1
|
Kang S, Wu Q, Shen J, Wu C. CD27 is not an ideal marker for human memory B cells and can be modulated by IL-21 upon stimulated by Anti-CD40. Sci Rep 2024; 14:23742. [PMID: 39390111 PMCID: PMC11467254 DOI: 10.1038/s41598-024-75636-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 10/07/2024] [Indexed: 10/12/2024] Open
Abstract
B cells play a key role in humoral immune responses by producing antibodies. Although there are numerous research on memory B cells definition markers and cytokines on B cell development, different studies have yielded contradictory conclusions due to species studied, the different cells and stimulating agents used. In the current study, we conducted a detailed characterization of B cells in human CBMCs, PBMCs and tonsil, including expression of Igs, activation and memory markers. Furthermore, we found that considerable amounts of IgA and IgG were expressed by CD27- B cells. These "Atypical" memory B cells corresponded to approximately 50% of IgG+ and IgA+B cells in blood, this proportion even reached 90% in tonsil. In addition, we investigated the effect of IL-21 and TGF-β1 on the membrane-bound form and secreted form of Igs using PBMCs and purified blood B cells. There were actual differences between the effect of cytokines on Igs secretion and surface expression. Our study will be helpful to advance the knowledge and understanding of humoral memory.
Collapse
Affiliation(s)
- Shuangpeng Kang
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, The Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, Changsha Medical University, Changsha, People's Republic of China.
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, The Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, Changsha Medical University, 1501 Leifeng Road, 410219, Changsha, People's Republic of China.
| | - Qiongli Wu
- Shenzhen Experimental Education School, Shenzhen, People's Republic of China
| | - Juan Shen
- Kingmed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Changyou Wu
- Clinical Research Center of Clifford Hospital, Guangzhou, People's Republic of China.
- Institute of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, 510080, Guangzhou, People's Republic of China.
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, The Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, Changsha Medical University, 1501 Leifeng Road, 410219, Changsha, People's Republic of China.
| |
Collapse
|
2
|
Guadalupe VOM, Abigail J SS, Patricia OR, Andrea HSD, Selma SM, Marco A YN, Carmen ZHM, Sara E EP, Berrón-Ruiz L. Analysis of B cell proliferation in response to in vitro stimulation in patients with CVID. Allergol Immunopathol (Madr) 2024; 52:94-102. [PMID: 39278858 DOI: 10.15586/aei.v52i5.1106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 07/29/2024] [Indexed: 09/18/2024]
Abstract
BACKGROUND Common variable immunodeficiency (CVID) is a heterogeneous disorder characterized by defective antibody production and impaired differentiation of B cells. B cell proliferation is an essential step for antibody synthesis. Depending on the nature of the stimulus, their response may be either T-cell-dependent or T-cell-independent. METHODS We studied 23 CVID patients and 14 healthy donors (HD). The patients were categorized based on their percentage of memory B cells. In addition to standard immunophenotyping of circulating human B and T cell subsets, an in vitro CFSE dilution assay was used to assess the proliferative capacity of B cells and to compare the activation of the T cell-dependent and T cell-independent response among the patients. RESULTS Patients with a reduction in memory B cells exhibited an increase in follicular T cells (Tfh) and showed low proliferation in response to PKW, CpG, and SAC stimuli (Condition II) (p= 0.0073). In contrast, patients with a normal percentage of memory B cells showed a high expression of IL-21R and low proliferation in response to CPG (Condition III); IL-21, CD40L, and anti-IgM (Condition IV) stimuli (p= 0.0163 and p = 0.0475, respectively). CONCLUSION Defective proliferation in patients depends on the type of stimulus used and the phenotypic characteristics of the patients. Further studies are necessary to understand the disease mechanisms, which may guide us toward identifying genetic defects associated with CVID.
Collapse
Affiliation(s)
| | - Saldaña-Solano Abigail J
- Departamento de Atención de la Salud, Universidad Autónoma Metropolitana, Unidad Xochimilco, Ciudad de México, México
| | | | | | - Scheffer-Mendoza Selma
- Servicio de Inmunología y Alergia, Instituto Nacional de Pediatría SSA, Ciudad de México, México
| | | | | | - Espinosa-Padilla Sara E
- Laboratorio en Inmunodeficiencias, Instituto Nacional de Pediatría SSA, Ciudad de México, México
| | - Laura Berrón-Ruiz
- Laboratorio en Inmunodeficiencias, Instituto Nacional de Pediatría SSA, Ciudad de México, México;
| |
Collapse
|
3
|
Fischer K, Lulla A, So TY, Pereyra-Gerber P, Raybould MIJ, Kohler TN, Yam-Puc JC, Kaminski TS, Hughes R, Pyeatt GL, Leiss-Maier F, Brear P, Matheson NJ, Deane CM, Hyvönen M, Thaventhiran JED, Hollfelder F. Rapid discovery of monoclonal antibodies by microfluidics-enabled FACS of single pathogen-specific antibody-secreting cells. Nat Biotechnol 2024:10.1038/s41587-024-02346-5. [PMID: 39143416 DOI: 10.1038/s41587-024-02346-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 06/27/2024] [Indexed: 08/16/2024]
Abstract
Monoclonal antibodies are increasingly used to prevent and treat viral infections and are pivotal in pandemic response efforts. Antibody-secreting cells (ASCs; plasma cells and plasmablasts) are an excellent source of high-affinity antibodies with therapeutic potential. Current methods to study antigen-specific ASCs either have low throughput, require expensive and labor-intensive screening or are technically demanding and therefore not widely accessible. Here we present a straightforward technology for the rapid discovery of monoclonal antibodies from ASCs. Our approach combines microfluidic encapsulation of single cells into an antibody capture hydrogel with antigen bait sorting by conventional flow cytometry. With our technology, we screened millions of mouse and human ASCs and obtained monoclonal antibodies against severe acute respiratory syndrome coronavirus 2 with high affinity (<1 pM) and neutralizing capacity (<100 ng ml-1) in 2 weeks with a high hit rate (>85% of characterized antibodies bound the target). By facilitating access to the underexplored ASC compartment, the approach enables efficient antibody discovery and immunological studies into the generation of protective antibodies.
Collapse
Affiliation(s)
- Katrin Fischer
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Aleksei Lulla
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Tsz Y So
- MRC Toxicology Unit, Gleeson Building, Cambridge, UK
| | - Pehuén Pereyra-Gerber
- Cambridge Institute for Therapeutic Immunology and Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK
| | - Matthew I J Raybould
- Oxford Protein Informatics Group, Department of Statistics, University of Oxford, Oxford, UK
| | - Timo N Kohler
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | | | - Tomasz S Kaminski
- Department of Biochemistry, University of Cambridge, Cambridge, UK
- Department of Molecular Biology, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Robert Hughes
- MRC Toxicology Unit, Gleeson Building, Cambridge, UK
| | | | | | - Paul Brear
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Nicholas J Matheson
- Cambridge Institute for Therapeutic Immunology and Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK
- NHS Blood and Transplant, Cambridge, UK
| | - Charlotte M Deane
- Oxford Protein Informatics Group, Department of Statistics, University of Oxford, Oxford, UK
| | - Marko Hyvönen
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | | | | |
Collapse
|
4
|
Malahe SRK, den Hartog Y, Rietdijk WJR, van Baarle D, de Kuiper R, Reijerkerk D, Ras AM, Geers D, Diavatopoulos DA, Messchendorp AL, van der Molen RG, Imhof C, Frölke SC, Bemelman FJ, Gansevoort RT, Hilbrands LB, Sanders JSF, GeurtsvanKessel CH, Kho MML, de Vries RD, Reinders MEJ, Baan CC. Repeated COVID-19 Vaccination Drives Memory T- and B-cell Responses in Kidney Transplant Recipients: Results From a Multicenter Randomized Controlled Trial. Transplantation 2024:00007890-990000000-00797. [PMID: 38902860 DOI: 10.1097/tp.0000000000005119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
BACKGROUND Insight into cellular immune responses to COVID-19 vaccinations is crucial for optimizing booster programs in kidney transplant recipients (KTRs). METHODS In an immunologic substudy of a multicenter randomized controlled trial (NCT05030974) investigating different repeated vaccination strategies in KTR who showed poor serological responses after 2 or 3 doses of an messenger RNA (mRNA)-based vaccine, we compared SARS-CoV-2-specific interleukin-21 memory T-cell and B-cell responses by enzyme-linked immunosorbent spot (ELISpot) assays and serum IgG antibody levels. Patients were randomized to receive: a single dose of mRNA-1273 (100 μg, n = 25), a double dose of mRNA-1273 (2 × 100 μg, n = 25), or a single dose of adenovirus type 26 encoding the SARS-CoV-2 spike glycoprotein (Ad26.COV2.S) (n = 25). In parallel, we also examined responses in 50 KTR receiving 100 μg mRNA-1273, randomized to continue (n = 25) or discontinue (n = 25) mycophenolate mofetil/mycophenolic acid. As a reference, the data were compared with KTR who received 2 primary mRNA-1273 vaccinations. RESULTS Repeated vaccination increased the seroconversion rate from 21% to 66% in all patients, which was strongly associated with enhanced levels of SARS-CoV-2-specific interleukin-21 memory T cells (odd ratio, 3.84 [1.89-7.78]; P < 0.001) and B cells (odd ratio, 35.93 [6.94-186.04]; P < 0.001). There were no significant differences observed in these responses among various vaccination strategies. In contrast to KTR vaccinated with 2 primary vaccinations, the number of antigen-specific memory B cells demonstrated potential for classifying seroconversion after repeated vaccination (area under the curve, 0.64; 95% confidence interval, 0.37-0.90; P = 0.26 and area under the curve, 0.95; confidence interval, 0.87-0.97; P < 0.0001, respectively). CONCLUSIONS Our study emphasizes the importance of virus-specific memory T- and B-cell responses for comprehensive understanding of COVID-19 vaccine efficacy among KTR.
Collapse
Affiliation(s)
- S Reshwan K Malahe
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus MC Transplant Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Yvette den Hartog
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus MC Transplant Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Wim J R Rietdijk
- Department of Hospital Pharmacy, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Debbie van Baarle
- Department of Medical Microbiology and Infection Prevention, Virology and Immunology Research Group, University Medical Center Groningen, Groningen, the Netherlands
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Ronella de Kuiper
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus MC Transplant Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Derek Reijerkerk
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus MC Transplant Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Alicia M Ras
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus MC Transplant Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Daryl Geers
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Dimitri A Diavatopoulos
- Radboud Institute for Molecular Life Sciences, Department of Laboratory Medicine, Laboratory of Medical Immunology, Radboud University Medical Center Nijmegen, Nijmegen, the Netherlands
- Radboud Center for Infectious Diseases, Radboud University Medical Center Nijmegen, Nijmegen, the Netherlands
| | - A Lianne Messchendorp
- Department of Internal Medicine, Division of Nephrology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Renate G van der Molen
- Radboud Institute for Molecular Life Sciences, Department of Laboratory Medicine, Laboratory of Medical Immunology, Radboud University Medical Center Nijmegen, Nijmegen, the Netherlands
| | - Céline Imhof
- Department of Internal Medicine, Division of Nephrology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Sophie C Frölke
- Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Renal Transplant Unit, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Frederike J Bemelman
- Renal Transplant Unit, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Ron T Gansevoort
- Department of Internal Medicine, Division of Nephrology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Luuk B Hilbrands
- Department of Nephrology, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Jan-Stephan F Sanders
- Department of Internal Medicine, Division of Nephrology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | | | - Marcia M L Kho
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus MC Transplant Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Rory D de Vries
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Marlies E J Reinders
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus MC Transplant Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Carla C Baan
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus MC Transplant Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
5
|
Xu J, Zhai J, Zhao J. Pathogenic roles of follicular helper T cells in IgG4-related disease and implications for potential therapy. Front Immunol 2024; 15:1413860. [PMID: 38911857 PMCID: PMC11190345 DOI: 10.3389/fimmu.2024.1413860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 05/27/2024] [Indexed: 06/25/2024] Open
Abstract
IgG4-related disease (IgG4-RD) is a recently described autoimmune disorder characterized by elevated serum IgG4 levels and tissue infiltration of IgG4+ plasma cells in multiple organ systems. Recent advancements have significantly enhanced our understanding of the pathological mechanism underlying this immune-mediated disease. T cell immunity plays a crucial role in the pathogenesis of IgG4-RD, and follicular helper T cells (Tfh) are particularly important in germinal center (GC) formation, plasmablast differentiation, and IgG4 class-switching. Apart from serum IgG4 concentrations, the expansion of circulating Tfh2 cells and plasmablasts may also serve as novel biomarkers for disease diagnosis and activity monitoring in IgG4-RD. Further exploration into the pathogenic roles of Tfh in IgG4-RD could potentially lead to identifying new therapeutic targets that offer more effective alternatives for treating this condition. In this review, we will focus on the current knowledge regarding the pathogenic roles Tfh cells play in IgG4-RD and outline potential therapeutic targets for future clinical intervention.
Collapse
Affiliation(s)
- Jingyi Xu
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing, China
| | - Jiayu Zhai
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing, China
- Center for Rare Disease, Peking University Third Hospital, Beijing, China
| | - Jinxia Zhao
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing, China
- Center for Rare Disease, Peking University Third Hospital, Beijing, China
| |
Collapse
|
6
|
Li D, Ma Y, Miao Y, Liu S, Bi Y, Ji Y, Wu Q, Zhou C, Ma Y. Peritoneal B1 and B2 cells respond differently to LPS and IL-21 stimulation. Mol Immunol 2024; 170:46-56. [PMID: 38615627 DOI: 10.1016/j.molimm.2024.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 04/02/2024] [Accepted: 04/08/2024] [Indexed: 04/16/2024]
Abstract
Peritoneal B cells can be divided into B1 cells (CD11b+CD19+) and B2 cells (CD11b-CD19+) based on CD11b expression. B1 cells play a crucial role in the innate immune response by producing natural antibodies and cytokines. B2 cells share similar traits with B1 cells, influenced by the peritoneal environment. However, the response of both B1 and B2 cells to the same stimuli in the peritoneum remains uncertain. We isolated peritoneal B1 and B2 cells from mice and assessed differences in Interleukin-10(IL-10) secretion, apoptosis, and surface molecule expression following exposure to LPS and Interleukin-21(IL-21). Our findings indicate that B1 cells are potent IL-10 producers, possessing surface molecules with an IgMhiCD43+CD21low profile, and exhibit a propensity for apoptosis in vitro. Conversely, B2 cells exhibit lower IL-10 production and surface markers characterized as IgMlowCD43-CD21hi, indicative of some resistance to apoptosis. LPS stimulates MAPK phosphorylation in B1 and B2 cells, causing IL-10 production. Furthermore, LPS inhibits peritoneal B2 cell apoptosis by enhancing Bcl-xL expression. Conversely, IL-21 has no impact on IL-10 production in these cells. Nevertheless, impeding STAT3 phosphorylation permits IL-21 to increase IL-10 production in peritoneal B cells. Moreover, IL-21 significantly raises apoptosis levels in these cells, a process independent of STAT3 phosphorylation and possibly linked to reduced Bcl-xL expression. This study elucidates the distinct functional and response profiles of B1 and B2 cells in the peritoneum to stimuli like LPS and IL-21, highlighting their differential roles in immunological responses and B cell diversity.
Collapse
Affiliation(s)
- Dandan Li
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical, Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Yanfen Ma
- The Clinical Laboratory, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Yinsha Miao
- Blood Transfusion Department, Xi'an No. 3 Hospital, the Affiliated Hospital of Northwest University, China
| | - Sasa Liu
- The Clinical Laboratory, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Yu Bi
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical, Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Yanhong Ji
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical, Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Qifei Wu
- Department of Thoracic Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Can Zhou
- Department of Breast Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| | - Yunfeng Ma
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical, Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China.
| |
Collapse
|
7
|
Shaghayegh G, Cooksley C, Bouras G, Panchatcharam BS, Feizi S, Javadian S, Ramezanpour M, Fenix KA, Wormald PJ, Psaltis AJ, Vreugde S. S. aureus biofilm properties correlate with immune B cell subset frequencies and severity of chronic rhinosinusitis. Clin Immunol 2024; 263:110221. [PMID: 38636891 DOI: 10.1016/j.clim.2024.110221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/22/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024]
Abstract
Staphylococcus aureus mucosal biofilms are associated with recalcitrant chronic rhinosinusitis (CRS). However, S. aureus colonisation of sinus mucosa is frequent in the absence of mucosal inflammation. This questions the relevance of S. aureus biofilms in CRS etiopathogenesis. This study aimed to investigate whether strain-level variation in in vitro-grown S. aureus biofilm properties relates to CRS disease severity, in vitro toxicity, and immune B cell responses in sinonasal tissue from CRS patients and non-CRS controls. S. aureus clinical isolates, tissue samples, and matched clinical datasets were collected from CRS patients with nasal polyps (CRSwNP), CRS without nasal polyps (CRSsNP), and controls. B cell responses in tissue samples were characterised by FACS. S. aureus biofilms were established in vitro, followed by measuring their properties of metabolic activity, biomass, colony-forming units, and exoprotein production. S. aureus virulence was evaluated using whole-genome sequencing, mass spectrometry and application of S. aureus biofilm exoproteins to air-liquid interface cultures of primary human nasal epithelial cells (HNEC-ALI). In vitro S. aureus biofilm properties were correlated with increased CRS severity scores, infiltration of antibody-secreting cells and loss of regulatory B cells in tissue samples. Biofilm exoproteins from S. aureus with high biofilm metabolic activity had enriched virulence genes and proteins, and negatively affected the barrier function of HNEC-ALI cultures. These findings support the notion of strain-level variation in S. aureus biofilms to be critical in the pathophysiology of CRS.
Collapse
Affiliation(s)
- Gohar Shaghayegh
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia; The Department of Surgery-Otolaryngology, Head and Neck Surgery, University of Adelaide and the Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, South Australia, Australia
| | - Clare Cooksley
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia; The Department of Surgery-Otolaryngology, Head and Neck Surgery, University of Adelaide and the Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, South Australia, Australia
| | - George Bouras
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia; The Department of Surgery-Otolaryngology, Head and Neck Surgery, University of Adelaide and the Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, South Australia, Australia
| | - Beula Subashini Panchatcharam
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia; The Department of Surgery-Otolaryngology, Head and Neck Surgery, University of Adelaide and the Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, South Australia, Australia
| | - Sholeh Feizi
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia; The Department of Surgery-Otolaryngology, Head and Neck Surgery, University of Adelaide and the Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, South Australia, Australia
| | - Shari Javadian
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia; The Department of Surgery-Otolaryngology, Head and Neck Surgery, University of Adelaide and the Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, South Australia, Australia
| | - Mahnaz Ramezanpour
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia; The Department of Surgery-Otolaryngology, Head and Neck Surgery, University of Adelaide and the Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, South Australia, Australia
| | - Kevin Aaron Fenix
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia; The Department of Surgery-Otolaryngology, Head and Neck Surgery, University of Adelaide and the Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, South Australia, Australia
| | - Peter-John Wormald
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia; The Department of Surgery-Otolaryngology, Head and Neck Surgery, University of Adelaide and the Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, South Australia, Australia
| | - Alkis James Psaltis
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia; The Department of Surgery-Otolaryngology, Head and Neck Surgery, University of Adelaide and the Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, South Australia, Australia
| | - Sarah Vreugde
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia; The Department of Surgery-Otolaryngology, Head and Neck Surgery, University of Adelaide and the Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, South Australia, Australia.
| |
Collapse
|
8
|
Edner NM, Houghton LP, Ntavli E, Rees-Spear C, Petersone L, Wang C, Fabri A, Elfaki Y, Rueda Gonzalez A, Brown R, Kisand K, Peterson P, McCoy LE, Walker LSK. TIGIT +Tfh show poor B-helper function and negatively correlate with SARS-CoV-2 antibody titre. Front Immunol 2024; 15:1395684. [PMID: 38868776 PMCID: PMC11167088 DOI: 10.3389/fimmu.2024.1395684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/15/2024] [Indexed: 06/14/2024] Open
Abstract
Circulating follicular helper T cells (cTfh) can show phenotypic alterations in disease settings, including in the context of tissue-damaging autoimmune or anti-viral responses. Using severe COVID-19 as a paradigm of immune dysregulation, we have explored how cTfh phenotype relates to the titre and quality of antibody responses. Severe disease was associated with higher titres of neutralising S1 IgG and evidence of increased T cell activation. ICOS, CD38 and HLA-DR expressing cTfh correlated with serum S1 IgG titres and neutralising strength, and interestingly expression of TIGIT by cTfh showed a negative correlation. TIGIT+cTfh expressed increased IFNγ and decreased IL-17 compared to their TIGIT-cTfh counterparts, and showed reduced capacity to help B cells in vitro. Additionally, TIGIT+cTfh expressed lower levels of CD40L than TIGIT-cTfh, providing a potential explanation for their poor B-helper function. These data identify phenotypic changes in polyclonal cTfh that correlate with specific antibody responses and reveal TIGIT as a marker of cTfh with altered function.
Collapse
Affiliation(s)
- Natalie M. Edner
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, London, United Kingdom
| | - Luke P. Houghton
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, London, United Kingdom
| | - Elisavet Ntavli
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, London, United Kingdom
| | - Chloe Rees-Spear
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, London, United Kingdom
| | - Lina Petersone
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, London, United Kingdom
| | - Chunjing Wang
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, London, United Kingdom
| | - Astrid Fabri
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, London, United Kingdom
| | - Yassin Elfaki
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, London, United Kingdom
| | - Andrea Rueda Gonzalez
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, London, United Kingdom
| | - Rachel Brown
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, London, United Kingdom
- Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Kai Kisand
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Pärt Peterson
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Laura E. McCoy
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, London, United Kingdom
| | - Lucy S. K. Walker
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, London, United Kingdom
| |
Collapse
|
9
|
Peralta Alvarez MP, Jones H, Redondo Azema H, Davis C, White AD, Sarfas C, Dennis M, Li S, Wright D, Puentes E, Kimuda S, Belij-Rammerstorfer S, Aguilo N, Martin C, Sharpe S, McShane H, Tanner R. Low-dose M.tb infection but not BCG or MTBVAC vaccination enhances heterologous antibody titres in non-human primates. Front Immunol 2024; 15:1387454. [PMID: 38799468 PMCID: PMC11116990 DOI: 10.3389/fimmu.2024.1387454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 04/24/2024] [Indexed: 05/29/2024] Open
Abstract
Introduction Mycobacteria are known to exert a range of heterologous effects on the immune system. The mycobacteria-based Freund's Complete Adjuvant is a potent non-specific stimulator of the immune response used in immunization protocols promoting antibody production, and Mycobacterium bovis Bacille Calmette Guérin (BCG) vaccination has been linked with decreased morbidity and mortality beyond the specific protection it provides against tuberculosis (TB) in some populations and age groups. The role of heterologous antibodies in this phenomenon, if any, remains unclear and under-studied. Methods We set out to evaluate antibody responses to a range of unrelated pathogens following infection with Mycobacterium tuberculosis (M.tb) and vaccination with BCG or a candidate TB vaccine, MTBVAC, in non-human primates. Results We demonstrate a significant increase in the titer of antibodies against SARS-CoV-2, cytomegalovirus, Epstein-Barr virus, tetanus toxoid, and respiratory syncytial virus antigens following low-dose aerosol infection with M.tb. The magnitude of some of these responses correlated with TB disease severity. However, vaccination with BCG administered by the intradermal, intravenous or aerosol routes, or intradermal delivery of MTBVAC, did not increase antibody responses against unrelated pathogens. Discussion Our findings suggest that it is unlikely that heterologous antibodies contribute to the non-specific effects of these vaccines. The apparent dysregulation of B cell responses associated with TB disease warrants further investigation, with potential implications for risk of B cell cancers and novel therapeutic strategies.
Collapse
Affiliation(s)
| | - Holly Jones
- Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Hugo Redondo Azema
- Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Chloe Davis
- Medical Sciences Division, University of Oxford, Oxford, United Kingdom
| | - Andrew D. White
- United Kingdom (UK) Health Security Agency, Salisbury, United Kingdom
| | - Charlotte Sarfas
- United Kingdom (UK) Health Security Agency, Salisbury, United Kingdom
| | - Mike Dennis
- United Kingdom (UK) Health Security Agency, Salisbury, United Kingdom
| | - Shuailin Li
- Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Daniel Wright
- Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Eugenia Puentes
- Clinical Research Department y Research and Development Department, Biofabri, Grupo Zendal, Pontevedra, Spain
| | - Simon Kimuda
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, London, United Kingdom
| | | | - Nacho Aguilo
- University of Zaragoza, Spanish Network for Research on Respiratory Diseases (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Carlos Martin
- University of Zaragoza, Spanish Network for Research on Respiratory Diseases (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Sally Sharpe
- United Kingdom (UK) Health Security Agency, Salisbury, United Kingdom
| | - Helen McShane
- Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Rachel Tanner
- Department of Biology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
10
|
Chuong C, Cereghino C, Rai P, Bates TA, Oberer M, Weger-Lucarelli J. Enhanced attenuation of chikungunya vaccines expressing antiviral cytokines. NPJ Vaccines 2024; 9:59. [PMID: 38472211 PMCID: PMC10933427 DOI: 10.1038/s41541-024-00843-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
Alphaviruses are vector-borne, medically relevant, positive-stranded RNA viruses that cause disease in animals and humans worldwide. Of this group, chikungunya virus (CHIKV) is the most significant human pathogen, responsible for generating millions of infections leading to severe febrile illness and debilitating chronic joint pain. Currently, there are limited treatments to protect against alphavirus disease; thus, there is a tremendous need to generate safe and effective vaccines. Live-attenuated vaccines (LAVs) are cost-effective and potent immunization strategies capable of generating long-term protection in a single dose. However, LAVs often produce systemic viral replication, which can lead to unwanted post-vaccination side effects and pose a risk of reversion to a pathogenic phenotype and transmission to mosquitoes. Here, we utilized a chimeric infectious clone of CHIKV engineered with the domain C of the E2 gene of Semliki Forest virus (SFV) to express IFNγ and IL-21-two potent antiviral and immunomodulatory cytokines-in order to improve the LAV's attenuation while maintaining immunogenicity. The IFNγ- and IL-21-expressing vaccine candidates were stable during passage and significantly attenuated post-vaccination, as mice experienced reduced footpad swelling with minimal systemic replication and dissemination capacity compared to the parental vaccine. Additionally, these candidates provided complete protection to mice challenged with WT CHIKV. Our dual attenuation strategy represents an innovative way to generate safe and effective alphavirus vaccines that could be applied to other viruses.
Collapse
Affiliation(s)
- Christina Chuong
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, VA-MD Regional College of Veterinary Medicine, Blacksburg, VA, USA
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, VA, USA
| | - Chelsea Cereghino
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, VA-MD Regional College of Veterinary Medicine, Blacksburg, VA, USA
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, VA, USA
| | - Pallavi Rai
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, VA-MD Regional College of Veterinary Medicine, Blacksburg, VA, USA
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, VA, USA
| | - Tyler A Bates
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, VA-MD Regional College of Veterinary Medicine, Blacksburg, VA, USA
| | - Megan Oberer
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, VA-MD Regional College of Veterinary Medicine, Blacksburg, VA, USA
| | - James Weger-Lucarelli
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, VA-MD Regional College of Veterinary Medicine, Blacksburg, VA, USA.
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, VA, USA.
| |
Collapse
|
11
|
Zha G, Chen Z, Wu N, Huang T, Deng Z, Cai D, Peng M, Hu P, Ren H. Clinical characteristics and immunogenicity after Omicron breakthrough infection in patients with chronic hepatitis B infection: A longitudinal observational study. J Med Virol 2024; 96:e29548. [PMID: 38511555 DOI: 10.1002/jmv.29548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 02/28/2024] [Accepted: 03/08/2024] [Indexed: 03/22/2024]
Abstract
The clinical and immunological features after breakthrough infection (BTI) during Omicron wave in patients with chronic hepatitis B virus infection (CHB) are still unclear. A total of 101 patients with CHB from our previous coronavirus disease 2019 (COVID-19) vaccination cohort (NCT05007665), were continued to be followed up at the Second Affiliated Hospital of Chongqing Medical University after BTI, while an additional 39 healthcare workers after BTI were recruited as healthy controls (HCs). Clinical data were collected using questionnaire survey and electronic medical record. Blood samples were used to determine the antibody responses, as well as B and T cell responses. After BTI, the clinical symptoms of COVID-19 were mild to moderate in patients with CHB, with a median duration of 5 days. Compared with HCs, patients with CHB were more susceptible to develop moderate COVID-19. The liver function was not significantly damaged, and HBV-DNA was not activated in patients with CHB after BTI. Patients with CHB could elicit robust antibody responses after BTI (NAbs 13.0-fold, BA.5 IgG: 24.2-fold, respectively), which was also significantly higher than that in every period after vaccination (all p < 0.001), and compared to that in HCs after BTI. The CD4+, cTfh, and CD8+ T cell responses were also augmented in patients with CHB after BTI, while exhibiting comparability to those observed in HCs. In patients with CHB after BTI, the immune imprint was observed in B cell responses, rather than in T cell responses. In conclusion, Omicron breakthrough infection induced mild to moderate COVID-19 symptoms in patients with CHB, without exacerbating the progress of liver diseases. Meanwhile, BTI demonstrated the ability to induce robust antibody and T cell responses in patients with CHB, which was comparable to those observed in HCs.
Collapse
Affiliation(s)
- Guanhua Zha
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhiwei Chen
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Na Wu
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Tianquan Huang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhiling Deng
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Dachuan Cai
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Mingli Peng
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Peng Hu
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hong Ren
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
12
|
Tangye SG, Mackie J, Pathmanandavel K, Ma CS. The trajectory of human B-cell function, immune deficiency, and allergy revealed by inborn errors of immunity. Immunol Rev 2024; 322:212-232. [PMID: 37983844 DOI: 10.1111/imr.13288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
The essential role of B cells is to produce protective immunoglobulins (Ig) that recognize, neutralize, and clear invading pathogens. This results from the integration of signals provided by pathogens or vaccines and the stimulatory microenvironment within sites of immune activation, such as secondary lymphoid tissues, that drive mature B cells to differentiate into memory B cells and antibody (Ab)-secreting plasma cells. In this context, B cells undergo several molecular events including Ig class switching and somatic hypermutation that results in the production of high-affinity Ag-specific Abs of different classes, enabling effective pathogen neutralization and long-lived humoral immunity. However, perturbations to these key signaling pathways underpin immune dyscrasias including immune deficiency and autoimmunity or allergy. Inborn errors of immunity that disrupt critical immune pathways have identified non-redundant requirements for eliciting and maintaining humoral immune memory but concomitantly prevent immune dysregulation. Here, we will discuss our studies on human B cells, and how our investigation of cytokine signaling in B cells have identified fundamental requirements for memory B-cell formation, Ab production as well as regulating Ig class switching in the context of protective versus allergic immune responses.
Collapse
Affiliation(s)
- Stuart G Tangye
- Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, New South Wales, Australia
| | - Joseph Mackie
- Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, New South Wales, Australia
| | - Karrnan Pathmanandavel
- Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, New South Wales, Australia
| | - Cindy S Ma
- Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
13
|
Veh J, Ludwig C, Schrezenmeier H, Jahrsdörfer B. Regulatory B Cells-Immunopathological and Prognostic Potential in Humans. Cells 2024; 13:357. [PMID: 38391970 PMCID: PMC10886933 DOI: 10.3390/cells13040357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/05/2024] [Accepted: 02/10/2024] [Indexed: 02/24/2024] Open
Abstract
The aim of the following review is to shed light on the putative role of regulatory B cells (Bregs) in various human diseases and highlight their potential prognostic and therapeutic relevance in humans. Regulatory B cells are a heterogeneous group of B lymphocytes capable of suppressing inflammatory immune reactions. In this way, Bregs contribute to the maintenance of tolerance and immune homeostasis by limiting ongoing immune reactions temporally and spatially. Bregs play an important role in attenuating pathological inflammatory reactions that can be associated with transplant rejection, graft-versus-host disease, autoimmune diseases and allergies but also with infectious, neoplastic and metabolic diseases. Early studies of Bregs identified IL-10 as an important functional molecule, so the IL-10-secreting murine B10 cell is still considered a prototype Breg, and IL-10 has long been central to the search for human Breg equivalents. However, over the past two decades, other molecules that may contribute to the immunosuppressive function of Bregs have been discovered, some of which are only present in human Bregs. This expanded arsenal includes several anti-inflammatory cytokines, such as IL-35 and TGF-β, but also enzymes such as CD39/CD73, granzyme B and IDO as well as cell surface proteins including PD-L1, CD1d and CD25. In summary, the present review illustrates in a concise and comprehensive manner that although human Bregs share common functional immunosuppressive features leading to a prominent role in various human immunpathologies, they are composed of a pool of different B cell types with rather heterogeneous phenotypic and transcriptional properties.
Collapse
Affiliation(s)
- Johanna Veh
- Institute for Transfusion Medicine, Ulm University Hospitals and Clinics, 89081 Ulm, Germany
- Institute for Clinical Transfusion Medicine and Immunogenetics, German Red Cross Blood Donation Service Baden-Württemberg-Hessen, 89081 Ulm, Germany
| | - Carolin Ludwig
- Institute for Transfusion Medicine, Ulm University Hospitals and Clinics, 89081 Ulm, Germany
- Institute for Clinical Transfusion Medicine and Immunogenetics, German Red Cross Blood Donation Service Baden-Württemberg-Hessen, 89081 Ulm, Germany
| | - Hubert Schrezenmeier
- Institute for Transfusion Medicine, Ulm University Hospitals and Clinics, 89081 Ulm, Germany
| | - Bernd Jahrsdörfer
- Institute for Transfusion Medicine, Ulm University Hospitals and Clinics, 89081 Ulm, Germany
- Institute for Clinical Transfusion Medicine and Immunogenetics, German Red Cross Blood Donation Service Baden-Württemberg-Hessen, 89081 Ulm, Germany
| |
Collapse
|
14
|
Martínez-Fleta P, Vicente-Rabaneda EF, Triguero-Martínez A, Roy-Vallejo E, Uriarte-Ecenarro M, Gutiérrez-Rodríguez F, Quiroga-Colina P, Romero-Robles A, Montes N, García-Castañeda N, Mejía-Abril GP, García-Vadillo JA, Llorente-Cubas I, Villagrasa JR, Serra López-Matencio JM, Ancochea J, Urzainqui A, Esparcia-Pinedo L, Alfranca A, de la Fuente H, García-Vicuña R, Sánchez-Madrid F, González-Álvaro I, Castañeda S. Beneficial effect of temporary methotrexate interruption on B and T cell responses upon SARS-CoV-2 vaccination in patients with rheumatoid arthritis or psoriatic arthritis. NPJ Vaccines 2024; 9:21. [PMID: 38291047 PMCID: PMC10827732 DOI: 10.1038/s41541-024-00805-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 01/02/2024] [Indexed: 02/01/2024] Open
Abstract
B and T cell responses were evaluated in patients with rheumatoid arthritis (RA) or psoriatic arthritis (PsA) after 1 or 2 weeks of methotrexate (MTX) withdrawal following each COVID-19 vaccine dose and compared with those who maintained MTX. Adult RA and PsA patients treated with MTX were recruited and randomly assigned to 3 groups: MTX-maintenance (n = 72), MTX-withdrawal for 1 week (n = 71) or MTX-withdrawal for 2 weeks (n = 73). Specific antibodies to several SARS-CoV-2 antigens and interferon (IFN)-γ and interleukin (IL)-21 responses were assessed. MTX withdrawal in patients without previous COVID-19 was associated with higher levels of anti-RBD IgG and neutralising antibodies, especially in the 2-week withdrawal group and with higher IFN-γ secretion upon stimulation with pools of SARS-CoV-2 S peptides. No increment of RA/PsA relapses was detected across groups. Our data indicate that two-week MTX interruption following COVID-19 vaccination in patients with RA or PsA improves humoral and cellular immune responses.
Collapse
Affiliation(s)
- Pedro Martínez-Fleta
- Department of Immunology, Hospital Universitario de La Princesa IIS-Princesa (Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa), Madrid, Spain
| | - Esther F Vicente-Rabaneda
- Department of Rheumatology, Hospital Universitario de La Princesa IIS-Princesa (Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa), Madrid, Spain
| | - Ana Triguero-Martínez
- Department of Rheumatology, Hospital Universitario de La Princesa IIS-Princesa (Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa), Madrid, Spain
| | - Emilia Roy-Vallejo
- Department of Internal Medicine, Hospital Universitario de La Princesa IIS-Princesa (Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa), Madrid, Spain
| | - Miren Uriarte-Ecenarro
- Department of Rheumatology, Hospital Universitario de La Princesa IIS-Princesa (Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa), Madrid, Spain
| | - Francisco Gutiérrez-Rodríguez
- Department of Rheumatology, Hospital Universitario de La Princesa IIS-Princesa (Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa), Madrid, Spain
| | - Patricia Quiroga-Colina
- Department of Rheumatology, Hospital Universitario de La Princesa IIS-Princesa (Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa), Madrid, Spain
| | - Ana Romero-Robles
- Department of Rheumatology, Hospital Universitario de La Princesa IIS-Princesa (Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa), Madrid, Spain
| | - Nuria Montes
- Department of Rheumatology, Hospital Universitario de La Princesa IIS-Princesa (Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa), Madrid, Spain
| | - Noelia García-Castañeda
- Department of Rheumatology, Hospital Universitario de La Princesa IIS-Princesa (Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa), Madrid, Spain
| | - Gina P Mejía-Abril
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Instituto Teófilo Hernando, Instituto de Investigación Sanitaria La Princesa (IP), Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Jesús A García-Vadillo
- Department of Rheumatology, Hospital Universitario de La Princesa IIS-Princesa (Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa), Madrid, Spain
- Department of Medicine, Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Irene Llorente-Cubas
- Department of Rheumatology, Hospital Universitario de La Princesa IIS-Princesa (Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa), Madrid, Spain
| | - José R Villagrasa
- Department of Preventive Medicine, Hospital Universitario de La Princesa IIS-Princesa (Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa), Madrid, Spain
| | - José M Serra López-Matencio
- Department of Hospital Pharmacy, Hospital Universitario de La Princesa IIS-Princesa (Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa), Madrid, Spain
| | - Julio Ancochea
- Department of Medicine, Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Department of Pneumology, Hospital Universitario de La Princesa IIS-Princesa (Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa), Madrid, Spain
- Cátedra UAM-Roche, EPID-Future, Department of Medicine, Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Ana Urzainqui
- Department of Immunology, Hospital Universitario de La Princesa IIS-Princesa (Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa), Madrid, Spain
| | - Laura Esparcia-Pinedo
- Department of Immunology, Hospital Universitario de La Princesa IIS-Princesa (Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa), Madrid, Spain
| | - Arantzazu Alfranca
- Department of Immunology, Hospital Universitario de La Princesa IIS-Princesa (Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa), Madrid, Spain
- Department of Medicine, Universidad Autónoma de Madrid (UAM), Madrid, Spain
- CIBER Cardiovascular CIBERCV, Madrid, Spain
| | - Hortensia de la Fuente
- Department of Immunology, Hospital Universitario de La Princesa IIS-Princesa (Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa), Madrid, Spain
- CIBER Cardiovascular CIBERCV, Madrid, Spain
| | - Rosario García-Vicuña
- Department of Rheumatology, Hospital Universitario de La Princesa IIS-Princesa (Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa), Madrid, Spain
- Department of Medicine, Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Francisco Sánchez-Madrid
- Department of Immunology, Hospital Universitario de La Princesa IIS-Princesa (Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa), Madrid, Spain
- Department of Medicine, Universidad Autónoma de Madrid (UAM), Madrid, Spain
- CIBER Cardiovascular CIBERCV, Madrid, Spain
| | - Isidoro González-Álvaro
- Department of Rheumatology, Hospital Universitario de La Princesa IIS-Princesa (Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa), Madrid, Spain.
| | - Santos Castañeda
- Department of Rheumatology, Hospital Universitario de La Princesa IIS-Princesa (Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa), Madrid, Spain.
- Cátedra UAM-Roche, EPID-Future, Department of Medicine, Universidad Autónoma de Madrid (UAM), Madrid, Spain.
| |
Collapse
|
15
|
Kroenke MA, Starcevic Manning M, Zuch de Zafra CL, Zhang X, Cook KD, Archer M, Lolkema MP, Wang J, Hoofring S, Saini G, Aeffner F, Ahern E, Cabanas EG, Govindan R, Hui M, Gupta S, Mytych DT. Translatability of findings from cynomolgus monkey to human suggests a mechanistic role for IL-21 in promoting immunogenicity to an anti-PD-1/IL-21 mutein fusion protein. Front Immunol 2024; 15:1345473. [PMID: 38343535 PMCID: PMC10858450 DOI: 10.3389/fimmu.2024.1345473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/12/2024] [Indexed: 02/15/2024] Open
Abstract
AMG 256 is a bi-specific, heteroimmunoglobulin molecule with an anti-PD-1 antibody domain and a single IL-21 mutein domain on the C-terminus. Nonclinical studies in cynomolgus monkeys revealed that AMG 256 administration led to the development of immunogenicity-mediated responses and indicated that the IL-21 mutein domain of AMG 256 could enhance the anti-drug antibody response directed toward the monoclonal antibody domain. Anti-AMG 256 IgE were also observed in cynomolgus monkeys. A first-in-human (FIH) study in patients with advanced solid tumors was designed with these risks in mind. AMG 256 elicited ADA in 28 of 33 subjects (84.8%). However, ADA responses were only robust and exposure-impacting at the 2 lowest doses. At mid to high doses, ADA responses remained low magnitude and all subjects maintained exposure, despite most subjects developing ADA. Limited drug-specific IgE were also observed during the FIH study. ADA responses were not associated with any type of adverse event. The AMG 256 program represents a unique case where nonclinical studies informed on the risk of immunogenicity in humans, due to the IL-21-driven nature of the response.
Collapse
Affiliation(s)
- Mark A. Kroenke
- Clinical Immunology, Amgen, Thousand Oaks, CA, United States
| | | | | | - Xinwen Zhang
- Clinical Pharmacology, Modeling, and Simulation, Amgen, South San Francisco, CA, United States
| | - Kevin D. Cook
- Pharmacokinetics and Drug Metabolism, Amgen, South San Francisco, CA, United States
| | | | | | - Jin Wang
- Translational Safety & Bioanalytical Sciences, Amgen, Thousand Oaks, CA, United States
| | - Sarah Hoofring
- Translational Safety & Bioanalytical Sciences, Amgen, Thousand Oaks, CA, United States
| | - Gurleen Saini
- Translational Safety & Bioanalytical Sciences, Amgen, Thousand Oaks, CA, United States
| | - Famke Aeffner
- Translational Safety & Bioanalytical Sciences, Amgen, South San Francisco, CA, United States
| | | | | | - Ramaswamy Govindan
- Division of Hematology and Oncology, Washington University Medical School, St. Louis, MO, United States
| | - Mun Hui
- Chris O’Brien Lifehouse, Camperdown, NSW, Australia
| | - Shalini Gupta
- Translational Safety & Bioanalytical Sciences, Amgen, Thousand Oaks, CA, United States
| | | |
Collapse
|
16
|
Zhang Y, Zhang C, He M, Xing W, Hou R, Zhang H. Co-expression of IL-21-Enhanced NKG2D CAR-NK cell therapy for lung cancer. BMC Cancer 2024; 24:119. [PMID: 38263004 PMCID: PMC10807083 DOI: 10.1186/s12885-023-11806-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 12/28/2023] [Indexed: 01/25/2024] Open
Abstract
BACKGROUND Adoptive cell therapy has achieved great success in treating hematological malignancies. However, the production of chimeric antigen receptor T (CAR-T) cell therapy still faces various difficulties. Natural killer (NK)-92 is a continuously expandable cell line and provides a promising alternative for patient's own immune cells. METHODS We established CAR-NK cells by co-expressing natural killer group 2 member D (NKG2D) and IL-21, and evaluated the efficacy of NKG2D-IL-21 CAR-NK cells in treating lung cancer in vitro and in vivo. RESULTS Our data suggested that the expression of IL-21 effectively increased the cytotoxicity of NKG2D CAR-NK cells against lung cancer cells in a dose-dependent manner and suppressed tumor growth in vitro and in vivo. In addition, the proliferation of NKG2D-IL-21 CAR-NK cells were enhanced while the apoptosis and exhaustion of these cells were suppressed. Mechanistically, IL-21-mediated NKG2D CAR-NK cells function by activating AKT signaling pathway. CONCLUSION Our findings provide a novel option for treating lung cancer using NKG2D-IL-21 CAR-NK cell therapy.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Oncology, Shenyang 242 Hospital, 110034, Shenyang, China
| | - Cong Zhang
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, 610072, Chengdu, China
| | - Minghong He
- Department of Respiratory and Critical Care Medicine, Yidu Central Hospital of Weifang, 262500, Weifang, China
| | - Weipeng Xing
- Geneis Beijing Co., Ltd., 100102, Beijing, China
| | - Rui Hou
- Geneis Beijing Co., Ltd., 100102, Beijing, China.
| | - Haijin Zhang
- Department of Respiratory and Critical Care Medicine, Yidu Central Hospital of Weifang, 262500, Weifang, China.
| |
Collapse
|
17
|
Merino-Vico A, van Hamburg JP, Tuijnenburg P, Frazzei G, Al-Soudi A, Bonasia CG, Helder B, Rutgers A, Abdulahad WH, Stegeman CA, Sanders JS, Bergamaschi L, Lyons PA, Bijma T, van Keep L, Wesenhagen K, Jongejan A, Olsson H, de Vries N, Kuijpers TW, Heeringa P, Tas SW. Targeting NF-κB signaling in B cells as a potential new treatment modality for ANCA-associated vasculitis. J Autoimmun 2024; 142:103133. [PMID: 37931331 DOI: 10.1016/j.jaut.2023.103133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/06/2023] [Accepted: 10/13/2023] [Indexed: 11/08/2023]
Abstract
B lineage cells are critically involved in ANCA-associated vasculitis (AAV), evidenced by alterations in circulating B cell subsets and beneficial clinical effects of rituximab (anti-CD20) therapy. This treatment renders a long-term, peripheral B cell depletion, but allows for the survival of long-lived plasma cells. Therefore, there is an unmet need for more reversible and full B lineage cell targeting approaches. To find potential novel therapeutic targets, RNA sequencing of CD27+ memory B cells of patients with active AAV was performed, revealing an upregulated NF-κB-associated gene signature. NF-κB signaling pathways act downstream of various B cell surface receptors, including the BCR, CD40, BAFFR and TLRs, and are essential for B cell responses. Here we demonstrate that novel pharmacological inhibitors of NF-κB inducing kinase (NIK, non-canonical NF-κB signaling) and inhibitor-of-κB-kinase-β (IKKβ, canonical NF-κB signaling) can effectively inhibit NF-κB signaling in B cells, whereas T cell responses were largely unaffected. Moreover, both inhibitors significantly reduced B cell proliferation, differentiation and production of antibodies, including proteinase-3 (PR3) autoantibodies, in B lineage cells of AAV patients. These findings indicate that targeting NF-κB, particularly NIK, may be an effective, novel B lineage cell targeted therapy for AAV and other autoimmune diseases with prominent B cell involvement.
Collapse
Affiliation(s)
- Ana Merino-Vico
- Department of Rheumatology and Clinical Immunology, Amsterdam Rheumatology and immunology Center, Amsterdam University Medical Centers, University of Amsterdam, the Netherlands; Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Jan Piet van Hamburg
- Department of Rheumatology and Clinical Immunology, Amsterdam Rheumatology and immunology Center, Amsterdam University Medical Centers, University of Amsterdam, the Netherlands; Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Paul Tuijnenburg
- Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Giulia Frazzei
- Department of Rheumatology and Clinical Immunology, Amsterdam Rheumatology and immunology Center, Amsterdam University Medical Centers, University of Amsterdam, the Netherlands; Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Aram Al-Soudi
- Department of Rheumatology and Clinical Immunology, Amsterdam Rheumatology and immunology Center, Amsterdam University Medical Centers, University of Amsterdam, the Netherlands; Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Carlo G Bonasia
- Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, University of Groningen, Hanzeplein 1 EA11, 9713, GZ, Groningen, the Netherlands
| | - Boy Helder
- Department of Rheumatology and Clinical Immunology, Amsterdam Rheumatology and immunology Center, Amsterdam University Medical Centers, University of Amsterdam, the Netherlands; Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Abraham Rutgers
- Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, University of Groningen, Hanzeplein 1 EA11, 9713, GZ, Groningen, the Netherlands
| | - Wayel H Abdulahad
- Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, University of Groningen, Hanzeplein 1 EA11, 9713, GZ, Groningen, the Netherlands; Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Hanzeplein 1 EA11, 9713, GZ, Groningen, the Netherlands
| | - Coen A Stegeman
- Department of Internal Medicine, Division of Nephrology, University Medical Center Groningen, University of Groningen, Hanzeplein 1 EA11, 9713, GZ, Groningen, the Netherlands
| | - Jan-Stephan Sanders
- Department of Internal Medicine, Division of Nephrology, University Medical Center Groningen, University of Groningen, Hanzeplein 1 EA11, 9713, GZ, Groningen, the Netherlands
| | - Laura Bergamaschi
- Department of Medicine, University of Cambridge School of Clinical Medicine, University of Cambridge, Cambridge, UK; Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffre Cheah Biomedical Centre, Cambridge Biomedical Campus, Cambridge, CB2 0AW, UK
| | - Paul A Lyons
- Department of Medicine, University of Cambridge School of Clinical Medicine, University of Cambridge, Cambridge, UK; Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffre Cheah Biomedical Centre, Cambridge Biomedical Campus, Cambridge, CB2 0AW, UK
| | - Theo Bijma
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Hanzeplein 1 EA11, 9713, GZ, Groningen, the Netherlands
| | - Laura van Keep
- Department of Rheumatology and Clinical Immunology, Amsterdam Rheumatology and immunology Center, Amsterdam University Medical Centers, University of Amsterdam, the Netherlands; Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Kirsten Wesenhagen
- Department of Rheumatology and Clinical Immunology, Amsterdam Rheumatology and immunology Center, Amsterdam University Medical Centers, University of Amsterdam, the Netherlands; Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Aldo Jongejan
- Department of Epidemiology and Data Science, Bioinformatics Laboratory, Amsterdam Public Health Research Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Henric Olsson
- Translational Science and Experimental Medicine, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Niek de Vries
- Department of Rheumatology and Clinical Immunology, Amsterdam Rheumatology and immunology Center, Amsterdam University Medical Centers, University of Amsterdam, the Netherlands; Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Taco W Kuijpers
- Department of Pediatric Immunology, Rheumatology and Infectious Diseases, Emma Children's Hospital, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Peter Heeringa
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Hanzeplein 1 EA11, 9713, GZ, Groningen, the Netherlands
| | - Sander W Tas
- Department of Rheumatology and Clinical Immunology, Amsterdam Rheumatology and immunology Center, Amsterdam University Medical Centers, University of Amsterdam, the Netherlands; Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
18
|
Kim CW, Joo SY, Kim B, Kim JY, Jang S, Tzeng SJ, Lee SJ, Kim M, Kim I. Single cell transcriptome analyses reveal the roles of B cells in fructose-induced hypertension. Front Immunol 2023; 14:1279439. [PMID: 38045685 PMCID: PMC10691591 DOI: 10.3389/fimmu.2023.1279439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/31/2023] [Indexed: 12/05/2023] Open
Abstract
Rationale While the immune system plays a crucial role in the development of hypertension, the specific contributions of distinct immune cell populations remain incompletely understood. The emergence of single-cell RNA-sequencing (scRNA-seq) technology enables us to analyze the transcriptomes of individual immune cells and to assess the significance of each immune cell type in hypertension development. Objective We aimed to investigate the hypothesis that B cells play a crucial role in the development of fructose-induced hypertension. Methods and Results Eight-week-old Dahl salt-sensitive (SS) male rats were divided into two groups and given either tap water (TW) or a 20% fructose solution (HFS) for 4 weeks. Systolic blood pressure was measured using the tail-cuff method. ScRNA-seq analysis was performed on lamina propria cells (LPs) and peripheral blood mononuclear cells (PBMCs) obtained from SS rats subjected to either TW or HFS. The HFS treatment induced hypertension in the SS rats. The analysis revealed 27 clusters in LPs and 28 clusters in PBMCs, allowing for the identification and characterization of various immune cell types within each cluster. Specifically, B cells and follicular helper T (Tfh) cells were prominent in LPs, while B cells and M1 macrophages dominated PBMCs in the HFS group. Moreover, the HFS treatment triggered an increase in the number of B cells in both LPs and PBMCs, accompanied by activation of the interferon pathway. Conclusions The significant involvement of B cells in intestinal and PBMC responses indicates their pivotal contribution to the development of hypertension. This finding suggests that targeting B cells could be a potential strategy to mitigate high blood pressure in fructose-induced hypertension. Moreover, the simultaneous increase in follicular B cells and Tfh cells in LPs, along with the upregulation of interferon pathway genes in B cells, underscores a potential autoimmune factor contributing to the pathogenesis of fructose-induced hypertension in the intestine.
Collapse
Affiliation(s)
- Cheong-Wun Kim
- Department of Pharmacology, BK21 Plus Kyungpook National University (KNU) Biomedical Convergence Program, Cardiovascular Research Institute, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Sung Yong Joo
- Department of Animal Science, Pusan National University, Miryang, Republic of Korea
| | - Boa Kim
- Cardiovascular Research Institute, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Jee Young Kim
- Department of Pharmacology, BK21 Plus Kyungpook National University (KNU) Biomedical Convergence Program, Cardiovascular Research Institute, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Sungmin Jang
- Department of Pharmacology, BK21 Plus Kyungpook National University (KNU) Biomedical Convergence Program, Cardiovascular Research Institute, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Shiang-Jong Tzeng
- Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Sang Jin Lee
- Division of Rheumatology, Cardiovascular Research Institute, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Myunghoo Kim
- Department of Animal Science, Pusan National University, Miryang, Republic of Korea
| | - Inkyeom Kim
- Department of Pharmacology, BK21 Plus Kyungpook National University (KNU) Biomedical Convergence Program, Cardiovascular Research Institute, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
19
|
Repici A, Ardizzone A, Filippone A, Colarossi C, Mare M, Raciti G, Mannino D, Cuzzocrea S, Paterniti I, Esposito E. Interleukin-21 Influences Glioblastoma Course: Biological Mechanisms and Therapeutic Potential. Cells 2023; 12:2284. [PMID: 37759505 PMCID: PMC10526836 DOI: 10.3390/cells12182284] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/11/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Brain tumors represent a heterogeneous group of neoplasms involving the brain or nearby tissues, affecting populations of all ages with a high incidence worldwide. Among the primary brain tumors, the most aggressive and also the most common is glioblastoma (GB), a type of glioma that falls into the category of IV-grade astrocytoma. GB often leads to death within a few months after diagnosis, even if the patient is treated with available therapies; for this reason, it is important to continue to discover new therapeutic approaches to allow for a better survival rate of these patients. Immunotherapy, today, seems to be one of the most innovative types of treatment, based on the ability of the immune system to counteract various pathologies, including cancer. In this context, interleukin 21 (IL-21), a type I cytokine produced by natural killer (NK) cells and CD4+ T lymphocytes, appears to be a valid target for new therapies since this cytokine is involved in the activation of innate and adaptive immunity. To match this purpose, our review deeply evaluated how IL-21 could influence the progression of GB, analyzing its main biological processes and mechanisms while evaluating the potential use of the latest available therapies.
Collapse
Affiliation(s)
- Alberto Repici
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres, 98166 Messina, Italy; (A.R.); (A.A.); (A.F.); (D.M.); (S.C.); (E.E.)
| | - Alessio Ardizzone
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres, 98166 Messina, Italy; (A.R.); (A.A.); (A.F.); (D.M.); (S.C.); (E.E.)
| | - Alessia Filippone
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres, 98166 Messina, Italy; (A.R.); (A.A.); (A.F.); (D.M.); (S.C.); (E.E.)
| | - Cristina Colarossi
- Istituto Oncologico del Mediterraneo, Via Penninazzo 7, 95029 Viagrande, Italy; (C.C.); (M.M.)
| | - Marzia Mare
- Istituto Oncologico del Mediterraneo, Via Penninazzo 7, 95029 Viagrande, Italy; (C.C.); (M.M.)
| | - Gabriele Raciti
- IOM Ricerca, Via Penninazzo 11, 95029 Viagrande, Italy;
- Department of Biomedical, Dental and Morphological and Functional Imaging Sciences, University of Messina, 98122 Messina, Italy
| | - Deborah Mannino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres, 98166 Messina, Italy; (A.R.); (A.A.); (A.F.); (D.M.); (S.C.); (E.E.)
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres, 98166 Messina, Italy; (A.R.); (A.A.); (A.F.); (D.M.); (S.C.); (E.E.)
| | - Irene Paterniti
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres, 98166 Messina, Italy; (A.R.); (A.A.); (A.F.); (D.M.); (S.C.); (E.E.)
| | - Emanuela Esposito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres, 98166 Messina, Italy; (A.R.); (A.A.); (A.F.); (D.M.); (S.C.); (E.E.)
| |
Collapse
|
20
|
Malahe SRK, Hartog YD, Rietdijk WJR, van Baarle D, de Kuiper R, Reijerkerk D, Ras AM, Geers D, Diavatopoulos DA, Messchendorp AL, van der Molen RG, Remmerswaal EBM, Bemelman FJ, Gansevoort RT, Hilbrands LB, Sanders JS, GeurtsvanKessel CH, Kho MML, de Vries RD, Reinders MEJ, Baan CC. The role of interleukin-21 in COVID-19 vaccine-induced B cell-mediated immune responses in patients with kidney disease and kidney transplant recipients. Am J Transplant 2023; 23:1411-1424. [PMID: 37270109 PMCID: PMC10234364 DOI: 10.1016/j.ajt.2023.05.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 05/02/2023] [Accepted: 05/22/2023] [Indexed: 06/05/2023]
Abstract
T-cell-mediated help to B cells is required for the development of humoral responses, in which the cytokine interleukin (IL)-21 is key. Here, we studied the mRNA-1273 vaccine-induced SARS-CoV-2-specific memory T-cell IL-21 response, memory B cell response, and immunoglobulin (Ig)G antibody levels in peripheral blood at 28 days after the second vaccination by ELISpot and the fluorescent bead-based multiplex immunoassay, respectively. We included 40 patients with chronic kidney disease (CKD), 34 patients on dialysis, 63 kidney transplant recipients (KTR), and 47 controls. We found that KTR, but not patients with CKD and those receiving dialysis, showed a significantly lower number of SARS-CoV-2-specific IL-21 producing T cells than controls (P < .001). KTR and patients with CKD showed lower numbers of SARS-CoV-2-specific IgG-producing memory B cells when compared with controls (P < .001 and P = .01, respectively). The T-cell IL-21 response was positively associated with the SARS-CoV-2-specific B cell response and the SARS-CoV-2 spike S1-specific IgG antibody levels (both Pearson r = 0.5; P < .001). In addition, SARS-CoV-2-specific B cell responses were shown to be IL-21 dependent. Taken together, we show that IL-21 signaling is important in eliciting robust B cell-mediated immune responses in patients with kidney disease and KTR.
Collapse
Affiliation(s)
- S Reshwan K Malahe
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus MC Transplant Institute, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Yvette den Hartog
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus MC Transplant Institute, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Wim J R Rietdijk
- Department of Hospital Pharmacy, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Debbie van Baarle
- Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands; Center for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, Netherlands
| | - Ronella de Kuiper
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus MC Transplant Institute, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Derek Reijerkerk
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus MC Transplant Institute, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Alicia M Ras
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus MC Transplant Institute, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Daryl Geers
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Dimitri A Diavatopoulos
- Radboud Institute for Molecular Life Sciences, Department of Laboratory Medicine, Laboratory of Medical Immunology, Radboud University Medical Center Nijmegen, Nijmegen, Netherlands; Radboud Center for Infectious Diseases, Radboud University Medical Center Nijmegen, Nijmegen, Netherlands
| | - A Lianne Messchendorp
- Division of Nephrology, Department of Internal Medicine, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Renate G van der Molen
- Radboud Institute for Molecular Life Sciences, Department of Laboratory Medicine, Laboratory of Medical Immunology, Radboud University Medical Center Nijmegen, Nijmegen, Netherlands
| | - Ester B M Remmerswaal
- Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Frederike J Bemelman
- Renal Transplant Unit, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Ron T Gansevoort
- Division of Nephrology, Department of Internal Medicine, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Luuk B Hilbrands
- Department of Nephrology, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Jan-Stephan Sanders
- Division of Nephrology, Department of Internal Medicine, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | | | - Marcia M L Kho
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus MC Transplant Institute, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Rory D de Vries
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Marlies E J Reinders
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus MC Transplant Institute, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Carla C Baan
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus MC Transplant Institute, Erasmus University Medical Center, Rotterdam, Netherlands.
| |
Collapse
|
21
|
Verhoeven D, Grinwis L, Marsman C, Jansen MH, Van Leeuwen EM, Kuijpers TW. B-cell targeting with anti-CD38 daratumumab: implications for differentiation and memory responses. Life Sci Alliance 2023; 6:e202302214. [PMID: 37419630 PMCID: PMC10331639 DOI: 10.26508/lsa.202302214] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 07/09/2023] Open
Abstract
B cell-targeted therapies, such as CD20-targeting mAbs, deplete B cells but do not target the autoantibody-producing plasma cells (PCs). PC-targeting therapies such as daratumumab (anti-CD38) form an attractive approach to treat PC-mediated diseases. CD38 possesses enzymatic and receptor capabilities, which may impact a range of cellular processes including proliferation and differentiation. However, very little is known whether and how CD38 targeting affects B-cell differentiation, in particular for humans beyond cancer settings. Using in-depth in vitro B-cell differentiation assays and signaling pathway analysis, we show that CD38 targeting with daratumumab demonstrated a significant decrease in proliferation, differentiation, and IgG production upon T cell-dependent B-cell stimulation. We found no effect on T-cell activation or proliferation. Furthermore, we demonstrate that daratumumab attenuated the activation of NF-κB in B cells and the transcription of NF-κB-targeted genes. When culturing sorted B-cell subsets with daratumumab, the switched memory B-cell subset was primarily affected. Overall, these in vitro data elucidate novel non-depleting mechanisms by which daratumumab can disturb humoral immune responses. Affecting memory B cells, daratumumab may be used as a therapeutic approach in B cell-mediated diseases other than the currently targeted malignancies.
Collapse
Affiliation(s)
- Dorit Verhoeven
- Amsterdam UMC, University of Amsterdam, Department of Pediatric Immunology, Rheumatology and Infectious Diseases, Emma Children's Hospital, Amsterdam, The Netherlands
- Amsterdam UMC, University of Amsterdam, Department of Experimental Immunology, Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
| | - Lucas Grinwis
- Amsterdam UMC, University of Amsterdam, Department of Experimental Immunology, Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
| | - Casper Marsman
- Sanquin Research and Landsteiner Laboratory, University of Amsterdam, Department of Immunopathology, Amsterdam, The Netherlands
| | - Machiel H Jansen
- Amsterdam UMC, University of Amsterdam, Department of Experimental Immunology, Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
| | - Ester Mm Van Leeuwen
- Amsterdam UMC, University of Amsterdam, Department of Experimental Immunology, Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
| | - Taco W Kuijpers
- Amsterdam UMC, University of Amsterdam, Department of Pediatric Immunology, Rheumatology and Infectious Diseases, Emma Children's Hospital, Amsterdam, The Netherlands
- Amsterdam UMC, University of Amsterdam, Department of Experimental Immunology, Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
| |
Collapse
|
22
|
Álvarez Gómez JA, Salazar-Camarena DC, Román-Fernández IV, Ortiz-Lazareno PC, Cruz A, Muñoz-Valle JF, Marín-Rosales M, Espinoza-García N, Sagrero-Fabela N, Palafox-Sánchez CA. BAFF system expression in double negative 2, activated naïve and activated memory B cells in systemic lupus erythematosus. Front Immunol 2023; 14:1235937. [PMID: 37675114 PMCID: PMC10478082 DOI: 10.3389/fimmu.2023.1235937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 07/28/2023] [Indexed: 09/08/2023] Open
Abstract
Introduction B cell activating factor (BAFF) has an important role in normal B cell development. The aberrant expression of BAFF is related with the autoimmune diseases development like Systemic Lupus Erythematosus (SLE) for promoting self-reactive B cells survival. BAFF functions are exerted through its receptors BAFF-R (BR3), transmembrane activator calcium modulator and cyclophilin ligand interactor (TACI) and B cell maturation antigen (BCMA) that are reported to have differential expression on B cells in SLE. Recently, atypical B cells that express CD11c have been associated with SLE because they are prone to develop into antibody-secreting cells, however the relationship with BAFF remains unclear. This study aims to analyze the BAFF system expression on CXCR5- CD11c+ atypical B cell subsets double negative 2 (DN2), activated naïve (aNAV), switched memory (SWM) and unswitched memory (USM) B cells. Methods Forty-five SLE patients and 15 healthy subjects (HS) were included. Flow cytometry was used to evaluate the expression of the receptors in the B cell subpopulations. Enzyme-linked immunosorbent assay (ELISA) was performed to quantify the soluble levels of BAFF (sBAFF) and IL-21. Results We found increased frequency of CXCR5- CD11c+ atypical B cell subpopulations DN2, aNAV, SWM and USM B cells in SLE patients compared to HS. SLE patients had increased expression of membrane BAFF (mBAFF) and BCMA receptor in classic B cell subsets (DN, NAV, SWM and USM). Also, the CXCR5+ CD11c- DN1, resting naïve (rNAV), SWM and USM B cell subsets showed higher mBAFF expression in SLE. CXCR5- CD11c+ atypical B cell subpopulations DN2, SWM and USM B cells showed strong correlations with the expression of BAFF receptors. The atypical B cells DN2 in SLE showed significant decreased expression of TACI, which correlated with higher IL-21 levels. Also, lower expression of TACI in atypical B cell DN2 was associated with high disease activity. Discussion These results suggest a participation of the BAFF system in CXCR5- CD11c+ atypical B cell subsets in SLE patients. Decreased TACI expression on atypical B cells DN2 correlated with high disease activity in SLE patients supporting the immunoregulatory role of TACI in autoimmunity.
Collapse
Affiliation(s)
- Jhonatan Antonio Álvarez Gómez
- Doctorado en Ciencias en Biología Molecular en Medicina (DCBMM), Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Diana Celeste Salazar-Camarena
- Grupo de Inmunología Molecular, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Ilce Valeria Román-Fernández
- Instituto de Investigación en Ciencias Biomédicas (IICB), Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Pablo César Ortiz-Lazareno
- División de Inmunología, Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social (IMSS), Guadalajara, Jalisco, Mexico
| | - Alvaro Cruz
- Instituto de Investigación en Ciencias Biomédicas (IICB), Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - José Francisco Muñoz-Valle
- Instituto de Investigación en Ciencias Biomédicas (IICB), Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Miguel Marín-Rosales
- Grupo de Inmunología Molecular, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
- Hospital General de Occidente, Secretaría de Salud Jalisco, Guadalajara, Jalisco, Mexico
| | - Noemí Espinoza-García
- Doctorado en Ciencias en Biología Molecular en Medicina (DCBMM), Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Nefertari Sagrero-Fabela
- Doctorado en Ciencias Biomédicas (DCB), Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Claudia Azucena Palafox-Sánchez
- Grupo de Inmunología Molecular, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
- Instituto de Investigación en Ciencias Biomédicas (IICB), Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| |
Collapse
|
23
|
Veh J, Mangold C, Felsen A, Ludwig C, Gerstner L, Reinhardt P, Schrezenmeier H, Fabricius D, Jahrsdörfer B. Phorbol-12-myristate-13-acetate is a potent enhancer of B cells with a granzyme B + regulatory phenotype. Front Immunol 2023; 14:1194880. [PMID: 37588597 PMCID: PMC10426744 DOI: 10.3389/fimmu.2023.1194880] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 07/12/2023] [Indexed: 08/18/2023] Open
Abstract
Introduction The infusion of ex-vivo-generated regulatory B cells may represent a promising novel therapeutic approach for a variety of autoimmune and hyperinflammatory conditions including graft-versus-host disease. Methods Previously, we developed a protocol for the generation of a novel population of regulatory B cells, which are characterized by secretion of enzymatically active granzyme B (GraB cells). This protocol uses recombinant interleukin 21 (IL-21) and goat-derived F(ab)'2 fragments against the human B cell receptor (anti-BCR). Generally, the use of xenogeneic material for the manufacturing of advanced therapy medicinal products should be avoided to prevent adverse immune reactions as well as potential transmission of so far unknown diseases. Results In the present work we demonstrated that phorbol-12-myristate-13-acetate (PMA/TPA), a phorbol ester with a particular analogy to the second messenger diacylglycerol (DAG), is a potent enhancer of IL-21-induced differentiation of pre-activated B cells into GraB cells. The percentage of GraB cells after stimulation of pre-activated B cells with IL-21 and PMA/TPA was not significantly lower compared to stimulation with IL-21 and anti-BCR. Discussion Given that PMA/TPA has already undergone encouraging clinical testing in patients with certain haematological diseases, our results suggest that PMA/TPA may be a safe and feasible alternative for ex-vivo manufacturing of GraB cells.
Collapse
Affiliation(s)
- Johanna Veh
- Department of Transfusion Medicine, Ulm University, Ulm, Germany
- Institute for Clinical Transfusion Medicine and Immunogenetics, German Red Cross Blood Transfusion Service Baden-Württemberg–Hessen and University Hospital Ulm, Ulm, Germany
| | - Charlotte Mangold
- Department of Transfusion Medicine, Ulm University, Ulm, Germany
- Institute for Clinical Transfusion Medicine and Immunogenetics, German Red Cross Blood Transfusion Service Baden-Württemberg–Hessen and University Hospital Ulm, Ulm, Germany
| | - Anja Felsen
- Department of Transfusion Medicine, Ulm University, Ulm, Germany
- Institute for Clinical Transfusion Medicine and Immunogenetics, German Red Cross Blood Transfusion Service Baden-Württemberg–Hessen and University Hospital Ulm, Ulm, Germany
| | - Carolin Ludwig
- Department of Transfusion Medicine, Ulm University, Ulm, Germany
- Institute for Clinical Transfusion Medicine and Immunogenetics, German Red Cross Blood Transfusion Service Baden-Württemberg–Hessen and University Hospital Ulm, Ulm, Germany
| | - Lisa Gerstner
- Department of Transfusion Medicine, Ulm University, Ulm, Germany
- Institute for Clinical Transfusion Medicine and Immunogenetics, German Red Cross Blood Transfusion Service Baden-Württemberg–Hessen and University Hospital Ulm, Ulm, Germany
| | - Peter Reinhardt
- Department of Transfusion Medicine, Ulm University, Ulm, Germany
- Institute for Clinical Transfusion Medicine and Immunogenetics, German Red Cross Blood Transfusion Service Baden-Württemberg–Hessen and University Hospital Ulm, Ulm, Germany
| | - Hubert Schrezenmeier
- Department of Transfusion Medicine, Ulm University, Ulm, Germany
- Institute for Clinical Transfusion Medicine and Immunogenetics, German Red Cross Blood Transfusion Service Baden-Württemberg–Hessen and University Hospital Ulm, Ulm, Germany
| | - Dorit Fabricius
- Department of Pediatrics, University Medical Center Ulm, Ulm, Germany
| | - Bernd Jahrsdörfer
- Department of Transfusion Medicine, Ulm University, Ulm, Germany
- Institute for Clinical Transfusion Medicine and Immunogenetics, German Red Cross Blood Transfusion Service Baden-Württemberg–Hessen and University Hospital Ulm, Ulm, Germany
| |
Collapse
|
24
|
Tan LF, Sakthiswary R, Veshaaliini UR, Shaharir SS, Wahab AA, Aziz S, Sutan R. Decoding the Clinical Significance of Immunoglobulin G4 in Rheumatoid Arthritis. J Clin Med 2023; 12:4716. [PMID: 37510831 PMCID: PMC10380629 DOI: 10.3390/jcm12144716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/21/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
Immunoglobulin (Ig) G4 accounts for 4-6% of the total IgG in a healthy human. Several evidence-based studies have suggested that the level of IgG4 is significantly elevated in autoimmune diseases, including rheumatoid arthritis (RA). The clinical significance of IgG4 in RA with regard to disease activity, severity, and treatment response remains elusive. We consecutively recruited 174 patients with RA from our rheumatology clinic. All subjects were assessed for their disease activity based on DAS28, radiographic joint damage based on the Modified Sharp Score (MSS), the functional capacity based on the Health Assessment Questionnaire -Disability Index (HAQ-DI), and treatment responsiveness using the European League Against Rheumatism (EULAR) response criteria. The serum IgG4 of the recruited subjects was measured via the ELISA test. The mean serum IgG4 level was 60.23 ± 30.08 mg/dL. We found that serum IgG4 had significant positive correlations with disease activity (r = 0.406; p < 0.001), ESR (r = 0.155; p = 0.041), CRP (r = 0.269; p < 0.001), joint damage (r = 0.195; p = 0.012) and functional disability (r = 0.909; p < 0.001). Subjects with elevated IgG4 (IgG4 > 86 mg/dL) had significantly higher ESR, CRP, HAQ-DI, and DAS 28 and a poorer treatment response compared to the group with non-elevated IgG4. After multivariate analysis, only HAQ-DI (OR = 4.229, 95% CI 1.302, 15.751, p = 0.018) and DAS28 (OR = 3.743, 95% CI 1.062, 13.193, p = 0.040) remained significantly associated with elevated serum IgG4. The preliminary findings of this study could suggest serum IgG4 to be a potential biomarker of disease activity and functional disability in RA.
Collapse
Affiliation(s)
- Li Fen Tan
- Department of Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Hospital Canselor Tuanku Muhriz, Kuala Lumpur 56000, Malaysia
| | - Rajalingham Sakthiswary
- Department of Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Hospital Canselor Tuanku Muhriz, Kuala Lumpur 56000, Malaysia
| | - Uma Rajeswaran Veshaaliini
- Department of Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Hospital Canselor Tuanku Muhriz, Kuala Lumpur 56000, Malaysia
| | - Syahrul Sazliyana Shaharir
- Department of Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Hospital Canselor Tuanku Muhriz, Kuala Lumpur 56000, Malaysia
| | - Asrul Abdul Wahab
- Department of Immunology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Hospital Canselor Tuanku Muhriz, Kuala Lumpur 56000, Malaysia
| | - Suraya Aziz
- Department of Radiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Hospital Canselor Tuanku Muhriz, Kuala Lumpur 56000, Malaysia
| | - Rosnah Sutan
- Department of Public Health Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Hospital Canselor Tuanku Muhriz, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
25
|
Abhiraman GC, Bruun TUJ, Caveney NA, Su LL, Saxton RA, Yin Q, Tang S, Davis MM, Jude KM, Garcia KC. A structural blueprint for interleukin-21 signal modulation. Cell Rep 2023; 42:112657. [PMID: 37339051 PMCID: PMC10320830 DOI: 10.1016/j.celrep.2023.112657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 05/12/2023] [Accepted: 06/01/2023] [Indexed: 06/22/2023] Open
Abstract
Interleukin-21 (IL-21) plays a critical role in generating immunological memory by promoting the germinal center reaction, yet clinical use of IL-21 remains challenging because of its pleiotropy and association with autoimmune disease. To better understand the structural basis of IL-21 signaling, we determine the structure of the IL-21-IL-21R-γc ternary signaling complex by X-ray crystallography and a structure of a dimer of trimeric complexes using cryo-electron microscopy. Guided by the structure, we design analogs of IL-21 by introducing substitutions to the IL-21-γc interface. These IL-21 analogs act as partial agonists that modulate downstream activation of pS6, pSTAT3, and pSTAT1. These analogs exhibit differential activity on T and B cell subsets and modulate antibody production in human tonsil organoids. These results clarify the structural basis of IL-21 signaling and offer a potential strategy for tunable manipulation of humoral immunity.
Collapse
Affiliation(s)
- Gita C Abhiraman
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, 279 Campus Drive, Stanford, CA 94305, USA; Program in Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Theodora U J Bruun
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA; Sarafan ChEM-H, Stanford University, Stanford, CA 94305, USA
| | - Nathanael A Caveney
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, 279 Campus Drive, Stanford, CA 94305, USA
| | - Leon L Su
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, 279 Campus Drive, Stanford, CA 94305, USA
| | - Robert A Saxton
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, 279 Campus Drive, Stanford, CA 94305, USA
| | - Qian Yin
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Shaogeng Tang
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA; Sarafan ChEM-H, Stanford University, Stanford, CA 94305, USA
| | - Mark M Davis
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Kevin M Jude
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, 279 Campus Drive, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - K Christopher Garcia
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, 279 Campus Drive, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
26
|
Sun L, Su Y, Jiao A, Wang X, Zhang B. T cells in health and disease. Signal Transduct Target Ther 2023; 8:235. [PMID: 37332039 PMCID: PMC10277291 DOI: 10.1038/s41392-023-01471-y] [Citation(s) in RCA: 133] [Impact Index Per Article: 133.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 06/20/2023] Open
Abstract
T cells are crucial for immune functions to maintain health and prevent disease. T cell development occurs in a stepwise process in the thymus and mainly generates CD4+ and CD8+ T cell subsets. Upon antigen stimulation, naïve T cells differentiate into CD4+ helper and CD8+ cytotoxic effector and memory cells, mediating direct killing, diverse immune regulatory function, and long-term protection. In response to acute and chronic infections and tumors, T cells adopt distinct differentiation trajectories and develop into a range of heterogeneous populations with various phenotype, differentiation potential, and functionality under precise and elaborate regulations of transcriptional and epigenetic programs. Abnormal T-cell immunity can initiate and promote the pathogenesis of autoimmune diseases. In this review, we summarize the current understanding of T cell development, CD4+ and CD8+ T cell classification, and differentiation in physiological settings. We further elaborate the heterogeneity, differentiation, functionality, and regulation network of CD4+ and CD8+ T cells in infectious disease, chronic infection and tumor, and autoimmune disease, highlighting the exhausted CD8+ T cell differentiation trajectory, CD4+ T cell helper function, T cell contributions to immunotherapy and autoimmune pathogenesis. We also discuss the development and function of γδ T cells in tissue surveillance, infection, and tumor immunity. Finally, we summarized current T-cell-based immunotherapies in both cancer and autoimmune diseases, with an emphasis on their clinical applications. A better understanding of T cell immunity provides insight into developing novel prophylactic and therapeutic strategies in human diseases.
Collapse
Affiliation(s)
- Lina Sun
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, China
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, 710061, China
| | - Yanhong Su
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, China
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, 710061, China
| | - Anjun Jiao
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, China
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, 710061, China
| | - Xin Wang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, China
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, 710061, China
| | - Baojun Zhang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China.
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China.
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, China.
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, 710061, China.
| |
Collapse
|
27
|
Chakma CR, Good-Jacobson KL. Requirements of IL-4 during the Generation of B Cell Memory. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:1853-1860. [PMID: 37276051 DOI: 10.4049/jimmunol.2200922] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/02/2023] [Indexed: 06/07/2023]
Abstract
IL-4 has long been established as a key regulator of Th cells and for promoting effective B cell survival and isotype class switching. Yet, despite having been extensively studied, the specific role of IL-4 in generating humoral memory in vivo is unclear. In this review, we explore the recent studies that unravel the cellular sources and spatiotemporal production of IL-4, the relationship between IL-4 and IL-21 during germinal center responses and the formation of Ab-secreting cells, and the current understanding of whether IL-4 promotes or suppresses memory B cell generation in vitro and in vivo.
Collapse
Affiliation(s)
- Clarissa R Chakma
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia; and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Kim L Good-Jacobson
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia; and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
28
|
Sweis JJG, Sweis NWG, Alnaimat F, Jansz J, Liao TWE, Alsakaty A, Azam A, Elmergawy H, Hanson HA, Ascoli C, Rubinstein I, Sweiss N. Immune-mediated lung diseases: A narrative review. Front Med (Lausanne) 2023; 10:1160755. [PMID: 37089604 PMCID: PMC10117988 DOI: 10.3389/fmed.2023.1160755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 03/20/2023] [Indexed: 04/25/2023] Open
Abstract
The role of immunity in the pathogenesis of various pulmonary diseases, particularly interstitial lung diseases (ILDs), is being increasingly appreciated as mechanistic discoveries advance our knowledge in the field. Immune-mediated lung diseases demonstrate clinical and immunological heterogeneity and can be etiologically categorized into connective tissue disease (CTD)-associated, exposure-related, idiopathic, and other miscellaneous lung diseases including sarcoidosis, and post-lung transplant ILD. The immunopathogenesis of many of these diseases remains poorly defined and possibly involves either immune dysregulation, abnormal healing, chronic inflammation, or a combination of these, often in a background of genetic susceptibility. The heterogeneity and complex immunopathogenesis of ILDs complicate management, and thus a collaborative treatment team should work toward an individualized approach to address the unique needs of each patient. Current management of immune-mediated lung diseases is challenging; the choice of therapy is etiology-driven and includes corticosteroids, immunomodulatory drugs such as methotrexate, cyclophosphamide and mycophenolate mofetil, rituximab, or other measures such as discontinuation or avoidance of the inciting agent in exposure-related ILDs. Antifibrotic therapy is approved for some of the ILDs (e.g., idiopathic pulmonary fibrosis) and is being investigated for many others and has shown promising preliminary results. A dire need for advances in the management of immune-mediated lung disease persists in the absence of standardized management guidelines.
Collapse
Affiliation(s)
| | | | - Fatima Alnaimat
- Division of Rheumatology, Department of Internal Medicine, The University of Jordan, Amman, Jordan
| | - Jacqueline Jansz
- Department of Medicine, University of Illinois Chicago, Chicago, IL, United States
| | - Ting-Wei Ernie Liao
- School of Medicine, Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei City, Taiwan
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei City, Taiwan
| | - Alaa Alsakaty
- Division of Rheumatology, Department of Medicine, University of Illinois Chicago, Chicago, IL, United States
| | - Abeera Azam
- Department of Internal Medicine, The University of Texas Health Science Center at Tyler, Tyler, TX, United States
| | - Hesham Elmergawy
- Division of Rheumatology, Department of Medicine, University of Illinois Chicago, Chicago, IL, United States
| | - Hali A. Hanson
- UIC College of Pharmacy, University of Illinois Chicago, Chicago, IL, United States
| | - Christian Ascoli
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois Chicago, Chicago, IL, United States
| | - Israel Rubinstein
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois Chicago, Chicago, IL, United States
- Research Service, Jesse Brown VA Medical Center, Chicago, IL, United States
| | - Nadera Sweiss
- Division of Rheumatology, Department of Medicine, University of Illinois Chicago, Chicago, IL, United States
| |
Collapse
|
29
|
Singh H, Kumar U, Senapati S. Translational implications of humoral and cellular immune dysfunction in granulomatosis with polyangiitis. Cytokine 2023; 164:156154. [PMID: 36812668 DOI: 10.1016/j.cyto.2023.156154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 02/11/2023] [Indexed: 02/22/2023]
Abstract
Granulomatosis with polyangiitis (GPA) is a rare systemic ANCA (Anti-neutrophil cytoplasmic antibodies) associated vasculitis (AAV). In the last couple of decades, GPA has emerged as a disease of concern due to rapid increase in the prevalence and incidence especially in developing countries. Unknown aetiology and rapid progression have made GPA a critical disease. Thus, establishing specific tools to facilitate early and faster disease diagnosis and efficient disease management has immense importance. GPA may develop in genetically predisposed individuals on receiving the external stimulus (i.e. microbial pathogen, pollutant etc.) that triggers the immune response. B-cell activating factor (BAFF) produced by the neutrophils, promotes the B-cell maturation and survival which leads to increased ANCA production. Abnormal B-cell and T-cell proliferation and their cytokine response plays a major role in disease pathogenesis and granuloma formation. ANCA interacts with neutrophils and induces the neutrophil extracellular traps (NETs) formation and reactive oxygen species (ROS) production which leads to the endothelial cell injury. This review article summarizes the critical pathological events and how cytokines and immune cells shape the GPA pathogenesis. Decoding this complex network would facilitate in developing tools for diagnosis, prognosis and disease management. Recently developed specific monoclonal antibodies (MAbs) targeting cytokines and immune cells are being used for safer treatment and achieving longer remission.
Collapse
Affiliation(s)
- Harinder Singh
- Immunogenomics Laboratory, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, India.
| | - Uma Kumar
- Department of Rheumatology, All India Institute of Medical Sciences, New Delhi, India.
| | - Sabyasachi Senapati
- Immunogenomics Laboratory, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, India.
| |
Collapse
|
30
|
Revisiting the Role of the CXCL13/CXCR5-Associated Immune Axis in Melanoma: Potential Implications for Anti-PD-1-Related Biomarker Research. Life (Basel) 2023; 13:life13020553. [PMID: 36836910 PMCID: PMC9958642 DOI: 10.3390/life13020553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023] Open
Abstract
CXCL13 is a potent chemoattractant cytokine that promotes the migration of cells expressing its cognate receptor, CXCR5. Accordingly, T follicular helper cells and B cells migrate towards B cell follicles in lymph nodes, where the resulting spatial proximity promotes B cell/T cell interaction and antibody formation. Moreover, effector cells of the CXCL13/CXCR5-associated immune axis express PD-1, with corresponding circulating cells occurring in the blood. The formation of so-called ectopic or tertiary lymphoid structures, recently detected in different cancer types, represents an integral part of this axis, particularly in the context of its emerging role in anti-tumor defense. These aspects of the CXCL13/CXCR5-associated immune axis are highlighted in this review, which focuses on cutaneous malignant melanoma. Specifically, we elaborate on the role of this important immune axis as a possible ancillary target of immune checkpoint inhibition with anti-PD-1 antibodies in different therapeutic settings and as a potential source of predictive biomarkers regarding treatment efficacy.
Collapse
|
31
|
Hu M, Notarbartolo S, Foglierini M, Jovic S, Mele F, Jarrossay D, Lanzavecchia A, Cassotta A, Sallusto F. Clonal composition and persistence of antigen-specific circulating T follicular helper cells. Eur J Immunol 2023; 53:e2250190. [PMID: 36480793 PMCID: PMC10107804 DOI: 10.1002/eji.202250190] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/16/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022]
Abstract
T follicular helper (TFH ) cells play an essential role in promoting B cell responses and antibody affinity maturation in germinal centers (GC). A subset of memory CD4+ T cells expressing the chemokine receptor CXCR5 has been described in human blood as phenotypically and clonally related to GC TFH cells. However, the antigen specificity and relationship of these circulating TFH (cTFH ) cells with other memory CD4+ T cells remain poorly defined. Combining antigenic stimulation and T cell receptor (TCR) Vβ sequencing, we found T cells specific to tetanus toxoid (TT), influenza vaccine (Flu), or Candida albicans (C.alb) in both cTFH and non-cTFH subsets, although with different frequencies and effector functions. Interestingly, cTFH and non-cTFH cells specific for C.alb or TT had a largely overlapping TCR Vβ repertoire while the repertoire of Flu-specific cTFH and non-cTFH cells was distinct. Furthermore, Flu-specific but not C.alb-specific PD-1+ cTFH cells had a "GC TFH -like" phenotype, with overexpression of IL21, CXCL13, and BCL6. Longitudinal analysis of serial blood donations showed that Flu-specific cTFH and non-cTFH cells persisted as stable repertoires for years. Collectively, our study provides insights on the relationship of cTFH with non-cTFH cells and on the heterogeneity and persistence of antigen-specific human cTFH cells.
Collapse
Affiliation(s)
- Mengyun Hu
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland.,Present address: Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA, USA
| | - Samuele Notarbartolo
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland.,Present address: National Institute of Molecular Genetics, Milano, Italy
| | - Mathilde Foglierini
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland.,Present address: Service d'immunologie et d'allergie, CHUV, Lausanne, Switzerland
| | - Sandra Jovic
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Federico Mele
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - David Jarrossay
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | | | - Antonino Cassotta
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Federica Sallusto
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland.,Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
32
|
Julé AM, Lam KP, Taylor M, Hoyt KJ, Wei K, Gutierrez-Arcelus M, Case SM, Chandler M, Chang MH, Cohen EM, Dedeoglu F, Halyabar O, Hausmann J, Hazen MM, Janssen E, Lo J, Lo MS, Meidan E, Roberts JE, Wobma H, Son MBF, Sundel RP, Lee PY, Sage PT, Chatila TA, Nigrovic PA, Rao DA, Henderson LA. Disordered T cell-B cell interactions in autoantibody-positive inflammatory arthritis. Front Immunol 2023; 13:1068399. [PMID: 36685593 PMCID: PMC9849554 DOI: 10.3389/fimmu.2022.1068399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/12/2022] [Indexed: 01/06/2023] Open
Abstract
T peripheral helper (Tph) cells, identified in the synovium of adults with seropositive rheumatoid arthritis, drive B cell maturation and antibody production in non-lymphoid tissues. We sought to determine if similarly dysregulated T cell-B cell interactions underlie another form of inflammatory arthritis, juvenile oligoarthritis (oligo JIA). Clonally expanded Tph cells able to promote B cell antibody production preferentially accumulated in the synovial fluid (SF) of oligo JIA patients with antinuclear antibodies (ANA) compared to autoantibody-negative patients. Single-cell transcriptomics enabled further definition of the Tph gene signature in inflamed tissues and showed that Tph cells from ANA-positive patients upregulated genes associated with B cell help to a greater extent than patients without autoantibodies. T cells that co-expressed regulatory T and B cell-help factors were identified. The phenotype of these Tph-like Treg cells suggests an ability to restrain T cell-B cell interactions in tissues. Our findings support the central role of disordered T cell-help to B cells in autoantibody-positive arthritides.
Collapse
Affiliation(s)
- Amélie M. Julé
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Ki Pui Lam
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Maria Taylor
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Kacie J. Hoyt
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Kevin Wei
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Maria Gutierrez-Arcelus
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, United States
| | - Siobhan M. Case
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Mia Chandler
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Margaret H. Chang
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Ezra M. Cohen
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
- Division of Rheumatology, Boston Medical Center, Boston University School of Medicine, Boston, MA, United States
| | - Fatma Dedeoglu
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Olha Halyabar
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Jonathan Hausmann
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Melissa M. Hazen
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Erin Janssen
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Jeffrey Lo
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Mindy S. Lo
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Esra Meidan
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Jordan E. Roberts
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Holly Wobma
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Mary Beth F. Son
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Robert P. Sundel
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Pui Y. Lee
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Peter T. Sage
- Transplantation Research Center, Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Talal A. Chatila
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Peter A. Nigrovic
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Deepak A. Rao
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Lauren A. Henderson
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
33
|
Frede N, Lorenzetti R, Hüppe JM, Janowska I, Troilo A, Schleyer MT, Venhoff AC, Voll RE, Thiel J, Venhoff N, Rizzi M. JAK inhibitors differentially modulate B cell activation, maturation and function: A comparative analysis of five JAK inhibitors in an in-vitro B cell differentiation model and in patients with rheumatoid arthritis. Front Immunol 2023; 14:1087986. [PMID: 36776828 PMCID: PMC9908612 DOI: 10.3389/fimmu.2023.1087986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/09/2023] [Indexed: 01/27/2023] Open
Abstract
Background Janus kinase (JAK) inhibitors have been approved for the treatment of several immune-mediated diseases (IMIDs) including rheumatoid arthritis (RA) and psoriatic arthritis and are in clinical trials for numerous other IMIDs. However, detailed studies investigating the effects of different JAK inhibitors on B cells are missing. Within this study, we therefore aimed to characterize the effect of JAK inhibition on the B cell compartment. Methods To this end, we investigated the B cell compartment under JAK inhibition and compared the specific effects of the different JAK inhibitors tofacitinib (pan-JAK), baricitinib (JAK1/2), ruxolitinib (JAK1/2), upadacitinib (JAK1/2) as well as filgotinib (selective JAK1) on in-vitro B cell activation, proliferation, and class switch recombination and involved pathways. Results While B cell phenotyping of RA patients showed an increase in marginal zone (MZ) B cells under JAK inhibition, comparison with healthy donors revealed that the relative frequency of MZ B cells was still lower compared to healthy controls. In an in-vitro model of T-cell-independent B cell activation we observed that JAK1/2 and selective JAK1 inhibitor treatment led to a dose-dependent decrease of total B cell numbers. We detected an altered B cell differentiation with a significant increase in MZ-like B cells and an increase in plasmablast differentiation in the first days of culture, most pronounced with the pan-JAK inhibitor tofacitinib, although there was no increase in immunoglobulin secretion in-vitro. Notably, we further observed a profound reduction of switched memory B cell formation, especially with JAK1/2 inhibition. JAK inhibitor treatment led to a dose-dependent reduction of STAT3 expression and phosphorylation as well as STAT3 target gene expression and modulated the secretion of pro- and anti-inflammatory cytokines by B cells. Conclusion JAK inhibition has a major effect on B cell activation and differentiation, with differential outcomes between JAK inhibitors hinting towards distinct and unique effects on B cell homeostasis.
Collapse
Affiliation(s)
- Natalie Frede
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Raquel Lorenzetti
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Janika M Hüppe
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Iga Janowska
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Arianna Troilo
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Marei-Theresa Schleyer
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ana C Venhoff
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Reinhard E Voll
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jens Thiel
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Division of Rheumatology and Clinical Immunology, Medical University Graz, Graz, Austria
| | - Nils Venhoff
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Marta Rizzi
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
34
|
Helm M, Huang SB, Gollner K, Gollner U, Jérôme V, Freitag R. Cultivation of Encapsulated Primary Human B Lymphocytes: A First Step toward a Bioartificial Germinal Center. Macromol Biosci 2023; 23:e2200256. [PMID: 36205699 DOI: 10.1002/mabi.202200256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/22/2022] [Indexed: 01/19/2023]
Abstract
Polyelectrolyte microcapsules based on sodium cellulose sulfate (SCS) and poly-diallyl-dimethyl-ammonium chloride (PDADMAC) have previously been proposed as a suitable ex vivo microenvironment for the cultivation and differentiation of primary human T lymphocytes. Here, the same system is investigated for the cultivation of human primary B cells derived from adult tonsillar tissue. Proliferation and differentiation into subtypes are followed and compared to suspension cultures of B cells from the same pool performed in parallel. Total cell expansion is somewhat lower in the capsules than in the suspension cultures. More importantly, however, the differentiation of the initially mainly memory B cells into various subtypes, in particular into plasma cell (PC), shows significant differences. Clearly, the microenvironment provided by the microcapsules is beneficial for an accelerated induction of a germinal center-like B cell phenotype and afterward supports the long-term survival of the PC cells. Then, varying the encapsulation conditions (i.e., presence of human serum and dedicated cytokines in the capsule core) provides a tool for finetuning the B cell response. Hence, this methodology is suggested to pave the way toward ex vivo development of human immune organoids.
Collapse
Affiliation(s)
- Moritz Helm
- Process Biotechnology, University of Bayreuth, 95447, Bayreuth, Germany
| | - Songyan B Huang
- Process Biotechnology, University of Bayreuth, 95447, Bayreuth, Germany
| | - Katrin Gollner
- Praxis am Schießgraben, Schießgraben 21, 95326, Kulmbach, Germany
| | - Ulrich Gollner
- Praxis am Schießgraben, Schießgraben 21, 95326, Kulmbach, Germany
| | - Valérie Jérôme
- Process Biotechnology, University of Bayreuth, 95447, Bayreuth, Germany
| | - Ruth Freitag
- Process Biotechnology, University of Bayreuth, 95447, Bayreuth, Germany
| |
Collapse
|
35
|
Long SA, Buckner JH. Clinical and experimental treatment of type 1 diabetes. Clin Exp Immunol 2022; 210:105-113. [PMID: 35980300 PMCID: PMC9750829 DOI: 10.1093/cei/uxac077] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/26/2022] [Accepted: 08/17/2022] [Indexed: 01/25/2023] Open
Abstract
Type 1 diabetes (T1D) is an autoimmune disease resulting in the destruction of the insulin-producing pancreatic beta cells. Disease progression occurs along a trajectory from genetic risk, the development of islet autoantibodies, and autoreactive T cells ultimately progressing to clinical disease. Natural history studies and mechanistic studies linked to clinical trials have provided insight into the role of the immune system in disease pathogenesis. Here, we review our current understanding of the underlying etiology of T1D, focusing on the immune cell types that have been implicated in progression from pre-symptomatic T1D to clinical diagnosis and established disease. This knowledge has been foundational for the development of immunotherapies aimed at the prevention and treatment of T1D.
Collapse
Affiliation(s)
- S Alice Long
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| | - Jane H Buckner
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| |
Collapse
|
36
|
Cohn IS, Henrickson SE, Striepen B, Hunter CA. Immunity to Cryptosporidium: Lessons from Acquired and Primary Immunodeficiencies. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:2261-2268. [PMID: 36469846 PMCID: PMC9731348 DOI: 10.4049/jimmunol.2200512] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 08/30/2022] [Indexed: 01/04/2023]
Abstract
Cryptosporidium is a ubiquitous protozoan parasite that infects gut epithelial cells and causes self-limited diarrhea in immunocompetent individuals. However, in immunocompromised hosts with global defects in T cell function, this infection can result in chronic, life-threatening disease. In addition, there is a subset of individuals with primary immunodeficiencies associated with increased risk for life-threatening cryptosporidiosis. These patients highlight MHC class II expression, CD40-CD40L interactions, NF-κB signaling, and IL-21 as key host factors required for resistance to this enteric pathogen. Understanding which immune deficiencies do (or do not) lead to increased risk for severe Cryptosporidium may reveal mechanisms of parasite restriction and aid in the identification of novel strategies to manage this common pathogen in immunocompetent and deficient hosts.
Collapse
Affiliation(s)
- Ian S. Cohn
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sarah E. Henrickson
- Institute for Immunology, University of Pennsylvania, Philadelphia, PA, USA
- Division of Allergy Immunology, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Boris Striepen
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Christopher A. Hunter
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
37
|
Pelham SJ, Caldirola MS, Avery DT, Mackie J, Rao G, Gothe F, Peters TJ, Guerin A, Neumann D, Vokurkova D, Hwa V, Zhang W, Lyu SC, Chang I, Manohar M, Nadeau KC, Gaillard MI, Bezrodnik L, Iotova V, Zwirner NW, Gutierrez M, Al-Herz W, Goodnow CC, Vargas-Hernández A, Forbes Satter LR, Hambleton S, Deenick EK, Ma CS, Tangye SG. STAT5B restrains human B-cell differentiation to maintain humoral immune homeostasis. J Allergy Clin Immunol 2022; 150:931-946. [PMID: 35469842 DOI: 10.1016/j.jaci.2022.04.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 04/10/2022] [Accepted: 04/14/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Lymphocyte differentiation is regulated by coordinated actions of cytokines and signaling pathways. IL-21 activates STAT1, STAT3, and STAT5 and is fundamental for the differentiation of human B cells into memory cells and antibody-secreting cells. While STAT1 is largely nonessential and STAT3 is critical for this process, the role of STAT5 is unknown. OBJECTIVES This study sought to delineate unique roles of STAT5 in activation and differentiation of human naive and memory B cells. METHODS STAT activation was assessed by phospho-flow cytometry cell sorting. Differential gene expression was determined by RNA-sequencing and quantitative PCR. The requirement for STAT5B in B-cell and CD4+ T-cell differentiation was assessed using CRISPR-mediated STAT5B deletion from B-cell lines and investigating primary lymphocytes from individuals with germline STAT5B mutations. RESULTS IL-21 activated STAT5 and strongly induced SOCS3 in human naive, but not memory, B cells. Deletion of STAT5B in B-cell lines diminished IL-21-mediated SOCS3 induction. PBMCs from STAT5B-null individuals contained expanded populations of immunoglobulin class-switched B cells, CD21loTbet+ B cells, and follicular T helper cells. IL-21 induced greater differentiation of STAT5B-deficient B cells into plasmablasts in vitro than B cells from healthy donors, correlating with higher expression levels of transcription factors promoting plasma cell formation. CONCLUSIONS These findings reveal novel roles for STAT5B in regulating IL-21-induced human B-cell differentiation. This is achieved by inducing SOCS3 to attenuate IL-21 signaling, and BCL6 to repress class switching and plasma cell generation. Thus, STAT5B is critical for restraining IL-21-mediated B-cell differentiation. These findings provide insights into mechanisms underpinning B-cell responses during primary and subsequent antigen encounter and explain autoimmunity and dysfunctional humoral immunity in STAT5B deficiency.
Collapse
Affiliation(s)
- Simon J Pelham
- Garvan Institute of Medical Research, Darlinghurst, Australia; St Vincent's Clinical School, Faculty of Medicine and Health, University of New South Wales, Sydney, Australia
| | - Maria Soledad Caldirola
- Grupo de Inmunología, Instituto Multidisciplinario de Investigaciones en Patologías Pediátricas, Hospital de Niños "Dr. Ricardo Gutierrez," Buenos Aires, Argentina
| | | | - Joseph Mackie
- Garvan Institute of Medical Research, Darlinghurst, Australia; St Vincent's Clinical School, Faculty of Medicine and Health, University of New South Wales, Sydney, Australia
| | - Geetha Rao
- Garvan Institute of Medical Research, Darlinghurst, Australia
| | - Florian Gothe
- Immunity and Inflammation Theme, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom; Department of Pediatrics, Dr von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Timothy J Peters
- Garvan Institute of Medical Research, Darlinghurst, Australia; St Vincent's Clinical School, Faculty of Medicine and Health, University of New South Wales, Sydney, Australia
| | - Antoine Guerin
- Garvan Institute of Medical Research, Darlinghurst, Australia; St Vincent's Clinical School, Faculty of Medicine and Health, University of New South Wales, Sydney, Australia
| | - David Neumann
- Faculty of Medicine, University Hospital Hradec Kralove, Charles University, Prague, Czech Republic
| | - Doris Vokurkova
- Faculty of Medicine, University Hospital Hradec Kralove, Charles University, Prague, Czech Republic
| | - Vivian Hwa
- Department of Pediatrics, Division of Endocrinology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Wenming Zhang
- Department of Surgery, Stanford University, Stanford, Calif
| | - Shu-Chen Lyu
- Division of Pulmonary, Allergy, and Critical Care Medicine, Stanford University, Stanford, Calif; Sean N. Parker Center for Allergy and Asthma Research, Stanford, Calif
| | - Iris Chang
- Division of Pulmonary, Allergy, and Critical Care Medicine, Stanford University, Stanford, Calif; Sean N. Parker Center for Allergy and Asthma Research, Stanford, Calif
| | - Monali Manohar
- Sean N. Parker Center for Allergy and Asthma Research, Stanford, Calif; Division of Pulmonary, Allergy, and Critical Care Medicine, Stanford University, Stanford, Calif
| | - Kari C Nadeau
- Sean N. Parker Center for Allergy and Asthma Research, Stanford, Calif; Division of Pulmonary, Allergy, and Critical Care Medicine, Stanford University, Stanford, Calif
| | - Maria Isabel Gaillard
- Grupo de Inmunología, Instituto Multidisciplinario de Investigaciones en Patologías Pediátricas, Hospital de Niños "Dr. Ricardo Gutierrez," Buenos Aires, Argentina
| | - Liliana Bezrodnik
- Grupo de Inmunología, Instituto Multidisciplinario de Investigaciones en Patologías Pediátricas, Hospital de Niños "Dr. Ricardo Gutierrez," Buenos Aires, Argentina; Center for Clinical Immunology, Buenos Aires, Argentina
| | - Violeta Iotova
- Department of Pediatrics, Medical University-Varna, Varna, Bulgaria; Pediatric Endocrinology, University Hospital "St Marina," Varna, Bulgaria
| | - Norberto Walter Zwirner
- Instituto de Biología y Medicina Experimental, Laboratorio de Fisiopatología de la Inmunidad Innata, Buenos Aires, Argentina; Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina
| | - Mavel Gutierrez
- Rocky Mountain Hospital for Children/Presbyterian St Luke's Medical Center, Denver, Colo
| | - Waleed Al-Herz
- Department of Pediatrics, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Christopher C Goodnow
- Garvan Institute of Medical Research, Darlinghurst, Australia; St Vincent's Clinical School, Faculty of Medicine and Health, University of New South Wales, Sydney, Australia
| | - Alexander Vargas-Hernández
- Department of Pediatrics, Baylor College of Medicine, Houston, Tex; Department of Allergy, Immunology, and Retrovirology, William T. Shearer Center for Human Immunobiology, Texas Children's Hospital, Houston, Tex
| | - Lisa R Forbes Satter
- Department of Pediatrics, Baylor College of Medicine, Houston, Tex; Department of Allergy, Immunology, and Retrovirology, William T. Shearer Center for Human Immunobiology, Texas Children's Hospital, Houston, Tex
| | - Sophie Hambleton
- Immunity and Inflammation Theme, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom; Great North Children's Hospital, Newcastle upon Tyne Hospitals, National Health Service Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Elissa K Deenick
- Garvan Institute of Medical Research, Darlinghurst, Australia; St Vincent's Clinical School, Faculty of Medicine and Health, University of New South Wales, Sydney, Australia
| | - Cindy S Ma
- Garvan Institute of Medical Research, Darlinghurst, Australia; St Vincent's Clinical School, Faculty of Medicine and Health, University of New South Wales, Sydney, Australia
| | - Stuart G Tangye
- Garvan Institute of Medical Research, Darlinghurst, Australia; St Vincent's Clinical School, Faculty of Medicine and Health, University of New South Wales, Sydney, Australia.
| |
Collapse
|
38
|
Marsman C, Verstegen NJM, Streutker M, Jorritsma T, Boon L, ten Brinke A, van Ham SM. Termination of CD40L co-stimulation promotes human B cell differentiation into antibody-secreting cells. Eur J Immunol 2022; 52:1662-1675. [PMID: 36073009 PMCID: PMC9825913 DOI: 10.1002/eji.202249972] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 08/01/2022] [Accepted: 09/05/2022] [Indexed: 01/11/2023]
Abstract
Human naïve B cells are notoriously difficult to differentiate into antibody-secreting cells (ASCs) in vitro while maintaining sufficient cell numbers to evaluate the differentiation process. B cells require T follicular helper (TFH ) cell-derived signals like CD40L and IL-21 during germinal center (GC) responses to undergo differentiation into ASCs. Cognate interactions between B and TFH cells are transient; after TFH contact, B cells cycle between GC light and dark zones where TFH contact is present and absent, respectively. Here, we elucidated that the efficacy of naïve B cells in ACS differentiation is dramatically enhanced by the release of CD40L stimulation. Multiparameter phospho-flow and transcription factor (TF)-flow cytometry revealed that termination of CD40L stimulation downmodulates NF-κB and STAT3 signaling. Furthermore, the termination of CD40 signaling downmodulates C-MYC, while promoting ASC TFs BLIMP1 and XBP-1s. Reduced levels of C-MYC in the differentiating B cells are later associated with crucial downmodulation of the B cell signature TF PAX5 specifically upon the termination of CD40 signaling, resulting in the differentiation of BLIMP1 high expressing cells into ASCs. The data presented here are the first steps to provide further insights how the transient nature of CD40 signaling is in fact needed for efficient human naïve B cell differentiation to ASCs.
Collapse
Affiliation(s)
- Casper Marsman
- Sanquin ResearchDepartment of ImmunopathologyUniversity of AmsterdamAmsterdamThe Netherlands,Landsteiner Laboratory, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Niels JM Verstegen
- Sanquin ResearchDepartment of ImmunopathologyUniversity of AmsterdamAmsterdamThe Netherlands,Landsteiner Laboratory, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Marij Streutker
- Sanquin ResearchDepartment of ImmunopathologyUniversity of AmsterdamAmsterdamThe Netherlands,Landsteiner Laboratory, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Tineke Jorritsma
- Sanquin ResearchDepartment of ImmunopathologyUniversity of AmsterdamAmsterdamThe Netherlands,Landsteiner Laboratory, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | | | - Anja ten Brinke
- Sanquin ResearchDepartment of ImmunopathologyUniversity of AmsterdamAmsterdamThe Netherlands,Landsteiner Laboratory, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - S. Marieke van Ham
- Sanquin ResearchDepartment of ImmunopathologyUniversity of AmsterdamAmsterdamThe Netherlands,Swammerdam Institute for Life SciencesUniversity of AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
39
|
A novel platform for the production of autologous human antibodies. Anticancer Drugs 2022; 33:903-912. [PMID: 36136990 DOI: 10.1097/cad.0000000000001380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
At Research Genetic Cancer Centre, we have developed a novel method for the production of human monoclonal antibodies against a specific antigen of our choice (c-met) using isolated human blood cells. By mimicking nature, dendritic, CD4 and CD19 cells from healthy volunteers were driven towards Th2 immunity. Cell activation was succeeded by a cytokine cocktail, and IgG production was promoted by IgG class switching factors. IgG secretion was determined using both enzyme linked immunosorbent assay (ELISA) and Western blot as well as immunoglobulin heavy chain gamma polypeptide gene expression. Secreted antibody was further purified by affinity column chromatography against c-met peptide. Anti-c-met activity was determined using the purified antibody as primary antibody for c-met detection by ELISA, Western blot and flow cytometry. Finally, anti-c-met antibody efficiency was determined by MCF-7 viability assay. Plasma cell formation and IgG secretion took place after 6 days of culture. Plasma cells produced anti-c-met IgG antibody that significantly decreased MCF-7 breast cancer cell proliferation. To our knowledge, this is the first platform of its kind, generating fully human antibodies-on-demand using patient's own cells, bringing personalized, targeted therapy for cancer one step closer.
Collapse
|
40
|
Vlachiotis S, Abolhassani H. Transcriptional regulation of B cell class-switch recombination: the role in development of noninfectious complications. Expert Rev Clin Immunol 2022; 18:1145-1154. [DOI: 10.1080/1744666x.2022.2123795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Stelios Vlachiotis
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Hassan Abolhassani
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
41
|
Chen HY, Almonte-Loya A, Lay FY, Hsu M, Johnson E, González-Avalos E, Yin J, Bruno RS, Ma Q, Ghoneim HE, Wozniak DJ, Harrison FE, Lio CWJ. Epigenetic remodeling by vitamin C potentiates plasma cell differentiation. eLife 2022; 11:73754. [PMID: 36069787 PMCID: PMC9451539 DOI: 10.7554/elife.73754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 08/19/2022] [Indexed: 11/13/2022] Open
Abstract
Ascorbate (vitamin C) is an essential micronutrient in humans. The severe chronic deficiency of ascorbate, termed scurvy, has long been associated with increased susceptibility to infections. How ascorbate affects the immune system at the cellular and molecular levels remained unclear. From a micronutrient analysis, we identified ascorbate as a potent enhancer for antibody response by facilitating the IL-21/STAT3-dependent plasma cell differentiation in mouse and human B cells. The effect of ascorbate is unique as other antioxidants failed to promote plasma cell differentiation. Ascorbate is especially critical during early B cell activation by poising the cells to plasma cell lineage without affecting the proximal IL-21/STAT3 signaling and the overall transcriptome. As a cofactor for epigenetic enzymes, ascorbate facilitates TET2/3-mediated DNA modification and demethylation of multiple elements at the Prdm1 locus. DNA demethylation augments STAT3 association at the Prdm1 promoter and a downstream enhancer, thus ensuring efficient gene expression and plasma cell differentiation. The results suggest that an adequate level of ascorbate is required for antibody response and highlight how micronutrients may regulate the activity of epigenetic enzymes to regulate gene expression. Our findings imply that epigenetic enzymes can function as sensors to gauge the availability of metabolites and influence cell fate decisions.
Collapse
Affiliation(s)
- Heng-Yi Chen
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States
| | - Ana Almonte-Loya
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States.,Division of Gene Expression and Signaling, La Jolla Institute for Immunology, San Diego, CA, United States
| | - Fang-Yun Lay
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States
| | - Michael Hsu
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States
| | - Eric Johnson
- Division of Gene Expression and Signaling, La Jolla Institute for Immunology, San Diego, CA, United States
| | - Edahí González-Avalos
- Division of Gene Expression and Signaling, La Jolla Institute for Immunology, San Diego, CA, United States
| | - Jieyun Yin
- Division of Gene Expression and Signaling, La Jolla Institute for Immunology, San Diego, CA, United States
| | - Richard S Bruno
- Human Nutrition Program, The Ohio State University, Columbus, OH, United States
| | - Qin Ma
- Biomedical Informatics, The Ohio State University, Columbus, OH, United States.,Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Hazem E Ghoneim
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States.,Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Daniel J Wozniak
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States
| | - Fiona E Harrison
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Chan-Wang Jerry Lio
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States.,Division of Gene Expression and Signaling, La Jolla Institute for Immunology, San Diego, CA, United States.,Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
42
|
Critical role of m 6A modification in T-helper cell disorders. Mol Immunol 2022; 151:1-10. [PMID: 36058047 DOI: 10.1016/j.molimm.2022.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/08/2022] [Accepted: 08/24/2022] [Indexed: 11/20/2022]
Abstract
Diseases with T-helper cell subset imbalance involve multiple systems and organs. In addition to this, the pathogenesis of these diseases is always complex, and involves Th1, Th2, Th9, Th17, Th22, and Tfh cells. T-helper cell subset imbalance mediates immune responses to various pathogenic factors, by secreting specific cytokines. Although several studies have revealed the specific mechanisms of the occurrence and development of these diseases from different aspects, there is still a need for more comprehensive and in-depth studies that can compensate for the corresponding gaps in the diagnosis, targeted therapy, and prognosis of these diseases. N6-methyladenosine(m6A) modification is the most prevalent and abundant post-transcriptional modification in eukaryotic RNAs. In recent years, the critical role of m6A modification has been confirmed in multiple diseases with T-helper cell subset imbalance. m6A modification affects the immune cell development, inflammatory processes, biological behaviour of tumours, and immune response in these diseases. In this review, we focussed on how the enzymes involved in m6A modification, directly or indirectly, influence the pathogenesis and phenotype of various diseases with T-helper cell subset imbalance, and could therefore, serve as potential diagnostic markers and therapeutic targets for these diseases. In addition, this review also discusses the focus of future research in this area. Finally, we summarise the prospects of m6A modification in immunotherapy and chemotherapy.
Collapse
|
43
|
Quast I, Dvorscek AR, Pattaroni C, Steiner TM, McKenzie CI, Pitt C, O'Donnell K, Ding Z, Hill DL, Brink R, Robinson MJ, Zotos D, Tarlinton DM. Interleukin-21, acting beyond the immunological synapse, independently controls T follicular helper and germinal center B cells. Immunity 2022; 55:1414-1430.e5. [PMID: 35896116 DOI: 10.1016/j.immuni.2022.06.020] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 04/07/2022] [Accepted: 06/24/2022] [Indexed: 02/06/2023]
Abstract
Germinal centers (GCs), transient structures within B cell follicles and central to affinity maturation, require the coordinated behavior of T and B cells. IL-21, a pleiotropic T cell-derived cytokine, is key to GC biology through incompletely understood mechanisms. By genetically restricting production and receipt of IL-21 in vivo, we reveal how its independent actions on T and B cells combine to regulate the GC. IL-21 established the magnitude of the GC B cell response by promoting CD4+ T cell expansion and differentiation in a dose-dependent manner and with paracrine activity. Within GC, IL-21 specifically promoted B cell centroblast identity and, when bioavailability was high, plasma cell differentiation. Critically, these actions may occur irrespective of cognate T-B interactions, making IL-21 a general promoter of growth as distinct to a mediator of affinity-driven selection via synaptic delivery. This promiscuous activity of IL-21 explains the consequences of IL-21 deficiency on antibody-based immunity.
Collapse
Affiliation(s)
- Isaak Quast
- Department of Immunology and Pathology, Monash University, 89 Commercial Rd, Melbourne, VIC 3004, Australia.
| | - Alexandra R Dvorscek
- Department of Immunology and Pathology, Monash University, 89 Commercial Rd, Melbourne, VIC 3004, Australia
| | - Celine Pattaroni
- Department of Immunology and Pathology, Monash University, 89 Commercial Rd, Melbourne, VIC 3004, Australia
| | - Thiago M Steiner
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St, Melbourne, VIC 3000, Australia
| | - Craig I McKenzie
- Department of Immunology and Pathology, Monash University, 89 Commercial Rd, Melbourne, VIC 3004, Australia
| | - Catherine Pitt
- Department of Immunology and Pathology, Monash University, 89 Commercial Rd, Melbourne, VIC 3004, Australia
| | - Kristy O'Donnell
- Department of Immunology and Pathology, Monash University, 89 Commercial Rd, Melbourne, VIC 3004, Australia
| | - Zhoujie Ding
- Department of Immunology and Pathology, Monash University, 89 Commercial Rd, Melbourne, VIC 3004, Australia
| | - Danika L Hill
- Department of Immunology and Pathology, Monash University, 89 Commercial Rd, Melbourne, VIC 3004, Australia
| | - Robert Brink
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia; St. Vincent's Clinical School, UNSW Sydney, Sydney, NSW 2010, Australia
| | - Marcus J Robinson
- Department of Immunology and Pathology, Monash University, 89 Commercial Rd, Melbourne, VIC 3004, Australia
| | - Dimitra Zotos
- Department of Immunology and Pathology, Monash University, 89 Commercial Rd, Melbourne, VIC 3004, Australia
| | - David M Tarlinton
- Department of Immunology and Pathology, Monash University, 89 Commercial Rd, Melbourne, VIC 3004, Australia.
| |
Collapse
|
44
|
Dvorscek AR, McKenzie CI, Robinson MJ, Ding Z, Pitt C, O'Donnell K, Zotos D, Brink R, Tarlinton DM, Quast I. IL-21 has a critical role in establishing germinal centers by amplifying early B cell proliferation. EMBO Rep 2022; 23:e54677. [PMID: 35801309 PMCID: PMC9442303 DOI: 10.15252/embr.202254677] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 12/13/2022] Open
Abstract
The proliferation and differentiation of antigen‐specific B cells, including the generation of germinal centers (GC), are prerequisites for long‐lasting, antibody‐mediated immune protection. Affinity for antigen determines B cell recruitment, proliferation, differentiation, and competitiveness in the response, largely through determining access to T cell help. However, how T cell‐derived signals contribute to these outcomes is incompletely understood. Here, we report how the signature cytokine of follicular helper T cells, IL‐21, acts as a key regulator of the initial B cell response by accelerating cell cycle progression and the rate of cycle entry, increasing their contribution to the ensuing GC. This effect occurs over a wide range of initial B cell receptor affinities and correlates with elevated AKT and S6 phosphorylation. Moreover, the resultant increased proliferation can explain the IL‐21‐mediated promotion of plasma cell differentiation. Collectively, our data establish that IL‐21 acts from the outset of a T cell‐dependent immune response to increase cell cycle progression and fuel cyclic re‐entry of B cells, thereby regulating the initial GC size and early plasma cell output.
Collapse
Affiliation(s)
- Alexandra R Dvorscek
- Department of Immunology and Pathology, Monash University, Melbourne, Vic, Australia
| | - Craig I McKenzie
- Department of Immunology and Pathology, Monash University, Melbourne, Vic, Australia
| | - Marcus J Robinson
- Department of Immunology and Pathology, Monash University, Melbourne, Vic, Australia
| | - Zhoujie Ding
- Department of Immunology and Pathology, Monash University, Melbourne, Vic, Australia
| | - Catherine Pitt
- Department of Immunology and Pathology, Monash University, Melbourne, Vic, Australia
| | - Kristy O'Donnell
- Department of Immunology and Pathology, Monash University, Melbourne, Vic, Australia
| | - Dimitra Zotos
- Department of Immunology and Pathology, Monash University, Melbourne, Vic, Australia
| | - Robert Brink
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.,St. Vincent's Clinical School, UNSW Sydney, Sydney, NSW, Australia
| | - David M Tarlinton
- Department of Immunology and Pathology, Monash University, Melbourne, Vic, Australia
| | - Isaak Quast
- Department of Immunology and Pathology, Monash University, Melbourne, Vic, Australia
| |
Collapse
|
45
|
Marsman C, Verhoeven D, Koers J, Rispens T, ten Brinke A, van Ham SM, Kuijpers TW. Optimized Protocols for In-Vitro T-Cell-Dependent and T-Cell-Independent Activation for B-Cell Differentiation Studies Using Limited Cells. Front Immunol 2022; 13:815449. [PMID: 35844625 PMCID: PMC9278277 DOI: 10.3389/fimmu.2022.815449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
Background/Methods For mechanistic studies, in-vitro human B-cell differentiation and generation of plasma cells are invaluable techniques. However, the heterogeneity of both T-cell-dependent (TD) and T-cell-independent (TI) stimuli and the disparity of culture conditions used in existing protocols make the interpretation of results challenging. The aim of the present study was to achieve the most optimal B-cell differentiation conditions using isolated CD19+ B cells and peripheral blood mononuclear cell (PBMC) cultures. We addressed multiple seeding densities, different durations of culturing, and various combinations of TD and TI stimuli including B-cell receptor (BCR) triggering. B-cell expansion, proliferation, and differentiation were analyzed after 6 and 9 days by measuring B-cell proliferation and expansion, plasmablast and plasma cell formation, and immunoglobulin (Ig) secretion. In addition, these conditions were extrapolated using cryopreserved cells and differentiation potential was compared. Results This study demonstrates improved differentiation efficiency after 9 days of culturing for both B-cells and PBMC cultures using CD40L and IL-21 as TD stimuli and 6 days for CpG and IL-2 as TI stimuli. We arrived at optimized protocols requiring 2,500 and 25,000 B–cells per culture well for the TD and TI assays, respectively. The results of the PBMC cultures were highly comparable to the B-cell cultures, which allows dismissal of additional B-cell isolation steps prior to culturing. In these optimized TD conditions, the addition of anti-BCR showed a little effect on phenotypic B-cell differentiation; however, it interferes with Ig secretion measurements. The addition of IL-4 to the TD stimuli showed significantly lower Ig secretion. The addition of BAFF to optimized TI conditions showed enhanced B-cell differentiation and Ig secretion in B-cell but not in PBMC cultures. With this approach, efficient B-cell differentiation and Ig secretion were accomplished when starting from fresh or cryopreserved samples. Conclusion Our methodology demonstrates optimized TD and TI stimulation protocols for more in-depth analysis of B-cell differentiation in primary human B-cell and PBMC cultures while requiring low amounts of B cells, making them ideally suited for future clinical and research studies on B-cell differentiation of patient samples from different cohorts of B-cell-mediated diseases.
Collapse
Affiliation(s)
- Casper Marsman
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, University of Amsterdam, Amsterdam, Netherlands
| | - Dorit Verhoeven
- Department of Pediatric Immunology, Rheumatology and Infectious Diseases, Emma Children’s Hospital, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
- Department of Experimental Immunology, Amsterdam Institute for Infection & Immunity, Amsterdam University Medical Centers (UMC), University of Amsterdam, Amsterdam, Netherlands
| | - Jana Koers
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, University of Amsterdam, Amsterdam, Netherlands
| | - Theo Rispens
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, University of Amsterdam, Amsterdam, Netherlands
| | - Anja ten Brinke
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, University of Amsterdam, Amsterdam, Netherlands
| | - S. Marieke van Ham
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, University of Amsterdam, Amsterdam, Netherlands
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
- *Correspondence: Taco W. Kuijpers, ; S. Marieke van Ham,
| | - Taco W. Kuijpers
- Department of Pediatric Immunology, Rheumatology and Infectious Diseases, Emma Children’s Hospital, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
- *Correspondence: Taco W. Kuijpers, ; S. Marieke van Ham,
| |
Collapse
|
46
|
Ansari A, Sachan S, Jit BP, Sharma A, Coshic P, Sette A, Weiskopf D, Gupta N. An efficient immunoassay for the B cell help function of SARS-CoV-2-specific memory CD4 + T cells. CELL REPORTS METHODS 2022; 2:100224. [PMID: 35571764 PMCID: PMC9085463 DOI: 10.1016/j.crmeth.2022.100224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/27/2021] [Accepted: 04/28/2022] [Indexed: 04/30/2023]
Abstract
The B cell "help" function of CD4+ T cells is an important mechanism of adaptive immunity. Here, we describe improved antigen-specific T-B cocultures for quantitative measurement of T cell-dependent B cell responses, with as few as ∼90 T cells. Utilizing M. tuberculosis (Mtb), we show that early priming and activation of CD4+ T cells is important for productive interaction between T and B cells and that similar effects are achieved by supplementing cocultures with monocytes. We find that monocytes promote survivability of B cells via BAFF and stem cell growth factor (SCGF)/C-type lectin domain family 11 member A (CLEC11A), but this alone does not fully recapitulate the effects of monocyte supplementation. Importantly, we demonstrate improved activation and immunological output of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific memory CD4+ T-B cell cocultures with the inclusion of monocytes. This method may therefore provide a more sensitive assay to evaluate the B cell help quality of memory CD4+ T cells, for example, after vaccination or natural infection.
Collapse
Affiliation(s)
- Asgar Ansari
- Vaccine Immunology Laboratory, National Institute of Immunology, New Delhi 110067, India
| | - Shilpa Sachan
- Vaccine Immunology Laboratory, National Institute of Immunology, New Delhi 110067, India
| | - Bimal Prasad Jit
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Ashok Sharma
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Poonam Coshic
- Department of Transfusion Medicine, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego, La Jolla, CA 92037, USA
| | - Daniela Weiskopf
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Nimesh Gupta
- Vaccine Immunology Laboratory, National Institute of Immunology, New Delhi 110067, India
| |
Collapse
|
47
|
Anwar IJ, DeLaura IF, Gao Q, Ladowski J, Jackson AM, Kwun J, Knechtle SJ. Harnessing the B Cell Response in Kidney Transplantation - Current State and Future Directions. Front Immunol 2022; 13:903068. [PMID: 35757745 PMCID: PMC9223638 DOI: 10.3389/fimmu.2022.903068] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 04/25/2022] [Indexed: 01/21/2023] Open
Abstract
Despite dramatic improvement in kidney transplantation outcomes over the last decades due to advent of modern immunosuppressive agents, long-term outcomes remain poor. Antibody-mediated rejection (ABMR), a B cell driven process, accounts for the majority of chronic graft failures. There are currently no FDA-approved regimens for ABMR; however, several clinical trials are currently on-going. In this review, we present current mechanisms of B cell response in kidney transplantation, the clinical impact of sensitization and ABMR, the B cell response under current immunosuppressive regimens, and ongoing clinical trials for ABMR and desensitization treatment.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Stuart J. Knechtle
- Duke Transplant Center, Department of Surgery, Duke University School of Medicine, Durham, NC, United States
| |
Collapse
|
48
|
Shaghayegh G, Cooksley C, Ramezanpour M, Wormald PJ, Psaltis AJ, Vreugde S. Chronic Rhinosinusitis, S. aureus Biofilm and Secreted Products, Inflammatory Responses, and Disease Severity. Biomedicines 2022; 10:1362. [PMID: 35740385 PMCID: PMC9220248 DOI: 10.3390/biomedicines10061362] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/06/2022] [Accepted: 06/06/2022] [Indexed: 11/16/2022] Open
Abstract
Chronic rhinosinusitis (CRS) is a persistent inflammation of the nasal cavity and paranasal sinuses associated with tissue remodelling, dysfunction of the sinuses' natural defence mechanisms, and induction of different inflammatory clusters. The etiopathogenesis of CRS remains elusive, and both environmental factors, such as bacterial biofilms and the host's general condition, are thought to play a role. Bacterial biofilms have significant clinical relevance due to their potential to cause resistance to antimicrobial therapy and host defenses. Despite substantial medical advances, some CRS patients suffer from recalcitrant disease that is unresponsive to medical and surgical treatments. Those patients often have nasal polyps with tissue eosinophilia, S. aureus-dominant mucosal biofilm, comorbid asthma, and a severely compromised quality of life. This review aims to summarise the contemporary knowledge of inflammatory cells/pathways in CRS, the role of bacterial biofilm, and their impact on the severity of the disease. Here, an emphasis is placed on S. aureus biofilm and its secreted products. A better understanding of these factors might offer important diagnostic and therapeutic perceptions for recalcitrant disease.
Collapse
Affiliation(s)
- Gohar Shaghayegh
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide 5000, Australia; (G.S.); (C.C.); (M.R.); (P.-J.W.); (A.J.P.)
- Department of Surgery-Otolaryngology-Head and Neck Surgery, University of Adelaide, Adelaide 5011, Australia
- Central Adelaide Local Health Network, The Queen Elizabeth Hospital, The Basil Hetzel Institute for Translational Health Research, Woodville South 5011, Australia
| | - Clare Cooksley
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide 5000, Australia; (G.S.); (C.C.); (M.R.); (P.-J.W.); (A.J.P.)
- Department of Surgery-Otolaryngology-Head and Neck Surgery, University of Adelaide, Adelaide 5011, Australia
- Central Adelaide Local Health Network, The Queen Elizabeth Hospital, The Basil Hetzel Institute for Translational Health Research, Woodville South 5011, Australia
| | - Mahnaz Ramezanpour
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide 5000, Australia; (G.S.); (C.C.); (M.R.); (P.-J.W.); (A.J.P.)
- Department of Surgery-Otolaryngology-Head and Neck Surgery, University of Adelaide, Adelaide 5011, Australia
- Central Adelaide Local Health Network, The Queen Elizabeth Hospital, The Basil Hetzel Institute for Translational Health Research, Woodville South 5011, Australia
| | - Peter-John Wormald
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide 5000, Australia; (G.S.); (C.C.); (M.R.); (P.-J.W.); (A.J.P.)
- Department of Surgery-Otolaryngology-Head and Neck Surgery, University of Adelaide, Adelaide 5011, Australia
- Central Adelaide Local Health Network, The Queen Elizabeth Hospital, The Basil Hetzel Institute for Translational Health Research, Woodville South 5011, Australia
| | - Alkis James Psaltis
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide 5000, Australia; (G.S.); (C.C.); (M.R.); (P.-J.W.); (A.J.P.)
- Department of Surgery-Otolaryngology-Head and Neck Surgery, University of Adelaide, Adelaide 5011, Australia
- Central Adelaide Local Health Network, The Queen Elizabeth Hospital, The Basil Hetzel Institute for Translational Health Research, Woodville South 5011, Australia
| | - Sarah Vreugde
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide 5000, Australia; (G.S.); (C.C.); (M.R.); (P.-J.W.); (A.J.P.)
- Department of Surgery-Otolaryngology-Head and Neck Surgery, University of Adelaide, Adelaide 5011, Australia
- Central Adelaide Local Health Network, The Queen Elizabeth Hospital, The Basil Hetzel Institute for Translational Health Research, Woodville South 5011, Australia
| |
Collapse
|
49
|
Kim V, Lee K, Tian H, Jang SH, Diamond B, Kim SJ. IL-17–producing follicular Th cells enhance plasma cell differentiation in lupus-prone mice. JCI Insight 2022; 7:157332. [PMID: 35674135 PMCID: PMC9220957 DOI: 10.1172/jci.insight.157332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 05/03/2022] [Indexed: 11/17/2022] Open
Affiliation(s)
- Vera Kim
- Center for Autoimmune, Musculoskeletal, and Hematopoietic Diseases, Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Kyungwoo Lee
- Center for Autoimmune, Musculoskeletal, and Hematopoietic Diseases, Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Hong Tian
- Center for Autoimmune, Musculoskeletal, and Hematopoietic Diseases, Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Su Hwa Jang
- Department of Biomedical Science, Graduate School of Biomedical Sciences and Engineering, Hanyang University, Seoul, South Korea
| | - Betty Diamond
- Center for Autoimmune, Musculoskeletal, and Hematopoietic Diseases, Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, New York, USA
- Department of Molecular Medicine, Donald and Barbara Zucker School of Medicine, Hofstra University, Hempstead, New York, USA
| | - Sun Jung Kim
- Center for Autoimmune, Musculoskeletal, and Hematopoietic Diseases, Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, New York, USA
- Department of Molecular Medicine, Donald and Barbara Zucker School of Medicine, Hofstra University, Hempstead, New York, USA
| |
Collapse
|
50
|
Miyamoto A, Honjo T, Masui M, Kinoshita R, Kumon H, Kakimi K, Futami J. Engineering Cancer/Testis Antigens With Reversible S-Cationization to Evaluate Antigen Spreading. Front Oncol 2022; 12:869393. [PMID: 35600379 PMCID: PMC9115381 DOI: 10.3389/fonc.2022.869393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 04/07/2022] [Indexed: 11/13/2022] Open
Abstract
Serum autoantibody to cancer/testis antigens (CTAs) is a critical biomarker that reflects the antitumor immune response. Quantitative and multiplexed anti-CTA detection arrays can assess the immune status in tumors and monitor therapy-induced antitumor immune reactions. Most full-length recombinant CTA proteins tend to aggregate. Cysteine residue-specific S-cationization techniques facilitate the preparation of water-soluble and full-length CTAs. Combined with Luminex technology, we designed a multiple S-cationized antigen-immobilized bead array (MUSCAT) assay system to evaluate multiple serum antibodies to CTAs. Reducible S-alkyl-disulfide-cationized antigens in cytosolic conditions were employed to develop rabbit polyclonal antibodies as positive controls. These control antibodies sensitively detected immobilized antigens on beads and endogenous antigens in human lung cancer-derived cell lines. Rabbit polyclonal antibodies successfully confirmed the dynamic ranges and quantitative MUSCAT assay results. An immune monitoring study was conducted using the serum samples on an adenovirus−mediated REIC/Dkk−3 gene therapy clinical trial that showed a successful clinical response in metastatic castration-resistant prostate cancer. Autoantibody responses were closely related to clinical outcomes. Notably, upregulation of anti-CTA responses was monitored before tumor regression. Thus, quantitative monitoring of anti-CTA antibody biomarkers can be used to evaluate the cancer-immunity cycle. A quality-certified serum autoantibody monitoring system is a powerful tool for developing and evaluating cancer immunotherapy.
Collapse
Affiliation(s)
- Ai Miyamoto
- Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan
| | - Tomoko Honjo
- Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan
| | - Mirei Masui
- Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan
| | - Rie Kinoshita
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hiromi Kumon
- Innovation Center Okayama for Nanobio-targeted Therapy, Okayama University, Okayama, Japan.,Niimi University, Niimi, Japan
| | - Kazuhiro Kakimi
- Department of Immunotherapeutics, The University of Tokyo Hospital, Tokyo, Japan
| | - Junichiro Futami
- Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan
| |
Collapse
|