1
|
Dos Santos Dias L, Lionakis MS. IL-17: A Critical Cytokine for Defense against Oral Candidiasis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:1049-1051. [PMID: 39374468 DOI: 10.4049/jimmunol.2400510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 08/20/2024] [Indexed: 10/09/2024]
Abstract
This Pillars of Immunology article is a commentary on "Th17 cells and IL-17 receptor signaling are essential for mucosal host defense against oral candidiasis," a pivotal article written by H. R. Conti, F. Shen, N. Nayyar, E. Stocum, J. N. Sun, M. J. Lindemann, A. W. Ho, J. H. Hai, J. J . Yu, J. W. Jung, S. G. Filler, P. Masso-Welch, M. Edgerton, and S. L. Gaffen, and published in The Journal of Experimental Medicine in 2009. https://doi.org/10.1084/jem.20081463.
Collapse
Affiliation(s)
- Lucas Dos Santos Dias
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology & Microbiology (LCIM), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Michail S Lionakis
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology & Microbiology (LCIM), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| |
Collapse
|
2
|
Bulgur D, Moura RM, Ribot JC. Key actors in neuropathophysiology: The role of γδ T cells. Eur J Immunol 2024:e2451055. [PMID: 39240039 DOI: 10.1002/eji.202451055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/07/2024]
Abstract
The neuroimmune axis has been the focus of many studies, with special emphasis on the interactions between the central nervous system and the different immune cell subsets. T cells are namely recognized to play a critical role due to their interaction with nerves, by secreting cytokines and neurotrophins, which regulate the development, function, and survival of neurons. In this context, γδ T cells are particularly relevant, as they colonize specific tissues, namely the meninges, and have a wide variety of complex functions that balance physiological systems. Notably, γδ T cells are not only key components for maintaining brain homeostasis but are also responsible for triggering or preventing inflammatory responses in various pathologies, including neurodegenerative diseases as well as neuropsychiatric and developmental disorders. Here, we provide an overview of the current state of the art on the contribution of γδ T cells in neuropathophysiology and delve into the molecular mechanisms behind it. We aim to shed light on γδ T cell functions in the central nervous system while highlighting upcoming challenges in the field and providing new clues for potential therapeutic strategies.
Collapse
Affiliation(s)
- Deniz Bulgur
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa Avenida Professor Egas Moniz, Lisbon, 1649-028, Portugal
| | - Raquel Macedo Moura
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa Avenida Professor Egas Moniz, Lisbon, 1649-028, Portugal
| | - Julie C Ribot
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa Avenida Professor Egas Moniz, Lisbon, 1649-028, Portugal
| |
Collapse
|
3
|
Chojnacka-Purpurowicz J, Owczarczyk-Saczonek A, Nedoszytko B. The Role of Gamma Delta T Lymphocytes in Physiological and Pathological Condition-Focus on Psoriasis, Atopic Dermatitis, Autoimmune Disorders, Cancer and Lymphomas. Int J Mol Sci 2024; 25:7960. [PMID: 39063202 PMCID: PMC11277122 DOI: 10.3390/ijms25147960] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/13/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
Gamma delta (γδ) T cells are a heterogeneous population of cells that play roles in inflammation, host tissue repair, clearance of viral and bacterial pathogens, regulation of immune processes, and tumor surveillance. Recent research suggests that these are the main skin cells that produce interleukin-17 (I-17). Furthermore, γδ T cells exhibit memory-cell-like characteristics that mediate repeated episodes of psoriatic inflammation. γδ T cells are found in epithelial tissues, where many cancers develop. There, they participate in antitumor immunity as cytotoxic cells or as immune coordinators. γδ T cells also participate in host defense, immune surveillance, and immune homeostasis. The aim of this review is to present the importance of γδ T cells in physiological and pathological diseases, such as psoriasis, atopic dermatitis, autoimmune diseases, cancer, and lymphoma.
Collapse
Affiliation(s)
- Joanna Chojnacka-Purpurowicz
- Department of Dermatology, Sexually Transmitted Diseases and Clinical Immunology, The University of Warmia and Mazury, 10-719 Olsztyn, Poland;
| | - Agnieszka Owczarczyk-Saczonek
- Department of Dermatology, Sexually Transmitted Diseases and Clinical Immunology, The University of Warmia and Mazury, 10-719 Olsztyn, Poland;
| | - Bogusław Nedoszytko
- Department of Medical Laboratory Diagnostics–Fahrenheit Biobank BBMRI.pl, Medical University of Gdansk, 3A M. Skłodowskiej-Curie Street, 80-210 Gdansk, Poland;
- Molecular Laboratory, Invicta Fertility and Reproductive Center, 81-740 Sopot, Poland
| |
Collapse
|
4
|
Rodríguez-Míguez Y, Lozano-Ordaz V, Ortiz-Cabrera AE, Barrios-Payan J, Mata-Espinosa D, Huerta-Yepez S, Baay-Guzman G, Hernández-Pando R. Effect of IL-17A on the immune response to pulmonary tuberculosis induced by high- and low-virulence strains of Mycobacterium bovis. PLoS One 2024; 19:e0307307. [PMID: 39024223 PMCID: PMC11257284 DOI: 10.1371/journal.pone.0307307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 07/02/2024] [Indexed: 07/20/2024] Open
Abstract
Tuberculosis (TB) is an infectious, chronic, and progressive disease occurring globally. Human TB is caused mainly by Mycobacterium tuberculosis (M. tuberculosis), while the main causative agent of bovine TB is Mycobacterium bovis (M. bovis). The latter is one of the most important cattle pathogens and is considered the main cause of zoonotic TB worldwide. The mechanisms responsible for tissue damage (necrosis) during post-primary TB remain elusive. Recently, IL-17A was reported to be important for protection against M. tuberculosis infection, but it is also related to the production of an intense inflammatory response associated with necrosis. We used two M. bovis isolates with different levels of virulence and high IL-17A production to study this important cytokine's contrasting functions in a BALB/c mouse model of pulmonary TB. In the first part of the study, the gene expression kinetics and cellular sources of IL-17A were determined by real time PCR and immunohistochemistry respectively. Non-infected lungs showed low production of IL-17A, particularly by the bronchial epithelium, while lungs infected with the low-virulence 534 strain showed high IL-17A expression on Day 3 post-infection, followed by a decrease in expression in the early stage of the infection and another increase during late infection, on Day 60, when very low bacillary burdens were found. In contrast, infection with the highly virulent strain 04-303 induced a peak of IL-17A expression on Day 14 of infection, 1 week before extensive pulmonary necrosis was seen, being lymphocytes and macrophages the most important sources. In the second part of the study, the contribution of IL-17A to immune protection and pulmonary necrosis was evaluated by suppressing IL-17A via the administration of specific blocking antibodies. Infection with M. bovis strain 534 and treatment with IL-17A neutralizing antibodies did not affect mouse survival but produced a significant increase in bacillary load and a non-significant decrease in inflammatory infiltrate and granuloma area. In contrast, mice infected with the highly virulent 04-303 strain and treated with IL-17A blocking antibodies showed a significant decrease in survival, an increase in bacillary loads on Day 24 post-infection, and significantly more and earlier necrosis. Our results suggest that high expression of IL-17A is more related to protection than necrosis in a mouse model of pulmonary TB induced by M. bovis strains.
Collapse
Affiliation(s)
- Yadira Rodríguez-Míguez
- Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Departamento de Patología, Sección de Patología Experimental, Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán”, Mexico City, Mexico
| | - Vasti Lozano-Ordaz
- Departamento de Patología, Sección de Patología Experimental, Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán”, Mexico City, Mexico
| | - Angel E. Ortiz-Cabrera
- Departamento de Patología, Sección de Patología Experimental, Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán”, Mexico City, Mexico
| | - Jorge Barrios-Payan
- Departamento de Patología, Sección de Patología Experimental, Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán”, Mexico City, Mexico
| | - Dulce Mata-Espinosa
- Departamento de Patología, Sección de Patología Experimental, Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán”, Mexico City, Mexico
| | - Sara Huerta-Yepez
- Unidad de Investigación en Enfermedades Oncológicas, Hospital Infantil de México “Federico Gómez”, Mexico City, Mexico
| | - Guillermina Baay-Guzman
- Unidad de Investigación en Enfermedades Oncológicas, Hospital Infantil de México “Federico Gómez”, Mexico City, Mexico
| | - Rogelio Hernández-Pando
- Departamento de Patología, Sección de Patología Experimental, Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán”, Mexico City, Mexico
| |
Collapse
|
5
|
Wilks LR, Joshi G, Rychener N, Gill HS. Generation of Broad Protection against Influenza with Di-Tyrosine-Cross-Linked M2e Nanoclusters. ACS Infect Dis 2024; 10:1552-1560. [PMID: 38623820 DOI: 10.1021/acsinfecdis.3c00429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Tyrosine cross-linking has recently been used to produce nanoclusters (NCs) from peptides to enhance their immunogenicity. In this study, NCs were generated using the ectodomain of the ion channel Matrix 2 (M2e) protein, a conserved influenza surface antigen. The NCs were administered via intranasal (IN) or intramuscular (IM) routes in a mouse model in a prime-boost regimen in the presence of the adjuvant CpG. After boost, a significant increase in anti-M2e IgG and its subtypes was observed in the serum and lungs of mice vaccinated through the IM and IN routes; however, significant enhancement in anti-M2e IgA in lungs was observed only in the IN group. Analysis of cytokine concentrations in stimulated splenocyte cultures indicated a Th1/Th17-biased response. Mice were challenged with a lethal dose of A/California/07/2009 (H1N1pdm), A/Puerto Rico/08/1934 (H1N1), or A/Hong Kong/08/1968 (H3N2) strains. Mice that received M2e NCs + CpG were significantly protected against these strains and showed decreased lung viral titers compared with the naive mice and M2e NC-alone groups. The IN-vaccinated group showed superior protection against the H3N2 strain as compared to the IM group. This research extends our earlier efforts involving the tyrosine-based cross-linking method and highlights the potential of this technology in enhancing the immunogenicity of short peptide immunogens.
Collapse
Affiliation(s)
- Logan R Wilks
- Department of Chemical Engineering, Texas Tech University, Eighth Street and Canton Avenue, Mail Stop 3121, Lubbock, Texas 79409-3121, United States
| | - Gaurav Joshi
- Department of Chemical Engineering, Texas Tech University, Eighth Street and Canton Avenue, Mail Stop 3121, Lubbock, Texas 79409-3121, United States
| | - Natalie Rychener
- Department of Chemical Engineering, Texas Tech University, Eighth Street and Canton Avenue, Mail Stop 3121, Lubbock, Texas 79409-3121, United States
| | - Harvinder Singh Gill
- Department of Chemical Engineering, Texas Tech University, Eighth Street and Canton Avenue, Mail Stop 3121, Lubbock, Texas 79409-3121, United States
| |
Collapse
|
6
|
Reider IE, Lin E, Krouse TE, Parekh NJ, Nelson AM, Norbury CC. γδ T Cells Mediate a Requisite Portion of a Wound Healing Response Triggered by Cutaneous Poxvirus Infection. Viruses 2024; 16:425. [PMID: 38543790 PMCID: PMC10975054 DOI: 10.3390/v16030425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/07/2024] [Accepted: 03/08/2024] [Indexed: 04/01/2024] Open
Abstract
Infection at barrier sites, e.g., skin, activates local immune defenses that limit pathogen spread, while preserving tissue integrity. Phenotypically distinct γδ T cell populations reside in skin, where they shape immunity to cutaneous infection prior to onset of an adaptive immune response by conventional αβ CD4+ (TCD4+) and CD8+ (TCD8+) T cells. To examine the mechanisms used by γδ T cells to control cutaneous virus replication and tissue pathology, we examined γδ T cells after infection with vaccinia virus (VACV). Resident γδ T cells expanded and combined with recruited γδ T cells to control pathology after VACV infection. However, γδ T cells did not play a role in control of local virus replication or blockade of systemic virus spread. We identified a unique wound healing signature that has features common to, but also features that antagonize, the sterile cutaneous wound healing response. Tissue repair generally occurs after clearance of a pathogen, but viral wound healing started prior to the peak of virus replication in the skin. γδ T cells contributed to wound healing through induction of multiple cytokines/growth factors required for efficient wound closure. Therefore, γδ T cells modulate the wound healing response following cutaneous virus infection, maintaining skin barrier function to prevent secondary bacterial infection.
Collapse
Affiliation(s)
- Irene E. Reider
- Department of Microbiology & Immunology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Eugene Lin
- Department of Microbiology & Immunology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Tracy E. Krouse
- Department of Microbiology & Immunology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Nikhil J. Parekh
- Department of Microbiology & Immunology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Amanda M. Nelson
- Department of Dermatology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Christopher C. Norbury
- Department of Microbiology & Immunology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
7
|
Nanda N, Alphonse MP. From Host Defense to Metabolic Signatures: Unveiling the Role of γδ T Cells in Bacterial Infections. Biomolecules 2024; 14:225. [PMID: 38397462 PMCID: PMC10886488 DOI: 10.3390/biom14020225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/12/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
The growth of antibiotic-resistant bacterial infections necessitates focusing on host-derived immunotherapies. γδ T cells are an unconventional T cell subset, making up a relatively small portion of healthy circulating lymphocytes but a substantially increased proportion in mucosal and epithelial tissues. γδ T cells are activated and expanded in response to bacterial infection, having the capability to produce proinflammatory cytokines to recruit neutrophils and clear infection. They also play a significant role in dampening immune response to control inflammation and protecting the host against secondary challenge, making them promising targets when developing immunotherapy. Importantly, γδ T cells have differential metabolic states influencing their cytokine profile and subsequent inflammatory capacity. Though these differential metabolic states have not been well studied or reviewed in the context of bacterial infection, they are critical in understanding the mechanistic underpinnings of the host's innate immune response. Therefore, this review will focus on the context-specific host defense conferred by γδ T cells during infection with Staphylococcus aureus, Streptococcus pneumoniae, Listeria monocytogenes, and Mycobacterium tuberculosis.
Collapse
Affiliation(s)
| | - Martin P. Alphonse
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| |
Collapse
|
8
|
Chandra V, Li L, Le Roux O, Zhang Y, Howell RM, Rupani DN, Baydogan S, Miller HD, Riquelme E, Petrosino J, Kim MP, Bhat KPL, White JR, Kolls JK, Pylayeva-Gupta Y, McAllister F. Gut epithelial Interleukin-17 receptor A signaling can modulate distant tumors growth through microbial regulation. Cancer Cell 2024; 42:85-100.e6. [PMID: 38157865 PMCID: PMC11238637 DOI: 10.1016/j.ccell.2023.12.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 04/05/2023] [Accepted: 12/07/2023] [Indexed: 01/03/2024]
Abstract
Microbes influence cancer initiation, progression and therapy responsiveness. IL-17 signaling contributes to gut barrier immunity by regulating microbes but also drives tumor growth. A knowledge gap remains regarding the influence of enteric IL-17-IL-17RA signaling and their microbial regulation on the behavior of distant tumors. We demonstrate that gut dysbiosis induced by systemic or gut epithelial deletion of IL-17RA induces growth of pancreatic and brain tumors due to excessive development of Th17, primary source of IL-17 in human and mouse pancreatic ductal adenocarcinoma, as well as B cells that circulate to distant tumors. Microbial dependent IL-17 signaling increases DUOX2 signaling in tumor cells. Inefficacy of pharmacological inhibition of IL-17RA is overcome with targeted microbial ablation that blocks the compensatory loop. These findings demonstrate the complexities of IL-17-IL-17RA signaling in different compartments and the relevance for accounting for its homeostatic host defense function during cancer therapy.
Collapse
Affiliation(s)
- Vidhi Chandra
- Department of Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Le Li
- Department of Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Olivereen Le Roux
- Department of Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yu Zhang
- Department of Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rian M Howell
- Department of Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Dhwani N Rupani
- Department of Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Seyda Baydogan
- Department of Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Haiyan D Miller
- Department of Pediatrics and Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Erick Riquelme
- Department of Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Respiratory Diseases, Faculty of Medicine, Pontifical Catholic University of Chile, Santiago, Chile
| | - Joseph Petrosino
- Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Michael P Kim
- Department of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Krishna P L Bhat
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Jay K Kolls
- Department of Pediatrics and Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Yuliya Pylayeva-Gupta
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC, USA
| | - Florencia McAllister
- Department of Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Immunology, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
9
|
Sagar. Unraveling the secrets of γδ T cells with single-cell biology. J Leukoc Biol 2024; 115:47-56. [PMID: 38073484 DOI: 10.1093/jleuko/qiad131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 09/16/2023] [Accepted: 09/28/2023] [Indexed: 01/07/2024] Open
Abstract
Recent technological advancements have enabled us to study the molecular features of cellular states at the single-cell level, providing unprecedented resolution for comprehending the identity and function of a cell. By applying these techniques across multiple time frames, tissues, and diseases, we can delve deeper into the mechanisms governing the development and functions of cell lineages. In this review, I focus on γδ T cells, which are a unique and functionally nonredundant T cell lineage categorized under the umbrella of unconventional T cells. I discuss how single-cell biology is providing unique insights into their development and functions. Furthermore, I explore how single-cell methods can be used to answer several key questions about their biology. These investigations will be essential to fully understand their translational potential, including their role in cytotoxicity and tissue repair in cancer and regeneration.
Collapse
Affiliation(s)
- Sagar
- Department of Medicine II (Gastroenterology, Hepatology, Endocrinology, and Infectious Diseases), University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstraße 55, Freiburg 79106, Germany
| |
Collapse
|
10
|
Weeratunga P, Moller DR, Ho LP. Immune mechanisms of granuloma formation in sarcoidosis and tuberculosis. J Clin Invest 2024; 134:e175264. [PMID: 38165044 PMCID: PMC10760966 DOI: 10.1172/jci175264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024] Open
Abstract
Sarcoidosis is a complex immune-mediated disease characterized by clusters of immune cells called granulomas. Despite major steps in understanding the cause of this disease, many questions remain. In this Review, we perform a mechanistic interrogation of the immune activities that contribute to granuloma formation in sarcoidosis and compare these processes with its closest mimic, tuberculosis, highlighting shared and divergent immune activities. We examine how Mycobacterium tuberculosis is sensed by the immune system; how the granuloma is initiated, formed, and perpetuated in tuberculosis compared with sarcoidosis; and the role of major innate and adaptive immune cells in shaping these processes. Finally, we draw these findings together around several recent high-resolution studies of the granuloma in situ that utilized the latest advances in single-cell technology combined with spatial methods to analyze plausible disease mechanisms. We conclude with an overall view of granuloma formation in sarcoidosis.
Collapse
Affiliation(s)
- Praveen Weeratunga
- MRC Translational Immunology Discovery Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | | | - Ling-Pei Ho
- MRC Translational Immunology Discovery Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
11
|
Liu Y, Ouyang Y, You W, Liu W, Cheng Y, Mai X, Shen Z. Physiological roles of human interleukin-17 family. Exp Dermatol 2024; 33:e14964. [PMID: 37905720 DOI: 10.1111/exd.14964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 10/08/2023] [Accepted: 10/13/2023] [Indexed: 11/02/2023]
Abstract
Interleukin-17 s (IL-17s) are well-known proinflammatory cytokines, and their antagonists perform excellently in the treatment of inflammatory skin diseases such as psoriasis. However, their physiological functions have not been given sufficient attention by clinicians. IL-17s can protect the host from extracellular pathogens, maintain epithelial integrity, regulate cognitive processes and modulate adipocyte activity through distinct mechanisms. Here, we present a systematic review concerning the physiological functions of IL-17s. Our goal is not to negate the therapeutic effect of IL-17 antagonists, but to ensure their safe use and reasonably explain the possible adverse events that may occur in their application.
Collapse
Affiliation(s)
- Yucong Liu
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Ye Ouyang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Wanchun You
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Wenqi Liu
- Department of Dermatology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Yufan Cheng
- Department of Dermatology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Xinming Mai
- Medical School, Shenzhen University, Shenzhen, China
| | - Zhu Shen
- Department of Dermatology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| |
Collapse
|
12
|
Mezghiche I, Yahia-Cherbal H, Rogge L, Bianchi E. Interleukin 23 receptor: Expression and regulation in immune cells. Eur J Immunol 2024; 54:e2250348. [PMID: 37837262 DOI: 10.1002/eji.202250348] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/15/2023]
Abstract
The importance of IL-23 and its specific receptor, IL-23R, in the pathogenesis of several chronic inflammatory diseases has been established, but the underlying pathological mechanisms are not fully understood. This review focuses on IL-23R expression and regulation in immune cells.
Collapse
Affiliation(s)
| | | | - Lars Rogge
- Institut Pasteur, Université Paris Cité, Paris, France
| | | |
Collapse
|
13
|
Khorshidvand Z, Shirian S, Amiri H, Zamani A, Maghsood AH. Immunomodulatory chitosan nanoparticles for Toxoplasma gondii infection: Novel application of chitosan in complex propranolol-hydrochloride as an adjuvant in vaccine delivery. Int J Biol Macromol 2023; 253:127228. [PMID: 37839605 DOI: 10.1016/j.ijbiomac.2023.127228] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 09/28/2023] [Accepted: 10/01/2023] [Indexed: 10/17/2023]
Abstract
The study aimed to investigate the immunomodulatory effects of propranolol hydrochloride (PRO) in combination with chitosan nanoparticles (CS NPs) as an adjuvant to develop an effective vaccine against T. gondii. A total of 105 BALB/c mice were randomly divided into seven equal groups including PBS alone, CS NPs, SAG1 (Surface antigen 1), CS-SAG1 NPs, CS-PRO NPs, SAG1-PRO, and CS-SAG1-PRO NPs. The immunostimulatory effect of each adjuvant used for vaccine delivery was evaluated in a mice immunization model. The results showed that the mice immunized with CS-SAG1-PRO NPs exhibited the highest lymphocyte proliferation rate, along with increased secretion of IFN-γ, TNF-α, IL-6, IL-12, IL-17, and IL-23, as well as elevated levels of protective cytokines such as TGF-β, IL-27, and IL-10. Although, the CS-SAG1-PRO NPs immunized mice showed the highest level of T. gondii specific IgG compared to the other groups, a significant production of IgG2a and IgG1 was observed in the sera of mice immunized with the CS-SAG1-PRO NPs compared to the other group (p <0.001). The higher IgG2a/IgG1 ratio observed in the CS-SAG1-PRO NPs group indicates a bias towards Th1 cell polarization, suggesting the promotion of Th1 cell-mediated immune responses. Considering the combination of the highest lymphocyte proliferation and survival rates, IgG2a/IgG1 ratio, and cytokine levels in the mice immunized with CS-SAG1-PRO NPs, this approach holds promise for immunostimulation and vaccine delivery against T. gondii infection.
Collapse
Affiliation(s)
- Zohreh Khorshidvand
- Department of Parasitology and Mycology, School of Medicine Hamadan University of Medical Sciences, Hamadan, Iran
| | - Sadegh Shirian
- Department of Pathology, School of Veterinary Medicine, Shahrekord University, Shahrekord, Iran; Shiraz Molecular Pathology Research Center, Dr Daneshbod Lab, Shiraz, Iran
| | - Hanieh Amiri
- Shiraz Molecular Pathology Research Center, Dr Daneshbod Lab, Shiraz, Iran; Department of Biology, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran
| | - Alireza Zamani
- Department of Immunology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Amir Hossein Maghsood
- Department of Parasitology and Mycology, School of Medicine Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
14
|
Pan N, Xiu L, Xu Y, Bao X, Liang Y, Zhang H, Liu B, Feng Y, Guo H, Wu J, Li H, Ma C, Sheng S, Wang T, Wang X. Mammary γδ T cells promote IL-17A-mediated immunity against Staphylococcus aureus-induced mastitis in a microbiota-dependent manner. iScience 2023; 26:108453. [PMID: 38034361 PMCID: PMC10687336 DOI: 10.1016/j.isci.2023.108453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/23/2023] [Accepted: 11/10/2023] [Indexed: 12/02/2023] Open
Abstract
Mastitis, a common disease for female during lactation period that could cause a health risk for human or huge economic losses for animals, is mainly caused by S. aureus invasion. Here, we found that neutrophil recruitment via IL-17A-mediated signaling was required for host defense against S. aureus-induced mastitis in a mouse model. The rapid accumulation and activation of Vγ4+ γδ T cells in the early stage of infection triggered the IL-17A-mediated immune response. Interestingly, the accumulation and influence of γδT17 cells in host defense against S. aureus-induced mastitis in a commensal microbiota-dependent manner. Overall, this study, focusing on γδT17 cells, clarified innate immune response mechanisms against S. aureus-induced mastitis, and provided a specific response to target for future immunotherapies. Meanwhile, a link between commensal microbiota community and host defense to S. aureus mammary gland infection may unveil potential therapeutic strategies to combat these intractable infections.
Collapse
Affiliation(s)
- Na Pan
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010000, China
| | - Lei Xiu
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010000, China
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Ying Xu
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010000, China
| | - Xuemei Bao
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010000, China
| | - Yanchen Liang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010000, China
| | - Haochi Zhang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010000, China
| | - Bohui Liu
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010000, China
| | - Yuanyu Feng
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010000, China
| | - Huibo Guo
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010000, China
| | - Jing Wu
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010000, China
| | - Haotian Li
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010000, China
| | - Cheng Ma
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010000, China
| | - Shouxin Sheng
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010000, China
| | - Ting Wang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010000, China
- Hohhot Inspection and Testing Center, Hohhot 010070, China
| | - Xiao Wang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010000, China
| |
Collapse
|
15
|
Hu Y, Hu Q, Li Y, Lu L, Xiang Z, Yin Z, Kabelitz D, Wu Y. γδ T cells: origin and fate, subsets, diseases and immunotherapy. Signal Transduct Target Ther 2023; 8:434. [PMID: 37989744 PMCID: PMC10663641 DOI: 10.1038/s41392-023-01653-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/07/2023] [Accepted: 09/12/2023] [Indexed: 11/23/2023] Open
Abstract
The intricacy of diseases, shaped by intrinsic processes like immune system exhaustion and hyperactivation, highlights the potential of immune renormalization as a promising strategy in disease treatment. In recent years, our primary focus has centered on γδ T cell-based immunotherapy, particularly pioneering the use of allogeneic Vδ2+ γδ T cells for treating late-stage solid tumors and tuberculosis patients. However, we recognize untapped potential and optimization opportunities to fully harness γδ T cell effector functions in immunotherapy. This review aims to thoroughly examine γδ T cell immunology and its role in diseases. Initially, we elucidate functional differences between γδ T cells and their αβ T cell counterparts. We also provide an overview of major milestones in γδ T cell research since their discovery in 1984. Furthermore, we delve into the intricate biological processes governing their origin, development, fate decisions, and T cell receptor (TCR) rearrangement within the thymus. By examining the mechanisms underlying the anti-tumor functions of distinct γδ T cell subtypes based on γδTCR structure or cytokine release, we emphasize the importance of accurate subtyping in understanding γδ T cell function. We also explore the microenvironment-dependent functions of γδ T cell subsets, particularly in infectious diseases, autoimmune conditions, hematological malignancies, and solid tumors. Finally, we propose future strategies for utilizing allogeneic γδ T cells in tumor immunotherapy. Through this comprehensive review, we aim to provide readers with a holistic understanding of the molecular fundamentals and translational research frontiers of γδ T cells, ultimately contributing to further advancements in harnessing the therapeutic potential of γδ T cells.
Collapse
Affiliation(s)
- Yi Hu
- Microbiology and Immunology Department, School of Medicine, Faculty of Medical Science, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Qinglin Hu
- Microbiology and Immunology Department, School of Medicine, Faculty of Medical Science, Jinan University, Guangzhou, Guangdong, 510632, China
- Guangdong Provincial Key Laboratory of Tumour Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong, 519000, China
| | - Yongsheng Li
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Ligong Lu
- Guangdong Provincial Key Laboratory of Tumour Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong, 519000, China
| | - Zheng Xiang
- Microbiology and Immunology Department, School of Medicine, Faculty of Medical Science, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Zhinan Yin
- Biomedical Translational Research Institute, Jinan University, Guangzhou, Guangdong, 510632, China.
| | - Dieter Kabelitz
- Institute of Immunology, Christian-Albrechts-University Kiel, Kiel, Germany.
| | - Yangzhe Wu
- Guangdong Provincial Key Laboratory of Tumour Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong, 519000, China.
| |
Collapse
|
16
|
Kaufmann SHE. Vaccine development against tuberculosis before and after Covid-19. Front Immunol 2023; 14:1273938. [PMID: 38035095 PMCID: PMC10684952 DOI: 10.3389/fimmu.2023.1273938] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/16/2023] [Indexed: 12/02/2023] Open
Abstract
Coronavirus disease (Covid-19) has not only shaped awareness of the impact of infectious diseases on global health. It has also provided instructive lessons for better prevention strategies against new and current infectious diseases of major importance. Tuberculosis (TB) is a major current health threat caused by Mycobacterium tuberculosis (Mtb) which has claimed more lives than any other pathogen over the last few centuries. Hence, better intervention measures, notably novel vaccines, are urgently needed to accomplish the goal of the World Health Organization to end TB by 2030. This article describes how the research and development of TB vaccines can benefit from recent developments in the Covid-19 vaccine pipeline from research to clinical development and outlines how the field of TB research can pursue its own approaches. It begins with a brief discussion of major vaccine platforms in general terms followed by a short description of the most widely applied Covid-19 vaccines. Next, different vaccination regimes and particular hurdles for TB vaccine research and development are described. This specifically considers the complex immune mechanisms underlying protection and pathology in TB which involve innate as well as acquired immune mechanisms and strongly depend on fine tuning the response. A brief description of the TB vaccine candidates that have entered clinical trials follows. Finally, it discusses how experiences from Covid-19 vaccine research, development, and rollout can and have been applied to the TB vaccine pipeline, emphasizing similarities and dissimilarities.
Collapse
Affiliation(s)
- Stefan H. E. Kaufmann
- Max Planck Institute for Infection Biology, Berlin, Germany
- Systems Immunology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Hagler Institute for Advanced Study, Texas A&M University, College Station, TX, United States
| |
Collapse
|
17
|
Xu C, Li S, Fulford TS, Christo SN, Mackay LK, Gray DH, Uldrich AP, Pellicci DG, I Godfrey D, Koay HF. Expansion of MAIT cells in the combined absence of NKT and γδ-T cells. Mucosal Immunol 2023; 16:446-461. [PMID: 37182737 DOI: 10.1016/j.mucimm.2023.05.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/11/2023] [Accepted: 05/03/2023] [Indexed: 05/16/2023]
Abstract
Mucosal-associated invariant T (MAIT) cells, natural killer T (NKT) cells, and γδT cells are collectively referred to as 'unconventional T cells' due to their recognition of non-peptide antigens and restriction to MHC-I-like molecules. However, the factors controlling their widely variable frequencies between individuals and organs are poorly understood. We demonstrated that MAIT cells are increased in NKT or γδT cell-deficient mice and highly expand in mice lacking both cell types. TCRα repertoire analysis of γδT cell-deficient thymocytes revealed altered Trav segment usage relative to wild-type thymocytes, highlighting retention of the Tcra-Tcrd locus from the 129 mouse strain used to generate Tcrd-/- mice. This resulted in a moderate increase in distal Trav segment usage, including Trav1, potentially contributing to increased generation of Trav1-Traj33+ MAIT cells in the Tcrd-/- thymus. Importantly, adoptively transferred MAIT cells underwent increased homeostatic proliferation within NKT/gdT cell-deficient tissues, with MAIT cell subsets exhibiting tissue-specific homing patterns. Our data reveal a shared niche for unconventional T cells, where competition for common factors may be exploited to collectively modulate these cells in the immune response. Lastly, our findings emphasise careful assessment of studies using NKT or γδT cell-deficient mice when investigating the role of unconventional T cells in disease.
Collapse
Affiliation(s)
- Calvin Xu
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Australia
| | - Shihan Li
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Australia
| | - Thomas S Fulford
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Australia
| | - Susan N Christo
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Australia
| | - Laura K Mackay
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Australia
| | - Daniel Hd Gray
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia; Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Adam P Uldrich
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Australia
| | - Daniel G Pellicci
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Australia; Murdoch Children's Research Institute, Melbourne, Australia; Department of Paediatrics, University of Melbourne, Parkville, Australia.
| | - Dale I Godfrey
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Australia.
| | - Hui-Fern Koay
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Australia.
| |
Collapse
|
18
|
Kayongo A, Nyiro B, Siddharthan T, Kirenga B, Checkley W, Lutaakome Joloba M, Ellner J, Salgame P. Mechanisms of lung damage in tuberculosis: implications for chronic obstructive pulmonary disease. Front Cell Infect Microbiol 2023; 13:1146571. [PMID: 37415827 PMCID: PMC10320222 DOI: 10.3389/fcimb.2023.1146571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 06/05/2023] [Indexed: 07/08/2023] Open
Abstract
Pulmonary tuberculosis is increasingly recognized as a risk factor for COPD. Severe lung function impairment has been reported in post-TB patients. Despite increasing evidence to support the association between TB and COPD, only a few studies describe the immunological basis of COPD among TB patients following successful treatment completion. In this review, we draw on well-elaborated Mycobacterium tuberculosis-induced immune mechanisms in the lungs to highlight shared mechanisms for COPD pathogenesis in the setting of tuberculosis disease. We further examine how such mechanisms could be exploited to guide COPD therapeutics.
Collapse
Affiliation(s)
- Alex Kayongo
- Department of Medicine, Center for Emerging Pathogens, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, United States
- Department of Immunology and Molecular Biology, College of Health Sciences, Makerere University, Kampala, Uganda
- Makerere University College of Health Sciences, Lung Institute, Makerere University, Kampala, Uganda
| | - Brian Nyiro
- Department of Medicine, Center for Emerging Pathogens, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, United States
- Department of Immunology and Molecular Biology, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Trishul Siddharthan
- Division of Pulmonary and Critical Care Medicine, University of Miami, Miami, FL, United States
| | - Bruce Kirenga
- Makerere University College of Health Sciences, Lung Institute, Makerere University, Kampala, Uganda
| | - William Checkley
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University, Baltimore, MD, United States
- Center for Global Non-Communicable Disease Research and Training, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Moses Lutaakome Joloba
- Makerere University College of Health Sciences, Lung Institute, Makerere University, Kampala, Uganda
| | - Jerrold Ellner
- Department of Medicine, Center for Emerging Pathogens, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, United States
| | - Padmini Salgame
- Department of Medicine, Center for Emerging Pathogens, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, United States
| |
Collapse
|
19
|
Sun L, Su Y, Jiao A, Wang X, Zhang B. T cells in health and disease. Signal Transduct Target Ther 2023; 8:235. [PMID: 37332039 PMCID: PMC10277291 DOI: 10.1038/s41392-023-01471-y] [Citation(s) in RCA: 133] [Impact Index Per Article: 133.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 06/20/2023] Open
Abstract
T cells are crucial for immune functions to maintain health and prevent disease. T cell development occurs in a stepwise process in the thymus and mainly generates CD4+ and CD8+ T cell subsets. Upon antigen stimulation, naïve T cells differentiate into CD4+ helper and CD8+ cytotoxic effector and memory cells, mediating direct killing, diverse immune regulatory function, and long-term protection. In response to acute and chronic infections and tumors, T cells adopt distinct differentiation trajectories and develop into a range of heterogeneous populations with various phenotype, differentiation potential, and functionality under precise and elaborate regulations of transcriptional and epigenetic programs. Abnormal T-cell immunity can initiate and promote the pathogenesis of autoimmune diseases. In this review, we summarize the current understanding of T cell development, CD4+ and CD8+ T cell classification, and differentiation in physiological settings. We further elaborate the heterogeneity, differentiation, functionality, and regulation network of CD4+ and CD8+ T cells in infectious disease, chronic infection and tumor, and autoimmune disease, highlighting the exhausted CD8+ T cell differentiation trajectory, CD4+ T cell helper function, T cell contributions to immunotherapy and autoimmune pathogenesis. We also discuss the development and function of γδ T cells in tissue surveillance, infection, and tumor immunity. Finally, we summarized current T-cell-based immunotherapies in both cancer and autoimmune diseases, with an emphasis on their clinical applications. A better understanding of T cell immunity provides insight into developing novel prophylactic and therapeutic strategies in human diseases.
Collapse
Affiliation(s)
- Lina Sun
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, China
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, 710061, China
| | - Yanhong Su
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, China
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, 710061, China
| | - Anjun Jiao
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, China
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, 710061, China
| | - Xin Wang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, China
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, 710061, China
| | - Baojun Zhang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China.
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China.
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, China.
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, 710061, China.
| |
Collapse
|
20
|
Korta A, Kula J, Gomułka K. The Role of IL-23 in the Pathogenesis and Therapy of Inflammatory Bowel Disease. Int J Mol Sci 2023; 24:10172. [PMID: 37373318 DOI: 10.3390/ijms241210172] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/11/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Interleukin-23 (IL-23) is a proinflammatory cytokine produced mainly by macrophages and antigen-presenting cells (APCs) after antigenic stimulation. IL-23 plays a significant role as a mediator of tissue damage. Indeed, the irregularities in IL-23 and its receptor signaling have been implicated in inflammatory bowel disease. IL-23 interacts with both the innate and adaptive immune systems, and IL-23/Th17 appears to be involved in the development of chronic intestinal inflammation. The IL-23/Th17 axis may be a critical driver of this chronic inflammation. This review summarizes the main aspects of IL-23's biological function, cytokines that control cytokine production, effectors of the IL-23 response, and the molecular mechanisms associated with IBD pathogenesis. Although IL-23 modulates and impacts the development, course, and recurrence of the inflammatory response, the etiology and pathophysiology of IBD are not completely understood, but mechanism research shows huge potential for clinical applications as therapeutic targets in IBD treatment.
Collapse
Affiliation(s)
- Aleksandra Korta
- Student Scientific Group of Adult Allergology, Wroclaw Medical University, 50-369 Wroclaw, Poland
| | - Julia Kula
- Student Scientific Group of Adult Allergology, Wroclaw Medical University, 50-369 Wroclaw, Poland
| | - Krzysztof Gomułka
- Clinical Department of Internal Medicine, Pneumology and Allergology, Wroclaw Medical University, 50-369 Wroclaw, Poland
| |
Collapse
|
21
|
Dar HY, Perrien DS, Pal S, Stoica A, Uppuganti S, Nyman JS, Jones RM, Weitzmann MN, Pacifici R. Callus γδ T cells and microbe-induced intestinal Th17 cells improve fracture healing in mice. J Clin Invest 2023; 133:e166577. [PMID: 36881482 PMCID: PMC10104897 DOI: 10.1172/jci166577] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
IL-17A (IL-17), a driver of the inflammatory phase of fracture repair, is produced locally by several cell lineages including γδ T cells and Th17 cells. However, the origin of these T cells and their relevance for fracture repair are unknown. Here, we show that fractures rapidly expanded callus γδ T cells, which led to increased gut permeability by promoting systemic inflammation. When the microbiota contained the Th17 cell-inducing taxon segmented filamentous bacteria (SFB), activation of γδ T cells was followed by expansion of intestinal Th17 cells, their migration to the callus, and improved fracture repair. Mechanistically, fractures increased the S1P receptor 1-mediated (S1PR1-mediated) egress of Th17 cells from the intestine and enhanced their homing to the callus through a CCL20-mediated mechanism. Fracture repair was impaired by deletion of γδ T cells, depletion of the microbiome by antibiotics (Abx), blockade of Th17 cell egress from the gut, or Ab neutralization of Th17 cell influx into the callus. These findings demonstrate the relevance of the microbiome and T cell trafficking for fracture repair. Modifications of microbiome composition via Th17 cell-inducing bacteriotherapy and avoidance of broad-spectrum Abx may represent novel therapeutic strategies to optimize fracture healing.
Collapse
Affiliation(s)
- Hamid Y. Dar
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine and
- Emory Microbiome Research Center, Emory University, Atlanta, Georgia, USA
| | - Daniel S. Perrien
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine and
- Emory Microbiome Research Center, Emory University, Atlanta, Georgia, USA
| | - Subhashis Pal
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine and
- Emory Microbiome Research Center, Emory University, Atlanta, Georgia, USA
| | - Andreea Stoica
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine and
- Emory Microbiome Research Center, Emory University, Atlanta, Georgia, USA
| | - Sasidhar Uppuganti
- Department of Orthopedic Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jeffry S. Nyman
- Department of Orthopedic Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| | - Rheinallt M. Jones
- Emory Microbiome Research Center, Emory University, Atlanta, Georgia, USA
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Emory University, Atlanta, Georgia, USA
| | - M. Neale Weitzmann
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine and
- Emory Microbiome Research Center, Emory University, Atlanta, Georgia, USA
- Atlanta VA Health Care System, Department of Veterans Affairs, Decatur, Georgia, USA
| | - Roberto Pacifici
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine and
- Emory Microbiome Research Center, Emory University, Atlanta, Georgia, USA
- Immunology and Molecular Pathogenesis Program, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
22
|
Ganta S, Komaravalli PL, Ahmad S, Gaddam SL. Influence of genetic variants and mRNA expression of interleukin IL17A gene in asthma susceptibility. Gene 2023; 854:147119. [PMID: 36529350 DOI: 10.1016/j.gene.2022.147119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 12/08/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Asthma is a chronic respiratory disease characterized by coughing, wheezing, shortness of breath, chest tightness, overproduction of mucus, and expiratory airflow limitation, which affects >300 million people worldwide. It is triggered by the dynamic interplay of genetic factors and environmental exposure. Th17 cells are an emerging subset of CD4+ T cells, which secrete IL-17A. This proinflammatory cytokine has recently been associated with asthma, autoimmune diseases, and inflammatory disorders. The present case-control study was focused on identifying the involvement of the IL-17A gene in asthma pathogenesis among 150 clinically diagnosed asthma patients and 150 healthy controls (HCs) of South Indian origin. To carry out the study, we aimed to screen the genetic variants of rs2275913G/A and rs8193036C/T and also estimated the serum cytokine levels of the IL-17A cytokine of recruited subjects. Further, we evaluated mRNA expression in selected subjects to correlate with the genetic variants. The results revealed that the mean IL-17A serum levels (161.6 ± 380.1 pg/ml vs. 86.75 ± 90.01 pg/ml) and IgE levels (257.7 ± 133.3 pg/ml vs. 311.2 ± 160.5 pg/ml) in asthma patients were significantly high as compared to healthy controls (p < 0.05). The ROC curves were constructed to compare the cytokine levels of asthma patients and HC, and the area under the curve (AUC) for IL-17A cytokine was 0.64, indicating that the test was satisfactory and significant (95 % CI: 0.575-0.709; p < 0.001). Genotyping of rs2275913G/A polymorphism indicated a 1.6-fold risk (95 % CI-1.02-2.56; p = 0.04) for asthma patients compared to healthy controls, whereas no significant association was observed for rs8193036C/T polymorphism with asthma susceptibility. Under genetic models, GA and AA models showed a protective effect against the disease for rs2275913G/A. In contrast, no statistically significant result was observed among the models of rs8193036C/T when adjusted with age and sex. The mRNA expression levels of the gene were statistically high in patients compared to the HCs, with a 1.8-fold change (p < 0.0001). We conclude that the results indicate IL-17A rs2275913G/A is likely to contribute to protection against the disease, while IL-17A rs8193036C/T shows no association with the disease. However, no correlation was identified in serum cytokine levels concerning genotypes. This comprehensive information in the present study might contribute to developing novel therapeutic strategies for treating inflammatory diseases like asthma. Further studies are warranted to understand the diverse functions of IL-17A concerning its longitudinal stability and its response to clinical interventions with large sample sizes in various ethnicities.
Collapse
Affiliation(s)
- Soujanya Ganta
- Department of Genetics, Osmania University, Hyderabad, India
| | - Prasanna Latha Komaravalli
- Department of Genetics, Osmania University, Hyderabad, India; Global Medical Education and Research Foundation, Lakdi-ka-pool, Hyderabad, India
| | - Shazia Ahmad
- Bhagwan Mahavir Medical Research Centre, Hyderabad, India
| | - Suman Latha Gaddam
- Department of Genetics, Osmania University, Hyderabad, India; Bhagwan Mahavir Medical Research Centre, Hyderabad, India.
| |
Collapse
|
23
|
Hirano T, Kawano T, Kadowaki Y, Moriyama M, Umemoto S, Yoshinaga K, Matsunaga T, Suzuki M. Impact of IL-17-producing γδ T cells on chronic otitis media induced by nontypeable Haemophilus influenzae in a mouse model. Pathog Dis 2023; 81:ftad029. [PMID: 37833235 DOI: 10.1093/femspd/ftad029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/27/2023] [Accepted: 10/12/2023] [Indexed: 10/15/2023] Open
Abstract
Nontypeable Haemophilus influenzae (NTHi) is considered a major pathogen underlying middle ear infection. This study aimed to investigate the impact of IL-17 on chronic otitis media (COM) induced by NTHi in mice. NTHi was inoculated into the tympanic bulla with eustachian tubal obstruction. Middle ear effusions (MEEs) and tissues were collected on days 3, 14, and at 1, 2, and 6 months after injection. The expression of interleukin-17A (IL-17A) in MEEs was significantly elevated compared to that in the control group at the translational and transcriptional levels during the experiments. The quantities of IL-17-producing γδ T cells were significantly increased compared to that in the control group during COM, but that of Th17 cells did not. Depletion of γδ T cells by anti-γδ T-cell receptor (TCR) monoclonal antibody (mAb) administration significantly decreased the bacteria counts and the concentrations of IL-1β, IL-6, IL-17A, TNF-α, and IL-10 in MEEs. Our results suggest that IL-17 may play an important role in prolonging the inflammation in the middle ear in COM and that IL-17-producing γδ T cells may contribute to the exacerbated inflammatory response in the middle ear. In this study, anti-γδ TCR mAb administration was found to improve chronic middle ear inflammatory conditions.
Collapse
Affiliation(s)
- Takashi Hirano
- Department of Otolaryngology, Faculty of Medicine, Oita University, Hasama-machi, Oita 879-5593, Japan
| | - Toshiaki Kawano
- Department of Otolaryngology, Faculty of Medicine, Oita University, Hasama-machi, Oita 879-5593, Japan
| | - Yoshinori Kadowaki
- Department of Otolaryngology, Faculty of Medicine, Oita University, Hasama-machi, Oita 879-5593, Japan
| | - Munehito Moriyama
- Department of Otolaryngology, Faculty of Medicine, Oita University, Hasama-machi, Oita 879-5593, Japan
| | - Shingo Umemoto
- Department of Otolaryngology, Faculty of Medicine, Oita University, Hasama-machi, Oita 879-5593, Japan
| | - Kazuhiro Yoshinaga
- Department of Otolaryngology, Faculty of Medicine, Oita University, Hasama-machi, Oita 879-5593, Japan
| | - Takayuki Matsunaga
- Department of Otolaryngology, Faculty of Medicine, Oita University, Hasama-machi, Oita 879-5593, Japan
| | - Masashi Suzuki
- Department of Otolaryngology, Faculty of Medicine, Oita University, Hasama-machi, Oita 879-5593, Japan
| |
Collapse
|
24
|
Riaz F, Pan F, Wei P. Aryl hydrocarbon receptor: The master regulator of immune responses in allergic diseases. Front Immunol 2022; 13:1057555. [PMID: 36601108 PMCID: PMC9806217 DOI: 10.3389/fimmu.2022.1057555] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 12/02/2022] [Indexed: 12/23/2022] Open
Abstract
The aryl hydrocarbon receptor (AhR) is a widely studied ligand-activated cytosolic transcriptional factor that has been associated with the initiation and progression of various diseases, including autoimmune diseases, cancers, metabolic syndromes, and allergies. Generally, AhR responds and binds to environmental toxins/ligands, dietary ligands, and allergens to regulate toxicological, biological, cellular responses. In a canonical signaling manner, activation of AhR is responsible for the increase in cytochrome P450 enzymes which help individuals to degrade and metabolize these environmental toxins and ligands. However, canonical signaling cannot be applied to all the effects mediated by AhR. Recent findings indicate that activation of AhR signaling also interacts with some non-canonical factors like Kruppel-like-factor-6 (KLF6) or estrogen-receptor-alpha (Erα) to affect the expression of downstream genes. Meanwhile, enormous research has been conducted to evaluate the effect of AhR signaling on innate and adaptive immunity. It has been shown that AhR exerts numerous effects on mast cells, B cells, macrophages, antigen-presenting cells (APCs), Th1/Th2 cell balance, Th17, and regulatory T cells, thus, playing a significant role in allergens-induced diseases. This review discussed how AhR mediates immune responses in allergic diseases. Meanwhile, we believe that understanding the role of AhR in immune responses will enhance our knowledge of AhR-mediated immune regulation in allergic diseases. Also, it will help researchers to understand the role of AhR in regulating immune responses in autoimmune diseases, cancers, metabolic syndromes, and infectious diseases.
Collapse
Affiliation(s)
- Farooq Riaz
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen, China
| | - Fan Pan
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen, China,*Correspondence: Ping Wei, ; Fan Pan,
| | - Ping Wei
- Department of Otolaryngology, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Chongqing, China,*Correspondence: Ping Wei, ; Fan Pan,
| |
Collapse
|
25
|
Immune cell interactions in tuberculosis. Cell 2022; 185:4682-4702. [PMID: 36493751 DOI: 10.1016/j.cell.2022.10.025] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/15/2022] [Accepted: 10/26/2022] [Indexed: 12/13/2022]
Abstract
Despite having been identified as the organism that causes tuberculosis in 1882, Mycobacterium tuberculosis has managed to still evade our understanding of the protective immune response against it, defying the development of an effective vaccine. Technology and novel experimental models have revealed much new knowledge, particularly with respect to the heterogeneity of the bacillus and the host response. This review focuses on certain immunological elements that have recently yielded exciting data and highlights the importance of taking a holistic approach to understanding the interaction of M. tuberculosis with the many host cells that contribute to the development of protective immunity.
Collapse
|
26
|
Manchorova D, Papadopoulou M, Alexandrova M, Dimitrova V, Djerov L, Zapryanova S, Dimitrova P, Vangelov I, Vermijlen D, Dimova T. Human decidual gamma/delta T cells possess unique effector and TCR repertoire profiles during pregnancy. Cell Immunol 2022; 382:104634. [PMID: 36308817 DOI: 10.1016/j.cellimm.2022.104634] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/21/2022] [Accepted: 10/19/2022] [Indexed: 01/13/2023]
Abstract
Human γδ T cells are enriched at the maternal-fetal interface (MFI, decidua basalis) showing a highly differentiated phenotype. However, their functional potential is not well-known and it is not clear whether this decidua-enrichment is associated with specific γδ T cell receptors (TCR) as is observed in mice. Here we addressed these open questions by investigating decidual γδ T cells during early and late gestation, in comparison with paired blood samples, with flow cytometry (cytotoxic mediators, cytokines) and TCR high-throughput sequencing. While decidual γδ T cells expressed less perforin than their counterparts in the blood, they expressed significant more granulysin during early pregnancy. Strikingly, this high granulysin expression was limited to early pregnancy, as it was reduced at term pregnancy. In contrast to this granulysin expression pattern, decidual γδ T cells produced reduced levels of IFNγ and TNFα (compared to paired blood) in early pregnancy that then increased by term pregnancy. TCR repertoire analysis indicated that human decidual γδ T cells are not generated early in life as in the mouse. Despite this, a specific enrichment of the Vγ2 chain in the decidua in early pregnancy was observed that disappeared later onwards, reflecting dynamic changes in the decidual γδ TCR repertoire during human gestation. In conclusion, our data indicate that decidual γδ T cells express a specific and dynamic pattern of cytotoxic mediators, Th1 cytokines and TCR repertoire suggesting an important role for these unconventional T cells in assuring a healthy pregnancy in human.
Collapse
Affiliation(s)
- D Manchorova
- Institute of Biology and Immunology of Reproduction "Acad. K. Bratanov", Bulgarian Academy of Sciences, Sofia 1113, 73 Tzarigradsko shosse blv, Bulgaria
| | - M Papadopoulou
- Department of Pharmacotherapy and Pharmaceutics, Universite Libre de Bruxelles (ULB), 1050 Brussels, Belgium
| | - M Alexandrova
- Institute of Biology and Immunology of Reproduction "Acad. K. Bratanov", Bulgarian Academy of Sciences, Sofia 1113, 73 Tzarigradsko shosse blv, Bulgaria
| | - V Dimitrova
- Medical University, University Obstetrics and Gynecology Hospital "Maichin Dom", Sofia 1463, 2 Zdrave Str., Bulgaria
| | - L Djerov
- Medical University, University Obstetrics and Gynecology Hospital "Maichin Dom", Sofia 1463, 2 Zdrave Str., Bulgaria
| | - S Zapryanova
- Institute of Biology and Immunology of Reproduction "Acad. K. Bratanov", Bulgarian Academy of Sciences, Sofia 1113, 73 Tzarigradsko shosse blv, Bulgaria
| | - P Dimitrova
- Institute of Microbiology "Acad. St. Angelov", Bulgarian Academy of Sciences, Sofia 1113, 25 Acad. G. Bonchev str., Bulgaria
| | - I Vangelov
- Institute of Biology and Immunology of Reproduction "Acad. K. Bratanov", Bulgarian Academy of Sciences, Sofia 1113, 73 Tzarigradsko shosse blv, Bulgaria
| | - D Vermijlen
- Department of Pharmacotherapy and Pharmaceutics, Universite Libre de Bruxelles (ULB), 1050 Brussels, Belgium; Institute for Medical Immunology, Universitȇ Libre de Bruxelles (ULB), 6041 Gosselies, Belgium; ULB Center for Research in Immunology (U-CRI), Universite Libre de Bruxelles (ULB), Belgium; Walloon Excellence in Life Sciences and Biotechnology (WELBIO), Wavre, Belgium
| | - T Dimova
- Institute of Biology and Immunology of Reproduction "Acad. K. Bratanov", Bulgarian Academy of Sciences, Sofia 1113, 73 Tzarigradsko shosse blv, Bulgaria.
| |
Collapse
|
27
|
Two Epitope Regions Revealed in the Complex of IL-17A and Anti-IL-17A V HH Domain. Int J Mol Sci 2022; 23:ijms232314904. [PMID: 36499233 PMCID: PMC9738047 DOI: 10.3390/ijms232314904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/22/2022] [Accepted: 11/25/2022] [Indexed: 11/30/2022] Open
Abstract
Interleukin-17 (IL-17) is a cytokine produced by the Th17 cells. It is involved in chronic inflammation in patients with autoimmune diseases, such as rheumatoid arthritis, systemic lupus erythematosus, multiple sclerosis, and psoriasis. The antibodies targeting IL-17 and/or IL-17R are therapy tools for these diseases. Netakimab is an IL-17A-specific antibody containing a Lama glama VHH derivative domain and a VL variable domain. We have determined the crystal structure of the IL-17A-specific VHH domain in complex with IL-17A at 2.85 Å resolution. Certain amino acid residues of the three complementary-determining regions of the VHH domain form a network of solvent-inaccessible hydrogen bonds with two epitope regions of IL-17A. The β-turn of IL-17A, which forms the so-called epitope-1, appears to be the main region of IL-17A interaction with the antibody. Contacts formed by the IL-17A mobile C-terminal region residues (epitope-2) further stabilize the antibody-antigen complex.
Collapse
|
28
|
Seyran M, Melanie S, Philip S, Amiq G, Fabian B. Allies or enemies? The effect of regulatory T cells and related T lymphocytes on the profibrotic environment in bleomycin-injured lung mouse models. Clin Exp Med 2022:10.1007/s10238-022-00945-7. [PMID: 36403186 PMCID: PMC10390389 DOI: 10.1007/s10238-022-00945-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 11/07/2022] [Indexed: 11/21/2022]
Abstract
AbstractIdiopathic pulmonary fibrosis (IPF) is characterized by permanent scarring of lung tissue and declining lung function, and is an incurable disease with increase in prevalence over the past decade. The current consensus is that aberrant wound healing following repeated injuries to the pulmonary epithelium is the most probable cause of IPF, with various immune inflammatory pathways having been reported to impact disease pathogenesis. While the role of immune cells, specifically T lymphocytes and regulatory T cells (Treg), in IPF pathogenesis has been reported and discussed recently, the pathogenic or beneficial roles of these cells in inducing or preventing lung fibrosis is still debated. This lack of understanding could be due in part to the difficulty in obtaining diseased human lung tissue for research purposes. For this reason, many animal models have been developed over the years to attempt to mimic the main clinical hallmarks of IPF: among these, inducing lung injury in rodents with the anti-cancer agent bleomycin has now become the most commonly studied animal model of IPF. Pulmonary fibrosis is the major side effect when bleomycin is administered for cancer treatment in human patients, and a similar effect can be observed after intra-tracheal administration of bleomycin to rodents. Despite many pathophysiological pathways of lung fibrosis having been investigated in bleomycin-injured animal models, one central facet still remains controversial, namely the involvement of specific T lymphocyte subsets, and in particular Treg, in disease pathogenesis. This review aims to summarize the major findings and conclusions regarding the involvement of immune cells and their receptors in the pathogenesis of IPF, and to elaborate on important parallels between animal models and the human disease. A more detailed understanding of the role of Treg and other immune cell subsets in lung injury and fibrosis derived from animal models is a critical basis for translating this knowledge to the development of new immune-based therapies for the treatment of human IPF.
Collapse
|
29
|
Immunologic Role of Innate Lymphoid Cells against Mycobacterial tuberculosis Infection. Biomedicines 2022; 10:biomedicines10112828. [DOI: 10.3390/biomedicines10112828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/03/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (M. tb), is one of the leading causes of mortality due to respiratory tract infections worldwide. Infection by M. tb involves activation of a type I immune response characteristic of T helper type 1 (Th1) lymphocytes, natural killer (NK) cells, Interleukin-12 (IL-12), and interferon (IFN)-γ, all of which stimulate the activation of macrophages and robust phagocytosis in order to prevent further infectious manifestations and systemic dissemination. Recent discoveries about innate lymphoid cells (ILCs) have provided further insight about how these cells participate within the protective immune response against M. tb infection and help boost the type I immune response. In order to clearly understand the mechanisms of M. tb infection and advance the efficacy of future treatment and prevention, we must first look at the individual functions each type of immune cell plays within this process, specifically ILCs. By review of the recent literature and current evidence, our group aims to summarize the characterization of the three major groups of ILCs, including NK cells, and analyze the role that each group of ILCs play in the infectious process against M. tb in order to provide a more comprehensive understanding of the host immune response. Equally, previous studies have also highlighted the effects of how administration of the Bacille Calmette–Guérin (BCG) vaccine influences the cells and cytokines of the immune response against M. tb. Our group also aims to highlight the effects that BCG vaccine has on ILCs and how these effects provide added protection against M. tb.
Collapse
|
30
|
Zhang C, Wang S, Casal Moura M, Yi ES, Bowen AJ, Specks U, Warrington KJ, Bayan SL, Ekbom DC, Luo F, Edell ES, Kasperbauer JL, Vassallo R. RNA Sequencing of Idiopathic Subglottic Stenosis Tissues Uncovers Putative Profibrotic Mechanisms and Identifies a Prognostic Biomarker. THE AMERICAN JOURNAL OF PATHOLOGY 2022; 192:1506-1530. [PMID: 35948078 DOI: 10.1016/j.ajpath.2022.07.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/30/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
Idiopathic subglottic stenosis (iSGS) is a localized airway disease that almost exclusively affects females. Understanding the molecular mechanisms involved may provide insights leading to therapeutic interventions. Next-generation sequencing was performed on tissue sections from patients with iSGS (n = 22), antineutrophil cytoplasmic antibody-associated vasculitis (AAV; n = 5), and matched controls (n = 9) to explore candidate genes and mechanisms of disease. Gene expression changes were validated, and selected markers were identified by immunofluorescence staining. Epithelial-mesenchymal transition (EMT) and leukocyte extravasation pathways were the biological mechanisms most relevant to iSGS pathogenesis. Alternatively activated macrophages (M2) were abundant in the subepithelium and perisubmucosal glands of the airway in iSGS and AAV. Increased expression of the mesenchymal marker S100A4 and decreased expression of the epithelial marker epithelial cell adhesion molecule (EPCAM) further supported a role for EMT, but to different extents, in iSGS and antineutrophil cytoplasmic antibody-associated subglottic stenosis. In patients with iSGS, high expression of prostate transmembrane protein, androgen induced 1 (PMEPA1), an EMT regulator, was associated with a shorter recurrence interval (25 versus 116 months: hazard ratio = 4.16; P = 0.041; 95% CI, 1.056-15.60). Thus, EMT is a key pathogenetic mechanism of subglottic stenosis in iSGS and AAV. M2 macrophages contribute to the pathogenesis of both diseases, suggesting a shared profibrotic mechanism, and PMEPA1 may be a biomarker for predicting disease recurrence in iSGS.
Collapse
Affiliation(s)
- Chujie Zhang
- Division of Pulmonary and Critical Care Medicine and Thoracic Diseases Research Unit, Mayo Clinic, Rochester, Minnesota; Department of Respiratory and Critical Care Medicine, West China School of Medicine and West China Hospital, Sichuan University, Chengdu, China
| | - Shaohua Wang
- Division of Pulmonary and Critical Care Medicine and Thoracic Diseases Research Unit, Mayo Clinic, Rochester, Minnesota
| | - Marta Casal Moura
- Division of Pulmonary and Critical Care Medicine and Thoracic Diseases Research Unit, Mayo Clinic, Rochester, Minnesota
| | - Eunhee S Yi
- Departments of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Andrew J Bowen
- Otorhinolaryngology-Head and Neck Surgery, Mayo Clinic, Rochester, Minnesota
| | - Ulrich Specks
- Division of Pulmonary and Critical Care Medicine and Thoracic Diseases Research Unit, Mayo Clinic, Rochester, Minnesota
| | | | - Semirra L Bayan
- Otorhinolaryngology-Head and Neck Surgery, Mayo Clinic, Rochester, Minnesota
| | - Dale C Ekbom
- Otorhinolaryngology-Head and Neck Surgery, Mayo Clinic, Rochester, Minnesota
| | - Fengming Luo
- Department of Respiratory and Critical Care Medicine, West China School of Medicine and West China Hospital, Sichuan University, Chengdu, China
| | - Eric S Edell
- Division of Pulmonary and Critical Care Medicine and Thoracic Diseases Research Unit, Mayo Clinic, Rochester, Minnesota
| | - Jan L Kasperbauer
- Otorhinolaryngology-Head and Neck Surgery, Mayo Clinic, Rochester, Minnesota
| | - Robert Vassallo
- Division of Pulmonary and Critical Care Medicine and Thoracic Diseases Research Unit, Mayo Clinic, Rochester, Minnesota.
| |
Collapse
|
31
|
Ruiz-Sánchez BP, Castañeda-Casimiro J, Cabrera-Rivera GL, Brito-Arriola OM, Cruz-Zárate D, García-Paredes VG, Casillas-Suárez C, Serafín-López J, Chacón-Salinas R, Estrada-Parra S, Escobar-Gutiérrez A, Estrada-García I, Hernández-Solis A, Wong-Baeza I. Differential activation of innate and adaptive lymphocytes during latent or active infection with Mycobacterium tuberculosis. Microbiol Immunol 2022; 66:477-490. [PMID: 35856253 DOI: 10.1111/1348-0421.13019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 06/17/2022] [Accepted: 07/15/2022] [Indexed: 11/30/2022]
Abstract
Most individuals infected with Mycobacterium tuberculosis (Mtb) have latent tuberculosis (TB), which can be diagnosed with tests (like the QuantiFERON test, QFT) that detect the production of IFN-γ by memory T cells in response to the Mtb-specific antigens ESAT-6, CFP-10 and TB7.7. However, the immunological mechanisms that determine if an individual will develop latent or active TB remain incompletely understood. Here we compared the response of innate and adaptive peripheral blood lymphocytes from healthy individuals without Mtb infection (QFT-negative) and from individuals with latent (QFT-positive) or active TB infection, in order to determine the characteristics of these cells that correlate with each condition. In active TB patients, the levels of IFN-γ that were produced in response to Mtb-specific antigens had high positive correlations with IL-1β, TNF-α, MCP-1, IL-6, IL-12p70 and IL-23, while the pro-inflammatory cytokines had high positive correlations between themselves and with IL-12p70 and IL-23. These correlations were not observed in QFT-negative or QFT-positive healthy volunteers. Activation with Mtb soluble extract (a mixture of Mtb antigens and pathogen-associated molecular patterns [PAMPs]) increased the percentage of IFN-γ/IL-17-producing NK cells and of IL-17-producing ILC3 in the peripheral blood of active TB patients, but not of QFT-negative or QFT-positive healthy volunteers. Thus, active TB patients have both adaptive and innate lymphocyte subsets that produce characteristic cytokine profiles in response to Mtb-specific antigens or PAMPs. These profiles are not observed in uninfected individuals or in individuals with latent TB, suggesting that they are a response to active TB infection. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Bibiana Patricia Ruiz-Sánchez
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Facultad de Medicina, Universidad Westhill, Mexico City, Mexico
| | - Jessica Castañeda-Casimiro
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas (ENCB), Instituto Politécnico Nacional (IPN), Mexico City, Mexico.,Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI), Escuela Nacional de Ciencias Biológicas (ENCB), Instituto Politécnico Nacional (IPN), Mexico City, Mexico.,Laboratorio Nacional para Servicios Especializados de Investigación, Desarrollo e Innovación (I+D+i) para Farmoquímicos y Biotecnológicos, LANSEIDI-FarBiotec-CONACYT, Mexico City, Mexico
| | - Graciela L Cabrera-Rivera
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas (ENCB), Instituto Politécnico Nacional (IPN), Mexico City, Mexico
| | - Owen Marlon Brito-Arriola
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas (ENCB), Instituto Politécnico Nacional (IPN), Mexico City, Mexico
| | - David Cruz-Zárate
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas (ENCB), Instituto Politécnico Nacional (IPN), Mexico City, Mexico
| | - Víctor Gabriel García-Paredes
- Inflammatory Responses and Transcriptomic Networks in Diseases laboratory, Institut des maladies génétiques (IMAGINE), Paris, France
| | - Catalina Casillas-Suárez
- Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico.,Servicio de Neumología, Hospital General de México "Dr. Eduardo Liceaga", Secretaría de Salud, Mexico City, Mexico
| | - Jeanet Serafín-López
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas (ENCB), Instituto Politécnico Nacional (IPN), Mexico City, Mexico
| | - Rommel Chacón-Salinas
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas (ENCB), Instituto Politécnico Nacional (IPN), Mexico City, Mexico
| | - Sergio Estrada-Parra
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas (ENCB), Instituto Politécnico Nacional (IPN), Mexico City, Mexico
| | - Alejandro Escobar-Gutiérrez
- Coordinación de Investigaciones Inmunológicas, Instituto de Diagnóstico y Referencia Epidemiológicos (InDRE), Secretaria de Salud, Mexico City, Mexico
| | - Iris Estrada-García
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas (ENCB), Instituto Politécnico Nacional (IPN), Mexico City, Mexico
| | - Alejandro Hernández-Solis
- Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico.,Servicio de Neumología, Hospital General de México "Dr. Eduardo Liceaga", Secretaría de Salud, Mexico City, Mexico
| | - Isabel Wong-Baeza
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas (ENCB), Instituto Politécnico Nacional (IPN), Mexico City, Mexico
| |
Collapse
|
32
|
Cervantes O, Talavera IC, Every E, Coler B, Li M, Li A, Li H, Adams Waldorf K. Role of hormones in the pregnancy and sex-specific outcomes to infections with respiratory viruses. Immunol Rev 2022; 308:123-148. [PMID: 35373371 PMCID: PMC9189035 DOI: 10.1111/imr.13078] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 03/04/2022] [Indexed: 01/13/2023]
Abstract
Pregnant women infected with pathogenic respiratory viruses, such as influenza A viruses (IAV) and coronaviruses, are at higher risk for mortality, hospitalization, preterm birth, and stillbirth. Several factors are likely to contribute to the susceptibility of pregnant individuals to severe lung disease including changes in pulmonary physiology, immune defenses, and effector functions of some immune cells. Pregnancy is also a physiologic state characterized by higher levels of multiple hormones that may impact the effector functions of immune cells, such as progesterone, estrogen, human chorionic gonadotropin, prolactin, and relaxin. Each of these hormones acts to support a tolerogenic immune state of pregnancy, which helps prevent fetal rejection, but may also contribute to an impaired antiviral response. In this review, we address the unique role of adaptive and innate immune cells in the control of pathogenic respiratory viruses and how pregnancy and specific hormones can impact their effector actions. We highlight viruses with sex-specific differences in infection outcomes and why pregnancy hormones may contribute to fetal protection but aid the virus at the expense of the mother's health.
Collapse
Affiliation(s)
- Orlando Cervantes
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington, United States of America
| | - Irene Cruz Talavera
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Emma Every
- University of Washington School of Medicine, Spokane, Washington, United States of America
| | - Brahm Coler
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington, United States of America
- Elson S. Floyd College of Medicine, Washington State University, Spokane, Washington, United States of America
| | - Miranda Li
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington, United States of America
- Department of Biological Sciences, Columbia University, New York City, New York, United States of America
| | - Amanda Li
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington, United States of America
- Case Western Reserve, Cleveland, Ohio, United States of America
| | - Hanning Li
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington, United States of America
| | - Kristina Adams Waldorf
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
33
|
Qu G, Wang S, Zhou Z, Jiang D, Liao A, Luo J. Comparing Mouse and Human Tissue-Resident γδ T Cells. Front Immunol 2022; 13:891687. [PMID: 35757696 PMCID: PMC9215113 DOI: 10.3389/fimmu.2022.891687] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/06/2022] [Indexed: 12/28/2022] Open
Abstract
Circulating immune cell compartments have been extensively studied for decades, but limited access to peripheral tissue and cell yield have hampered our understanding of tissue-based immunity, especially in γδ T cells. γδ T cells are a unique subset of T cells that are rare in secondary lymphoid organs, but enriched in many peripheral tissues including the skin, uterus, and other epithelial tissues. In addition to immune surveillance activities, recent reports have revealed exciting new roles for γδ T cells in homeostatic tissue physiology in mice and humans. It is therefore important to investigate to what extent the developmental rules described using mouse models transfer to human γδ T cells. Besides, it will be necessary to understand the differences in the development and biogenesis of human and mouse γδ T cells; to understand how γδ T cells are maintained in physiological and pathological circumstances within different tissues, as well as characterize the progenitors of different tissue-resident γδ T cells. Here, we summarize current knowledge of the γδ T phenotype in various tissues in mice and humans, describing the similarities and differences of tissue-resident γδ T cells in mice and humans.
Collapse
Affiliation(s)
- Guanyu Qu
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shengli Wang
- School of Basic Medicine, Jinan University, Guangzhou, China
| | - Zhenlong Zhou
- Institute of Biomedicine and National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Dawei Jiang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Aihua Liao
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Luo
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
34
|
Xu R, Ke X, Shang W, Liu S, Fu X, Wang T, Jin S. Distribution and Clinical Significance of IL-17A in Tumor-Infiltrating Lymphocytes of Non-Small Cell Lung Cancer Patients. Pathol Oncol Res 2022; 28:1610384. [PMID: 35665407 PMCID: PMC9156623 DOI: 10.3389/pore.2022.1610384] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/27/2022] [Indexed: 11/13/2022]
Abstract
Objective: To investigate the distribution of IL-17A and its clinical significance in tumor infiltrating lymphocytes (TILs) of patients with non-small cell lung cancer (NSCLC). Methods: Expression level of IL-17A in TILs of 3 paired NSCLC and paracancerous specimens was measured by qRT-PCR. The distribution of IL-17A in immune cell subsets of 15 paired NSCLC and paracancerous specimens was examined by flow cytometry. The correlation between IL-17A and clinical features of NSCLC was identified. Results: IL-17A was significantly upregulated in TILs of NSCLC specimens than those of paracancerous ones (p < 0.0001). Meanwhile, T helper 17 cells (Th17 cells, p < 0.001), IL-17-secreting CD8+ T cells (Tc17 cells, p < 0.001) and IL-17-producing cells (γδT17 cells, p < 0.0001) were significantly abundant in TILs of NSCLC specimens than those of controls, and the higher abundance of the latter was much pronounced than that of the former two. Moreover, γδT17 cells in TILs were significantly correlated with lymphatic metastasis and CYFRA 21-1 level of NSCLC patients (p < 0.05). Conclusion: Tumor infiltrated γδT cells are the main source of IL-17 in early-stage NSCLC, and IL-17 may be a vital regulator involved in the development of NSCLC.
Collapse
Affiliation(s)
- Rui Xu
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Branch of National Clinical Research Center for Laboratory Medicine, Nanjing, China
| | - Xing Ke
- Department of Clinical Laboratory, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenwen Shang
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Branch of National Clinical Research Center for Laboratory Medicine, Nanjing, China
| | - Shuna Liu
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Branch of National Clinical Research Center for Laboratory Medicine, Nanjing, China
| | - Xin Fu
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Branch of National Clinical Research Center for Laboratory Medicine, Nanjing, China
| | - Ting Wang
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Branch of National Clinical Research Center for Laboratory Medicine, Nanjing, China
| | - Shuxian Jin
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
35
|
Dong R, Zhang Y, Xiao H, Zeng X. Engineering γδ T Cells: Recognizing and Activating on Their Own Way. Front Immunol 2022; 13:889051. [PMID: 35603176 PMCID: PMC9120431 DOI: 10.3389/fimmu.2022.889051] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/11/2022] [Indexed: 11/25/2022] Open
Abstract
Adoptive cell therapy (ACT) with engineered T cells has emerged as a promising strategy for the treatment of malignant tumors. Among them, there is great interest in engineered γδ T cells for ACT. With both adaptive and innate immune characteristics, γδ T cells can be activated by γδ TCRs to recognize antigens in a MHC-independent manner, or by NK receptors to recognize stress-induced molecules. The dual recognition system enables γδ T cells with unique activation and cytotoxicity profiles, which should be considered for the design of engineered γδ T cells. However, the current designs of engineered γδ T cells mostly follow the strategies that used in αβ T cells, but not making good use of the specific characteristics of γδ T cells. Therefore, it is no surprising that current engineered γδ T cells in preclinical or clinical trials have limited efficacy. In this review, we summarized the patterns of antigen recognition of γδ T cells and the features of signaling pathways for the functions of γδ T cells. This review will additionally discuss current progress in engineered γδ T cells and provide insights in the design of engineered γδ T cells based on their specific characteristics.
Collapse
Affiliation(s)
- Ruoyu Dong
- Department of Hematology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yixi Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Haowen Xiao
- Department of Hematology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xun Zeng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
36
|
Wilharm A, Binz C, Sandrock I, Rampoldi F, Lienenklaus S, Blank E, Winkel A, Demera A, Hovav AH, Stiesch M, Prinz I. Interleukin-17 is disease promoting in early stages and protective in late stages of experimental periodontitis. PLoS One 2022; 17:e0265486. [PMID: 35298525 PMCID: PMC8929577 DOI: 10.1371/journal.pone.0265486] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 03/02/2022] [Indexed: 12/03/2022] Open
Abstract
Periodontitis is one of the most common infectious diseases in humans. It is characterized by a chronic inflammation of the tooth-supporting tissue that results in bone loss. However, the role and source of the pro-inflammatory cytokine interleukin-17 (IL-17) and of the cells producing it locally in the gingiva is still controversial. Th17 αβ T cells, CD4+ exFoxP3+ αβ T cells, or IL-17-producing γδ T cells (γδ17 cells) seem to be decisive cellular players in periodontal inflammation. To address these issues in an experimental model for periodontitis, we employed genetic mouse models deficient for either γδ T cells or IL-17 cytokines and assessed the bone loss during experimental periodontal inflammation by stereomicroscopic, histological, and μCT-analysis. Furthermore, we performed flow-cytometric analyses and qPCR-analyses of the gingival tissue. We found no γδ T cell- or IL-17-dependent change in bone loss after four weeks of periodontitis. Apart from that, our data are complementary with earlier studies, which suggested IL-17-dependent aggravation of bone loss in early periodontitis, but a rather bone-protective role for IL-17 in late stages of experimental periodontitis with respect to the osteoclastogenicity defined by the RANKL/OPG ratio.
Collapse
Affiliation(s)
- Anneke Wilharm
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Christoph Binz
- Institute of Immunology, Hannover Medical School, Hannover, Germany
- * E-mail:
| | - Inga Sandrock
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | | | - Stefan Lienenklaus
- Institute of Laboratory Animal Science, Hannover Medical School, Hannover, Germany
| | - Eva Blank
- Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School, Hannover, Germany
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Germany
| | - Andreas Winkel
- Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School, Hannover, Germany
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Germany
| | - Abdi Demera
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Avi-Hai Hovav
- Institute of Dental Sciences, Faculty of Dental Medicine, Hebrew University, Jerusalem, Israel
| | - Meike Stiesch
- Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School, Hannover, Germany
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Germany
| | - Immo Prinz
- Institute of Immunology, Hannover Medical School, Hannover, Germany
- Institute of Systems Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
37
|
Larsen SE, Williams BD, Rais M, Coler RN, Baldwin SL. It Takes a Village: The Multifaceted Immune Response to Mycobacterium tuberculosis Infection and Vaccine-Induced Immunity. Front Immunol 2022; 13:840225. [PMID: 35359957 PMCID: PMC8960931 DOI: 10.3389/fimmu.2022.840225] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/08/2022] [Indexed: 11/18/2022] Open
Abstract
Despite co-evolving with humans for centuries and being intensely studied for decades, the immune correlates of protection against Mycobacterium tuberculosis (Mtb) have yet to be fully defined. This lapse in understanding is a major lag in the pipeline for evaluating and advancing efficacious vaccine candidates. While CD4+ T helper 1 (TH1) pro-inflammatory responses have a significant role in controlling Mtb infection, the historically narrow focus on this cell population may have eclipsed the characterization of other requisite arms of the immune system. Over the last decade, the tuberculosis (TB) research community has intentionally and intensely increased the breadth of investigation of other immune players. Here, we review mechanistic preclinical studies as well as clinical anecdotes that suggest the degree to which different cell types, such as NK cells, CD8+ T cells, γ δ T cells, and B cells, influence infection or disease prevention. Additionally, we categorically outline the observed role each major cell type plays in vaccine-induced immunity, including Mycobacterium bovis bacillus Calmette-Guérin (BCG). Novel vaccine candidates advancing through either the preclinical or clinical pipeline leverage different platforms (e.g., protein + adjuvant, vector-based, nucleic acid-based) to purposefully elicit complex immune responses, and we review those design rationales and results to date. The better we as a community understand the essential composition, magnitude, timing, and trafficking of immune responses against Mtb, the closer we are to reducing the severe disease burden and toll on human health inflicted by TB globally.
Collapse
Affiliation(s)
- Sasha E. Larsen
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle Children's Hospital, Seattle, WA, United States
| | - Brittany D. Williams
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle Children's Hospital, Seattle, WA, United States,Department of Global Health, University of Washington, Seattle, WA, United States
| | - Maham Rais
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle Children's Hospital, Seattle, WA, United States
| | - Rhea N. Coler
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle Children's Hospital, Seattle, WA, United States,Department of Global Health, University of Washington, Seattle, WA, United States,Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, United States
| | - Susan L. Baldwin
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle Children's Hospital, Seattle, WA, United States,*Correspondence: Susan L. Baldwin,
| |
Collapse
|
38
|
Abstract
Pulmonary granulomas are widely considered the epicenters of the immune response to Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB). Recent animal studies have revealed factors that either promote or restrict TB immunity within granulomas. These models, however, typically ignore the impact of preexisting immunity on cellular organization and function, an important consideration because most TB probably occurs through reinfection of previously exposed individuals. Human postmortem research from the pre-antibiotic era showed that infections in Mtb-naïve individuals (primary TB) versus those with prior Mtb exposure (postprimary TB) have distinct pathologic features. We review recent animal findings in TB granuloma biology, which largely reflect primary TB. We also discuss our current understanding of postprimary TB lesions, about which much less is known. Many knowledge gaps remain, particularly regarding how preexisting immunity shapes granuloma structure and local immune responses at Mtb infection sites. Expected final online publication date for the Annual Review of Immunology, Volume 40 is April 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Sara B. Cohen
- Seattle Children's Research Institute, Seattle, Washington, USA
| | - Benjamin H. Gern
- Seattle Children's Research Institute, Seattle, Washington, USA
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | - Kevin B. Urdahl
- Seattle Children's Research Institute, Seattle, Washington, USA
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
- Department of Immunology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
39
|
Ritter K, Rousseau J, Hölscher C. Interleukin-27 in Tuberculosis: A Sheep in Wolf’s Clothing? Front Immunol 2022; 12:810602. [PMID: 35116036 PMCID: PMC8803639 DOI: 10.3389/fimmu.2021.810602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 12/22/2021] [Indexed: 12/12/2022] Open
Abstract
In tuberculosis (TB), protective inflammatory immune responses and the pathological sequelae of chronic inflammation significantly depend on a timely balance of cytokine expression. In contrast to other anti-inflammatory cytokines, interleukin (IL)-27 has fundamental effects in experimental Mycobacterium tuberculosis (Mtb) infection: the absence of IL-27-mediated signalling promotes a better control of mycobacterial growth on the one hand side but also leads to a chronic hyperinflammation and immunopathology later during infection. Hence, in the context of novel host-directed therapeutic approaches and vaccination strategies for the management of TB, the timely restricted blockade of IL-27 signalling may represent an advanced treatment option. In contrast, administration of IL-27 itself may allow to treat the immunopathological consequences of chronic TB. In both cases, a better knowledge of the cell type-specific and kinetic effects of IL-27 after Mtb infection is essential. This review summarizes IL-27-mediated mechanisms affecting protection and immunopathology in TB and discusses possible therapeutic applications.
Collapse
Affiliation(s)
- Kristina Ritter
- Infection Immunology, Research Centre Borstel, Borstel, Germany
| | - Jasmin Rousseau
- Infection Immunology, Research Centre Borstel, Borstel, Germany
| | - Christoph Hölscher
- Infection Immunology, Research Centre Borstel, Borstel, Germany
- German Centre for Infection Research (DZIF), Partner Site Hamburg-Borstel-Lübeck-Riems, Borstel, Germany
- *Correspondence: Christoph Hölscher,
| |
Collapse
|
40
|
Jong RM, Van Dis E, Berry SB, Nguyenla X, Baltodano A, Pastenkos G, Xu C, Fox D, Yosef N, McWhirter SM, Stanley SA. Mucosal Vaccination with Cyclic Dinucleotide Adjuvants Induces Effective T Cell Homing and IL-17-Dependent Protection against Mycobacterium tuberculosis Infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:407-419. [PMID: 34965963 PMCID: PMC8755605 DOI: 10.4049/jimmunol.2100029] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 11/10/2021] [Indexed: 01/17/2023]
Abstract
Tuberculosis consistently causes more deaths worldwide annually than any other single pathogen, making new effective vaccines an urgent priority for global public health. Among potential adjuvants, STING-activating cyclic dinucleotides (CDNs) uniquely stimulate a cytosolic sensing pathway activated only by pathogens. Recently, we demonstrated that a CDN-adjuvanted protein subunit vaccine robustly protects against tuberculosis infection in mice. In this study, we delineate the mechanistic basis underlying the efficacy of CDN vaccines for tuberculosis. CDN vaccines elicit CD4 T cells that home to lung parenchyma and penetrate into macrophage lesions in the lung. Although CDNs, like other mucosal vaccines, generate B cell-containing lymphoid structures in the lungs, protection is independent of B cells. Mucosal vaccination with a CDN vaccine induces Th1, Th17, and Th1-Th17 cells, and protection is dependent upon both IL-17 and IFN-γ. Single-cell RNA sequencing experiments reveal that vaccination enhances a metabolic state in Th17 cells reflective of activated effector function and implicate expression of Tnfsf8 (CD153) in vaccine-induced protection. Finally, we demonstrate that simply eliciting Th17 cells via mucosal vaccination with any adjuvant is not sufficient for protection. A vaccine adjuvanted with deacylated monophosphoryl lipid A (MPLA) failed to protect against tuberculosis infection when delivered mucosally, despite eliciting Th17 cells, highlighting the unique promise of CDNs as adjuvants for tuberculosis vaccines.
Collapse
Affiliation(s)
- Robyn M Jong
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA
| | - Erik Van Dis
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA
| | - Samuel B Berry
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA
| | - Xammy Nguyenla
- Division of Infectious Disease and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA
| | - Alexander Baltodano
- Division of Infectious Disease and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA
| | - Gabrielle Pastenkos
- Comparative Pathology Laboratory, University of California, Davis, Davis, CA
| | - Chenling Xu
- Center for Computational Biology, University of California, Berkeley, Berkeley, CA
| | - Douglas Fox
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA
| | - Nir Yosef
- Center for Computational Biology, University of California, Berkeley, Berkeley, CA
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, CA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA; and
| | | | - Sarah A Stanley
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA;
- Division of Infectious Disease and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA
| |
Collapse
|
41
|
Askoura M, Abbas HA, Al Sadoun H, Abdulaal WH, Abu Lila AS, Almansour K, Alshammari F, Khafagy ES, Ibrahim TS, Hegazy WAH. Elevated Levels of IL-33, IL-17 and IL-25 Indicate the Progression from Chronicity to Hepatocellular Carcinoma in Hepatitis C Virus Patients. Pathogens 2022; 11:pathogens11010057. [PMID: 35056005 PMCID: PMC8781674 DOI: 10.3390/pathogens11010057] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/09/2021] [Accepted: 01/01/2022] [Indexed: 12/16/2022] Open
Abstract
Hepatitis C virus (HCV) is one of the most epidemic viral infections in the world. Three-quarters of individuals infected with HCV become chronic. As a consequence of persistent inflammation, a considerable percentage of chronic patients progress to liver fibrosis, cirrhosis, and finally hepatocellular carcinoma. Cytokines, which are particularly produced from T-helper cells, play a crucial role in immune protection against HCV and the progression of the disease as well. In this study, the role of interleukins IL-33, IL-17, and IL-25 in HCV patients and progression of disease from chronicity to hepatocellular carcinoma will be characterized in order to use them as biomarkers of disease progression. The serum levels of the tested interleukins were measured in patients suffering from chronic hepatitis C (CHC), hepatocellular carcinoma (HCC), and healthy controls (C), and their levels were correlated to the degree of liver fibrosis, liver fibrosis markers and viral load. In contrast to the IL-25 serum level, which increased in patients suffering from HCC only, the serum levels of both IL-33 and IL-17 increased significantly in those patients suffering from CHC and HCC. In addition, IL-33 serum level was found to increase by liver fibrosis progression and viral load, in contrast to both IL-17 and IL-25. Current results indicate a significant role of IL-33 in liver inflammation and fibrosis progress in CHC, whereas IL-17 and IL-25 may be used as biomarkers for the development of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Momen Askoura
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt;
- Correspondence: (M.A.); (W.A.H.H.); Tel.: +20-1125226642 (M.A.); +20-1101188800 (W.A.H.H.)
| | - Hisham A. Abbas
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt;
| | - Hadeel Al Sadoun
- King Fahd Medical Research Center, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Wesam H. Abdulaal
- Department of Biochemistry, Faculty of Science, Cancer and Mutagenesis Unit, King Fahd Center for Medical Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Amr S. Abu Lila
- Department of Pharmaceutics, College of Pharmacy, University of Hail, Hail 81442, Saudi Arabia; (A.S.A.L.); (K.A.); (F.A.)
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Khaled Almansour
- Department of Pharmaceutics, College of Pharmacy, University of Hail, Hail 81442, Saudi Arabia; (A.S.A.L.); (K.A.); (F.A.)
| | - Farhan Alshammari
- Department of Pharmaceutics, College of Pharmacy, University of Hail, Hail 81442, Saudi Arabia; (A.S.A.L.); (K.A.); (F.A.)
| | - El-Sayed Khafagy
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Suez Canal University, Ismailia 41552, Egypt
| | - Tarek S. Ibrahim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Wael A. H. Hegazy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt;
- Correspondence: (M.A.); (W.A.H.H.); Tel.: +20-1125226642 (M.A.); +20-1101188800 (W.A.H.H.)
| |
Collapse
|
42
|
Tissue-resident immunity in the lung: a first-line defense at the environmental interface. Semin Immunopathol 2022; 44:827-854. [PMID: 36305904 PMCID: PMC9614767 DOI: 10.1007/s00281-022-00964-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 09/08/2022] [Indexed: 12/15/2022]
Abstract
The lung is a vital organ that incessantly faces external environmental challenges. Its homeostasis and unimpeded vital function are ensured by the respiratory epithelium working hand in hand with an intricate fine-tuned tissue-resident immune cell network. Lung tissue-resident immune cells span across the innate and adaptive immunity and protect from infectious agents but can also prove to be pathogenic if dysregulated. Here, we review the innate and adaptive immune cell subtypes comprising lung-resident immunity and discuss their ontogeny and role in distinct respiratory diseases. An improved understanding of the role of lung-resident immunity and how its function is dysregulated under pathological conditions can shed light on the pathogenesis of respiratory diseases.
Collapse
|
43
|
Sana M, Rashid M, Rashid I, Akbar H, Gomez-Marin JE, Dimier-Poisson I. Immune response against toxoplasmosis-some recent updates RH: Toxoplasma gondii immune response. Int J Immunopathol Pharmacol 2022; 36:3946320221078436. [PMID: 35227108 PMCID: PMC8891885 DOI: 10.1177/03946320221078436] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
AIMS Cytokines, soluble mediators of immunity, are key factors of the innate and adaptive immune system. They are secreted from and interact with various types of immune cells to manipulate host body's immune cell physiology for a counter-attack on the foreign body. A study was designed to explore the mechanism of Toxoplasma gondii (T. gondii) resistance from host immune response. METHODS AND RESULTS The published data on aspect of host (murine and human) immune response against T. gondii was taken from Google scholar and PubMed. Most relevant literature was included in this study. The basic mechanism of immune response starts from the interactions of antigens with host immune cells to trigger the production of cytokines (pro-inflammatory and anti-inflammatory) which then act by forming a cytokinome (network of cytokine). Their secretory equilibrium is essential for endowing resistance to the host against infectious diseases, particularly toxoplasmosis. A narrow balance lying between Th1, Th2, and Th17 cytokines (as demonstrated until now) is essential for the development of resistance against T. gondii as well as for the survival of host. Excessive production of pro-inflammatory cytokines leads to tissue damage resulting in the production of anti-inflammatory cytokines which enhances the proliferation of Toxoplasma. Stress and other infectious diseases (human immunodeficiency virus (HIV)) that weaken the host immunity particularly the cellular component, make the host susceptible to toxoplasmosis especially in pregnant women. CONCLUSION The current review findings state that in vitro harvesting of IL12 from DCs, Np and MΦ upon exposure with T. gondii might be a source for therapeutic use in toxoplasmosis. Current review also suggests that therapeutic interventions leading to up-regulation/supplementation of SOCS-3, IL12, and IFNγ to the infected host could be a solution to sterile immunity against T. gondii infection. This would be of interest particularly in patients passing through immunosuppression owing to any reason like the ones receiving anti-cancer therapy, the ones undergoing immunosuppressive therapy for graft/transplantation, the ones suffering from immunodeficiency virus (HIV) or having AIDS. Another imortant suggestion is to launch the efforts for a vaccine based on GRA6Nt or other similar antigens of T. gondii as a probable tool to destroy tissue cysts.
Collapse
Affiliation(s)
- Madiha Sana
- Department of Parasitology, 66920University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Muhammad Rashid
- Department of Parasitology, Faculty of Veterinary and Animal Sciences, 66920The Islamia University of Bahawalpur, Pakistan
| | - Imran Rashid
- Department of Parasitology, 66920University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Haroon Akbar
- Department of Parasitology, 66920University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Jorge E Gomez-Marin
- Grupo Gepamol, Centro de Investigaciones Biomedicas, Universidad del Quindio, Armenia, CO, South America
| | - Isabelle Dimier-Poisson
- Université de Tours, Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE), Unité mixte de recherche 1282 (UMR1282), Infectiologie et santé publique (ISP), Tours, France
| |
Collapse
|
44
|
Chu TH, Khairallah C, Shieh J, Cho R, Qiu Z, Zhang Y, Eskiocak O, Thanassi DG, Kaplan MH, Beyaz S, Yang VW, Bliska JB, Sheridan BS. γδ T cell IFNγ production is directly subverted by Yersinia pseudotuberculosis outer protein YopJ in mice and humans. PLoS Pathog 2021; 17:e1010103. [PMID: 34871329 PMCID: PMC8648121 DOI: 10.1371/journal.ppat.1010103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 11/09/2021] [Indexed: 12/31/2022] Open
Abstract
Yersinia pseudotuberculosis is a foodborne pathogen that subverts immune function by translocation of Yersinia outer protein (Yop) effectors into host cells. As adaptive γδ T cells protect the intestinal mucosa from pathogen invasion, we assessed whether Y. pseudotuberculosis subverts these cells in mice and humans. Tracking Yop translocation revealed that the preferential delivery of Yop effectors directly into murine Vγ4 and human Vδ2+ T cells inhibited anti-microbial IFNγ production. Subversion was mediated by the adhesin YadA, injectisome component YopB, and translocated YopJ effector. A broad anti-pathogen gene signature and STAT4 phosphorylation levels were inhibited by translocated YopJ. Thus, Y. pseudotuberculosis attachment and translocation of YopJ directly into adaptive γδ T cells is a major mechanism of immune subversion in mice and humans. This study uncovered a conserved Y. pseudotuberculosis pathway that subverts adaptive γδ T cell function to promote pathogenicity. Unconventional γδ T cells are a dynamic immune population important for mucosal protection of the intestine against invading pathogens. We determined that the foodborne pathogen Y. pseudotuberculosis preferentially targets an adaptive subset of these cells to subvert immune function. We found that direct injection of Yersinia outer proteins (Yop) into adaptive γδ T cells inhibited their anti-pathogen functions. We screened all Yop effectors and identified YopJ as the sole effector to inhibit adaptive γδ T cell production of IFNγ. We determined that adaptive γδ T cell subversion occurred by limiting activation of the transcription factor STAT4. When we infected mice with Y. pseudotuberculosis expressing an inactive YopJ, this enhanced the adaptive γδ T cell response and led to greater cytokine production from this subset of cells to aid mouse recovery. This mechanism of immune evasion appears conserved in humans as direct injection of Y. pseudotuberculosis YopJ into human γδ T cells inhibited cytokine production. This suggested to us that Y. pseudotuberculosis actively inhibits the adaptive γδ T cell response through YopJ as a mechanism to evade immune surveillance at the site of pathogen invasion.
Collapse
Affiliation(s)
- Timothy H. Chu
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
- Center for Infectious Diseases, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
| | - Camille Khairallah
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
- Center for Infectious Diseases, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
| | - Jason Shieh
- Department of Medicine, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
| | - Rhea Cho
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
- Center for Infectious Diseases, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
| | - Zhijuan Qiu
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
- Center for Infectious Diseases, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
| | - Yue Zhang
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
- Center for Infectious Diseases, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
| | - Onur Eskiocak
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - David G. Thanassi
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
- Center for Infectious Diseases, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
| | - Mark H. Kaplan
- Department of Microbiology and Immunology, School of Medicine, Indiana University, Indianapolis, Indiana, United States of America
| | - Semir Beyaz
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Vincent W. Yang
- Department of Medicine, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
| | - James B. Bliska
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth College, Dartmouth, New Hampshire, United States of America
| | - Brian S. Sheridan
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
- Center for Infectious Diseases, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
- * E-mail:
| |
Collapse
|
45
|
Berry SPDG, Dossou C, Kashif A, Sharifinejad N, Azizi G, Hamedifar H, Sabzvari A, Zian Z. The role of IL-17 and anti-IL-17 agents in the immunopathogenesis and management of autoimmune and inflammatory diseases. Int Immunopharmacol 2021; 102:108402. [PMID: 34863654 DOI: 10.1016/j.intimp.2021.108402] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 12/14/2022]
Abstract
Interleukin-17 (IL-17) is a proinflammatory cytokine involved in chronic inflammation occurring during the pathogenesis of allergy, malignancy, and autoimmune diseases such as rheumatoid arthritis, systemic lupus erythematosus, multiple sclerosis, and psoriasis. IL-17 is produced by multiple cell types of adaptive and innate immunity, including T helper 17 cells, CD8 + T cells, γδ T cells, natural killer T cells, and innate lymphoid cells. Monoclonal antibodies (mAbs) targeting IL-17 and/or IL-17R would be a potential approach to study this therapeutic tool for these diseases. In the current review, we aimed to highlight the characteristics of IL-17 and its important role in the pathogenesis of related diseases. Critical evaluation of the mAbs targeting IL-17A and IL-17 receptors (e.g., Ixekizumab, Secukinumab, and Brodalumab) in various immune-mediated diseases will be provided, and finally, their clinical efficacy and safety will be reported.
Collapse
Affiliation(s)
- S P Déo-Gracias Berry
- Centre de Recherches Médicales (CERMEL) de Lambaréné, B.P: 242, Gabon; Technical University of Munich, 80333, Germany
| | - Camille Dossou
- Laboratory of Biology and Molecular Typing in Microbiology. Faculty of Sciences and Techniques/University of Abomey-Calavi, Cotonou 05 BP 1604, Benin
| | - Ali Kashif
- Department of Pharmacy, Abdul Wali Khan University, Mardan 23200, Pakistan
| | - Niusha Sharifinejad
- Alborz Office of USERN, Universal Scientific Education and Research Network (USERN), Alborz University of Medical Sciences, Karaj, Iran
| | - Gholamreza Azizi
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj 3149779453, Iran
| | - Haleh Hamedifar
- CinnaGen Medical Biotechnology Research Center, Alborz University of Medical Sciences, Karaj, Iran; CinnaGen Research and Production Co, Alborz, Iran
| | - Araz Sabzvari
- CinnaGen Medical Biotechnology Research Center, Alborz University of Medical Sciences, Karaj, Iran; Orchid Pharmed Company, Tehran, Iran.
| | - Zeineb Zian
- Biomedical Genomics and Oncogenetics Research Laboratory, Faculty of Sciences and Techniques of Tangier, P.B. 416, Abdelmalek Essaadi University, Tetouan, Morocco.
| |
Collapse
|
46
|
Fatollahzadeh M, Eskandarian A, Darani HY, Pagheh AS, Ahmadpour E. Evaluation of Th17 immune responses of recombinant DNA vaccine encoding GRA14 and ROP13 genes against Toxoplasma gondii in BALB/c mice. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2021; 96:105150. [PMID: 34801755 DOI: 10.1016/j.meegid.2021.105150] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/08/2021] [Accepted: 11/16/2021] [Indexed: 06/13/2023]
Abstract
Toxoplasma gondii, a worldwide opportunistic parasite, causes serious diseases in both humans and fetuses with defective immune systems. The development of an effective vaccine is urgently required to prevent and control the spread of toxoplasmosis, caused by the apicomplexan parasite Toxoplasma gondii which is one of the most damaging zoonotic diseases of global importance. Plasmid DNA vaccination is a promising procedure for vaccine development and following the previous studies, pcROP13 + pcGRA14 cocktail DNA vaccine was evaluated for Th17 immune responses. Four groups of BALB/c mice were immunized intramuscularly three times at 2-week intervals. Subsequently, the production of anti- T. gondii antibodies and serum levels of cytokines IL-17, and IL-22 were evaluated against the RH strain of T. gondii. In addition, both the reactive oxygen species (ROS) and parasite load were assessed using ELISA and Q-PCR, respectively. The results of this study showed that high levels of IgG were found in mice immunized with cocktail DNA vaccine (p < 0.05). The cytokines level of Th17, IL-17, and IL-22, increased remarkably in the immunized mice (p < 0.05). Also, significant induction (p < 0.05) was observed in ROS. In addition, immunization with pcROP13 + GRA14 resulted in a considerable decrease in parasite load compared to the control groups (p < 0.05). Based on the results, the pcROP13 + GRA14 cocktail DNA vaccine induced Th17 related cytokines and decreased the parasite load in spleen and brain tissues. Hence, pcGRA14 + pcROP13 cocktails are suitable candidates for DNA-based vaccines and due to the development of protective immune responses against T. gondii infection, future studies may yield promising results using these antigens in vaccine design.
Collapse
Affiliation(s)
- Mohammad Fatollahzadeh
- Department of Parasitology and Mycology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Abbasali Eskandarian
- Department of Parasitology and Mycology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Hossein Yousofi Darani
- Department of Parasitology and Mycology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Abdol Sattar Pagheh
- Infectious Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Ehsan Ahmadpour
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
47
|
Chan RK, Ahrens B, MacEachern P, Bosch JD, Randall DR. Prevalence and incidence of idiopathic subglottic stenosis in southern and central Alberta: a retrospective cohort study. J Otolaryngol Head Neck Surg 2021; 50:64. [PMID: 34772459 PMCID: PMC8588657 DOI: 10.1186/s40463-021-00544-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 10/10/2021] [Indexed: 11/26/2022] Open
Abstract
Background Subglottic stenosis (SGS) is a reportedly rare disease that causes recurrent severe airway obstruction. Etiologies reported for SGS include idiopathic, iatrogenic, autoimmune, congenital, and traumatic, with variable ratios among different centres. From empiric observation, southern and central Alberta was hypothesized to have a disproportionate distribution of SGS driven by increased idiopathic SGS (iSGS) compared to previous literature. Identification of causative agents of iSGS will help understand and guide future management options, so this study aimed to characterize the demographics of SGS subtypes, define prevalence and incidence rates of iSGS in southern Alberta, and geographically analyze for clustering of iSGS prevalence. Methods SGS patients from Alberta census divisions No. 1–9 and 15 were retrospectively reviewed. Patients were subtyped according to etiology of SGS and characterized. Idiopathic SGS prevalence and incidence was assessed; prevalence was further geographically segregated by census division and forward sortation area (FSA). Significant clustering patterns were assessed for using a Global Moran’s I analysis. Results From 2010 to 2019 we identified 250 SGS patients, who were substantially overrepresented by idiopathic patients (80.4%) compared to autoimmune (10.0%), iatrogenic (7.6%), congenital (1.2%), and traumatic (0.8%). The total iSGS prevalence was 9.28/100,000 with a mean annual incidence rate of 0.71/100,000 per year. Significant clustering was observed (Moran’s index 0.125; z-score 2.832; p = 0.0046) and the highest rates of prevalence were observed in southern Alberta and in rural communities heterogeneously dispersed around Calgary FSAs. Conclusion In southern and central Alberta, iSGS patients were disproportionately over-represented in contrast to other subtypes with the highest prevalence in southern Alberta. There was a three-fold higher annual incidence compared to previous literature demonstrating the highest rates of disease reported worldwide. Future research aims to expand the geographical scope and to assess for demographic or environmental differences within significant clusters that may contribute to disease pathophysiology. Level of evidence III. Graphical Abstract ![]()
Collapse
Affiliation(s)
- Ryan K Chan
- Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Beau Ahrens
- Interdisciplinary PhD Program, Dalhousie University, Halifax, NS, Canada
| | - Paul MacEachern
- Interventional Pulmonary Medicine, Division of Respirology - Thoracic Surgery and Medical Oncology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - J Douglas Bosch
- Section of Otolaryngology - Head and Neck Surgery, Department of Surgery, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Calgary Voice Clinic, Richmond Road Diagnostic and Treatment Centre, Calgary, AB, Canada
| | - Derrick R Randall
- Section of Otolaryngology - Head and Neck Surgery, Department of Surgery, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada. .,Calgary Voice Clinic, Richmond Road Diagnostic and Treatment Centre, Calgary, AB, Canada.
| |
Collapse
|
48
|
Yao YE, Qin CC, Yang CM, Huang TX. γδT17/γδTreg cell subsets: a new paradigm for asthma treatment. J Asthma 2021; 59:2028-2038. [PMID: 34634976 DOI: 10.1080/02770903.2021.1980585] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Bronchial asthma (abbreviated as asthma), is a heterogeneous disease characterized by chronic airway inflammation and airway hyperresponsiveness. The main characteristics of asthma include variable reversible airflow limitation and airway remodeling. The pathogenesis of asthma is still unclear. Th1/Th2 imbalance, Th1 deficiency and Th2 hyperfunction are classic pathophysiological mechanisms of asthma. Some studies have shown that the imbalance of the Th1/Th2 cellular immune model and Th17/Treg imbalance play a key role in the occurrence and development of asthma; however, these imbalances do not fully explain the disease. In recent years, studies have shown that γδT and γδT17 cells are involved in the pathogenesis of asthma. γδTreg has a potential immunosuppressive function, but its regulatory mechanisms have not been fully elucidated. In this paper, we reviewed the role of γδT17/γδTreg cells in bronchial asthma, including the mechanisms of their development and activation. Here we propose that γδT17/Treg cell subsets contribute to the occurrence and development of asthma, constituting a novel potential target for asthma treatment.
Collapse
Affiliation(s)
- Yi-En Yao
- Department of Respiratory Medicine, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Cai-Cheng Qin
- Department of Respiratory Medicine, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Chao-Mian Yang
- Department of Respiratory Medicine, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Tian-Xia Huang
- Department of Respiratory Medicine, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
49
|
Piergallini TJ, Scordo JM, Pino PA, Schlesinger LS, Torrelles JB, Turner J. Acute Inflammation Confers Enhanced Protection against Mycobacterium tuberculosis Infection in Mice. Microbiol Spectr 2021; 9:e0001621. [PMID: 34232086 PMCID: PMC8552513 DOI: 10.1128/spectrum.00016-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/02/2021] [Indexed: 01/02/2023] Open
Abstract
Inflammation plays a crucial role in the control of Mycobacterium tuberculosis infection. In this study, we demonstrate that an inflammatory pulmonary environment at the time of infection mediated by lipopolysaccharide treatment in mice confers enhanced protection against M. tuberculosis for up to 6 months postinfection. This early and transient inflammatory environment was associated with a neutrophil and CD11b+ cell influx and increased inflammatory cytokines. In vitro infection demonstrated that neutrophils from lipopolysaccharide-treated mice exhibited increased association with M. tuberculosis and had a greater innate capacity for killing M. tuberculosis. Finally, partial depletion of neutrophils in lipopolysaccharide-treated mice showed an increase in M. tuberculosis burden, suggesting neutrophils played a part in the protection observed in lipopolysaccharide-treated mice. These results indicate a positive role for an inflammatory environment in the initial stages of M. tuberculosis infection and suggest that acute inflammation at the time of M. tuberculosis infection can positively alter disease outcome. IMPORTANCE Mycobacterium tuberculosis, the causative agent of tuberculosis disease, is estimated to infect one-fourth of the world's population and is one of the leading causes of death due to an infectious disease worldwide. The high-level variability in tuberculosis disease responses in the human populace may be linked to immune processes related to inflammation. In many cases, inflammation appears to exasperate tuberculosis responses; however, some evidence suggests inflammatory processes improve control of M. tuberculosis infection. Here, we show an acute inflammatory stimulus in mice provides protection against M. tuberculosis for up to 6 months, suggesting acute inflammation can positively affect M. tuberculosis infection outcome.
Collapse
Affiliation(s)
- Tucker J. Piergallini
- Host-Pathogen Interactions Program, Texas Biomedical Research Institute, San Antonio, Texas, USA
- Biomedical Sciences Graduate Program, The Ohio State University, Columbus, Ohio, USA
| | - Julia M. Scordo
- Host-Pathogen Interactions Program, Texas Biomedical Research Institute, San Antonio, Texas, USA
- The Barshop Institute, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Paula A. Pino
- Population Health Program, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Larry S. Schlesinger
- Host-Pathogen Interactions Program, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Jordi B. Torrelles
- Population Health Program, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Joanne Turner
- Host-Pathogen Interactions Program, Texas Biomedical Research Institute, San Antonio, Texas, USA
| |
Collapse
|
50
|
Liu X, Nguyen TH, Sokulsky L, Li X, Garcia Netto K, Hsu ACY, Liu C, Laurie K, Barr I, Tay H, Eyers F, Foster PS, Yang M. IL-17A is a common and critical driver of impaired lung function and immunopathology induced by influenza virus, rhinovirus and respiratory syncytial virus. Respirology 2021; 26:1049-1059. [PMID: 34472161 DOI: 10.1111/resp.14141] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/08/2021] [Accepted: 08/09/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND AND OBJECTIVE Influenza virus (FLU), rhinovirus (RV) and respiratory syncytial virus (RSV) are the most common acute respiratory infections worldwide. Infection can cause severe health outcomes, while therapeutic options are limited, primarily relieving symptoms without attenuating the development of lesions or impaired lung function. We therefore examined the inflammatory response to these infections with the intent to identify common components that are critical drivers of immunopathogenesis and thus represent potential therapeutic targets. METHODS BALB/c mice were infected with FLU, RV or RSV, and lung function, airway inflammation and immunohistopathology were measured over a 10-day period. Anti-IL-17A mAb was administered to determine the impact of attenuating this cytokine's function on the development and severity of disease. RESULTS All three viruses induced severe airway constriction and inflammation at 2 days post-infection (dpi). However, only FLU induced prolonged inflammation till 10 dpi. Increased IL-17A expression was correlated with the alterations in lung function and its persistence. Neutralization of IL-17A did not affect the viral replication but led to the resolution of airway hyperresponsiveness. Furthermore, anti-IL-17A treatment resulted in reduced infiltration of neutrophils (in RV- and FLU-infected mice at 2 dpi) and lymphocytes (in RSV-infected mice at 2 dpi and FLU-infected mice at 10 dpi), and attenuated the severity of immunopathology. CONCLUSION IL-17A is a common pathogenic molecule regulating disease induced by three prevalent respiratory viruses. Targeting the IL-17A pathway may provide a unified approach to the treatment of these respiratory infections alleviating both inflammation-induced lesions and difficulties in breathing.
Collapse
Affiliation(s)
- Xiaoming Liu
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia.,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute (HMRI), University of Newcastle, New Lambton Heights, New South Wales, Australia
| | - Thi Hiep Nguyen
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia.,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute (HMRI), University of Newcastle, New Lambton Heights, New South Wales, Australia
| | - Leon Sokulsky
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia
| | - Xiang Li
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia.,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute (HMRI), University of Newcastle, New Lambton Heights, New South Wales, Australia
| | - Keilah Garcia Netto
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia.,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute (HMRI), University of Newcastle, New Lambton Heights, New South Wales, Australia
| | - Alan Chen-Yu Hsu
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute (HMRI), University of Newcastle, New Lambton Heights, New South Wales, Australia.,School of Medicine and Public Health, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia.,Programme in Emerging Infectious Diseases, Duke - National University of Singapore (NUS) Medical School, Singapore
| | - Chi Liu
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, China
| | - Karen Laurie
- WHO Collaborating Centre for Reference and Research on Influenza, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Ian Barr
- WHO Collaborating Centre for Reference and Research on Influenza, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Hock Tay
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia.,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute (HMRI), University of Newcastle, New Lambton Heights, New South Wales, Australia
| | - Fiona Eyers
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia.,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute (HMRI), University of Newcastle, New Lambton Heights, New South Wales, Australia
| | - Paul S Foster
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia.,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute (HMRI), University of Newcastle, New Lambton Heights, New South Wales, Australia
| | - Ming Yang
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia.,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute (HMRI), University of Newcastle, New Lambton Heights, New South Wales, Australia
| |
Collapse
|