1
|
Zhang F, Meng T, Feng R, Jin C, Zhang S, Meng J, Zhang M, Liang C. MIF aggravates experimental autoimmune prostatitis through activation of the NLRP3 inflammasome via the PI3K/AKT pathway. Int Immunopharmacol 2024; 141:112891. [PMID: 39153310 DOI: 10.1016/j.intimp.2024.112891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/17/2024] [Accepted: 08/05/2024] [Indexed: 08/19/2024]
Abstract
In our investigation, we investigated the role of macrophage migration inhibitory factor (MIF), a key cytokine, in chronic nonbacterial prostatitis (CNP), an underexplored pathology. Elevated MIF expression was observed in the serum of individuals with chronic prostatitis-like symptoms (CP-LS) as well as in serum and tissue samples from experimental autoimmune prostatitis (EAP) mouse model. Treatment with ISO-1, a specific MIF antagonist, effectively mitigated prostatic inflammation and macrophage infiltration, thereby emphasizing the critical role of MIF in orchestrating immune responses within the prostate microenvironment. Further analyses revealed that MIF stimulates the PI3K/AKT and NLRP3 inflammasome pathways, which are integral to inflammation and cellular immunity. Pharmacological inhibition of the PI3K/AKT pathway by LY294002 substantially reduced prostatic inflammation and macrophage infiltration, potentially by inhibiting NLRP3 inflammasome activation. These findings collectively suggest that MIF is a potential diagnostic marker for CNP and suggest that targeting MIF or its downstream signalling pathways, PI3K/AKT and NLRP3, might represent a novel therapeutic strategy for this condition.
Collapse
Affiliation(s)
- Fei Zhang
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, PR China; Institute of Urology, Anhui Medical University, Hefei 230022, PR China; Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei 230022, PR China
| | - Tong Meng
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, PR China; Institute of Urology, Anhui Medical University, Hefei 230022, PR China; Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei 230022, PR China
| | - Rui Feng
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, PR China; Institute of Urology, Anhui Medical University, Hefei 230022, PR China; Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei 230022, PR China; Department of Urology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Chen Jin
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, PR China; Institute of Urology, Anhui Medical University, Hefei 230022, PR China; Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei 230022, PR China
| | - Song Zhang
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, PR China; Institute of Urology, Anhui Medical University, Hefei 230022, PR China; Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei 230022, PR China
| | - Jialin Meng
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, PR China; Institute of Urology, Anhui Medical University, Hefei 230022, PR China; Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei 230022, PR China
| | - Meng Zhang
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, PR China; Institute of Urology, Anhui Medical University, Hefei 230022, PR China; Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei 230022, PR China.
| | - Chaozhao Liang
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, PR China; Institute of Urology, Anhui Medical University, Hefei 230022, PR China; Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei 230022, PR China.
| |
Collapse
|
2
|
Fattori V, Zaninelli TH, Rasquel-Oliveira FS, Heintz OK, Jain A, Sun L, Seshan ML, Peterse D, Lindholm AE, Anchan RM, Verri WA, Rogers MS. Nociceptor-to-macrophage communication through CGRP/RAMP1 signaling drives endometriosis-associated pain and lesion growth in mice. Sci Transl Med 2024; 16:eadk8230. [PMID: 39504351 DOI: 10.1126/scitranslmed.adk8230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 06/18/2024] [Accepted: 10/16/2024] [Indexed: 11/08/2024]
Abstract
Endometriosis is a debilitating and painful gynecological inflammatory disease affecting up to 15% of women and transgender men. Current treatments are ineffective for a substantial proportion of patients, underscoring the need for additional therapies with long-term benefits. Nociceptors release neuropeptides, such as calcitonin gene-related peptide (CGRP), which are known to shape immunity through neuroimmune communication. Given the comorbidity between endometriosis and migraine and the integral role of immune cells and inflammation in endometriosis, we investigated the role of CGRP-mediated neuroimmune communication in endometriosis. Using samples from eight patients with endometriosis and a nonsurgical mouse model of the disease, we found that mouse and human endometriosis lesions contain both CGRP and its coreceptor, receptor activity modifying protein 1 (RAMP1). In mice, nociceptor ablation reduced pain, monocyte recruitment, and lesion size, suggesting that nociceptor activation and neuropeptide release contribute to endometriosis lesion growth and pain. Mechanistically, CGRP changed the phenotype of macrophages to a pro-endometriosis phenotype. CGRP-stimulated macrophages demonstrated impaired efferocytosis and supported increased endometrial cell growth in a RAMP1-dependent manner. Treatment of lesion-bearing mice with US Food and Drug Administration-approved drugs that block CGRP-RAMP1 signaling reduced mechanical hyperalgesia, spontaneous pain, and lesion size. Together, our data demonstrated the effectiveness and underlying cellular mechanisms of nonhormonal and nonopioid CGRP/RAMP1 blockade in a mouse model of endometriosis, suggesting that targeting this axis may lead to clinical benefit for patients with endometriosis.
Collapse
Affiliation(s)
- Victor Fattori
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Tiago H Zaninelli
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Immunology, Parasitology, and General Pathology, Center of Biological Sciences, Londrina State University, Londrina, PR 86057-970, Brazil
| | - Fernanda S Rasquel-Oliveira
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Immunology, Parasitology, and General Pathology, Center of Biological Sciences, Londrina State University, Londrina, PR 86057-970, Brazil
| | - Olivia K Heintz
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Ashish Jain
- Research Computing, Information Technology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Liang Sun
- Research Computing, Information Technology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Maya L Seshan
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Daniëlle Peterse
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Anne E Lindholm
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Raymond M Anchan
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Waldiceu A Verri
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Immunology, Parasitology, and General Pathology, Center of Biological Sciences, Londrina State University, Londrina, PR 86057-970, Brazil
| | - Michael S Rogers
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
3
|
Hameed M, Daamen AR, Hossain MS, Coutermarsh-Ott S, Lipsky PE, Weger-Lucarelli J. Obesity-Associated Changes in Immune Cell Dynamics During Alphavirus Infection Revealed by Single Cell Transcriptomic Analysis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.10.617696. [PMID: 39416014 PMCID: PMC11482886 DOI: 10.1101/2024.10.10.617696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Obesity induces diverse changes in host immunity, resulting in worse disease outcomes following infection with various pathogens, including arthritogenic alphaviruses. However, the impact of obesity on the functional landscape of immune cells during arthritogenic alphavirus infection remains unexplored. Here, we used single-cell RNA sequencing (scRNA-seq) to dissect the blood and tissue immune responses to Mayaro virus (MAYV) infection in lean and obese mice. Footpad injection of MAYV caused significant shifts in immune cell populations and induced robust expression of interferon response and proinflammatory cytokine genes and related pathways in both blood and tissue. In MAYV-infected lean mice, analysis of the local tissue response revealed a unique macrophage subset with high expression of IFN response genes that was not found in obese mice. This was associated with less severe inflammation in lean mice. These results provide evidence for a unique macrophage population that may contribute to the superior capacity of lean mice to control arthritogenic alphavirus infection.
Collapse
Affiliation(s)
- Muddassar Hameed
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061, USA
- Center for Zoonotic and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
- Department of Pathology & Immunology, Alvin J. Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Andrea R. Daamen
- AMPEL BioSolutions LLC and the RILITE Research Institute, Charlottesville, VA, United States
| | - Md Shakhawat Hossain
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061, USA
- Center for Zoonotic and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Sheryl Coutermarsh-Ott
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061, USA
| | - Peter E. Lipsky
- AMPEL BioSolutions LLC and the RILITE Research Institute, Charlottesville, VA, United States
| | - James Weger-Lucarelli
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061, USA
- Center for Zoonotic and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| |
Collapse
|
4
|
Mo H, Yu Y, Sun X, Ge H, Yu L, Guan X, Zhai J, Zhu A, Wei Y, Wang J, Yan X, Qian H, Xu B, Ma F. Metronomic chemotherapy plus anti-PD-1 in metastatic breast cancer: a Bayesian adaptive randomized phase 2 trial. Nat Med 2024; 30:2528-2539. [PMID: 38969879 DOI: 10.1038/s41591-024-03088-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/24/2024] [Indexed: 07/07/2024]
Abstract
It remains unclear whether metronomic chemotherapy is superior to conventional chemotherapy when combined with immune checkpoint blockade. Here we performed a phase 2 clinical trial of metronomic chemotherapy combined with PD-1 blockade to compare the efficacy of combined conventional chemotherapy and PD-1 blockade using Bayesian adaptive randomization and efficacy monitoring. Eligible patients had metastatic HER2-negative breast cancer and had not received more than one prior line of standard chemotherapy. Patients (total n = 97) were randomized to receive (1) metronomic vinorelbine (NVB) monotherapy (n = 11), (2) NVB plus anti-PD-1 toripalimab (n = 7), (3) anti-angiogenic bevacizumab, NVB and toripalimab (n = 27), (4) conventional cisplatin, NVB and toripalimab (n = 26), or (5) metronomic cyclophosphamide, capecitabine, NVB and toripalimab (the VEX cohort) (n = 26). The primary endpoint was disease control rate (DCR). Secondary objectives included progression-free survival (PFS) and safety. The study met the primary endpoint. The VEX (69.7%) and cisplatin (73.7%) cohorts had the highest DCR. The median PFS of patients in the VEX cohort was the longest, reaching 6.6 months, followed by the bevacizumab (4.0 months) and cisplatin (3.5 months) cohorts. In general, the five regimens were well tolerated, with nausea and neutropenia being the most common adverse events. An exploratory mass cytometry analysis indicated that metronomic VEX chemotherapy reprograms the systemic immune response. Together, the clinical and translational data of this study indicate that metronomic VEX chemotherapy combined with PD-1 blockade can be a treatment option in patients with breast cancer. ClinicalTrials.gov Identifier: NCT04389073 .
Collapse
Affiliation(s)
- Hongnan Mo
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yongpei Yu
- Department of Biostatistics, Peking University Clinical Research Institute, Beijing, China
| | - Xiaoying Sun
- Department of Medical Oncology, Cancer Hospital of HuanXing ChaoYang District, Beijing, China
| | - Hewei Ge
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lanlan Yu
- Department of Biostatistics, Peking University Clinical Research Institute, Beijing, China
| | - Xiuwen Guan
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jingtong Zhai
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Aihua Zhu
- Department of Medical Oncology, Cancer Hospital of HuanXing ChaoYang District, Beijing, China
| | - Yuhan Wei
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jinjing Wang
- Department of Medical Oncology, Cancer Hospital of HuanXing ChaoYang District, Beijing, China
| | - Xiaoyan Yan
- Department of Biostatistics, Peking University Clinical Research Institute, Beijing, China
| | - Haili Qian
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Binghe Xu
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Fei Ma
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
5
|
Zhou JX, Cheng AS, Chen L, Li LX, Agborbesong E, Torres VE, Harris PC, Li X. CD74 Promotes Cyst Growth and Renal Fibrosis in Autosomal Dominant Polycystic Kidney Disease. Cells 2024; 13:489. [PMID: 38534333 DOI: 10.3390/cells13060489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 02/29/2024] [Accepted: 03/04/2024] [Indexed: 03/28/2024] Open
Abstract
The progression of autosomal dominant polycystic kidney disease (ADPKD), an inherited kidney disease, is associated with renal interstitial inflammation and fibrosis. CD74 has been known not only as a receptor of macrophage migration inhibitory factor (MIF) it can also have MIF independent functions. In this study, we report unknown roles and function of CD74 in ADPKD. We show that knockout of CD74 delays cyst growth in Pkd1 mutant kidneys. Knockout and knockdown of CD74 (1) normalize PKD associated signaling pathways, including ERK, mTOR and Rb to decrease Pkd1 mutant renal epithelial cell proliferation, (2) decrease the activation of NF-κB and the expression of MCP-1 and TNF-alpha (TNF-α) which decreases the recruitment of macrophages in Pkd1 mutant kidneys, and (3) decrease renal fibrosis in Pkd1 mutant kidneys. We show for the first time that CD74 functions as a transcriptional factor to regulate the expression of fibrotic markers, including collagen I (Col I), fibronectin, and α-smooth muscle actin (α-SMA), through binding on their promoters. Interestingly, CD74 also regulates the transcription of MIF to form a positive feedback loop in that MIF binds with its receptor CD74 to regulate the activity of intracellular signaling pathways and CD74 increases the expression of MIF in ADPKD kidneys during cyst progression. We further show that knockout of MIF and targeting MIF with its inhibitor ISO-1 not only delay cyst growth but also ameliorate renal fibrosis through blocking the activation of renal fibroblasts and CD74 mediated the activation of TGF-β-Smad3 signaling, supporting the idea that CD74 is a key and novel upstream regulator of cyst growth and interstitial fibrosis. Thus, targeting MIF-CD74 axis is a novel therapeutic strategy for ADPKD treatment.
Collapse
Affiliation(s)
- Julie Xia Zhou
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Alice Shasha Cheng
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Li Chen
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Linda Xiaoyan Li
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Ewud Agborbesong
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Vicente E Torres
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Peter C Harris
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Xiaogang Li
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
6
|
Cohen CD, De Blasio MJ, Farrugia GE, Dona MS, Hsu I, Prakoso D, Kiriazis H, Krstevski C, Nash DM, Li M, Gaynor TL, Deo M, Drummond GR, Ritchie RH, Pinto AR. Mapping the cellular and molecular landscape of cardiac non-myocytes in murine diabetic cardiomyopathy. iScience 2023; 26:107759. [PMID: 37736052 PMCID: PMC10509303 DOI: 10.1016/j.isci.2023.107759] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/01/2023] [Accepted: 08/25/2023] [Indexed: 09/23/2023] Open
Abstract
Diabetes is associated with a significantly elevated risk of heart failure. However, despite extensive efforts to characterize the phenotype of the diabetic heart, the molecular and cellular protagonists that underpin cardiac pathological remodeling in diabetes remain unclear, with a notable paucity of data regarding the impact of diabetes on non-myocytes within the heart. Here we aimed to define key differences in cardiac non-myocytes between spontaneously type-2 diabetic (db/db) and healthy control (db/h) mouse hearts. Single-cell transcriptomic analysis revealed a concerted diabetes-induced cellular response contributing to cardiac remodeling. These included cell-specific activation of gene programs relating to fibroblast hyperplasia and cell migration, and dysregulation of pathways involving vascular homeostasis and protein folding. This work offers a new perspective for understanding the cellular mediators of diabetes-induced cardiac pathology, and pathways that may be targeted to address the cardiac complications associated with diabetes.
Collapse
Affiliation(s)
- Charles D. Cohen
- Cardiac Cellular Systems, Baker Heart and Diabetes Institute, Prahran, VIC, Australia
- Heart Failure Pharmacology, Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, VIC, Australia
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Bundoora, VIC, Australia
- Centre for Cardiovascular Biology and Disease Research, La Trobe University, Melbourne, VIC, Australia
| | - Miles J. De Blasio
- Heart Failure Pharmacology, Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, VIC, Australia
- Department of Pharmacology, Monash University, Clayton, VIC, Australia
| | - Gabriella E. Farrugia
- Cardiac Cellular Systems, Baker Heart and Diabetes Institute, Prahran, VIC, Australia
- Baker Department of Cardiovascular Research and Implementation, La Trobe University, Melbourne, VIC, Australia
| | - Malathi S.I. Dona
- Cardiac Cellular Systems, Baker Heart and Diabetes Institute, Prahran, VIC, Australia
| | - Ian Hsu
- Cardiac Cellular Systems, Baker Heart and Diabetes Institute, Prahran, VIC, Australia
| | - Darnel Prakoso
- Heart Failure Pharmacology, Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, VIC, Australia
| | - Helen Kiriazis
- Preclinical Cardiology, Microsurgery and Imaging Platform, Baker Heart and Diabetes Institute, Prahran, VIC, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Parkville, VIC, Australia
| | - Crisdion Krstevski
- Cardiac Cellular Systems, Baker Heart and Diabetes Institute, Prahran, VIC, Australia
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Bundoora, VIC, Australia
- Centre for Cardiovascular Biology and Disease Research, La Trobe University, Melbourne, VIC, Australia
| | - David M. Nash
- Heart Failure Pharmacology, Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, VIC, Australia
| | - Mandy Li
- Heart Failure Pharmacology, Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, VIC, Australia
| | - Taylah L. Gaynor
- Cardiac Cellular Systems, Baker Heart and Diabetes Institute, Prahran, VIC, Australia
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Bundoora, VIC, Australia
- Centre for Cardiovascular Biology and Disease Research, La Trobe University, Melbourne, VIC, Australia
| | - Minh Deo
- Heart Failure Pharmacology, Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, VIC, Australia
| | - Grant R. Drummond
- Centre for Cardiovascular Biology and Disease Research, La Trobe University, Melbourne, VIC, Australia
| | - Rebecca H. Ritchie
- Heart Failure Pharmacology, Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, VIC, Australia
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Bundoora, VIC, Australia
- Centre for Cardiovascular Biology and Disease Research, La Trobe University, Melbourne, VIC, Australia
| | - Alexander R. Pinto
- Cardiac Cellular Systems, Baker Heart and Diabetes Institute, Prahran, VIC, Australia
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Bundoora, VIC, Australia
- Centre for Cardiovascular Biology and Disease Research, La Trobe University, Melbourne, VIC, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
7
|
Chai L, Wang Q, Wang Y, Li D, Zhang Q, Chen Y, Liu J, Chen H, Qiu Y, Shen N, Wang J, Xie X, Li M. Downregulation of PDCD4 through STAT3/ATF6/autophagy mediates MIF-induced PASMCs proliferation/migration and vascular remodeling. Eur J Pharmacol 2023; 956:175968. [PMID: 37549728 DOI: 10.1016/j.ejphar.2023.175968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 07/08/2023] [Accepted: 08/04/2023] [Indexed: 08/09/2023]
Abstract
To address the molecular mechanisms underlying macrophage migration inhibitory factor (MIF) induced pulmonary artery smooth muscle cells (PASMCs) proliferation, migration and vascular remodeling in pulmonary hypertension (PH), primary cultured rat PASMCs and monocrotaline (MCT)-induced rats with PH were applied in the present study. The results showed that MIF increased signal transducer and activator of transcription 3 (STAT3) phosphorylation, and then stimulated activating transcription factor 6 (ATF6) activation, subsequently triggered autophagy activation, which further led to programmed cell death factor 4 (PDCD4) lysosomal degradation, and eventually promoted PASMCs proliferation/migration. In lung tissues of MCT rats, MIF protein expression was elevated, phosphorylation of STAT3 and activation of ATF6 were increased, activation of autophagy was evident, and reduction of PDCD4 was observed. Intervention with MIF inhibitor 4-Iodo-6-phenylpyrimidine (4-IPP), ATF6 blocker melatonin or autophagy inhibitor chloroquine, confirmed the in vitro interaction among MIF, STAT3, ATF6, autophagy and PDCD4 in MCT induced rats with PH. Targeting MIF/STAT3/ATF6/autophagy/PDCD4 axis effectively prevented the development of PH by suppressing PASMCs proliferation and vascular remodeling. In conclusions, we demonstrate that MIF activates the STAT3/ATF6/autophagy cascade and then degrades PDCD4 leading to PASMCs proliferation/migration and pulmonary vascular remodeling, suggesting that intervention this axis might have potential value in management of PH.
Collapse
Affiliation(s)
- Limin Chai
- Department of Respiratory Medicine, The First Affiliated Hospital of Xi'an JiaoTong, University, Xi'an, Shaanxi 710061, People's Republic of China
| | - Qingting Wang
- Department of Respiratory Medicine, The First Affiliated Hospital of Xi'an JiaoTong, University, Xi'an, Shaanxi 710061, People's Republic of China
| | - Yan Wang
- Department of Respiratory Medicine, The First Affiliated Hospital of Xi'an JiaoTong, University, Xi'an, Shaanxi 710061, People's Republic of China
| | - Danyang Li
- Department of Respiratory Medicine, The First Affiliated Hospital of Xi'an JiaoTong, University, Xi'an, Shaanxi 710061, People's Republic of China
| | - Qianqian Zhang
- Department of Respiratory Medicine, The First Affiliated Hospital of Xi'an JiaoTong, University, Xi'an, Shaanxi 710061, People's Republic of China
| | - Yuqian Chen
- Department of Respiratory Medicine, The First Affiliated Hospital of Xi'an JiaoTong, University, Xi'an, Shaanxi 710061, People's Republic of China
| | - Jin Liu
- Department of Respiratory Medicine, The First Affiliated Hospital of Xi'an JiaoTong, University, Xi'an, Shaanxi 710061, People's Republic of China
| | - Huan Chen
- Department of Respiratory Medicine, The First Affiliated Hospital of Xi'an JiaoTong, University, Xi'an, Shaanxi 710061, People's Republic of China
| | - Yuanjie Qiu
- Department of Respiratory Medicine, The First Affiliated Hospital of Xi'an JiaoTong, University, Xi'an, Shaanxi 710061, People's Republic of China
| | - Nirui Shen
- Department of Respiratory Medicine, The First Affiliated Hospital of Xi'an JiaoTong, University, Xi'an, Shaanxi 710061, People's Republic of China
| | - Jian Wang
- Department of Respiratory Medicine, The First Affiliated Hospital of Xi'an JiaoTong, University, Xi'an, Shaanxi 710061, People's Republic of China
| | - Xinming Xie
- Department of Respiratory Medicine, The First Affiliated Hospital of Xi'an JiaoTong, University, Xi'an, Shaanxi 710061, People's Republic of China
| | - Manxiang Li
- Department of Respiratory Medicine, The First Affiliated Hospital of Xi'an JiaoTong, University, Xi'an, Shaanxi 710061, People's Republic of China.
| |
Collapse
|
8
|
Miura Y, Motoshima T, Anami T, Yano H, Mito R, Pan C, Urakami S, Kinowaki K, Tsukamoto H, Kurahashi R, Murakami Y, Yatsuda J, Fujiwara Y, Kamba T, Komohara Y. Predictive value of CXCL10 for the occurrence of immune-related adverse events in patient with renal cell carcinoma. Microbiol Immunol 2023; 67:345-354. [PMID: 36975091 DOI: 10.1111/1348-0421.13067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/13/2023] [Accepted: 03/26/2023] [Indexed: 03/29/2023]
Abstract
Immune checkpoint inhibitors (ICIs) have recently improved the prognosis of various cancers. By contrast, some immune-related adverse events (irAEs) caused by ICIs are fatal and have become problematic. The pathogenesis of irAEs remains unknown and must be elucidated to establish biomarkers. This study investigated plasma cytokine, chemokine, and anti-CD74 autoantibody levels in patients with renal cell carcinoma (RCC) and analyzed their association with irAEs. In a discovery cohort of 13 patients, plasma levels of chemokine (C-X-C motif) ligand (CXCL) 1, IL-17A, IL-1β, IL-6, IL-8, CXCL10, MCP-1, and TNFα were measured at baseline and post-dose 1. Only CXCL10, at post-dose 1 but not at baseline, was significantly associated with grade 2 or higher irAEs (P = 0.0413). Plasma CXCL10 levels were then measured at baseline and post-dose 1 in an extended cohort of 43 patients with RCC who received ICI-based treatment. Higher plasma CXCL10 levels both at baseline and post-dose1 were significantly associated with the occurrence of grade 2 or higher irAEs (P = 0.0246 and 0.0137, respectively). Plasma CXCL13 levels, which we measured in a previous study, were significantly higher in patients with grade 2 or higher irAEs at baseline but not at post-dose 1 (P = 0.0037 and 0.052, respectively). No significant association between plasma anti-CD74 autoantibody level and both irAE pneumonitis and any grade 2 or higher irAE was observed. In conclusion, plasma CXCL10 is significantly associated with the occurrence of irAEs in patients with RCC treated with ICIs. CXCL10 is a potential predictive and on-treatment biomarker for irAEs.
Collapse
Affiliation(s)
- Yuji Miura
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
- Department of Medical Oncology, Toranomon Hospital, Tokyo, Japan
| | - Takanobu Motoshima
- Department of Urology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Toshiki Anami
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
- Department of Urology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Hiromu Yano
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Remi Mito
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Cheng Pan
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | | | | | - Hirotake Tsukamoto
- Division of Clinical Immunology and Cancer Immunotherapy, Center for Cancer Immunotherapy and Immunobiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ryoma Kurahashi
- Department of Urology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yoji Murakami
- Department of Urology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Junji Yatsuda
- Department of Urology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yukio Fujiwara
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Tomomi Kamba
- Department of Urology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yoshihiro Komohara
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
- Center for Metabolic Regulation of Healthy Aging, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
9
|
Li Z, Zhu H, Liu H, Liu D, Liu J, Jiang J, Zhang Y, Qin Z, Xu Y, Peng Y, Liu B, Long Y. Evolocumab loaded Bio-Liposomes for efficient atherosclerosis therapy. J Nanobiotechnology 2023; 21:158. [PMID: 37208681 DOI: 10.1186/s12951-023-01904-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 04/19/2023] [Indexed: 05/21/2023] Open
Abstract
PCSK9, which is closely related to atherosclerosis, is significantly expressed in vascular smooth muscle cells (VSMCs). Moreover, Proprotein Convertase Subtilisin/Kexin type 9 (PCSK9) mediated phenotypic transformation, abnormal proliferation, and migration of VSMCs play key roles in accelerating atherosclerosis. In this study, by utilizing the significant advantages of nano-materials, a biomimetic nanoliposome loading with Evolocumab (Evol), a PCSK9 inhibitor, was designed to alleviate atherosclerosis. In vitro results showed that (Lipo + M)@E NPs up-regulated the levels of α-SMA and Vimentin, while inhibiting the expression of OPN, which finally result in the inhibition of the phenotypic transition, excessive proliferation, and migration of VSMCs. In addition, the long circulation, excellent targeting, and accumulation performance of (Lipo + M)@E NPs significantly decreased the expression of PCSK9 in serum and VSMCs within the plaque of ApoE-/- mice.
Collapse
Affiliation(s)
- Zhenxian Li
- Department of Cardiology, The First Hospital of Hunan University of Chinese Medicine, Branch of National Clinical Research Center for Chinese Medicine Cardiology, Changsha, 410007, China
| | - Haimei Zhu
- Department of Pain, The First Hospital of Hunan University of Chinese Medicine, Changsha, 410007, China
| | - Hao Liu
- Department of Rehabilitation, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Dayue Liu
- Department of Physiology and Pathophysiology, NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, China
| | - Jianhe Liu
- Department of Cardiology, The First Hospital of Hunan University of Chinese Medicine, Branch of National Clinical Research Center for Chinese Medicine Cardiology, Changsha, 410007, China
| | - Jiazheng Jiang
- Department of Cardiology, The First Hospital of Hunan University of Chinese Medicine, Branch of National Clinical Research Center for Chinese Medicine Cardiology, Changsha, 410007, China
| | - Yi Zhang
- Department of Cardiology, The First Hospital of Hunan University of Chinese Medicine, Branch of National Clinical Research Center for Chinese Medicine Cardiology, Changsha, 410007, China
| | - Zhang Qin
- Department of Cardiology, The First Hospital of Hunan University of Chinese Medicine, Branch of National Clinical Research Center for Chinese Medicine Cardiology, Changsha, 410007, China
| | - Yijia Xu
- Department of Cardiology, The First Hospital of Hunan University of Chinese Medicine, Branch of National Clinical Research Center for Chinese Medicine Cardiology, Changsha, 410007, China
| | - Yuan Peng
- Department of Cardiology, The First Hospital of Hunan University of Chinese Medicine, Branch of National Clinical Research Center for Chinese Medicine Cardiology, Changsha, 410007, China
| | - Bin Liu
- College of Biology, Hunan University, Changsha, 410082, China.
- Department of Physiology and Pathophysiology, NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, China.
| | - Yun Long
- Department of Cardiology, The First Hospital of Hunan University of Chinese Medicine, Branch of National Clinical Research Center for Chinese Medicine Cardiology, Changsha, 410007, China.
| |
Collapse
|
10
|
Vignjević Petrinović S, Milošević MS, Marković D, Momčilović S. Interplay between stress and cancer-A focus on inflammation. Front Physiol 2023; 14:1119095. [PMID: 37020461 PMCID: PMC10067747 DOI: 10.3389/fphys.2023.1119095] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 03/07/2023] [Indexed: 04/07/2023] Open
Abstract
Stress is an integral part of life. While acute responses to stress are generally regarded as beneficial in dealing with immediate threats, chronic exposure to threatening stimuli exerts deleterious effects and can be either a contributing or an aggravating factor for many chronic diseases including cancer. Chronic psychological stress has been identified as a significant factor contributing to the development and progression of cancer, but the mechanisms that link chronic stress to cancer remain incompletely understood. Psychological stressors initiate multiple physiological responses that result in the activation of the hypothalamic-pituitary-adrenal (HPA) axis, sympathetic nervous system, and the subsequent changes in immune function. Chronic stress exposure disrupts the homeostatic communication between the neuroendocrine and immune systems, shifting immune signaling toward a proinflammatory state. Stress-induced chronic low-grade inflammation and a decline in immune surveillance are both implicated in cancer development and progression. Conversely, tumor-induced inflammatory cytokines, apart from driving a tumor-supportive inflammatory microenvironment, can also exert their biological actions distantly via circulation and therefore adversely affect the stress response. In this minireview, we summarize the current findings on the relationship between stress and cancer, focusing on the role of inflammation in stress-induced neuroendocrine-immune crosstalk. We also discuss the underlying mechanisms and their potential for cancer treatment and prevention.
Collapse
Affiliation(s)
- Sanja Vignjević Petrinović
- Group for Neuroendocrinology, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Maja S. Milošević
- Group for Neuroendocrinology, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Dragana Marković
- Group for Immunology, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Sanja Momčilović
- Group for Neuroendocrinology, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
11
|
Zhu W, Wu C, Zhou Z, Zhang G, Luo L, Liu Y, Huang Z, Ai G, Zhao Z, Zhong W, Liu Y, Zeng G. Acetate attenuates hyperoxaluria-induced kidney injury by inhibiting macrophage infiltration via the miR-493-3p/MIF axis. Commun Biol 2023; 6:270. [PMID: 36922584 PMCID: PMC10017675 DOI: 10.1038/s42003-023-04649-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 03/02/2023] [Indexed: 03/18/2023] Open
Abstract
Hyperoxaluria is well known to cause renal injury and end-stage kidney disease. Previous studies suggested that acetate treatment may improve the renal function in hyperoxaluria rat model. However, its underlying mechanisms remain largely unknown. Using an ethylene glycol (EG)-induced hyperoxaluria rat model, we find the oral administration of 5% acetate reduced the elevated serum creatinine, urea, and protected against hyperoxaluria-induced renal injury and fibrosis with less infiltrated macrophages in the kidney. Treatment of acetate in renal tubular epithelial cells in vitro decrease the macrophages recruitment which might have reduced the oxalate-induced renal tubular cells injury. Mechanism dissection suggests that acetate enhanced acetylation of Histone H3 in renal tubular cells and promoted expression of miR-493-3p by increasing H3K9 and H3K27 acetylation at its promoter region. The miR-493-3p can suppress the expression of macrophage migration inhibitory factor (MIF), thus inhibiting the macrophages recruitment and reduced oxalate-induced renal tubular cells injury. Importantly, results from the in vivo rat model also demonstrate that the effects of acetate against renal injury were weakened after blocking the miR-493-3p by antagomir treatment. Together, these results suggest that acetate treatment ameliorates the hyperoxaluria-induced renal injury via inhibiting macrophages infiltration with change of the miR-493-3p/MIF signals. Acetate could be a new therapeutic approach for the treatment of oxalate nephropathy.
Collapse
Affiliation(s)
- Wei Zhu
- Department of Urology and Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, 510230, Guangzhou, Guangdong, China
| | - Chengjie Wu
- Department of Urology and Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, 510230, Guangzhou, Guangdong, China
- Breast Center, Department of General Surgery, Southern Medical University Nanfang Hospital, 510230, Guangzhou, Guangdong, China
| | - Zhen Zhou
- Department of Urology and Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, 510230, Guangzhou, Guangdong, China
| | - Guangyuan Zhang
- Department of Urology, Zhongda Hospital Southeast University, 210009, Nanjing, Jiangsu, China
| | - Lianmin Luo
- Department of Urology and Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, 510230, Guangzhou, Guangdong, China
| | - Yang Liu
- Department of Urology and Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, 510230, Guangzhou, Guangdong, China
| | - Zhicong Huang
- Department of Urology and Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, 510230, Guangzhou, Guangdong, China
| | - Guoyao Ai
- Department of Urology and Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, 510230, Guangzhou, Guangdong, China
| | - Zhijian Zhao
- Department of Urology and Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, 510230, Guangzhou, Guangdong, China
| | - Wen Zhong
- Department of Urology and Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, 510230, Guangzhou, Guangdong, China
| | - Yongda Liu
- Department of Urology and Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, 510230, Guangzhou, Guangdong, China
| | - Guohua Zeng
- Department of Urology and Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, 510230, Guangzhou, Guangdong, China.
| |
Collapse
|
12
|
TLR3 stimulation improves the migratory potency of adipose-derived mesenchymal stem cells through the stress response pathway in the melanoma mouse model. Mol Biol Rep 2023; 50:2293-2304. [PMID: 36575321 DOI: 10.1007/s11033-022-08111-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 11/09/2022] [Indexed: 12/29/2022]
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) are utilized as a carrier of anti-tumor agents in targeted anti-cancer therapy. Despite the improvements in this area, there are still some unsolved issues in determining the appropriate dose, method of administration and biodistribution of MSCs. The current study aimed to determine the influence of toll-like receptor 3 (TLR3) stimulation on the potential of MSCs migration to the neoplasm environment in the mouse melanoma model. METHODS AND RESULTS Adipose-derived MSCs (ADMSCs) were isolated from the GFP+ transgenic C57BL/6 mouse and treated with different doses (1 µg/ml and 10 µg/ml) of polyinosinic-polycytidylic acid, the related TLR3 agonist, at various time points (1 and 4 h). Following the treatment, the expression of targeted genes such as α4, α5, and β1 integrins and TGF-β and IL-10 anti-inflammatory cytokines was determined using real-time PCR. In vivo live imaging evaluated the migration index of the intraperitoneally (IP) injected treated ADMSCs in a lung tumor-bearing mouse (C57BL/6) melanoma model (n = 5). The presented findings demonstrated that TLR3 stimulation enhanced both migration of ADMSCs to the tumor area compared with control group (n = 5) and expression of α4, α5, and β1 integrins. It was also detected that the engagement of TLR3 resulted in the anti-inflammatory behavior of the cells, which might influence the directed movement of ADMSCs. CONCLUSION This research identified that TLR3 activation might improve the migration via the stimulation of stress response in the cells and depending on the agonist concentration and time exposure, this activated pathway drives the migratory behavior of MSCs.
Collapse
|
13
|
Ferreira PTM, Oliveira-Scussel ACM, Sousa RAP, Gomes BQ, Félix JE, Silva RJ, Millian IB, Assunção TSF, Teixeira SC, Gomes MDLM, Silva MV, Barbosa BF, Rodrigues Junior V, Mineo JR, Oliveira CJF, Ferro EAV, Gomes AO. Macrophage Migration Inhibitory Factor contributes to drive phenotypic and functional macrophages activation in response to Toxoplasma gondii infection. Immunobiology 2023; 228:152357. [PMID: 36857907 DOI: 10.1016/j.imbio.2023.152357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 02/17/2023] [Accepted: 02/18/2023] [Indexed: 02/24/2023]
Abstract
Cytokines are small molecules secreted by numerous cells. Macrophage Migration Inhibitory Factor (MIF) is a cytokine initially described due to its function of inhibiting random macrophage migration. Currently, new functions have been described for MIF, such as stimulating inflammatory functions in response to infections by microorganisms including, Toxoplasma gondii. However, the primordial MIF function related to macrophages has been little addressed. The main purpose of the study was to recapitulate MIF function on macrophages in response to T. gondii infection. To achieve this goal, peritoneal macrophages were collected from C57BL/6WT and Mif1-/- mice after recruitment with thioglycolate. Macrophages were cultured, treated with 4-Iodo-6-phenylpyrimidine (4-IPP), and infected or not by T. gondii for 24 h. Following this, the culture supernatant was collected for cytokine, urea and nitrite analysis. In addition, macrophages were evaluated for phagocytic activity and T. gondii proliferation rates. Results demonstrated that T. gondii infection triggered an increase in MIF production in the WT group as well as an increase in the secretion of IL-10, TNF, IFN-γ, IL-6 and IL-17 in the WT and Mif1-/- macrophages. Regarding the comparison between groups, it was detected that Mif1-/- macrophages secreted more IL-10 compared to WT. On the other hand, the WT macrophages produced greater amounts of TNF, IFN-γ, IL-6 and IL-17. Urea production was more pronounced in Mif1-/- macrophages while nitrite production was higher in WT macrophages. T. gondii showed a greater ability to proliferate in Mif1-/- macrophages and these cells also presented enhanced phagocytic activity. In conclusion, T. gondii infection induces macrophage activation inciting cytokine production. In presence of MIF, T. gondii infected macrophages produce pro-inflammatory cytokines compatible with the M1 activation profile. MIF absence caused a dramatic reduction in pro-inflammatory cytokines that are balanced by increased levels of urea and anti-inflammatory cytokines. These macrophages presented increased phagocytic capacity and shared features activation with the M2 profile.
Collapse
Affiliation(s)
- Paula Tatiane Mutão Ferreira
- Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro (UFTM), Uberaba, Minas Gerais, Brazil
| | | | - Roberto Augusto Pereira Sousa
- Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro (UFTM), Uberaba, Minas Gerais, Brazil
| | - Beatriz Quaresemin Gomes
- Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro (UFTM), Uberaba, Minas Gerais, Brazil
| | - Jhennifer Estevão Félix
- Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro (UFTM), Uberaba, Minas Gerais, Brazil
| | - Rafaela José Silva
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - Iliana Balga Millian
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - Thais Soares Farnesi Assunção
- Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro (UFTM), Uberaba, Minas Gerais, Brazil
| | - Samuel Cota Teixeira
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - Marcos de Lucca Moreira Gomes
- Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro (UFTM), Uberaba, Minas Gerais, Brazil
| | - Marcos Vinícius Silva
- Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro (UFTM), Uberaba, Minas Gerais, Brazil
| | - Bellisa Freitas Barbosa
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - Virmondes Rodrigues Junior
- Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro (UFTM), Uberaba, Minas Gerais, Brazil
| | - José Roberto Mineo
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - Carlo José Freire Oliveira
- Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro (UFTM), Uberaba, Minas Gerais, Brazil
| | | | - Angelica Oliveira Gomes
- Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro (UFTM), Uberaba, Minas Gerais, Brazil.
| |
Collapse
|
14
|
Kang J, Postigo-Fernandez J, Kim K, Zhu C, Yu J, Meroni M, Mayfield B, Bartolomé A, Dapito DH, Ferrante AW, Dongiovanni P, Valenti L, Creusot RJ, Pajvani UB. Notch-mediated hepatocyte MCP-1 secretion causes liver fibrosis. JCI Insight 2023; 8:e165369. [PMID: 36752206 PMCID: PMC9977430 DOI: 10.1172/jci.insight.165369] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 12/29/2022] [Indexed: 02/09/2023] Open
Abstract
Patients with nonalcoholic steatohepatitis (NASH) have increased expression of liver monocyte chemoattractant protein-1 (MCP-1), but its cellular source and contribution to various aspects of NASH pathophysiology remain debated. We demonstrated increased liver CCL2 (which encodes MCP-1) expression in patients with NASH, and commensurately, a 100-fold increase in hepatocyte Ccl2 expression in a mouse model of NASH, accompanied by increased liver monocyte-derived macrophage (MoMF) infiltrate and liver fibrosis. To test repercussions of increased hepatocyte-derived MCP-1, we generated hepatocyte-specific Ccl2-knockout mice, which showed reduced liver MoMF infiltrate as well as decreased liver fibrosis. Forced hepatocyte MCP-1 expression provoked the opposite phenotype in chow-fed wild-type mice. Consistent with increased hepatocyte Notch signaling in NASH, we observed a close correlation between markers of Notch activation and CCL2 expression in patients with NASH. We found that an evolutionarily conserved Notch/recombination signal binding protein for immunoglobulin kappa J region binding site in the Ccl2 promoter mediated transactivation of the Ccl2 promoter in NASH diet-fed mice. Increased liver MoMF infiltrate and liver fibrosis seen in opposite gain-of-function mice was ameliorated with concomitant hepatocyte Ccl2 knockout or CCR2 inhibitor treatment. Hepatocyte Notch activation prompts MCP-1-dependent increase in liver MoMF infiltration and fibrosis.
Collapse
Affiliation(s)
- Jinku Kang
- Department of Medicine, Naomi Berrie Diabetes Center, and
| | - Jorge Postigo-Fernandez
- Department of Medicine, Naomi Berrie Diabetes Center, and
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, New York, USA
| | - KyeongJin Kim
- Department of Medicine, Naomi Berrie Diabetes Center, and
- Department of Biomedical Sciences, College of Medicine, Program in Biomedical Science & Engineering, and Research Center for Controlling Intercellular Communication (RCIC), Inha University, Incheon, South Korea
| | - Changyu Zhu
- Department of Medicine, Naomi Berrie Diabetes Center, and
- Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Junjie Yu
- Department of Medicine, Naomi Berrie Diabetes Center, and
| | - Marica Meroni
- General Medicine and Metabolic Diseases, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Brent Mayfield
- Department of Medicine, Naomi Berrie Diabetes Center, and
| | - Alberto Bartolomé
- Department of Medicine, Naomi Berrie Diabetes Center, and
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC/UAM), Madrid, Spain
| | | | | | - Paola Dongiovanni
- General Medicine and Metabolic Diseases, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Luca Valenti
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
- Precision Medicine Lab, Biological Resource Center, Department of Transfusion Medicine and Hematology, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico Milan, Milan, Italy
| | - Remi J. Creusot
- Department of Medicine, Naomi Berrie Diabetes Center, and
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, New York, USA
| | | |
Collapse
|
15
|
Choi A, Javius-Jones K, Hong S, Park H. Cell-Based Drug Delivery Systems with Innate Homing Capability as a Novel Nanocarrier Platform. Int J Nanomedicine 2023; 18:509-525. [PMID: 36742991 PMCID: PMC9893846 DOI: 10.2147/ijn.s394389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 01/12/2023] [Indexed: 01/29/2023] Open
Abstract
Nanoparticle-based drug delivery systems have been designed to treat various diseases. However, many problems remain, such as inadequate tumor targeting and poor therapeutic outcomes. To overcome these obstacles, cell-based drug delivery systems have been developed. Candidates for cell-mediated drug delivery include blood cells, immune cells, and stem cells with innate tumor tropism and low immunogenicity; they act as a disguise to deliver the therapeutic payload. In drug delivery systems, therapeutic agents are encapsulated intracellularly or attached to the surface of the plasma membrane and transported to the desired site. Here, we review the pros and cons of cell-based therapies and discuss their homing mechanisms in the tumor microenvironment. In addition, different strategies to load therapeutic agents inside or on the surface of circulating cells and the current applications for a wide range of disease treatments are summarized.
Collapse
Affiliation(s)
- Anseo Choi
- School of Integrative Engineering, Chung-Ang University, Seoul, Republic of Korea
| | - Kaila Javius-Jones
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison, WI, USA
| | - Seungpyo Hong
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison, WI, USA
| | - Hansoo Park
- School of Integrative Engineering, Chung-Ang University, Seoul, Republic of Korea,Correspondence: Hansoo Park; Seungpyo Hong, School of Integrative Engineering, Chung-Ang University, Seoul, 06974, Republic of Korea, Tel +82-2 820 5804, Fax +82-2 813 8159, Email ;
| |
Collapse
|
16
|
Mendoza-Reinoso V, Schnepp PM, Baek DY, Rubin JR, Schipani E, Keller ET, McCauley LK, Roca H. Bone Marrow Macrophages Induce Inflammation by Efferocytosis of Apoptotic Prostate Cancer Cells via HIF-1α Stabilization. Cells 2022; 11:cells11233712. [PMID: 36496973 PMCID: PMC9737180 DOI: 10.3390/cells11233712] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/10/2022] [Accepted: 11/16/2022] [Indexed: 11/23/2022] Open
Abstract
The clearance of apoptotic cancer cells by macrophages, known as efferocytosis, fuels the bone-metastatic growth of prostate cancer cells via pro-inflammatory and immunosuppressive processes. However, the exact molecular mechanisms remain unclear. In this study, single-cell transcriptomics of bone marrow (BM) macrophages undergoing efferocytosis of apoptotic prostate cancer cells revealed a significant enrichment in their cellular response to hypoxia. Here, we show that BM macrophage efferocytosis increased hypoxia inducible factor-1alpha (HIF-1α) and STAT3 phosphorylation (p-STAT3 at Tyr705) under normoxic conditions, while inhibitors of p-STAT3 reduced HIF-1α. Efferocytosis promoted HIF-1α stabilization, reduced its ubiquitination, and induced HIF-1α and p-STAT3 nuclear translocation. HIF-1α stabilization in efferocytic BM macrophages resulted in enhanced expression of pro-inflammatory cytokine MIF, whereas BM macrophages with inactive HIF-1α reduced MIF expression upon efferocytosis. Stabilization of HIF-1α using the HIF-prolyl-hydroxylase inhibitor, Roxadustat, enhanced MIF expression in BM macrophages. Furthermore, BM macrophages treated with recombinant MIF protein activated NF-κB (p65) signaling and increased the expression of pro-inflammatory cytokines. Altogether, these findings suggest that the clearance of apoptotic cancer cells by BM macrophages triggers p-STAT3/HIF-1α/MIF signaling to promote further inflammation in the bone tumor microenvironment where a significant number of apoptotic cancer cells are present.
Collapse
Affiliation(s)
- Veronica Mendoza-Reinoso
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA
| | - Patricia M. Schnepp
- Department of Urology, Medical School, University of Michigan, Ann Arbor, MI 48109, USA
| | - Dah Youn Baek
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA
| | - John R. Rubin
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA
| | - Ernestina Schipani
- Department of Orthopaedic Surgery, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Evan T. Keller
- Department of Urology, Medical School, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Pathology, Medical School, University of Michigan, Ann Arbor, MI 48109, USA
- Correspondence: (E.T.K.); (L.K.M.); (H.R.)
| | - Laurie K. McCauley
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA
- Department of Pathology, Medical School, University of Michigan, Ann Arbor, MI 48109, USA
- Correspondence: (E.T.K.); (L.K.M.); (H.R.)
| | - Hernan Roca
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA
- Correspondence: (E.T.K.); (L.K.M.); (H.R.)
| |
Collapse
|
17
|
Patel NM, Yamada N, Oliveira FRMB, Stiehler L, Zechendorf E, Hinkelmann D, Kraemer S, Stoppe C, Collino M, Collotta D, Alves GF, Ramos HP, Sordi R, Marzi I, Relja B, Marx G, Martin L, Thiemermann C. Inhibition of Macrophage Migration Inhibitory Factor Activity Attenuates Haemorrhagic Shock-Induced Multiple Organ Dysfunction in Rats. Front Immunol 2022; 13:886421. [PMID: 35464452 PMCID: PMC9019168 DOI: 10.3389/fimmu.2022.886421] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 03/14/2022] [Indexed: 12/13/2022] Open
Abstract
Objective The aim of this study was to investigate (a) macrophage migration inhibitory factor (MIF) levels in polytrauma patients and rats after haemorrhagic shock (HS), (b) the potential of the MIF inhibitor ISO-1 to reduce multiple organ dysfunction syndrome (MODS) in acute (short-term and long-term follow-up) HS rat models and (c) whether treatment with ISO-1 attenuates NF-κB and NLRP3 activation in HS. Background The MODS caused by an excessive systemic inflammatory response following trauma is associated with a high morbidity and mortality. MIF is a pleiotropic cytokine which can modulate the inflammatory response, however, its role in trauma is unknown. Methods The MIF levels in plasma of polytrauma patients and serum of rats with HS were measured by ELISA. Acute HS rat models were performed to determine the influence of ISO-1 on MODS. The activation of NF-κB and NLRP3 pathways were analysed by western blot in the kidney and liver. Results We demonstrated that (a) MIF levels are increased in polytrauma patients on arrival to the emergency room and in rats after HS, (b) HS caused organ injury and/or dysfunction and hypotension (post-resuscitation) in rats, while (c) treatment of HS-rats with ISO-1 attenuated the organ injury and dysfunction in acute HS models and (d) reduced the activation of NF-κB and NLRP3 pathways in the kidney and liver. Conclusion Our results point to a role of MIF in the pathophysiology of trauma-induced organ injury and dysfunction and indicate that MIF inhibitors may be used as a potential therapeutic approach for MODS after trauma and/or haemorrhage.
Collapse
Affiliation(s)
- Nikita M Patel
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Noriaki Yamada
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom.,Gifu University Graduate School of Medicine, Department of Emergency and Disaster Medicine Gifu University Hospital Advanced Critical Care Center, Gifu, Japan
| | - Filipe R M B Oliveira
- Department of Pharmacology, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Lara Stiehler
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom.,Department of Intensive Care and Intermediate Care, University Hospital RWTH Aachen, Aachen, Germany
| | - Elisabeth Zechendorf
- Department of Intensive Care and Intermediate Care, University Hospital RWTH Aachen, Aachen, Germany
| | - Daniel Hinkelmann
- Department of Intensive Care and Intermediate Care, University Hospital RWTH Aachen, Aachen, Germany
| | - Sandra Kraemer
- Department of Intensive Care and Intermediate Care, University Hospital RWTH Aachen, Aachen, Germany
| | - Christian Stoppe
- Department of Anesthesiology & Intensive Care Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Massimo Collino
- Department of Neurosciences "Rita Levi Montalcini", University of Turin, Turin, Italy
| | - Debora Collotta
- Department of Neurosciences "Rita Levi Montalcini", University of Turin, Turin, Italy
| | | | - Hanna Pillmann Ramos
- Department of Pharmacology, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Regina Sordi
- Department of Pharmacology, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Ingo Marzi
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| | - Borna Relja
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital Frankfurt, Goethe University, Frankfurt, Germany.,Experimental Radiology, Department of Radiology and Nuclear Medicine, Otto-von-Guericke University, Magdeburg, Germany
| | - Gernot Marx
- Department of Intensive Care and Intermediate Care, University Hospital RWTH Aachen, Aachen, Germany
| | - Lukas Martin
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom.,Department of Intensive Care and Intermediate Care, University Hospital RWTH Aachen, Aachen, Germany
| | - Christoph Thiemermann
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
18
|
Kafai NM, Diamond MS, Fox JM. Distinct Cellular Tropism and Immune Responses to Alphavirus Infection. Annu Rev Immunol 2022; 40:615-649. [PMID: 35134315 DOI: 10.1146/annurev-immunol-101220-014952] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Alphaviruses are emerging and reemerging viruses that cause disease syndromes ranging from incapacitating arthritis to potentially fatal encephalitis. While infection by arthritogenic and encephalitic alphaviruses results in distinct clinical manifestations, both virus groups induce robust innate and adaptive immune responses. However, differences in cellular tropism, type I interferon induction, immune cell recruitment, and B and T cell responses result in differential disease progression and outcome. In this review, we discuss aspects of immune responses that contribute to protective or pathogenic outcomes after alphavirus infection. Expected final online publication date for the Annual Review of Immunology, Volume 40 is April 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Natasha M Kafai
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA; , .,Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Michael S Diamond
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA; , .,Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, Missouri, USA.,Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, Missouri, USA.,Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Julie M Fox
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA;
| |
Collapse
|
19
|
Sandovici I, Georgopoulou A, Pérez-García V, Hufnagel A, López-Tello J, Lam BYH, Schiefer SN, Gaudreau C, Santos F, Hoelle K, Yeo GSH, Burling K, Reiterer M, Fowden AL, Burton GJ, Branco CM, Sferruzzi-Perri AN, Constância M. The imprinted Igf2-Igf2r axis is critical for matching placental microvasculature expansion to fetal growth. Dev Cell 2022; 57:63-79.e8. [PMID: 34963058 PMCID: PMC8751640 DOI: 10.1016/j.devcel.2021.12.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 09/30/2021] [Accepted: 12/03/2021] [Indexed: 11/21/2022]
Abstract
In all eutherian mammals, growth of the fetus is dependent upon a functional placenta, but whether and how the latter adapts to putative fetal signals is currently unknown. Here, we demonstrate, through fetal, endothelial, hematopoietic, and trophoblast-specific genetic manipulations in the mouse, that endothelial and fetus-derived IGF2 is required for the continuous expansion of the feto-placental microvasculature in late pregnancy. The angiocrine effects of IGF2 on placental microvasculature expansion are mediated, in part, through IGF2R and angiopoietin-Tie2/TEK signaling. Additionally, IGF2 exerts IGF2R-ERK1/2-dependent pro-proliferative and angiogenic effects on primary feto-placental endothelial cells ex vivo. Endothelial and fetus-derived IGF2 also plays an important role in trophoblast morphogenesis, acting through Gcm1 and Synb. Thus, our study reveals a direct role for the imprinted Igf2-Igf2r axis on matching placental development to fetal growth and establishes the principle that hormone-like signals from the fetus play important roles in controlling placental microvasculature and trophoblast morphogenesis.
Collapse
Affiliation(s)
- Ionel Sandovici
- Department of Obstetrics and Gynaecology and National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge, Cambridge CB2 0SW, UK; Wellcome-MRC Institute of Metabolic Science and Medical Research Council Metabolic Diseases Unit, University of Cambridge, Cambridge CB2 0QQ, UK; Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK.
| | - Aikaterini Georgopoulou
- Department of Obstetrics and Gynaecology and National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge, Cambridge CB2 0SW, UK; Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| | - Vicente Pérez-García
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK; Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, UK; Centro de Investigación Príncipe Felipe, Eduardo Primo Yúfera, 46012 Valencia, Spain
| | - Antonia Hufnagel
- Department of Obstetrics and Gynaecology and National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge, Cambridge CB2 0SW, UK
| | - Jorge López-Tello
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| | - Brian Y H Lam
- Wellcome-MRC Institute of Metabolic Science and Medical Research Council Metabolic Diseases Unit, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Samira N Schiefer
- Department of Obstetrics and Gynaecology and National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge, Cambridge CB2 0SW, UK
| | - Chelsea Gaudreau
- Wellcome-MRC Institute of Metabolic Science and Medical Research Council Metabolic Diseases Unit, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Fátima Santos
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK; Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, UK
| | - Katharina Hoelle
- Department of Obstetrics and Gynaecology and National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge, Cambridge CB2 0SW, UK
| | - Giles S H Yeo
- Wellcome-MRC Institute of Metabolic Science and Medical Research Council Metabolic Diseases Unit, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Keith Burling
- Wellcome-MRC Institute of Metabolic Science and Medical Research Council Metabolic Diseases Unit, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Moritz Reiterer
- Physiological Laboratory, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK; Center for Cancer Research and Cell Biology, Queen's University Belfast, Belfast BT9 7AE, UK
| | - Abigail L Fowden
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| | - Graham J Burton
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| | - Cristina M Branco
- Physiological Laboratory, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK; Center for Cancer Research and Cell Biology, Queen's University Belfast, Belfast BT9 7AE, UK
| | - Amanda N Sferruzzi-Perri
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| | - Miguel Constância
- Department of Obstetrics and Gynaecology and National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge, Cambridge CB2 0SW, UK; Wellcome-MRC Institute of Metabolic Science and Medical Research Council Metabolic Diseases Unit, University of Cambridge, Cambridge CB2 0QQ, UK; Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK.
| |
Collapse
|
20
|
Tuong ZK, Loudon KW, Berry B, Richoz N, Jones J, Tan X, Nguyen Q, George A, Hori S, Field S, Lynch AG, Kania K, Coupland P, Babbage A, Grenfell R, Barrett T, Warren AY, Gnanapragasam V, Massie C, Clatworthy MR. Resolving the immune landscape of human prostate at a single-cell level in health and cancer. Cell Rep 2021; 37:110132. [PMID: 34936871 PMCID: PMC8721283 DOI: 10.1016/j.celrep.2021.110132] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 09/01/2021] [Accepted: 11/23/2021] [Indexed: 12/11/2022] Open
Abstract
The prostate gland produces prostatic fluid, high in zinc and citrate and essential for the maintenance of spermatozoa. Prostate cancer is a common condition with limited treatment efficacy in castration-resistant metastatic disease, including with immune checkpoint inhibitors. Using single-cell RNA-sequencing to perform an unbiased assessment of the cellular landscape of human prostate, we identify a subset of tumor-enriched androgen receptor-negative luminal epithelial cells with increased expression of cancer-associated genes. We also find a variety of innate and adaptive immune cells in normal prostate that were transcriptionally perturbed in prostate cancer. An exception is a prostate-specific, zinc transporter-expressing macrophage population (MAC-MT) that contributes to tissue zinc accumulation in homeostasis but shows enhanced inflammatory gene expression in tumors, including T cell-recruiting chemokines. Remarkably, enrichment of the MAC-MT signature in cancer biopsies is associated with improved disease-free survival, suggesting beneficial antitumor functions.
Collapse
Affiliation(s)
- Zewen Kelvin Tuong
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, Cambridge, UK; Cellular Genetics, Wellcome Sanger Institute, Hinxton, UK
| | - Kevin W Loudon
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Brendan Berry
- Department of Oncology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK; Department of Urology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Nathan Richoz
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, Cambridge, UK
| | | | - Xiao Tan
- Division of Genetics and Genomics, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Quan Nguyen
- Division of Genetics and Genomics, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Anne George
- Department of Oncology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK; Early Detection Programme, CRUK Cambridge Centre, Cambridge, UK
| | - Satoshi Hori
- Academic Urology Group, Department of Surgery, University of Cambridge, Cambridge, UK
| | | | - Andy G Lynch
- CRUK Cambridge Institute, Cambridge, UK; School of Mathematics and Statistics/School of Medicine, University of St Andrews, St Andrews, UK
| | | | | | - Anne Babbage
- Department of Oncology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | | | - Tristan Barrett
- Department of Radiology, University of Cambridge, Cambridge, UK
| | - Anne Y Warren
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Vincent Gnanapragasam
- Department of Urology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK; Academic Urology Group, Department of Surgery, University of Cambridge, Cambridge, UK; Cambridge Urology Translational Research and Clinical Trials, Cambridge Biomedical Campus, Cambridge, UK
| | - Charlie Massie
- Department of Oncology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK; CRUK Cambridge Institute, Cambridge, UK; Early Detection Programme, CRUK Cambridge Centre, Cambridge, UK.
| | - Menna R Clatworthy
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, Cambridge, UK; Cellular Genetics, Wellcome Sanger Institute, Hinxton, UK; NIHR Cambridge Biomedical Research Centre, Cambridge, UK; Cambridge Institute of Therapeutic Immunology & Infectious Diseases, Cambridge, UK.
| |
Collapse
|
21
|
Caulerpin Mitigates Helicobacter pylori-Induced Inflammation via Formyl Peptide Receptors. Int J Mol Sci 2021; 22:ijms222313154. [PMID: 34884957 PMCID: PMC8658387 DOI: 10.3390/ijms222313154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/30/2021] [Accepted: 12/03/2021] [Indexed: 11/16/2022] Open
Abstract
The identification of novel strategies to control Helicobacter pylori (Hp)-associated chronic inflammation is, at present, a considerable challenge. Here, we attempt to combat this issue by modulating the innate immune response, targeting formyl peptide receptors (FPRs), G-protein coupled receptors that play key roles in both the regulation and the resolution of the innate inflammatory response. Specifically, we investigated, in vitro, whether Caulerpin—a bis-indole alkaloid isolated from algae of the genus Caulerpa—could act as a molecular antagonist scaffold of FPRs. We showed that Caulerpin significantly reduces the immune response against Hp culture filtrate, by reverting the FPR2-related signaling cascade and thus counteracting the inflammatory reaction triggered by Hp peptide Hp(2–20). Our study suggests Caulerpin to be a promising therapeutic or adjuvant agent for the attenuation of inflammation triggered by Hp infection, as well as its related adverse clinical outcomes.
Collapse
|
22
|
Tilstam PV, Schulte W, Holowka T, Kim BS, Nouws J, Sauler M, Piecychna M, Pantouris G, Lolis E, Leng L, Bernhagen J, Fingerle-Rowson G, Bucala R. MIF but not MIF-2 recruits inflammatory macrophages in an experimental polymicrobial sepsis model. J Clin Invest 2021; 131:127171. [PMID: 34850744 DOI: 10.1172/jci127171] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 10/14/2021] [Indexed: 11/17/2022] Open
Abstract
Excessive inflammation drives the progression from sepsis to septic shock. Macrophage migration inhibitory factor (MIF) is of interest because MIF promoter polymorphisms predict mortality in different infections, and anti-MIF antibody improves survival in experimental models when administered 8 hours after infectious insult. The recent description of a second MIF superfamily member, D-dopachrome tautomerase (D-DT/MIF-2), prompted closer investigation of MIF-dependent responses. We subjected Mif-/- and Mif-2-/- mice to polymicrobial sepsis and observed a survival benefit with Mif but not Mif-2 deficiency. Survival was associated with reduced numbers of small peritoneal macrophages (SPMs) that, in contrast to large peritoneal macrophages (LPMs), were recruited into the peritoneal cavity. LPMs produced higher quantities of MIF than SPMs, but SPMs expressed higher levels of inflammatory cytokines and the MIF receptors CD74 and CXCR2. Adoptive transfer of WT SPMs into Mif-/- hosts reduced the protective effect of Mif deficiency in polymicrobial sepsis. Notably, MIF-2 lacks the pseudo-(E)LR motif present in MIF that mediates CXCR2 engagement and SPM migration, supporting a specific role for MIF in the recruitment and accumulation of inflammatory SPMs.
Collapse
Affiliation(s)
- Pathricia Veronica Tilstam
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA.,Department of Immunology, Harvard Medical School, Boston, Massachusetts, USA
| | - Wibke Schulte
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA.,Department of Surgery, Yale University School of Medicine, New Haven, Connecticut, USA.,Department of Surgery, Campus Charité Mitte, Campus Virchow-Klinikum, Charité, Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| | - Thomas Holowka
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Bong-Sung Kim
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA.,Department of Plastic, Reconstructive and Hand Surgery, RWTH Aachen University, Aachen, Germany.,Division of Plastic Surgery and Hand Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Jessica Nouws
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Maor Sauler
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Marta Piecychna
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Georgios Pantouris
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut, USA.,Department of Chemistry, University of the Pacific, Stockton, California, USA
| | - Elias Lolis
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Lin Leng
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Jürgen Bernhagen
- Department of Vascular Biology, Institute for Stroke and Dementia Research, Ludwig-Maximilians-University Munich, Munich, Germany.,Munich Cluster for Systems Neurology, Munich, Germany
| | - Günter Fingerle-Rowson
- Department I of Internal Medicine, University of Cologne, Center for Integrated Oncology Aachen Bonn Köln Düsseldorf, Cologne, Germany
| | - Richard Bucala
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
23
|
Thomas JR, Naidu P, Appios A, McGovern N. The Ontogeny and Function of Placental Macrophages. Front Immunol 2021; 12:771054. [PMID: 34745147 PMCID: PMC8566952 DOI: 10.3389/fimmu.2021.771054] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 10/05/2021] [Indexed: 01/02/2023] Open
Abstract
The placenta is a fetal-derived organ whose function is crucial for both maternal and fetal health. The human placenta contains a population of fetal macrophages termed Hofbauer cells. These macrophages play diverse roles, aiding in placental development, function and defence. The outer layer of the human placenta is formed by syncytiotrophoblast cells, that fuse to form the syncytium. Adhered to the syncytium at sites of damage, on the maternal side of the placenta, is a population of macrophages termed placenta associated maternal macrophages (PAMM1a). Here we discuss recent developments that have led to renewed insight into our understanding of the ontogeny, phenotype and function of placental macrophages. Finally, we discuss how the application of new technologies within placental research are helping us to further understand these cells.
Collapse
Affiliation(s)
| | | | | | - Naomi McGovern
- Department of Pathology and Centre for Trophoblast Research, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
24
|
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Won Jin Ho
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Laura D Wood
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
25
|
Ho WJ, Zhu Q, Durham J, Popovic A, Xavier S, Leatherman J, Mohan A, Mo G, Zhang S, Gross N, Charmsaz S, Lin D, Quong D, Wilt B, Kamel IR, Weiss M, Philosophe B, Burkhart R, Burns WR, Shubert C, Ejaz A, He J, Deshpande A, Danilova L, Stein-O'Brien G, Sugar EA, Laheru DA, Anders RA, Fertig EJ, Jaffee EM, Yarchoan M. Neoadjuvant Cabozantinib and Nivolumab Converts Locally Advanced HCC into Resectable Disease with Enhanced Antitumor Immunity. NATURE CANCER 2021; 2:891-903. [PMID: 34796337 PMCID: PMC8594857 DOI: 10.1038/s43018-021-00234-4] [Citation(s) in RCA: 178] [Impact Index Per Article: 59.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 06/10/2021] [Indexed: 02/07/2023]
Abstract
A potentially curative hepatic resection is the optimal treatment for hepatocellular carcinoma (HCC), but most patients are not candidates for resection and most resected HCCs eventually recur. Until recently, neoadjuvant systemic therapy for HCC has been limited by a lack of effective systemic agents. Here, in a single arm phase 1b study, we evaluated the feasibility of neoadjuvant cabozantinib and nivolumab in patients with HCC including patients outside of traditional resection criteria (NCT03299946). Of 15 patients enrolled, 12 (80%) underwent successful margin negative resection, and 5/12 (42%) patients had major pathologic responses. In-depth biospecimen profiling demonstrated an enrichment in T effector cells, as well as tertiary lymphoid structures, CD138+ plasma cells, and a distinct spatial arrangement of B cells in responders as compared to non-responders, indicating an orchestrated B-cell contribution to antitumor immunity in HCC.
Collapse
Affiliation(s)
- Won Jin Ho
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Qingfeng Zhu
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jennifer Durham
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Aleksandra Popovic
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Stephanie Xavier
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - James Leatherman
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Aditya Mohan
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Guanglan Mo
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Shu Zhang
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Nicole Gross
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Soren Charmsaz
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Dongxia Lin
- Fluidigm Corporation, San Francisco, CA, USA
| | - Derek Quong
- Fluidigm Corporation, San Francisco, CA, USA
| | - Brad Wilt
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ihab R Kamel
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Matthew Weiss
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Benjamin Philosophe
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Richard Burkhart
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - William R Burns
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Chris Shubert
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Aslam Ejaz
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jin He
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Atul Deshpande
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Division of Biostatistics and Bioinformatics, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ludmila Danilova
- Division of Biostatistics and Bioinformatics, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Genevieve Stein-O'Brien
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Division of Biostatistics and Bioinformatics, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Elizabeth A Sugar
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Daniel A Laheru
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Robert A Anders
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Elana J Fertig
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Division of Biostatistics and Bioinformatics, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Applied Mathematics and Statistics, Johns Hopkins University Whiting School of Engineering, Baltimore, MD, USA
| | - Elizabeth M Jaffee
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Mark Yarchoan
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
26
|
Ives A, Le Roy D, Théroude C, Bernhagen J, Roger T, Calandra T. Macrophage migration inhibitory factor promotes the migration of dendritic cells through CD74 and the activation of the Src/PI3K/myosin II pathway. FASEB J 2021; 35:e21418. [PMID: 33774873 DOI: 10.1096/fj.202001605r] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 01/14/2021] [Accepted: 01/21/2021] [Indexed: 12/18/2022]
Abstract
Constitutively expressed by innate immune cells, the cytokine macrophage migration inhibitory factor (MIF) initiates host immune responses and drives pathogenic responses in infectious, inflammatory, and autoimmune diseases. Dendritic cells (DCs) express high levels of MIF, but the role of MIF in DC function remains poorly characterized. As migration is critical for DC immune surveillance, we investigated whether MIF promoted the migration of DCs. In classical transwell experiments, MIF-/- bone marrow-derived DCs (BMDCs) or MIF+/+ BMDCs treated with ISO-1, an inhibitor of MIF, showed markedly reduced spontaneous migration and chemotaxis. CD74-/- BMDCs that are deficient in the ligand-binding component of the cognate MIF receptor exhibited a migration defect similar to that of MIF-/- BMDCs. Adoptive transfer experiments of LPS-matured MIF+/+ and MIF-/- and of CD74+/+ and CD74-/- BMDCs injected into the hind footpads of homologous or heterologous mice showed that the autocrine and paracrine MIF activity acting via CD74 contributed to the recruitment of DCs to the draining lymph nodes. Mechanistically, MIF activated the Src/PI3K signaling pathway and myosin II complexes, which were required for the migration of BMDCs. Altogether, these data show that the cytokine MIF exerts chemokine-like activity for DC motility and trafficking.
Collapse
Affiliation(s)
- Annette Ives
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Didier Le Roy
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Charlotte Théroude
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Jürgen Bernhagen
- Chair of Vascular Biology, Institute for Stroke and Dementia Research (ISD), Klinikum der Universität München (KUM), Ludwig-Maximilians-University (LMU), Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Thierry Roger
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Thierry Calandra
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
27
|
Du W, Pasca di Magliano M, Zhang Y. Therapeutic Potential of Targeting Stromal Crosstalk-Mediated Immune Suppression in Pancreatic Cancer. Front Oncol 2021; 11:682217. [PMID: 34290984 PMCID: PMC8287251 DOI: 10.3389/fonc.2021.682217] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 06/21/2021] [Indexed: 12/19/2022] Open
Abstract
The stroma-rich, immunosuppressive microenvironment is a hallmark of pancreatic ductal adenocarcinoma (PDA). Tumor cells and other cellular components of the tumor microenvironment, such as cancer associated fibroblasts, CD4+ T cells and myeloid cells, are linked by a web of interactions. Their crosstalk not only results in immune evasion of PDA, but also contributes to pancreatic cancer cell plasticity, invasiveness, metastasis, chemo-resistance, immunotherapy-resistance and radiotherapy-resistance. In this review, we characterize several prevalent populations of stromal cells in the PDA microenvironment and describe how the crosstalk among them drives and maintains immune suppression. We also summarize therapeutic approaches to target the stroma. With a better understanding of the complex cellular and molecular networks in PDA, strategies aimed at sensitizing PDA to chemotherapy or immunotherapy through re-programing the tumor microenvironment can be designed, and in turn lead to improved clinical treatment for pancreatic cancer patients.
Collapse
Affiliation(s)
- Wenting Du
- Department of Surgery, University of Michigan, Ann Arbor, MI, United States
| | - Marina Pasca di Magliano
- Department of Surgery, University of Michigan, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, United States
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| | - Yaqing Zhang
- Department of Surgery, University of Michigan, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
28
|
Poulsen KL, Fan X, Kibler CD, Huang E, Wu X, McMullen MR, Leng L, Bucala R, Ventura-Cots M, Argemi J, Bataller R, Nagy LE. Role of MIF in coordinated expression of hepatic chemokines in patients with alcohol-associated hepatitis. JCI Insight 2021; 6:141420. [PMID: 33945507 PMCID: PMC8262327 DOI: 10.1172/jci.insight.141420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 04/28/2021] [Indexed: 12/20/2022] Open
Abstract
The chemokine system of ligands and receptors is implicated in the progression of alcohol-associated hepatitis (AH). Finding upstream regulators could lead to novel therapies. This study involved coordinated expression of chemokines in livers of healthy controls (HC) and patients with AH in 2 distinct cohorts of patients with various chronic liver diseases. Studies in cultured hepatocytes and in tissue-specific KO were used for mechanistic insight into a potential upstream regulator of chemokine expression in AH. Selected C-X-C chemokine members of the IL-8 chemokine family and C-C chemokine CCL20 were highly associated with AH compared with HC but not in patients with liver diseases of other etiologies (nonalcoholic fatty liver disease [NAFLD] and hepatitis C virus [HCV]). Our previous studies implicate macrophage migration inhibitory factor (MIF) as a pleiotropic cytokine/chemokine with the potential to coordinately regulate chemokine expression in AH. LPS-stimulated expression of multiple chemokines in cultured hepatocytes was dependent on MIF. Gao-binge ethanol feeding to mice induced a similar coordinated chemokine expression in livers of WT mice; this was prevented in hepatocyte-specific Mif-KO (MifΔHep) mice. This study demonstrates that patients with AH exhibit a specific, coordinately expressed chemokine signature and that hepatocyte-derived MIF might drive this inflammatory response.
Collapse
Affiliation(s)
- Kyle L Poulsen
- Center for Liver Disease Research, Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA.,Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Xiude Fan
- Center for Liver Disease Research, Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA.,Department of Infectious Diseases, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Christopher D Kibler
- Center for Liver Disease Research, Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA
| | - Emily Huang
- Center for Liver Disease Research, Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA
| | - Xiaoqin Wu
- Center for Liver Disease Research, Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA
| | - Megan R McMullen
- Center for Liver Disease Research, Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA
| | - Lin Leng
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Richard Bucala
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Meritxell Ventura-Cots
- Division of Gastroenterology, Hepatology and Nutrition, University of Pittsburgh Medical Center, Pittsburgh Liver Research Center, Pittsburgh, Pennsylvania, USA
| | - Josepmaria Argemi
- Division of Gastroenterology, Hepatology and Nutrition, University of Pittsburgh Medical Center, Pittsburgh Liver Research Center, Pittsburgh, Pennsylvania, USA
| | - Ramon Bataller
- Division of Gastroenterology, Hepatology and Nutrition, University of Pittsburgh Medical Center, Pittsburgh Liver Research Center, Pittsburgh, Pennsylvania, USA
| | - Laura E Nagy
- Center for Liver Disease Research, Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA.,Gastroenterology and Hepatology, Cleveland Clinic, Cleveland, Ohio, USA.,Department of Molecular Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
29
|
Yang R, Wang X, Xi D, Mo J, Wang K, Luo S, Wei J, Ren Z, Pang H, Luo Y. Cordycepin Attenuates IFN-γ-Induced Macrophage IP-10 and Mig Expressions by Inhibiting STAT1 Activity in CFA-Induced Inflammation Mice Model. Inflammation 2021; 43:752-764. [PMID: 31873836 DOI: 10.1007/s10753-019-01162-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Cordycepin, a natural derivative of adenosine, has been shown to exert pharmacological properties including anti-oxidation, antitumor, and immune regulation. It is reported that cordycepin is involved in the regulation of macrophage function. However, the effect of cordycepin on inflammatory cell infiltration in inflammation remains ambiguous. In this study, we investigated the potential role of cordycepin playing in macrophage function in CFA-induced inflammation mice model. In this model, we found that cordycepin prevented against macrophage infiltration in paw tissue and reduced interferon-γ (IFN-γ) production in both serum and paw tissue. Using luciferase reporter assay, we found that cordycepin suppressed IFN-γ-induced activators of transcription-1 (STAT1) transcriptional activity in a dose-dependent manner. Moreover, western blotting data demonstrated that cordycepin inhibited IFN-γ-induced STAT1 activation through attenuating STAT1 phosphorylation. Further investigations revealed that cordycepin inhibited the expressions of IFN-γ-inducible protein 10 (IP-10) and monokine induced by IFN-γ (Mig), which were the effector genes in IFN-γ-induced STAT1 signaling. Meanwhile, the excessive inflammatory cell infiltration in paw tissue was reduced by cordycepin. These findings demonstrate that cordycepin alleviates excessive inflammatory cell infiltration through down-regulation of macrophage IP-10 and Mig expressions via suppressing STAT1 phosphorylation. Thus, cordycepin may be a potential therapeutic approach to prevent and treat inflammation-associated diseases.
Collapse
Affiliation(s)
- Rirong Yang
- Department of Immunology, School of Preclinical Medicine, Center for Genomic and Personalized Medicine, Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi, 530021, People's Republic of China.
| | - Xiaoli Wang
- Department of Immunology, School of Preclinical Medicine, Center for Genomic and Personalized Medicine, Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi, 530021, People's Republic of China
| | - Deshuang Xi
- Department of Immunology, School of Preclinical Medicine, Center for Genomic and Personalized Medicine, Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi, 530021, People's Republic of China
| | - Jian Mo
- Department of Immunology, School of Preclinical Medicine, Center for Genomic and Personalized Medicine, Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi, 530021, People's Republic of China
| | - Ke Wang
- Department of Physiology, School of Preclinical Medicine, Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi, 530021, People's Republic of China
| | - Shunrong Luo
- Department of Immunology, School of Preclinical Medicine, Center for Genomic and Personalized Medicine, Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi, 530021, People's Republic of China
| | - Jiao Wei
- Department of Physiology, School of Preclinical Medicine, Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi, 530021, People's Republic of China
| | - Zhenghua Ren
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, National Engineering Research Center of South China Sea Marine Biotechnology, Department of Biochemistry, College of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| | - Hui Pang
- Department of Physiology, School of Preclinical Medicine, Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi, 530021, People's Republic of China
| | - Yu Luo
- Department of Clinical Laboratory, Peoples's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, 530021, People's Republic of China.
| |
Collapse
|
30
|
Menzel L, Höpken UE, Rehm A. Angiogenesis in Lymph Nodes Is a Critical Regulator of Immune Response and Lymphoma Growth. Front Immunol 2020; 11:591741. [PMID: 33343570 PMCID: PMC7744479 DOI: 10.3389/fimmu.2020.591741] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 10/19/2020] [Indexed: 02/06/2023] Open
Abstract
Tumor-induced remodeling of the microenvironment in lymph nodes (LNs) includes the formation of blood vessels, which goes beyond the regulation of metabolism, and shaping a survival niche for tumor cells. In contrast to solid tumors, which primarily rely on neo-angiogenesis, hematopoietic malignancies usually grow within pre-vascularized autochthonous niches in secondary lymphatic organs or the bone marrow. The mechanisms of vascular remodeling in expanding LNs during infection-induced responses have been studied in more detail; in contrast, insights into the conditions of lymphoma growth and lodging remain enigmatic. Based on previous murine studies and clinical trials in human, we conclude that there is not a universal LN-specific angiogenic program applicable. Instead, signaling pathways that are tightly connected to autochthonous and infiltrating cell types contribute variably to LN vascular expansion. Inflammation related angiogenesis within LNs relies on dendritic cell derived pro-inflammatory cytokines stimulating vascular endothelial growth factor-A (VEGF-A) expression in fibroblastic reticular cells, which in turn triggers vessel growth. In high-grade B cell lymphoma, angiogenesis correlates with poor prognosis. Lymphoma cells immigrate and grow in LNs and provide pro-angiogenic growth factors themselves. In contrast to infectious stimuli that impact on LN vasculature, they do not trigger the typical inflammatory and hypoxia-related stroma-remodeling cascade. Blood vessels in LNs are unique in selective recruitment of lymphocytes via high endothelial venules (HEVs). The dissemination routes of neoplastic lymphocytes are usually disease stage dependent. Early seeding via the blood stream requires the expression of the homeostatic chemokine receptor CCR7 and of L-selectin, both cooperate to facilitate transmigration of tumor and also of protective tumor-reactive lymphocytes via HEV structures. In this view, the HEV route is not only relevant for lymphoma cell homing, but also for a continuous immunosurveillance. We envision that HEV functional and structural alterations during lymphomagenesis are not only key to vascular remodeling, but also impact on tumor cell accessibility when targeted by T cell-mediated immunotherapies.
Collapse
Affiliation(s)
- Lutz Menzel
- Translational Tumor Immunology, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Uta E. Höpken
- Microenvironmental Regulation in Autoimmunity and Cancer, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Armin Rehm
- Translational Tumor Immunology, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| |
Collapse
|
31
|
Ding X, Xiang W, He X. IFN-I Mediates Dysfunction of Endothelial Progenitor Cells in Atherosclerosis of Systemic Lupus Erythematosus. Front Immunol 2020; 11:581385. [PMID: 33262760 PMCID: PMC7686511 DOI: 10.3389/fimmu.2020.581385] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 10/14/2020] [Indexed: 12/14/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a multi-system autoimmune disease including the cardiovascular system. Atherosclerosis is the most common cardiovascular complication of SLE and a significant risk factor for morbidity and mortality. Vascular damage/protection mechanism in SLE patients is out of balance, caused by the cascade reaction among oxidative stress, proinflammatory cytokines, Neutrophil Extracellular Traps, activation of B cells and autoantibodies and abnormal T cells. As a precursor cell repairing vascular endothelium, endothelial progenitor cells (EPCs) belong to the protective mechanism and show the reduced number and impaired function in SLE. However, the pathological mechanism of EPCs dysfunction in SLE remains ill-defined. This paper reviews the latest SLE epidemiology and pathogenesis, discusses the changes in the number and function of EPCs in SLE, expounds the role of EPCs in SLE atherosclerosis, and provides new guidance and theoretical basis for exploring novel targets for SLE treatment.
Collapse
Affiliation(s)
- Xuewei Ding
- Institute of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China
- Laboratory of Pediatric Nephrology, Institute of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Wei Xiang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, NHC Key Laboratory of Control of Tropical diseases (Hainan Medical University), Haikou, China
| | - Xiaojie He
- Institute of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China
- Laboratory of Pediatric Nephrology, Institute of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
32
|
Abstract
Macrophage migration inhibitory factor (MIF) is an inflammatory cytokine that participates in innate and adaptive immune responses. MIF contributes to the resistance against infection agents, but also to the cellular and tissue damage in infectious, autoimmune, and allergic diseases. In the past years, several studies demonstrated a critical role for MIF in the pathogenesis of type-2-mediated inflammation, including allergy and helminth infection. Atopic patients have increased MIF amounts in affected tissues, mainly produced by immune cells such as macrophages, Th2 cells, and eosinophils. Increased MIF mRNA and protein are found in activated Th2 cells, while eosinophils stock pre-formed MIF protein and secrete high amounts of MIF upon stimulation. In mouse models of allergic asthma, the lack of MIF causes an almost complete abrogation of the cardinal signs of the disease including mucus secretion, eosinophilic inflammation, and airway hyper-responsiveness. Additionally, blocking the expression of MIF in animal models leads to significant reduction of pathological signs of eosinophilic inflammation such as rhinitis, atopic dermatitis, eosinophilic esophagitis and helminth infection. A number of studies indicate that MIF is important in the effector phase of type-2 immune responses, while its contribution to Th2 differentiation and IgE production is not consensual. MIF has been found to intervene in different aspects of eosinophil physiology including differentiation, survival, activation, and migration. CD4+ T cells and eosinophils express CD74 and CXCR4, receptors able to signal upon MIF binding. Blockage of these receptors with neutralizing antibodies or small molecule antagonists also succeeds in reducing the signals of inflammation in experimental allergic models. Together, these studies demonstrate an important contribution of MIF on eosinophil biology and in the pathogenesis of allergic diseases and helminth infection.
Collapse
|
33
|
Loftis JM, Navis T, Taylor J, Hudson R, Person U, Lattal KM, Vandenbark AA, Shirley R, Huckans M. Partial MHC/neuroantigen peptide constructs attenuate methamphetamine-seeking and brain chemokine (C-C motif) ligand 2 levels in rats. Eur J Pharmacol 2020; 880:173175. [PMID: 32416183 DOI: 10.1016/j.ejphar.2020.173175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/09/2020] [Accepted: 05/06/2020] [Indexed: 11/28/2022]
Abstract
There are no medications that target the neurotoxic effects or reduce the use of methamphetamine. Recombinant T-cell receptor ligand (RTL) 1000 [a partial major histocompatibility complex (pMHC) class II construct with a tethered myelin peptide], addresses the neuroimmune effects of methamphetamine addiction by competitively inhibiting the disease-promoting activity of macrophage migration inhibitory factor to CD74, a key pathway involved in several chronic inflammatory conditions, including substance use disorders. We previously reported that RTL constructs improve learning and memory impairments and central nervous system (CNS) inflammation induced by methamphetamine in mouse models. The present study in Lewis rats evaluated the effects of RTL1000 on maintenance of self-administration and cue-induced reinstatement using operant behavioral methods. Post-mortem brain and serum samples were evaluated for the levels of inflammatory factors. Rats treated with RTL1000 displayed significantly fewer presses on the active lever as compared to rats treated with vehicle during the initial extinction session, indicating more rapid extinction in the presence of RTL1000. Immunoblotting of rat brain sections revealed reduced levels of the pro-inflammatory chemokine (C-C motif) ligand 2 (CCL2) in the frontal cortex of rats treated with RTL1000, as compared to vehicle. Post hoc analysis identified a positive association between the levels of CCL2 detected in the frontal cortex and the number of lever presses during the first extinction session. Taken together, results suggest that RTL1000 may block downstream inflammatory effects of methamphetamine exposure and facilitate reduced drug seeking-potentially offering a new strategy for the treatment of methamphetamine-induced CNS injury and neuropsychiatric impairments.
Collapse
Affiliation(s)
- Jennifer M Loftis
- Research & Development Service, Veterans Affairs Portland Health Care System, Portland, OR, USA; Department of Psychiatry, Oregon Health & Science University, Portland, OR, USA; Methamphetamine Research Center, Portland, OR, USA.
| | - Tommy Navis
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - Jonathan Taylor
- Research & Development Service, Veterans Affairs Portland Health Care System, Portland, OR, USA; Department of Psychiatry, Oregon Health & Science University, Portland, OR, USA
| | - Rebekah Hudson
- Research & Development Service, Veterans Affairs Portland Health Care System, Portland, OR, USA
| | - Ulziibat Person
- Department of Psychiatry, Oregon Health & Science University, Portland, OR, USA
| | - K Matthew Lattal
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - Arthur A Vandenbark
- Research & Development Service, Veterans Affairs Portland Health Care System, Portland, OR, USA; Department of Neurology, Oregon Health & Science University, Portland, OR, USA; Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR, USA
| | - Renee Shirley
- Virogenomics BioDevelopment, Inc., Portland, OR, USA
| | - Marilyn Huckans
- Research & Development Service, Veterans Affairs Portland Health Care System, Portland, OR, USA; Department of Psychiatry, Oregon Health & Science University, Portland, OR, USA; Methamphetamine Research Center, Portland, OR, USA; Mental Health and Clinical Neurosciences Division, Veterans Affairs Portland Health Care System, Portland, OR, USA
| |
Collapse
|
34
|
In Vitro Approaches for Investigating the Influence of MIF on Leukocyte-Endothelial Cell Interactions Under Flow Conditions. Methods Mol Biol 2019. [PMID: 31745867 DOI: 10.1007/978-1-4939-9936-1_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
The exit of leukocytes from the bloodstream into inflamed sites involves a sequence of interactions with vascular endothelial cells, in which leukocytes, moving rapidly in flowing blood, first tether and roll on the endothelial surface before arresting and then transmigrating across the endothelial barrier. Examining the mechanisms of these interactions in human systems has involved the use of in vitro flow chamber assays, using a variety of cells and immobilized molecules as adhesive substrata. Here we describe how to perform these assays using human umbilical vein endothelial cells and human leukocytes.
Collapse
|
35
|
Investigating MIF in Mouse Model of Gout. Methods Mol Biol 2019. [PMID: 31745884 DOI: 10.1007/978-1-4939-9936-1_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Mice are widely used to assess the pathogenesis of diseases. An experimental model of gout consists of the injection of uric acid crystals into joints of mice, which reproduce inflammation and functional changes of the human disease. Uric acid crystals activate synoviocytes culminating in the release of IL-1β and neutrophil recruitment, key inflammatory elements in gouty arthritis. Since MIF plays an important role in orchestrating gout inflammation, we detail valuable procedures to investigate uric acid crystal-induced joint inflammation in mice and give options for further understanding the functions of MIF in gouty arthritis in vivo and in vitro.
Collapse
|
36
|
Using Intravital Microscopy to Study the Role of MIF in Leukocyte Trafficking In Vivo. Methods Mol Biol 2019. [PMID: 31745868 DOI: 10.1007/978-1-4939-9936-1_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
In vivo visualization of the microvasculature of the mouse cremaster muscle has been fruitful in the evaluation of the role of macrophage migration inhibitory factor in promotion of leukocyte trafficking. Here we explain how to undertake this preparation, including details on mouse anesthesia, securing intravenous access, and cremaster muscle exteriorization. We also provide information on the various microscopy modalities now available for imaging microvascular preparations of this nature.
Collapse
|
37
|
Liu A, Li H, Qi X, Wang Q, Yang B, Wu T, Yan N, Li Y, Pan Q, Gao Y, Gao L, Liu C, Zhang Y, Cui H, Li K, Wang Y, Wang X. Macrophage Migration Inhibitory Factor Triggers Inflammatory Responses During Very Virulent Infectious Bursal Disease Virus Infection. Front Microbiol 2019; 10:2225. [PMID: 31632367 PMCID: PMC6779731 DOI: 10.3389/fmicb.2019.02225] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 09/11/2019] [Indexed: 12/31/2022] Open
Abstract
Infectious bursal disease (IBD) is one of the main threats to the poultry industry worldwide. In China, very virulent IBD virus (vvIBDV) is the main prevalent virus strain, causing inflammation, immunosuppression, and high mortality in young chickens. To determine whether this acute inflammation can trigger lesions or even death in chickens, it is important to study the mechanism of vvIBDV pathogenicity. Thus, in the current study, we investigated the inflammation response, bursal lesions, and mortality in chickens caused by vvIBDV at different time points postinfection. Results showed an upregulation of proinflammatory cytokines, including interleukin-1β and interleukin-18, and macrophage infiltration in bursa in response to vvIBDV infection. High-throughput proteomic sequencing based on isobaric tags for relative and absolute quantitation showed that chicken macrophage migration inhibitory factor (chMIF) was upregulated uniquely in primary bursal cells infected with vvIBDV compared with infection by nonpathogenic attenuated IBDV. We confirmed that chMIF was upregulated by vvIBDV infection both in vivo and in vitro. Moreover, chMIF was extracellularly secreted by infected DT40 and primary bursal cells. Further experiments revealed that the secreted chMIF could induce migration of peripheral blood mononuclear cells and promote transcription of proinflammatory cytokines in chicken primary macrophages. Notably, these effects of chMIF could be reduced by using an MIF specific inhibitor. Thus, our study elucidates critical molecular determinants underlying vvIBDV-mediated initiation of acute inflammation, which might be pivotal to understand the mechanism of vvIBDV pathogenicity.
Collapse
Affiliation(s)
- Aijing Liu
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Hui Li
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xiaole Qi
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Qi Wang
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Bo Yang
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Tiantian Wu
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Nana Yan
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yue Li
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Qing Pan
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yulong Gao
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Li Gao
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Changjun Liu
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yanping Zhang
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Hongyu Cui
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Kai Li
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yongqiang Wang
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xiaomei Wang
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| |
Collapse
|
38
|
Influence of the MIF polymorphism -173G > C on Turkish postmenopausal women with osteoporosis. Z Rheumatol 2019; 77:629-632. [PMID: 28905103 DOI: 10.1007/s00393-017-0382-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
BACKGROUND MIF, a proinflammatory cytokine, contributes to the pathogenesis of acute, chronic, and autoimmune inflammatory disorders and balances the suppressive effect of glucocorticoids on the immune system. There is an interaction between bone metabolism and the immune system via the production of cytokines. We aimed to analyze the relationship between the MIF gene -173G > C promoter polymorphism and osteoporosis. METHODS In this case-control study performed in a university hospital, 286 samples (136 women with osteoporosis and 150 healthy age-matched controls) participated. The polymerase chain reaction-based restriction fragment length polymorphism (PCR-RFLP) assay was used to genotype the MIF gene polymorphism. The alleles and genotypes frequencies of patients and controls were compared using the χ2 test. RESULTS The genotype frequencies of MIF gene -173G > C polymorphism showed statistically significant differences between patients and controls (p = 0.038). Also, the subjects carrying the variant C allele in the MIF -173 position were at significantly higher risk of osteoporosis than subjects carrying the wild-type G allele (p = 0.009, odds ratio 1.7, 95% confidence interval 1.1-2.6). CONCLUSION Our study suggested a strong association between MIF gene -173G > C polymorphism and osteoporosis in a Turkish population.
Collapse
|
39
|
Elrahman AA, Said NS, Moustafa A. Serum macrophage migration inhibitory factor levels in Hashimoto’s thyroiditis. THE EGYPTIAN JOURNAL OF INTERNAL MEDICINE 2019. [DOI: 10.4103/ejim.ejim_64_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
40
|
Bezdek S, Leng L, Busch H, Mousavi S, Rades D, Dahlke M, Zillikens D, Bucala R, Sadik CD. Macrophage Migration Inhibitory Factor (MIF) Drives Murine Psoriasiform Dermatitis. Front Immunol 2018; 9:2262. [PMID: 30333830 PMCID: PMC6176003 DOI: 10.3389/fimmu.2018.02262] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 09/11/2018] [Indexed: 01/31/2023] Open
Abstract
The immunomodulator Macrophage Migration Inhibitory Factor (MIF) exerts pleiotropic immunomodulatory activities and has been implicated in the pathogenesis of diverse inflammatory diseases. Expression levels of MIF are also significantly elevated in the skin and serum of psoriasis patients, but the pathogenic significance of MIF in psoriasis is unknown. We have therefore addressed the role of MIF in two mouse models of psoriasis, namely in the imiquimod-induced psoriasiform dermatitis (IIPD) and the IL-23-induced dermatitis model. Daily treatment with Aldara™ cream, containing imiquimod, markedly increased the abundance of MIF in the skin and generated a cellular skin expression pattern of MIF closely resembling that in human plaque psoriasis. Deficiency in MIF significantly alleviated IIPD. On the clinical level, all hallmarks of psoriasiform dermatitis, including erythema, skin infiltration, and desquamation were reduced in Mif−/− mice. On the histopathological level, MIF deficiency decreased keratinocyte hyperproliferation, inflammatory cell infiltration, specifically with respect to monocyte-derived cells, and dermal angiogenesis, suggesting that MIF may be involved in the pathogenesis of psoriasiform dermatitis through several mechanisms. Similarly, MIF deficiency also significantly reduced disease in the IL-23-induced dermatitis model, suggesting that MIF is involved in the pathogenic pathways activated by IL-23 and required to achieve full-blown psoriasiform dermatitis. Collectively, our results lend support to a possible disease-promoting role of MIF in psoriasis, which should be further investigated.
Collapse
Affiliation(s)
- Siegfried Bezdek
- Department of Dermatology, Allergy, and Venereology, University of Lübeck, Lübeck, Germany
| | - Lin Leng
- Departments of Medicine and Pathology, Yale University School of Medicine, New Haven, CT, United States
| | - Hauke Busch
- Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany.,Center for Research on Inflammation of the Skin (CRIS), University of Lübeck, Lübeck, Germany
| | - Sadegh Mousavi
- Department of Dermatology, Allergy, and Venereology, University of Lübeck, Lübeck, Germany
| | - Dirk Rades
- Department of Radiation Oncology, University of Lübeck, Lübeck, Germany
| | - Markus Dahlke
- Department of Radiation Oncology, University of Lübeck, Lübeck, Germany
| | - Detlef Zillikens
- Department of Dermatology, Allergy, and Venereology, University of Lübeck, Lübeck, Germany.,Center for Research on Inflammation of the Skin (CRIS), University of Lübeck, Lübeck, Germany
| | - Richard Bucala
- Departments of Medicine and Pathology, Yale University School of Medicine, New Haven, CT, United States
| | - Christian D Sadik
- Department of Dermatology, Allergy, and Venereology, University of Lübeck, Lübeck, Germany.,Center for Research on Inflammation of the Skin (CRIS), University of Lübeck, Lübeck, Germany
| |
Collapse
|
41
|
Wu ZS, Lo JJ, Wu SH, Wang CZ, Chen RF, Lee SS, Chai CY, Huang SH. Early Hyperbaric Oxygen Treatment Attenuates Burn-Induced Neuroinflammation by Inhibiting the Galectin-3-Dependent Toll-Like Receptor-4 Pathway in a Rat Model. Int J Mol Sci 2018; 19:ijms19082195. [PMID: 30060489 PMCID: PMC6121430 DOI: 10.3390/ijms19082195] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 07/22/2018] [Accepted: 07/25/2018] [Indexed: 02/07/2023] Open
Abstract
Hyperbaric oxygen (HBO) treatment has been proven to decrease neuroinflammation in rats. This study aimed to determine the potential mechanism underlying the anti-inflammatory effects of HBO treatment on burn-induced neuroinflammation in rats. Thirty-six adult male Sprague-Dawley (SD) rats were randomly assigned to the following six groups (n = 6 per group): (1) sham burn with sham HBO treatment; (2) sham burn with HBO treatment; (3) burn with one-week sham HBO treatment; (4) burn with two-week sham HBO treatment; (5) burn with one-week HBO treatment; and (6) burn with two-week HBO treatment. SD rats that received third-degree burn injury were used as a full-thickness burn injury model. Subsequently, we analyzed the expression of proteins involved in the galectin-3 (Gal-3)-dependent Toll-like receptor-4 (TLR-4) pathway through enzyme-linked immunosorbent assay (ELISA), immunohistochemistry (IHC) analysis, and Western blotting. A behavior test was also conducted, which revealed that HBO treatment significantly suppressed mechanical hypersensitivity in the burn with HBO treatment group compared to the burn with sham HBO treatment group (p < 0.05). ELISA results showed that tumor necrosis factor α (TNF-α) and interleukin 1 beta (IL-1β) levels in the dorsal horn of the spinal cord and the skin significantly decreased in the burn with HBO treatment group compared with the burn with sham HBO treatment group (p < 0.05). Western blotting results demonstrated that HBO treatment significantly reduced the expression of Gal-3 and TLR-4 in the dorsal horn of the spinal cord in the burn with HBO treatment group compared with the burn with sham HBO treatment group (p < 0.05). IHC analysis showed that the expression of Gal-3, TLR-4, CD68 and CD45 in the dorsal horn of the spinal cord was significantly lower in the burn with HBO treatment group than in the burn with sham HBO treatment group (p < 0.05), and the expression of CD68 and macrophage migration inhibitory factor (MIF) in the right hind paw skin was significantly lower. The expression of vimentin and fibroblast growth factor in the right hind paw skin was significantly higher after HBO treatment (p < 0.05). This study proved that early HBO treatment relieves neuropathic pain, inhibits the Gal-3-dependent TLR-4 pathway, and suppresses microglia and macrophage activation in a rat model.
Collapse
Affiliation(s)
- Zong-Sheng Wu
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, 807 Kaohsiung, Taiwan.
| | - Jing-Jou Lo
- School of Post-Baccalaureate Medicine, College of Medicine, Kaohsiung Medical University, 807 Kaohsiung, Taiwan.
| | - Sheng-Hua Wu
- Department of Anesthesiology, Kaohsiung Medical University Hospital, 807 Kaohsiung, Taiwan.
- Department of Anesthesiology, Kaohsiung Municipal Hsiao-Kang Hospital, Kaohsiung Medical University, 807 Kaohsiung, Taiwan.
| | - Chau-Zen Wang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, 807 Kaohsiung, Taiwan.
- Department of Physiology, College of Medicine, Kaohsiung Medical University, 807 Kaohsiung, Taiwan.
- Department of Medical Research, Kaohsiung Medical University Hospital, 807 Kaohsiung, Taiwan.
- Orthopaedic Research Center, College of Medicine, Kaohsiung Medical University, 807 Kaohsiung, Taiwan.
| | - Rong-Fu Chen
- Division of Plastic Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan, 807 Kaohsiung, Taiwan.
| | - Su-Shin Lee
- Division of Plastic Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan, 807 Kaohsiung, Taiwan.
- Department of Surgery, School of Medicine, College of Medicine, Kaohsiung Medical University, 807 Kaohsiung, Taiwan.
| | - Chee-Yin Chai
- Department of Pathology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, 807 Kaohsiung, Taiwan.
| | - Shu-Hung Huang
- Division of Plastic Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan, 807 Kaohsiung, Taiwan.
- Department of Surgery, School of Medicine, College of Medicine, Kaohsiung Medical University, 807 Kaohsiung, Taiwan.
- Hyperbaric Oxygen Therapy Room, Kaohsiung Medical University Hospital, Kaohsiung Medical University, 807 Kaohsiung, Taiwan.
| |
Collapse
|
42
|
Salminen A, Kauppinen A, Kaarniranta K. Myeloid-derived suppressor cells (MDSC): an important partner in cellular/tissue senescence. Biogerontology 2018; 19:325-339. [PMID: 29959657 DOI: 10.1007/s10522-018-9762-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 06/27/2018] [Indexed: 01/10/2023]
Abstract
The aging process is associated with a low-grade chronic inflammation and the accumulation of senescent cells into tissues. Diverse stresses can trigger cellular senescence, a cell fate characterized by cell-cycle arrest and flat morphology. Oncogenic signaling can also induce cellular senescence which has been termed oncogene-induced senescence (OIS). Senescent cells display a pro-inflammatory phenotype which has been called the senescence-associated secretory phenotype (SASP). The secretomes associated with SASP contain colony-stimulating factors and chemokines which stimulate the generation of myeloid-derived suppressor cells (MDSC) by enhancing myelopoiesis in bone marrow and spleen. Enhanced myelopoiesis and increased level of MDSCs have been observed in bone marrow, spleen, and blood in both tumor-bearing and aged mice. Immunosuppressive MDSCs are recruited via chemotaxis into inflamed tissues where they proliferate and consequently suppress acute inflammatory reactions by inhibiting the functions of distinct components of innate and adaptive immunity. For instance, MDSCs stimulate the activity of immunosuppressive regulatory T-cells (Tregs). They also increase the expression of amino acid catabolizing enzymes and the secretion of anti-inflammatory cytokines, e.g. IL-10 and TGF-β, and reactive oxygen species (ROS). On the other hand, the accumulation of MDSCs into tissues exerts harmful effects in chronic pathological disorders, e.g. tumors and many age-related diseases, since the immunosuppression induced by MDSCs impairs the clearance of senescent and cancer cells and also disturbs the maintenance of energy metabolism and tissue proteostasis. The co-operation between senescent cells and immunosuppressive MDSCs regulates not only tumorigenesis and chronic inflammatory disorders but it also might promote inflammaging during the aging process.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland.
| | - Anu Kauppinen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland
| | - Kai Kaarniranta
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland.,Department of Ophthalmology, Kuopio University Hospital (KYS), P.O. Box 100, 70029, Kuopio, Finland
| |
Collapse
|
43
|
Yang T, Wang Y, Dai W, Zheng X, Wang J, Song S, Fang L, Zhou J, Wu W, Gu J. Increased B3GALNT2 in hepatocellular carcinoma promotes macrophage recruitment via reducing acetoacetate secretion and elevating MIF activity. J Hematol Oncol 2018; 11:50. [PMID: 29618368 PMCID: PMC5885466 DOI: 10.1186/s13045-018-0595-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 03/20/2018] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) ranks as the sixth most prevalent cancer and the third leading cause of tumor-related death, so it is urgently needed to discover efficient markers and targets for therapy. β-1,3-N-acetylgalactosaminyltransferase II (B3GALNT2) belongs to the β-1,3-glycosyltransferases (b3GT) family and has been reported to regulate development of both normal and tumor tissues. However, studies on the functions of B3GALNT2 in cancer are quite limited. Here we investigated the potential role of B3GALNT2 in HCC progression. METHODS Western blot, qPCR, and immunohistochemistry assays were performed to quantify the relative expression of B3GALNT2 in HCC. The functions of B3GALNT2 in tumor progression were evaluated in HCC cell lines and nude mice. Metabolomics analysis was applied to detect alternatively expressed small molecules. Enzyme activity assays were employed to determine the tautomerase activity of macrophage inhibitory factor (MIF). RESULTS For expression analysis, higher levels of B3GALNT2 were observed in tumor tissues compared with adjacent normal tissues, and upregulation of B3GALNT2 correlated with increased tumor size and worse overall survival. Changing levels of B3GALNT2 did not influence cell viability in vitro but promoted tumor growth via enhancing macrophage recruitment in vivo. Furthermore, acetoacetate was identified as a key molecule in B3GALNT2-mediated macrophage recruitment. Mechanistically, B3GALNT2 downregulated expression of enzymes involved in acetoacetate-related metabolism, and reduction of acetoacetate revived MIF activity, thus promoting macrophage recruitment. CONCLUSIONS This study evaluated B3GALNT2 as a tumor marker in HCC and revealed functions of B3GALNT2 in metabolic transformation and microenvironmental remodeling in HCC. Mechanistically, B3GALNT2 reduced expression of some metabolic enzymes and thus downregulated levels of secreted acetoacetate. This relieved the activity of MIF and enhanced macrophage recruitment to promote tumor growth.
Collapse
Affiliation(s)
- Tianxiao Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China.,Key Laboratory of Glycoconjugate Research Ministry of Health, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yilin Wang
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wenjuan Dai
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China.,Key Laboratory of Glycoconjugate Research Ministry of Health, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Xixi Zheng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China.,Key Laboratory of Glycoconjugate Research Ministry of Health, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jing Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China.,Key Laboratory of Glycoconjugate Research Ministry of Health, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Shushu Song
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China.,Key Laboratory of Glycoconjugate Research Ministry of Health, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Lan Fang
- Shanghai Tenth People's Hospital of Tongji University, School of Medicine and School of Life Science and Technology, Tongji University, Shanghai, China
| | - Jiangfan Zhou
- Department of Hepatobiliary, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Weicheng Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China. .,Key Laboratory of Glycoconjugate Research Ministry of Health, School of Basic Medical Sciences, Fudan University, Shanghai, China.
| | - Jianxin Gu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China.,Key Laboratory of Glycoconjugate Research Ministry of Health, School of Basic Medical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
44
|
Le Hiress M, Akagah B, Bernadat G, Tu L, Thuillet R, Huertas A, Phan C, Fadel E, Simonneau G, Humbert M, Jalce G, Guignabert C. Design, Synthesis, and Biological Activity of New N-(Phenylmethyl)-benzoxazol-2-thiones as Macrophage Migration Inhibitory Factor (MIF) Antagonists: Efficacies in Experimental Pulmonary Hypertension. J Med Chem 2018. [PMID: 29526099 DOI: 10.1021/acs.jmedchem.7b01312] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Macrophage migration inhibitory factor (MIF) is a key pleiotropic mediator and a promising therapeutic target in cancer as well as in several inflammatory and cardiovascular diseases including pulmonary arterial hypertension (PAH). Here, a novel series of N-(phenylmethyl)-benzoxazol-2-thiones 5-32 designed to target the MIF tautomerase active site was synthesized and evaluated for its effects on cell survival. Investigation of structure-activity relationship (SAR) particularly at the 5-position of the benzoxazole core led to the identification of 31 that potently inhibits cell survival in DU-145 prostate cancer cells and pulmonary endothelial cells derived from patients with idiopathic PAH (iPAH-ECs), two cell lines for which survival is MIF-dependent. Molecular docking studies helped to interpret initial SAR related to MIF tautomerase inhibition and propose preferred binding mode for 31 within the MIF tautomerase active site. Interestingly, daily treatment with 31 started 2 weeks after a subcutaneous monocrotaline injection regressed established pulmonary hypertension in rats.
Collapse
Affiliation(s)
- Morane Le Hiress
- INSERM UMR_S 999, Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson , France.,Université Paris-Sud et Université Paris-Saclay , 94270 Le Kremlin-Bicêtre , France
| | - Bernardin Akagah
- MIFCARE , 24 rue du Faubourg Saint-Jacques , 75014 Paris , France
| | - Guillaume Bernadat
- BioCIS , Université Paris-Sud, CNRS, Université Paris-Saclay , 92290 Châtenay-Malabry , France
| | - Ly Tu
- INSERM UMR_S 999, Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson , France.,Université Paris-Sud et Université Paris-Saclay , 94270 Le Kremlin-Bicêtre , France
| | - Raphaël Thuillet
- INSERM UMR_S 999, Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson , France.,Université Paris-Sud et Université Paris-Saclay , 94270 Le Kremlin-Bicêtre , France
| | - Alice Huertas
- INSERM UMR_S 999, Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson , France.,Université Paris-Sud et Université Paris-Saclay , 94270 Le Kremlin-Bicêtre , France.,AP-HP, Service de Pneumologie, Centre de Référence de l'Hypertension Pulmonaire Sévère, DHU Thorax Innovation, Hôpital Bicêtre, 94270 Le Kremlin-Bicêtre , France
| | - Carole Phan
- INSERM UMR_S 999, Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson , France.,Université Paris-Sud et Université Paris-Saclay , 94270 Le Kremlin-Bicêtre , France
| | - Elie Fadel
- INSERM UMR_S 999, Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson , France.,Université Paris-Sud et Université Paris-Saclay , 94270 Le Kremlin-Bicêtre , France
| | - Gérald Simonneau
- INSERM UMR_S 999, Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson , France.,Université Paris-Sud et Université Paris-Saclay , 94270 Le Kremlin-Bicêtre , France.,AP-HP, Service de Pneumologie, Centre de Référence de l'Hypertension Pulmonaire Sévère, DHU Thorax Innovation, Hôpital Bicêtre, 94270 Le Kremlin-Bicêtre , France
| | - Marc Humbert
- INSERM UMR_S 999, Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson , France.,Université Paris-Sud et Université Paris-Saclay , 94270 Le Kremlin-Bicêtre , France.,AP-HP, Service de Pneumologie, Centre de Référence de l'Hypertension Pulmonaire Sévère, DHU Thorax Innovation, Hôpital Bicêtre, 94270 Le Kremlin-Bicêtre , France
| | - Gaël Jalce
- MIFCARE , 24 rue du Faubourg Saint-Jacques , 75014 Paris , France
| | - Christophe Guignabert
- INSERM UMR_S 999, Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson , France.,Université Paris-Sud et Université Paris-Saclay , 94270 Le Kremlin-Bicêtre , France
| |
Collapse
|
45
|
Stijlemans B, De Baetselier P, Magez S, Van Ginderachter JA, De Trez C. African Trypanosomiasis-Associated Anemia: The Contribution of the Interplay between Parasites and the Mononuclear Phagocyte System. Front Immunol 2018; 9:218. [PMID: 29497418 PMCID: PMC5818406 DOI: 10.3389/fimmu.2018.00218] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 01/25/2018] [Indexed: 12/16/2022] Open
Abstract
African trypanosomosis (AT) is a chronically debilitating parasitic disease of medical and economic importance for the development of sub-Saharan Africa. The trypanosomes that cause this disease are extracellular protozoan parasites that have developed efficient immune escape mechanisms to manipulate the entire host immune response to allow parasite survival and transmission. During the early stage of infection, a profound pro-inflammatory type 1 activation of the mononuclear phagocyte system (MPS), involving classically activated macrophages (i.e., M1), is required for initial parasite control. Yet, the persistence of this M1-type MPS activation in trypanosusceptible animals causes immunopathology with anemia as the most prominent pathological feature. By contrast, in trypanotolerant animals, there is an induction of IL-10 that promotes the induction of alternatively activated macrophages (M2) and collectively dampens tissue damage. A comparative gene expression analysis between M1 and M2 cells identified galectin-3 (Gal-3) and macrophage migration inhibitory factor (MIF) as novel M1-promoting factors, possibly acting synergistically and in concert with TNF-α during anemia development. While Gal-3 enhances erythrophagocytosis, MIF promotes both myeloid cell recruitment and iron retention within the MPS, thereby depriving iron for erythropoiesis. Hence, the enhanced erythrophagocytosis and suppressed erythropoiesis lead to anemia. Moreover, a thorough investigation using MIF-deficient mice revealed that the underlying mechanisms in AT-associated anemia development in trypanosusceptible and tolerant animals are quite distinct. In trypanosusceptible animals, anemia resembles anemia of inflammation, while in trypanotolerant animals’ hemodilution, mainly caused by hepatosplenomegaly, is an additional factor contributing to anemia. In this review, we give an overview of how trypanosome- and host-derived factors can contribute to trypanosomosis-associated anemia development with a focus on the MPS system. Finally, we will discuss potential intervention strategies to alleviate AT-associated anemia that might also have therapeutic potential.
Collapse
Affiliation(s)
- Benoit Stijlemans
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium.,Myeloid Cell Immunology Laboratory, VIB Center for Inflammation Research, Brussels, Belgium
| | - Patrick De Baetselier
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium.,Myeloid Cell Immunology Laboratory, VIB Center for Inflammation Research, Brussels, Belgium
| | - Stefan Magez
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium.,Laboratory for Biomedical Research, Ghent University Global Campus, Incheon, South Korea
| | - Jo A Van Ginderachter
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium.,Myeloid Cell Immunology Laboratory, VIB Center for Inflammation Research, Brussels, Belgium
| | - Carl De Trez
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| |
Collapse
|
46
|
Haque MA, Jantan I, Harikrishnan H. Zerumbone suppresses the activation of inflammatory mediators in LPS-stimulated U937 macrophages through MyD88-dependent NF-κB/MAPK/PI3K-Akt signaling pathways. Int Immunopharmacol 2018; 55:312-322. [PMID: 29310107 DOI: 10.1016/j.intimp.2018.01.001] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 12/30/2017] [Accepted: 01/02/2018] [Indexed: 11/18/2022]
Abstract
Zerumbone (ZER), isolated mainly from the Zingiber zerumbet (Z. zerumbet) rhizomes was found to be effective against numerous inflammatory and immune disorders, however, the molecular and biochemical mechanisms underlying its anti-inflammatory and immunosuppressive properties have not been well studied. This study was carried out to examine the profound effects of ZER on inflammatory mediated MyD88-dependent NF-κB/MAPK/PI3K-Akt signaling pathways in LPS-stimulated U937 human macrophages. ZER significantly suppressed the up-regulation pro-inflammatory mediators, TNF-α, IL-1β, PGE2, and COX-2 protein in LPS-induced human macrophages. Moreover, ZER significantly downregulated the phosphorylation of NF-κB (p65), IκBα, and IKKα/β as well as restored the degradation of IκBα. ZER correspondingly showed remarkable attenuation of the expression of Akt, JNK, ERK, and p38 MAPKs phosphorylation in a concentration-dependent manner. ZER also diminished the expression of upstream signaling molecules TLR4 and MyD88, which are prerequisite for the NF-κB, MAPK and PI3K-Akt activation. Additionally, quantification of relative gene expression of TNF-α, IL-1β, and COX-2 indicated that, at a higher dose (50μM), ZER significantly downregulated the elevated mRNA transcription levels of the stated pro-inflammatory markers in LPS-stimulated U937 macrophages. The strong suppressive effects of ZER on the activation of inflammatory markers in the macrophages via MyD88-dependent NF-κB/MAPK/PI3K-Akt signaling pathways suggest that ZER can be a preventive and potent therapeutic candidate for the management of various inflammatory-mediated immune disorders.
Collapse
Affiliation(s)
- Md Areeful Haque
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, 50300 Kuala Lumpur, Malaysia
| | - Ibrahim Jantan
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, 50300 Kuala Lumpur, Malaysia.
| | - Hemavathy Harikrishnan
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, 50300 Kuala Lumpur, Malaysia
| |
Collapse
|
47
|
Shang ZB, Wang J, Kuai SG, Zhang YY, Ou QF, Pei H, Huang LH. Serum Macrophage Migration Inhibitory Factor as a Biomarker of Active Pulmonary Tuberculosis. Ann Lab Med 2018; 38:9-16. [PMID: 29071813 PMCID: PMC5700157 DOI: 10.3343/alm.2018.38.1.9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 05/10/2017] [Accepted: 09/20/2017] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Macrophage migration inhibitory factor (MIF), a pro-inflammatory cytokine with chemokine-like functions, has been shown to play a central role in several acute and chronic inflammatory diseases. However, limited information is available regarding the use of MIF as an inflammatory pathway marker in patients with tuberculosis. This study aimed to investigate the association of MIF with IFN-γ and TNF-α in active pulmonary tuberculosis (APTB) following anti-tuberculosis treatment. METHODS The MIF, TNF-α, and IFN-γ serum levels were determined in 47 patients with APTB by cytokine-specific ELISA at four phases: prior to anti-tuberculosis drug treatment (baseline), and following 2, 4, and 6 months of treatment. In addition, we measured the MIF, TNF-α, and IFN-γ serum levels in 50 health controls. RESULTS MIF serum levels were significantly elevated (P<0.05) in patients with APTB prior to treatment compared with that in control subjects, and TNF-α ≥449.7 pg/mL was associated with high MIF levels (≥13.1 ng/mL). MIF levels were significantly reduced (P<0.01) following 2, 4, and 6 months of treatment, with variations in TNF-α and IFN-γ serum levels. MIF levels were positively correlated with the paired TNF-α level at baseline (r=0.1103, P=0.0316) and following 6 months of treatment (r=0.09569, P=0.0364). CONCLUSIONS A reduction in the MIF serum levels in patients with APTB following anti-tuberculosis treatment may positively affect host immune protection against Mycobacterium tuberculosis infection. Thus, serum MIF levels may constitute a useful marker for assessing therapy effectiveness in patients with APTB.
Collapse
Affiliation(s)
- Zhong Bo Shang
- Department of Clinical Laboratory, Wuxi Huishan People's Hospital, Wuxi, Jiangsu, China
| | - Jun Wang
- Department of Clinical Laboratory, The Fifth People's Hospital of Wuxi, Affiliated to Jiangnan University, Wuxi, Jiangsu, China
| | - Shou Gang Kuai
- Department of Clinical Laboratory, Wuxi Huishan People's Hospital, Wuxi, Jiangsu, China
- Department of Clinical Laboratory, The Fifth People's Hospital of Wuxi, Affiliated to Jiangnan University, Wuxi, Jiangsu, China.
| | - Yin Yin Zhang
- Department of Clinical Laboratory, The Fifth People's Hospital of Wuxi, Affiliated to Jiangnan University, Wuxi, Jiangsu, China
| | - Qin Fang Ou
- Department of Respiratory Medicine, The Fifth People's Hospital of Wuxi, Affiliated to Jiangnan University, Wuxi, Jiangsu, China
| | - Hao Pei
- Department of Clinical Laboratory, The Fifth People's Hospital of Wuxi, Affiliated to Jiangnan University, Wuxi, Jiangsu, China
| | - Li Hua Huang
- Department of Respiratory Medicine, The Fifth People's Hospital of Wuxi, Affiliated to Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
48
|
Nikołajuk A, Matulewicz N, Stefanowicz M, Karczewska-Kupczewska M. Serum Matrix Metalloproteinase 9 and Macrophage Migration Inhibitory Factor (MIF) Are Increased in Young Healthy Nonobese Subjects with Positive Family History of Type 2 Diabetes. Int J Endocrinol 2018; 2018:3470412. [PMID: 30302090 PMCID: PMC6158960 DOI: 10.1155/2018/3470412] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 08/08/2018] [Indexed: 12/13/2022] Open
Abstract
Insulin resistance increases the risk for cardiovascular disease (CVD) even in the absence of classic risk factors, such as hyperglycemia, hypertension, dyslipidemia, and obesity. Low-grade chronic inflammatory state is associated both with insulin resistance and atherosclerosis. An increased circulating level of proinflammatory proatherogenic factors and biomarkers of endothelial activation was observed in diabetes and CVD. The aim of our study was to assess serum proatherogenic and proinflammatory factors in young healthy nonobese subjects with positive family history of type 2 diabetes. We studied 74 young healthy nonobese subjects with normal glucose tolerance (age < 35 years, BMI < 30 kg/m2), 29 with positive family history of type 2 diabetes (relatives, 25 males and 4 females) and 45 subjects without family history of diabetes (control group, 39 males and 6 females). Hyperinsulinemic-euglycemic clamp was performed, and serum concentrations of monocyte chemoattractant protein-1 (MCP-1), interleukin 18 (IL-18), macrophage inhibitory cytokine 1 (MIC-1), macrophage migration inhibitory factor (MIF), matrix metalloproteinase (MMP-9), and soluble forms of adhesion molecules were measured. Relatives had markedly lower insulin sensitivity (p = 0.019) and higher serum MMP-9 (p < 0.001) and MIF (p = 0.006), but not other chemokines and biomarkers of endothelial function. Insulin sensitivity correlated negatively with serum MMP-9 (r = -0.23, p = 0.045). Our data show that young healthy subjects with positive family history of type 2 diabetes already demonstrate an increase in some nonclassical cardiovascular risk factors.
Collapse
Affiliation(s)
- Agnieszka Nikołajuk
- Department of Prophylaxis of Metabolic Diseases, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Natalia Matulewicz
- Department of Metabolic Diseases, Medical University of Białystok, Białystok, Poland
| | - Magdalena Stefanowicz
- Department of Metabolic Diseases, Medical University of Białystok, Białystok, Poland
| | - Monika Karczewska-Kupczewska
- Department of Prophylaxis of Metabolic Diseases, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
- Department of Internal Medicine and Metabolic Disorders, Medical University of Białystok, Białystok, Poland
| |
Collapse
|
49
|
Döring Y, Noels H, Weber C. Potential cell-specific functions of CXCR4 in atherosclerosis. Hamostaseologie 2017; 36:97-102. [DOI: 10.5482/hamo-14-10-0054] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Accepted: 11/27/2014] [Indexed: 11/05/2022] Open
Abstract
ZusammenfassungDer Chemokinrezeptor CXCR4 and sein Ligand CXCL12 bilden eine wichtige Achse in der Regulation von Zellfunktionen bei normaler Homöostase und bei Erkrankungen. Zusätzlich kann der atypische CXCL12 Rezeptor CXCR7 die Verfügbarkeit und Funktion von CXCL12 modulieren. Neben ihrer Rolle in der Mobilisierung von Stamm- und Vorläuferzellen, können CXCR4 und CXCL12 auch die Entwicklung der Atherosklerose über verschiedene Zellfunktionen beeinflussen. Dieser kurze Übersichtsartikel fasst das gegenwärtige Wissen zu den zellspezifischen Funktionen von CXCL12 und den Rezeptoren CXCR4 und CXCR7 mit möglichen Implikationen für die Entstehung und Progression der Atherosklerose zusammen
Collapse
|
50
|
Liu T, Liu F, Peng LW, Chang L, Jiang YM. The Peritoneal Macrophages in Inflammatory Diseases and Abdominal Cancers. Oncol Res 2017; 26:817-826. [PMID: 29237519 PMCID: PMC7844755 DOI: 10.3727/096504017x15130753659625] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Peritoneal macrophages (PMs) are the major cell type of peritoneal cells that participate in multiple aspects of innate and acquired immunity in the peritoneal cavity. PMs have an ability to release a large amount of proinflammatory and anti-inflammatory cytokines and therefore play a critical role in regulating the differentiation of innate immune cells and inflammatory T cells. Accumulating studies demonstrate that the immunological reactions and inflammatory responses of PMs are strongly related to the pathogenic processes of various inflammatory diseases and abdominal cancers. Consequently, the regulation of PM activation has gradually emerged as a promising target for immunotherapy, and better understanding of the distinctly biological function of PMs in individual diseases is crucial for designing specific and effective therapeutic agents. This review covers the characterization and immunological function of PMs in hosts with inflammatory diseases and abdominal cancers.
Collapse
Affiliation(s)
- Ting Liu
- Department of Laboratory Medicine, West China Second University Hospital, and Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Sichuan University, Chengdu, P.R. China
| | - Fang Liu
- Department of Laboratory Medicine, West China Second University Hospital, and Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Sichuan University, Chengdu, P.R. China
| | - Lei-Wen Peng
- Department of Laboratory Medicine, West China Second University Hospital, and Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Sichuan University, Chengdu, P.R. China
| | - Li Chang
- Department of Laboratory Medicine, West China Second University Hospital, and Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Sichuan University, Chengdu, P.R. China
| | - Yong-Mei Jiang
- Department of Laboratory Medicine, West China Second University Hospital, and Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Sichuan University, Chengdu, P.R. China
| |
Collapse
|