1
|
CD4+ T Cell Regulatory Network Underlies the Decrease in Th1 and the Increase in Anergic and Th17 Subsets in Severe COVID-19. Pathogens 2022; 12:pathogens12010018. [PMID: 36678366 PMCID: PMC9865341 DOI: 10.3390/pathogens12010018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/10/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
In this model we use a dynamic and multistable Boolean regulatory network to provide a mechanistic explanation of the lymphopenia and dysregulation of CD4+ T cell subsets in COVID-19 and provide therapeutic targets. Using a previous model, the cytokine micro-environments found in mild, moderate, and severe COVID-19 with and without TGF-β and IL-10 was we simulated. It shows that as the severity of the disease increases, the number of antiviral Th1 cells decreases, while the the number of Th1-like regulatory and exhausted cells and the proportion between Th1 and Th1R cells increases. The addition of the regulatory cytokines TFG-β and IL-10 makes the Th1 attractor unstable and favors the Th17 and regulatory subsets. This is associated with the contradictory signals in the micro-environment that activate SOCS proteins that block the signaling pathways. Furthermore, it determined four possible therapeutic targets that increase the Th1 compartment in severe COVID-19: the activation of the IFN-γ pathway, or the inhibition of TGF-β or IL-10 pathways or SOCS1 protein; from these, inhibiting SOCS1 has the lowest number of predicted collateral effects. Finally, a tool is provided that allows simulations of specific cytokine environments and predictions of CD4 T cell subsets and possible interventions, as well as associated secondary effects.
Collapse
|
2
|
Han S, Chung DC, St Paul M, Liu ZQ, Garcia-Batres C, Elford AR, Tran CW, Chapatte L, Ohashi PS. Overproduction of IL-2 by Cbl-b deficient CD4 + T cells provides resistance against regulatory T cells. Oncoimmunology 2020; 9:1737368. [PMID: 32313719 PMCID: PMC7153846 DOI: 10.1080/2162402x.2020.1737368] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 12/17/2019] [Accepted: 12/26/2019] [Indexed: 12/22/2022] Open
Abstract
Regulatory T cells are integral to the regulation of autoimmune and anti-tumor immune responses. However, several studies have suggested that changes in T cell signaling networks can result in T cells that are resistant to the suppressive effects of regulatory T cells. Here, we investigated the role of Cbl-b, an E3 ubiquitin ligase, in establishing resistance to Treg-mediated suppression. We found that the absence of Cbl-b, a negative regulator of multiple TCR signaling pathways, rendered T cells impartial to Treg suppression by regulating cytokine networks leading to improved anti-tumor immunity despite the presence of Treg cells in the tumor. Specifically, Cbl-b KO CD4+FoxP3− T cells hyper-produced IL-2 and together with IL-2 Rα upregulation served as an essential mechanism to escape suppression by Treg cells. Furthermore, we report that IL-2 serves as the central molecule required for cytokine-induced Treg resistance. Collectively our data emphasize the role of IL-2 as a key mechanism that renders CD4+ T cells resistant to the inhibitory effects of Treg cells.
Collapse
Affiliation(s)
- SeongJun Han
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.,Department of Immunology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Douglas C Chung
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.,Department of Immunology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Michael St Paul
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.,Department of Immunology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Zhe Qi Liu
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.,Department of Immunology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Carlos Garcia-Batres
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Alisha R Elford
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Charles W Tran
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.,Department of Immunology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Laurence Chapatte
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Pamela S Ohashi
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.,Department of Immunology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
3
|
Pooran A, Davids M, Nel A, Shoko A, Blackburn J, Dheda K. IL-4 subverts mycobacterial containment in Mycobacterium tuberculosis-infected human macrophages. Eur Respir J 2019; 54:13993003.02242-2018. [PMID: 31097521 DOI: 10.1183/13993003.02242-2018] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 05/07/2019] [Indexed: 12/17/2022]
Abstract
Protective immunity against Mycobacterium tuberculosis is poorly understood. The role of interleukin (IL)-4, the archetypal T-helper type 2 (Th2) cytokine, in the immunopathogenesis of human tuberculosis remains unclear.Blood and/or bronchoalveolar lavage fluid (BAL) were obtained from participants with pulmonary tuberculosis (TB) (n=23) and presumed latent TB infection (LTBI) (n=22). Messenger RNA expression levels of interferon (IFN)-γ, IL-4 and its splice variant IL-4δ2 were determined by real-time PCR. The effect of human recombinant (hr)IL-4 on mycobacterial survival/containment (CFU·mL-1) was evaluated in M. tuberculosis-infected macrophages co-cultured with mycobacterial antigen-primed effector T-cells. Regulatory T-cell (Treg) and Th1 cytokine levels were evaluated using flow cytometry.In blood, but not BAL, IL-4 mRNA levels (p=0.02) and the IL-4/IFN-γ ratio (p=0.01) was higher in TB versus LTBI. hrIL-4 reduced mycobacterial containment in infected macrophages (p<0.008) in a dose-dependent manner and was associated with an increase in Tregs (p<0.001), but decreased CD4+Th1 cytokine levels (CD4+IFN-γ+ p<0.001; CD4+TNFα+ p=0.01). Blocking IL-4 significantly neutralised mycobacterial containment (p=0.03), CD4+IFNγ+ levels (p=0.03) and Treg expression (p=0.03).IL-4 can subvert mycobacterial containment in human macrophages, probably via perturbations in Treg and Th1-linked pathways. These data may have implications for the design of effective TB vaccines and host-directed therapies.
Collapse
Affiliation(s)
- Anil Pooran
- Centre for Lung Infection and Immunity, Division of Pulmonology, Dept of Medicine and UCT Lung Institute & South African MRC/UCT Centre for the Study of Antimicrobial Resistance, University of Cape Town, Cape Town, South Africa
| | - Malika Davids
- Centre for Lung Infection and Immunity, Division of Pulmonology, Dept of Medicine and UCT Lung Institute & South African MRC/UCT Centre for the Study of Antimicrobial Resistance, University of Cape Town, Cape Town, South Africa
| | - Andrew Nel
- Dept of Integrative Biomedical Sciences, Institute for Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Aubrey Shoko
- Centre for Proteomics and Genomics Research, Cape Town, South Africa
| | - Jonathan Blackburn
- Dept of Integrative Biomedical Sciences, Institute for Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Keertan Dheda
- Centre for Lung Infection and Immunity, Division of Pulmonology, Dept of Medicine and UCT Lung Institute & South African MRC/UCT Centre for the Study of Antimicrobial Resistance, University of Cape Town, Cape Town, South Africa .,Faculty of Infectious and Tropical Diseases, Dept of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, UK
| |
Collapse
|
4
|
Han S, Toker A, Liu ZQ, Ohashi PS. Turning the Tide Against Regulatory T Cells. Front Oncol 2019; 9:279. [PMID: 31058083 PMCID: PMC6477083 DOI: 10.3389/fonc.2019.00279] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 03/26/2019] [Indexed: 12/11/2022] Open
Abstract
Regulatory T (Treg) cells play crucial roles in health and disease through their immunosuppressive properties against various immune cells. In this review we will focus on the inhibitory role of Treg cells in anti-tumor immunity. We outline how Treg cells restrict T cell function based on our understanding of T cell biology, and how we can shift the equilibrium against regulatory T cells. To date, numerous strategies have been proposed to limit the suppressive effects of Treg cells, including Treg cell neutralization, destabilizing Treg cells and rendering T cells resistant to Treg cells. Here, we focus on key mechanisms which render T cells resistant to the suppressive effects of Treg cells. Lastly, we also examine current limitations and caveats of overcoming the inhibitory activity of Treg cells, and briefly discuss the potential to target Treg cell resistance in the context of anti-tumor immunity.
Collapse
Affiliation(s)
- SeongJun Han
- Princess Margaret Cancer Centre, Campbell Family Institute for Breast Cancer Research, University Health Network, Toronto, ON, Canada
- Department of Immunology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Aras Toker
- Princess Margaret Cancer Centre, Campbell Family Institute for Breast Cancer Research, University Health Network, Toronto, ON, Canada
| | - Zhe Qi Liu
- Princess Margaret Cancer Centre, Campbell Family Institute for Breast Cancer Research, University Health Network, Toronto, ON, Canada
- Department of Immunology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Pamela S. Ohashi
- Princess Margaret Cancer Centre, Campbell Family Institute for Breast Cancer Research, University Health Network, Toronto, ON, Canada
- Department of Immunology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
5
|
Joshi RN, Fernandes SJ, Shang MM, Kiani NA, Gomez-Cabrero D, Tegnér J, Schmidt A. Phosphatase inhibitor PPP1R11 modulates resistance of human T cells toward Treg-mediated suppression of cytokine expression. J Leukoc Biol 2019; 106:413-430. [PMID: 30882958 PMCID: PMC6850362 DOI: 10.1002/jlb.2a0618-228r] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 01/15/2019] [Accepted: 03/07/2019] [Indexed: 12/17/2022] Open
Abstract
Regulatory T cells (Tregs) act as indispensable unit for maintaining peripheral immune tolerance mainly by regulating effector T cells. T cells resistant to suppression by Tregs pose therapeutic challenges in the treatment of autoimmune diseases, while augmenting susceptibility to suppression may be desirable for cancer therapy. To understand the cell intrinsic signals in T cells during suppression by Tregs, we have previously performed a global phosphoproteomic characterization. We revealed altered phosphorylation of protein phosphatase 1 regulatory subunit 11 (PPP1R11; Inhibitor‐3) in conventional T cells upon suppression by Tregs. Here, we show that silencing of PPP1R11 renders T cells resistant toward Treg‐mediated suppression of TCR‐induced cytokine expression. Furthermore, whole‐transcriptome sequencing revealed that PPP1R11 differentially regulates not only the expression of specific T cell stimulation‐induced cytokines but also other molecules and pathways in T cells. We further confirmed the target of PPP1R11, PP1, to augment TCR‐induced cytokine expression. In conclusion, we present PPP1R11 as a novel negative regulator of T cell activation‐induced cytokine expression. Targeting PPP1R11 may have therapeutic potential to regulate the T cell activation status including modulating the susceptibility of T cells toward Treg‐mediated suppression, specifically altering the stimulation‐induced T cell cytokine milieu.
Collapse
Affiliation(s)
- Rubin N Joshi
- Unit of Computational Medicine, Center for Molecular Medicine, Department of Medicine Solna, Karolinska University Hospital and Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Sunjay Jude Fernandes
- Unit of Computational Medicine, Center for Molecular Medicine, Department of Medicine Solna, Karolinska University Hospital and Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Ming-Mei Shang
- Unit of Computational Medicine, Center for Molecular Medicine, Department of Medicine Solna, Karolinska University Hospital and Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden.,Division of Rheumatology, Department of Medicine Solna, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Narsis A Kiani
- Unit of Computational Medicine, Center for Molecular Medicine, Department of Medicine Solna, Karolinska University Hospital and Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - David Gomez-Cabrero
- Unit of Computational Medicine, Center for Molecular Medicine, Department of Medicine Solna, Karolinska University Hospital and Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden.,Mucosal and Salivary Biology Division, King's College London Dental Institute, London, United Kingdom.,Translational Bioinformatics Unit, NavarraBiomed, Departamento de Salud-Universidad Pública de Navarra, Pamplona, Navarra, Spain
| | - Jesper Tegnér
- Unit of Computational Medicine, Center for Molecular Medicine, Department of Medicine Solna, Karolinska University Hospital and Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden.,Biological and Environmental Sciences and Engineering Division, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Angelika Schmidt
- Unit of Computational Medicine, Center for Molecular Medicine, Department of Medicine Solna, Karolinska University Hospital and Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
6
|
Gangaplara A, Martens C, Dahlstrom E, Metidji A, Gokhale AS, Glass DD, Lopez-Ocasio M, Baur R, Kanakabandi K, Porcella SF, Shevach EM. Type I interferon signaling attenuates regulatory T cell function in viral infection and in the tumor microenvironment. PLoS Pathog 2018; 14:e1006985. [PMID: 29672594 PMCID: PMC5929570 DOI: 10.1371/journal.ppat.1006985] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 05/01/2018] [Accepted: 03/21/2018] [Indexed: 12/11/2022] Open
Abstract
Regulatory T cells (Tregs) play a cardinal role in the immune system by suppressing detrimental autoimmune responses, but their role in acute, chronic infectious diseases and tumor microenvironment remains unclear. We recently demonstrated that IFN-α/β receptor (IFNAR) signaling promotes Treg function in autoimmunity. Here we dissected the functional role of IFNAR-signaling in Tregs using Treg-specific IFNAR deficient (IFNARfl/flxFoxp3YFP-Cre) mice in acute LCMV Armstrong, chronic Clone-13 viral infection, and in tumor models. In both viral infection and tumor models, IFNARfl/flxFoxp3YFP-Cre mice Tregs expressed enhanced Treg associated activation antigens. LCMV-specific CD8+ T cells and tumor infiltrating lymphocytes from IFNARfl/flxFoxp3YFP-Cre mice produced less antiviral and antitumor IFN-γ and TNF-α. In chronic viral model, the numbers of antiviral effector and memory CD8+ T cells were decreased in IFNARfl/flxFoxp3YFP-Cre mice and the effector CD4+ and CD8+ T cells exhibited a phenotype compatible with enhanced exhaustion. IFNARfl/flxFoxp3YFP-Cre mice cleared Armstrong infection normally, but had higher viral titers in sera, kidneys and lungs during chronic infection, and higher tumor burden than the WT controls. The enhanced activated phenotype was evident through transcriptome analysis of IFNARfl/flxFoxp3YFP-Cre mice Tregs during infection demonstrated differential expression of a unique gene signature characterized by elevated levels of genes involved in suppression and decreased levels of genes mediating apoptosis. Thus, IFN signaling in Tregs is beneficial to host resulting in a more effective antiviral response and augmented antitumor immunity. Type I interferons (IFNs) play a predominant role in the immune response to infectious pathogens. The cellular targets of IFNs have been difficult to dissect because of the ubiquitous expression of the type I interferon receptor (IFNAR). The immune response of mice to lymphocytic choriomeningitis virus (LCMV) is one of the major models for analyzing the action of IFNs. Regulatory T cells (Tregs) have been implicated in the control of LCMV and it has been proposed that IFN may influence their function. The major goal of this study was to define the contribution of IFN signaling on Treg function during different stages LCMV infection. Tregs from mice with selective deletion of IFNAR manifested enhanced suppressive activity during acute/chronic LCMV infection resulting in increased CD8 T cell anergy, defective generation of memory T cells and persistence of virus. Similar effects of IFNAR signaling in Tregs were seen in a tumor model. We identified a unique set of genes in Tregs modulated by IFN signaling that may contribute to the enhanced suppressive function of IFNAR deficient Tregs. IFNs play a beneficial role during acute/chronic viral infections not only by contributing to viral clearance but also by attenuating the function of Tregs.
Collapse
MESH Headings
- Animals
- Antiviral Agents/pharmacology
- Arenaviridae Infections/drug therapy
- Arenaviridae Infections/immunology
- Arenaviridae Infections/metabolism
- Arenaviridae Infections/virology
- CD8-Positive T-Lymphocytes/drug effects
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Cells, Cultured
- Colonic Neoplasms/drug therapy
- Colonic Neoplasms/immunology
- Colonic Neoplasms/metabolism
- Colonic Neoplasms/virology
- Immunity, Innate/drug effects
- Immunity, Innate/immunology
- Interferon Type I/pharmacology
- Interferon-gamma/metabolism
- Lymphocytic Choriomeningitis/drug therapy
- Lymphocytic Choriomeningitis/immunology
- Lymphocytic Choriomeningitis/metabolism
- Lymphocytic Choriomeningitis/virology
- Lymphocytic choriomeningitis virus/drug effects
- Melanoma, Experimental/drug therapy
- Melanoma, Experimental/immunology
- Melanoma, Experimental/metabolism
- Melanoma, Experimental/virology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Receptor, Interferon alpha-beta/physiology
- Signal Transduction/drug effects
- T-Lymphocytes, Regulatory/drug effects
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- T-Lymphocytes, Regulatory/virology
- Tumor Microenvironment/drug effects
- Tumor Microenvironment/immunology
Collapse
Affiliation(s)
- Arunakumar Gangaplara
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - Craig Martens
- Genomics Unit, Research Technologies Section, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States of America
| | - Eric Dahlstrom
- Genomics Unit, Research Technologies Section, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States of America
| | - Amina Metidji
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States of America
- The Francis Crick Institute, London, United Kingdom
| | - Ameya S. Gokhale
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - Deborah D. Glass
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - Maria Lopez-Ocasio
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - Rachel Baur
- Genomics Unit, Research Technologies Section, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States of America
| | - Kishore Kanakabandi
- Genomics Unit, Research Technologies Section, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States of America
| | - Stephen F. Porcella
- Genomics Unit, Research Technologies Section, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States of America
| | - Ethan M. Shevach
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States of America
- * E-mail:
| |
Collapse
|
7
|
Yang WC, Hwang YS, Chen YY, Liu CL, Shen CN, Hong WH, Lo SM, Shen CR. Interleukin-4 Supports the Suppressive Immune Responses Elicited by Regulatory T Cells. Front Immunol 2017; 8:1508. [PMID: 29184551 PMCID: PMC5694475 DOI: 10.3389/fimmu.2017.01508] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 10/25/2017] [Indexed: 11/13/2022] Open
Abstract
Interleukin-4 (IL-4) has been considered as one of the tolerogenic cytokines in many autoimmune animal models and clinical settings. Despite its role in antagonizing pathogenic Th1 responses, little is known about whether IL-4 possesses functions that affect regulatory T cells (Tregs). Tregs are specialized cells responsible for the maintenance of peripheral tolerance through their immune modulatory capabilities. Interestingly, it has been suggested that IL-4 supplement at a high concentration protects responder T cells (Tresps) from Treg-mediated immune suppression. In addition, such supplement also impedes TGF-β-induced Treg differentiation in vitro. However, these phenomena may contradict the tolerogenic role of IL-4, and the effects of IL-4 on Tregs are therefore needed to be further elucidated. In this study, we utilized IL-4 knockout (KO) mice to validate the role of IL-4 on Treg-mediated immune suppression. Although IL-4 KO and control animals harbor similar frequencies of Tregs, Tregs from IL-4 KO mice weakly suppressed autologous Tresp activation. In addition, IL-4 deprivation impaired the ability of Tregs to modulate immune response, whereas IL-4 supplementation reinforced IL-4 KO Tregs in their function in suppressing Tresps. Finally, the presence of IL-4 was associated with increased cell survival and granzyme expression of Tregs. These results suggest the essential role of IL-4 in supporting Treg-mediated immune suppression, which may benefit the development of therapeutic strategies for autoimmune diseases.
Collapse
Affiliation(s)
- Wei-Cheng Yang
- Department and Graduate Institute of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan City, Taiwan.,Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan City, Taiwan
| | - Yih-Shiou Hwang
- Department of Medicine, College of Medicine, Chang Gung University, Taoyuan City, Taiwan.,Department of Ophthalmology, Lin-Kou Chang Gung Memorial Hospital, Taoyuan City, Taiwan
| | - Ying-Yu Chen
- Department and Graduate Institute of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan City, Taiwan
| | - Chao-Lin Liu
- Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City, Taiwan.,College of Engineering, Chang Gung University, Taoyuan City, Taiwan
| | - Chia-Ning Shen
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Wei-Hsin Hong
- Department and Graduate Institute of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan City, Taiwan
| | - Sheng-Min Lo
- Department and Graduate Institute of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan City, Taiwan.,Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan City, Taiwan
| | - Chia-Rui Shen
- Department and Graduate Institute of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan City, Taiwan.,Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan City, Taiwan.,Department of Ophthalmology, Lin-Kou Chang Gung Memorial Hospital, Taoyuan City, Taiwan
| |
Collapse
|
8
|
Barik S, Ellis JS, Cascio JA, Miller MM, Ukah TK, Cattin-Roy AN, Zaghouani H. IL-4/IL-13 Heteroreceptor Influences Th17 Cell Conversion and Sensitivity to Regulatory T Cell Suppression To Restrain Experimental Allergic Encephalomyelitis. THE JOURNAL OF IMMUNOLOGY 2017; 199:2236-2248. [PMID: 28801358 DOI: 10.4049/jimmunol.1700372] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 07/21/2017] [Indexed: 01/04/2023]
Abstract
IL-4 and IL-13 have been defined as anti-inflammatory cytokines that can counter myelin-reactive T cells and modulate experimental allergic encephalomyelitis. However, it is not known whether endogenous IL-4 and IL-13 contribute to the maintenance of peripheral tolerance and whether their function is coordinated with T regulatory cells (Tregs). In this study, we used mice in which the common cytokine receptor for IL-4 and IL-13, namely the IL-4Rα/IL-13Rα1 (13R) heteroreceptor (HR), is compromised and determined whether the lack of signaling by endogenous IL-4 and IL-13 through the HR influences the function of effector Th1 and Th17 cells in a Treg-dependent fashion. The findings indicate that mice-deficient for the HR (13R-/-) are more susceptible to experimental allergic encephalomyelitis than mice sufficient for the HR (13R+/+) and develop early onset and more severe disease. Moreover, Th17 cells from 13R-/- mice had reduced ability to convert to Th1 cells and displayed reduced sensitivity to suppression by Tregs relative to Th17 effectors from 13R+/+ mice. These observations suggest that IL-4 and IL-13 likely operate through the HR and influence Th17 cells to convert to Th1 cells and to acquire increased sensitivity to suppression, leading to control of immune-mediated CNS inflammation. These previously unrecognized findings shed light on the intricacies underlying the contribution of cytokines to peripheral tolerance and control of autoimmunity.
Collapse
Affiliation(s)
- Subhasis Barik
- Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, MO 65212
| | - Jason S Ellis
- Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, MO 65212
| | - Jason A Cascio
- Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, MO 65212
| | - Mindy M Miller
- Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, MO 65212
| | - Tobechukwu K Ukah
- Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, MO 65212
| | - Alexis N Cattin-Roy
- Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, MO 65212
| | - Habib Zaghouani
- Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, MO 65212; .,Department of Child Health, University of Missouri School of Medicine, Columbia, MO 65212; and.,Department of Neurology, University of Missouri School of Medicine, Columbia, MO 65212
| |
Collapse
|
9
|
Mercadante ER, Lorenz UM. T Cells Deficient in the Tyrosine Phosphatase SHP-1 Resist Suppression by Regulatory T Cells. THE JOURNAL OF IMMUNOLOGY 2017; 199:129-137. [PMID: 28550200 DOI: 10.4049/jimmunol.1602171] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 04/24/2017] [Indexed: 12/19/2022]
Abstract
The balance between activation of T cells and their suppression by regulatory T cells (Tregs) is dysregulated in autoimmune diseases and cancer. Autoimmune diseases feature T cells that are resistant to suppression by Tregs, whereas in cancer, T cells are unable to mount antitumor responses due to the Treg-enriched suppressive microenvironment. In this study, we observed that loss of the tyrosine phosphatase SHP-1, a negative regulator of TCR signaling, renders naive CD4+ and CD8+ T cells resistant to Treg-mediated suppression in a T cell-intrinsic manner. At the intracellular level, SHP-1 controlled the extent of Akt activation, which has been linked to the induction of T cell resistance to Treg suppression. Finally, under conditions of homeostatic expansion, SHP-1-deficient CD4+ T cells resisted Treg suppression in vivo. Collectively, these data establish SHP-1 as a critical player in setting the threshold downstream of TCR signaling and identify a novel function of SHP-1 as a regulator of T cell susceptibility to Treg-mediated suppression in vitro and in vivo. Thus, SHP-1 could represent a potential novel immunotherapeutic target to modulate susceptibility of T cells to Treg suppression.
Collapse
Affiliation(s)
- Emily R Mercadante
- Carter Immunology Center, University of Virginia, Charlottesville, VA 22908; and.,Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA 22908
| | - Ulrike M Lorenz
- Carter Immunology Center, University of Virginia, Charlottesville, VA 22908; and .,Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA 22908
| |
Collapse
|
10
|
Temporal and tissue-specific requirements for T-lymphocyte IL-6 signalling in obesity-associated inflammation and insulin resistance. Nat Commun 2017; 8:14803. [PMID: 28466852 PMCID: PMC5418621 DOI: 10.1038/ncomms14803] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 01/31/2017] [Indexed: 02/06/2023] Open
Abstract
Low-grade inflammation links obesity to insulin resistance through the activation of tissue-infiltrating immune cells. Interleukin-6 (IL-6) is a crucial regulator of T cells and is increased in obesity. Here we report that classical IL-6 signalling in T cells promotes inflammation and insulin resistance during the first 8 weeks on a high-fat diet (HFD), but becomes dispensable at later stages (after 16 weeks). Mice with T cell-specific deficiency of IL-6 receptor-α (IL-6RαT-KO) exposed to a HFD display improved glucose tolerance, insulin sensitivity and inflammation in liver and EWAT after 8 weeks. However, after 16 weeks, insulin resistance in IL-6RαT-KO epididymal white adipose tissue (EWAT) is comparable to that of controls, whereas the inflammatory profile is significantly worse. This coincided with a shift from classical T cell IL-6 signalling at 8 weeks, to enhanced IL-6 trans-signalling at 16 weeks. Collectively, our studies reveal that IL-6 action in T cells through classical IL-6 signalling promotes inflammation and insulin resistance early during obesity development, which can be compensated for by enhanced IL-6 trans-signalling at later stages. Interleukin-6 (IL-6) is increased in obesity and activates T cells to promote inflammation. Here, Xu et al. use mice that lack IL-6 receptors on T cells to uncover the temporal and tissue-specific effects of classic and trans IL-6 signalling on inflammation and insulin resistance on a high-fat diet.
Collapse
|
11
|
Harakal J, Rival C, Qiao H, Tung KS. Regulatory T Cells Control Th2-Dominant Murine Autoimmune Gastritis. THE JOURNAL OF IMMUNOLOGY 2016; 197:27-41. [PMID: 27259856 DOI: 10.4049/jimmunol.1502344] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 04/18/2016] [Indexed: 12/12/2022]
Abstract
Pernicious anemia and gastric carcinoma are serious sequelae of autoimmune gastritis (AIG). Our study indicates that in adult C57BL/6-DEREG mice expressing a transgenic diphtheria toxin receptor under the Foxp3 promoter, transient regulatory T cell (Treg) depletion results in long-lasting AIG associated with both H(+)K(+)ATPase and intrinsic factor autoantibody responses. Although functional Tregs emerge over time during AIG occurrence, the effector T cells rapidly become less susceptible to Treg-mediated suppression. Whereas previous studies have implicated dysregulated Th1 cell responses in AIG pathogenesis, eosinophils have been detected in gastric biopsy specimens from patients with AIG. Indeed, AIG in DEREG mice is associated with strong Th2 cell responses, including dominant IgG1 autoantibodies, elevated serum IgE, increased Th2 cytokine production, and eosinophil infiltration in the stomach-draining lymph nodes. In addition, the stomachs exhibit severe mucosal and muscular hypertrophy, parietal cell loss, mucinous epithelial cell metaplasia, and massive eosinophilic inflammation. Notably, the Th2 responses and gastritis severity are significantly ameliorated in IL-4- or eosinophil-deficient mice. Furthermore, expansion of both Th2-promoting IFN regulatory factor 4(+) programmed death ligand 2(+) dendritic cells and ILT3(+) rebounded Tregs was detected after transient Treg depletion. Collectively, these data suggest that Tregs maintain physiological tolerance to clinically relevant gastric autoantigens, and Th2 responses can be a pathogenic mechanism in AIG.
Collapse
Affiliation(s)
- Jessica Harakal
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA 22908; Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA 22908; and
| | - Claudia Rival
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA 22908; Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA 22908; and Department of Pathology, University of Virginia, Charlottesville, VA 22908
| | - Hui Qiao
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA 22908; and Department of Pathology, University of Virginia, Charlottesville, VA 22908
| | - Kenneth S Tung
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA 22908; Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA 22908; and Department of Pathology, University of Virginia, Charlottesville, VA 22908
| |
Collapse
|
12
|
Mercadante ER, Lorenz UM. Breaking Free of Control: How Conventional T Cells Overcome Regulatory T Cell Suppression. Front Immunol 2016; 7:193. [PMID: 27242798 PMCID: PMC4870238 DOI: 10.3389/fimmu.2016.00193] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 05/02/2016] [Indexed: 01/10/2023] Open
Abstract
Conventional T (Tcon) cells are crucial in shaping the immune response, whether it is protection against a pathogen, a cytotoxic attack on tumor cells, or an unwanted response to self-antigens in the context of autoimmunity. In each of these immune settings, regulatory T cells (Tregs) can potentially exert control over the Tcon cell response, resulting in either suppression or activation of the Tcon cells. Under physiological conditions, Tcon cells are able to transiently overcome Treg-imposed restraints to mount a protective response against an infectious threat, achieving clonal expansion, differentiation, and effector function. However, evidence has accumulated in recent years to suggest that Tcon cell resistance to Treg-mediated suppression centrally contributes to the pathogenesis of autoimmune disease. Tipping the balance too far in the other direction, cancerous tumors utilize Tregs to establish an overly suppressive microenvironment, preventing antitumor Tcon cell responses. Given the wide-ranging clinical importance of the Tcon/Treg interaction, this review aims to provide a better understanding of what determines whether a Tcon cell is susceptible to Treg-mediated suppression and how perturbations to this finely tuned balance play a role in pathological conditions. Here, we focus in detail on the complex array of factors that confer Tcon cells with resistance to Treg suppression, which we have divided into two categories: (1) extracellular factor-mediated signaling and (2) intracellular signaling molecules. Further, we explore the therapeutic implications of manipulating the phosphatidylinositol-3 kinase (PI3K)/Akt signaling pathway, which is proposed to be the convergence point of signaling pathways that mediate Tcon resistance to suppression. Finally, we address important unresolved questions on the timing and location of acquisition of resistance, and the stability of the “Treg-resistant” phenotype.
Collapse
Affiliation(s)
- Emily R Mercadante
- Department of Microbiology Immunology and Cancer Biology, Beirne Carter Center for Immunology Research, University of Virginia , Charlottesville, VA , USA
| | - Ulrike M Lorenz
- Department of Microbiology Immunology and Cancer Biology, Beirne Carter Center for Immunology Research, University of Virginia , Charlottesville, VA , USA
| |
Collapse
|
13
|
D'Alessio FR, Craig JM, Singer BD, Files DC, Mock JR, Garibaldi BT, Fallica J, Tripathi A, Mandke P, Gans JH, Limjunyawong N, Sidhaye VK, Heller NM, Mitzner W, King LS, Aggarwal NR. Enhanced resolution of experimental ARDS through IL-4-mediated lung macrophage reprogramming. Am J Physiol Lung Cell Mol Physiol 2016; 310:L733-46. [PMID: 26895644 PMCID: PMC4836113 DOI: 10.1152/ajplung.00419.2015] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 02/12/2016] [Indexed: 01/11/2023] Open
Abstract
Despite intense investigation, acute respiratory distress syndrome (ARDS) remains an enormous clinical problem for which no specific therapies currently exist. In this study, we used intratracheal lipopolysaccharide or Pseudomonas bacteria administration to model experimental acute lung injury (ALI) and to further understand mediators of the resolution phase of ARDS. Recent work demonstrates macrophages transition from a predominant proinflammatory M1 phenotype during acute inflammation to an anti-inflammatory M2 phenotype with ALI resolution. We tested the hypothesis that IL-4, a potent inducer of M2-specific protein expression, would accelerate ALI resolution and lung repair through reprogramming of endogenous inflammatory macrophages. In fact, IL-4 treatment was found to offer dramatic benefits following delayed administration to mice subjected to experimental ALI, including increased survival, accelerated resolution of lung injury, and improved lung function. Expression of the M2 proteins Arg1, FIZZ1, and Ym1 was increased in lung tissues following IL-4 treatment, and among macrophages, FIZZ1 was most prominently upregulated in the interstitial subpopulation. A similar trend was observed for the expression of macrophage mannose receptor (MMR) and Dectin-1 on the surface of alveolar macrophages following IL-4 administration. Macrophage depletion or STAT6 deficiency abrogated the therapeutic effect of IL-4. Collectively, these data demonstrate that IL-4-mediated therapeutic macrophage reprogramming can accelerate resolution and lung repair despite delayed use following experimental ALI. IL-4 or other therapies that target late-phase, proresolution pathways may hold promise for the treatment of human ARDS.
Collapse
Affiliation(s)
- F R D'Alessio
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - J M Craig
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - B D Singer
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - D C Files
- Division of Pulmonary and Critical Care, Wake Forest University School of Medicine, Winston-Salem, North Carolina; and
| | - J R Mock
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - B T Garibaldi
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - J Fallica
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - A Tripathi
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - P Mandke
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - J H Gans
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - N Limjunyawong
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - V K Sidhaye
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - N M Heller
- Department of Anesthesiology and Critical Care, Johns Hopkins University, Baltimore, Maryland
| | - W Mitzner
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - L S King
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - N R Aggarwal
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland;
| |
Collapse
|
14
|
Kawalkowska JZ, Hemmerle T, Pretto F, Matasci M, Neri D, Williams RO. Targeted IL-4 therapy synergizes with dexamethasone to induce a state of tolerance by promoting Treg cells and macrophages in mice with arthritis. Eur J Immunol 2016; 46:1246-57. [PMID: 26919786 DOI: 10.1002/eji.201546221] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Revised: 01/13/2016] [Accepted: 02/22/2016] [Indexed: 12/25/2022]
Abstract
F8-IL-4 is a recently developed immunocytokine that delivers IL-4 to sites of inflammation by targeting the neovasculature. We previously reported that F8-IL-4, in combination with dexamethasone (DXM), provides a durable therapy in mice with collagen-induced arthritis (CIA). Therefore, the objective of this study was to identify the mechanism by which IL-4 and DXM combination therapy provides long-lasting disease remission. F8-IL-4 alone attenuated inflammation in CIA and this was associated with increased TH 2 and decreased TH 17 cell numbers in the joints. Similarly, DXM alone had an antiinflammatory effect associated with lower TH 17 cell numbers. In both cases, these therapeutic benefits were reversed once treatment was stopped. On the other hand, combination therapy with F8-IL-4 plus DXM led to a synergistic increase in the percentage of regulatory T (Treg) cells and antiinflammatory macrophages in the arthritic joint and spleen as well as IL-10 levels in serum and spleen. The net result of this was a more pronounced attenuation of inflammation and, more importantly, protection from arthritis relapse post therapy retraction. In conclusion, F8-IL-4 plus DXM is a durable treatment for arthritis that acts by promoting Treg cells in a synergistic manner, and by producing a sustained increase in antiinflammatory macrophages.
Collapse
Affiliation(s)
| | | | | | | | - Dario Neri
- Philochem Zurich, Otelfingen, Switzerland.,Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | | |
Collapse
|
15
|
Conte E, Gili E, Fruciano M, Fagone E, Vancheri C. Human lung fibroblasts increase CD4(+)CD25(+)Foxp3(+) T cells in co-cultured CD4(+) lymphocytes. Cell Immunol 2013; 285:55-61. [PMID: 24076465 DOI: 10.1016/j.cellimm.2013.09.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 09/02/2013] [Accepted: 09/03/2013] [Indexed: 12/29/2022]
Abstract
Aim of this study was to evaluate functional modifications induced by human lung fibroblasts in co-cultured CD4(+) T lymphocytes. CD4(+) T cells, resting or stimulated with ionomycin/PMA for 6h, were co-cultured with fibroblasts isolated from pulmonary biopsies, in contact or separated by a semi-permeable membrane. The expression of CD25, CTLA-4, TGF-β, IFNγ, IL-2, IL-4, IL-10 and Foxp3 was evaluated by flow cytometric analysis. Fibroblasts induced a significant increment in CD25(+) cells in co-cultured activated CD4(+) T lymphocytes separated by a membrane. Moreover, fibroblasts treatment with a COX2 inhibitor abrogated the increment in CD25(+) cells whereas exogenous PGE2 restored it. The CD25(+) subpopulation was characterized by increased presence of Fox-P3, CTLA-4, IL-10 and TGF-β positive cells while IFN-γ and IL-2 positive cells were diminished. Proliferative response of CD4(+) to the anti CD3/CD28-Abs was abrogated in CD4(+) co-cultured with fibroblasts thus demonstrating a suppressive feature of the expanded CD25(+) subpopulation.
Collapse
Affiliation(s)
- Enrico Conte
- Department of Clinical and MolecularBiomedicine, University of Catania, Catania, Italy.
| | | | | | | | | |
Collapse
|
16
|
Free ME, Bunch DO, McGregor JA, Jones BE, Berg EA, Hogan SL, Hu Y, Preston GA, Jennette JC, Falk RJ, Su MA. Patients with antineutrophil cytoplasmic antibody-associated vasculitis have defective Treg cell function exacerbated by the presence of a suppression-resistant effector cell population. ACTA ACUST UNITED AC 2013; 65:1922-33. [PMID: 23553415 DOI: 10.1002/art.37959] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Accepted: 03/26/2013] [Indexed: 12/12/2022]
Abstract
OBJECTIVE The development of pathogenic antineutrophil cytoplasmic antibodies (ANCAs) can result in systemic small vessel vasculitis. However, the breakdown in immune tolerance that results in the induction and persistence of ANCAs is not well understood. We undertook this study to test our hypothesis that abnormal T cell regulation is central to disease pathogenesis in patients with ANCA-associated vasculitis (AAV). METHODS Peripheral blood samples were obtained from 62 patients with AAV and 19 healthy controls for flow cytometric analysis of CD4+ T cell populations. Functional T cell studies were performed with fluorescence-activated cell sorted CD4+ T cell populations stimulated with anti-CD3/anti-CD28. RESULTS We demonstrated two separate abnormalities in T cell regulation in patients with AAV. First, we showed that the Treg cell frequency was increased in the peripheral blood of patients with active disease, but Treg cells from patients with AAV had decreased suppressive function. Treg cells from patients with active disease disproportionately used a FoxP3 isoform lacking exon 2, which might alter Treg cell function. Second, we identified a CD4+ T cell population with increased frequency that was resistant to Treg cell suppression, produced proinflammatory cytokines, and was antigen experienced. CONCLUSION AAV is associated with disruption of the suppressive Treg cell network and with increased frequency of a distinct proinflammatory effector T cell subset that comprises the majority of peripheral CD4+ T cells.
Collapse
|
17
|
Dorsey NJ, Chapoval SP, Smith EP, Skupsky J, Scott DW, Keegan AD. STAT6 controls the number of regulatory T cells in vivo, thereby regulating allergic lung inflammation. THE JOURNAL OF IMMUNOLOGY 2013; 191:1517-28. [PMID: 23825312 DOI: 10.4049/jimmunol.1300486] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
STAT6 plays a central role in IL-4-mediated allergic responses. Several studies indicate that regulatory T cells (Tregs) can be modulated by IL-4 in vitro. We previously showed that STAT6(-/-) mice are highly resistant to allergic lung inflammation even when wild-type Th2 effectors were provided and that they have increased numbers of Tregs. However, the role of STAT6 in modulating Tregs in vivo during allergic lung inflammation has not been thoroughly investigated. To examine Treg and STAT6 interaction during allergic inflammation, STAT6(-/-), STAT6xRAG2(-/-), and RAG2(-/-) mice were subjected to OVA sensitization and challenge following adoptive transfer of OVA-specific, wild-type Th2 effectors with or without prior Treg depletion/inactivation, using anti-CD25 (PC61). As expected, STAT6(-/-) mice were highly resistant to airway inflammation and remodeling. In contrast, allergic lung inflammation was partially restored in STAT6(-/-) mice treated with PC61 to levels observed in STAT6xRAG2(-/-) mice. In some cases, STAT6xRAG2(-/-) mice were also given natural Tregs along with Th2 effectors. Adoptive transfer of natural Tregs caused a substantial reduction in bronchoalveolar lavage eosinophil composition and suppressed airway remodeling and T cell migration into the lung in STAT6xRAG2(-/-) mice to levels comparable to those in STAT6(-/-) mice. These results demonstrate the STAT6-dependent suppression of Tregs in vivo to promote allergic airway inflammation.
Collapse
Affiliation(s)
- Nicolas J Dorsey
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | | | | | | | | |
Collapse
|
18
|
Wang X, Dong L, Ni H, Zhou S, Xu Z, Hoellwarth JS, Chen X, Zhang R, Chen Q, Liu F, Wang J, Su C. Combined TLR7/8 and TLR9 ligands potentiate the activity of a Schistosoma japonicum DNA vaccine. PLoS Negl Trop Dis 2013; 7:e2164. [PMID: 23593527 PMCID: PMC3617091 DOI: 10.1371/journal.pntd.0002164] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 03/01/2013] [Indexed: 01/07/2023] Open
Abstract
Background Toll-like receptor (TLR) ligands have been explored as vaccine adjuvants for tumor and virus immunotherapy, but few TLR ligands affecting schistosoma vaccines have been characterized. Previously, we developed a partially protective DNA vaccine encoding the 26-kDa glutathione S-transferase of Schistosoma japonicum (pVAX1-Sj26GST). Methodology/Principal Findings In this study, we evaluated a TLR7/8 ligand (R848) and a TLR9 ligand (CpG oligodeoxynucleotides, or CpG) as adjuvants for pVAX1-Sj26GST and assessed their effects on the immune system and protection against S. japonicum. We show that combining CpG and R848 with pVAX1-Sj26GST immunization significantly increases splenocyte proliferation and IgG and IgG2a levels, decreases CD4+CD25+Foxp3+ regulatory T cells (Treg) frequency in vivo, and enhances protection against S. japonicum. CpG and R848 inhibited Treg-mediated immunosuppression, upregulated the production of interferon (IFN)-γ, tumor necrosis factor (TNF)-α, interleukin (IL)-4, IL-10, IL-2, and IL-6, and decreased Foxp3 expression in vitro, which may contribute to prevent Treg suppression and conversion during vaccination and allow expansion of antigen-specific T cells against pathogens. Conclusions Our data shows that selective TLR ligands can increase the protective efficacy of DNA vaccines against schistosomiasis, potentially through combined antagonism of Treg-mediated immunosuppression and conversion. There is evidence that TLR activation can block Treg cell responses and thereby break tolerance to self-antigens. It is expected that the use of TLR ligands as vaccine adjuvants will induce potent anti-pathogen immune responses and simultaneously overcome immune inhibition mediated by Tregs. However, the impact of TLR ligands on schistosomiasis vaccines is unclear. Here, we demonstrate that the use of a TLR7/8 ligand (R848) and a TLR9 ligand (CpG) as adjuvants in combination with the S. japonicum vaccine pVAX1-Sj26GST improves disease protection. The combination of CpG and R848 administered after vaccination causes an immune response marked by an upregulation of splenocyte proliferation and IgG and IgG2a levels that also coincides with a decreased proportion of CD4+CD25+ Tregs in mice. We also show that combined adjuvant use of CpG and R848 may impair Treg development and function by promoting the secretion of proinflammatory cytokines and reducing Foxp3 expression. Our findings suggest that in combination with the vaccine, TLR ligands may protect the effector response from Treg-mediated suppression, thereby eliciting the appropriate immune response to improve vaccine efficacy. Immunization combined with the TLR ligands CpG and R848 thus represents a promising new approach for the design of schistosoma vaccines.
Collapse
Affiliation(s)
- Xuefeng Wang
- Department of Central Laboratory, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Terhune TD, Deth RC. How aluminum adjuvants could promote and enhance non-target IgE synthesis in a genetically-vulnerable sub-population. J Immunotoxicol 2012; 10:210-22. [PMID: 22967010 DOI: 10.3109/1547691x.2012.708366] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Aluminum-containing adjuvants increase the effectiveness of vaccination, but their ability to augment immune responsiveness also carries the risk of eliciting non-target responses, especially in genetically susceptible individuals. This study reviews the relevant actions of aluminum adjuvants and sources of genetic risk that can combine to adversely affect a vulnerable sub-population. Aluminum adjuvants promote oxidative stress and increase inflammasome activity, leading to the release of IL-1β, IL-18, and IL-33, but not the important regulatory cytokine IL-12. In addition, they stimulate macrophages to produce PGE₂, which also has a role in regulating immune responses. This aluminum-induced cytokine context leads to a T(H)2 immune response, characterized by the further release of IL-3, IL-4, IL-5, IL-9, IL-13, and IgE-potentiating factors such as sCD23. Genetic variants in cytokine genes, such as IL-4, IL-13, IL-33, and IL-18 influence the response to vaccines in children and are also associated with atopy. These genetic factors may therefore define a genetically-vulnerable sub-population, children with a family history of atopy, who may experience an exaggerated T(H)2 immune response to aluminum-containing vaccines. IL-4, sCD23, and IgE are common factors for both atopy and the immune-stimulating properties of aluminum adjuvants. IL-4 is critical in the production of IgE and total IgE up-regulation. IL-4 has also been reported to induce the production of sCD23 and trigger resting sIgM+, sIgD+ B-cells to switch to sIgE+ B-cells, making them targets for IgE-potentiating factors. Further, the actions of IgE-potentiating factors on sIgE+ B-cells are polyclonal and unrestricted, triggering their differentiation into IgE-forming plasma cells. These actions provide a mechanism for aluminum-adjuvant promotion and enhancement of non-target IgE in a genetically vulnerable sub-population. Identification of these individuals may decrease the risk of adverse events associated with the use of aluminum-containing vaccines.
Collapse
Affiliation(s)
- Todd D Terhune
- Department of Pharmaceutical Sciences, Northeastern University, 148 TF, 360 Huntington Avenue, Boston, MA 02115, USA.
| | | |
Collapse
|
20
|
Annamalai T, Selvaraj R. Effects of in ovo interleukin-4-plasmid injection on anticoccidia immune response in a coccidia infection model of chickens. Poult Sci 2012; 91:1326-34. [DOI: 10.3382/ps.2011-02026] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
21
|
Walsh JT, Kipnis J. Regulatory T cells in CNS injury: the simple, the complex and the confused. Trends Mol Med 2011; 17:541-7. [PMID: 21741881 DOI: 10.1016/j.molmed.2011.05.012] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Revised: 05/21/2011] [Accepted: 05/27/2011] [Indexed: 11/19/2022]
Abstract
Regulatory CD4(+)CD25(+)Foxp3(+) T cells (Tregs) have been the focus of significant attention for their role in controlling immune responses. Although knowledge of Treg biology has burgeoned, wide gaps remain in our understanding of Treg function under both normal and pathological conditions. Pioneering studies demonstrated roles for Tregs in cancer and autoimmune diseases, including experimental autoimmune encephalitis, and this knowledge is often applied to other pathologies including neurodegenerative conditions. However, differences between immunity in neurodegeneration and in malignancy or autoimmunity are often neglected. Thus, Treg manipulations in central nervous system (CNS) neurodegenerative conditions often yield unexpected outcomes. In this piece, we explore how the immunology of neurodegeneration differs from that of cancer and autoimmunity and how these differences create confusion about the role of Tregs in neurodegenerative conditions.
Collapse
Affiliation(s)
- James T Walsh
- Neuroscience Graduate Program and Medical Scientist Training Program, Department of Neuroscience, University of Virginia, Charlottesville, VA 22908, USA
| | | |
Collapse
|
22
|
Nishida E, Chen C, Morita A, Shimizu J. Inhibition of T cell activation through down-regulation of TCR-CD3 expression mediated by an anti-CD90 Ab. Immunol Lett 2011; 136:163-70. [DOI: 10.1016/j.imlet.2011.01.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2010] [Revised: 11/27/2010] [Accepted: 01/12/2011] [Indexed: 12/20/2022]
|
23
|
Mackroth MS, Malhotra I, Mungai P, Koech D, Muchiri E, King CL. Human cord blood CD4+CD25hi regulatory T cells suppress prenatally acquired T cell responses to Plasmodium falciparum antigens. THE JOURNAL OF IMMUNOLOGY 2011; 186:2780-91. [PMID: 21278348 DOI: 10.4049/jimmunol.1001188] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In malaria endemic regions, a fetus is often exposed in utero to Plasmodium falciparum blood-stage Ags. In some newborns, this can result in the induction of immune suppression. We have previously shown these modulated immune responses to persist postnatally, with a subsequent increase in a child's susceptibility to infection. To test the hypothesis that this immune suppression is partially mediated by malaria-specific regulatory T cells (T(regs)) in utero, cord blood mononuclear cells (CBMC) were obtained from 44 Kenyan newborns of women with and without malaria at delivery. CD4(+)CD25(lo) T cells and CD4(+)CD25(hi) FOXP3(+) cells (T(regs)) were enriched from CBMC. T(reg) frequency and HLA-DR expression on T(regs) were significantly greater for Kenyan as compared with North American CBMC (p < 0.01). CBMC/CD4(+) T cells cultured with P. falciparum blood-stage Ags induced production of IFN-γ, IL-13, IL-10, and/or IL-5 in 50% of samples. Partial depletion of CD25(hi) cells augmented the Ag-driven IFN-γ production in 69% of subjects with malaria-specific responses and revealed additional Ag-reactive lymphocytes in previously unresponsive individuals (n = 3). Addition of T(regs) to CD4(+)CD25(lo) cells suppressed spontaneous and malaria Ag-driven production of IFN-γ in a dose-dependent fashion, until production was completely inhibited in most subjects. In contrast, T(regs) only partially suppressed malaria-induced Th2 cytokines. IL-10 or TGF-β did not mediate this suppression. Thus, prenatal exposure to malaria blood-stage Ags induces T(regs) that primarily suppress Th1-type recall responses to P. falciparum blood-stage Ags. Persistence of these T(regs) postnatally could modify a child's susceptibility to malaria infection and disease.
Collapse
Affiliation(s)
- Maria S Mackroth
- Center for Global Health and Diseases, Case Western Reserve University, Cleveland, OH 44106, USA.
| | | | | | | | | | | |
Collapse
|
24
|
Liu J, Lluis A, Illi S, Layland L, Olek S, von Mutius E, Schaub B. T regulatory cells in cord blood--FOXP3 demethylation as reliable quantitative marker. PLoS One 2010; 5:e13267. [PMID: 20967272 PMCID: PMC2953505 DOI: 10.1371/journal.pone.0013267] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Accepted: 08/21/2010] [Indexed: 12/24/2022] Open
Abstract
Background Regulatory T-cells (Tregs), characterized as CD4+CD25hi T-cells expressing FOXP3, play a crucial role in controlling healthy immune development during early immune maturation. Recently, FOXP3 demethylation was suggested to be a novel marker for natural Tregs in adults. In cord blood, the role and function of Tregs and its demethylation is poorly understood. We assessed FOXP3 demethylation in cord blood in relation to previously used Treg markers such as CD4+CD25hi, FOXP3 mRNA, protein expression, and suppressive Treg function. Methodology Cord blood mononuclear cells (CBMC) were isolated from 70 healthy neonates, stimulated for 3 days with the microbial stimulus lipid A (LpA), and allergen Dermatophagoides pteronyssinus (Derp1). Tregs (CD4+CD25hi, intracellular, mRNA FOXP3 expression, isolated cells), DNA methylation of the FOXP3-locus and suppressive Treg function were assessed. Principal Findings Demethylation of FOXP3 in whole blood was specific for isolated CD4+CD25hi Tregs. Demethylation of FOXP3 was positively correlated with unstimulated and LpA-stimulated FOXP3 mRNA-expression (p≤0.05), and CD4+CD25hi T-cells (p≤0.03). Importantly, increased FOXP3 demethylation correlated with more efficient suppressive capacity of Tregs (r = 0.72, p = 0.005). Furthermore, FOXP3 demethylation was positively correlated with Th2 cytokines (IL-5, IL-13) following LpA-stimulation (p = 0.006/0.04), with Th2 and IL-17 following Derp1+LpA-stimulations (p≤0.009), but not Th1 cytokines (IFN-γ). Conclusions FOXP3 demethylation reliable quantifies Tregs in cord blood. FOXP3 demethylation corresponds well with the suppressive potential of Tregs. The resulting strict correlation with functionally suppressive Tregs and the relative ease of measurement render it into a valuable novel marker for large field studies assessing Tregs as qualitative marker indicative of functional activity.
Collapse
Affiliation(s)
- Jing Liu
- Department of Pulmonary and Allergy, University Children's Hospital Munich, Ludwig-Maximilians-Universität Munich, Munich, Germany
- Department of Respiratory Medicine, The Second Hospital of Ji Lin University, Chang Chun, China
| | - Anna Lluis
- Department of Pulmonary and Allergy, University Children's Hospital Munich, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Sabina Illi
- Department of Pulmonary and Allergy, University Children's Hospital Munich, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Laura Layland
- Institute for Medical Microbiology, Technische Universität Munich, Munich, Germany
| | | | - Erika von Mutius
- Department of Pulmonary and Allergy, University Children's Hospital Munich, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Bianca Schaub
- Department of Pulmonary and Allergy, University Children's Hospital Munich, Ludwig-Maximilians-Universität Munich, Munich, Germany
- * E-mail:
| |
Collapse
|
25
|
Abstract
That regulatory T cells (Tregs) have a crucial role in controlling allergic diseases such as asthma is now undisputed. The cytokines most commonly implicated in Treg-mediated suppression of allergic asthma are transforming growth factor-beta (TGF-beta) and interleukin (IL)-10). In addition to naturally occurring Tregs, adaptive Tregs, induced in response to foreign antigens, have been shown in recent studies. The concept of inducible/adaptive Tregs (iTregs) has considerable significance in preventing asthma if generated early enough in life. This is because cytokines such as IL-4 and IL-6 inhibit Foxp3 induction in naive CD4+ T cells and therefore de novo generation of Tregs can be expected to be less efficient when it is concomitant with effector cell development in response to an allergen. However, if iTregs can be induced, the process of infectious tolerance would facilitate expansion of the iTreg pool as suggested in the recent literature. It is tempting to speculate that there is a window of opportunity in early life in the context of a relatively immature immune system that is permissive for the generation of iTregs specific to a spectrum of allergens that would regulate asthma for lifelong. The focus of this review is the relevance of nTregs and iTregs in controlling asthma from early life into adulthood, the mechanisms underlying Treg function, and the prospects for using our current concepts to harness the full potential of Tregs to limit disease development and progression.
Collapse
|
26
|
Pace L, Vitale S, Dettori B, Palombi C, La Sorsa V, Belardelli F, Proietti E, Doria G. APC activation by IFN-alpha decreases regulatory T cell and enhances Th cell functions. THE JOURNAL OF IMMUNOLOGY 2010; 184:5969-79. [PMID: 20427775 DOI: 10.4049/jimmunol.0900526] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Type I IFNs are central to a vast array of immunological functions. Their early induction in innate immune responses provides one of the most important priming mechanisms for the subsequent establishment of adaptive immunity. The outcome is either promotion or inhibition of these responses, but the conditions under which one or the other prevails remain to be defined. The main objective of the current study was to determine the involvement of IFN-alpha on murine CD4(+)CD25(-) Th cell activation, as well as to define the role played by this cytokine on CD4(+)CD25(+) regulatory T (Treg) cell proliferation and function. Although IFN-alpha promotes CD4(+)CD25(-) Th cells coincubated with APCs to produce large amounts of IL-2, the ability of these cells to respond to IL-2 proliferative effects is prevented. Moreover, in medium supplemented with IFN-alpha, IL-2-induced CD4(+)CD25(+) Treg cell proliferation is inhibited. Notably, IFN-alpha also leads to a decrease of the CD4(+)CD25(+) Treg cell suppressive activity. Altogether, these findings indicate that through a direct effect on APC activation and by affecting CD4(+)CD25(+) Treg cell-mediated suppression, IFN-alpha sustains and drives CD4(+)CD25(-) Th cell activation.
Collapse
Affiliation(s)
- Luigia Pace
- Immunology Laboratory, Department of Biology, University of Rome Tor Vergata, Rome, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Gauthier S, Tremblay MJ. Interleukin-4 inhibits an early phase in the HIV-1 life cycle in the human colorectal cell line HT-29. Clin Immunol 2010; 135:146-55. [DOI: 10.1016/j.clim.2009.12.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Revised: 12/03/2009] [Accepted: 12/04/2009] [Indexed: 12/11/2022]
|
28
|
Merson TD, Binder MD, Kilpatrick TJ. Role of cytokines as mediators and regulators of microglial activity in inflammatory demyelination of the CNS. Neuromolecular Med 2010; 12:99-132. [PMID: 20411441 DOI: 10.1007/s12017-010-8112-z] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2009] [Accepted: 02/26/2010] [Indexed: 12/11/2022]
Abstract
As the resident innate immune cells of the central nervous system (CNS), microglia fulfil a critical role in maintaining tissue homeostasis and in directing and eliciting molecular responses to CNS damage. The human disease Multiple Sclerosis and animal models of inflammatory demyelination are characterized by a complex interplay between degenerative and regenerative processes, many of which are regulated and mediated by microglia. Cellular communication between microglia and other neural and immune cells is controlled to a large extent by the activity of cytokines. Here we review the role of cytokines as mediators and regulators of microglial activity in inflammatory demyelination, highlighting their importance in potentiating cell damage, promoting neuroprotection and enhancing cellular repair in a context-dependent manner.
Collapse
Affiliation(s)
- Tobias D Merson
- Florey Neuroscience Institutes, Centre for Neuroscience, University of Melbourne, Parkville, VIC, 3010, Australia.
| | | | | |
Collapse
|
29
|
Kitoh A, Ono M, Naoe Y, Ohkura N, Yamaguchi T, Yaguchi H, Kitabayashi I, Tsukada T, Nomura T, Miyachi Y, Taniuchi I, Sakaguchi S. Indispensable role of the Runx1-Cbfbeta transcription complex for in vivo-suppressive function of FoxP3+ regulatory T cells. Immunity 2009; 31:609-20. [PMID: 19800266 DOI: 10.1016/j.immuni.2009.09.003] [Citation(s) in RCA: 191] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2009] [Revised: 09/09/2009] [Accepted: 09/14/2009] [Indexed: 11/15/2022]
Abstract
Naturally arising regulatory T (Treg) cells express the transcription factor FoxP3, which critically controls the development and function of Treg cells. FoxP3 interacts with another transcription factor Runx1 (also known as AML1). Here, we showed that Treg cell-specific deficiency of Cbfbeta, a cofactor for all Runx proteins, or that of Runx1, but not Runx3, induced lymphoproliferation, autoimmune disease, and hyperproduction of IgE. Cbfb-deleted Treg cells exhibited impaired suppressive function in vitro and in vivo, with altered gene expression profiles including attenuated expression of FoxP3 and high expression of interleukin-4. The Runx complex bound to more than 3000 gene loci in Treg cells, including the Foxp3 regulatory regions and the Il4 silencer. In addition, knockdown of RUNX1 showed that RUNX1 is required for the optimal regulation of FoxP3 expression in human T cells. Taken together, our results indicate that the Runx1-Cbfbeta heterodimer is indispensable for in vivo Treg cell function, in particular, suppressive activity and optimal expression of FoxP3.
Collapse
Affiliation(s)
- Akihiko Kitoh
- Department of Experimental Pathology, Institute for Frontier Medical Sciences, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Pillemer BB, Qi Z, Melgert B, Oriss TB, Ray P, Ray A. STAT6 activation confers upon T helper cells resistance to suppression by regulatory T cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2009; 183:155-63. [PMID: 19535633 PMCID: PMC2754746 DOI: 10.4049/jimmunol.0803733] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Recent studies have highlighted characteristics of T regulatory cells (Tregs) that underlie their suppressive function. However, mechanisms that override their suppressive function in the context of an adaptive immune response are not well understood. In the lungs of mice undergoing allergic inflammation, appreciable numbers of Tregs were identified that possessed suppressive function when assayed ex vivo. We investigated whether the Th2-promoting cytokine IL-4 played a permissive role that superseded Treg function, thereby allowing the development of allergic inflammation. IL-4 signaling via the IL-4Ralpha-STAT6 axis was required to maintain Foxp3 expression in Tregs and promote their proliferation. However, the results of both in vivo experiments involving adoptive transfer of Tregs into Ag-sensitized vs naive animals and in vitro suppression assays performed with or without exogenous IL-4 showed the ability of IL-4 to compromise Treg-mediated suppression. Use of retrovirally expressed, constitutively active STAT6 revealed that the underlying mechanism was not IL-4-mediated dysfunction of Tregs but involved the resistance of Th cells to Treg-mediated suppression that would permit the development of an adaptive immune response. Our data suggest that infectious tolerance, mediated by membrane-bound TGF-beta expressed by Tregs, is compromised by the competing effects of IL4-induced signaling in naive CD4(+) Th cells.
Collapse
MESH Headings
- Animals
- Cells, Cultured
- Disease Models, Animal
- Gene Knock-In Techniques
- Immune Tolerance
- Immunity, Innate
- Immunosuppression Therapy
- Inflammation Mediators/metabolism
- Inflammation Mediators/physiology
- Interleukin-4/metabolism
- Lung/immunology
- Lung/metabolism
- Lung/pathology
- Male
- Mice
- Mice, Inbred BALB C
- Respiratory Hypersensitivity/immunology
- Respiratory Hypersensitivity/metabolism
- Respiratory Hypersensitivity/pathology
- STAT6 Transcription Factor/genetics
- STAT6 Transcription Factor/metabolism
- STAT6 Transcription Factor/physiology
- Signal Transduction/immunology
- T-Lymphocytes, Helper-Inducer/immunology
- T-Lymphocytes, Helper-Inducer/metabolism
- T-Lymphocytes, Helper-Inducer/pathology
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- T-Lymphocytes, Regulatory/pathology
Collapse
Affiliation(s)
- Brendan B.L. Pillemer
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Groningen, The Netherlands
| | - Zengbiao Qi
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Groningen, The Netherlands
| | - Barbro Melgert
- University Medical Center Groningen, Department of Pathology and Laboratory Medicine, Groningen, The Netherlands
| | - Timothy B. Oriss
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Groningen, The Netherlands
| | - Prabir Ray
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Groningen, The Netherlands
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Anuradha Ray
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Groningen, The Netherlands
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| |
Collapse
|
31
|
Abstract
In the past 15 years, regulatory T cell (Treg) suppression has graduated from a phenomenon that 'dare not speak its name' to a field at the centre of a global research effort. It is now accepted that Tregs can target numerous cell populations to elicit potent immunosuppression. Intriguingly, emerging data suggest that certain signals can confer resistance to Treg suppression. Moreover, such resistance may be relevant to the pathogenesis of autoimmune diseases. In this article I review various pathways linked to resistance to Treg suppression. These include Toll-like receptor (TLR) signals, cytokines [in particular those that use the common gamma chain, such as interleukin (IL)-7 and IL-21] and the triggering of tumour necrosis factor (TNF) receptor family members (such as glucocorticoid induced tumor necrosis factor receptor (GITR), OX40 and 4-1BB). I also propose a model of 'tuned suppression' in which inflammatory stimuli and TLR ligation actively promote Treg function, such that as soon as effector cells re-acquire sensitivity to suppression the immune response can be efficiently curtailed.
Collapse
Affiliation(s)
- Lucy S K Walker
- MRC Centre for Immune Regulation, University of Birmingham Medical School, Birmingham, UK.
| |
Collapse
|
32
|
Increased CD4+CD25+Foxp3+ regulatory T cells in tolerance induced by portal venous injection. Surgery 2009; 145:663-74. [PMID: 19486771 DOI: 10.1016/j.surg.2009.01.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2008] [Accepted: 01/15/2009] [Indexed: 11/24/2022]
Abstract
BACKGROUND A portal vein injection (PVI) of allogeneic donor antigen is known to prolong the survival of a subsequently transplanted allograft; however, the underlying mechanism remains to be clarified. METHODS Irradiated C57BL/6 (B6) splenocytes were injected into BALB/c mice via the portal vein. Seven days after injection, the proportions of CD4(+)CD25(+)Foxp3(+) regulatory T (Treg) cells were determined in the blood, liver, and spleen. CD4(+) and CD8(+) T cells were isolated from BALB/c mice that received PVI of B6 splenocytes (PVI mice), adoptively transferred into recipient BALB/c mice 1 day before B6 or third-party C3H heart transplantation, and graft survival was compared. B6 or C3H heart allografts were implanted into anti-CD25 monoclonal antibody (mAb)-treated PVI and untreated PVI mice, and graft survivals were compared. The percentages of CD4(+)CD25(+)Foxp3(+) Treg, cytokine profiles, and ratios of apoptosis were determined in anti-CD25 mAb-treated PVI and untreated PVI mice. RESULTS PVI of allogeneic cells induced antigen-specific tolerance and increased the percentage of CD4(+)CD25(+)Foxp3(+) Treg. Adoptive transfer of CD4(+) T cells, but not CD8(+) T cells, from PVI mice prolonged B6 heart allograft survival. Depletion of CD4(+)CD25(+) T cells prevented the induction of tolerance and decreased the percentage of CD4(+)CD25(+)Foxp3(+) Treg in the CD3(+) T-cell pool, and thus was associated with decreased production of interleukin (IL)-4 and apoptosis of T cells. CONCLUSION Increased CD4(+)CD25(+)Foxp3(+) Treg play an important role in portal vein tolerance induction, at least partly via increasing the production of IL-4 and decreasing apoptosis of T cells.
Collapse
|
33
|
Nazarov-Stoica C, Surls J, Bona C, Casares S, Brumeanu TD. CD28 signaling in T regulatory precursors requires p56lck and rafts integrity to stabilize the Foxp3 message. THE JOURNAL OF IMMUNOLOGY 2009; 182:102-10. [PMID: 19109140 DOI: 10.4049/jimmunol.182.1.102] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Naturally occurring CD4(+)25(high)Foxp3(+) T regulatory (T-reg) cells are critical for maintaining tolerance to self and non-self Ags. The Foxp3 master-regulatory gene and CD28 costimulation are both required for thymic development and suppressogenic function of CD4(+)25(high)Foxp3(+) T-regs. Herein, we show that the sole CD28 stimulation of T-reg thymic precursors augments Foxp3 expression through the increase in Foxp3 mRNA life span by a mechanism involving p56(lck) and its binding motif on CD28 cytosolic tail, as well as the lipid rafts. We found that 1) the glycosphingolipids and cholesterol components of lipid rafts were highly expressed and unusually partitioned in T-reg thymic precursors as compared with the conventional T cell precursors, 2) the CD28 receptor density on cell membrane is proportional with the content of cholesterol in lipid rafts and with the level of Foxp3 mRNA expression in T-reg precursors, and 3) the CD28-mediated increase of Foxp3 mRNA life span was paralleled by an increased proliferative and suppressogenic capacity of terminally differentiated CD4(+)25(high)Foxp3(+) T-reg precursors. Thus, the functional integrity of CD28 receptor p56(lck) and plasma membrane lipid rafts are all prerequisites for up-regulation and long-term expression of Foxp3 mRNA transcripts in CD4(+)25(high)Foxp3(+) T-reg precursors.
Collapse
Affiliation(s)
- Cristina Nazarov-Stoica
- Department of Medicine, Division of Immunology, Uniformed Services University of Health Sciences, Bethesda, MD 20814, USA
| | | | | | | | | |
Collapse
|
34
|
Prochazkova J, Fric J, Pokorna K, Neuwirth A, Krulova M, Zajicova A, Holan V. Distinct regulatory roles of transforming growth factor-beta and interleukin-4 in the development and maintenance of natural and induced CD4+ CD25+ Foxp3+ regulatory T cells. Immunology 2009; 128:e670-8. [PMID: 19740328 DOI: 10.1111/j.1365-2567.2009.03060.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The development and function of CD4(+) CD25(+) Foxp3(+) regulatory T cells (Tregs) are strictly regulated by cytokines. Here we show that transforming growth factor-beta (TGF-beta) and interleukin-4 (IL-4) play a crucial and antagonistic role in the development of Tregs. Additionally, these cytokines also have distinct effects on the maintenance of natural (nTregs) and antigen-induced (iTregs) Tregs. Using double-staining and tracking of proliferation of purified and carboxyflourescein succinimidyl ester (CFSE)-labelled mouse T-cell subpopulations we demonstrated that CD4(+) CD25(+) Foxp3(+) iTregs develop upon alloantigenic stimulation in the presence of TGF-beta exclusively from CD4(+) CD25(-) Foxp3(-) precursors. Both the induction of Foxp3 expression and Treg proliferation were prevented when the cells were stimulated in the presence of IL-4. By contrast, nTregs did not proliferate in the presence of the antigen and TGF-beta, and partially lost their Foxp3 expression. IL-4 not only prevented the development of iTregs, but also down-regulated the level of Foxp3 mRNA and decreased the number of Foxp3(+) cells in a population of iTregs. Further analyses proved that IL-4 decreased the expression of Foxp3 only in a population of iTregs, whereas it substantially supported the survival of nTregs. Functional experiments showed that Tregs induced in the presence of alloantigen and TGF-beta inhibited, on a per-cell basis, cell proliferation comparably to nTregs, and their suppressive capacity was not modulated by IL-4. These data suggest that TGF-beta and IL-4 differentially regulate the development of Tregs and distinctly sustain Foxp3 expression and the number of nTregs and iTregs, but have no influence on the suppressive activity of Tregs on a per-cell basis.
Collapse
Affiliation(s)
- Jana Prochazkova
- Institute of Molecular Genetics, Academy of Sciences, Videnska, Prague, Czech Republic
| | | | | | | | | | | | | |
Collapse
|
35
|
Dittrich AM, Chen HC, Xu L, Ranney P, Connolly S, Yarovinsky TO, Bottomly HK. A new mechanism for inhalational priming: IL-4 bypasses innate immune signals. THE JOURNAL OF IMMUNOLOGY 2008; 181:7307-15. [PMID: 18981153 DOI: 10.4049/jimmunol.181.10.7307] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Signaling via innate immune mechanisms is considered pivotal for T cell-mediated responses to inhaled Ags. Furthermore, Th2 cells specific for one inhaled Ag can facilitate priming of naive T cells to unrelated new inhaled Ags, a process we call "Th2 collateral priming". Interestingly, our previous studies showed that collateral priming is independent of signals via the innate immune system but depends on IL-4 secretion by CD4(+) T cells. We thus hypothesized that IL-4 can bypass the need for signals via the innate immune system, considered essential for pulmonary priming. Indeed, we were able to show that IL-4 bypasses the requirement for TLR4- and MyD88-mediated signaling for responses to new allergens. Furthermore, we characterized the mechanisms by which IL-4 primes for new inhaled allergens: "IL-4-dependent pulmonary priming" relies on IL-4 receptor expression on hematopoietic cells and structural cells. Transfer experiments indicate that within the hematopoietic compartment both T cells and dendritic cells need to express the IL-4 receptor. Finally, we were able to show that IL-4 induces recruitment and maturation of myeloid dendritic cells in vivo and increases T cell recruitment to the draining lymph nodes. Our findings bring new mechanistic knowledge to the phenomenon of polysensitization and primary sensitization in asthma.
Collapse
Affiliation(s)
- Anna M Dittrich
- Department for Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA.
| | | | | | | | | | | | | |
Collapse
|
36
|
In vivo expansion of CD4+Foxp3+ regulatory T cells mediated by GITR molecules. Immunol Lett 2008; 121:97-104. [DOI: 10.1016/j.imlet.2008.09.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2008] [Revised: 09/17/2008] [Accepted: 09/21/2008] [Indexed: 11/22/2022]
|
37
|
Wang L, van Panhuys N, Hu-Li J, Kim S, Le Gros G, Min B. Blimp-1 induced by IL-4 plays a critical role in suppressing IL-2 production in activated CD4 T cells. THE JOURNAL OF IMMUNOLOGY 2008; 181:5249-56. [PMID: 18832679 DOI: 10.4049/jimmunol.181.8.5249] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Although an inhibitory function of IL-4 in CD4 T cell IL-2 production has long been recognized, a mechanism mediating the inhibition remains unclear. In this study we demonstrate that IL-4 displays a potent suppressive function in IL-2 production of activated CD4 T cells through STAT6. IL-4-induced IL-2 suppression required IL-2 because IL-2 neutralization restored the production of IL-2 even in the presence of IL-4. In vivo, enhanced IL-2 production was found in nematode-infected IL-4- or STAT6-deficient animals, whereas immunization in the presence of IL-4 substantially diminished IL-2 production by Ag-specific CD4 T cells. IL-2 mRNA expression was reduced when T cells were stimulated in the presence of IL-4, whereas IL-2 mRNA decay was unaltered, suggesting that IL-4 mediates the suppression at a transcriptional level. Blimp-1 induced by IL-4 stimulation in activated CD4 T cells was found to be necessary to mediate the IL-2 inhibition as IL-4-mediated IL-2 suppression was less pronounced in activated CD4 T cells deficient in Blimp-1. Taken together, our results demonstrate a potential link with IL-4, Blimp-1, and IL-2 production, suggesting that Blimp-1 may play an important role in controlling IL-2 production in activated T cells and in adaptive T cell immunity.
Collapse
Affiliation(s)
- Lu Wang
- Department of Immunology, Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | | | | | | | | | | |
Collapse
|
38
|
Hao S, Yuan J, Xu S, Munegowda MA, Deng Y, Gordon J, Xing Z, Xiang J. Antigen Specificity Acquisition of Adoptive CD4+ Regulatory T Cells via Acquired Peptide-MHC Class I Complexes. THE JOURNAL OF IMMUNOLOGY 2008; 181:2428-37. [DOI: 10.4049/jimmunol.181.4.2428] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
39
|
Butti E, Bergami A, Recchia A, Brambilla E, Del Carro U, Amadio S, Cattalini A, Esposito M, Stornaiuolo A, Comi G, Pluchino S, Mavilio F, Martino G, Furlan R. IL4 gene delivery to the CNS recruits regulatory T cells and induces clinical recovery in mouse models of multiple sclerosis. Gene Ther 2008; 15:504-15. [PMID: 18239607 DOI: 10.1038/gt.2008.10] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Central nervous system (CNS) delivery of anti-inflammatory cytokines, such as interleukin 4 (IL4), holds promise as treatment for multiple sclerosis (MS). We have previously shown that short-term herpes simplex virus type 1-mediated IL4 gene therapy is able to inhibit experimental autoimmune encephalomyelitis (EAE), an animal model of MS, in mice and non-human primates. Here, we show that a single administration of an IL4-expressing helper-dependent adenoviral vector (HD-Ad) into the cerebrospinal fluid (CSF) circulation of immunocompetent mice allows persistent transduction of neuroepithelial cells and long-term (up to 5 months) CNS transgene expression without toxicity. Mice affected by chronic and relapsing EAE display clinical and neurophysiological recovery from the disease once injected with the IL4-expressing HD-Ad vector. The therapeutic effect is due to the ability of IL4 to increase, in inflamed CNS areas, chemokines (CCL1, CCL17 and CCL22) capable of recruiting regulatory T cells (CD4+CD69-CD25+Foxp3+) with suppressant functions. CSF delivery of HD-Ad vectors expressing anti-inflammatory molecules might represent a valuable therapeutic option for CNS inflammatory disorders.
Collapse
Affiliation(s)
- E Butti
- Neuroimmunology Unit, San Raffaele Scientific Institute, Milan, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Christy AL, Brown MA. The Multitasking Mast Cell: Positive and Negative Roles in the Progression of Autoimmunity. THE JOURNAL OF IMMUNOLOGY 2007; 179:2673-9. [PMID: 17709477 DOI: 10.4049/jimmunol.179.5.2673] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Among the potential outcomes of an aberrantly functioning immune system are allergic disease and autoimmunity. Although it has been assumed that the underlying mechanisms mediating these conditions are completely different, recent evidence shows that mast cells provide a common link. Mast cells reside in most tissues, are particularly prevalent at sites of Ag entry, and act as sentinel cells of the immune system. They express many inflammatory mediators that affect both innate and adaptive cellular function. They contribute to pathologic allergic inflammation but also serve an important protective role in bacterial and parasite infections. Given the proinflammatory nature of autoimmune responses, it is not surprising that studies using murine models of autoimmunity clearly implicate mast cells in the initiation and/or progression of autoimmune disease. In this review, we discuss the defined and hypothesized mechanisms of mast cell influence on autoimmune diseases, including their surprising and newly discovered role as anti-inflammatory cells.
Collapse
Affiliation(s)
- Alison L Christy
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, 303 East Superior Street, Chicago, IL 60611, USA
| | | |
Collapse
|
41
|
Radwanska M, Cutler AJ, Hoving JC, Magez S, Holscher C, Bohms A, Arendse B, Kirsch R, Hunig T, Alexander J, Kaye P, Brombacher F. Deletion of IL-4Ralpha on CD4 T cells renders BALB/c mice resistant to Leishmania major infection. PLoS Pathog 2007; 3:e68. [PMID: 17500591 PMCID: PMC1867380 DOI: 10.1371/journal.ppat.0030068] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2007] [Accepted: 03/27/2007] [Indexed: 11/18/2022] Open
Abstract
Effector responses induced by polarized CD4+ T helper 2 (Th2) cells drive nonhealing responses in BALB/c mice infected with Leishmania major. Th2 cytokines IL-4 and IL-13 are known susceptibility factors for L. major infection in BALB/c mice and induce their biological functions through a common receptor, the IL-4 receptor α chain (IL-4Rα). IL-4Rα–deficient BALB/c mice, however, remain susceptible to L. major infection, indicating that IL-4/IL-13 may induce protective responses. Therefore, the roles of polarized Th2 CD4+ T cells and IL-4/IL-13 responsiveness of non-CD4+ T cells in inducing nonhealer or healer responses have yet to be elucidated. CD4+ T cell–specific IL-4Rα (LckcreIL-4Rα−/lox) deficient BALB/c mice were generated and characterized to elucidate the importance of IL-4Rα signaling during cutaneous leishmaniasis in the absence of IL-4–responsive CD4+ T cells. Efficient deletion was confirmed by loss of IL-4Rα expression on CD4+ T cells and impaired IL-4–induced CD4+ T cell proliferation and Th2 differentiation. CD8+, γδ+, and NK–T cells expressed residual IL-4Rα, and representative non–T cell populations maintained IL-4/IL-13 responsiveness. In contrast to IL-4Rα−/lox BALB/c mice, which developed ulcerating lesions following infection with L. major, LckcreIL-4Rα−/lox mice were resistant and showed protection to rechallenge, similar to healer C57BL/6 mice. Resistance to L. major in LckcreIL-4Rα−/lox mice correlated with reduced numbers of IL-10–secreting cells and early IL-12p35 mRNA induction, leading to increased delayed type hypersensitivity responses, interferon-γ production, and elevated ratios of inducible nitric oxide synthase mRNA/parasite, similar to C57BL/6 mice. These data demonstrate that abrogation of IL-4 signaling in CD4+ T cells is required to transform nonhealer BALB/c mice to a healer phenotype. Furthermore, a beneficial role for IL-4Rα signaling in L. major infection is revealed in which IL-4/IL-13–responsive non-CD4+ T cells induce protective responses. Leishmaniasis is a disease induced by a protozoan parasite and transmitted by the sandfly. Several forms of infection are identified, and the different diseases have wide-ranging symptoms from localized cutaneous sores to visceral disease affecting many internal organs. Animal models of human cutaneous leishmaniasis have been established in which disease is induced by infecting mice subcutaneously with Leishmania major. Different strains of inbred mice have been found to be susceptible or resistant to L. major infection. “Healer” C57BL/6 mice control infection with transient lesion development. The protective response to infection in this strain is dominated by type 1 cytokines inducing parasite killing by nitric oxide. Conversely, “nonhealer” BALB/c mice are unable to control infection and develop nonhealing lesions associated with a dominant type 2 immune response driven by cytokines IL-4 and IL-13. However, mice deficient in IL-4/IL-13 signaling are not protected against development of cutaneous leishmaniasis. Here we describe a BALB/c mouse where the ability to polarize to a dominant type 2 response is removed by cell-specific deletion of the receptor for IL-4/IL-13 on CD4+ T cells. These mice are resistant to L. major infection similar to C57BL/6 mice, which highlights the role of T helper 2 cells in driving susceptibility and the protective role of IL-4/IL-13 signaling in non-CD4+ T cells in BALB/c mice.
Collapse
Affiliation(s)
- Magdalena Radwanska
- Division of Immunology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Antony J Cutler
- Division of Immunology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - J. Claire Hoving
- Division of Immunology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Stefan Magez
- Division of Immunology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- VIB, Vrije Universiteit Brussel, Brussels, Belgium
| | - Christoph Holscher
- Division of Immunology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Andreas Bohms
- Division of Immunology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Berenice Arendse
- Division of Immunology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Richard Kirsch
- Division of Immunology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Thomas Hunig
- Institute for Virology and Immunobiology, University of Wurzburg, Wurzburg, Germany
| | - James Alexander
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Paul Kaye
- Immunology and Infection Unit, Department of Biology, University of York, York, United Kingdom
| | - Frank Brombacher
- Division of Immunology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
42
|
Lee SS, Gao W, Mazzola S, Thomas MN, Csizmadia E, Otterbein LE, Bach FH, Wang H. Heme oxygenase-1, carbon monoxide, and bilirubin induce tolerance in recipients toward islet allografts by modulating T regulatory cells. FASEB J 2007; 21:3450-7. [PMID: 17551098 DOI: 10.1096/fj.07-8472com] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Heme oxygenase-1 (HO-1) induction in, or carbon monoxide (CO), or bilirubin administration to, donors and/or recipients frequently lead to long-term survival (>100 days) of DBA/2 islets into B6AF1 recipients. We tested here whether similar treatments show value in a stronger immunogenetic combination, i.e., BALB/c to C57BL/6, and attempted to elucidate the mechanism accounting for tolerance. Induction of HO-1, administering CO or bilirubin to the donor, the islets or the recipient, prolonged islet allograft survival to different extents. Combining all the above treatments (the "combined" protocol) led to survival for >100 days and antigen-specific tolerance to 60% of the transplanted grafts. A high level of forkhead box P3 (Foxp3) and transforming growth factor beta (TGF-beta) expression was detected in the long-term surviving grafts. With the combined protocol, significantly more T regulatory cells (Tregs) were observed surrounding islets 7 days following transplantation. No prolongation of graft survival was observed using the combined protocol when CD4+ CD25+ T cells were predepleted from the recipients before transplantation. In conclusion, our combined protocol led to long-term survival and tolerance to islets in the BALB/c to C57BL/6 combination by promoting Foxp3+ Tregs; these cells played a critical role in the induction and maintenance of tolerance in the recipient.
Collapse
Affiliation(s)
- Soo Sun Lee
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, 99 Brookline Ave., Boston, MA 02215 USA
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Wang W, Huang MC, Goetzl EJ. Type 1 sphingosine 1-phosphate G protein-coupled receptor (S1P1) mediation of enhanced IL-4 generation by CD4 T cells from S1P1 transgenic mice. THE JOURNAL OF IMMUNOLOGY 2007; 178:4885-90. [PMID: 17404269 DOI: 10.4049/jimmunol.178.8.4885] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Sphingosine 1-phosphate (S1P) is a natural lipid mediator that regulates immune cell traffic, Ab production, and T cell cytokine generation by mechanisms that enhance Th2 activities. Responses to S1P are controlled principally by the diverse expression patterns of its receptors in different cells. In T cells, the type 1 (S1P(1)) and type 4 (S1P(4)) G protein-coupled receptors are predominant. S1P(1) mainly transduces effects on T cell migration and trafficking, whereas S1P(4) transduces immunosuppression via its effects on T cell proliferation and cytokine production. Using T cell-specific S1P(1) transgenic (TG) mice, we investigated the regulatory effects of the S1P-S1P(1) axis on T cell cytokine production. The production of IL-4, but not IL-2 or IFN-gamma, was significantly up-regulated >10-fold in activated CD4 T cells from S1P(1) TG mice compared with those from wild-type mice. Quantitative real-time PCR analysis revealed that IL-4 up-regulation was initiated at the mRNA level as early as 4 h after T cell activation. The up-regulation of IL-4 mRNA was mediated by c-Maf, Jun B, and Gata3 as demonstrated by increases in their protein expression and DNA-binding activities. In contrast, the expression and DNA-binding activities of T-bet, FosB, C-Fos, Jun D, Fra-1, Fra-2, and c-Jun all were identical in wild-type and TG CD4 T cells. Immunological assays showed that increased IL-4 levels induced greater production of IgE. Thus, the S1P-S1P(1) axis specifically up-regulates c-Maf, Jun B, and Gata3, which consequently enhance IL-4 production that may lead to a Th2 phenotype.
Collapse
Affiliation(s)
- Wengang Wang
- Department of Medicine and Department of Microbiology-Immunology, University of California, San Francisco, CA 94143
| | | | | |
Collapse
|
44
|
Hubeau C, Apostolou I, Kobzik L. Targeting of CD25 and glucocorticoid-induced TNF receptor family-related gene-expressing T cells differentially modulates asthma risk in offspring of asthmatic and normal mother mice. THE JOURNAL OF IMMUNOLOGY 2007; 178:1477-87. [PMID: 17237396 DOI: 10.4049/jimmunol.178.3.1477] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Immunological mechanisms leading to increased asthma susceptibility in early life remain obscure. In this study, we examined the effects of neonatal Ab treatments targeting T cell populations on the development of an asthma syndrome. We used a model of increased asthma susceptibility where offspring of asthmatic BALB/c mother mice are more prone (than normal pups) to develop the disease. Neonatal pretreatment of naive pups with mAb directed against the IL-2Ralpha chain (CD25), the costimulatory molecule glucocorticoid-induced TNFR family related gene, and the inhibitory molecule CTLA-4 elicited contrasting effects in offspring depending on the mother's asthma status. Specifically, neonatal CD25(high) T cell depletion stimulated asthma susceptibility in normal offspring whereas it ameliorated the condition of pups born of asthmatic mothers. Conversely, glucocorticoid-induced TNFR family related gene ligation as a primary signal reduced the spleen cellularity and largely abrogated asthma susceptibility in asthma-prone offspring, without inducing disease in normal pups. Striking changes in Th1/Th2 cytokine levels, especially IL-4, followed mAb pretreatment and were consistent with the impact on asthma susceptibility. These results point to major differences in neonatal T cell population and responsiveness related to maternal asthma history. Interventions that temporarily remove and/or inactivate specific T cell subsets may therefore prove useful to attenuate early life asthma susceptibility and prevent the development of Th2-driven allergic airway disease.
Collapse
Affiliation(s)
- Cedric Hubeau
- Department of Environmental Health, Harvard School of Public Health, Boston, MA 02115, USA
| | | | | |
Collapse
|
45
|
Qiao M, Thornton AM, Shevach EM. CD4+ CD25+ [corrected] regulatory T cells render naive CD4+ CD25- T cells anergic and suppressive. Immunology 2007; 120:447-55. [PMID: 17244157 PMCID: PMC2265911 DOI: 10.1111/j.1365-2567.2007.02544.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
CD4(+) CD25(+) Foxp3(+) naturally occurring regulatory T cells (nTreg) are potent inhibitors of almost all immune responses. However, it is unclear how this minor population of cells is capable of exerting its powerful suppressor effects. To determine whether nTreg mediate part of their suppressor function by rendering naive T cells anergic or by converting them to the suppressor phenotype, we cocultured mouse nTreg with naive CD4(+) CD25(-) T cells from T-cell receptor (TCR) transgenic mice on a RAG deficient (RAG(-/-)) background in the presence of anti-CD3 and interleukin-4 (IL-4) to promote cell viability. Two distinct responder cell populations could be recovered from the cocultures. One population remained undivided in the coculture and was non-responsive to restimulation with anti-CD3 or exogenous IL-2, and could not up-regulate IL-2 mRNA or CD25 expression upon TCR restimulation. Those responder cells that had divided in the coculture were anergic to restimulation with anti-CD3 but responded to restimulation with IL-2. The undivided population was capable of suppressing the response of fresh CD4(+) CD25(-) T cells and CD8(+) T cells, while the divided population was only marginally suppressive. Although cell contact between the induced regulatory T cell (iTreg) and the responders was required for suppression to be observed, anti-transforming growth factor-beta partially abrogated their suppressive function. The iTreg did not express Foxp3. Therefore nTreg are not only able to suppress immune responses by inhibiting cytokine production by CD4(+) CD25(-) responder cells, but also appear to modulate the responder cells to render them both anergic and suppressive.
Collapse
Affiliation(s)
- Miao Qiao
- Cellular Immunology Section, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-1892, USA
| | | | | |
Collapse
|
46
|
Crellin NK, Garcia RV, Levings MK. Altered activation of AKT is required for the suppressive function of human CD4+CD25+ T regulatory cells. Blood 2006; 109:2014-22. [PMID: 17062729 DOI: 10.1182/blood-2006-07-035279] [Citation(s) in RCA: 183] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Suppression by T regulatory cells (Treg cells) is a major mechanism by which the immune system controls responses to self and nonharmful foreign proteins. Although there are many different types of Treg cells, the best characterized are those that constitutively express cell-surface IL-2Ralpha (CD25). We investigated whether altered T-cell-receptor (TCR)-mediated signaling in pure populations of ex vivo human CD4+CD25+ Treg cells might underlie their unique phenotype, including hyporesponsiveness to TCR-mediated activation and lack of cytokine production. CD4+CD25+ Treg cells displayed a consistent defect in phosphorylation of AKT at serine 473 and reduced phosphorylation of the AKT substrates FOXO and S6. Restoration of AKT activity via lentiviral-mediated expression of an inducibly active form of the kinase revealed that reduced activity of this pathway was necessary for the suppressive function of CD4+CD25+ Treg cells. These data represent the first demonstration of a causal association between altered signaling and the function of CD4+CD25+ Treg cells. Moreover, we have created the first system allowing inducible abrogation of suppression through manipulation of the suppressor cells. This system will be a powerful tool to further study the mechanism(s) of suppression by CD4+CD25+ Treg cells.
Collapse
Affiliation(s)
- Natasha K Crellin
- Department of Surgery, University of British Columbia, Vancouver, Canada
| | | | | |
Collapse
|
47
|
Grimbert P, Bouguermouh S, Baba N, Nakajima T, Allakhverdi Z, Braun D, Saito H, Rubio M, Delespesse G, Sarfati M. Thrombospondin/CD47 Interaction: A Pathway to Generate Regulatory T Cells from Human CD4+CD25− T Cells in Response to Inflammation. THE JOURNAL OF IMMUNOLOGY 2006; 177:3534-41. [PMID: 16951312 DOI: 10.4049/jimmunol.177.6.3534] [Citation(s) in RCA: 132] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Thymus-derived CD4+ CD25+ T regulatory cells (Tregs) are essential for the maintenance of self-tolerance. What critical factors and conditions are required for the extra-thymic development of Tregs remains an important question. In this study, we show that the anti-inflammatory extracellular matrix protein, thrombospondin-1, promoted the generation of human peripheral regulatory T cells through the ligation of one of its receptor, CD47. CD47 stimulation by mAb or a thrombospondin-1 peptide induced naive or memory CD4+ CD25- T cells to become suppressive. The latter expressed increased amounts of CTLA-4, OX40, GITR, and Foxp3 and inhibited autologous Th0, Th1, and Th2 cells. Their regulatory activity was contact dependent, TGF-beta independent, and partially circumvented by IL-2. This previously unknown mechanism to induce human peripheral Tregs in response to inflammation may participate to the limitation of collateral damage induced by exacerbated responses to self or foreign Ags and thus be relevant for therapeutic intervention in autoimmune diseases and transplantation.
Collapse
Affiliation(s)
- Philippe Grimbert
- Immunoregulation Centre Hospitalier de l'Université de Montreal, Research Center , Hospital Notre-Dame, Montreal, Quebec, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Levings MK, Allan S, d'Hennezel E, Piccirillo CA. Functional Dynamics of Naturally Occurring Regulatory T Cells in Health and Autoimmunity. Adv Immunol 2006; 92:119-55. [PMID: 17145303 DOI: 10.1016/s0065-2776(06)92003-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A network of regulatory T (Treg) cells exists to downregulate immune responses in various inflammatory circumstances and ultimately assure peripheral T cell tolerance. Naturally occurring CD4(+)CD25(+) Treg cell represents a major lymphocyte population engaged in the dominant control of self-reactive T responses and maintenance of tolerance within this network. CD4(+)CD25(+) Treg cells differentiate in the normal thymus as a functionally distinct subpopulation of T cells bearing a broad T cell receptor repertoire endowing these cells with the capacity to recognize a wide spectrum of self-Ag and non-self-Ag specificities. The development of CD4(+)CD25(+) Treg cells is genetically determined, influenced by Ag-specific and nonspecific signals, costimulation, and cytokines that control their activation, expansion, and suppressive activity. Functional abrogation of these cells in vivo, or genetic defects that affect their development or function, unequivocally predisposes animals and humans to the onset of autoimmune and other inflammatory diseases. Studies have shed light in our understanding of the cellular and molecular basis of CD4(+)CD25(+) Treg cell-mediated immune regulation. In this chapter, we discuss the contribution of naturally occurring CD4(+)CD25(+) Treg cells in the induction of immunologic self-tolerance in animal models and humans and attempt to provide a comprehensive overview of recent findings regarding the phenotype, functional dynamics, and effector mechanism of these cells in autoimmune diseases.
Collapse
Affiliation(s)
- Megan K Levings
- Department of Surgery, University of British Columbia and Immunity and Infection Research Centre, Vancouver Coastal Health Research Institute, Vancouver V6H 3Z6, Canada
| | | | | | | |
Collapse
|