University School of Medicine, Milan, Italy
| | - Salvatore D’Angelo
- Rheumatology Institute of Lucania (IReL), Rheumatology Department of Lucania, San Carlo Hospital of Potenza and Madonna delle Grazie Hospital of Matera, Potenza, Italy
| |
Collapse
|
13
|
IL-17 Triggers Invasive and Migratory Properties in Human MSCs, while IFNy Favors their Immunosuppressive Capabilities: Implications for the "Licensing" Process. Stem Cell Rev Rep 2020; 16:1266-1279. [PMID: 33067729 PMCID: PMC7667142 DOI: 10.1007/s12015-020-10051-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2020] [Indexed: 12/14/2022]
Abstract
Mesenchymal stromal cells (MSCs) were first used as a source for cell therapy in 1995; however, despite their versatility and unambiguous demonstration of efficacy and safety in preclinical/phase I studies, the positive effect of MSCs in human phase III studies did not resemble the success obtained in mouse models of disease. This dissonance highlights the need to more thoroughly study the immunobiology of MSCs to make better use of these cells. Thus, we aimed to study the immunobiology of MSCs by using chip array analysis as a method for general screening to obtain a global picture in our model study and found IFNy and IL-17 signaling as the first two “top canonical pathways” involved in MSCs immunomodulation. The role of IFNy in triggering the immunosuppressive properties of MSCs is well recognized by many groups; however, the role of IL-17 in this process remains uncertain. Interestingly, in contrast to IFNy, which actively improved the MSCs-mediated immunosuppression, IL-17 did not improve directly the MSCs-mediated immunosuppression. Instead, IL-17 signaling induced the migration of MSCs and inflammatory cells, bringing these cell types together and increasing the likelihood of the lymphocytes sensing the immunosuppressive molecules produced by the MSCs. These effects also correlated with high levels of cytokine/chemokine production and metalloprotease activation by MSCs. Importantly, this treatment maintained the MSCs safety profile by not inducing the expression of molecules related to antigen presentation. In this way, our findings highlight the possibility of using IL-17, in combination with IFNy, to prime MSCs for cell therapy to improve their biological properties and thus their therapeutic efficacy. Finally, the use of preactivated MSCs may also minimize variations among MSCs to produce more uniform therapeutic products. In the not-so-distant future, we envisage a portfolio of MSCs activated by different cocktails specifically designed to target and treat specific diseases. Graphical abstract ![]()
Collapse
|
14
|
Periodontitis and Hypertension: Is the Association Causal? High Blood Press Cardiovasc Prev 2020; 27:281-289. [PMID: 32500479 DOI: 10.1007/s40292-020-00392-z] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 05/30/2020] [Indexed: 02/07/2023] Open
Abstract
High blood pressure (BP) and periodontitis are two highly prevalent conditions worldwide with a significant impact on cardiovascular disease (CVD) complications. Poor periodontal health is associated with increased prevalence of hypertension and may have an influence on BP control. Risk factors such as older age, male gender, non-Caucasian ethnicity, smoking, overweight/obesity, diabetes, low socioeconomic status, and poor education have been considered the common denominators underpinning this relationship. However, recent evidence indicates that the association between periodontitis and hypertension is independent of common risk factors and may in fact be causal in nature. Low-grade systemic inflammation and redox imbalance, in particular, represent the major underlying mechanisms in this relationship. Neutrophil dysfunction, imbalance in T cell subtypes, oral-gut dysbiosis, hyperexpression of proinflammatory genes, and increased sympathetic outflow are some of the pathogenetic events involved. In addition, novel findings indicate that common genetic bases might shape the immune profile towards this clinical phenotype, offering a rationale for potential therapeutic and prevention strategies of public health interest. This review summarizes recent advances, knowledge gaps and possible future directions in the field.
Collapse
|
15
|
Lamichhane R, Schneider M, de la Harpe SM, Harrop TW, Hannaway RF, Dearden PK, Kirman JR, Tyndall JD, Vernall AJ, Ussher JE. TCR- or Cytokine-Activated CD8+ Mucosal-Associated Invariant T Cells Are Rapid Polyfunctional Effectors That Can Coordinate Immune Responses. Cell Rep 2019; 28:3061-3076.e5. [DOI: 10.1016/j.celrep.2019.08.054] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 07/11/2019] [Accepted: 08/16/2019] [Indexed: 12/22/2022] Open
|
16
|
Abstract
Spondyloarthritis (SpA) is a term that refers to a group of inflammatory diseases that includes psoriatic arthritis, axial SpA and nonradiographic axial SpA, reactive arthritis, enteropathic arthritis and undifferentiated SpA. The disease subtypes share clinical and immunological features, including joint inflammation (peripheral and axial skeleton); skin, gut and eye manifestations; and the absence of diagnostic autoantibodies (seronegative). The diseases also share genetic factors. The aetiology of SpA is still the subject of research by many groups worldwide. Evidence from genetic, experimental and clinical studies has accumulated to indicate a clear role for the IL-17 pathway in the pathogenesis of SpA. The IL-17 family consists of IL-17A, IL-17B, IL-17C, IL-17D, IL-17E and IL-17F, of which IL-17A is the best studied. IL-17A is a pro-inflammatory cytokine that also has the capacity to promote angiogenesis and osteoclastogenesis. Of the six family members, IL-17A has the strongest homology with IL-17F. In this Review, we discuss how IL-17A and IL-17F and their cellular sources might contribute to the immunopathology of SpA.
Collapse
|
17
|
Causton B, Pardo-Saganta A, Gillis J, Discipio K, Kooistra T, Rajagopal J, Xavier RJ, Cho JL, Medoff BD. CARMA3 Mediates Allergic Lung Inflammation in Response to Alternaria alternata. Am J Respir Cell Mol Biol 2019; 59:684-694. [PMID: 29958012 DOI: 10.1165/rcmb.2017-0181oc] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The airway epithelial cell (AEC) response to allergens helps initiate and propagate allergic inflammation in asthma. CARMA3 is a scaffold protein that mediates G protein-coupled receptor-induced NF-κB activation in airway epithelium. In this study, we demonstrate that mice with CARMA3-deficient AECs have reduced airway inflammation, as well as reduced type 2 cytokine levels in response to Alternaria alternata. These mice also have reduced production of IL-33 and IL-25, and reduced numbers of innate lymphoid cells in the lung. We also show that CARMA3-deficient human AECs have decreased production of proasthmatic mediators in response to A. alternata. Finally, we show that CARMA3 interacts with inositol 1,4,5-trisphosphate receptors in AECs, and that inhibition of CARMA3 signaling reduces A. alternata-induced intracellular calcium release. In conclusion, we show that CARMA3 signaling in AECs helps mediate A. alternata-induced allergic airway inflammation, and that CARMA3 is an important signaling molecule for type 2 immune responses in the lung.
Collapse
Affiliation(s)
- Benjamin Causton
- 1 Division of Pulmonary and Critical Care Medicine.,3 Center for Regenerative Medicine
| | - Ana Pardo-Saganta
- 1 Division of Pulmonary and Critical Care Medicine.,4 Center for Computational and Integrative Biology, and
| | - Jacob Gillis
- 1 Division of Pulmonary and Critical Care Medicine.,3 Center for Regenerative Medicine
| | - Katherine Discipio
- 1 Division of Pulmonary and Critical Care Medicine.,3 Center for Regenerative Medicine
| | - Tristan Kooistra
- 1 Division of Pulmonary and Critical Care Medicine.,3 Center for Regenerative Medicine
| | - Jayaraj Rajagopal
- 1 Division of Pulmonary and Critical Care Medicine.,4 Center for Computational and Integrative Biology, and
| | - Ramnik J Xavier
- 5 Gastrointestinal Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts; and.,2 Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts
| | - Josalyn L Cho
- 1 Division of Pulmonary and Critical Care Medicine.,3 Center for Regenerative Medicine
| | - Benjamin D Medoff
- 1 Division of Pulmonary and Critical Care Medicine.,3 Center for Regenerative Medicine
| |
Collapse
|
18
|
Wang C, Wu R, Sargsyan D, Zheng M, Li S, Yin R, Su S, Raskin I, Kong AN. CpG methyl-seq and RNA-seq epigenomic and transcriptomic studies on the preventive effects of Moringa isothiocyanate in mouse epidermal JB6 cells induced by the tumor promoter TPA. J Nutr Biochem 2019; 68:69-78. [PMID: 31030169 DOI: 10.1016/j.jnutbio.2019.03.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/02/2019] [Accepted: 03/14/2019] [Indexed: 02/02/2023]
Abstract
Epigenetic mechanisms play an important role in the early stages of carcinogenesis. Moringa isothiocyanate (MIC-1) is a major bioactive component derived from Moringa oleifera that has considerable antioxidant and anti-inflammatory effects. However, how MIC-1 influences epigenomic alterations in TPA-mediated JB6 cell carcinogenic transformation has not been evaluated. In this study, DNA and RNA isolated from TPA-induced JB6 cells in the presence or absence of MIC-1 were subjected to DNA Methyl-seq and RNA-seq to identify differentially methylated regions (DMRs) and differentially expressed genes (DEGs), respectively. When JB6 cells were challenged with TPA alone, there was a significant alteration of DEGs and DMRs; importantly, MIC-1 treatment reversed the patterns of some of the DEGs and DMRs. Transcriptome and CpG methylome profiling was performed in Ingenuity® Pathway Analysis (IPA) software to analyze the altered signaling pathways. Several anti-inflammatory responses, antioxidative stress-related pathways, and anticancer-related pathways were identified to be affected by MIC-1. These pathways included NF-kB, IL-1, LPS/IL-1-mediated inhibition of RXR function, Nrf2-mediated oxidative stress response, p53, and PTEN signaling pathways. Examination of correlations between transcriptomic and CpG methylome profiles yielded a small subset of genes, including the cancer-related genes Tmpt, Tubb3, and Muc2; the GTPases Gchfr and Igtp; and the cell cycle-related gene Cdc7. Taken together, our results show the potential contributions of epigenomic changes in DNA CpG methylation to gene expression to molecular pathways active in TPA-induced JB6 cells and demonstrate that MIC-1 can reverse these changes, supporting the potential preventive/treatment effects of MIC-1 against skin carcinogenesis.
Collapse
Affiliation(s)
- Chao Wang
- Center for Phytochemical Epigenome Studies, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Renyi Wu
- Center for Phytochemical Epigenome Studies, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Davit Sargsyan
- Center for Phytochemical Epigenome Studies, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; Graduate Program of Pharmaceutical Sciences, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Meinizi Zheng
- Department of Statistics and Biostatistics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Shanyi Li
- Center for Phytochemical Epigenome Studies, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Ran Yin
- Center for Phytochemical Epigenome Studies, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Shan Su
- Center for Phytochemical Epigenome Studies, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Ilya Raskin
- Department of Plant Biology & Pathology, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Ah-Ng Kong
- Center for Phytochemical Epigenome Studies, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA.
| |
Collapse
|
19
|
Storelli E, Cassina N, Rasini E, Marino F, Cosentino M. Do Th17 Lymphocytes and IL-17 Contribute to Parkinson's Disease? A Systematic Review of Available Evidence. Front Neurol 2019; 10:13. [PMID: 30733703 PMCID: PMC6353825 DOI: 10.3389/fneur.2019.00013] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 01/07/2019] [Indexed: 12/21/2022] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disease characterized by progressive loss of dopaminergic neurons, appearance of Lewy bodies and presence of neuroinflammation. No treatments currently exist to prevent PD or delay its progression, and dopaminergic substitution treatments just relieve the consequences of dopaminergic neuron loss. Increasing evidence points to peripheral T lymphocytes as key players in PD, and recently there has been growing interest into the specific role of T helper (Th) 17 lymphocytes. Th17 are a proinflammatory CD4+ T cell lineage named after interleukin (IL)-17, the main cytokine produced by these cells. Th17 are involved in immune-related disease such as psoriasis, rheumatoid arthritis and inflammatory bowel disease, and drugs targeting Th17/IL-17 are currently approved for clinical use in such disease. In the present paper, we first summarized current knowledge about contribution of the peripheral immune system in PD, as well as about the physiopharmacology of Th17 and IL-17 together with its therapeutic relevance. Thereafter, we systematically retrieved and evaluated published evidence about Th17 and IL-17 in PD, to help assessing Th17/IL-17-targeting drugs as potentially novel antiparkinson agents. Critical appraisal of the evidence did not allow to reach definite conclusions: both animal as well as clinical studies are limited, just a few provide mechanistic evidence and none of them investigates the eventual relationship between Th17/IL-17 and clinically relevant endpoints such as disease progression, disability scores, intensity of dopaminergic substitution treatment. Careful assessment of Th17 in PD is anyway a priority, as Th17/IL-17-targeting therapeutics might represent a straightforward opportunity for the unmet needs of PD patients.
Collapse
Affiliation(s)
| | | | | | | | - Marco Cosentino
- Center of Research in Medical Pharmacology, University of Insubria, Varese, Italy
| |
Collapse
|
20
|
Zhang L, Kang Y, Chen S, Wang L, Jiang M, Xiang L. Circulating CCL20: A potential biomarker for active vitiligo together with the number of Th1/17 cells. J Dermatol Sci 2019; 93:92-100. [PMID: 30655106 DOI: 10.1016/j.jdermsci.2018.12.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 12/27/2018] [Accepted: 12/28/2018] [Indexed: 11/25/2022]
Abstract
BACKGROUND Vitiligo is an autoimmune disease with varying pathological features. Activation of the CCL20-CCR6 axis plays an important role in chronic inflammatory diseases. However, whether CCL20-CCR6 and Th1/17 cells are indicative of active vitiligo is unclear. OBJECTIVE To investigate the potential role of CCL20 and the involvement of Th1/17 and Tc1/17 cells in the mechanism in vitiligo. METHODS One hundred patients with vitiligo, and 20 healthy controls were included. The serum and blister fluid IL-17, IFN-γ, CCL20, and CXCL10 were studied using enzyme-linked immunosorbent assays. The numbers of Th1/17 cells and Tc1/17 cells in circulation were quantified using flow cytometry. CCR6 mRNA in peripheral blood mononuclear cells (PBMCs) was analyzed by real-time polymerase chain reaction and the protein level was confirmed by western blotting. CCR6 and CCL20 expression in lesions was analyzed by immunohistochemistry. RESULTS The serum CCL20 level was significantly elevated in patients with vitiligo. The level of serum CCL20 was higher in active than in the stable stage, which correlated positively with the Vitiligo European Task Force spreading score and the Vitiligo Area Scoring Index score. Patients with active vitiligo had elevated numbers of circulating Th1/17 cells and Tc1/17 cells, and upregulated expression of CCR6 in PBMCs and lesions. After effective treatment, the level of CCL20 in sera and blister fluid was significantly decreased, as were the numbers of circulating Th1/17 cells and Tc1/17 cells. CONCLUSION CCL20 might be a vital biomarker of active vitiligo, and circulating Th1/17 and Tc1/17 cells are involved in the pathogenesis of vitiligo.
Collapse
Affiliation(s)
- Li Zhang
- Department of Dermatology, Huashan Hospital, Fudan University, 12 Wulumuqi Zhong Road, Shanghai, 200040, PR China
| | - Yuli Kang
- Department of Dermatology, Huashan Hospital, Fudan University, 12 Wulumuqi Zhong Road, Shanghai, 200040, PR China
| | - Shujun Chen
- Department of Dermatology, Huashan Hospital, Fudan University, 12 Wulumuqi Zhong Road, Shanghai, 200040, PR China
| | - Li Wang
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, 12 Wulumuqi Zhong Road, Shanghai, 200040, PR China
| | - Min Jiang
- Department of Dermatology, Huashan Hospital, Fudan University, 12 Wulumuqi Zhong Road, Shanghai, 200040, PR China.
| | - Leihong Xiang
- Department of Dermatology, Huashan Hospital, Fudan University, 12 Wulumuqi Zhong Road, Shanghai, 200040, PR China.
| |
Collapse
|
21
|
de Castro Kroner J, Knoke K, Kofler DM, Steiger J, Fabri M. Glucocorticoids promote intrinsic human T H17 differentiation. J Allergy Clin Immunol 2018; 142:1669-1673.e11. [PMID: 30092286 DOI: 10.1016/j.jaci.2018.07.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 06/29/2018] [Accepted: 07/18/2018] [Indexed: 12/25/2022]
Affiliation(s)
| | - Kristin Knoke
- Department of Dermatology, University of Cologne, Cologne, Germany
| | - David M Kofler
- Department I of Internal Medicine, University of Cologne, Cologne, Germany
| | - Julia Steiger
- Department of Dermatology, University of Cologne, Cologne, Germany
| | - Mario Fabri
- Department of Dermatology, University of Cologne, Cologne, Germany.
| |
Collapse
|
22
|
Upadhyay S, Palmberg L. Air-Liquid Interface: Relevant In Vitro Models for Investigating Air Pollutant-Induced Pulmonary Toxicity. Toxicol Sci 2018. [DOI: 10.1093/toxsci/kfy053] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- Swapna Upadhyay
- Institute of Environmental Medicine, Unit of Work Environment Toxicology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Lena Palmberg
- Institute of Environmental Medicine, Unit of Work Environment Toxicology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| |
Collapse
|
23
|
Gupta RK, Gupta K, Dwivedi PD. Pathophysiology of IL-33 and IL-17 in allergic disorders. Cytokine Growth Factor Rev 2017; 38:22-36. [PMID: 29153708 DOI: 10.1016/j.cytogfr.2017.09.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 09/27/2017] [Indexed: 12/15/2022]
|
24
|
β 2-Adrenoceptor signaling in airway epithelial cells promotes eosinophilic inflammation, mucous metaplasia, and airway contractility. Proc Natl Acad Sci U S A 2017; 114:E9163-E9171. [PMID: 29073113 DOI: 10.1073/pnas.1710196114] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The mostly widely used bronchodilators in asthma therapy are β2-adrenoreceptor (β2AR) agonists, but their chronic use causes paradoxical adverse effects. We have previously determined that β2AR activation is required for expression of the asthma phenotype in mice, but the cell types involved are unknown. We now demonstrate that β2AR signaling in the airway epithelium is sufficient to mediate key features of the asthmatic responses to IL-13 in murine models. Our data show that inhibition of β2AR signaling with an aerosolized antagonist attenuates airway hyperresponsiveness (AHR), eosinophilic inflammation, and mucus-production responses to IL-13, whereas treatment with an aerosolized agonist worsens these phenotypes, suggesting that β2AR signaling on resident lung cells modulates the asthma phenotype. Labeling with a fluorescent β2AR ligand shows the receptors are highly expressed in airway epithelium. In β2AR-/- mice, transgenic expression of β2ARs only in airway epithelium is sufficient to rescue IL-13-induced AHR, inflammation, and mucus production, and transgenic overexpression in WT mice exacerbates these phenotypes. Knockout of β-arrestin-2 (βarr-2-/-) attenuates the asthma phenotype as in β2AR-/- mice. In contrast to eosinophilic inflammation, neutrophilic inflammation was not promoted by β2AR signaling. Together, these results suggest β2ARs on airway epithelial cells promote the asthma phenotype and that the proinflammatory pathway downstream of the β2AR involves βarr-2. These results identify β2AR signaling in the airway epithelium as capable of controlling integrated responses to IL-13 and affecting the function of other cell types such as airway smooth muscle cells.
Collapse
|
25
|
Sato T, Shibata W, Hikiba Y, Kaneta Y, Suzuki N, Ihara S, Ishii Y, Sue S, Kameta E, Sugimori M, Yamada H, Kaneko H, Sasaki T, Ishii T, Tamura T, Kondo M, Maeda S. c-Jun N-terminal kinase in pancreatic tumor stroma augments tumor development in mice. Cancer Sci 2017; 108:2156-2165. [PMID: 28837246 PMCID: PMC5666025 DOI: 10.1111/cas.13382] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Revised: 08/07/2017] [Accepted: 08/16/2017] [Indexed: 12/11/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a life‐threatening disease and there is an urgent need to develop improved therapeutic approaches. The role of c‐Jun N‐terminal kinase (JNK) in PDAC stroma is not well defined even though dense desmoplastic reactions are characteristic of PDAC histology. We aimed to explore the role of JNK in PDAC stroma in mice. We crossed Ptf1aCre/+;KrasG12D/+ mice with JNK1−/− mice to generate Ptf1aCre/+;KrasG12D/+;JNK1−/− (Kras;JNK1−/−) mice. Tumor weight was significantly lower in Kras;JNK1−/− mice than in Kras;JNK1+/− mice, whereas histopathological features were similar. We also transplanted a murine PDAC cell line (mPC) with intact JNK1 s.c. into WT and JNK1−/− mice. Tumor diameters were significantly smaller in JNK1−/− mice. Phosphorylated JNK (p‐JNK) was activated in α‐smooth muscle actin (SMA)‐positive cells in tumor stroma, and mPC‐conditioned medium activated p‐JNK in tumor‐associated fibroblasts (TAF) in vitro. Relative expression of Ccl20 was downregulated in stimulated TAF. Ccl20 is an important chemokine that promotes CD8+ T‐cell infiltration by recruitment of dendritic cells, and the number of CD8+ T cells was decreased in Kras;JNK1+/− mice compared with Kras;JNK1−/− mice. These results suggest that the cancer secretome decreases Ccl20 secretion from TAF by activation of JNK, and downregulation of Ccl20 secretion might be correlated with reduction of infiltrating CD8+ T cells. Therefore, we concluded that inhibition of activated JNK in pancreatic tumor stroma could be a potential therapeutic target to increase Ccl20 secretion from TAF and induce accumulation of CD8+ T cells, which would be expected to enhance antitumor immunity.
Collapse
Affiliation(s)
- Takeshi Sato
- Department of Gastroenterology, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Wataru Shibata
- Department of Gastroenterology, Graduate School of Medicine, Yokohama City University, Yokohama, Japan.,Division of Translational Research, Advanced Medical Research Center, Yokohama City University, Yokohama, Japan
| | - Yohko Hikiba
- Institute for Adult Diseases, Asahi Life Foundation, Tokyo, Japan
| | - Yoshihiro Kaneta
- Department of Gastroenterology, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Nobumi Suzuki
- Institute for Adult Diseases, Asahi Life Foundation, Tokyo, Japan
| | - Sozaburo Ihara
- Institute for Adult Diseases, Asahi Life Foundation, Tokyo, Japan
| | - Yasuaki Ishii
- Department of Gastroenterology, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Soichiro Sue
- Department of Gastroenterology, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Eri Kameta
- Department of Gastroenterology, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Makoto Sugimori
- Department of Gastroenterology, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Hiroaki Yamada
- Department of Gastroenterology, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Hiroaki Kaneko
- Department of Gastroenterology, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Tomohiko Sasaki
- Department of Gastroenterology, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Tomohiro Ishii
- Department of Gastroenterology, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Toshihide Tamura
- Department of Gastroenterology, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Masaaki Kondo
- Department of Gastroenterology, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Shin Maeda
- Department of Gastroenterology, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| |
Collapse
|
26
|
Lee JW, Kim YI, Im CN, Kim SW, Kim SJ, Min S, Joo YH, Yim SV, Chung N. Grape Seed Proanthocyanidin Inhibits Mucin Synthesis and Viral Replication by Suppression of AP-1 and NF-κB via p38 MAPKs/JNK Signaling Pathways in Respiratory Syncytial Virus-Infected A549 Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:4472-4483. [PMID: 28502165 DOI: 10.1021/acs.jafc.7b00923] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Airway epithelial cells are often infected by respiratory syncytial virus (RSV), one of the most common causes of asthma, bronchiolitis, chronic obstructive pulmonary disease, and pneumonia. During the infection process, excessive mucins instigate airway inflammation. However, the mechanism underlying RSV-induced airway hyper-responsiveness and inflammation is poorly understood. Furthermore, no reliable vaccines or drugs for antiviral therapy are available. In this study, the effect of the natural compound grape seed proanthocyanidin (GSP) on RSV-infected human airway epithelial cells A549 was evaluated. After pretreatment of the cells with or without exposure to RSV with 5-10 μg GSP/mL, the expression of various mucins (MUC1, MUC2, MUC5AC, MUC5B, and MUC8) was evaluated by real-time polymerase chain reaction, enzyme-linked immunosorbent assay, and Western blotting, as well as confocal microscopy. We found that GSP significantly decreased RSV-induced mucin synthesis at the mRNA and protein levels. In addition, GSP suppressed the RSV-induced signaling pathways, including extracellular signal-regulated kinase, c-Jun N-terminal kinase, and p38, together with nuclear factor kappa B (NF-κB) and activating protein-1 family members (c-Jun and c-Fos). Concomitantly, GSP inhibited the replication of RSV within A549 cells. Taken together, all our results suggest that GSP could be a potent therapeutic agent to suppress excessive mucus production and viral replication in RSV-induced airway inflammatory disorders.
Collapse
Affiliation(s)
- Jin-Woo Lee
- College of Life Sciences & Biotechnology, Korea University , Seoul, 02841, Republic of Korea
- Medical Science Research Institute, Kyung Hee University Medical Center , Seoul, 02447, Republic of Korea
| | - Young Il Kim
- Medical Science Research Institute, Kyung Hee University Medical Center , Seoul, 02447, Republic of Korea
| | - Chang-Nim Im
- Department of Biochemistry, College of Medicine, The Catholic University , Seoul, 06591, Republic of Korea
| | | | | | | | - Yong Hoon Joo
- College of Life Sciences & Biotechnology, Korea University , Seoul, 02841, Republic of Korea
| | | | - Namhyun Chung
- College of Life Sciences & Biotechnology, Korea University , Seoul, 02841, Republic of Korea
| |
Collapse
|
27
|
Lafferty MK, Sun L, Christensen-Quick A, Lu W, Garzino-Demo A. Human Beta Defensin 2 Selectively Inhibits HIV-1 in Highly Permissive CCR6⁺CD4⁺ T Cells. Viruses 2017; 9:v9050111. [PMID: 28509877 PMCID: PMC5454423 DOI: 10.3390/v9050111] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 05/09/2017] [Accepted: 05/10/2017] [Indexed: 12/27/2022] Open
Abstract
Chemokine receptor type 6 (CCR6)⁺CD4⁺ T cells are preferentially infected and depleted during HIV disease progression, but are preserved in non-progressors. CCR6 is expressed on a heterogeneous population of memory CD4⁺ T cells that are critical to mucosal immunity. Preferential infection of these cells is associated, in part, with high surface expression of CCR5, CXCR4, and α4β7. In addition, CCR6⁺CD4⁺ T cells harbor elevated levels of integrated viral DNA and high levels of proliferation markers. We have previously shown that the CCR6 ligands MIP-3α and human beta defensins inhibit HIV replication. The inhibition required CCR6 and the induction of APOBEC3G. Here, we further characterize the induction of apolipoprotein B mRNA editing enzyme (APOBEC3G) by human beta defensin 2. Human beta defensin 2 rapidly induces transcriptional induction of APOBEC3G that involves extracellular signal-regulated kinases 1/2 (ERK1/2) activation and the transcription factors NFATc2, NFATc1, and IRF4. We demonstrate that human beta defensin 2 selectively protects primary CCR6⁺CD4⁺ T cells infected with HIV-1. The selective protection of CCR6⁺CD4⁺ T cell subsets may be critical in maintaining mucosal immune function and preventing disease progression.
Collapse
Affiliation(s)
- Mark K Lafferty
- Division of Basic Science, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | - Lingling Sun
- Division of Basic Science, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | - Aaron Christensen-Quick
- Division of Basic Science, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | - Wuyuan Lu
- Division of Basic Science, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
- Department of Biochemistry, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | - Alfredo Garzino-Demo
- Division of Basic Science, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
- Department of Molecular Medicine, University of Padova, Padova 35121, Italy.
| |
Collapse
|
28
|
Simundic T, Jelakovic B, Dzumhur A, Turk T, Sahinovic I, Dobrosevic B, Takac B, Barbic J. Interleukin 17A and Toll-like Receptor 4 in Patients with Arterial Hypertension. Kidney Blood Press Res 2017; 42:99-108. [DOI: 10.1159/000471900] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 01/17/2017] [Indexed: 11/19/2022] Open
|
29
|
Woodby B, Scott M, Bodily J. The Interaction Between Human Papillomaviruses and the Stromal Microenvironment. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2016; 144:169-238. [PMID: 27865458 PMCID: PMC5727914 DOI: 10.1016/bs.pmbts.2016.09.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Human papillomaviruses (HPVs) are small, double-stranded DNA viruses that replicate in stratified squamous epithelia and cause a variety of malignancies. Current efforts in HPV biology are focused on understanding the virus-host interactions that enable HPV to persist for years or decades in the tissue. The importance of interactions between tumor cells and the stromal microenvironment has become increasingly apparent in recent years, but how stromal interactions impact the normal, benign life cycle of HPVs, or progression of lesions to cancer is less understood. Furthermore, how productively replicating HPV impacts cells in the stromal environment is also unclear. Here we bring together some of the relevant literature on keratinocyte-stromal interactions and their impacts on HPV biology, focusing on stromal fibroblasts, immune cells, and endothelial cells. We discuss how HPV oncogenes in infected cells manipulate other cells in their environment, and, conversely, how neighboring cells may impact the efficiency or course of HPV infection.
Collapse
Affiliation(s)
- B Woodby
- Louisiana State University Health Sciences Center, Shreveport, LA, United States
| | - M Scott
- Louisiana State University Health Sciences Center, Shreveport, LA, United States
| | - J Bodily
- Louisiana State University Health Sciences Center, Shreveport, LA, United States.
| |
Collapse
|
30
|
Velichko S, Zhou X, Zhu L, Anderson JD, Wu R, Chen Y. A Novel Nuclear Function for the Interleukin-17 Signaling Adaptor Protein Act1. PLoS One 2016; 11:e0163323. [PMID: 27723765 PMCID: PMC5056742 DOI: 10.1371/journal.pone.0163323] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 09/07/2016] [Indexed: 12/24/2022] Open
Abstract
In the context of the human airway, interleukin-17A (IL-17A) signaling is associated with severe inflammation, as well as protection against pathogenic infection, particularly at mucosal surfaces such as the airway. The intracellular molecule Act1 has been demonstrated to be an essential mediator of IL-17A signaling. In the cytoplasm, it serves as an adaptor protein, binding to both the intracellular domain of the IL-17 receptor as well as members of the canonical nuclear factor kappa B (NF-κB) pathway. It also has enzymatic activity, and serves as an E3 ubiquitin ligase. In the context of airway epithelial cells, we demonstrate for the first time that Act1 is also present in the nucleus, especially after IL-17A stimulation. Ectopic Act1 expression can also increase the nuclear localization of Act1. Act1 can up-regulate the expression and promoter activity of a subset of IL-17A target genes in the absence of IL-17A signaling in a manner that is dependent on its N- and C-terminal domains, but is NF-κB independent. Finally, we show that nuclear Act1 can bind to both distal and proximal promoter regions of DEFB4, one of the IL-17A responsive genes. This transcriptional regulatory activity represents a novel function for Act1. Taken together, this is the first report to describe a non-adaptor function of Act1 by directly binding to the promoter region of IL-17A responsive genes and directly regulate their transcription.
Collapse
Affiliation(s)
- Sharlene Velichko
- The Center for Comparative Respiratory Biology and Medicine, Department of Internal Medicine, University of California Davis, Davis, California, 95616, United States of America
| | - Xu Zhou
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Arizona, Tucson, Arizona, 85721, United States of America
| | - Lingxiang Zhu
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Arizona, Tucson, Arizona, 85721, United States of America
| | - Johnathon David Anderson
- The Center for Comparative Respiratory Biology and Medicine, Department of Internal Medicine, University of California Davis, Davis, California, 95616, United States of America
| | - Reen Wu
- The Center for Comparative Respiratory Biology and Medicine, Department of Internal Medicine, University of California Davis, Davis, California, 95616, United States of America
| | - Yin Chen
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Arizona, Tucson, Arizona, 85721, United States of America
- * E-mail:
| |
Collapse
|
31
|
Tsai HC, Wu R. Mechanisms of Cholera Toxin in the Modulation of TH17 Responses. Crit Rev Immunol 2016; 35:135-52. [PMID: 26351147 DOI: 10.1615/critrevimmunol.2015012295] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Numerous studies have shown that TH17 cells and their signature cytokine IL-17A are critical to host defense against various bacterial and fungal infections. The protective responses mediated by TH17 cells and IL-17A include the recruitment of neutrophils, release of antimicrobial peptides and chemokines, and enhanced tight junction of epithelial cells. Due to the importance of TH17 cells in infections, efforts have been made to develop TH17-based vaccines. The goal of vaccination is to establish a protective immunological memory. Most currently approved vaccines are antibody-based and have limited protection against stereotypically different strains. Studies show that T-cell-based vaccines may overcome this limitation and protect hosts against infection of different strains. Two main strategies are used to develop TH17 vaccines: identification of TH17-specific antigens and TH17-skewing adjuvants. Studies have revealed that cholera toxin (CT) induces a potent Th17 response following vaccination. Antigen vaccination along with CT induces a robust TH17 response, which is sometimes accompanied by TH1 responses. Due to the toxicity of CT, it is hard to apply CT in a clinical setting. Thus, understanding how CT modulates TH17 responses may lead to the development of successful TH17-based vaccines.
Collapse
Affiliation(s)
- Hsing-Chuan Tsai
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California, USA
| | - Reen Wu
- Center for Comparative Respiratory Biology and Medicine, University of California, USA
| |
Collapse
|
32
|
Boström AE, Mwinyi J, Voisin S, Wu W, Schultes B, Zhang K, Schiöth HB. Longitudinal genome-wide methylation study of Roux-en-Y gastric bypass patients reveals novel CpG sites associated with essential hypertension. BMC Med Genomics 2016; 9:20. [PMID: 27105587 PMCID: PMC4841955 DOI: 10.1186/s12920-016-0180-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 04/01/2016] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Essential hypertension is a significant risk factor for cardiovascular diseases. Emerging research suggests a role of DNA methylation in blood pressure physiology. We aimed to investigate epigenetic associations of promoter related CpG sites to essential hypertension in a genome-wide methylation approach. METHODS The genome-wide methylation pattern in whole blood was measured in 11 obese patients before and six months after Roux-en-Y gastric bypass surgery using the Illumina 450 k beadchip. CpG sites located within 1500 bp of the transcriptional start site of adjacent genes were included in our study, resulting in 124 199 probes investigated in the subsequent analysis. Percent changes in methylation states and SBP measured before and six months after surgery were calculated. These parameters were correlated to each other using the Spearman's rank correlation method (Edgeworth series approximation). To further investigate the detected relationship between candidate CpG sites and systolic blood pressure levels, binary logistic regression analyses were performed in a larger and independent cohort of 539 individuals aged 19-101 years to elucidate a relationship between EH and the methylation state in candidate CpG sites. RESULTS We identified 24 promoter associated CpG sites that correlated with change in SBP after RYGB surgery (p < 10(-16)). Two of these CpG loci (cg00875989, cg09134341) were significantly hypomethylated in dependency of EH (p < 10(-03)). These results were independent of age, BMI, ethnicity and sex. CONCLUSIONS The identification of these novel CpG sites may contribute to a further understanding of the epigenetic regulatory mechanisms underlying the development of essential hypertension.
Collapse
Affiliation(s)
- Adrian E Boström
- Department of Neuroscience, Functional Pharmacology, Uppsala University, BMC, Box 593, 751 24, Uppsala, Sweden.
| | - Jessica Mwinyi
- Department of Neuroscience, Functional Pharmacology, Uppsala University, BMC, Box 593, 751 24, Uppsala, Sweden
| | - Sarah Voisin
- Department of Neuroscience, Functional Pharmacology, Uppsala University, BMC, Box 593, 751 24, Uppsala, Sweden
| | - Wenting Wu
- Institute for Genomic Medicine, University of California, San Diego, CA, 92093, USA
| | - Bernd Schultes
- eSwiss Medical and Surgical Center, St Gallen, Switzerland
| | - Kang Zhang
- Institute for Genomic Medicine, University of California, San Diego, CA, 92093, USA
| | - Helgi B Schiöth
- Department of Neuroscience, Functional Pharmacology, Uppsala University, BMC, Box 593, 751 24, Uppsala, Sweden
| |
Collapse
|
33
|
Xiong H, Keith JW, Samilo DW, Carter RA, Leiner IM, Pamer EG. Innate Lymphocyte/Ly6C(hi) Monocyte Crosstalk Promotes Klebsiella Pneumoniae Clearance. Cell 2016; 165:679-89. [PMID: 27040495 DOI: 10.1016/j.cell.2016.03.017] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 01/05/2016] [Accepted: 03/07/2016] [Indexed: 02/06/2023]
Abstract
Increasing antibiotic resistance among bacterial pathogens has rendered some infections untreatable with available antibiotics. Klebsiella pneumoniae, a bacterial pathogen that has acquired high-level antibiotic resistance, is a common cause of pulmonary infections. Optimal clearance of K. pneumoniae from the host lung requires TNF and IL-17A. Herein, we demonstrate that inflammatory monocytes are rapidly recruited to the lungs of K. pneumoniae-infected mice and produce TNF, which markedly increases the frequency of IL-17-producing innate lymphoid cells. While pulmonary clearance of K. pneumoniae is preserved in neutrophil-depleted mice, monocyte depletion or TNF deficiency impairs IL-17A-dependent resolution of pneumonia. Monocyte-mediated bacterial uptake and killing is enhanced by ILC production of IL-17A, indicating that innate lymphocytes engage in a positive-feedback loop with monocytes that promotes clearance of pneumonia. Innate immune defense against a highly antibiotic-resistant bacterial pathogen depends on crosstalk between inflammatory monocytes and innate lymphocytes that is mediated by TNF and IL-17A.
Collapse
Affiliation(s)
- Huizhong Xiong
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Infectious Diseases Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - James W Keith
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Infectious Diseases Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Gerstner Sloan-Kettering Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Dane W Samilo
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA
| | - Rebecca A Carter
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Infectious Diseases Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ingrid M Leiner
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Infectious Diseases Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Eric G Pamer
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Infectious Diseases Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Clinical Microbiology Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
34
|
The roles and functional mechanisms of interleukin-17 family cytokines in mucosal immunity. Cell Mol Immunol 2016; 13:418-31. [PMID: 27018218 DOI: 10.1038/cmi.2015.105] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Revised: 11/21/2015] [Accepted: 11/21/2015] [Indexed: 01/12/2023] Open
Abstract
The mucosal immune system serves as our front-line defense against pathogens. It also tightly maintains immune tolerance to self-symbiotic bacteria, which are usually called commensals. Sensing both types of microorganisms is modulated by signalling primarily through various pattern-recognition receptors (PRRs) on barrier epithelial cells or immune cells. After sensing, proinflammatory molecules such as cytokines are released by these cells to mediate either defensive or tolerant responses. The interleukin-17 (IL-17) family members belong to a newly characterized cytokine subset that is critical for the maintenance of mucosal homeostasis. In this review, we will summarize recent progress on the diverse functions and signals of this family of cytokines at different mucosal edges.
Collapse
|
35
|
Moronta J, Smaldini PL, Docena GH, Añón MC. Peptides of amaranth were targeted as containing sequences with potential anti-inflammatory properties. J Funct Foods 2016. [DOI: 10.1016/j.jff.2015.12.022] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
36
|
Franzè E, Marafini I, De Simone V, Monteleone I, Caprioli F, Colantoni A, Ortenzi A, Crescenzi F, Izzo R, Sica G, Sileri P, Rossi P, Pallone F, Monteleone G. Interleukin-34 Induces Cc-chemokine Ligand 20 in Gut Epithelial Cells. J Crohns Colitis 2016; 10:87-94. [PMID: 26449789 DOI: 10.1093/ecco-jcc/jjv181] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 09/25/2015] [Indexed: 12/29/2022]
Abstract
BACKGROUND AND AIM Production of chemokines by intestinal epithelial cells is a key step in the amplification of the destructive immune-inflammatory response in patients with inflammatory bowel diseases [IBD]. In this study, we examined whether intestinal epithelial cells express macrophage colony-stimulating factor receptor 1 [M-CSFR-1], the functional receptor of interleukin-34 [IL-34], a cytokine that is over-produced in IBD and supposed to sustain inflammatory pathways. METHODS M-CSFR-1 expression was evaluated in intestinal samples of IBD patients, controls, and colon epithelial cell lines by real-time polymerase chain reaction [PCR], immunohistochemistry, and western blotting. DLD-1 cells were stimulated with IL-34 in the presence or absence of MAP kinase inhibitors, chemokine induction was assessed by real-time PCR and enzyme-linked immunosorbent assay [ELISA], and mitogen-activated protein (MAP) kinase activation was monitored by western blotting. The effect of a neutralising IL-34 antibody on CC chemokine ligand (CCL) 20 synthesis was tested in ex vivo organ cultures of IBD mucosal explants. RESULTS Enhanced expression of M-CSFR-1 RNA transcripts was seen in inflamed mucosa of IBD patients as compared with controls. Immunohistochemical analysis confirmed up-regulation of M-CSFR-1 in IBD and showed that both epithelial and lamina propria mononuclear cells expressed this receptor. Stimulation of DLD-1 with IL-34 increased CCL20 production through an ERK1/2-dependent mechanism. Consistently, treatment of IBD explants with anti-IL-34 reduced CCL20 production. CONCLUSIONS These data show that intestinal epithelial cells are a target of IL-34 and suggest that this cytokine contributes to mediating the cross-talk between epithelial cells and immune cells in IBD.
Collapse
Affiliation(s)
- Eleonora Franzè
- Department of Systems Medicine, University of Rome 'TOR VERGATA', Rome, Italy
| | - Irene Marafini
- Department of Systems Medicine, University of Rome 'TOR VERGATA', Rome, Italy
| | - Veronica De Simone
- Department of Systems Medicine, University of Rome 'TOR VERGATA', Rome, Italy
| | - Ivan Monteleone
- Department of Systems Medicine, University of Rome 'TOR VERGATA', Rome, Italy
| | - Flavio Caprioli
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Alfredo Colantoni
- Department of Systems Medicine, University of Rome 'TOR VERGATA', Rome, Italy
| | - Angela Ortenzi
- Department of Systems Medicine, University of Rome 'TOR VERGATA', Rome, Italy
| | - Francesca Crescenzi
- Department of Systems Medicine, University of Rome 'TOR VERGATA', Rome, Italy
| | - Roberta Izzo
- Department of Systems Medicine, University of Rome 'TOR VERGATA', Rome, Italy
| | - Giuseppe Sica
- Department of Surgery, University of Rome 'TOR VERGATA', Rome, Italy
| | - PierPaolo Sileri
- Department of Surgery, University of Rome 'TOR VERGATA', Rome, Italy
| | - Piero Rossi
- Department of Surgery, University of Rome 'TOR VERGATA', Rome, Italy
| | - Francesco Pallone
- Department of Systems Medicine, University of Rome 'TOR VERGATA', Rome, Italy
| | - Giovanni Monteleone
- Department of Systems Medicine, University of Rome 'TOR VERGATA', Rome, Italy
| |
Collapse
|
37
|
Montalbano AM, Riccobono L, Siena L, Chiappara G, Di Sano C, Anzalone G, Gagliardo R, Ricciardolo FLM, Sorbello V, Pipitone L, Vitulo P, Profita M. Cigarette smoke affects IL-17A, IL-17F and IL-17 receptor expression in the lung tissue: Ex vivo and in vitro studies. Cytokine 2015; 76:391-402. [PMID: 26198032 DOI: 10.1016/j.cyto.2015.07.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 06/16/2015] [Accepted: 07/13/2015] [Indexed: 12/28/2022]
Abstract
Cigarette smoke is a risk factor for Chronic Obstructive Pulmonary Disease (COPD). Th-17 cytokines are involved in the pathogenesis of COPD. We aimed to evaluate the role of cigarette smoke on the expression of IL-17A, IL-17F and IL-17R in airways of COPD patients. Epithelial and subepithelial immunoreactivity for IL-17A, IL-17F and IL-17R was assessed in surgical specimens from COPD patients (n=15) and from healthy subjects (HC) (n=10) by immunohistochemistry. In vitro, human epithelial cell line 16HBE and A549 as well as PBMC from normal donors were stimulated with cigarette smoke extract (CSE) (0%, 2.5%, 5%, 10%) to evaluate the IL-17A, IL-17F and IL-17R expression by flow cytometry. Furthermore, rhIL-17A and CSE stimulation was evaluated on proliferation and apoptosis in 16HBE and in A549. In central and distal airways immunoreactivity for IL-17A, IL-17F and IL-17R significantly increased in the epithelium and IL-17A in the subepithelium from COPD than in HC. In distal airway, immunoreactivity for IL-17F increased in the subepithelium of COPD than in HC. IL-17A immunoreactivity positively correlate with IL-17R and total pack years in the epithelium from central and distal airways of COPD patients. In vitro, CSE stimulation significantly increased IL-17F and IL-17R in 16HBE (2.5%) and A549 (5%) while IL-17A and IL-17F in PBMC (10%). IL-17A and CSE stimulation, rather than CSE or rhIL-17A alone, significantly increased proliferation in 16HBE and apoptosis in A549. Cigarette smoke increases Th17 immunity in lung tissue of COPD patients, promoting the mechanism of proliferation and apoptosis in airway epithelial cells.
Collapse
Affiliation(s)
- Angela Marina Montalbano
- Unit: "Ex vivo/In vitro Models to Study the Immunopathology and Pharmacology of Airway Diseases", Institute of Biomedicine and Molecular Immunology (IBIM), Italian National Research Council (CNR), Palermo, Italy
| | - Loredana Riccobono
- Unit: "Ex vivo/In vitro Models to Study the Immunopathology and Pharmacology of Airway Diseases", Institute of Biomedicine and Molecular Immunology (IBIM), Italian National Research Council (CNR), Palermo, Italy
| | - Liboria Siena
- Unit: "Ex vivo/In vitro Models to Study the Immunopathology and Pharmacology of Airway Diseases", Institute of Biomedicine and Molecular Immunology (IBIM), Italian National Research Council (CNR), Palermo, Italy
| | - Giuseppina Chiappara
- Unit: "Ex vivo/In vitro Models to Study the Immunopathology and Pharmacology of Airway Diseases", Institute of Biomedicine and Molecular Immunology (IBIM), Italian National Research Council (CNR), Palermo, Italy
| | - Caterina Di Sano
- Unit: "Ex vivo/In vitro Models to Study the Immunopathology and Pharmacology of Airway Diseases", Institute of Biomedicine and Molecular Immunology (IBIM), Italian National Research Council (CNR), Palermo, Italy
| | - Giulia Anzalone
- Unit: "Ex vivo/In vitro Models to Study the Immunopathology and Pharmacology of Airway Diseases", Institute of Biomedicine and Molecular Immunology (IBIM), Italian National Research Council (CNR), Palermo, Italy
| | - Rosalia Gagliardo
- Unit: "Ex vivo/In vitro Models to Study the Immunopathology and Pharmacology of Airway Diseases", Institute of Biomedicine and Molecular Immunology (IBIM), Italian National Research Council (CNR), Palermo, Italy
| | | | - Valentina Sorbello
- Department of Clinical and Biological Sciences, University of Torino, Torino, Italy
| | - Loredana Pipitone
- Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione (ISMETT), Palermo, Italy
| | - Patrizio Vitulo
- Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione (ISMETT), Palermo, Italy
| | - Mirella Profita
- Unit: "Ex vivo/In vitro Models to Study the Immunopathology and Pharmacology of Airway Diseases", Institute of Biomedicine and Molecular Immunology (IBIM), Italian National Research Council (CNR), Palermo, Italy.
| |
Collapse
|
38
|
Mori K, Fujisawa T, Kusagaya H, Yamanaka K, Hashimoto D, Enomoto N, Inui N, Nakamura Y, Maekawa M, Suda T. Synergistic Proinflammatory Responses by IL-17A and Toll-Like Receptor 3 in Human Airway Epithelial Cells. PLoS One 2015; 10:e0139491. [PMID: 26418032 PMCID: PMC4587973 DOI: 10.1371/journal.pone.0139491] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 09/13/2015] [Indexed: 12/18/2022] Open
Abstract
Viral respiratory infections activate the innate immune response in the airway epithelium through Toll-like receptors (TLRs) and induce airway inflammation, which causes acute exacerbation of asthma. Although increases in IL-17A expression were observed in the airway of severe asthma patients, the interaction between IL-17A and TLR activation in airway epithelium remains poorly understood. In this study, we demonstrated that IL-17A and polyI:C, the ligand of TLR3, synergistically induced the expression of proinflammatory cytokines and chemokines (G-CSF, IL-8, CXCL1, CXCL5, IL-1F9), but not type I interferon (IFN-α1, -β) in primary culture of normal human bronchial epithelial cells. Synergistic induction after co-stimulation with IL-17A and polyI:C was observed from 2 to 24 hours after stimulation. Treatment with cycloheximide or actinomycin D had no effect, suggesting that the synergistic induction occurred without de novo protein synthesis or mRNA stabilization. Inhibition of the TLR3, TLR/TIR-domain-containing adaptor-inducing interferon β (TRIF), NF-κB, and IRF3 pathways decreased the polyI:C- and IL-17A/polyI:C-induced G-CSF and IL-8 mRNA expression. Comparing the levels of mRNA induction between co-treatment with IL-17A/polyI:C and treatment with polyI:C alone, blocking the of NF-κB pathway significantly attenuated the observed synergism. In western blotting analysis, activation of both NF-κB and IRF3 was observed in treatment with polyI:C and co-treatment with IL-17A/polyI:C; moreover, co-treatment with IL-17A/polyI:C augmented IκB-α phosphorylation as compared to polyI:C treatment alone. Collectively, these findings indicate that IL-17A and TLR3 activation cooperate to induce proinflammatory responses in the airway epithelium via TLR3/TRIF-mediated NF-κB/IRF3 activation, and that enhanced activation of the NF-κB pathway plays an essential role in synergistic induction after co-treatment with IL-17A and polyI:C in vitro.
Collapse
Affiliation(s)
- Kazutaka Mori
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama Higashi-ku, Hamamatsu 431–3192, Japan
| | - Tomoyuki Fujisawa
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama Higashi-ku, Hamamatsu 431–3192, Japan
- * E-mail:
| | - Hideki Kusagaya
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama Higashi-ku, Hamamatsu 431–3192, Japan
| | - Katsumasa Yamanaka
- Department of Laboratory Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama Higashi-ku, Hamamatsu 431–3192, Japan
| | - Dai Hashimoto
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama Higashi-ku, Hamamatsu 431–3192, Japan
| | - Noriyuki Enomoto
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama Higashi-ku, Hamamatsu 431–3192, Japan
| | - Naoki Inui
- Department of Clinical Pharmacology and Therapeutics, Hamamatsu University School of Medicine, 1-20-1 Handayama Higashi-ku, Hamamatsu 431–3192, Japan
| | - Yutaro Nakamura
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama Higashi-ku, Hamamatsu 431–3192, Japan
| | - Masato Maekawa
- Department of Laboratory Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama Higashi-ku, Hamamatsu 431–3192, Japan
| | - Takafumi Suda
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama Higashi-ku, Hamamatsu 431–3192, Japan
| |
Collapse
|
39
|
Causton B, Ramadas RA, Cho JL, Jones K, Pardo-Saganta A, Rajagopal J, Xavier RJ, Medoff BD. CARMA3 Is Critical for the Initiation of Allergic Airway Inflammation. THE JOURNAL OF IMMUNOLOGY 2015; 195:683-94. [PMID: 26041536 DOI: 10.4049/jimmunol.1402983] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 05/15/2015] [Indexed: 12/28/2022]
Abstract
Innate immune responses to allergens by airway epithelial cells (AECs) help initiate and propagate the adaptive immune response associated with allergic airway inflammation in asthma. Activation of the transcription factor NF-κB in AECs by allergens or secondary mediators via G protein-coupled receptors (GPCRs) is an important component of this multifaceted inflammatory cascade. Members of the caspase recruitment domain family of proteins display tissue-specific expression and help mediate NF-κB activity in response to numerous stimuli. We have previously shown that caspase recruitment domain-containing membrane-associated guanylate kinase protein (CARMA)3 is specifically expressed in AECs and mediates NF-κB activation in these cells in response to stimulation with the GPCR agonist lysophosphatidic acid. In this study, we demonstrate that reduced levels of CARMA3 in normal human bronchial epithelial cells decreases the production of proasthmatic mediators in response to a panel of asthma-relevant GPCR ligands such as lysophosphatidic acid, adenosine triphosphate, and allergens that activate GPCRs such as Alternaria alternata and house dust mite. We then show that genetically modified mice with CARMA3-deficient AECs have reduced airway eosinophilia and proinflammatory cytokine production in a murine model of allergic airway inflammation. Additionally, we demonstrate that these mice have impaired dendritic cell maturation in the lung and that dendritic cells from mice with CARMA3-deficient AECs have impaired Ag processing. In conclusion, we show that AEC CARMA3 helps mediate allergic airway inflammation, and that CARMA3 is a critical signaling molecule bridging the innate and adaptive immune responses in the lung.
Collapse
Affiliation(s)
- Benjamin Causton
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114; Division of Rheumatology, Allergy and Immunology, Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129
| | | | - Josalyn L Cho
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114; Division of Rheumatology, Allergy and Immunology, Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129
| | - Khristianna Jones
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114; Division of Rheumatology, Allergy and Immunology, Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129
| | - Ana Pardo-Saganta
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114; Center for Regenerative Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
| | - Jayaraj Rajagopal
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114; Center for Regenerative Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
| | - Ramnik J Xavier
- Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114; and Gastrointestinal Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
| | - Benjamin D Medoff
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114; Division of Rheumatology, Allergy and Immunology, Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129;
| |
Collapse
|
40
|
Abstract
PURPOSE OF REVIEW Ocular allergy is an IgE-mediated disease that results in inflammation of the conjunctiva and, in more severe cases, the cornea. This is driven by an immediate hypersensitivity response via mast cells, followed by a late phase response mediated by eosinophils both of which are indeed dependent on T helper (Th) lymphocyte activity. Here, we provide an update on Th subsets [Th1, Th2, Th17, and T regulatory (Treg)] and their relevance in ocular allergy. RECENT FINDINGS Recent evidence in ocular allergy points to an involvement of other Th subsets, in addition to Th2. However, how these subsets are activated and their role in mediating the different clinical forms is poorly understood. Novel mouse models may facilitate addressing such unknowns, and future challenges will involve how to translate such findings into more effective and 'patho-specific' treatments. SUMMARY Ocular allergy, especially in severe forms, involves subsets other than Th2. Th1 cells have been detected in mild and severe forms, and recent evidence points to a possible role for IL-17 in severe disease. Tregs, on the other hand, dampen pathogenic Th cell function and allergy immunotherapy is associated with Treg augmentation in disease management. Further understanding of Th biology is warranted and may lead to better therapies.
Collapse
|
41
|
Dupont A, Kaconis Y, Yang I, Albers T, Woltemate S, Heinbockel L, Andersson M, Suerbaum S, Brandenburg K, Hornef MW. Intestinal mucus affinity and biological activity of an orally administered antibacterial and anti-inflammatory peptide. Gut 2015; 64:222-32. [PMID: 24811998 DOI: 10.1136/gutjnl-2014-307150] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Antimicrobial peptides (AMP) provide protection from infection by pathogenic microorganisms and restrict bacterial growth at epithelial surfaces to maintain mucosal homeostasis. In addition, they exert a significant anti-inflammatory activity. Here we analysed the anatomical distribution and biological activity of an orally administered AMP in the context of bacterial infection and host-microbial homeostasis. DESIGN The anatomical distribution as well as antibacterial and anti-inflammatory activity of the endogenous AMP cryptdin 2 and the synthetic peptide Pep19-2.5 at the enteric mucosal surface were analysed by immunostaining, functional viability and stimulation assays, an oral Salmonella enterica subsp. enterica sv. Typhimurium (S. Typhimurium) model and comparative microbiota analysis. RESULTS Endogenous cryptdin 2 was found attached to bacteria of the enteric microbiota within the intestinal mucus layer. Similarly, the synthetic peptide Pep19-2.5 attached rapidly to bacterial cells, exhibited a marked affinity for the intestinal mucus layer in vivo, altered the structural organisation of endotoxin in a mucus matrix and demonstrated potent anti-inflammatory and antibacterial activity. Oral Pep19-2.5 administration induced significant changes in the composition of the enteric microbiota as determined by high-throughput 16S rDNA sequencing. This may have contributed to the only transient improvement of the clinical symptoms after oral infection with S. Typhimurium. CONCLUSIONS Our findings demonstrate the anti-inflammatory activity and mucus affinity of the synthetic AMP Pep19-2.5 and characterise the influence on microbiota composition and enteropathogen infection after oral administration.
Collapse
Affiliation(s)
- Aline Dupont
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | - Yani Kaconis
- Division of Biophysics, Research Center Borstel, Borstel, Germany
| | - Ines Yang
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | - Thorben Albers
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | - Sabrina Woltemate
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | - Lena Heinbockel
- Division of Biophysics, Research Center Borstel, Borstel, Germany
| | - Mats Andersson
- Microbiology and Tumor Biology Center, Karolinska Institute, Stockholm, Sweden
| | - Sebastian Suerbaum
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | | | - Mathias W Hornef
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
42
|
Chen SP, Huang Liu R, Lu TM, Wei JCC, Wu TC, Tsai WY, Tsai CH, Yang CC. Complementary usage of Rhodiola crenulata (L.) in chronic obstructive pulmonary disease patients: the effects on cytokines and T cells. Phytother Res 2014; 29:518-25. [PMID: 25403334 DOI: 10.1002/ptr.5259] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 10/11/2014] [Accepted: 10/20/2014] [Indexed: 12/17/2022]
Abstract
Although chronic obstructive pulmonary disease (COPD) is an inflammatory disease predominantly involving T cells, no study of Rhodiola as an immunomodulator in COPD patients has been reported. In this study, COPD patients took Rhodiola crenulata 500 mg (n = 38) or placebo (starch/phosphate buffered saline) (n = 19) daily for 12 weeks and were compared with untreated, age-matched, and sex-matched non-COPD control subjects. Our results showed that serum levels of IL-2, IL-10, and IFN-γ in COPD patients before treatment are significantly higher than levels in non-COPD controls (p < 0.05). A significant decrease in IFN-γ was seen in the Rhodiola treatment group (p < 0.05) but not in the placebo group (p > 0.05). The results suggested that Rhodiola treatment had beneficial antiinflammation effects, lower COPD assessment test score and decreased high-sensitivity C-reactive protein, on COPD patients (p < 0.05). The effects of Rhodiola treatment on COPD patients were shown to decrease the IFN-γ concentration and CD8(+) count but increase the expressions of CD4(+) CD25(+) FOXP3(+) and CD4(+) CD25(+) CD45(+) FOXP3(+) in the blood significantly (p < 0.05). This is the first trial using Rhodiola as a complementary therapy for COPD patients. T cells play an important role in the pathogenesis of COPD through the increased expression of CD8(+) T cells and IFN-γ and may be a viable target for potential therapy.
Collapse
Affiliation(s)
- Shih-Pin Chen
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan; School of Medicine, Chung Shan Medical University, Taichung, Taiwan; Division of Pulmonary Medicine, Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Carbone CJ, Fuchs SY. Eliminative signaling by Janus kinases: role in the downregulation of associated receptors. J Cell Biochem 2014; 115:8-16. [PMID: 23959845 DOI: 10.1002/jcb.24647] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 07/31/2013] [Indexed: 12/11/2022]
Abstract
Activation of cytokine receptor-associated Janus kinases (JAKs) mediates most, if not all, of the cellular responses to peptide hormones and cytokines. Consequently, JAKs play a paramount role in homeostasis and immunity. Members of this family of tyrosine kinases control the cytokine/hormone-induced alterations in cell gene expression program. This function is largely mediated through an ability to signal toward activation of the signal transducer and activator of transcription proteins (STAT), as well as toward some other pathways. Importantly, JAKs are also instrumental in tightly controlling the expression of associated cytokine and hormone receptors, and, accordingly, in regulating the cell sensitivity to these cytokines and hormones. This review highlights the enzymatic and non-enzymatic mechanisms of this regulation and discusses the importance of the ambidextrous nature of JAK as a key signaling node that integrates the combining functions of forward signaling and eliminative signaling. Attention to the latter aspect of JAK function may contribute to emancipating our approaches to the pharmacological modulation of JAKs.
Collapse
Affiliation(s)
- Christopher J Carbone
- Department of Animal Biology and Mari Lowe Center for Comparative Oncology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, 19104
| | | |
Collapse
|
44
|
IL-17A induces Pendrin expression and chloride-bicarbonate exchange in human bronchial epithelial cells. PLoS One 2014; 9:e103263. [PMID: 25141009 PMCID: PMC4139276 DOI: 10.1371/journal.pone.0103263] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 06/27/2014] [Indexed: 12/20/2022] Open
Abstract
The epithelium plays an active role in the response to inhaled pathogens in part by responding to signals from the immune system. Epithelial responses may include changes in chemokine expression, increased mucin production and antimicrobial peptide secretion, and changes in ion transport. We previously demonstrated that interleukin-17A (IL-17A), which is critical for lung host defense against extracellular bacteria, significantly raised airway surface pH in vitro, a finding that is common to a number of inflammatory diseases. Using microarray analysis of normal human bronchial epithelial (HBE) cells treated with IL-17A, we identified the electroneutral chloride-bicarbonate exchanger Pendrin (SLC26A4) as a potential mediator of this effect. These data were verified by real-time, quantitative PCR that demonstrated a time-dependent increase in Pendrin mRNA expression in HBE cells treated with IL-17A up to 48 h. Using immunoblotting and immunofluorescence, we confirmed that Pendrin protein expression is increased in IL-17 treated HBE cells and that it is primarily localized to the mucosal surface of the cells. Functional studies using live-cell fluorescence to measure intracellular pH demonstrated that IL-17A induced chloride-bicarbonate exchange in HBE cells that was not present in the absence of IL-17A. Furthermore, HBE cells treated with short interfering RNA against Pendrin showed substantially reduced chloride-bicarbonate exchange. These data suggest that Pendrin is part of IL-17A-dependent epithelial changes and that Pendrin may therefore be a therapeutic target in IL-17A-dependent lung disease.
Collapse
|
45
|
Nolin JD, Tully JE, Hoffman SM, Guala AS, van der Velden JL, Poynter ME, van der Vliet A, Anathy V, Janssen-Heininger YMW. The glutaredoxin/S-glutathionylation axis regulates interleukin-17A-induced proinflammatory responses in lung epithelial cells in association with S-glutathionylation of nuclear factor κB family proteins. Free Radic Biol Med 2014; 73:143-53. [PMID: 24816292 PMCID: PMC4111997 DOI: 10.1016/j.freeradbiomed.2014.04.028] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 04/22/2014] [Accepted: 04/28/2014] [Indexed: 12/14/2022]
Abstract
Interleukin-17A (IL-17A) is a newly emerging player in the pathogenesis of chronic lung diseases that amplifies inflammatory responses and promotes tissue remodeling. Stimulation of lung epithelial cells with IL-17A leads to activation of the transcription factor nuclear factor κB (NF-κB), a key player in the orchestration of lung inflammation. We have previously demonstrated the importance of the redox-dependent posttranslational modification S-glutathionylation in limiting activation of NF-κB and downstream gene induction. Under physiological conditions, the enzyme glutaredoxin 1 (Grx1) acts to deglutathionylate NF-κB proteins, which restores functional activity. In this study, we sought to determine the impact of S-glutathionylation on IL-17A-induced NF-κB activation and expression of proinflammatory mediators. C10 mouse lung alveolar epithelial cells or primary mouse tracheal epithelial cells exposed to IL-17A show rapid activation of NF-κB and the induction of proinflammatory genes. Upon IL-17A exposure, sulfenic acid formation and S-glutathionylated proteins increased. Assessment of S-glutathionylation of NF-κB pathway components revealed S-glutathionylation of RelA (RelA-SSG) and inhibitory κB kinase α (IKKα-SSG) after stimulation with IL-17A. SiRNA-mediated ablation of Grx1 increased both RelA-SSG and IKKα-SSG and acutely increased nuclear content of RelA and tended to decrease nuclear RelB. SiRNA-mediated ablation or genetic ablation of Glrx1 decreased the expression of the NF-κB-regulated genes KC and CCL20 in response to IL-17A, but conversely increased the expression of IL-6. Last, siRNA-mediated ablation of IKKα attenuated nuclear RelA and RelB content and decreased expression of KC and CCL20 in response to IL-17A. Together, these data demonstrate a critical role for the S-glutathionylation/Grx1 redox axis in regulating IKKα and RelA S-glutathionylation and the responsiveness of epithelial cells to IL-17A.
Collapse
Affiliation(s)
- James D Nolin
- Department of Pathology, University of Vermont College of Medicine, Burlington, VT 05405, USA
| | - Jane E Tully
- Department of Pathology, University of Vermont College of Medicine, Burlington, VT 05405, USA
| | - Sidra M Hoffman
- Department of Pathology, University of Vermont College of Medicine, Burlington, VT 05405, USA
| | - Amy S Guala
- Department of Pathology, University of Vermont College of Medicine, Burlington, VT 05405, USA
| | - Jos L van der Velden
- Department of Pathology, University of Vermont College of Medicine, Burlington, VT 05405, USA
| | - Matthew E Poynter
- Department of Medicine, University of Vermont College of Medicine, Burlington, VT 05405, USA
| | - Albert van der Vliet
- Department of Pathology, University of Vermont College of Medicine, Burlington, VT 05405, USA
| | - Vikas Anathy
- Department of Pathology, University of Vermont College of Medicine, Burlington, VT 05405, USA
| | | |
Collapse
|
46
|
Cosmi L, Liotta F, Maggi E, Romagnani S, Annunziato F. Th17 and non-classic Th1 cells in chronic inflammatory disorders: two sides of the same coin. Int Arch Allergy Immunol 2014; 164:171-7. [PMID: 25033972 DOI: 10.1159/000363502] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Th17 lymphocytes, beyond their protective role in the clearance of extracellular pathogens, also play a role in the pathogenesis of several autoimmune and inflammatory diseases, such as multiple sclerosis, rheumatoid arthritis, inflammatory bowel diseases, psoriasis and contact dermatitis. Nevertheless, they are very rare at inflammatory sites in comparison with other T cell subsets. Recently, this rarity has been explained by the finding that Th17 cells rapidly shift into the Th1 phenotype in the presence of IL-12 and/or TNF-α as well as by the fact that they possess self-regulatory mechanisms limiting their own expansion. Th17 lymphocytes that have shifted towards a Th1 phenotype seem to be particularly aggressive and more pathogenic than the Th17 unshifted cells. As a consequence, the Th17-derived Th1 cells, named non-classic Th1 cells, can become a possible target for the therapy of some inflammatory disorders. In particular, convincing evidence has recently been accumulated indicating that this subset can play a role in Crohn's disease and juvenile idiopathic arthritis. More importantly, it has been shown that TNF-α inhibitors, which are used for the treatment of such diseases, appear to be able to inhibit the transition of Th17 lymphocytes to the non-classic Th1 phenotype, and thus they possibly help to dampen inflammation and arrest disease progression. Based on this context, the definition of the soluble factors involved in the shifting from Th17 towards non-classic Th1 subset as well as the comprehension of their respective pathogenic role in human inflammatory disorders would be of great help for developing novel therapeutic strategies.
Collapse
Affiliation(s)
- Lorenzo Cosmi
- Department of Experimental and Clinical Medicine and DENOTHE Center, University of Florence, and Units of Regenerative Medicine, and Immunology and Cellular Therapy, Azienda Ospedaliera Careggi, Florence, Italy
| | | | | | | | | |
Collapse
|
47
|
Crane-Godreau MA, Maccani MA, Eszterhas SK, Warner SL, Jukosky JA, Fiering S. Exposure to Cigarette Smoke Disrupts CCL20-Mediated Antimicrobial Activity in Respiratory Epithelial Cells. ACTA ACUST UNITED AC 2014; 2:86-93. [PMID: 19966927 DOI: 10.2174/1874226200902010086] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Cigarette smoke (CS) exposure is known to increase infection rates, but the mechanisms are not well understood. These studies tested the hypothesis that CS exposure would impair antimicrobial activity of apical conditioned media from human airway (BEAS-2B) cultures by reducing induction and release of the antimicrobial peptide CCL20. BEAS-2B cultures were exposed to CS extract and assayed for temporal and physical characteristics of release as well as for antimicrobial activity. E. coli were exposed to Beas-2B-conditioned media (BCM) and subsequent bacterial colonies were enumerated. In time course studies TLR-agonist-induced CCL20 transcription and release were rapid, of short duration and release was consistently targeted to the apical/luminal compartment. Cells treated with CS extract had diminished release of CCL20 under both constitutive and toll-like receptor (TLR) agonist stimulating conditions. Exposure of the cells to CS significantly reduced the antimicrobial activity in BCM and neutralizing antibodies to CCL20 brought antibacterial activity back to baseline levels demonstrating that antimicrobial activity in this culture system was primarily attributable to CCL20. These studies add to the understanding of CCL20 as a mucosal antimicrobial and improve insight into a likely mechanism linking infection to CS exposure.
Collapse
Affiliation(s)
- Mardi A Crane-Godreau
- Department of Microbiology & Immunology, Dartmouth Medical School, Lebanon, NH 03756, USA
| | | | | | | | | | | |
Collapse
|
48
|
Profita M, Albano GD, Riccobono L, Di Sano C, Montalbano AM, Gagliardo R, Anzalone G, Bonanno A, Pieper MP, Gjomarkaj M. Increased levels of Th17 cells are associated with non-neuronal acetylcholine in COPD patients. Immunobiology 2014; 219:392-401. [PMID: 24529390 DOI: 10.1016/j.imbio.2014.01.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 07/19/2013] [Accepted: 01/09/2014] [Indexed: 11/26/2022]
Abstract
T-lymphocytes, including Th17-cells and T-cells expressing acetylcholine (ACh), are key components of systemic inflammation in chronic obstructive pulmonary disease (COPD). We investigated whether ACh promotes Th17 cells in COPD. ACh, IL-17A, IL-22, RORγt, FOXP3 expression and AChIL-17A, AChIL-22, AChRORγt coexpression was evaluated in peripheral blood mononuclear cells (PBMC) from COPD patients (n=16), healthy smokers (HS) (n=12) and healthy control subjects (HC) (n=13) (cultured for 48 h with PMA) by flow cytometry. Furthermore, we studied the effect of Tiotropium (Spiriva®) (100 nM) and Olodaterol (1nM) alone or in combination, and of hemicholinium-3 (50 μM) on AChIL-17A, AChIL-22, AChRORγt, and FOXP3 expression in CD3+PBT-cells of PBMC from COPD patients (n=6) cultured for 48 h with PMA. CD3+PBT-cells expressing ACh, IL-17A, IL-22 and RORγt together with CD3+PBT-cells co-expressing AChIL-17A, AChIL-22 and AChRORγt were significantly increased in COPD patients compared to HC and HS subjects with higher levels in HS than in HC without a significant difference. CD3+FOXP3+PBT-cells were increased in HS than in HC and COPD. Tiotropium and Olodaterol reduced the percentage of CD3+PBT-cells co-expressing AChIL-17A, AChIL-22, and AChRORγt while increased the CD3+FOXP3+PBT-cells in PBMC from COPD patients, cultured in vitro for 48 h, with an additive effect when used in combination. Hemicholnium-3 reduced the percentage of ACh+IL-17A+, ACh+IL-22+, and ACh+RORγt+ while it did not affect FOXP3+ expression in CD3+PBT-cells from cultured PBMC from COPD patients. We concluded that ACh might promote the increased levels of Th17-cells in systemic inflammation of COPD. Long-acting β2-agonists and anticholinergic drugs might contribute to control this event.
Collapse
Affiliation(s)
- Mirella Profita
- Unit: "Ex vivo/In vitro Models to Study the Immunopathology and the Pharmacology of Airway Diseases", Institute of Biomedicine and Molecular Immunology (IBIM), Italian National Research Council (CNR), Palermo, Italy.
| | - Giusy Daniela Albano
- Unit: "Ex vivo/In vitro Models to Study the Immunopathology and the Pharmacology of Airway Diseases", Institute of Biomedicine and Molecular Immunology (IBIM), Italian National Research Council (CNR), Palermo, Italy; Dipartimento Biomedico di Medicina, Interna e Specialistica (Di.Bi.M.I.S.), Sezione di Pneumologia, University of Palermo, Palermo, Italy
| | - Loredana Riccobono
- Unit: "Ex vivo/In vitro Models to Study the Immunopathology and the Pharmacology of Airway Diseases", Institute of Biomedicine and Molecular Immunology (IBIM), Italian National Research Council (CNR), Palermo, Italy
| | - Caterina Di Sano
- Unit: "Ex vivo/In vitro Models to Study the Immunopathology and the Pharmacology of Airway Diseases", Institute of Biomedicine and Molecular Immunology (IBIM), Italian National Research Council (CNR), Palermo, Italy
| | - Angela Marina Montalbano
- Unit: "Ex vivo/In vitro Models to Study the Immunopathology and the Pharmacology of Airway Diseases", Institute of Biomedicine and Molecular Immunology (IBIM), Italian National Research Council (CNR), Palermo, Italy
| | - Rosalia Gagliardo
- Unit: "Ex vivo/In vitro Models to Study the Immunopathology and the Pharmacology of Airway Diseases", Institute of Biomedicine and Molecular Immunology (IBIM), Italian National Research Council (CNR), Palermo, Italy
| | - Giulia Anzalone
- Unit: "Ex vivo/In vitro Models to Study the Immunopathology and the Pharmacology of Airway Diseases", Institute of Biomedicine and Molecular Immunology (IBIM), Italian National Research Council (CNR), Palermo, Italy
| | - Anna Bonanno
- Unit: "Ex vivo/In vitro Models to Study the Immunopathology and the Pharmacology of Airway Diseases", Institute of Biomedicine and Molecular Immunology (IBIM), Italian National Research Council (CNR), Palermo, Italy
| | | | - Mark Gjomarkaj
- Unit: "Ex vivo/In vitro Models to Study the Immunopathology and the Pharmacology of Airway Diseases", Institute of Biomedicine and Molecular Immunology (IBIM), Italian National Research Council (CNR), Palermo, Italy
| |
Collapse
|
49
|
Kusagaya H, Fujisawa T, Yamanaka K, Mori K, Hashimoto D, Enomoto N, Inui N, Nakamura Y, Wu R, Maekawa M, Suda T, Chida K. Toll-like receptor-mediated airway IL-17C enhances epithelial host defense in an autocrine/paracrine manner. Am J Respir Cell Mol Biol 2014; 50:30-9. [PMID: 23944933 DOI: 10.1165/rcmb.2013-0130oc] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
IL-17A, IL-17F, and IL-25 belong to the IL-17 family of cytokines, and are well known to play important roles in the host defense against infection and inflammatory diseases. IL-17C, also a member of the IL-17 family, is highly expressed in the epithelium; however, the function and regulatory mechanism of IL-17C in airway epithelium remain poorly understood. In this study, we demonstrate that polyinosinic-polycytidylic acid (polyI:C), the ligand to Toll-like receptor 3, is a potent inducer of IL-17C mRNA and protein expression in primary normal human bronchial epithelial (NHBE) cells. IL-17C induction by polyI:C was both time dependent and dose dependent, and was attenuated by inhibitors of the Toll-IL-1 receptor domain-containing adaptor-inducing INF-β (TRIF)-NF-κB pathway, Pepinh-TRIF, BAY11, NF-κB inhibitor III, and NF-κB p65 small interfering RNA, suggesting that IL-17C expression is induced by polyI:C via the Toll-like receptor 3-TRIF-NF-κB pathway. Both IL-17C and polyI:C increased the expression of antimicrobial peptides and proinflammatory cytokines, such as human β-defensin (hBD) 2, colony-stimulating factor 3 (CSF3), and S100A12 in NHBE cells. Knockdown of IL-17 receptor (IL-17R) E, the specific receptor for IL-17C, using IL-17RE small interfering RNA, attenuated polyI:C-induced hBD2, CSF3, and S100A12 expression, without any reduction of polyI:C-induced IL-17C expression, which suggest that IL-17C enhances hBD2, CSF, and S100A12 expression in an autocrine/paracrine manner in NHBE cells. Knockdown of IL-17C also decreased polyI:C-induced hBD2, CSF3, and S100A12 expression. Thus, our data demonstrate that IL-17C is an essential epithelial cell-derived cytokine that enhances mucosal host defense responses in a unique autocrine/paracrine manner in the airway epithelium.
Collapse
|
50
|
Zhang H, Shen B, Wu H, Gao L, Liu Q, Wang Q, Xiao J, Zhang Y. Th17-like immune response in fish mucosal tissues after administration of live attenuated Vibrio anguillarum via different vaccination routes. FISH & SHELLFISH IMMUNOLOGY 2014; 37:229-238. [PMID: 24561130 DOI: 10.1016/j.fsi.2014.02.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 02/06/2014] [Accepted: 02/12/2014] [Indexed: 06/03/2023]
Abstract
This study aimed to investigate the protective mucosal immunity elicited by live attenuated Vibrio anguillarum in fish. Zebrafish were immunized by bath or injection way, and undertook bath challenge at 28 days post vaccination. The results implied that bath vaccination was the better delivery route for inducing the protective immunity against bath challenge in zebrafish. The expressions of genes related to Th1, Th2 and Th17 cells were measured in the mucosal tissues of vaccinated and challenged zebrafish. Gene expression profiles showed that Th17-like responses were induced in mucosal immune system by vaccination via bath and injection routes while Th1 and Th2-like responses were not remarkable. Compared to injection vaccination, bath vaccination elicited the intense Th17-like immune responses in the gut tissue of zebrafish. Additionally, in gills and skin, Th17-like mucosal immunity elicited by injection vaccination occurred later than that by bath vaccination. Our results proved the immunological importance of gut in bath vaccination and the presence of two-compartmental model for immune response in zebrafish. In conclusion, bath vaccination more efficiently elicited protective Th17-like immunity than injection vaccination in mucosal tissues of vaccinated zebrafish. In turbot, effective immune protection against wild-type V. anguillarum was obtained by bath-vaccinated and the Th17-like responses were found in mucosal and systemic tissues.
Collapse
Affiliation(s)
- Hua Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Binbing Shen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Haizhen Wu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Liang Gao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Qin Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Qiyao Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Jingfan Xiao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Yuanxing Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|