1
|
Kumar S, Nan L, Kalodimou G, Jany S, Freudenstein A, Brandmüller C, Müller K, Girl P, Ehmann R, Guggemos W, Seilmaier M, Wendtner CM, Volz A, Sutter G, Fux R, Tscherne A. Implementation of an Immunoassay Based on the MVA-T7pol-Expression System for Rapid Identification of Immunogenic SARS-CoV-2 Antigens: A Proof-of-Concept Study. Int J Mol Sci 2024; 25:10898. [PMID: 39456680 PMCID: PMC11508112 DOI: 10.3390/ijms252010898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/01/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
The emergence of hitherto unknown viral pathogens presents a great challenge for researchers to develop effective therapeutics and vaccines within a short time to avoid an uncontrolled global spread, as seen during the coronavirus disease 2019 (COVID-19) pandemic. Therefore, rapid and simple methods to identify immunogenic antigens as potential therapeutical targets are urgently needed for a better pandemic preparedness. To address this problem, we chose the well-characterized Modified Vaccinia virus Ankara (MVA)-T7pol expression system to establish a workflow to identify immunogens when a new pathogen emerges, generate candidate vaccines, and test their immunogenicity in an animal model. By using this system, we detected severe acute respiratory syndrome (SARS) coronavirus 2 (SARS-CoV-2) nucleoprotein (N)-, and spike (S)-specific antibodies in COVID-19 patient sera, which is in line with the current literature and our observations from previous immunogenicity studies. Furthermore, we detected antibodies directed against the SARS-CoV-2-membrane (M) and -ORF3a proteins in COVID-19 patient sera and aimed to generate recombinant MVA candidate vaccines expressing either the M or ORF3a protein. When testing our candidate vaccines in a prime-boost immunization regimen in humanized HLA-A2.1-/HLA-DR1-transgenic H-2 class I-/class II-knockout mice, we were able to demonstrate M- and ORF3a-specific cellular and humoral immune responses. Hence, the established workflow using the MVA-T7pol expression system represents a rapid and efficient tool to identify potential immunogenic antigens and provides a basis for future development of candidate vaccines.
Collapse
Affiliation(s)
- Satendra Kumar
- Division of Virology, Department of Veterinary Sciences, Ludwig Maximilians University Munich (LMU Munich), 85764 Oberschleißheim, Germany; (S.K.); (L.N.); (G.K.)
| | - Liangliang Nan
- Division of Virology, Department of Veterinary Sciences, Ludwig Maximilians University Munich (LMU Munich), 85764 Oberschleißheim, Germany; (S.K.); (L.N.); (G.K.)
| | - Georgia Kalodimou
- Division of Virology, Department of Veterinary Sciences, Ludwig Maximilians University Munich (LMU Munich), 85764 Oberschleißheim, Germany; (S.K.); (L.N.); (G.K.)
- German Center for Infection Research, Partner Site Munich, 85764 Oberschleißheim, Germany (R.E.)
| | - Sylvia Jany
- Division of Virology, Department of Veterinary Sciences, Ludwig Maximilians University Munich (LMU Munich), 85764 Oberschleißheim, Germany; (S.K.); (L.N.); (G.K.)
| | - Astrid Freudenstein
- Division of Virology, Department of Veterinary Sciences, Ludwig Maximilians University Munich (LMU Munich), 85764 Oberschleißheim, Germany; (S.K.); (L.N.); (G.K.)
| | - Christine Brandmüller
- Division of Virology, Department of Veterinary Sciences, Ludwig Maximilians University Munich (LMU Munich), 85764 Oberschleißheim, Germany; (S.K.); (L.N.); (G.K.)
| | - Katharina Müller
- German Center for Infection Research, Partner Site Munich, 85764 Oberschleißheim, Germany (R.E.)
- Bundeswehr Institute of Microbiology, 80937 Munich, Germany
| | - Philipp Girl
- German Center for Infection Research, Partner Site Munich, 85764 Oberschleißheim, Germany (R.E.)
- Bundeswehr Institute of Microbiology, 80937 Munich, Germany
- Chair of Bacteriology and Mycology, Department of Veterinary Sciences, Ludwig Maximilians University Munich (LMU Munich), 85764 Oberschleißheim, Germany
| | - Rosina Ehmann
- German Center for Infection Research, Partner Site Munich, 85764 Oberschleißheim, Germany (R.E.)
- Bundeswehr Institute of Microbiology, 80937 Munich, Germany
| | - Wolfgang Guggemos
- Munich Clinic Schwabing, Academic Teaching Hospital, Ludwig Maximilians University Munich (LMU Munich), 80804 Munich, Germany; (W.G.); (M.S.)
| | - Michael Seilmaier
- Munich Clinic Schwabing, Academic Teaching Hospital, Ludwig Maximilians University Munich (LMU Munich), 80804 Munich, Germany; (W.G.); (M.S.)
| | - Clemens-Martin Wendtner
- Medical Clinic III, University Hospital, Ludwig Maximilians University Munich (LMU Munich), 80336 Munich, Germany;
| | - Asisa Volz
- Institute of Virology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany;
- German Center for Infection Research, Partner Site Hannover-Braunschweig, 30559 Hannover, Germany
| | - Gerd Sutter
- Division of Virology, Department of Veterinary Sciences, Ludwig Maximilians University Munich (LMU Munich), 85764 Oberschleißheim, Germany; (S.K.); (L.N.); (G.K.)
- German Center for Infection Research, Partner Site Munich, 85764 Oberschleißheim, Germany (R.E.)
| | - Robert Fux
- Division of Virology, Department of Veterinary Sciences, Ludwig Maximilians University Munich (LMU Munich), 85764 Oberschleißheim, Germany; (S.K.); (L.N.); (G.K.)
| | - Alina Tscherne
- Division of Virology, Department of Veterinary Sciences, Ludwig Maximilians University Munich (LMU Munich), 85764 Oberschleißheim, Germany; (S.K.); (L.N.); (G.K.)
- German Center for Infection Research, Partner Site Munich, 85764 Oberschleißheim, Germany (R.E.)
| |
Collapse
|
2
|
Traut CC, Jones JL, Sanders RA, Clark LR, Hamill MM, Stavrakis G, Sop J, Beckey TP, Keller SC, Gilliams EA, Cochran WV, Laeyendecker O, Manabe YC, Mostafa HH, Thomas DL, Hansoti B, Gebo KA, Blankson JN. Orthopoxvirus-Specific T-Cell Responses in Convalescent Mpox Patients. J Infect Dis 2024; 229:54-58. [PMID: 37380166 PMCID: PMC10786252 DOI: 10.1093/infdis/jiad245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/07/2023] [Accepted: 06/24/2023] [Indexed: 06/30/2023] Open
Abstract
Orthopoxvirus-specific T-cell responses were analyzed in 10 patients who had recovered from Mpox including 7 people with human immunodeficiency virus (PWH). Eight participants had detectable virus-specific T-cell responses, including a PWH who was not on antiretroviral therapy and a PWH on immunosuppressive therapy. These 2 participants had robust polyfunctional CD4+ T-cell responses to peptides from the 121L vaccinia virus (VACV) protein. T-cells from 4 of 5 HLA-A2-positive participants targeted at least 1 previously described HLA-A2-restricted VACV epitope, including an epitope targeted in 2 participants. These results advance our understanding of immunity in convalescent Mpox patients.
Collapse
Affiliation(s)
- Caroline C Traut
- Department of Medicine, Johns Hopkins Medicine, Baltimore, Maryland, USA
| | - Joyce L Jones
- Department of Medicine, Johns Hopkins Medicine, Baltimore, Maryland, USA
| | - Renata A Sanders
- Department of Pediatrics, Johns Hopkins Medicine, Baltimore, Maryland, USA
| | - Laura R Clark
- Department of Medicine, Johns Hopkins Medicine, Baltimore, Maryland, USA
| | - Matthew M Hamill
- Department of Medicine, Johns Hopkins Medicine, Baltimore, Maryland, USA
| | - Georgia Stavrakis
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Joel Sop
- Department of Medicine, Johns Hopkins Medicine, Baltimore, Maryland, USA
| | - Tyler P Beckey
- Department of Medicine, Johns Hopkins Medicine, Baltimore, Maryland, USA
| | - Sara C Keller
- Department of Medicine, Johns Hopkins Medicine, Baltimore, Maryland, USA
| | | | - Willa V Cochran
- Department of Medicine, Johns Hopkins Medicine, Baltimore, Maryland, USA
| | - Oliver Laeyendecker
- Department of Medicine, Johns Hopkins Medicine, Baltimore, Maryland, USA
- Intramural Research Program, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Yukari C Manabe
- Department of Medicine, Johns Hopkins Medicine, Baltimore, Maryland, USA
| | - Heba H Mostafa
- Department of Pathology, Johns Hopkins Medicine, Baltimore, Maryland, USA
| | - David L Thomas
- Department of Medicine, Johns Hopkins Medicine, Baltimore, Maryland, USA
| | - Bhakti Hansoti
- Department of Emergency Medicine, Johns Hopkins Medicine, Baltimore, Maryland, USA
| | - Kelly A Gebo
- Department of Medicine, Johns Hopkins Medicine, Baltimore, Maryland, USA
| | - Joel N Blankson
- Department of Medicine, Johns Hopkins Medicine, Baltimore, Maryland, USA
| |
Collapse
|
3
|
da Silva Antunes R, Weiskopf D, Sidney J, Rubiro P, Peters B, Arlehamn CSL, Grifoni A, Sette A. The MegaPool Approach to Characterize Adaptive CD4+ and CD8+ T Cell Responses. Curr Protoc 2023; 3:e934. [PMID: 37966108 PMCID: PMC10662678 DOI: 10.1002/cpz1.934] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Epitopes recognized by T cells are a collection of short peptide fragments derived from specific antigens or proteins. Immunological research to study T cell responses is hindered by the extreme degree of heterogeneity of epitope targets, which are usually derived from multiple antigens; within a given antigen, hundreds of different T cell epitopes can be recognized, differing from one individual to the next because T cell epitope recognition is restricted by the epitopes' ability to bind to MHC molecules, which are extremely polymorphic in different individuals. Testing large pools encompassing hundreds of peptides is technically challenging because of logistical considerations regarding solvent-induced toxicity. To address this issue, we developed the MegaPool (MP) approach based on sequential lyophilization of large numbers of peptides that can be used in a variety of assays to measure T cell responses, including ELISPOT, intracellular cytokine staining, and activation-induced marker assays, and that has been validated in the study of infectious diseases, allergies, and autoimmunity. Here, we describe the procedures for generating and testing MPs, starting with peptide synthesis and lyophilization, as well as a step-by-step guide and recommendations for their handling and experimental usage. Overall, the MP approach is a powerful strategy for studying T cell responses and understanding the immune system's role in health and disease. © 2023 Wiley Periodicals LLC. Basic Protocol 1: Generation of peptide pools ("MegaPools") Basic Protocol 2: MegaPool testing and quantitation of antigen-specific T cell responses.
Collapse
Affiliation(s)
- Ricardo da Silva Antunes
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI); La Jolla, CA, USA
| | - Daniela Weiskopf
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI); La Jolla, CA, USA
| | - John Sidney
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI); La Jolla, CA, USA
| | - Paul Rubiro
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI); La Jolla, CA, USA
| | - Bjoern Peters
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI); La Jolla, CA, USA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA, USA
| | | | - Alba Grifoni
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI); La Jolla, CA, USA
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI); La Jolla, CA, USA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA, USA
| |
Collapse
|
4
|
Hinterberger M, Endt K, Bathke B, Habjan M, Heiseke A, Schweneker M, Von Rohrscheidt J, Atay C, Chaplin P, Kalla M, Hausmann J, Schmittwolf C, Lauterbach H, Volkmann A, Hochrein H, Medina-Echeverz J. Preclinical development of a first-in-class vaccine encoding HER2, Brachyury and CD40L for antibody enhanced tumor eradication. Sci Rep 2023; 13:5162. [PMID: 36997583 PMCID: PMC10060934 DOI: 10.1038/s41598-023-32060-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 03/21/2023] [Indexed: 04/03/2023] Open
Abstract
The induction of antiviral innate immunity by systemic immunization with live virus can be employed to positively impact the response to therapeutic vaccination. We previously demonstrated that systemic immunization with a non-replicating MVA encoding CD40 ligand (CD40L) enhances innate immune cell activation and function, and triggers potent antitumor CD8+ T cell responses in different murine tumor models. Antitumor efficacy was increased when combined with tumor targeting antibodies. Here we report the development of TAEK-VAC-HerBy (TVH), a first-in-class human tumor antibody enhanced killing (TAEK) vaccine based on the non-replicating MVA-BN viral vector. It encodes the membrane bound form of human CD40L, HER2 and the transcription factor Brachyury. TVH is designed for therapeutic use in HER2- or Brachyury-expressing cancer patients in combination with tumor targeting antibodies. To preclude possible oncogenic activities in infected cells and to prevent binding of vaccine-encoded HER2 by monoclonal antibodies trastuzumab and pertuzumab, genetic modifications of HER2 were introduced in the vaccine. Brachyury was genetically modified to prevent nuclear localization of the protein thereby inhibiting its transcriptional activity. CD40L encoded in TVH enhanced human leukocyte activation and cytokine secretion in vitro. Lastly, TVH intravenous administration to non-human primates was proven immunogenic and safe in a repeat-dose toxicity study. Nonclinical data presented here highlight TVH as a first-in-class immunotherapeutic vaccine platform currently under clinical investigation.
Collapse
Affiliation(s)
| | - Kathrin Endt
- Bavarian Nordic GmbH, Fraunhoferstr.13, 82152, Planegg, Germany
| | - Barbara Bathke
- Bavarian Nordic GmbH, Fraunhoferstr.13, 82152, Planegg, Germany
| | - Matthias Habjan
- Bavarian Nordic GmbH, Fraunhoferstr.13, 82152, Planegg, Germany
| | - Alexander Heiseke
- Bavarian Nordic GmbH, Fraunhoferstr.13, 82152, Planegg, Germany
- GlaxoSmithKline GmbH, Prinzregentenpl. 9, 81675, Munich, Germany
| | - Marc Schweneker
- Bavarian Nordic GmbH, Fraunhoferstr.13, 82152, Planegg, Germany
| | - Julia Von Rohrscheidt
- Bavarian Nordic GmbH, Fraunhoferstr.13, 82152, Planegg, Germany
- Origenis GmbH, Am Klopferspitz 19A, 82152, Planegg, Germany
| | - Cigdem Atay
- Bavarian Nordic GmbH, Fraunhoferstr.13, 82152, Planegg, Germany
| | - Paul Chaplin
- Bavarian Nordic GmbH, Fraunhoferstr.13, 82152, Planegg, Germany
| | - Markus Kalla
- Bavarian Nordic GmbH, Fraunhoferstr.13, 82152, Planegg, Germany
| | - Jürgen Hausmann
- Bavarian Nordic GmbH, Fraunhoferstr.13, 82152, Planegg, Germany
| | | | - Henning Lauterbach
- Bavarian Nordic GmbH, Fraunhoferstr.13, 82152, Planegg, Germany
- Hookipa Pharma Inc, 350 Fifth Avenue, Room/Suite 7240, New York City, NY, USA
| | - Ariane Volkmann
- Bavarian Nordic GmbH, Fraunhoferstr.13, 82152, Planegg, Germany
| | | | - José Medina-Echeverz
- Bavarian Nordic GmbH, Fraunhoferstr.13, 82152, Planegg, Germany
- Affimed, Im Neuenheimer Feld 582, 69120, Heidelberg, Germany
| |
Collapse
|
5
|
Ghabeshi S, Ghasemi S, Mousavizadeh L. The effective factors in human-specific tropism and viral pathogenicity in orthopoxviruses. Cell Biol Int 2023; 47:341-351. [PMID: 36317465 DOI: 10.1002/cbin.11941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 10/07/2022] [Accepted: 10/11/2022] [Indexed: 11/08/2022]
Abstract
The orthopoxvirus (OPV) genus includes several species that infect humans, including variola, monkeypox, vaccinia, and cowpox. Variola and monkeypox are often life-threatening diseases, while vaccinia and cowpox are usually associated with local lesions. The epidemic potential for OPVs may be lower than respiratory-borne viruses or RNA viruses. However, OPVs are notable for their spread and distribution in different environments and among different hosts. The emergence or re-emergence of OPVs in the human population can also occur in wild or domestic animals as intermediate hosts. More effective and safer vaccines for poxvirus can be developed by understanding how immunity is regulated in poxvirus and vaccines for DNA viruses. Downstream events in cells affected by the virus are regulated functionally by a series of characteristics that are affected by host cell interactions and responses of cells against viral infections, including the interferon pathway and apoptosis. Furthermore, infection outcome is greatly influenced by the distinct selection of host-range and immune-modulatory genes that confer the potential for pathogenesis and host-to-host transmission and the distinct host-range properties of each immune-modulatory gene. The present study reviewed the effective factors in human-restricted tropism and virus pathogenicity in OPVs.
Collapse
Affiliation(s)
- Soad Ghabeshi
- Virology Department, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.,Health Policy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sorayya Ghasemi
- Cancer Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Leila Mousavizadeh
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Cao D, Song Q, Li J, Chard Dunmall LS, Jiang Y, Qin B, Wang J, Guo H, Cheng Z, Wang Z, Lemoine NR, Lu S, Wang Y. Redirecting anti-Vaccinia virus T cell immunity for cancer treatment by AAV-mediated delivery of the VV B8R gene. Mol Ther Oncolytics 2022; 25:264-275. [PMID: 35615262 PMCID: PMC9114156 DOI: 10.1016/j.omto.2022.04.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 04/21/2022] [Indexed: 11/28/2022] Open
Abstract
Immunotherapies, such as immune checkpoint inhibitors (ICIs) and chimeric antigen receptor-T (CAR-T) cells, are only efficient in a small proportion of tumor patients. One of the major reasons for this is the lack of immune cell infiltration and activation in the tumor microenvironment (TME). Recent research reported that abundant bystander CD8+ T cells targeting viral antigens exist in tumor infiltrates and that virus-specific memory T cells could be recalled to kill tumor cells. Therefore, virus-specific memory T cells may be effective candidates for tumor immunotherapy. In this study, we established subcutaneous tumor mice models that were pre-immunized with Vaccinia virus (VV) and confirmed that tumor cells with ectopic expression of the viral B8R protein could be recognized and killed by memory T cells. To create a therapeutic delivery system, we designed a recombinant adeno-associated virus (rAAV) with a modified tumor-specific promoter and used it to deliver VV B8R to tumor cells. We observed that rAAV gene therapy can retard tumor growth in VV pre-immunized mice. In summary, our study demonstrates that rAAV containing a tumor-specific promoter to restrict VV B8R gene expression to tumor cells is a potential therapeutic agent for cancer treatment in VV pre-immunized or VV-treated mice bearing tumors.
Collapse
Affiliation(s)
- Dujuan Cao
- National Center for International Research in Cell and Gene Therapy, Sino-British Research Centre for Molecular Oncology, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Qianqian Song
- National Center for International Research in Cell and Gene Therapy, Sino-British Research Centre for Molecular Oncology, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Junqi Li
- National Center for International Research in Cell and Gene Therapy, Sino-British Research Centre for Molecular Oncology, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Louisa S. Chard Dunmall
- Centre for Cancer Biomarkers & Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Yuanyuan Jiang
- National Center for International Research in Cell and Gene Therapy, Sino-British Research Centre for Molecular Oncology, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Bin Qin
- National Center for International Research in Cell and Gene Therapy, Sino-British Research Centre for Molecular Oncology, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Jianyao Wang
- National Center for International Research in Cell and Gene Therapy, Sino-British Research Centre for Molecular Oncology, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Haoran Guo
- National Center for International Research in Cell and Gene Therapy, Sino-British Research Centre for Molecular Oncology, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Zhenguo Cheng
- National Center for International Research in Cell and Gene Therapy, Sino-British Research Centre for Molecular Oncology, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Zhimin Wang
- National Center for International Research in Cell and Gene Therapy, Sino-British Research Centre for Molecular Oncology, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Nicholas R. Lemoine
- National Center for International Research in Cell and Gene Therapy, Sino-British Research Centre for Molecular Oncology, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
- Centre for Cancer Biomarkers & Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Shuangshuang Lu
- National Center for International Research in Cell and Gene Therapy, Sino-British Research Centre for Molecular Oncology, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yaohe Wang
- National Center for International Research in Cell and Gene Therapy, Sino-British Research Centre for Molecular Oncology, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
- Centre for Cancer Biomarkers & Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, UK
| |
Collapse
|
7
|
Kumar A, Suryadevara NC, Wolf KJ, Wilson JT, Di Paolo RJ, Brien JD, Joyce S. Heterotypic immunity against vaccinia virus in an HLA-B*07:02 transgenic mousepox infection model. Sci Rep 2020; 10:13167. [PMID: 32759969 PMCID: PMC7406653 DOI: 10.1038/s41598-020-69897-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 07/13/2020] [Indexed: 12/25/2022] Open
Abstract
Vaccination with vaccinia virus (VACV) elicits heterotypic immunity to smallpox, monkeypox, and mousepox, the mechanistic basis for which is poorly understood. It is generally assumed that heterotypic immunity arises from the presentation of a wide array of VACV-derived, CD8+ T cell epitopes that share homology with other poxviruses. Herein this assumption was tested using a large panel of VACV-derived peptides presented by HLA-B*07:02 (B7.2) molecules in a mousepox/ectromelia virus (ECTV)-infection, B7.2 transgenic mouse model. Most dominant epitopes recognized by ECTV- and VACV-reactive CD8+ T cells overlapped significantly without altering immunodominance hierarchy. Further, several epitopes recognized by ECTV-reactive CD8+ T cells were not recognized by VACV-reactive CD8+ T cells, and vice versa. In one instance, the lack of recognition owed to a N72K variation in the ECTV C4R70–78 variant of the dominant VACV B8R70–78 epitope. C4R70–78 does not bind to B7.2 and, hence, it was neither immunogenic nor antigenic. These findings provide a mechanistic basis for VACV vaccination-induced heterotypic immunity which can protect against Variola and Monkeypox disease. The understanding of how cross-reactive responses develop is essential for the rational design of a subunit-based vaccine that would be safe, and effectively protect against heterologous infection.
Collapse
Affiliation(s)
- Amrendra Kumar
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, USA.,Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Centre, Nashville, TN, USA
| | - Naveen Chandra Suryadevara
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, USA.,Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Centre, Nashville, TN, USA
| | - Kyle J Wolf
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - John T Wilson
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | - Richard J Di Paolo
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - James D Brien
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Sebastian Joyce
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, USA. .,Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Centre, Nashville, TN, USA.
| |
Collapse
|
8
|
Pérez P, Marín MQ, Lázaro-Frías A, Sorzano CÓS, Di Pilato M, Gómez CE, Esteban M, García-Arriaza J. An MVA Vector Expressing HIV-1 Envelope under the Control of a Potent Vaccinia Virus Promoter as a Promising Strategy in HIV/AIDS Vaccine Design. Vaccines (Basel) 2019; 7:vaccines7040208. [PMID: 31817622 PMCID: PMC6963416 DOI: 10.3390/vaccines7040208] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 11/28/2019] [Accepted: 12/03/2019] [Indexed: 01/12/2023] Open
Abstract
Highly attenuated poxviral vectors, such as modified vaccinia virus ankara (MVA), are promising vaccine candidates against several infectious diseases. One of the approaches developed to enhance the immunogenicity of poxvirus vectors is increasing the promoter strength and accelerating during infection production levels of heterologous antigens. Here, we have generated and characterized the biology and immunogenicity of an optimized MVA-based vaccine candidate against HIV/AIDS expressing HIV-1 clade B gp120 protein under the control of a novel synthetic late/early optimized (LEO) promoter (LEO160 promoter; with a spacer length of 160 nucleotides), termed MVA-LEO160-gp120. In infected cells, MVA-LEO160-gp120 significantly increased the expression levels of HIV-1 gp120 mRNA and protein, compared to the clinical vaccine MVA-B vector expressing HIV-1 gp120 under the control of the commonly used synthetic early/late promoter. When mice were immunized with a heterologous DNA-prime/MVA-boost protocol, the immunization group DNA-gp120/MVA-LEO160-gp120 induced an enhancement in the magnitude of gp120-specific CD4+ and CD8+ T-cell responses, compared to DNA-gp120/MVA-B; with most of the responses being mediated by the CD8+ T-cell compartment, with a T effector memory phenotype. DNA-gp120/MVA-LEO160-gp120 also elicited a trend to a higher magnitude of gp120-specific CD4+ T follicular helper cells, and modest enhanced levels of antibodies against HIV-1 gp120. These findings revealed that this new optimized vaccinia virus promoter could be considered a promising strategy in HIV/AIDS vaccine design, confirming the importance of early expression of heterologous antigen and its impact on the antigen-specific immunogenicity elicited by poxvirus-based vectors.
Collapse
Affiliation(s)
- Patricia Pérez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain; (P.P.); (M.Q.M.); (A.L.-F.); (C.E.G.)
| | - María Q. Marín
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain; (P.P.); (M.Q.M.); (A.L.-F.); (C.E.G.)
| | - Adrián Lázaro-Frías
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain; (P.P.); (M.Q.M.); (A.L.-F.); (C.E.G.)
| | - Carlos Óscar S. Sorzano
- Biocomputing Unit, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain;
| | - Mauro Di Pilato
- Infection and Immunity Group, Istituto di Ricerca in Biomedicina (IRB), Università Della Svizzera Italiana, CH-6500 Bellinzona, Switzerland;
| | - Carmen E. Gómez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain; (P.P.); (M.Q.M.); (A.L.-F.); (C.E.G.)
| | - Mariano Esteban
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain; (P.P.); (M.Q.M.); (A.L.-F.); (C.E.G.)
- Correspondence: (M.E.); (J.G.-A.); Tel.: +34-915-854-553 (M.E.); +34-915-854-560 (J.G.-A.)
| | - Juan García-Arriaza
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain; (P.P.); (M.Q.M.); (A.L.-F.); (C.E.G.)
- Correspondence: (M.E.); (J.G.-A.); Tel.: +34-915-854-553 (M.E.); +34-915-854-560 (J.G.-A.)
| |
Collapse
|
9
|
Jurewicz MM, Willis RA, Ramachandiran V, Altman JD, Stern LJ. MHC-I peptide binding activity assessed by exchange after cleavage of peptide covalently linked to β2-microglobulin. Anal Biochem 2019; 584:113328. [PMID: 31201791 DOI: 10.1016/j.ab.2019.05.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 05/14/2019] [Accepted: 05/31/2019] [Indexed: 10/26/2022]
Abstract
A common approach to measuring binding constants involves combining receptor and ligand and measuring the distribution of bound and free states after equilibration. For class I major histocompatibility (MHC-I) proteins, which bind short peptides for presentation to T cells, this approach is precluded by instability of peptide-free protein. Here we develop a method wherein a weakly-binding peptide covalently attached to the N-terminus of the MHC-I β2m subunit is released from the peptide binding site after proteolytic cleavage of the linker. The resultant protein is able to bind added peptide. A direct binding assay and method for estimation of peptide binding constant (Kd) are described, in which fluorescence polarization is used to follow peptide binding. A competition binding assay and method for estimation of inhibitor binding constant (Ki) using the same principle also are also described. The method uses a cubic equation to relate observed binding to probe concentration, probe Kd, inhibitor concentration, and inhibitor Ki under general reaction conditions without assumptions relating to relative binding affinities or concentrations. We also delineate advantages of this approach compared to the Cheng-Prusoff and Munson-Rodbard approaches for estimation of Ki using competition binding data.
Collapse
Affiliation(s)
- Mollie M Jurewicz
- Program in Immunology and Microbiology, University of Massachusetts Medical School, Worcester, MA, 01605, United States; Department of Pathology, University of Massachusetts Medical School, Worcester, MA, 01605, United States
| | - Richard A Willis
- Emory Vaccine Center, Yerkes National Primate Research Center, Atlanta, GA, 30329, United States
| | - Vasanthi Ramachandiran
- Emory Vaccine Center, Yerkes National Primate Research Center, Atlanta, GA, 30329, United States
| | - John D Altman
- Emory Vaccine Center, Yerkes National Primate Research Center, Atlanta, GA, 30329, United States; Department of Microbiology and Immunology, Emory Vaccine Center at Yerkes, Emory University School of Medicine, Atlanta, GA, 30329, United States
| | - Lawrence J Stern
- Program in Immunology and Microbiology, University of Massachusetts Medical School, Worcester, MA, 01605, United States; Department of Pathology, University of Massachusetts Medical School, Worcester, MA, 01605, United States; Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, 01605, United States.
| |
Collapse
|
10
|
Netherton CL, Goatley LC, Reis AL, Portugal R, Nash RH, Morgan SB, Gault L, Nieto R, Norlin V, Gallardo C, Ho CS, Sánchez-Cordón PJ, Taylor G, Dixon LK. Identification and Immunogenicity of African Swine Fever Virus Antigens. Front Immunol 2019; 10:1318. [PMID: 31275307 PMCID: PMC6593957 DOI: 10.3389/fimmu.2019.01318] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 05/23/2019] [Indexed: 12/22/2022] Open
Abstract
African swine fever (ASF) is a lethal haemorrhagic disease of domestic pigs for which there is no vaccine. Strains of the virus with reduced virulence can provide protection against related virulent strains of ASFV, but protection is not 100% and there are concerns about the safety profile of such viruses. However, they provide a useful tool for understanding the immune response to ASFV and previous studies using the low virulent isolate OUR T88/3 have shown that CD8+ cells are crucial for protection. In order to develop a vaccine that stimulates an effective anti-ASFV T-cell response we need to know which of the >150 viral proteins are recognized by the cellular immune response. Therefore, we used a gamma interferon ELIspot assay to screen for viral proteins recognized by lymphocytes from ASF-immune pigs using peptides corresponding to 133 proteins predicted to be encoded by OUR T88/3. Eighteen antigens that were recognized by ASFV-specific lymphocytes were then incorporated into adenovirus and MVA vectors, which were used in immunization and challenge experiments in pigs. We present a systematic characterization of the cellular immune response to this devastating disease and identify proteins capable of inducing ASFV-specific cellular and humoral immune responses in pigs. Pools of viral vectors expressing these genes did not protect animals from severe disease, but did reduce viremia in a proportion of pigs following ASFV challenge.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Lynden Gault
- Gift of Life Michigan Histocompatibility Laboratory, Ann Arbor, MI, United States
| | - Raquel Nieto
- European Union Reference Laboratory for ASF, Centro de Investigación en Sanidad Animal-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| | - Veronica Norlin
- Gift of Life Michigan Histocompatibility Laboratory, Ann Arbor, MI, United States
| | - Carmina Gallardo
- European Union Reference Laboratory for ASF, Centro de Investigación en Sanidad Animal-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| | - Chak-Sum Ho
- Gift of Life Michigan Histocompatibility Laboratory, Ann Arbor, MI, United States
| | | | | | | |
Collapse
|
11
|
Yang TW, Moon J, Kim TJ, Jun JS, Lim JA, Lee ST, Jung KH, Park KI, Jung KY, Chu K, Lee SK. HLA-A*11:01 is associated with levetiracetam-induced psychiatric adverse events. PLoS One 2018; 13:e0200812. [PMID: 30020991 PMCID: PMC6051654 DOI: 10.1371/journal.pone.0200812] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 07/03/2018] [Indexed: 11/19/2022] Open
Abstract
Levetiracetam (LEV) is effective for focal and generalized epilepsy and is used worldwide because of its relatively few drug interactions and favorable tolerability. However, some psychiatric adverse events (PAEs) have been reported, resulting in drug withdrawal. The pathophysiology of LEV-induced PAE has not yet been elucidated. In this study, we investigated the relationship between PAEs and human leukocyte antigen (HLA) genes. Eleven epilepsy patients, who developed PAEs after the administration of LEV and spontaneously improved after drug withdrawal, were enrolled retrospectively. Genomic DNA from the peripheral blood was extracted, and four-digit allele genotyping of HLA genes was performed. The genotype frequencies of HLA genes were compared to those of 80 patients in which LEV was well tolerated, as well as to 485 individuals from the general Korean population. The frequency of the HLA-A*1101 allele was significantly higher in the LEV-induced PAEs group compared to both the LEV-tolerant group (p = 0.021, OR 4.80, 95% CI 1.30-17.74) and the general Korean population (p = 0.015, OR 4.62, 95% CI 1.38-15.45). This study is the first attempt at investigating the relationship between the HLA system and LEV-induced PAE. The results of this study suggest that the HLA-A*1101 allele could be a risk factor for the development of PAEs.
Collapse
Affiliation(s)
- Tae-Won Yang
- Department of Neurology, Gyeongsang National University Changwon Hospital, Gyeongsang National University College of Medicine, Jinju, Republic of Korea
| | - Jangsup Moon
- Department of Neurology, Laboratory for Neurotherapeutics, Comprehensive Epilepsy Center, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
- Program in Neuroscience, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Neurosurgery, Seoul National University Hospital, Seoul, Republic of Korea
| | - Tae-Joon Kim
- Department of Neurology, Laboratory for Neurotherapeutics, Comprehensive Epilepsy Center, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
- Program in Neuroscience, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jin-Sun Jun
- Department of Neurology, Kyungpook National University Chilgok Hospital, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Jung-Ah Lim
- Department of Neurology, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Republic of Korea
| | - Soon-Tae Lee
- Department of Neurology, Laboratory for Neurotherapeutics, Comprehensive Epilepsy Center, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
- Program in Neuroscience, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Keun-Hwa Jung
- Department of Neurology, Laboratory for Neurotherapeutics, Comprehensive Epilepsy Center, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
- Program in Neuroscience, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Kyung-Il Park
- Department of Neurology, Seoul National University Hospital Healthcare System Gangnam Center, Seoul, Republic of Korea
| | - Ki-Young Jung
- Department of Neurology, Laboratory for Neurotherapeutics, Comprehensive Epilepsy Center, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
- Program in Neuroscience, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Kon Chu
- Department of Neurology, Laboratory for Neurotherapeutics, Comprehensive Epilepsy Center, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
- Program in Neuroscience, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sang Kun Lee
- Department of Neurology, Laboratory for Neurotherapeutics, Comprehensive Epilepsy Center, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
- Program in Neuroscience, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
12
|
Abstract
Enzyme-linked immunospot (ELISPOT) is an assay used to detect secretion of cytokines from immune cells. The resolution and sensitivity of ELISPOT allow for the detection of rare T cell specificities and small quantities of molecules produced by individual cells. In this chapter, we describe an epitope screening method that uses CD4+ T cell ELISPOT assays to identify specific novel mycobacterial antigens as potential vaccine candidates. In order to screen a large number of candidate epitopes simultaneously, pools of predicted MHC class II peptides were used to identify mycobacterial specific CD4+ T cells. Using this method, we identified novel mycobacterial antigens as vaccine candidates.
Collapse
|
13
|
Huang M, Zhang W, Guo J, Wei X, Phiwpan K, Zhang J, Zhou X. Improved Transgenic Mouse Model for Studying HLA Class I Antigen Presentation. Sci Rep 2016; 6:33612. [PMID: 27634283 PMCID: PMC5025652 DOI: 10.1038/srep33612] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 08/30/2016] [Indexed: 11/16/2022] Open
Abstract
HLA class I (HLA-I) transgenic mice have proven to be useful models for studying human MHC-related immune responses over the last two decades. However, differences in the processing and presentation machinery between humans and mice may have profound effects on HLA-I restricted antigen presentation. In this study, we generated a novel human TAP-LMP (hTAP-LMP) gene cluster transgenic mouse model carrying an intact human TAP complex and two human immunoproteasome LMP subunits, PSMB8/PSMB9. By crossing the hTAP-LMP strain with different HLA-I transgenic mice, we found that the expression levels of human HLA-I molecules, especially the A3 supertype members (e.g., A11 and A33), were remarkably enhanced in corresponding HLA-I/hTAP-LMP transgenic mice. Moreover, we found that humanized processing and presentation machinery increased antigen presentation of HLA-A11-restricted epitopes and promoted the rapid reduction of hepatitis B virus (HBV) infection in HLA-A11/hTAP-LMP mice. Together, our study highlights that HLA-I/hTAP-LMP mice are an improved model for studying antigen presentation of HLA-I molecules and their related CTL responses.
Collapse
Affiliation(s)
- Man Huang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Wei Zhang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, 100101, China
| | - Jie Guo
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, 100101, China
| | - Xundong Wei
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Krung Phiwpan
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, 100101, China.,University of Phayao 19 Moo 2 Maeka, Muang Phayao district, Phayao, 56000, Thailand
| | - Jianhua Zhang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, 100101, China
| | - Xuyu Zhou
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, 100101, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing 101408, China
| |
Collapse
|
14
|
García-Arriaza J, Esteban M. Enhancing poxvirus vectors vaccine immunogenicity. Hum Vaccin Immunother 2015; 10:2235-44. [PMID: 25424927 DOI: 10.4161/hv.28974] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Attenuated recombinant poxvirus vectors expressing heterologous antigens from pathogens are currently at various stages in clinical trials with the aim to establish their efficacy. This is because these vectors have shown excellent safety profiles, significant immunogenicity against foreign expressed antigens and are able to induce protective immune responses. In view of the limited efficacy triggered by some poxvirus strains used in clinical trials (i.e, ALVAC in the RV144 phase III clinical trial for HIV), and of the restrictive replication capacity of the highly attenuated vectors like MVA and NYVAC, there is a consensus that further improvements of these vectors should be pursuit. In this review we considered several strategies that are currently being implemented, as well as new approaches, to improve the immunogenicity of the poxvirus vectors. This includes heterologous prime/boost protocols, use of co-stimulatory molecules, deletion of viral immunomodulatory genes still present in the poxvirus genome, enhancing virus promoter strength, enhancing vector replication capacity, optimizing expression of foreign heterologous sequences, and the combined use of adjuvants. An optimized poxvirus vector triggering long-lasting immunity with a high protective efficacy against a selective disease should be sought.
Collapse
Affiliation(s)
- Juan García-Arriaza
- a Department of Molecular and Cellular Biology; Centro Nacional de Biotecnología; Consejo Superior de Investigaciones Científicas (CSIC); Madrid, Spain
| | | |
Collapse
|
15
|
Gilchuk P, Hill TM, Wilson JT, Joyce S. Discovering protective CD8 T cell epitopes--no single immunologic property predicts it! Curr Opin Immunol 2015; 34:43-51. [PMID: 25660347 PMCID: PMC5023008 DOI: 10.1016/j.coi.2015.01.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 01/19/2015] [Accepted: 01/19/2015] [Indexed: 01/25/2023]
Abstract
Once a burgeoning field of study, over the past decade or so, T cell epitope discovery has lost some luster. The contributory factors perchance are the general notion that any newly discovered epitope will reveal very little about an immune response and that knowledge of epitopes are less critical for vaccine design. Despite these notions, the breadth and depth of T cell epitopes derived from clinically important microbial agents of human diseases largely remain ill defined. We review here a flurry of recent reports that have rebirthed the field. These reports reveal that epitope discovery is an essential step toward rational vaccine design and critical for monitoring vaccination efficacy. The new findings also indicate that neither immunogenicity nor immunodominance predict protective immunity. Hence, an immunogenic epitope is but a peptide unless proven protective against disease.
Collapse
Affiliation(s)
- Pavlo Gilchuk
- Veterans Administration Tennessee Valley Healthcare System, Vanderbilt University, Nashville, TN 37332, USA; Department of Pathology, Microbiology and Immunology, School of Medicine, Vanderbilt University, Nashville, TN 37332, USA
| | - Timothy M Hill
- Department of Pathology, Microbiology and Immunology, School of Medicine, Vanderbilt University, Nashville, TN 37332, USA
| | - John T Wilson
- Department of Chemical & Biomolecular Engineering, School of Engineering, Vanderbilt University, Nashville, TN 37332, USA
| | - Sebastian Joyce
- Veterans Administration Tennessee Valley Healthcare System, Vanderbilt University, Nashville, TN 37332, USA; Department of Pathology, Microbiology and Immunology, School of Medicine, Vanderbilt University, Nashville, TN 37332, USA.
| |
Collapse
|
16
|
Immunodominance changes as a function of the infecting dengue virus serotype and primary versus secondary infection. J Virol 2014; 88:11383-94. [PMID: 25056881 DOI: 10.1128/jvi.01108-14] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Dengue virus (DENV) is the causative agent of dengue fever (DF). This disease can be caused by any of four DENV serotypes (DENV1 to -4) which share 67 to 75% sequence homology with one another. The effect of subsequent infections with different serotypes on the T cell repertoire is not fully understood. We utilized mice transgenic for human leukocyte antigens (HLA) lacking the alpha/beta interferon (IFN-α/β) receptor to study responses to heterologous DENV infection. First, we defined the primary T cell response to DENV3 in the context of a wide range of HLA molecules. The primary DENV3 immune response recognized epitopes derived from all 10 DENV proteins, with a significant fraction of the response specific for structural proteins. This is in contrast to primary DENV2 infection, in which structural proteins are a minor component of the response, suggesting differential antigen immunodominance as a function of the infecting serotype. We next investigated the effect of secondary heterologous DENV infection on the T cell repertoire. In the case of both DENV2/3 and DENV3/2 heterologous infections, recognition of conserved/cross-reactive epitopes was either constant or expanded compared to that in homologous infection. Furthermore, in heterologous infection, previous infection with a different serotype impaired the development of responses directed to serotype-specific but not conserved epitopes. Thus, a detrimental effect of previous heterotypic responses might not be due to dysfunctional and weakly cross-reactive epitopes dominating the response. Rather, responses to the original serotype might limit the magnitude of responses directed against epitopes that are either cross-reactive to or specific for the most recently infecting serotype. IMPORTANCE DENV transmission occurs in more than 100 countries and is an increasing public health problem in tropical and subtropical regions. At present, no effective antiviral therapy or licensed vaccine exists, and treatment is largely supportive in nature. Disease can be caused by any of the four DENV serotypes (DENV1 to -4), which share a high degree of sequence homology with one another. In this study, we have addressed the question of how the T cell repertoire changes as a function of infections with different serotypes and of subsequent heterologous secondary infections. This is of particular interest in the field of dengue viruses, in which secondary infections with different DENV serotypes increase the risk of severe disease. Our results on the evolution of the immune response after primary and secondary infections provide new insights into HLA-restricted T cell responses against DENV relevant for the design of a vaccine against DENV.
Collapse
|
17
|
|
18
|
Paul S, Weiskopf D, Angelo MA, Sidney J, Peters B, Sette A. HLA class I alleles are associated with peptide-binding repertoires of different size, affinity, and immunogenicity. THE JOURNAL OF IMMUNOLOGY 2013; 191:5831-9. [PMID: 24190657 DOI: 10.4049/jimmunol.1302101] [Citation(s) in RCA: 205] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Prediction of HLA binding affinity is widely used to identify candidate T cell epitopes, and an affinity of 500 nM is routinely used as a threshold for peptide selection. However, the fraction (percentage) of peptides predicted to bind with affinities of 500 nM varies by allele. For example, of a large collection of ~30,000 dengue virus-derived peptides only 0.3% were predicted to bind HLA A*0101, whereas nearly 5% were predicted for A*0201. This striking difference could not be ascribed to variation in accuracy of the algorithms used, as predicted values closely correlated with affinity measured in vitro with purified HLA molecules. These data raised the question whether different alleles would also vary in terms of epitope repertoire size, defined as the number of associated epitopes or, alternatively, whether alleles vary drastically in terms of the affinity threshold associated with immunogenicity. To address this issue, strains of HLA transgenic mice with wide (A*0201), intermediate (B*0702), or narrow (A*0101) repertoires were immunized with peptides of varying binding affinity and relative percentile ranking. The results show that absolute binding capacity is a better predictor of immunogenicity, and analysis of epitopes from the Immune Epitope Database revealed that predictive efficacy is increased using allele-specific affinity thresholds. Finally, we investigated the genetic and structural basis of the phenomenon. Although no stringent correlate was defined, on average HLA B alleles are associated with significantly narrower repertoires than are HLA A alleles.
Collapse
Affiliation(s)
- Sinu Paul
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, 92037, USA
| | - Daniela Weiskopf
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, 92037, USA
| | - Michael A Angelo
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, 92037, USA
| | - John Sidney
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, 92037, USA
| | - Bjoern Peters
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, 92037, USA
| | - Alessandro Sette
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, 92037, USA
| |
Collapse
|
19
|
Di Pilato M, Mejías-Pérez E, Gómez CE, Perdiguero B, Sorzano COS, Esteban M. New vaccinia virus promoter as a potential candidate for future vaccines. J Gen Virol 2013; 94:2771-2776. [PMID: 24077296 DOI: 10.1099/vir.0.057299-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Here we describe the design and strength of a new synthetic late-early optimized (LEO) vaccinia virus (VACV) promoter used as a transcriptional regulator of GFP expression during modified vaccinia Ankara infection. In contrast to the described synthetic VACV promoter (pS), LEO induced significantly higher levels of GFP expression in vitro within the first hour after infection, which correlated with an enhancement in the GFP-specific CD8 T-cell response detected in vivo, demonstrating its potential use in future vaccines.
Collapse
Affiliation(s)
- Mauro Di Pilato
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Ernesto Mejías-Pérez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Carmen Elena Gómez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Beatriz Perdiguero
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Carlos Oscar S Sorzano
- Biocomputing Unit, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Mariano Esteban
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| |
Collapse
|
20
|
López D, Lorente E, Barriga A, Johnstone C, Mir C. Vaccination and the TAP-independent antigen processing pathways. Expert Rev Vaccines 2013; 12:1077-83. [PMID: 24053400 DOI: 10.1586/14760584.2013.825447] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The cytotoxic CD8(+) T lymphocyte-mediated cellular response is important for the elimination of virus-infected cells and requires the prior recognition of short viral peptide antigens previously translocated to the endoplasmic reticulum by the transporter associated with antigen processing (TAP). However, individuals with nonfunctional TAP complexes or infected cells with TAP molecules blocked by specific viral proteins, such as the cowpoxvirus, a component of the first source of early empirical vaccination against smallpox, are still able to present several HLA class I ligands generated by the TAP-independent antigen processing pathways to specific cytotoxic CD8(+) T lymphocytes. Currently, bioterrorism and emerging infectious diseases have renewed interest in poxviruses. Recent works that have identified HLA class I ligands and epitopes in virus-infected TAP-deficient cells have implications for the study of both the effectiveness of early empirical vaccination and the analysis of HLA class I antigen processing in TAP-deficient subjects.
Collapse
Affiliation(s)
- Daniel López
- From Centro Nacional de Microbiología, Instituto de Salud Carlos III, 28220 Majadahonda (Madrid), Spain
| | | | | | | | | |
Collapse
|
21
|
Gilchuk P, Spencer CT, Conant SB, Hill T, Gray JJ, Niu X, Zheng M, Erickson JJ, Boyd KL, McAfee KJ, Oseroff C, Hadrup SR, Bennink JR, Hildebrand W, Edwards KM, Crowe JE, Williams JV, Buus S, Sette A, Schumacher TNM, Link AJ, Joyce S. Discovering naturally processed antigenic determinants that confer protective T cell immunity. J Clin Invest 2013; 123:1976-87. [PMID: 23543059 DOI: 10.1172/jci67388] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 02/07/2013] [Indexed: 12/15/2022] Open
Abstract
CD8+ T cells (TCD8) confer protective immunity against many infectious diseases, suggesting that microbial TCD8 determinants are promising vaccine targets. Nevertheless, current T cell antigen identification approaches do not discern which epitopes drive protective immunity during active infection - information that is critical for the rational design of TCD8-targeted vaccines. We employed a proteomics-based approach for large-scale discovery of naturally processed determinants derived from a complex pathogen, vaccinia virus (VACV), that are presented by the most frequent representatives of four major HLA class I supertypes. Immunologic characterization revealed that many previously unidentified VACV determinants were recognized by smallpox-vaccinated human peripheral blood cells in a variegated manner. Many such determinants were recognized by HLA class I-transgenic mouse immune TCD8 too and elicited protective TCD8 immunity against lethal intranasal VACV infection. Notably, efficient processing and stable presentation of immune determinants as well as the availability of naive TCD8 precursors were sufficient to drive a multifunctional, protective TCD8 response. Our approach uses fundamental insights into T cell epitope processing and presentation to define targets of protective TCD8 immunity within human pathogens that have complex proteomes, suggesting that this approach has general applicability in vaccine sciences.
Collapse
Affiliation(s)
- Pavlo Gilchuk
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Sidney J, Southwood S, Moore C, Oseroff C, Pinilla C, Grey HM, Sette A. Measurement of MHC/peptide interactions by gel filtration or monoclonal antibody capture. CURRENT PROTOCOLS IN IMMUNOLOGY 2013; Chapter 18:Unit 18.3.. [PMID: 23392640 PMCID: PMC3626435 DOI: 10.1002/0471142735.im1803s100] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
This unit describes a technique for the direct and quantitative measurement of the capacity of peptide ligands to bind Class I and Class II MHC molecules. The binding of a peptide of interest to MHC is assessed based on its ability to inhibit the binding of a radiolabeled probe peptide to purified MHC molecules. This unit includes protocols for the purification of Class I and Class II MHC molecules by affinity chromatography, and for the radiolabeling of peptides using the chloramine T method. An alternate protocol describes alterations in the basic protocol that are necessary when performing direct binding assays, which are required for (1) selecting appropriate high-affinity, assay-specific, radiolabeled ligands, and (2) determining the amount of MHC necessary to yield assays with the highest sensitivity. After a predetermined incubation period, dependent upon the allele under examination, the bound and unbound radiolabeled species are separated, and their relative amounts are determined. Three methods for separation are described, two utilizing size-exclusion gel-filtration chromatography and a third using monoclonal antibody capture of MHC. Data analysis for each method is also explained.
Collapse
Affiliation(s)
- John Sidney
- La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Lindestam Arlehamn CS, Gerasimova A, Mele F, Henderson R, Swann J, Greenbaum JA, Kim Y, Sidney J, James EA, Taplitz R, McKinney DM, Kwok WW, Grey H, Sallusto F, Peters B, Sette A. Memory T cells in latent Mycobacterium tuberculosis infection are directed against three antigenic islands and largely contained in a CXCR3+CCR6+ Th1 subset. PLoS Pathog 2013; 9:e1003130. [PMID: 23358848 PMCID: PMC3554618 DOI: 10.1371/journal.ppat.1003130] [Citation(s) in RCA: 195] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Accepted: 11/29/2012] [Indexed: 12/31/2022] Open
Abstract
An understanding of the immunological footprint of Mycobacterium tuberculosis (MTB) CD4 T cell recognition is still incomplete. Here we report that human Th1 cells specific for MTB are largely contained in a CXCR3+CCR6+ memory subset and highly focused on three broadly immunodominant antigenic islands, all related to bacterial secretion systems. Our results refute the notion that secreted antigens act as a decoy, since both secreted proteins and proteins comprising the secretion system itself are targeted by a fully functional T cell response. In addition, several novel T cell antigens were identified which can be of potential diagnostic use, or as vaccine antigens. These results underline the power of a truly unbiased, genome-wide, analysis of CD4 MTB recognition based on the combined use of epitope predictions, high throughput ELISPOT, and T cell libraries using PBMCs from individuals latently infected with MTB. Mycobacterium tuberculosis is one of the most life-threatening pathogens of all time, having infected one-third of the present human population. There is an urgent need for both novel vaccines and diagnostic strategies. Here, we were able to identify the targets most dominantly recognized by latently infected individual that successfully contain infection. These targets are contained in three broadly genomic antigenic islands, all related to bacterial secretion systems and composed by several distinct ORFs. Thus, our results suggest that vaccination with one or few defined antigens will fail to replicate the response associated with natural immunity. Our analysis also pinpoints that the Th1 cells dominating the response are associated with novel and well-defined phenotypic markers, suggesting that the response is molded by unique MTB associated factors. This study demonstrates further that the approach combining peptide binding predictions with modern high throughput techniques is generally applicable to the study of immunity to other complex pathogens. Together, our data provide a new angle in the worldwide fight against M. tuberculosis and could be used for diagnostic or vaccine developments.
Collapse
Affiliation(s)
| | - Anna Gerasimova
- La Jolla Institute for Allergy and Immunology, La Jolla, California, United States of America
| | - Federico Mele
- Institute for Research in Biomedicine, Bellinzona, Switzerland
| | - Ryan Henderson
- La Jolla Institute for Allergy and Immunology, La Jolla, California, United States of America
| | - Justine Swann
- La Jolla Institute for Allergy and Immunology, La Jolla, California, United States of America
| | - Jason A. Greenbaum
- La Jolla Institute for Allergy and Immunology, La Jolla, California, United States of America
| | - Yohan Kim
- La Jolla Institute for Allergy and Immunology, La Jolla, California, United States of America
| | - John Sidney
- La Jolla Institute for Allergy and Immunology, La Jolla, California, United States of America
| | - Eddie A. James
- Benaroya Research Institute, Seattle, Washington, United States of America
| | - Randy Taplitz
- Antiviral Research Centre, University of California, San Diego, San Diego, California, United States of America
| | - Denise M. McKinney
- La Jolla Institute for Allergy and Immunology, La Jolla, California, United States of America
| | - William W. Kwok
- Benaroya Research Institute, Seattle, Washington, United States of America
| | - Howard Grey
- La Jolla Institute for Allergy and Immunology, La Jolla, California, United States of America
| | | | - Bjoern Peters
- La Jolla Institute for Allergy and Immunology, La Jolla, California, United States of America
| | - Alessandro Sette
- La Jolla Institute for Allergy and Immunology, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
24
|
|
25
|
Schmid K, Keasey SL, Pittman P, Emerson GL, Meegan J, Tikhonov AP, Chen G, Schweitzer B, Ulrich RG. Analysis of the human immune response to vaccinia by use of a novel protein microarray suggests that antibodies recognize less than 10% of the total viral proteome. Proteomics Clin Appl 2012; 2:1528-38. [PMID: 21136800 DOI: 10.1002/prca.200780113] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Control of smallpox by mass vaccination was one of the most effective public health measures ever employed for eradicating a devastating infectious disease. However, new methods are needed for monitoring smallpox immunity within current vulnerable populations, and for the development of replacement vaccines for use by immunocompromized or low-responding individuals. As a measure for achieving this goal, we developed a protein microarray of the vaccinia virus proteome by using high-throughput baculovirus expression and purification of individual elements. The array was validated with therapeutic-grade, human hyperimmune sera, and these data were compared to results obtained from individuals vaccinated against smallpox using Dryvax. A high level of reproducibility with a very low background were apparent in repetitive assays that confirmed previously reported antigens and identified new proteins that may be important for neutralizing viral infection. Our results suggest that proteins recognized by antibodies from all vaccinees constituted <10% of the total vaccinia proteome.
Collapse
Affiliation(s)
- Kara Schmid
- Laboratory of Molecular Immunology, Army Medical Research Institute of Infectious Diseases, Frederick, MD, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Oseroff C, Sidney J, Vita R, Tripple V, McKinney DM, Southwood S, Brodie TM, Sallusto F, Grey H, Alam R, Broide D, Greenbaum JA, Kolla R, Peters B, Sette A. T cell responses to known allergen proteins are differently polarized and account for a variable fraction of total response to allergen extracts. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2012; 189:1800-11. [PMID: 22786768 PMCID: PMC3411923 DOI: 10.4049/jimmunol.1200850] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A panel of 133 allergens derived from 28 different sources, including fungi, trees, grasses, weeds, and indoor allergens, was surveyed utilizing prediction of HLA class II-binding peptides and ELISPOT assays with PBMC from allergic donors, resulting in the identification of 257 T cell epitopes. More than 90% of the epitopes were novel, and for 14 allergen sources were the first ever identified to our knowledge. The epitopes identified in the different allergen sources summed up to a variable fraction of the total extract response. In cases of allergens in which the identified T cell epitopes accounted for a minor fraction of the extract response, fewer known protein sequences were available, suggesting that for low epitope coverage allergen sources, additional allergen proteins remain to be identified. IL-5 and IFN-γ responses were measured as prototype Th2 and Th1 responses, respectively. Whereas in some cases (e.g., orchard grass, Alternaria, cypress, and Russian thistle) IL-5 production greatly exceeded IFN-γ, in others (e.g., Aspergillus, Penicillum, and alder) the production of IFN-γ exceeded IL-5. Thus, different allergen sources are associated with variable polarization of the responding T cells. The present study represents the most comprehensive survey to date of human allergen-derived T cell epitopes. These epitopes might be used to characterize T cell phenotype/T cell plasticity as a function of seasonality, or as a result of specific immunotherapy treatment or varying disease severity (asthma or rhinitis).
Collapse
Affiliation(s)
- Carla Oseroff
- La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| | - John Sidney
- La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| | - Randi Vita
- La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| | - Victoria Tripple
- La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| | | | - Scott Southwood
- La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| | - Tess M. Brodie
- Institute for Research in Biomedicine, Bellinzona, Switzerland
| | | | - Howard Grey
- La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| | | | - David Broide
- University of California, San Diego, La Jolla, CA, 92037
| | | | - Ravi Kolla
- La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| | - Bjoern Peters
- La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| | - Alessandro Sette
- La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| |
Collapse
|
27
|
Lorente E, García R, Mir C, Barriga A, Lemonnier FA, Ramos M, López D. Role of metalloproteases in vaccinia virus epitope processing for transporter associated with antigen processing (TAP)-independent human leukocyte antigen (HLA)-B7 class I antigen presentation. J Biol Chem 2012; 287:9990-10000. [PMID: 22298786 PMCID: PMC3323003 DOI: 10.1074/jbc.m111.314856] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Revised: 01/20/2012] [Indexed: 12/27/2022] Open
Abstract
The transporter associated with antigen processing (TAP) translocates the viral proteolytic peptides generated by the proteasome and other proteases in the cytosol to the endoplasmic reticulum lumen. There, they complex with nascent human leukocyte antigen (HLA) class I molecules, which are subsequently recognized by the CD8(+) lymphocyte cellular response. However, individuals with nonfunctional TAP complexes or tumor or infected cells with blocked TAP molecules are able to present HLA class I ligands generated by TAP-independent processing pathways. Herein, using a TAP-independent polyclonal vaccinia virus-polyspecific CD8(+) T cell line, two conserved vaccinia-derived TAP-independent HLA-B*0702 epitopes were identified. The presentation of these epitopes in normal cells occurs via complex antigen-processing pathways involving the proteasome and/or different subsets of metalloproteinases (amino-, carboxy-, and endoproteases), which were blocked in infected cells with specific chemical inhibitors. These data support the hypothesis that the abundant cellular proteolytic systems contribute to the supply of peptides recognized by the antiviral cellular immune response, thereby facilitating immunosurveillance. These data may explain why TAP-deficient individuals live normal life spans without any increased susceptibility to viral infections.
Collapse
Affiliation(s)
- Elena Lorente
- Instituto de Salud Carlos III, Centro Nacional de Microbiología, 28220 Majadahonda (Madrid), Spain and
| | - Ruth García
- Instituto de Salud Carlos III, Centro Nacional de Microbiología, 28220 Majadahonda (Madrid), Spain and
| | - Carmen Mir
- Instituto de Salud Carlos III, Centro Nacional de Microbiología, 28220 Majadahonda (Madrid), Spain and
| | - Alejandro Barriga
- Instituto de Salud Carlos III, Centro Nacional de Microbiología, 28220 Majadahonda (Madrid), Spain and
| | - François A Lemonnier
- Unité d'Immunité Cellulaire Antivirale, Département d'Immunologie, Institut Pasteur, Paris Cedex 15, France
| | - Manuel Ramos
- Instituto de Salud Carlos III, Centro Nacional de Microbiología, 28220 Majadahonda (Madrid), Spain and
| | - Daniel López
- Instituto de Salud Carlos III, Centro Nacional de Microbiología, 28220 Majadahonda (Madrid), Spain and.
| |
Collapse
|
28
|
Quakkelaar ED, Melief CJM. Experience with synthetic vaccines for cancer and persistent virus infections in nonhuman primates and patients. Adv Immunol 2012; 114:77-106. [PMID: 22449779 DOI: 10.1016/b978-0-12-396548-6.00004-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Synthetic vaccines, in particular long synthetic peptides of approximately 25-50 amino acids in length, are attractive for HIV vaccine development and for induction of therapeutic immune responses in patients with (pre-)malignant disorders. In the case of preventive vaccine development against HIV, no major success has been achieved, but the possibilities are by no means exhausted. A long peptide vaccine consisting of 13 overlapping peptides, which together cover the entire length of the two oncogenic proteins E6 and E7 of high-risk human papilloma virus type 16 (HPV16), caused complete regression of all lesions and eradication of virus in 9 out of 20 women with high-grade vulvar intraepithelial neoplasia, a therapy-resistant preneoplastic disorder. The nature and strength of the vaccine-prompted T cell responses were significantly correlated with the clinical response. Synthetic peptide vaccines are attractive, because they allow rational improvement of vaccine design and detailed pharmacokinetic and pharmacodynamic studies not possible with conventional vaccines. Improvements are possible by addition or conjugation of adjuvants, notably TLR ligands, to the synthetic peptides.
Collapse
Affiliation(s)
- Esther D Quakkelaar
- Department of Immunohematology, Leiden University Medical Center, Leiden, The Netherlands
| | | |
Collapse
|
29
|
Multiple viral ligands naturally presented by different class I molecules in transporter antigen processing-deficient vaccinia virus-infected cells. J Virol 2011; 86:527-41. [PMID: 22031944 DOI: 10.1128/jvi.05737-11] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The transporter associated with antigen processing (TAP) delivers the viral proteolytic products generated by the proteasome in the cytosol to the endoplasmic reticulum lumen that are subsequently recognized by cytotoxic T lymphocytes (CTLs). However, several viral epitopes have been identified in TAP-deficient models. Using mass spectrometry to analyze complex human leukocyte antigen (HLA)-bound peptide pools isolated from large numbers of TAP-deficient vaccinia virus-infected cells, we identified 11 ligands naturally presented by four different HLA-A, HLA-B, and HLA-C class I molecules. Two of these ligands were presented by two different HLA class I alleles, and, as a result, 13 different HLA-peptide complexes were formed simultaneously in the same vaccinia virus-infected cells. In addition to the high-affinity ligands, one low-affinity peptide restricted by each of the HLA-A, HLA-B, and HLA-C class I molecules was identified. Both high- and low-affinity ligands generated long-term memory CTL responses to vaccinia virus in an HLA-A2-transgenic mouse model. The processing and presentation of two vaccinia virus-encoded HLA-A2-restricted antigens took place via proteasomal and nonproteasomal pathways, which were blocked in infected cells with chemical inhibitors specific for different subsets of metalloproteinases. These data have implications for the study of the effectiveness of early empirical vaccination with cowpox virus against smallpox disease.
Collapse
|
30
|
Weiskopf D, Yauch LE, Angelo MA, John DV, Greenbaum JA, Sidney J, Kolla RV, De Silva AD, de Silva AM, Grey H, Peters B, Shresta S, Sette A. Insights into HLA-restricted T cell responses in a novel mouse model of dengue virus infection point toward new implications for vaccine design. THE JOURNAL OF IMMUNOLOGY 2011; 187:4268-79. [PMID: 21918184 DOI: 10.4049/jimmunol.1101970] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The frequency of dengue virus (DENV) infection has increased dramatically in the last few decades, and the lack of a vaccine has led to significant morbidity and mortality worldwide. To date, a convenient murine system to study human T cell responses to DENV has not been available. Mice transgenic for HLA are widely used to model human immune responses, and it has been shown that mouse-passaged DENV is able to replicate to significant levels in IFN-α/βR(-/-) mice. To cover a wide range of HLA phenotypes, we backcrossed IFN-α/βR(-/-) mice with HLA A*0201, A*0101, A*1101, B*0702, and DRB1*0101-transgenic mice. A DENV proteome-wide screen identified a total of 42 epitopes across all HLA-transgenic IFN-α/βR(-/-) strains tested. In contrast, only eight of these elicited responses in the corresponding IFN-α/βR(+/+) mice. We were able to identify T cell epitopes from 9 out of the 10 DENV proteins. However, the majority of responses were derived from the highly conserved nonstructural proteins NS3 and NS5. The relevance of this model is further demonstrated by the fact that most of the epitopes identified in our murine system are also recognized by PBMC from DENV-exposed human donors, and a dominance of HLA B*0702-restricted responses has been detected in both systems. Our results provide new insights into HLA-restricted T cell responses against DENV, and we describe in this study a novel murine model that allows the investigation of T cell-mediated immune mechanisms relevant to vaccine design.
Collapse
Affiliation(s)
- Daniela Weiskopf
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Ovsyannikova IG, Poland GA. Vaccinomics: current findings, challenges and novel approaches for vaccine development. AAPS J 2011; 13:438-44. [PMID: 21671143 PMCID: PMC3160164 DOI: 10.1208/s12248-011-9281-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Accepted: 05/05/2011] [Indexed: 02/06/2023] Open
Abstract
Recent years have witnessed a growing interest in a field of vaccinology that we have named vaccinomics. The overall idea behind vaccinomics is to identify genetic and other mechanisms and pathways that determine immune responses, and thereby provide new candidate vaccine approaches. Considerable data show that host genetic polymorphisms act as important determinants of innate and adaptive immunity to vaccines. This review highlights examples of the role of immunogenetics and immunogenomics in understanding immune responses to vaccination, which are highly variable across the population. The influence of HLA genes, non-HLA, and innate genes in inter-individual variations in immune responses to viral vaccines are examined using population-based gene/SNP association studies. The ability to understand relationships between immune response gene variants and vaccine-specific immunity may assist in designing new vaccines. At the same time, application of state-of-the-art next-generation sequencing technology (and bioinformatics) is desired to provide new genetic information and its relationship to the immune response.
Collapse
Affiliation(s)
- Inna G. Ovsyannikova
- />Vaccine Research Group, Mayo Clinic, Rochester, Minnesota USA
- />Program in Translational Immunovirology and Biodefense, Rochester, Minnesota USA
- />Department of Medicine, Mayo Clinic, Rochester, Minnesota USA
| | - Gregory A. Poland
- />Vaccine Research Group, Mayo Clinic, Rochester, Minnesota USA
- />Program in Translational Immunovirology and Biodefense, Rochester, Minnesota USA
- />Department of Medicine, Mayo Clinic, Rochester, Minnesota USA
- />Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota USA
- />Mayo Clinic, 611C Guggenheim Building, 200 First Street, SW, Rochester, Minnesota 55905 USA
| |
Collapse
|
32
|
Solares AM, Baladron I, Ramos T, Valenzuela C, Borbon Z, Fanjull S, Gonzalez L, Castillo D, Esmir J, Granadillo M, Batte A, Cintado A, Ale M, Fernandez de Cossio ME, Ferrer A, Torrens I, Lopez-Saura P. Safety and Immunogenicity of a Human Papillomavirus Peptide Vaccine (CIGB-228) in Women with High-Grade Cervical Intraepithelial Neoplasia: First-in-Human, Proof-of-Concept Trial. ISRN OBSTETRICS AND GYNECOLOGY 2011; 2011:292951. [PMID: 21748025 PMCID: PMC3118643 DOI: 10.5402/2011/292951] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Accepted: 01/26/2011] [Indexed: 12/22/2022]
Abstract
Objective. CIGB-228 is a novel therapeutic vaccine consisting of HLA-restricted HPV16 E7 epitope adjuvated with VSSP. This trial was designed to evaluate the toxicity, safety, immunogenicity, HPV clearance, and lesion regression. Methods. Seven women were entered. All were HLA-A2 positive, had biopsy-proven high-grade CIN, histologically positive for HPV16, and beared persistent postbiopsy lesions visible by digital colposcopy. HLA-A2 women with biopsy-proven high-grade CIN, HPV16-positive, and beared persistent postbiopsy lesions visible by digital colposcopy were vaccinated. One weekly injections of CIGB-228 vaccine was given for four weeks. Then, loop electrosurgical excision procedure (LEEP) of the transformation zone was performed. Study subjects were followed for 1 year after LEEP. Results. No toxicity beyond grade 1 was observed during and after the four vaccinations. Five of seven women had complete and partial regression. Cellular immune response was seen in all patients. HPV was cleared in three of the patients with complete response.
Conclusion. CIGB-228 vaccination was well tolerated and capable to induce IFNγ-associated T-cell response in women with high-grade CIN. In several patients, lesion regression and HPV clearance were observed.
Collapse
Affiliation(s)
- Ana M Solares
- Gyneco-obstetric Hospital Ramon Gonzalez Coro, Havana 10400, Cuba
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
The eradication of smallpox, one of the great triumphs of medicine, was accomplished through the prophylactic administration of live vaccinia virus, a comparatively benign relative of variola virus, the causative agent of smallpox. Nevertheless, recent fears that variola virus may be used as a biological weapon together with the present susceptibility of unimmunized populations have spurred the development of new-generation vaccines that are safer than the original and can be produced by modern methods. Predicting the efficacy of such vaccines in the absence of human smallpox, however, depends on understanding the correlates of protection. This review outlines the biology of poxviruses with particular relevance to vaccine development, describes protein targets of humoral and cellular immunity, compares animal models of orthopoxvirus disease with human smallpox, and considers the status of second- and third-generation smallpox vaccines.
Collapse
Affiliation(s)
- Bernard Moss
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-3210, USA.
| |
Collapse
|
34
|
Tang ST, van Meijgaarden KE, Caccamo N, Guggino G, Klein MR, van Weeren P, Kazi F, Stryhn A, Zaigler A, Sahin U, Buus S, Dieli F, Lund O, Ottenhoff THM. Genome-based in silico identification of new Mycobacterium tuberculosis antigens activating polyfunctional CD8+ T cells in human tuberculosis. THE JOURNAL OF IMMUNOLOGY 2010; 186:1068-80. [PMID: 21169544 DOI: 10.4049/jimmunol.1002212] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Although CD8(+) T cells help control Mycobacterium tuberculosis infection, their M. tuberculosis Ag repertoire, in vivo frequency, and functionality in human tuberculosis (TB) remains largely undefined. We have performed genome-based bioinformatics searches to identify new M. tuberculosis epitopes presented by major HLA class I supertypes A2, A3, and B7 (covering 80% of the human population). A total of 432 M. tuberculosis peptides predicted to bind to HLA-A*0201, HLA-A*0301, and HLA-B*0702 (representing the above supertypes) were synthesized and HLA-binding affinities determined. Peptide-specific CD8(+) T cell proliferation assays (CFSE dilution) in 41 M. tuberculosis-responsive donors identified 70 new M. tuberculosis epitopes. Using HLA/peptide tetramers for the 18 most prominently recognized HLA-A*0201-binding M. tuberculosis peptides, recognition by cured TB patients' CD8(+) T cells was validated for all 18 epitopes. Intracellular cytokine staining for IFN-γ, IL-2, and TNF-α revealed mono-, dual-, as well as triple-positive CD8(+) T cells, indicating these M. tuberculosis peptide-specific CD8(+) T cells were (poly)functional. Moreover, these T cells were primed during natural infection, because they were absent from M. tuberculosis-noninfected individuals. Control CMV peptide/HLA-A*0201 tetramers stained CD8(+) T cells in M. tuberculosis-infected and noninfected individuals equally, whereas Ebola peptide/HLA-A*0201 tetramers were negative. In conclusion, the M. tuberculosis-epitope/Ag repertoire for human CD8(+) T cells is much broader than hitherto suspected, and the newly identified M. tuberculosis Ags are recognized by (poly)functional CD8(+) T cells during control of infection. These results impact on TB-vaccine design and biomarker identification.
Collapse
Affiliation(s)
- Sheila T Tang
- Center for Biological Sequence Analysis, Technical University of Denmark, 2800 Lyngby, Denmark
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Söllner J, Heinzel A, Summer G, Fechete R, Stipkovits L, Szathmary S, Mayer B. Concept and application of a computational vaccinology workflow. Immunome Res 2010; 6 Suppl 2:S7. [PMID: 21067549 PMCID: PMC2981879 DOI: 10.1186/1745-7580-6-s2-s7] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The last years have seen a renaissance of the vaccine area, driven by clinical needs in infectious diseases but also chronic diseases such as cancer and autoimmune disorders. Equally important are technological improvements involving nano-scale delivery platforms as well as third generation adjuvants. In parallel immunoinformatics routines have reached essential maturity for supporting central aspects in vaccinology going beyond prediction of antigenic determinants. On this basis computational vaccinology has emerged as a discipline aimed at ab-initio rational vaccine design.Here we present a computational workflow for implementing computational vaccinology covering aspects from vaccine target identification to functional characterization and epitope selection supported by a Systems Biology assessment of central aspects in host-pathogen interaction. We exemplify the procedures for Epstein Barr Virus (EBV), a clinically relevant pathogen causing chronic infection and suspected of triggering malignancies and autoimmune disorders. RESULTS We introduce pBone/pView as a computational workflow supporting design and execution of immunoinformatics workflow modules, additionally involving aspects of results visualization, knowledge sharing and re-use. Specific elements of the workflow involve identification of vaccine targets in the realm of a Systems Biology assessment of host-pathogen interaction for identifying functionally relevant targets, as well as various methodologies for delineating B- and T-cell epitopes with particular emphasis on broad coverage of viral isolates as well as MHC alleles.Applying the workflow on EBV specifically proposes sequences from the viral proteins LMP2, EBNA2 and BALF4 as vaccine targets holding specific B- and T-cell epitopes promising broad strain and allele coverage. CONCLUSION Based on advancements in the experimental assessment of genomes, transcriptomes and proteomes for both, pathogen and (human) host, the fundaments for rational design of vaccines have been laid out. In parallel, immunoinformatics modules have been designed and successfully applied for supporting specific aspects in vaccine design. Joining these advancements, further complemented by novel vaccine formulation and delivery aspects, have paved the way for implementing computational vaccinology for rational vaccine design tackling presently unmet vaccine challenges.
Collapse
Affiliation(s)
- Johannes Söllner
- emergentec biodevelopment GmbH, Rathausstrasse 5/3, 1010 Vienna, Austria
| | - Andreas Heinzel
- emergentec biodevelopment GmbH, Rathausstrasse 5/3, 1010 Vienna, Austria
- University of Applied Sciences, Softwarepark 11, 4232 Hagenberg, Austria
| | - Georg Summer
- University of Applied Sciences, Softwarepark 11, 4232 Hagenberg, Austria
| | - Raul Fechete
- emergentec biodevelopment GmbH, Rathausstrasse 5/3, 1010 Vienna, Austria
| | | | - Susan Szathmary
- Galenbio Kft., Erdőszél köz 21, 1037 Budapest, Hungary and GalenBio, Inc., 5922 Farnsworth Ct, Carlsbad, CA 92008, USA
| | - Bernd Mayer
- emergentec biodevelopment GmbH, Rathausstrasse 5/3, 1010 Vienna, Austria
- Institute for Theoretical Chemistry, University of Vienna, Währinger Strasse 17, 1090 Vienna, Austria
| |
Collapse
|
36
|
Bremel RD, Homan EJ. An integrated approach to epitope analysis II: A system for proteomic-scale prediction of immunological characteristics. Immunome Res 2010; 6:8. [PMID: 21044290 PMCID: PMC2991286 DOI: 10.1186/1745-7580-6-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Accepted: 11/02/2010] [Indexed: 11/25/2022] Open
Abstract
Background Improving our understanding of the immune response is fundamental to developing strategies to combat a wide range of diseases. We describe an integrated epitope analysis system which is based on principal component analysis of sequences of amino acids, using a multilayer perceptron neural net to conduct QSAR regression predictions for peptide binding affinities to 35 MHC-I and 14 MHC-II alleles. Results The approach described allows rapid processing of single proteins, entire proteomes or subsets thereof, as well as multiple strains of the same organism. It enables consideration of the interface of diversity of both microorganisms and of host immunogenetics. Patterns of binding affinity are linked to topological features, such as extracellular or intramembrane location, and integrated into a graphical display which facilitates conceptual understanding of the interplay of B-cell and T-cell mediated immunity. Patterns which emerge from application of this approach include the correlations between peptides showing high affinity binding to MHC-I and to MHC-II, and also with predicted B-cell epitopes. These are characterized as coincident epitope groups (CEGs). Also evident are long range patterns across proteins which identify regions of high affinity binding for a permuted population of diverse and heterozygous HLA alleles, as well as subtle differences in reactions with MHCs of individual HLA alleles, which may be important in disease susceptibility, and in vaccine and clinical trial design. Comparisons are shown of predicted epitope mapping derived from application of the QSAR approach with experimentally derived epitope maps from a diverse multi-species dataset, from Staphylococcus aureus, and from vaccinia virus. Conclusions A desktop application with interactive graphic capability is shown to be a useful platform for development of prediction and visualization tools for epitope mapping at scales ranging from individual proteins to proteomes from multiple strains of an organism. The possible functional implications of the patterns of peptide epitopes observed are discussed, including their implications for B-cell and T-cell cooperation and cross presentation.
Collapse
Affiliation(s)
- Robert D Bremel
- 1ioGenetics LLC, 3591 Anderson Street, Madison, WI 53704, USA.
| | | |
Collapse
|
37
|
Kennedy RB, Poland GA. The identification of HLA class II-restricted T cell epitopes to vaccinia virus membrane proteins. Virology 2010; 408:232-40. [PMID: 20961593 PMCID: PMC2975829 DOI: 10.1016/j.virol.2010.09.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Revised: 09/13/2010] [Accepted: 09/15/2010] [Indexed: 12/12/2022]
Abstract
Three decades after the eradication of smallpox, the threat of bioterrorism and outbreaks of emerging diseases such as monkeypox have renewed interest in the development of safe and effective next-generation poxvirus vaccines and biodefense research. Current smallpox vaccines contain live virus and are contraindicated for a large percentage of the population. Safer, yet still effective inactivated and subunit vaccines are needed, and epitope identification is an essential step in the development of these subunit vaccines. In this study we focused on 4 vaccinia membrane proteins known to be targeted by humoral responses in vaccinees. In spite of the narrow focus of the study we identified 36 T cell epitopes, and provide additional support for the physical linkage between T and B epitopes. This information may prove useful in peptide and protein-based subunit vaccine development as well as in the study of CD4 responses to poxviruses.
Collapse
|
38
|
Yuen TJ, Flesch IEA, Hollett NA, Dobson BM, Russell TA, Fahrer AM, Tscharke DC. Analysis of A47, an immunoprevalent protein of vaccinia virus, leads to a reevaluation of the total antiviral CD8+ T cell response. J Virol 2010; 84:10220-9. [PMID: 20668091 PMCID: PMC2937773 DOI: 10.1128/jvi.01281-10] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Accepted: 07/19/2010] [Indexed: 11/20/2022] Open
Abstract
Vaccinia virus (VACV) is the prototypic orthopoxvirus and was the live vaccine used to eradicate smallpox. In addition, VACV is a possible vector for recombinant vaccines. Despite these reasons for study, the roles of many VACV genes are unknown, and some fundamental aspects, such as the total size of immune responses, remain poorly characterized. VACV gene A47L is of interest because it is highly transcribed, has no sequence similarity to any nonpoxvirus gene, and contains a larger-than-expected number of CD8(+) T cell epitopes. Here it is shown that A47L is not required for growth in vitro and does not contribute to virulence in mice. However, we confirmed that this one protein primes CD8(+) T cells to three different epitopes in C57BL/6 mice. In the process, one of these epitopes was redefined and shown to be the most dominant in A47 and one of the more highly ranked in VACV as a whole. The relatively high immunogenicity of this epitope led to a reevaluation of the total CD8(+) T cell response to VACV. By the use of two methods, the true size of the response was found to be around double previous estimates and at its peak is on the order of 60% of all CD8(+) T cells. We speculate that more CD8(+) T cell epitopes remain to be mapped for VACV and that underestimation of responses is unlikely to be unique to VACV, so there would be merit in revisiting this issue for other viruses.
Collapse
Affiliation(s)
- Tracy J. Yuen
- Division of Biomedical Science and Biochemistry, Research School of Biology, College of Medicine, Biology and the Environment, The Australian National University, Canberra, ACT, Australia
| | - Inge E. A. Flesch
- Division of Biomedical Science and Biochemistry, Research School of Biology, College of Medicine, Biology and the Environment, The Australian National University, Canberra, ACT, Australia
| | - Natasha A. Hollett
- Division of Biomedical Science and Biochemistry, Research School of Biology, College of Medicine, Biology and the Environment, The Australian National University, Canberra, ACT, Australia
| | - Bianca M. Dobson
- Division of Biomedical Science and Biochemistry, Research School of Biology, College of Medicine, Biology and the Environment, The Australian National University, Canberra, ACT, Australia
| | - Tiffany A. Russell
- Division of Biomedical Science and Biochemistry, Research School of Biology, College of Medicine, Biology and the Environment, The Australian National University, Canberra, ACT, Australia
| | - Aude M. Fahrer
- Division of Biomedical Science and Biochemistry, Research School of Biology, College of Medicine, Biology and the Environment, The Australian National University, Canberra, ACT, Australia
| | - David C. Tscharke
- Division of Biomedical Science and Biochemistry, Research School of Biology, College of Medicine, Biology and the Environment, The Australian National University, Canberra, ACT, Australia
| |
Collapse
|
39
|
Huang XL, Fan Z, Borowski L, Mailliard RB, Rolland M, Mullins JI, Day RD, Rinaldo CR. Dendritic cells reveal a broad range of MHC class I epitopes for HIV-1 in persons with suppressed viral load on antiretroviral therapy. PLoS One 2010; 5:e12936. [PMID: 20886040 PMCID: PMC2944894 DOI: 10.1371/journal.pone.0012936] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Accepted: 08/29/2010] [Indexed: 01/08/2023] Open
Abstract
Background HIV-1 remains sequestered during antiretroviral therapy (ART) and can resume high-level replication upon cessation of ART or development of drug resistance. Reactivity of memory CD8+ T lymphocytes to HIV-1 could potentially inhibit this residual viral replication, but is largely muted by ART in relation to suppression of viral antigen burden. Dendritic cells (DC) are important for MHC class I processing and presentation of peptide epitopes to memory CD8+ T cells, and could potentially be targeted to activate memory CD8+ T cells to a broad array of HIV-1 epitopes during ART. Principal Findings We show for the first time that HIV-1 peptide-loaded, CD40L-matured DC from HIV-1 infected persons on ART induce IFN gamma production by CD8+ T cells specific for a much broader range and magnitude of Gag and Nef epitopes than do peptides without DC. The DC also reveal novel, MHC class I restricted, Gag and Nef epitopes that are able to induce polyfunctional T cells producing various combinations of IFN gamma, interleukin 2, tumor necrosis factor alpha, macrophage inhibitory protein 1 beta and the cytotoxic de-granulation molecule CD107a. Significance There is an underlying, broad antigenic spectrum of anti-HIV-1, memory CD8+ T cell reactivity in persons on ART that is revealed by DC. This supports the use of DC-based immunotherapy for HIV-1 infection.
Collapse
Affiliation(s)
- Xiao-Li Huang
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health and School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Zheng Fan
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health and School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - LuAnn Borowski
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health and School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Robbie B. Mailliard
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health and School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Morgane Rolland
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
| | - James I. Mullins
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
| | - Richard D. Day
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health and School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Biostatistics, Graduate School of Public Health and School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Charles R. Rinaldo
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health and School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Biostatistics, Graduate School of Public Health and School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Pathology, Graduate School of Public Health and School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
40
|
Larsen MV, Lelic A, Parsons R, Nielsen M, Hoof I, Lamberth K, Loeb MB, Buus S, Bramson J, Lund O. Identification of CD8+ T cell epitopes in the West Nile virus polyprotein by reverse-immunology using NetCTL. PLoS One 2010; 5:e12697. [PMID: 20856867 PMCID: PMC2939062 DOI: 10.1371/journal.pone.0012697] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Accepted: 08/21/2010] [Indexed: 11/19/2022] Open
Abstract
Background West Nile virus (WNV) is a growing threat to public health and a greater understanding of the immune response raised against WNV is important for the development of prophylactic and therapeutic strategies. Methodology/Principal Findings In a reverse-immunology approach, we used bioinformatics methods to predict WNV-specific CD8+ T cell epitopes and selected a set of peptides that constitutes maximum coverage of 20 fully-sequenced WNV strains. We then tested these putative epitopes for cellular reactivity in a cohort of WNV-infected patients. We identified 26 new CD8+ T cell epitopes, which we propose are restricted by 11 different HLA class I alleles. Aiming for optimal coverage of human populations, we suggest that 11 of these new WNV epitopes would be sufficient to cover from 48% to 93% of ethnic populations in various areas of the World. Conclusions/Significance The 26 identified CD8+ T cell epitopes contribute to our knowledge of the immune response against WNV infection and greatly extend the list of known WNV CD8+ T cell epitopes. A polytope incorporating these and other epitopes could possibly serve as the basis for a WNV vaccine.
Collapse
Affiliation(s)
- Mette Voldby Larsen
- Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, Lyngby, Denmark.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Irvine K, Bennink J. Factors influencing immunodominance hierarchies in TCD8+ -mediated antiviral responses. Expert Rev Clin Immunol 2010; 2:135-47. [PMID: 20477094 DOI: 10.1586/1744666x.2.1.135] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
CD8(+) T-lymphocytes (T(CD8+)) perform a critical role in immunity against tumors and virus infections. A central feature of T(CD8+) immune responses is immunodominance: the observation that T(CD8+) responses consist of a limited collection of specificities with a structured hierarchy. These immunodominance hierarchies result from a complex combination of factors. Major roles are played by peptide binding affinity, T-cell repertoire, and antigen processing and presentation. While the bulk of our information comes from mouse model systems, an increasing number of human studies suggest that immunodominance will be even more complicated. This review outlines current knowledge of T(CD8+ )immunodominance to viral antigens and discusses the relevance and importance of a thorough understanding for the rational design of vaccines that elicit effective T(CD8+) responses.
Collapse
Affiliation(s)
- Kari Irvine
- National Institute for Allergy & Infectious Diseases, Cell Biology Section/Viral Immunology Section, Laboratory of Viral Diseases, Room 209, Building 44 Center Drive, Bethesda, MD 20892-0440, USA.
| | | |
Collapse
|
42
|
IMMUNOCAT-a data management system for epitope mapping studies. J Biomed Biotechnol 2010; 2010:856842. [PMID: 20490281 PMCID: PMC2871663 DOI: 10.1155/2010/856842] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Accepted: 03/07/2010] [Indexed: 12/16/2022] Open
Abstract
To enable rationale vaccine design, studies of molecular and cellular mechanisms of immune recognition need to be linked with clinical studies in humans. A major challenge in conducting such translational research studies lies in the management and integration of large amounts and various types of data collected from multiple sources. For this purpose, we have established “IMMUNOCAT”, an interactive data management system for the epitope discovery research projects conducted by our group. The system provides functions to store, query, and analyze clinical and experimental data, enabling efficient, systematic, and integrative data management. We demonstrate how IMMUNOCAT is utilized in a large-scale research contract that aims to identify epitopes in common allergens recognized by T cells from human donors, in order to facilitate the rational design of allergy vaccines. At clinical sites, demographic information and disease history of each enrolled donor are captured, followed by results of an allergen skin test and blood draw. At the laboratory site, T cells derived from blood samples are tested for reactivity against a panel of peptides derived from common human allergens. IMMUNOCAT stores results from these T cell assays along with MHC:peptide binding data, results from RAST tests for antibody titers in donor serum, and the respective donor HLA typing results. Through this system, we are able to perform queries and integrated analyses of the various types of data. This provides a case study for the use of bioinformatics and information management techniques to track and analyze data produced in a translational research study aimed at epitope identification.
Collapse
|
43
|
Moutaftsi M, Tscharke DC, Vaughan K, Koelle DM, Stern L, Calvo-Calle M, Ennis F, Terajima M, Sutter G, Crotty S, Drexler I, Franchini G, Yewdell JW, Head SR, Blum J, Peters B, Sette A. Uncovering the interplay between CD8, CD4 and antibody responses to complex pathogens. Future Microbiol 2010; 5:221-39. [PMID: 20143946 DOI: 10.2217/fmb.09.110] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Vaccinia virus (VACV) was used as the vaccine strain to eradicate smallpox. VACV is still administered to healthcare workers or researchers who are at risk of contracting the virus, and to military personnel. Thus, VACV represents a weapon against outbreaks, both natural (e.g., monkeypox) or man-made (bioterror). This virus is also used as a vector for experimental vaccine development (cancer/infectious disease). As a prototypic poxvirus, VACV is a model system for studying host-pathogen interactions. Until recently, little was known about the targets of host immune responses, which was likely owing to VACVs large genome (>200 open reading frames). However, the last few years have witnessed an explosion of data, and VACV has quickly become a useful model to study adaptive immune responses. This review summarizes and highlights key findings based on identification of VACV antigens targeted by the immune system (CD4, CD8 and antibodies) and the complex interplay between responses.
Collapse
Affiliation(s)
- Magdalini Moutaftsi
- Vaccine Discovery, La Jolla Institute for Allergy & Immunology, La Jolla, CA, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Sette A, Grey H, Oseroff C, Peters B, Moutaftsi M, Crotty S, Assarsson E, Greenbaum J, Kim Y, Kolla R, Tscharke D, Koelle D, Johnson RP, Blum J, Head S, Sidney J. Definition of epitopes and antigens recognized by vaccinia specific immune responses: their conservation in variola virus sequences, and use as a model system to study complex pathogens. Vaccine 2010; 27 Suppl 6:G21-6. [PMID: 20006135 DOI: 10.1016/j.vaccine.2009.10.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2009] [Accepted: 10/02/2009] [Indexed: 02/04/2023]
Abstract
In the last few years, a wealth of information has become available relating to the targets of vaccinia virus (VACV)-specific CD4(+) T cell, CD8(+) T cell and antibody responses. Due to the large size of its genome, encoding more than 200 different proteins, VACV represents a useful model system to study immunity to complex pathogens. Our data demonstrate that both cellular and humoral responses target a large number of antigens and epitopes. This broad spectrum of targets is detected in both mice and humans. CD4(+) T cell responses target late and structural antigens, while CD8(+) T cells preferentially recognize early antigens. While both CD4(+) and CD8(+) T cell responses target different types of antigens, the antigens recognized by T(H) cells are highly correlated with those recognized by antibody responses. We further show that protein abundance and antibody recognition can be used to predict antigens recognized by CD4(+) T cell responses, while early expression at the mRNA level predicts antigens targeted by CD8(+) T cells. Finally, we find that the vast majority of VACV epitopes are conserved in variola virus (VARV), thus suggesting that the epitopes defined herein also have relevance for the efficacy of VACV as a smallpox vaccine.
Collapse
Affiliation(s)
- Alessandro Sette
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
It was shown previously that the highly conserved vaccinia virus A35 gene is an important virulence factor in respiratory infection of mice. We show here that A35 is also required for full virulence by the intraperitoneal route of infection. A virus mutant in which the A35 gene has been removed replicated normally and elicited improved antibody, gamma interferon-secreting cell, and cytotoxic T-lymphocyte responses compared to wild-type virus, suggesting that A35 increases poxvirus virulence by immunomodulation. The enhanced immune response correlated with an improved control of viral titers in target organs after the development of the specific immune response. Finally, the A35 deletion mutant virus also provided protection from lethal challenge (1,000 50% lethal doses) equal to that of the wild-type virus. Together, these data suggest that A35 deletion viruses will make safer and more efficacious vaccines for poxviruses. In addition, the A35 deletion viruses will serve as improved platform vectors for other infectious diseases and cancer and will be superior vaccine choices for postexposure poxvirus vaccination, as they also provide improved kinetics of the immune response.
Collapse
|
46
|
Kotturi MF, Botten J, Sidney J, Bui HH, Giancola L, Maybeno M, Babin J, Oseroff C, Pasquetto V, Greenbaum JA, Peters B, Ting J, Do D, Vang L, Alexander J, Grey H, Buchmeier MJ, Sette A. A multivalent and cross-protective vaccine strategy against arenaviruses associated with human disease. PLoS Pathog 2009; 5:e1000695. [PMID: 20019801 PMCID: PMC2787016 DOI: 10.1371/journal.ppat.1000695] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2009] [Accepted: 11/17/2009] [Indexed: 01/06/2023] Open
Abstract
Arenaviruses are the causative pathogens of severe hemorrhagic fever and aseptic meningitis in humans, for which no licensed vaccines are currently available. Pathogen heterogeneity within the Arenaviridae family poses a significant challenge for vaccine development. The main hypothesis we tested in the present study was whether it is possible to design a universal vaccine strategy capable of inducing simultaneous HLA-restricted CD8+ T cell responses against 7 pathogenic arenaviruses (including the lymphocytic choriomeningitis, Lassa, Guanarito, Junin, Machupo, Sabia, and Whitewater Arroyo viruses), either through the identification of widely conserved epitopes, or by the identification of a collection of epitopes derived from multiple arenavirus species. By inoculating HLA transgenic mice with a panel of recombinant vaccinia viruses (rVACVs) expressing the different arenavirus proteins, we identified 10 HLA-A02 and 10 HLA-A03-restricted epitopes that are naturally processed in human antigen-presenting cells. For some of these epitopes we were able to demonstrate cross-reactive CD8+ T cell responses, further increasing the coverage afforded by the epitope set against each different arenavirus species. Importantly, we showed that immunization of HLA transgenic mice with an epitope cocktail generated simultaneous CD8+ T cell responses against all 7 arenaviruses, and protected mice against challenge with rVACVs expressing either Old or New World arenavirus glycoproteins. In conclusion, the set of identified epitopes allows broad, non-ethnically biased coverage of all 7 viral species targeted by our studies. Arenaviruses cause significant morbidity and mortality worldwide and are also regarded as a potential bioterrorist threat. CD8+ T cells restricted by class I MHC molecules clearly play a protective role in murine models of arenavirus infection, yet little is known about the epitopes recognized in the context of human class I MHC (HLA). Here, we defined 20 CD8+ T cell epitopes restricted by HLA class I molecules, derived from 7 different species of arenaviruses associated with human disease. To accomplish this task, we utilized epitope predictions, in vitro HLA binding assays, and HLA transgenic mice inoculated with recombinant vaccinia viruses (rVACV) expressing arenavirus antigens. Because our analysis targeted two of the most common HLA types worldwide, we project that the CD8+ T cell epitope set provides broad coverage against diverse ethnic groups within the human population. Furthermore, we show that immunization with a cocktail of these epitopes protects HLA transgenic mice from challenge with rVACV expressing antigens from different arenavirus species. Our findings suggest that a cell-mediated vaccine strategy might be able to protect against infection mediated by multiple arenavirus species.
Collapse
Affiliation(s)
- Maya F. Kotturi
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, California, United States of America
| | - Jason Botten
- Vermont Center for Immunology and Infectious Diseases, The University of Vermont College of Medicine, Burlington, Vermont, United States of America
| | - John Sidney
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, California, United States of America
| | - Huynh-Hoa Bui
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, California, United States of America
| | - Lori Giancola
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, California, United States of America
| | - Matt Maybeno
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, California, United States of America
| | - Josie Babin
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, California, United States of America
| | - Carla Oseroff
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, California, United States of America
| | - Valerie Pasquetto
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, California, United States of America
| | - Jason A. Greenbaum
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, California, United States of America
| | - Bjoern Peters
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, California, United States of America
| | - Joey Ting
- Departments of Molecular Biology and Biochemistry and Community and Environmental Medicine, University of California, Irvine, California, United States of America
| | - Danh Do
- Vermont Center for Immunology and Infectious Diseases, The University of Vermont College of Medicine, Burlington, Vermont, United States of America
| | - Lo Vang
- Pharmexa-Epimmune, San Diego, California, United States of America
| | - Jeff Alexander
- Pharmexa-Epimmune, San Diego, California, United States of America
| | - Howard Grey
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, California, United States of America
| | - Michael J. Buchmeier
- Departments of Molecular Biology and Biochemistry and Community and Environmental Medicine, University of California, Irvine, California, United States of America
| | - Alessandro Sette
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
47
|
Johnson KL, Ovsyannikova IG, Mason CJ, Bergen HR, Poland GA. Discovery of naturally processed and HLA-presented class I peptides from vaccinia virus infection using mass spectrometry for vaccine development. Vaccine 2009; 28:38-47. [PMID: 19822231 PMCID: PMC2787804 DOI: 10.1016/j.vaccine.2009.09.126] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2008] [Revised: 09/26/2009] [Accepted: 09/30/2009] [Indexed: 01/28/2023]
Abstract
An important approach for developing a safer smallpox vaccine is to identify naturally processed immunogenic vaccinia-derived peptides rather than live whole vaccinia virus. We used two-dimensional liquid chromatography coupled to mass spectrometry to identify 116 vaccinia peptides, encoded by 61 open reading frames, from a B-cell line (homozygous for HLA class I A*0201, B*1501, and C*03) after infection with vaccinia virus (Dryvax). Importantly, 68 of these peptides are conserved in variola, providing insight into the peptides that induce protection against smallpox. Twenty-one of these 68 conserved peptides were 11 amino acids long or longer, outside of the range of most predictive algorithms. Thus, direct identification of naturally processed and presented HLA peptides gives important information not provided by current computational methods for identifying potential vaccinia epitopes.
Collapse
Affiliation(s)
- Kenneth L Johnson
- Mayo Proteomics Research Center, Mayo Clinic, Rochester, MN 55905, United States
| | | | | | | | | |
Collapse
|
48
|
Boulanger DSM, Oliveira R, Ayers L, Prior SH, James E, Williams AP, Elliott T. Absence of tapasin alters immunodominance against a lymphocytic choriomeningitis virus polytope. THE JOURNAL OF IMMUNOLOGY 2009; 184:73-83. [PMID: 19949070 DOI: 10.4049/jimmunol.0803489] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Tapasin edits the peptide repertoire presented to CD8(+) T cells by favoring loading of slow off-rate peptides on MHC I molecules. To investigate the role of tapasin on T cell immunodominance we used poxvirus viral vectors expressing a polytope of lymphocytic choriomeningitis virus epitopes with different off-rates. In tapasin-deficient mice, responses to subdominant fast off-rate peptides were clearly favored. This alteration of the CD8(+) T cell hierarchy was a consequence of tapasin editing and not a consequence of the alteration of the T cell repertoire in tapasin-deficient mice, because bone marrow chimeric mice (wild-type recipients reconstituted with tapasin knockout bone marrow) showed the same hierarchy as the tapasin knockout mice. Tapasin editing is therefore a contributing factor to the phenomenon of immunodominance. Although tapasin knockout cells have low MHC I surface expression, Ag presentation was efficient and resulted in strong T cell responses involving T cells with increased functional avidity. Therefore, in this model, tapasin-deficient mice do not have a reduced but rather have an altered immune response.
Collapse
Affiliation(s)
- Denise S M Boulanger
- Cancer Research UK Centre, Cancer Sciences Division, School of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
49
|
Ishizuka J, Grebe K, Shenderov E, Peters B, Chen Q, Peng Y, Wang L, Dong T, Pasquetto V, Oseroff C, Sidney J, Hickman H, Cerundolo V, Sette A, Bennink JR, McMichael A, Yewdell JW. Quantitating T cell cross-reactivity for unrelated peptide antigens. THE JOURNAL OF IMMUNOLOGY 2009; 183:4337-45. [PMID: 19734234 DOI: 10.4049/jimmunol.0901607] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Quantitating the frequency of T cell cross-reactivity to unrelated peptides is essential to understanding T cell responses in infectious and autoimmune diseases. Here we used 15 mouse or human CD8+ T cell clones (11 antiviral, 4 anti-self) in conjunction with a large library of defined synthetic peptides to examine nearly 30,000 TCR-peptide MHC class I interactions for cross-reactions. We identified a single cross-reaction consisting of an anti-self TCR recognizing a poxvirus peptide at relatively low sensitivity. We failed to identify any cross-reactions between the synthetic peptides in the panel and polyclonal CD8+ T cells raised to viral or alloantigens. These findings provide the best estimate to date of the frequency of T cell cross-reactivity to unrelated peptides ( approximately 1/30,000), explaining why cross-reactions between unrelated pathogens are infrequently encountered and providing a critical parameter for understanding the scope of self-tolerance.
Collapse
Affiliation(s)
- Jeffrey Ishizuka
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, Bethesda MD 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Walsh SR, Gillis J, Peters B, Mothé BR, Sidney J, Sette A, Johnson RP. Diverse recognition of conserved orthopoxvirus CD8+ T cell epitopes in vaccinated rhesus macaques. Vaccine 2009; 27:4990-5000. [PMID: 19531389 PMCID: PMC2765250 DOI: 10.1016/j.vaccine.2009.05.077] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2008] [Revised: 05/08/2009] [Accepted: 05/28/2009] [Indexed: 10/20/2022]
Abstract
Vaccinia virus (VACV) induces a vigorous virus-specific CD8+ T cell response that plays an important role in control of poxvirus infection. To identify immunodominant poxvirus proteins and to facilitate future testing of smallpox vaccines in non-human primates, we used an algorithm for the prediction of VACV peptides able to bind to the common macaque MHC class I molecule Mamu-A*01. We synthesized 294 peptides derived from 97 VACV ORFs; 100 of these peptides did not contain the canonical proline at position three of the Mamu-A*01 binding motif. Cellular immune responses in PBMC from two vaccinia-vaccinated Mamu-A*01+ macaques were assessed by IFNgamma ELISPOT assays. Vaccinated macaques recognized 17 peptides from 16 different ORFs with 6 peptides recognized by both macaques. Comparison with other orthopoxvirus sequences revealed that 12 of these epitopes are strictly conserved between VACV, variola, and monkeypoxvirus. ELISPOT responses were also observed to eight epitopes that did not contain the canonical P3 proline. These results suggest that the virus-specific CD8+ T cell response is broadly directed against multiple VACV proteins and that a subset of these T cell epitopes is highly conserved among orthopoxviruses.
Collapse
Affiliation(s)
- Stephen R Walsh
- Division of Infectious Diseases, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, United States
| | | | | | | | | | | | | |
Collapse
|