1
|
Lawton ML, Inge MM, Blum BC, Smith-Mahoney EL, Bolzan D, Lin W, McConney C, Porter J, Moore J, Youssef A, Tharani Y, Varelas X, Denis GV, Wong WW, Padhorny D, Kozakov D, Siggers T, Wuchty S, Snyder-Cappione J, Emili A. Multiomic profiling of chronically activated CD4+ T cells identifies drivers of exhaustion and metabolic reprogramming. PLoS Biol 2024; 22:e3002943. [PMID: 39689157 DOI: 10.1371/journal.pbio.3002943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 01/06/2025] [Accepted: 11/15/2024] [Indexed: 12/19/2024] Open
Abstract
Repeated antigen exposure leads to T-cell exhaustion, a transcriptionally and epigenetically distinct cellular state marked by loss of effector functions (e.g., cytotoxicity, cytokine production/release), up-regulation of inhibitory receptors (e.g., PD-1), and reduced proliferative capacity. Molecular pathways underlying T-cell exhaustion have been defined for CD8+ cytotoxic T cells, but which factors drive exhaustion in CD4+ T cells, that are also required for an effective immune response against a tumor or infection, remains unclear. Here, we utilize quantitative proteomic, phosphoproteomic, and metabolomic analyses to characterize the molecular basis of the dysfunctional cell state induced by chronic stimulation of CD4+ memory T cells. We identified a dynamic response encompassing both known and novel up-regulated cell surface receptors, as well as dozens of unexpected transcriptional regulators. Integrated causal network analysis of our combined data predicts the histone acetyltransferase p300 as a driver of aspects of this phenotype following chronic stimulation, which we confirmed via targeted small molecule inhibition. While our integrative analysis also revealed large-scale metabolic reprogramming, our independent investigation confirmed a global remodeling away from glycolysis to a dysfunctional fatty acid oxidation-based metabolism coincident with oxidative stress. Overall, these data provide both insights into the mechanistic basis of CD4+ T-cell exhaustion and serve as a valuable resource for future interventional studies aimed at modulating T-cell dysfunction.
Collapse
Affiliation(s)
- Matthew L Lawton
- Center for Network Systems Biology, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Melissa M Inge
- Depart of Biology, Boston University, Boston, Massachusetts, United States of America
| | - Benjamin C Blum
- Center for Network Systems Biology, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Erika L Smith-Mahoney
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Dante Bolzan
- Department of Computer Science, University of Miami, Miami, Florida, United States of America
| | - Weiwei Lin
- Center for Network Systems Biology, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Christina McConney
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Jacob Porter
- Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Jarrod Moore
- Center for Network Systems Biology, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Ahmed Youssef
- Center for Network Systems Biology, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Yashasvi Tharani
- Center for Network Systems Biology, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Depart of Biology, Boston University, Boston, Massachusetts, United States of America
| | - Xaralabos Varelas
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Gerald V Denis
- Hematology and Medical Oncology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Wilson W Wong
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, United States of America
| | - Dzmitry Padhorny
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, New York, United States of America
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, New York, United States of America
| | - Dima Kozakov
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, New York, United States of America
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, New York, United States of America
| | - Trevor Siggers
- Depart of Biology, Boston University, Boston, Massachusetts, United States of America
| | - Stefan Wuchty
- Department of Computer Science, University of Miami, Miami, Florida, United States of America
- Miami Institute of Data Science and Computing, Miami, Florida, United States of America
| | - Jennifer Snyder-Cappione
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Andrew Emili
- Center for Network Systems Biology, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Depart of Biology, Boston University, Boston, Massachusetts, United States of America
- Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon, United States of America
| |
Collapse
|
2
|
Barnes HW, Demirdjian S, Haddock NL, Kaber G, Martinez HA, Nagy N, Karmouty-Quintana H, Bollyky PL. Hyaluronan in the pathogenesis of acute and post-acute COVID-19 infection. Matrix Biol 2023; 116:49-66. [PMID: 36750167 PMCID: PMC9899355 DOI: 10.1016/j.matbio.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/20/2023] [Accepted: 02/02/2023] [Indexed: 02/07/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) recently emerged as the cause of a global pandemic. Infection with SARS-CoV-2 can result in COVID-19 with both acute and chronic disease manifestations that continue to impact many patients long after the resolution of viral replication. There is therefore great interest in understanding the host factors that contribute to COVID-19 pathogenesis. In this review, we address the role of hyaluronan (HA), an extracellular matrix polymer with roles in inflammation and cellular metabolism, in COVID-19 and critically evaluate the hypothesis that HA promotes COVID-19 pathogenesis. We first provide a brief overview of COVID-19 infection. Then we briefly summarize the known roles of HA in airway inflammation and immunity. We then address what is known about HA and the pathogenesis of COVID-19 acute respiratory distress syndrome (COVID-19 ARDS). Next, we examine potential roles for HA in post-acute SARS-CoV-2 infection (PASC), also known as "long COVID" as well as in COVID-associated fibrosis. Finally, we discuss the potential therapeutics that target HA as a means to treat COVID-19, including the repurposed drug hymecromone (4-methylumbelliferone). We conclude that HA is a promising potential therapeutic target for the treatment of COVID-19.
Collapse
Affiliation(s)
- Henry W Barnes
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Beckman Center, 279 Campus Drive, Stanford, CA 94305, USA
| | - Sally Demirdjian
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Beckman Center, 279 Campus Drive, Stanford, CA 94305, USA
| | - Naomi L Haddock
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Beckman Center, 279 Campus Drive, Stanford, CA 94305, USA
| | - Gernot Kaber
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Beckman Center, 279 Campus Drive, Stanford, CA 94305, USA
| | - Hunter A Martinez
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Beckman Center, 279 Campus Drive, Stanford, CA 94305, USA
| | - Nadine Nagy
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Beckman Center, 279 Campus Drive, Stanford, CA 94305, USA
| | - Harry Karmouty-Quintana
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth Houston), Houston, Texas, USA
| | - Paul L Bollyky
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Beckman Center, 279 Campus Drive, Stanford, CA 94305, USA.
| |
Collapse
|
3
|
4-Methylumbelliferone Targets Revealed by Public Data Analysis and Liver Transcriptome Sequencing. Int J Mol Sci 2023; 24:ijms24032129. [PMID: 36768453 PMCID: PMC9917189 DOI: 10.3390/ijms24032129] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 01/09/2023] [Accepted: 01/18/2023] [Indexed: 01/25/2023] Open
Abstract
4-methylumbelliferone (4MU) is a well-known hyaluronic acid synthesis inhibitor and an approved drug for the treatment of cholestasis. In animal models, 4MU decreases inflammation, reduces fibrosis, and lowers body weight, serum cholesterol, and insulin resistance. It also inhibits tumor progression and metastasis. The broad spectrum of effects suggests multiple and yet unknown targets of 4MU. Aiming at 4MU target deconvolution, we have analyzed publicly available data bases, including: 1. Small molecule library Bio Assay screening (PubChemBioAssay); 2. GO pathway databases screening; 3. Protein Atlas Database. We also performed comparative liver transcriptome analysis of mice on normal diet and mice fed with 4MU for two weeks. Potential targets of 4MU public data base analysis fall into two big groups, enzymes and transcription factors (TFs), including 13 members of the nuclear receptor superfamily regulating lipid and carbohydrate metabolism. Transcriptome analysis revealed changes in the expression of genes involved in bile acid metabolism, gluconeogenesis, and immune response. It was found that 4MU feeding decreased the accumulation of the glycogen granules in the liver. Thus, 4MU has multiple targets and can regulate cell metabolism by modulating signaling via nuclear receptors.
Collapse
|
4
|
Piroth M, Gorski DJ, Hundhausen C, Petz A, Gorressen S, Semmler D, Zabri H, Hartwig S, Lehr S, Kelm M, Jung C, Fischer JW. Hyaluronan Synthase 3 is Protective After Cardiac Ischemia-Reperfusion by preserving the T cell Response. Matrix Biol 2022; 112:116-131. [PMID: 35998871 DOI: 10.1016/j.matbio.2022.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 08/02/2022] [Accepted: 08/18/2022] [Indexed: 10/15/2022]
Abstract
Dysregulated extracellular matrix (ECM) is a hallmark of adverse cardiac remodeling after myocardial infarction (MI). Previous work from our laboratory suggests that synthesis of the major ECM component hyaluronan (HA) may be beneficial for post-infarct healing. Here, we aimed to investigate the mechanisms of hyaluronan synthase 3 (HAS3) in cardiac healing after MI. Mice with genetic deletion of Has3 (Has3 KO) and wildtype mice (WT) underwent 45 minutes of ischemia with subsequent reperfusion (I/R), followed by monitoring of heart function and analysis of tissue remodeling for up to three weeks. Has3 KO mice exhibited impaired cardiac function as evidenced by a reduced ejection fraction. Accordingly, Has3 deficiency also resulted in an increased scar size. Cardiac fibroblast activation and CD68+ macrophage counts were similar between genotypes. However, we found a significant decrease in CD4 T cells in the hearts of Has3 KO mice seven days post-MI, in particular reduced numbers of CD4+CXCR3+ Th1 and CD4+CD25+ Treg cells. Furthermore, Has3 deficient cardiac T cells were less activated and more apoptotic as shown by decreased CD69+ and increased annexin V+ cells, respectively. In vitro assays using activated splenic CD3 T cells demonstrated that Has3 deficiency resulted in reduced expression of the main HA receptor CD44 and diminished T cell proliferation. T cell transendothelial migration was similar between genotypes. Of note, analysis of peripheral blood from patients with ST-elevation myocardial infarction (STEMI) revealed that HAS3 is the predominant HAS isoenzyme also in human T cells. In conclusion, our data suggest that HAS3 is required for mounting a physiological T cell response after MI to support cardiac healing. Therefore, our study may serve as a foundation for the development of novel strategies targeting HA-matrix to preserve T cell function after MI.
Collapse
Affiliation(s)
- Marco Piroth
- Institute for Pharmacology, University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Germany
| | - Daniel J Gorski
- Institute for Pharmacology, University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Germany
| | - Christian Hundhausen
- Institute for Pharmacology, University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Germany
| | - Anne Petz
- Institute for Pharmacology, University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Germany
| | - Simone Gorressen
- Institute for Pharmacology, University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Germany
| | - Dominik Semmler
- Institute for Pharmacology, University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Germany
| | - Heba Zabri
- Institute for Pharmacology, University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Germany
| | - Sonja Hartwig
- German Diabetes Center at the Heinrich-Heine-University Düsseldorf, Leibniz Center for Diabetes Research
| | - Stefan Lehr
- German Diabetes Center at the Heinrich-Heine-University Düsseldorf, Leibniz Center for Diabetes Research
| | - Malte Kelm
- Cardiology, Pulmonology and Vascular Medicine, Medical Faculty of the Heinrich Heine University Düsseldorf
| | - Christian Jung
- Cardiology, Pulmonology and Vascular Medicine, Medical Faculty of the Heinrich Heine University Düsseldorf
| | - Jens W Fischer
- Institute for Pharmacology, University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Germany.
| |
Collapse
|
5
|
Imani J, Liu K, Cui Y, Assaker JP, Han J, Ghosh AJ, Ng J, Shrestha S, Lamattina AM, Louis PH, Hentschel A, Esposito AJ, Rosas IO, Liu X, Perrella MA, Azzi J, Visner G, El-Chemaly S. Blocking hyaluronan synthesis alleviates acute lung allograft rejection. JCI Insight 2021; 6:142217. [PMID: 34665782 PMCID: PMC8663774 DOI: 10.1172/jci.insight.142217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 10/13/2021] [Indexed: 11/29/2022] Open
Abstract
Lung allograft rejection results in the accumulation of low–molecular weight hyaluronic acid (LMW-HA), which further propagates inflammation and tissue injury. We have previously shown that therapeutic lymphangiogenesis in a murine model of lung allograft rejection reduced tissue LMW-HA and was associated with improved transplant outcomes. Herein, we investigated the use of 4-Methylumbelliferone (4MU), a known inhibitor of HA synthesis, to alleviate acute allograft rejection in a murine model of lung transplantation. We found that treating mice with 4MU from days 20 to 30 after transplant was sufficient to significantly improve outcomes, characterized by a reduction in T cell–mediated lung inflammation and LMW-HA content and in improved pathology scores. In vitro, 4MU directly attenuated activation, proliferation, and differentiation of naive CD4+ T cells into Th1 cells. As 4MU has already been demonstrated to be safe for human use, we believe examining 4MU for the treatment of acute lung allograft rejection may be of clinical significance.
Collapse
Affiliation(s)
- Jewel Imani
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Kaifeng Liu
- Division of Pulmonary and Critical Care Medicine, Boston Children Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Ye Cui
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Junwen Han
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Department of Pediatric Newborn Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Auyon J Ghosh
- Division of Pulmonary, Critical Care, and Sleep Medicine, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Julie Ng
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Shikshya Shrestha
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Anthony M Lamattina
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Pierce H Louis
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Anne Hentschel
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Anthony J Esposito
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Ivan O Rosas
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Pulmonary, Critical Care and Sleep Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Xiaoli Liu
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Department of Pediatric Newborn Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Mark A Perrella
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Department of Pediatric Newborn Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jamil Azzi
- Transplantation Research Center, Renal Division, and
| | - Gary Visner
- Division of Pulmonary and Critical Care Medicine, Boston Children Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Souheil El-Chemaly
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
6
|
Johnson LA, Jackson DG. Hyaluronan and Its Receptors: Key Mediators of Immune Cell Entry and Trafficking in the Lymphatic System. Cells 2021; 10:cells10082061. [PMID: 34440831 PMCID: PMC8393520 DOI: 10.3390/cells10082061] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/06/2021] [Accepted: 08/08/2021] [Indexed: 02/07/2023] Open
Abstract
Entry to the afferent lymphatics marks the first committed step for immune cell migration from tissues to draining lymph nodes both for the generation of immune responses and for timely resolution of tissue inflammation. This critical process occurs primarily at specialised discontinuous junctions in initial lymphatic capillaries, directed by chemokines released from lymphatic endothelium and orchestrated by adhesion between lymphatic receptors and their immune cell ligands. Prominent amongst the latter is the large glycosaminoglycan hyaluronan (HA) that can form a bulky glycocalyx on the surface of certain tissue-migrating leucocytes and whose engagement with its key lymphatic receptor LYVE-1 mediates docking and entry of dendritic cells to afferent lymphatics. Here we outline the latest insights into the molecular mechanisms by which the HA glycocalyx together with LYVE-1 and the related leucocyte receptor CD44 co-operate in immune cell entry, and how the process is facilitated by the unusual character of LYVE-1 • HA-binding interactions. In addition, we describe how pro-inflammatory breakdown products of HA may also contribute to lymphatic entry by transducing signals through LYVE-1 for lymphangiogenesis and increased junctional permeability. Lastly, we outline some future perspectives and highlight the LYVE-1 • HA axis as a potential target for immunotherapy.
Collapse
|
7
|
Leistner DM, Kränkel N, Meteva D, Abdelwahed YS, Seppelt C, Stähli BE, Rai H, Skurk C, Lauten A, Mochmann HC, Fröhlich G, Rauch-Kröhnert U, Flores E, Riedel M, Sieronski L, Kia S, Strässler E, Haghikia A, Dirks F, Steiner JK, Mueller DN, Volk HD, Klotsche J, Joner M, Libby P, Landmesser U. Differential immunological signature at the culprit site distinguishes acute coronary syndrome with intact from acute coronary syndrome with ruptured fibrous cap: results from the prospective translational OPTICO-ACS study. Eur Heart J 2021; 41:3549-3560. [PMID: 33080003 DOI: 10.1093/eurheartj/ehaa703] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 05/15/2020] [Accepted: 08/13/2020] [Indexed: 02/06/2023] Open
Abstract
AIMS Acute coronary syndromes with intact fibrous cap (IFC-ACS), i.e. caused by coronary plaque erosion, account for approximately one-third of ACS. However, the underlying pathophysiological mechanisms as compared with ACS caused by plaque rupture (RFC-ACS) remain largely undefined. The prospective translational OPTICO-ACS study programme investigates for the first time the microenvironment of ACS-causing culprit lesions (CL) with intact fibrous cap by molecular high-resolution intracoronary imaging and simultaneous local immunological phenotyping. METHODS AND RESULTS The CL of 170 consecutive ACS patients were investigated by optical coherence tomography (OCT) and simultaneous immunophenotyping by flow cytometric analysis as well as by effector molecule concentration measurements across the culprit lesion gradient (ratio local/systemic levels). Within the study cohort, IFC caused 24.6% of ACS while RFC-ACS caused 75.4% as determined and validated by two independent OCT core laboratories. The IFC-CL were characterized by lower lipid content, less calcification, a thicker overlying fibrous cap, and largely localized near a coronary bifurcation as compared with RFC-CL. The microenvironment of IFC-ACS lesions demonstrated selective enrichment in both CD4+ and CD8+ T-lymphocytes (+8.1% and +11.2%, respectively, both P < 0.05) as compared with RFC-ACS lesions. T-cell-associated extracellular circulating microvesicles (MV) were more pronounced in IFC-ACS lesions and a significantly higher amount of CD8+ T-lymphocytes was detectable in thrombi aspirated from IFC-culprit sites. Furthermore, IFC-ACS lesions showed increased levels of the T-cell effector molecules granzyme A (+22.4%), perforin (+58.8%), and granulysin (+75.4%) as compared with RFC plaques (P < 0.005). Endothelial cells subjected to culture in disturbed laminar flow conditions, i.e. to simulate coronary flow near a bifurcation, demonstrated an enhanced adhesion of CD8+T cells. Finally, both CD8+T cells and their cytotoxic effector molecules caused endothelial cell death, a key potential pathophysiological mechanism in IFC-ACS. CONCLUSIONS The OPTICO-ACS study emphasizes a novel mechanism in the pathogenesis of IFC-ACS, favouring participation of the adaptive immune system, particularly CD4+ and CD8+ T-cells and their effector molecules. The different immune signatures identified in this study advance the understanding of coronary plaque progression and may provide a basis for future development of personalized therapeutic approaches to ACS with IFC. TRIAL REGISTRATION The study was registered at clinicalTrials.gov (NCT03129503).
Collapse
Affiliation(s)
- David M Leistner
- Department of Cardiology, University Heart Centre Berlin and Charité University Medicine Berlin, Campus Benjamin-Franklin (CBF), Hindenburgdamm 30, Berlin D-12203, Germany.,DZHK (German Centre for Cardiovascular Research) Partner Site Berlin, Berlin 12203, Germany.,Berlin Institute of Health (BIH), Berlin 10117, Germany
| | - Nicolle Kränkel
- Department of Cardiology, University Heart Centre Berlin and Charité University Medicine Berlin, Campus Benjamin-Franklin (CBF), Hindenburgdamm 30, Berlin D-12203, Germany.,DZHK (German Centre for Cardiovascular Research) Partner Site Berlin, Berlin 12203, Germany
| | - Denitsa Meteva
- Department of Cardiology, University Heart Centre Berlin and Charité University Medicine Berlin, Campus Benjamin-Franklin (CBF), Hindenburgdamm 30, Berlin D-12203, Germany.,DZHK (German Centre for Cardiovascular Research) Partner Site Berlin, Berlin 12203, Germany
| | - Youssef S Abdelwahed
- Department of Cardiology, University Heart Centre Berlin and Charité University Medicine Berlin, Campus Benjamin-Franklin (CBF), Hindenburgdamm 30, Berlin D-12203, Germany.,DZHK (German Centre for Cardiovascular Research) Partner Site Berlin, Berlin 12203, Germany.,Berlin Institute of Health (BIH), Berlin 10117, Germany
| | - Claudio Seppelt
- Department of Cardiology, University Heart Centre Berlin and Charité University Medicine Berlin, Campus Benjamin-Franklin (CBF), Hindenburgdamm 30, Berlin D-12203, Germany.,DZHK (German Centre for Cardiovascular Research) Partner Site Berlin, Berlin 12203, Germany
| | - Barbara E Stähli
- Department of Cardiology, University Heart Centre Berlin and Charité University Medicine Berlin, Campus Benjamin-Franklin (CBF), Hindenburgdamm 30, Berlin D-12203, Germany.,DZHK (German Centre for Cardiovascular Research) Partner Site Berlin, Berlin 12203, Germany
| | - Himanshu Rai
- DZHK (German Centre for Cardiovascular Research) Partner Site Munch, Munich, 80636, Germany
| | - Carsten Skurk
- Department of Cardiology, University Heart Centre Berlin and Charité University Medicine Berlin, Campus Benjamin-Franklin (CBF), Hindenburgdamm 30, Berlin D-12203, Germany.,DZHK (German Centre for Cardiovascular Research) Partner Site Berlin, Berlin 12203, Germany
| | - Alexander Lauten
- Department of Cardiology, University Heart Centre Berlin and Charité University Medicine Berlin, Campus Benjamin-Franklin (CBF), Hindenburgdamm 30, Berlin D-12203, Germany.,DZHK (German Centre for Cardiovascular Research) Partner Site Berlin, Berlin 12203, Germany
| | - Hans-Christian Mochmann
- Department of Cardiology, University Heart Centre Berlin and Charité University Medicine Berlin, Campus Benjamin-Franklin (CBF), Hindenburgdamm 30, Berlin D-12203, Germany
| | - Georg Fröhlich
- Department of Cardiology, University Heart Centre Berlin and Charité University Medicine Berlin, Campus Benjamin-Franklin (CBF), Hindenburgdamm 30, Berlin D-12203, Germany.,DZHK (German Centre for Cardiovascular Research) Partner Site Berlin, Berlin 12203, Germany
| | - Ursula Rauch-Kröhnert
- Department of Cardiology, University Heart Centre Berlin and Charité University Medicine Berlin, Campus Benjamin-Franklin (CBF), Hindenburgdamm 30, Berlin D-12203, Germany.,DZHK (German Centre for Cardiovascular Research) Partner Site Berlin, Berlin 12203, Germany
| | - Eduardo Flores
- Department of Cardiology, University Heart Centre Berlin and Charité University Medicine Berlin, Campus Benjamin-Franklin (CBF), Hindenburgdamm 30, Berlin D-12203, Germany
| | - Matthias Riedel
- Department of Cardiology, University Heart Centre Berlin and Charité University Medicine Berlin, Campus Benjamin-Franklin (CBF), Hindenburgdamm 30, Berlin D-12203, Germany.,DZHK (German Centre for Cardiovascular Research) Partner Site Berlin, Berlin 12203, Germany
| | - Lara Sieronski
- Department of Cardiology, University Heart Centre Berlin and Charité University Medicine Berlin, Campus Benjamin-Franklin (CBF), Hindenburgdamm 30, Berlin D-12203, Germany.,DZHK (German Centre for Cardiovascular Research) Partner Site Berlin, Berlin 12203, Germany
| | - Sylvia Kia
- Department of Cardiology, University Heart Centre Berlin and Charité University Medicine Berlin, Campus Benjamin-Franklin (CBF), Hindenburgdamm 30, Berlin D-12203, Germany.,DZHK (German Centre for Cardiovascular Research) Partner Site Berlin, Berlin 12203, Germany
| | - Elisabeth Strässler
- Department of Cardiology, University Heart Centre Berlin and Charité University Medicine Berlin, Campus Benjamin-Franklin (CBF), Hindenburgdamm 30, Berlin D-12203, Germany.,DZHK (German Centre for Cardiovascular Research) Partner Site Berlin, Berlin 12203, Germany
| | - Arash Haghikia
- Department of Cardiology, University Heart Centre Berlin and Charité University Medicine Berlin, Campus Benjamin-Franklin (CBF), Hindenburgdamm 30, Berlin D-12203, Germany.,DZHK (German Centre for Cardiovascular Research) Partner Site Berlin, Berlin 12203, Germany.,Berlin Institute of Health (BIH), Berlin 10117, Germany
| | - Fabian Dirks
- Department of Cardiology, University Heart Centre Berlin and Charité University Medicine Berlin, Campus Benjamin-Franklin (CBF), Hindenburgdamm 30, Berlin D-12203, Germany.,Berlin Institute of Health (BIH), Berlin 10117, Germany
| | - Julia K Steiner
- Department of Cardiology, University Heart Centre Berlin and Charité University Medicine Berlin, Campus Benjamin-Franklin (CBF), Hindenburgdamm 30, Berlin D-12203, Germany.,DZHK (German Centre for Cardiovascular Research) Partner Site Berlin, Berlin 12203, Germany
| | - Dominik N Mueller
- DZHK (German Centre for Cardiovascular Research) Partner Site Berlin, Berlin 12203, Germany.,Berlin Institute of Health (BIH), Berlin 10117, Germany.,Experimental and Clinical Research Centre (ECRC), a cooperation of Charité University Medicine Berlin and Max Delbruck Centre for Molecular Medicine in the Helmholtz Association, Berlin 13125, Germany.,Max Delbruck Centre for Molecular Medicine in the Helmholtz Association, Berlin 13125, Germany
| | - Hans-Dieter Volk
- Berlin Institute of Health (BIH), Berlin 10117, Germany.,Institute for Medical Immunology and BIH Centre for Regenerative Therapies (BCRT), and Berlin Centre for Advanced Therapies (BeCAT), Charité University Medicine Berlin, Berlin 13353, Germany
| | - Jens Klotsche
- German Rheumatism Research Centre Berlin, and Institute for Social Medicine, Epidemiology und Heath Economy, Charité University Medicine Berlin, Campus Charité Mitte, Berlin 10117, Germany
| | - Michael Joner
- Department of Cardiology and ISAR Research Centre, German Heart Centre, Munich, 80636, Germany.,DZHK (German Centre for Cardiovascular Research) Partner Site Munch, Munich, 80636, Germany
| | - Peter Libby
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 77 Ave Louis Pasteur, Boston, MA 02115, USA
| | - Ulf Landmesser
- Department of Cardiology, University Heart Centre Berlin and Charité University Medicine Berlin, Campus Benjamin-Franklin (CBF), Hindenburgdamm 30, Berlin D-12203, Germany.,DZHK (German Centre for Cardiovascular Research) Partner Site Berlin, Berlin 12203, Germany.,Berlin Institute of Health (BIH), Berlin 10117, Germany
| |
Collapse
|
8
|
Marshall PL, Nagy N, Kaber G, Barlow GL, Ramesh A, Xie BJ, Linde MH, Haddock NL, Lester CA, Tran QL, de Vries CR, Hargil A, Malkovskiy AV, Gurevich I, Martinez HA, Kuipers HF, Yadava K, Zhang X, Evanko SP, Gebe JA, Wang X, Vernon RB, de la Motte C, Wight TN, Engleman EG, Krams SM, Meyer EH, Bollyky PL. Hyaluronan synthesis inhibition impairs antigen presentation and delays transplantation rejection. Matrix Biol 2021; 96:69-86. [PMID: 33290836 PMCID: PMC8147171 DOI: 10.1016/j.matbio.2020.12.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 12/03/2020] [Accepted: 12/03/2020] [Indexed: 12/13/2022]
Abstract
A coat of pericellular hyaluronan surrounds mature dendritic cells (DC) and contributes to cell-cell interactions. We asked whether 4-methylumbelliferone (4MU), an oral inhibitor of HA synthesis, could inhibit antigen presentation. We find that 4MU treatment reduces pericellular hyaluronan, destabilizes interactions between DC and T-cells, and prevents T-cell proliferation in vitro and in vivo. These effects were observed only when 4MU was added prior to initial antigen presentation but not later, consistent with 4MU-mediated inhibition of de novo antigenic responses. Building on these findings, we find that 4MU delays rejection of allogeneic pancreatic islet transplant and allogeneic cardiac transplants in mice and suppresses allogeneic T-cell activation in human mixed lymphocyte reactions. We conclude that 4MU, an approved drug, may have benefit as an adjunctive agent to delay transplantation rejection.
Collapse
Affiliation(s)
- Payton L Marshall
- Division of Infectious Diseases and Geographic Medicine, Dept. of Medicine, Stanford University School of Medicine, Beckman Center, 279 Campus Drive, Stanford, CA 94305, United States
| | - Nadine Nagy
- Division of Infectious Diseases and Geographic Medicine, Dept. of Medicine, Stanford University School of Medicine, Beckman Center, 279 Campus Drive, Stanford, CA 94305, United States
| | - Gernot Kaber
- Division of Infectious Diseases and Geographic Medicine, Dept. of Medicine, Stanford University School of Medicine, Beckman Center, 279 Campus Drive, Stanford, CA 94305, United States
| | - Graham L Barlow
- Division of Infectious Diseases and Geographic Medicine, Dept. of Medicine, Stanford University School of Medicine, Beckman Center, 279 Campus Drive, Stanford, CA 94305, United States
| | - Amrit Ramesh
- Division of Infectious Diseases and Geographic Medicine, Dept. of Medicine, Stanford University School of Medicine, Beckman Center, 279 Campus Drive, Stanford, CA 94305, United States
| | - Bryan J Xie
- Division of Blood and Marrow Transplantation, Dept. of Medicine, Stanford University School of Medicine, CCSR, 1291 Welch Road, Stanford, CA 94305, United States
| | - Miles H Linde
- Division of Hematology, Dept. of Medicine, Cancer Institute, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, SIM1, 265 Campus Drive, Stanford, CA 94305, United States
| | - Naomi L Haddock
- Division of Infectious Diseases and Geographic Medicine, Dept. of Medicine, Stanford University School of Medicine, Beckman Center, 279 Campus Drive, Stanford, CA 94305, United States
| | - Colin A Lester
- Division of Infectious Diseases and Geographic Medicine, Dept. of Medicine, Stanford University School of Medicine, Beckman Center, 279 Campus Drive, Stanford, CA 94305, United States
| | - Quynh-Lam Tran
- Division of Infectious Diseases and Geographic Medicine, Dept. of Medicine, Stanford University School of Medicine, Beckman Center, 279 Campus Drive, Stanford, CA 94305, United States
| | - Christiaan R de Vries
- Division of Infectious Diseases and Geographic Medicine, Dept. of Medicine, Stanford University School of Medicine, Beckman Center, 279 Campus Drive, Stanford, CA 94305, United States
| | - Aviv Hargil
- Division of Infectious Diseases and Geographic Medicine, Dept. of Medicine, Stanford University School of Medicine, Beckman Center, 279 Campus Drive, Stanford, CA 94305, United States
| | - Andrey V Malkovskiy
- Biomaterials and Advanced Drug Delivery (BioADD) Laboratory Stanford School of Medicine, Stanford, CA 94304, United States
| | - Irina Gurevich
- Division of Infectious Diseases and Geographic Medicine, Dept. of Medicine, Stanford University School of Medicine, Beckman Center, 279 Campus Drive, Stanford, CA 94305, United States
| | - Hunter A Martinez
- Division of Infectious Diseases and Geographic Medicine, Dept. of Medicine, Stanford University School of Medicine, Beckman Center, 279 Campus Drive, Stanford, CA 94305, United States
| | - Hedwich F Kuipers
- Division of Infectious Diseases and Geographic Medicine, Dept. of Medicine, Stanford University School of Medicine, Beckman Center, 279 Campus Drive, Stanford, CA 94305, United States
| | - Koshika Yadava
- Division of Infectious Diseases and Geographic Medicine, Dept. of Medicine, Stanford University School of Medicine, Beckman Center, 279 Campus Drive, Stanford, CA 94305, United States
| | - Xiangyue Zhang
- Department of Pathology, Stanford School of Medicine, 3373 Hillview Ave, Palo Alto CA 94304, United States
| | - Stephen P Evanko
- Benaroya Research Institute, 1201 Ninth Avenue, Seattle, WA 98101, United States
| | - John A Gebe
- Benaroya Research Institute, 1201 Ninth Avenue, Seattle, WA 98101, United States
| | - Xi Wang
- Division of Abdominal Transplantation, Department of Surgery, Stanford University School of Medicine, Stanford University School of Medicine, 1201 Welch Rd, MSLS P313, Stanford, CA 94305, United States
| | - Robert B Vernon
- Benaroya Research Institute, 1201 Ninth Avenue, Seattle, WA 98101, United States
| | - Carol de la Motte
- Department of Inflammation and Immunity, Cleveland Clinic Lerner Research Institute, 9500 Euclid Avenue Cleveland, OH 4419, United States
| | - Thomas N Wight
- Benaroya Research Institute, 1201 Ninth Avenue, Seattle, WA 98101, United States
| | - Edgar G Engleman
- Division of Hematology, Dept. of Medicine, Cancer Institute, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, SIM1, 265 Campus Drive, Stanford, CA 94305, United States
| | - Sheri M Krams
- Division of Abdominal Transplantation, Department of Surgery, Stanford University School of Medicine, Stanford University School of Medicine, 1201 Welch Rd, MSLS P313, Stanford, CA 94305, United States
| | - Everett H Meyer
- Division of Blood and Marrow Transplantation, Dept. of Medicine, Stanford University School of Medicine, CCSR, 1291 Welch Road, Stanford, CA 94305, United States
| | - Paul L Bollyky
- Division of Infectious Diseases and Geographic Medicine, Dept. of Medicine, Stanford University School of Medicine, Beckman Center, 279 Campus Drive, Stanford, CA 94305, United States.
| |
Collapse
|
9
|
Gebe JA, Gooden MD, Workman G, Nagy N, Bollyky PL, Wight TN, Vernon RB. Modulation of hyaluronan synthases and involvement of T cell-derived hyaluronan in autoimmune responses to transplanted islets. Matrix Biol Plus 2021; 9:100052. [PMID: 33718858 PMCID: PMC7930869 DOI: 10.1016/j.mbplus.2020.100052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 11/11/2020] [Accepted: 11/11/2020] [Indexed: 12/22/2022] Open
Abstract
The extracellular matrix glycosaminoglycan hyaluronan (HA) accumulates in human and mouse islets during the onset of autoimmune type 1 diabetes (T1D). HA plays a critical role in T1D pathogenesis, as spontaneous disease is blocked in mice fed the HA synthesis inhibitor 4-methylumbelliferone (4MU). The present study demonstrates the involvement of HA in T cell-mediated autoimmune responses to transplanted islets and in in vivo and in vitro T cell activation. Scaffolded islet implants (SIs) loaded with RIP-mOVA mouse islets expressing chicken ovalbumin (OVA) on their β cells were grafted into T and B cell-deficient RIP-mOVA mice, which subsequently received CD4+ T cells from DO11.10 transgenic mice bearing OVA peptide-specific T cell receptors (TcRs), followed by injection of OVA peptide to induce an immune response to the OVA-expressing islets. By affinity histochemistry (AHC), HA was greatly increased in grafted islets with T cell infiltrates (compared to islets grafted into mice lacking T cells) and a portion of this HA co-localized with the infiltrating T cells. Transferred T cells underwent HA synthase (HAS) isoform switching - T cells isolated from the SI grafts strongly upregulated HAS1 and HAS2 mRNAs and downregulated HAS3 mRNA, in contrast to T cells from graft-draining mesenteric lymph nodes, which expressed HAS3 mRNA only. Expression of HAS1 and HAS2 proteins by T cells in SI infiltrates was confirmed by immunohistochemistry (IHC). DO11.10 mice fed 4MU had suppressed in vivo T cell immune priming (measured as a reduced recall response to OVA peptide) compared to T cells from control mice fed a normal diet. In co-cultures of naïve DO11.10 T cells and OVA peptide-loaded antigen-presenting cells (APCs), pre-exposure of the T cells (but not pre-exposure of APCs) to 4MU inhibited early T cell activation (CD69 expression). In addition, T cells exposed to 4MU during activation in vitro with anti-CD3/CD28 antibodies had inhibited phosphorylation of the CD3ζ subunit of the TcR, a very early event in TcR signaling. Collectively, our results demonstrate that T cell-derived HA plays a significant role in T cell immune responses, and that expression of T cell HAS isoforms changes in a locale-specific manner during in vivo priming and functional phases of the T cell response.
Collapse
Affiliation(s)
- John A. Gebe
- Center for Fundamental Immunology, Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| | - Michel D. Gooden
- Center for Fundamental Immunology, Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| | - Gail Workman
- Center for Fundamental Immunology, Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| | - Nadine Nagy
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Paul L. Bollyky
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Thomas N. Wight
- Center for Fundamental Immunology, Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| | - Robert B. Vernon
- Center for Fundamental Immunology, Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| |
Collapse
|
10
|
Pujari A, Smith AF, Hall JD, Mei P, Chau K, Nguyen DT, Sweet DT, Jiménez JM. Lymphatic Valves Separate Lymph Flow Into a Central Stream and a Slow-Moving Peri-Valvular Milieu. J Biomech Eng 2020; 142:100805. [PMID: 32766737 PMCID: PMC7477708 DOI: 10.1115/1.4048028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 07/28/2020] [Indexed: 01/09/2023]
Abstract
The lymphatic system plays a pivotal role in the transport of fats, waste, and immune cells, while also serving as a metastatic route for select cancers. Using live imaging and particle tracking, we experimentally characterized the lymph flow field distal from the inguinal lymph node in the vicinity of normal bileaflet and malformed unileaflet intraluminal valves. Particle tracking experiments demonstrated that intraluminal lymphatic valves concentrate higher velocity lymph flow in the center of the vessel, while generating adjacent perivalvular recirculation zones. The recirculation zones are characterized by extended particle residence times and low wall shear stress (WSS) magnitudes in comparison to the rest of the lymphangion. A malformed unileaflet valve skewed lymph flow toward the endothelium on the vessel wall, generating a stagnation point and a much larger recirculation zone on the opposite wall. These studies define physical consequences of bileaflet and unileaflet intraluminal lymphatic valves that affect lymph transport and the generation of a heterogeneous flow field that affects the lymphatic endothelium nonuniformly. The characterized flow fields were recreated in vitro connecting different flow environments present in the lymphangion to a lymphatic endothelial cell (LEC) pro-inflammatory phenotype. Unique and detailed insight into lymphatic flow is provided, with potential applications to a variety of diseases that affect lymph transport and drug delivery.
Collapse
Affiliation(s)
- Akshay Pujari
- Department of Mechanical and Industrial Engineering, University of Massachusetts, Amherst, MA 01003
| | - Alexander F. Smith
- Department of Mechanical and Industrial Engineering, University of Massachusetts, Amherst, MA 01003
| | - Joshua D. Hall
- Department of Mechanical and Industrial Engineering, University of Massachusetts, Amherst, MA 01003
| | - Patrick Mei
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA 01003
| | - Kin Chau
- Department of Mechanical and Industrial Engineering, University of Massachusetts, Amherst, MA 01003
| | - Duy T. Nguyen
- Department of Mechanical and Industrial Engineering, University of Massachusetts, Amherst, MA 01003
| | - Daniel T. Sweet
- Department of Medicine and Division of Cardiology, University of Pennsylvania, Philadelphia, PA 19104
| | - Juan M. Jiménez
- Department of Mechanical and Industrial Engineering, University of Massachusetts, N575 Life Sciences Laboratory,240 Thatcher Way Amherst Amherst, MA 01003; Department of Biomedical Engineering, University of Massachusetts, Amherst, MA 01003
| |
Collapse
|
11
|
Galgoczi E, Jeney F, Katko M, Erdei A, Gazdag A, Sira L, Bodor M, Berta E, Ujhelyi B, Steiber Z, Gyory F, Nagy EV. Characteristics of Hyaluronan Synthesis Inhibition by 4-Methylumbelliferone in Orbital Fibroblasts. Invest Ophthalmol Vis Sci 2020; 61:27. [PMID: 32084270 PMCID: PMC7326567 DOI: 10.1167/iovs.61.2.27] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Purpose Hyaluronan (HA) overproduction by orbital fibroblasts (OFs) is a major factor in the pathogenesis of Graves' orbitopathy (GO). 4-methylumbelliferone (4-MU) is an inhibitor of HA synthesis in different cell types in vitro and has beneficial effects in animal models of autoimmune diseases. Methods HA production and mRNA expression of HA synthases (HAS1, HAS2, and HAS3) and hyaluronidases (HYAL1 and HYAL2) were measured in the presence and absence of 4-MU in unstimulated and transforming growth factor-β-stimulated fibroblasts from GO orbital (n = 4), non-GO orbital (n = 4), and dermal origin (n = 4). Results The 4-MU treatment (1 mM) for 24 hours resulted in an average 87% reduction (P < 0.001) of HA synthesis, decreased the expression of the dominant HAS isoform (HAS2) by 80% (P < 0.0001), and increased the HYAL2 expression by 2.5-fold (P < 0.001) in control OFs, GO OFs, and dermal fibroblasts (DFs) regardless of the origin of the cells. The proliferation rate of all studied cell lines was reduced to an average 16% by 4-MU (P < 0.0001) without any effects on cell viability. HA production stimulated by transforming growth factor-β was decreased by 4-MU via inhibition of stimulated HAS1 expression in addition to the observed effects of 4-MU in unstimulated cases. Characteristics of HA synthesis inhibition by 4-MU did not differ in OFs compared with DFs. Conclusions 4-MU has been found to inhibit the HA synthesis and the proliferation rate in OFs in vitro, adding it to the list of putative therapeutic agents in a disease the cure of which is largely unresolved.
Collapse
|
12
|
Peters L, Posgai A, Brusko TM. Islet-immune interactions in type 1 diabetes: the nexus of beta cell destruction. Clin Exp Immunol 2019; 198:326-340. [PMID: 31309537 DOI: 10.1111/cei.13349] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2019] [Indexed: 12/12/2022] Open
Abstract
Recent studies in Type 1 Diabetes (T1D) support an emerging model of disease pathogenesis that involves intrinsic β-cell fragility combined with defects in both innate and adaptive immune cell regulation. This combination of defects induces systematic changes leading to organ-level atrophy and dysfunction of both the endocrine and exocrine portions of the pancreas, ultimately culminating in insulin deficiency and β-cell destruction. In this review, we discuss the animal model data and human tissue studies that have informed our current understanding of the cross-talk that occurs between β-cells, the resident stroma, and immune cells that potentiate T1D. Specifically, we will review the cellular and molecular signatures emerging from studies on tissues derived from organ procurement programs, focusing on in situ defects occurring within the T1D islet microenvironment, many of which are not yet detectable by standard peripheral blood biomarkers. In addition to improved access to organ donor tissues, various methodological advances, including immune receptor repertoire sequencing and single-cell molecular profiling, are poised to improve our understanding of antigen-specific autoimmunity during disease development. Collectively, the knowledge gains from these studies at the islet-immune interface are enhancing our understanding of T1D heterogeneity, likely to be an essential component for instructing future efforts to develop targeted interventions to restore immune tolerance and preserve β-cell mass and function.
Collapse
Affiliation(s)
- L Peters
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, FL, USA
| | - A Posgai
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, FL, USA
| | - T M Brusko
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, FL, USA
| |
Collapse
|
13
|
Nagy N, Gurevich I, Kuipers HF, Ruppert SM, Marshall PL, Xie BJ, Sun W, Malkovskiy AV, Rajadas J, Grandoch M, Fischer JW, Frymoyer AR, Kaber G, Bollyky PL. 4-Methylumbelliferyl glucuronide contributes to hyaluronan synthesis inhibition. J Biol Chem 2019; 294:7864-7877. [PMID: 30914479 DOI: 10.1074/jbc.ra118.006166] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 03/06/2019] [Indexed: 12/14/2022] Open
Abstract
4-Methylumbelliferone (4-MU) inhibits hyaluronan (HA) synthesis and is an approved drug used for managing biliary spasm. However, rapid and efficient glucuronidation is thought to limit its utility for systemically inhibiting HA synthesis. In particular, 4-MU in mice has a short half-life, causing most of the drug to be present as the metabolite 4-methylumbelliferyl glucuronide (4-MUG), which makes it remarkable that 4-MU is effective at all. We report here that 4-MUG contributes to HA synthesis inhibition. We observed that oral administration of 4-MUG to mice inhibits HA synthesis, promotes FoxP3+ regulatory T-cell expansion, and prevents autoimmune diabetes. Mice fed either 4-MUG or 4-MU had equivalent 4-MU:4-MUG ratios in serum, liver, and pancreas, indicating that 4-MU and 4-MUG reach an equilibrium in these tissues. LC-tandem MS experiments revealed that 4-MUG is hydrolyzed to 4-MU in serum, thereby greatly increasing the effective bioavailability of 4-MU. Moreover, using intravital 2-photon microscopy, we found that 4-MUG (a nonfluorescent molecule) undergoes conversion into 4-MU (a fluorescent molecule) and that 4-MU is extensively tissue bound in the liver, fat, muscle, and pancreas of treated mice. 4-MUG also suppressed HA synthesis independently of its conversion into 4-MU and without depletion of the HA precursor UDP-glucuronic acid (GlcUA). Together, these results indicate that 4-MUG both directly and indirectly inhibits HA synthesis and that the effective bioavailability of 4-MU is higher than previously thought. These findings greatly alter the experimental and therapeutic possibilities for HA synthesis inhibition.
Collapse
Affiliation(s)
- Nadine Nagy
- From the Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California 94305,
| | - Irina Gurevich
- Department of Dermatology, Stanford University School of Medicine, Stanford, California 94305
| | - Hedwich F Kuipers
- From the Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California 94305
| | - Shannon M Ruppert
- From the Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California 94305
| | - Payton L Marshall
- From the Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California 94305
| | - Bryan J Xie
- From the Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California 94305
| | - Wenchao Sun
- Biomaterials and Advanced Drug Delivery (BioADD) Laboratory, Stanford University School of Medicine, Palo Alto, California 94304
| | - Andrey V Malkovskiy
- Biomaterials and Advanced Drug Delivery (BioADD) Laboratory, Stanford University School of Medicine, Palo Alto, California 94304
| | - Jayakumar Rajadas
- Biomaterials and Advanced Drug Delivery (BioADD) Laboratory, Stanford University School of Medicine, Palo Alto, California 94304
| | - Maria Grandoch
- Pharmacology and Clinical Pharmacology, University Clinics Düsseldorf, Universitaetsstrasse 1, 40225 Düsseldorf, Germany, and
| | - Jens W Fischer
- Pharmacology and Clinical Pharmacology, University Clinics Düsseldorf, Universitaetsstrasse 1, 40225 Düsseldorf, Germany, and
| | - Adam R Frymoyer
- Department of Pediatrics, Stanford University School of Medicine, Palo Alto, California 94304
| | - Gernot Kaber
- From the Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California 94305
| | - Paul L Bollyky
- From the Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California 94305
| |
Collapse
|
14
|
Jackson DG. Leucocyte Trafficking via the Lymphatic Vasculature- Mechanisms and Consequences. Front Immunol 2019; 10:471. [PMID: 30923528 PMCID: PMC6426755 DOI: 10.3389/fimmu.2019.00471] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 02/21/2019] [Indexed: 01/15/2023] Open
Abstract
The lymphatics fulfill a vital physiological function as the conduits through which leucocytes traffic between the tissues and draining lymph nodes for the initiation and modulation of immune responses. However, until recently many of the molecular mechanisms controlling such migration have been unclear. As a result of careful research, it is now apparent that the process is regulated at multiple stages from initial leucocyte entry and intraluminal crawling in peripheral tissue lymphatics, through to leucocyte exit in draining lymph nodes where the migrating cells either participate in immune responses or return to the circulation via efferent lymph. Furthermore, it is increasingly evident that most if not all leucocyte populations migrate in lymph and that such migration is not only important for immune modulation, but also for the timely repair and resolution of tissue inflammation. In this article, I review the latest research findings in these areas, arising from new insights into the distinctive ultrastructure of lymphatic capillaries and lymph node sinuses. Accordingly, I highlight the emerging importance of the leucocyte glycocalyx and its novel interactions with the endothelial receptor LYVE-1, the intricacies of endothelial chemokine secretion and sequestration that direct leucocyte trafficking and the significance of the process for normal immune function and pathology.
Collapse
Affiliation(s)
- David G Jackson
- MRC Human Immunology Unit, Radcliffe Department of Medicine, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
15
|
Increase of Tumor Infiltrating γδ T-cells in Pancreatic Ductal Adenocarcinoma Through Remodeling of the Extracellular Matrix by a Hyaluronan Synthesis Suppressor, 4-Methylumbelliferone. Pancreas 2019; 48:292-298. [PMID: 30589828 DOI: 10.1097/mpa.0000000000001211] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
OBJECTIVES Desmoplastic changes of extracellular matrix (ECM) containing large amounts of hyaluronan (HA) are of interest in chemo- and immunoresistance of pancreatic ductal adenocarcinoma (PDAC). The goal of this study was to evaluate the effects of 4-methylumbelliferone (MU), a selective inhibitor of HA, on ECM and to examine how MU affects adoptive immunotherapy. METHODS The effect of MU on cell proliferation, HA synthesis and formation of ECM were investigated in four PDAC cell lines. In addition, the cytotoxicity of γδ T-cell-rich peripheral blood mononuclear cells (PBMCs) collected from healthy donors and stimulated with zoledronate and interleukin-2 was examined in the presence of MU. The amount of HA and tumor-infiltrating lymphocytes were also investigated in mice xenograft models. RESULTS In vitro, 1.0 mM MU inhibited cell proliferation by 45-70% and HA synthesis by 55-80% in all four PDAC cell lines, and enhanced γδ T-cell-rich PBMC-mediated cytotoxicity against PDAC cells. In vivo, MU reduced intratumoral HA and promoted infiltration of inoculated γδ T-cells into tumor tissue, and consequently suppressed tumor growth. CONCLUSIONS 4-methylumbelliferone may be an effective immunosensitizer against PDAC through induction of structural changes in the ECM.
Collapse
|
16
|
Murakami T, Kim J, Li Y, Green GE, Shikanov A, Ono A. Secondary lymphoid organ fibroblastic reticular cells mediate trans-infection of HIV-1 via CD44-hyaluronan interactions. Nat Commun 2018; 9:2436. [PMID: 29934525 PMCID: PMC6015004 DOI: 10.1038/s41467-018-04846-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 05/22/2018] [Indexed: 12/21/2022] Open
Abstract
Fibroblastic reticular cells (FRCs) are stromal cells in secondary lymphoid organs, the major sites for HIV-1 infection of CD4+ T cells. Although FRCs regulate T cell survival, proliferation, and migration, whether they play any role in HIV-1 spread has not been studied. Here, we show that FRCs enhance HIV-1 spread via trans-infection in which FRCs capture HIV-1 and facilitate infection of T cells that come into contact with FRCs. FRCs mediate trans-infection in both two- and three-dimensional culture systems and in a manner dependent on the virus producer cells. This producer cell dependence, which was also observed for virus spread in secondary lymphoid tissues ex vivo, is accounted for by CD44 incorporated into virus particles and hyaluronan bound to such CD44 molecules. This virus-associated hyaluronan interacts with CD44 expressed on FRCs, thereby promoting virus capture by FRCs. Overall, our results reveal a novel role for FRCs in promoting HIV-1 spread. Fibroblastic reticular cells (FRCs) are important regulators of T cell survival, proliferation, and migration in secondary lymphoid organs, but their role in HIV infection isn’t studied. Here, Murakami et al. show that FRCs enhance HIV spread via CD44- and hyaluronan-mediated trans-infection.
Collapse
Affiliation(s)
- Tomoyuki Murakami
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Jiwon Kim
- Department of Macromolecular Science and Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Yi Li
- Department of Macromolecular Science and Engineering, University of Michigan, Ann Arbor, MI, 48109, USA.,Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Glenn Edward Green
- Department of Otolaryngology-Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Ariella Shikanov
- Department of Macromolecular Science and Engineering, University of Michigan, Ann Arbor, MI, 48109, USA.,Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Akira Ono
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
17
|
McAtee CO, Booth C, Elowsky C, Zhao L, Payne J, Fangman T, Caplan S, Henry MD, Simpson MA. Prostate tumor cell exosomes containing hyaluronidase Hyal1 stimulate prostate stromal cell motility by engagement of FAK-mediated integrin signaling. Matrix Biol 2018; 78-79:165-179. [PMID: 29753676 DOI: 10.1016/j.matbio.2018.05.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 03/28/2018] [Accepted: 05/08/2018] [Indexed: 01/22/2023]
Abstract
The hyaluronidase Hyal1 is clinically and functionally implicated in prostate cancer progression and metastasis. Elevated Hyal1 accelerates vesicular trafficking in prostate tumor cells, thereby enhancing their metastatic potential in an autocrine manner through increased motility and proliferation. In this report, we found Hyal1 protein is a component of exosomes produced by prostate tumor cell lines overexpressing Hyal1. We investigated the role of exosomally shed Hyal1 in modulating tumor cell autonomous functions and in modifying the behavior of prostate stromal cells. Catalytic activity of Hyal1 was necessary for enrichment of Hyal1 in the exosome fraction, which was associated with increased presence of LC3BII, an autophagic marker, in the exosomes. Hyal1-positive exosome contents were internalized from the culture medium by WPMY-1 prostate stromal fibroblasts. Treatment of prostate stromal cells with tumor exosomes did not affect proliferation, but robustly stimulated their migration in a manner dependent on Hyal1 catalytic activity. Increased motility of exosome-treated stromal cells was accompanied by enhanced adhesion to a type IV collagen matrix, as well as increased FAK phosphorylation and integrin engagement through dynamic membrane residence of β1 integrins. The presence of Hyal1 in tumor-derived exosomes and its ability to impact the behavior of stromal cells suggests cell-cell communication via exosomes is a novel mechanism by which elevated Hyal1 promotes prostate cancer progression.
Collapse
Affiliation(s)
- Caitlin O McAtee
- Department of Biochemistry, University of Nebraska, Lincoln, NE, United States
| | - Christine Booth
- Department of Biochemistry, University of Nebraska, Lincoln, NE, United States
| | - Christian Elowsky
- Morrison Microscopy Facility, University of Nebraska, Lincoln, NE, United States
| | - Lei Zhao
- Department of Molecular Physiology and Biophysics, Holden Comprehensive Cancer Center, University of Iowa Carver College of Medicine; Iowa City, IA, United States
| | - Jeremy Payne
- Department of Biochemistry, University of Nebraska, Lincoln, NE, United States
| | - Teresa Fangman
- Morrison Microscopy Facility, University of Nebraska, Lincoln, NE, United States
| | - Steve Caplan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, United States; Fred and Pamela Buffett Cancer Center, Omaha, NE, United States
| | - Michael D Henry
- Department of Molecular Physiology and Biophysics, Holden Comprehensive Cancer Center, University of Iowa Carver College of Medicine; Iowa City, IA, United States
| | - Melanie A Simpson
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC, United States.
| |
Collapse
|
18
|
Nagy N, Kuipers HF, Marshall PL, Wang E, Kaber G, Bollyky PL. Hyaluronan in immune dysregulation and autoimmune diseases. Matrix Biol 2018; 78-79:292-313. [PMID: 29625181 DOI: 10.1016/j.matbio.2018.03.022] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 03/10/2018] [Accepted: 03/30/2018] [Indexed: 02/06/2023]
Abstract
The tissue microenvironment contributes to local immunity and to the pathogenesis of autoimmune diseases - a diverse set of conditions characterized by sterile inflammation, immunity against self-antigens, and destruction of tissues. However, the specific factors within the tissue microenvironment that contribute to local immune dysregulation in autoimmunity are poorly understood. One particular tissue component implicated in multiple autoimmune diseases is hyaluronan (HA), an extracellular matrix (ECM) polymer. HA is abundant in settings of chronic inflammation and contributes to lymphocyte activation, polarization, and migration. Here, we first describe what is known about the size, amount, and distribution of HA at sites of autoimmunity and in associated lymphoid structures in type 1 diabetes, multiple sclerosis, and rheumatoid arthritis. Next, we examine the recent literature on HA and its impact on adaptive immunity, particularly in regards to the biology of lymphocytes and Foxp3+ regulatory T-cells (Treg), a T-cell subset that maintains immune tolerance in healthy individuals. We propose that HA accumulation at sites of chronic inflammation creates a permissive environment for autoimmunity, characterized by CD44-mediated inhibition of Treg expansion. Finally, we address potential tools and strategies for targeting HA and its receptor CD44 in chronic inflammation and autoimmunity.
Collapse
Affiliation(s)
- Nadine Nagy
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.
| | - Hedwich F Kuipers
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Payton L Marshall
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Esther Wang
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Gernot Kaber
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Paul L Bollyky
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
19
|
Paré B, Gros-Louis F. Potential skin involvement in ALS: revisiting Charcot's observation - a review of skin abnormalities in ALS. Rev Neurosci 2018; 28:551-572. [PMID: 28343168 DOI: 10.1515/revneuro-2017-0004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 02/02/2017] [Indexed: 12/12/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease affecting motor neurons of the brain and spinal cord, leading to progressive paralysis and death. Interestingly, many skin changes have been reported in ALS patients, but never as yet fully explained. These observations could be due to the common embryonic origin of the skin and neural tissue known as the ectodermal germ layer. Following the first observation in ALS patients' skin by Dr Charcot in the 19th century, in the absence of bedsores unlike other bedridden patients, other morphological and molecular changes have been observed. Thus, the skin could be of interest in the study of ALS and other neurodegenerative diseases. This review summarizes skin changes reported in the literature over the years and discusses about a novel in vitro ALS tissue-engineered skin model, derived from patients, for the study of ALS.
Collapse
|
20
|
Jackson DG. Hyaluronan in the lymphatics: The key role of the hyaluronan receptor LYVE-1 in leucocyte trafficking. Matrix Biol 2018; 78-79:219-235. [PMID: 29425695 DOI: 10.1016/j.matbio.2018.02.001] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 01/31/2018] [Accepted: 02/01/2018] [Indexed: 12/25/2022]
Abstract
LYVE-1, a close relative of the leucocyte receptor, CD44, is the main receptor for hyaluronan (HA) in lymphatic vessel endothelium and a widely used marker for distinguishing between blood and lymphatic vessels. Enigmatic for many years because of its anomalous HA-binding characteristics, the function of LYVE-1 has just recently been identified as that of a lymphatic docking receptor for dendritic cells, selectively engaging with their surface HA glycocalyx to regulate entry to peripheral lymphatics and migration to downstream lymph nodes for immune activation. Furthermore, LYVE-1 mediates the trafficking of macrophages, and is also exploited by HA-encapsulated Group A streptococci for lymphatic invasion and host dissemination. Consistent with a role in lymphatic trafficking, the interaction of LYVE-1 with HA and its degradation products can also activate intracellular signalling pathways for endothelial junctional retraction and lymphatic endothelial proliferation. Here we outline the latest findings on the receptor in the context of its peculiar biochemical properties and speculate on how the interaction of LYVE-1 with different HA sizes and conformations might variably influence cell function as a consequence of avidity and receptor crosslinking. Finally, we evaluate evidence that LYVE-1 can also bind growth factors and associate with kinase-linked growth factor receptors and conclude on how the LYVE-1·HA axis may be exploited as a target to either block inflammation or tissue allograft rejection, or potentiate vaccine and drug delivery.
Collapse
Affiliation(s)
- David G Jackson
- University of Oxford, MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Headington, Oxford OX3 9DS, UK.
| |
Collapse
|
21
|
Kuipers HF, Nagy N, Ruppert SM, Sunkari VG, Marshall PL, Gebe JA, Ishak HD, Keswani SG, Bollyky J, Frymoyer AR, Wight TN, Steinman L, Bollyky PL. The pharmacokinetics and dosing of oral 4-methylumbelliferone for inhibition of hyaluronan synthesis in mice. Clin Exp Immunol 2017; 185:372-81. [PMID: 27218304 DOI: 10.1111/cei.12815] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 05/19/2016] [Accepted: 05/23/2016] [Indexed: 12/26/2022] Open
Abstract
Recently, there has been considerable interest in using 4-methylumbelliferone (4-MU) to inhibit hyaluronan (HA) synthesis in mouse models of cancer, autoimmunity and a variety of other inflammatory disorders where HA has been implicated in disease pathogenesis. In order to facilitate future studies in this area, we have examined the dosing, treatment route, treatment duration and metabolism of 4-MU in both C57BL/6 and BALB/c mice. Mice fed chow containing 5% 4-MU, a dose calculated to deliver 250 mg/mouse/day, initially lose substantial weight but typically resume normal weight gain after 1 week. It also takes up to a week to see a reduction in serum HA in these animals, indicating that at least a 1-week loading period on the drug is required for most protocols. At steady state, more than 90% of the drug is present in plasma as the glucuronidated metabolite 4-methylumbelliferyl glucuronide (4-MUG), with the sulphated metabolite, 4-methylumbelliferyl sulphate (4-MUS) comprising most of the remainder. Chow containing 5% but not 0·65% 4-MU was effective at preventing disease in the experimental autoimmune encephalomyelitis (EAE) mouse model of multiple sclerosis, as well as in the DORmO mouse model of autoimmune diabetes. While oral 4-MU was effective at preventing EAE, daily intraperitoneal injections of 4-MU were not. Factors potentially affecting 4-MU uptake and plasma concentrations in mice include its taste, short half-life and low bioavailability. These studies provide a practical resource for implementing oral 4-MU treatment protocols in mice.
Collapse
Affiliation(s)
| | - N Nagy
- Stanford University, Stanford, CA
| | | | | | | | - J A Gebe
- Benaroya Research Institute, Seattle, WA
| | | | - S G Keswani
- Baylor College of Medicine, Houston, TX, USA
| | | | | | - T N Wight
- Benaroya Research Institute, Seattle, WA
| | | | | |
Collapse
|
22
|
Lawrance W, Banerji S, Day AJ, Bhattacharjee S, Jackson DG. Binding of Hyaluronan to the Native Lymphatic Vessel Endothelial Receptor LYVE-1 Is Critically Dependent on Receptor Clustering and Hyaluronan Organization. J Biol Chem 2016; 291:8014-30. [PMID: 26823460 PMCID: PMC4825007 DOI: 10.1074/jbc.m115.708305] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Indexed: 01/13/2023] Open
Abstract
The lymphatic endothelial receptor LYVE-1 has been implicated in both uptake of hyaluronan (HA) from tissue matrix and in facilitating transit of leukocytes and tumor cells through lymphatic vessels based largely on in vitro studies with recombinant receptor in transfected fibroblasts. Curiously, however, LYVE-1 in lymphatic endothelium displays little if any binding to HA in vitro, and this has led to the conclusion that the native receptor is functionally silenced, a feature that is difficult to reconcile with its proposed in vivo functions. Nonetheless, as we reported recently, LYVE-1 can function as a receptor for HA-encapsulated Group A streptococci and mediate lymphatic dissemination in mice. Here we resolve these paradoxical findings and show that the capacity of LYVE-1 to bind HA is strictly dependent on avidity, demanding appropriate receptor self-association and/or HA multimerization. In particular, we demonstrate the prerequisite of a critical LYVE-1 threshold density and show that HA binding may be elicited in lymphatic endothelium by surface clustering with divalent LYVE-1 mAbs. In addition, we show that cross-linking of biotinylated HA in streptavidin multimers or supramolecular complexes with the inflammation-induced protein TSG-6 enables binding even in the absence of LYVE-1 cross-linking. Finally, we show that endogenous HA on the surface of macrophages can engage LYVE-1, facilitating their adhesion and transit across lymphatic endothelium. These results reveal LYVE-1 as a low affinity receptor tuned to discriminate between different HA configurations through avidity and establish a new mechanistic basis for the functions ascribed to LYVE-1 in matrix HA binding and leukocyte trafficking in vivo.
Collapse
Affiliation(s)
- William Lawrance
- From the MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, United Kingdom and
| | - Suneale Banerji
- From the MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, United Kingdom and
| | - Anthony J Day
- the Wellcome Trust Centre for Cell Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Shaumick Bhattacharjee
- From the MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, United Kingdom and
| | - David G Jackson
- From the MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, United Kingdom and
| |
Collapse
|
23
|
Lee-Sayer SSM, Dong Y, Arif AA, Olsson M, Brown KL, Johnson P. The where, when, how, and why of hyaluronan binding by immune cells. Front Immunol 2015; 6:150. [PMID: 25926830 PMCID: PMC4396519 DOI: 10.3389/fimmu.2015.00150] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 03/20/2015] [Indexed: 01/04/2023] Open
Abstract
Hyaluronan is made and extruded from cells to form a pericellular or extracellular matrix (ECM) and is present in virtually all tissues in the body. The size and form of hyaluronan present in tissues are indicative of a healthy or inflamed tissue, and the interactions of hyaluronan with immune cells can influence their response. Thus, in order to understand how inflammation is regulated, it is necessary to understand these interactions and their consequences. Although there is a large turnover of hyaluronan in our bodies, the large molecular mass form of hyaluronan predominates in healthy tissues. Upon tissue damage and/or infection, the ECM and hyaluronan are broken down and an inflammatory response ensues. As inflammation is resolved, the ECM is restored, and high molecular mass hyaluronan predominates again. Immune cells encounter hyaluronan in the tissues and lymphoid organs and respond differently to high and low molecular mass forms. Immune cells differ in their ability to bind hyaluronan and this can vary with the cell type and their activation state. For example, peritoneal macrophages do not bind soluble hyaluronan but can be induced to bind after exposure to inflammatory stimuli. Likewise, naïve T cells, which typically express low levels of the hyaluronan receptor, CD44, do not bind hyaluronan until they undergo antigen-stimulated T cell proliferation and upregulate CD44. Despite substantial knowledge of where and when immune cells bind hyaluronan, why immune cells bind hyaluronan remains a major outstanding question. Here, we review what is currently known about the interactions of hyaluronan with immune cells in both healthy and inflamed tissues and discuss how hyaluronan binding by immune cells influences the inflammatory response.
Collapse
Affiliation(s)
- Sally S M Lee-Sayer
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia , Vancouver, BC , Canada
| | - Yifei Dong
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia , Vancouver, BC , Canada
| | - Arif A Arif
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia , Vancouver, BC , Canada
| | - Mia Olsson
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia , Vancouver, BC , Canada
| | - Kelly L Brown
- Department of Pediatrics, Child and Family Research Institute, University of British Columbia , Vancouver, BC , Canada
| | - Pauline Johnson
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia , Vancouver, BC , Canada
| |
Collapse
|
24
|
Nagy N, Kuipers HF, Frymoyer AR, Ishak HD, Bollyky JB, Wight TN, Bollyky PL. 4-methylumbelliferone treatment and hyaluronan inhibition as a therapeutic strategy in inflammation, autoimmunity, and cancer. Front Immunol 2015; 6:123. [PMID: 25852691 PMCID: PMC4369655 DOI: 10.3389/fimmu.2015.00123] [Citation(s) in RCA: 193] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 03/06/2015] [Indexed: 12/27/2022] Open
Abstract
Hyaluronan (HA) is a prominent component of the extracellular matrix at many sites of chronic inflammation, including type 1 diabetes (T1D), multiple sclerosis, and numerous malignancies. Recent publications have demonstrated that when HA synthesis is inhibited using 4-methylumbelliferone (4-MU), beneficial effects are observed in several animal models of these diseases. Notably, 4-MU is an already approved drug in Europe and Asia called "hymecromone" where it is used to treat biliary spasm. However, there is uncertainty regarding how 4-MU treatment provides benefit in these animal models and the potential long-term consequences of HA inhibition. Here, we review what is known about how HA contributes to immune dysregulation and tumor progression. Then, we review what is known about 4-MU and hymecromone in terms of mechanism of action, pharmacokinetics, and safety. Finally, we review recent studies detailing the use of 4-MU to treat animal models of cancer and autoimmunity.
Collapse
Affiliation(s)
- Nadine Nagy
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine , Stanford, CA , USA
| | - Hedwich F Kuipers
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine , Stanford, CA , USA
| | - Adam R Frymoyer
- Department of Pediatrics, Stanford University School of Medicine , Stanford, CA , USA
| | - Heather D Ishak
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine , Stanford, CA , USA
| | - Jennifer B Bollyky
- Department of Pediatrics and Systems Medicine, Stanford University School of Medicine , Stanford, CA , USA
| | - Thomas N Wight
- Matrix Biology Program, Benaroya Research Institute , Seattle, WA , USA
| | - Paul L Bollyky
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine , Stanford, CA , USA
| |
Collapse
|
25
|
Mueller AM, Yoon BH, Sadiq SA. Inhibition of hyaluronan synthesis protects against central nervous system (CNS) autoimmunity and increases CXCL12 expression in the inflamed CNS. J Biol Chem 2014; 289:22888-22899. [PMID: 24973214 DOI: 10.1074/jbc.m114.559583] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hyaluronan (HA) may have proinflammatory roles in the context of CNS autoimmunity. It accumulates in demyelinated multiple sclerosis (MS) lesions, promotes antigen presentation, and enhances T-cell activation and proliferation. HA facilitates lymphocyte binding to vessels and CNS infiltration at the CNS vascular endothelium. Furthermore, HA signals through Toll-like receptors 2 and 4 to stimulate inflammatory gene expression. We assessed the role of HA in experimental autoimmune encephalomyelitis (EAE), an animal model of MS by administration of 4-methylumbelliferone (4MU), a well established inhibitor of HA synthesis. 4MU decreased hyaluronan synthesis in vitro and in vivo. It was protective in active EAE of C57Bl/6 mice, decreased spinal inflammatory infiltrates and spinal infiltration of Th1 cells, and increased differentiation of regulatory T-cells. In adoptive transfer EAE, feeding of 4MU to donor mice significantly decreased the encephalitogenicity of lymph node cells. The transfer of proteolipid protein (PLP)-stimulated lymph node cells to 4MU-fed mice resulted in a delayed EAE onset and delayed spinal T-cell infiltration. Expression of CXCL12, an anti-inflammatory chemokine, is reduced in MS patients in CSF cells and in spinal cord tissue during EAE. Hyaluronan suppressed production of CXCL12, whereas 4MU increased spinal CXCL12 in naive animals and during neuroinflammation. Neutralization of CXCR4, the most prominent receptor of CXCL12, by administration of AMD3100 diminished the protective impact of 4MU in adoptive transfer EAE. In conclusion, hyaluronan exacerbates CNS autoimmunity, enhances encephalitogenic T-cell responses, and suppresses the protective chemokine CXCL12 in CNS tissue. Inhibition of hyaluronan synthesis with 4MU protects against an animal model of MS and may represent an important therapeutic option in MS and other neuroinflammatory diseases.
Collapse
Affiliation(s)
| | - Bo Hyung Yoon
- Tisch Multiple Sclerosis Research Center of New York, New York, New York 10019
| | - Saud Ahmed Sadiq
- Tisch Multiple Sclerosis Research Center of New York, New York, New York 10019.
| |
Collapse
|
26
|
Kang R, Tang D, Lotze MT, Zeh Iii HJ. Autophagy is required for IL-2-mediated fibroblast growth. Exp Cell Res 2012. [PMID: 23195496 DOI: 10.1016/j.yexcr.2012.11.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Autophagy is an evolutionarily conserved pathway responsible for delivery of cytoplasmic material into the lysosomal degradation pathway to enable vesicular exocytosis. Interleukin (IL)-2 is produced by T-cells and its activity is important for immunoregulation. Fibroblasts are an immune competent cell type, playing a critical role in wound healing, chronic inflammation, and tumor development. Although autophagy plays an important role in each of these processes, whether it regulates IL-2 activity in fibroblasts is unknown. Here, we show that autophagy is required for IL-2-induced cell growth in fibroblasts. IL-2 significantly induced autophagy in mouse embryonic fibroblasts (MEFs) and primary lung fibroblasts. Autophagy inhibitors (e.g., 3-methylamphetamine and bafilomycin A1) or knockdown of ATG5 and beclin 1 blocked clinical grade IL-2-induced autophagy. Moreover, IL-2 induced HMGB1 cytoplasmic translocation in MEFs and promoted interaction between HMGB1 and beclin1, which is required for autophagy induction. Pharmacological and genetic inhibition of autophagy inhibited IL-2-induced cell proliferation and enhanced IL-2-induced apoptosis. These findings suggest that autophagy is an important pro-survival regulator for IL-2-induced cell growth in fibroblasts.
Collapse
Affiliation(s)
- Rui Kang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, USA
| | | | | | | |
Collapse
|
27
|
Keller KE, Sun YY, Vranka JA, Hayashi L, Acott TS. Inhibition of hyaluronan synthesis reduces versican and fibronectin levels in trabecular meshwork cells. PLoS One 2012; 7:e48523. [PMID: 23139787 PMCID: PMC3489675 DOI: 10.1371/journal.pone.0048523] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 09/26/2012] [Indexed: 01/08/2023] Open
Abstract
Hyaluronan (HA) is a major component of the extracellular matrix (ECM) and is synthesized by three HA synthases (HAS). Similarities between the HAS2 knockout mouse and the hdf mutant mouse, which has a mutation in the versican gene, suggest that HA and versican expression may be linked. In this study, the relationship between HA synthesis and levels of versican, fibronectin and several other ECM components in trabecular meshwork cells from the anterior segment of the eye was investigated. HA synthesis was inhibited using 4-methylumbelliferone (4MU), or reduced by RNAi silencing of each individual HAS gene. Quantitative RT-PCR and immunoblotting demonstrated a reduction in mRNA and protein levels of versican and fibronectin. Hyaluronidase treatment also reduced versican and fibronectin levels. These effects could not be reversed by addition of excess glucose or glucosamine or exogenous HA to the culture medium. CD44, tenascin C and fibrillin-1 mRNA levels were reduced by 4MU treatment, but SPARC and CSPG6 mRNA levels were unaffected. Immunostaining of trabecular meshwork tissue after exposure to 4MU showed an altered localization pattern of HA-binding protein, versican and fibronectin. Reduction of versican by RNAi silencing did not affect HA concentration as assessed by ELISA. Together, these data imply that HA concentration affects synthesis of certain ECM components. Since precise regulation of the trabecular meshwork ECM composition and organization is required to maintain the aqueous humor outflow resistance and intraocular pressure homeostasis in the eye, coordinated coupling of HA levels and several of its ECM binding partners should facilitate this process.
Collapse
Affiliation(s)
- Kate E Keller
- Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, USA.
| | | | | | | | | |
Collapse
|
28
|
Tsui S, Fernando R, Chen B, Smith TJ. Divergent Sp1 protein levels may underlie differential expression of UDP-glucose dehydrogenase by fibroblasts: role in susceptibility to orbital Graves disease. J Biol Chem 2011; 286:24487-99. [PMID: 21576248 DOI: 10.1074/jbc.m111.241166] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
UDP-glucose dehydrogenase (UGDH) catalyzes the formation of UDP-glucuronate. Glucuronate represents an integral component of the glycosaminoglycan, hyaluronan, which accumulates in orbital Graves disease. Here we report that orbital fibroblasts express higher levels of UGDH than do those from skin. This is a consequence of greater UGDH gene promoter activity and more abundant steady-state UGDH mRNA. Six Sp1 sites located in the proximal 550 bp of the UGDH gene promoter appear to determine basal promoter activity, as does a previously unrecognized 49-bp sequence spanning -1436 nucleotides (nt) and -1388 nt that negatively affects activity. Nuclear Sp1 protein is more abundant in orbital fibroblasts, and its binding to specific sites on DNA is greater than that in dermal fibroblasts. Mutating each of these Sp1 sites in a UGDH gene promoter fragment, extending from -1387 to +71 nt and fused to a luciferase reporter, results in divergent activities when transfected in orbital and dermal fibroblasts. Reducing Sp1 attenuated UGDH gene promoter activity, lowered steady-state UGDH mRNA levels, and reduced UGDH enzyme activity. Targeting Sp1 and UGDH with specific siRNAs also lowered hyaluronan synthase-1 (HAS-1) and HAS-2 levels and reduced hyaluronan accumulation in orbital fibroblasts. These findings suggest that orbital fibroblasts express high levels of UGDH in an anatomic-specific manner, apparently the result of greater constitutive Sp1. These high UGDH levels may underlie susceptibility of the orbit to localized overproduction of hyaluronan in Graves disease.
Collapse
Affiliation(s)
- Shanli Tsui
- Division of Molecular Medicine, Department of Medicine, Harbor-UCLA Medical Center, Torrance, California 90502, USA
| | | | | | | |
Collapse
|
29
|
Alijotas-Reig J, Hindié M, Kandhaya-Pillai R, Miro-Mur F. Bioengineered hyaluronic acid elicited a nonantigenic T cell activation: implications from cosmetic medicine and surgery to nanomedicine. J Biomed Mater Res A 2010; 95:180-90. [PMID: 20564542 DOI: 10.1002/jbm.a.32794] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Hyaluronan is known to act as a filling material of extracellular matrices and as an adhesive substrate for cellular migration. Consequently, it is widely used in aesthetic medicine and surgery, and it would be expected to be used in nanomedicine. Previous clinical case reports associated hyaluronic acid implants to delayed immune-mediated adverse effects. A series of experiments to evaluate immune cell activation supported by this dermal filler and nanomedical biomaterial were performed. The study comprised a total of 12 individuals. Four healthy individuals, none with cosmetically injected dermal filler, were considered as control. Five individuals carried injections of hyaluronic acid dermal filler. Three individuals carried injections of hyaluronic acid dermal filler and presented delayed adverse effects related to the dermal filler. Hyaluronic acid-stimulated peripheral blood mononuclear cells (PBMC) produced low levels of pro-inflammatory cytokines. Phytohemagglutinine (PHA)-stimulated PBMC from patients with hyaluronic implants presenting adverse effects showed a slight increase in the production of interferon (IFN)-gamma and higher expression of CD25, CD69, or CD71. In conclusion, hyaluronic acid administration elicited a laboratory evidence of immune cell activation. Production of low levels of proinflammatory cytokines in vitro could be an observation for low-grade inflammation in vivo resulting in T cell activation.
Collapse
Affiliation(s)
- Jaume Alijotas-Reig
- Aging Basic Research Group, Molecular Biology and Biochemistry Research Center for Nanomedicine, CIBBIM-Nanomedicine, Vall d'Hebron University Hospital, Barcelona, Spain
| | | | | | | |
Collapse
|
30
|
Zhang L, Ma H, Greyner HJ, Zuo W, Mummert ME. Inhibition of cell proliferation by CD44: Akt is inactivated and EGR-1 is down-regulated. Cell Prolif 2010; 43:385-95. [PMID: 20590664 PMCID: PMC6496187 DOI: 10.1111/j.1365-2184.2010.00689.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2009] [Accepted: 11/30/2009] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVE CD44 is a transmembrane glycoprotein and can facilitate signal transduction by serving as a platform for molecular recruitment and assembly. A number of studies have suggested that CD44 can either positively or negatively regulate cell proliferation. The purpose of this study was to investigate how CD44 can inhibit cell proliferation. MATERIALS AND METHODS We engineered E6.1 Jurkat cells to express CD44. Importantly, these cells lack endogenous CD44 expression. Molecular pathways involved with cell proliferation were studied using RT(2)-PCR array, siRNA, Western blotting and by employing pharmacological inhibitors of ERK1/2, p38 and the PI3K/Akt pathways. RESULTS We found that CD44 expression significantly inhibited cell proliferation and down-regulated EGR-1 expression and EGR-1 targets cyclin D1 and cyclin D2. Transfection of control E6.1 Jurkat cells with EGR-1 siRNA also inhibited cell proliferation, confirming its role. Disruption of the PI3K/Akt pathway with pharmacological inhibitors reduced both EGR-1 expression and cell proliferation, recapitulating the properties of CD44 expressing cells. Akt was hypophosphorylated in cells expressing CD44 showing its potential role in negatively regulating Akt activation. Strikingly, constitutively active Akt rescued the proliferation defect showing requirement for active Akt, in our system. CONCLUSION Our results suggest a novel pathway by which CD44 inactivates Akt, down-regulates EGR-1 expression and inhibits cell proliferation.
Collapse
Affiliation(s)
- L.‐S. Zhang
- Department of Psychiatry and Behavioral Health, University of North Texas Health Science Center, Fort Worth, TX, USA
- Mental Sciences Institute, University of North Texas Health Science Center, Fort Worth, TX, USA
- Department of Dermatology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - H.‐W. Ma
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - H. J. Greyner
- Department of Psychiatry and Behavioral Health, University of North Texas Health Science Center, Fort Worth, TX, USA
- Mental Sciences Institute, University of North Texas Health Science Center, Fort Worth, TX, USA
- Department of Dermatology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - W. Zuo
- Department of Dermatology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - M. E. Mummert
- Department of Psychiatry and Behavioral Health, University of North Texas Health Science Center, Fort Worth, TX, USA
- Mental Sciences Institute, University of North Texas Health Science Center, Fort Worth, TX, USA
- Department of Dermatology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
31
|
Bollyky PL, Evanko SP, Wu RP, Potter-Perigo S, Long SA, Kinsella B, Reijonen H, Guebtner K, Teng B, Chan CK, Braun KR, Gebe JA, Nepom GT, Wight TN. Th1 cytokines promote T-cell binding to antigen-presenting cells via enhanced hyaluronan production and accumulation at the immune synapse. Cell Mol Immunol 2010; 7:211-20. [PMID: 20228832 PMCID: PMC3027489 DOI: 10.1038/cmi.2010.9] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Revised: 01/18/2010] [Accepted: 01/21/2010] [Indexed: 01/01/2023] Open
Abstract
Hyaluronan (HA) production by dendritic cells (DCs) is known to promote antigen presentation and to augment T-cell activation and proliferation. We hypothesized that pericellular HA can function as intercellular 'glue' directly mediating T cell-DC binding. Using primary human cells, we observed HA-dependent binding between T cells and DCs, which was abrogated upon pre-treatment of the DCs with 4-methylumbelliferone (4-MU), an agent which blocks HA synthesis. Furthermore, T cells regulate HA production by DCs via T cell-derived cytokines in a T helper (Th) subset-specific manner, as demonstrated by the observation that cell-culture supernatants from Th1 but not Th2 clones promote HA production. Similar effects were seen upon the addition of exogenous Th1 cytokines, IL-2, interferon gamma (IFN-gamma) and tumor necrosis factor alpha (TNF-alpha). The critical factors which determined the extent of DC-T cell binding in this system were the nature of the pre-treatment the DCs received and their capacity to synthesize HA, as T-cell clones which were pre-treated with monensin, added to block cytokine secretion, bound equivalently irrespective of their Th subset. These data support the existence of a feedforward loop wherein T-cell cytokines influence DC production of HA, which in turn affects the extent of DC-T cell binding. We also document the presence of focal deposits of HA at the immune synapse between T-cells and APC and on dendritic processes thought to be important in antigen presentation. These data point to a pivotal role for HA in DC-T cell interactions at the IS.
Collapse
Affiliation(s)
- Paul L Bollyky
- Benaroya Research Institute, 1201 Ninth Avenue, Seattle, WA 98101, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Plackett TP, Gamelli RL, Kovacs EJ. Gender-based differences in cytokine production after burn injury: a role of interleukin-6. J Am Coll Surg 2009; 210:73-8. [PMID: 20123335 DOI: 10.1016/j.jamcollsurg.2009.09.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2009] [Accepted: 09/09/2009] [Indexed: 02/03/2023]
Abstract
BACKGROUND Gender-specific differences have been found in the survival of patients after a burn injury. Using a murine model of burn injury, suppression of cell-mediated immunity occurs in a gender-specific manner. Immunosuppression correlated with elevated circulating interleukin-6. This study examines gender differences in cytokine production after injury and the role of interleukin-6. STUDY DESIGN A murine model of dorsal scald injury was used to examine differences in splenocyte production of interleukin-2, interleukin-4, and interferon-gamma in male versus female mice, and cytokine production in interleukin-6-deficient male mice. RESULTS At 24 hours after burn injury, there was substantially greater suppression of T-helper 1 cytokine production in male mice than in female mice. Interleukin-6-deficient male mice had improved cytokine production relative to wild-type mice. CONCLUSIONS Suppression of the cell-mediated immune response in male mice correlated with lower T-helper 1 cytokine production, compared with female mice. Additionally, immune response and cytokine production is improved by interleukin-6 deficiency.
Collapse
Affiliation(s)
- Timothy P Plackett
- Department of General Surgery, Tripler Army Medical Center, Honolulu, HI, USA
| | | | | |
Collapse
|
33
|
Rajasagi M, Marhaba R, Vitacolonna M, Zöller M. Thymocyte expansion and maturation: crosstalk of CD44v6 on thymocytes and panCD44 on stroma cells. Immunol Cell Biol 2009; 88:136-47. [PMID: 19786978 DOI: 10.1038/icb.2009.70] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Re-acquisition of immunocompetence after allogeneic bone marrow cell (BMC) transplantation depends on intrathymic maturation of the allogeneic T progenitor cells. We recently reported that CD44 promotes progenitor homing into the thymus and T-cell maturation and now elucidate the molecular mechanisms of CD44-supported thymocyte maturation. Lethally irradiated, tumor-bearing mice, allogeneically reconstituted with T-cell-depleted BMC and a small number of common lymphoid progenitor 2 cells (CLP2) from transgenic (TG) mice, that express ratCD44v4-v7 under the Thy1 promoter, showed accelerated immunocompetent T-cell recovery compared with mice reconstituted with non-transgenic (NTG) CLP2. In addition, graft-versus-host disease was strongly reduced after tumor vaccination. TG, but not NTG double-negative (DN) thymocytes showed high proliferative potential, accompanied by constitutive association of lck with CD44. Importantly, when thymocyte adhesion was strengthened by anti-CD44, co-cultures of DN thymocytes with thymic stroma supported DN thymocyte maturation. The close contact between DN thymocytes and thymic stroma promoted persisting activation of lck and ERK1/2, particularly in CD44v6(+) DN thymocytes. Thus, intrathymic T-cell maturation in allogeneically reconstituted, leukemia-bearing hosts can be considerably accelerated by high CD44v6 expression in early thymocytes, in which proliferation-supporting signals are initiated by a crosstalk between CD44v6 on thymocytes and panCD44 on the thymic stroma.
Collapse
Affiliation(s)
- Mohini Rajasagi
- Department of Tumor Cell Biology, University Hospital of Surgery and German Cancer Research Center, Heidelberg, Germany
| | | | | | | |
Collapse
|
34
|
Abstract
The lymphatic system is best known for draining interstitial fluid from the tissues and returning it to the blood circulation. However, the lymphatic system also provides the means for immune surveillance in the immune system, acting as conduits that convey soluble antigens and antigen-presenting cells from the tissues to the lymph nodes, where primary lymphocyte responses are generated. One macromolecule that potentially unites these two functions is the large extracellular matrix glycosaminoglycan hyaluronan (HA), a chemically simple copolymer of GlcNAc and GlcUA that fulfills a diversity of functions from danger signal to adhesive substratum, depending upon chain length and particular interaction with its many different binding proteins and a small but important group of receptors. The two most abundant of these receptors are CD44, which is expressed on leukocytes that traffic through the lymphatics, and LYVE-1, which is expressed almost exclusively on lymphatic endothelium. Curiously, much of the HA within the tissues is turned over and degraded in lymph nodes, by a poorly understood process that occurs in the medullary sinuses. Indeed there are several mysterious aspects to HA in the lymphatics. Here we cover some of these by reviewing recent findings in the biology of lymphatic endothelial cells and their possible roles in HA homeostasis together with fresh insights into the complex and enigmatic nature of LYVE-1, its regulation of HA binding by sialylation and self-association, and its potential function in leukocyte trafficking.
Collapse
Affiliation(s)
- David G Jackson
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Headington, Oxford, UK. David.
| |
Collapse
|
35
|
Bollyky PL, Falk BA, Long SA, Preisinger A, Braun KR, Wu RP, Evanko SP, Buckner JH, Wight TN, Nepom GT. CD44 costimulation promotes FoxP3+ regulatory T cell persistence and function via production of IL-2, IL-10, and TGF-beta. THE JOURNAL OF IMMUNOLOGY 2009; 183:2232-41. [PMID: 19635906 DOI: 10.4049/jimmunol.0900191] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Work by our group and others has demonstrated a role for the extracellular matrix receptor CD44 and its ligand hyaluronan in CD4(+)CD25(+) regulatory T cell (Treg) function. Herein, we explore the mechanistic basis for this observation. Using mouse FoxP3/GFP(+) Treg, we find that CD44 costimulation promotes expression of FoxP3, in part through production of IL-2. This promotion of IL-2 production was resistant to cyclosporin A treatment, suggesting that CD44 costimulation may promote IL-2 production through bypassing FoxP3-mediated suppression of NFAT. CD44 costimulation increased production of IL-10 in a partially IL-2-dependent manner and also promoted cell surface TGF-beta expression. Consistent with these findings, Treg from CD44 knockout mice demonstrated impaired regulatory function ex vivo and depressed production of IL-10 and cell surface TGF-beta. These data reveal a novel role for CD44 cross-linking in the production of regulatory cytokines. Similar salutary effects on FoxP3 expression were observed upon costimulation with hyaluronan, the primary natural ligand for CD44. This effect is dependent upon CD44 cross-linking; while both high-molecular-weight hyaluronan (HA) and plate-bound anti-CD44 Ab promoted FoxP3 expression, neither low-molecular weight HA nor soluble anti-CD44 Ab did so. The implication is that intact high-molecular weight HA can cross-link CD44 only in those settings where it predominates over fragmentary LMW-HA, namely, in uninflamed tissue. We propose that intact but not fragmented extracellular is capable of cross-linking CD44 and thereby maintains immunologic tolerance in uninjured or healing tissue.
Collapse
|
36
|
Alaniz L, Rizzo M, Malvicini M, Jaunarena J, Avella D, Atorrasagasti C, Aquino JB, Garcia M, Matar P, Silva M, Mazzolini G. Low molecular weight hyaluronan inhibits colorectal carcinoma growth by decreasing tumor cell proliferation and stimulating immune response. Cancer Lett 2009; 278:9-16. [DOI: 10.1016/j.canlet.2008.12.029] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2008] [Revised: 11/12/2008] [Accepted: 12/10/2008] [Indexed: 10/21/2022]
|
37
|
Bollyky PL, Falk BA, Wu RP, Buckner JH, Wight TN, Nepom GT. Intact extracellular matrix and the maintenance of immune tolerance: high molecular weight hyaluronan promotes persistence of induced CD4+CD25+ regulatory T cells. J Leukoc Biol 2009; 86:567-72. [PMID: 19401397 DOI: 10.1189/jlb.0109001] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The composition of the ECM provides contextual cues to leukocytes in inflamed and healing tissues. One example of this is HA, where LMW-HA, generated during active inflammation, is a TLR ligand and an endogenous "danger signal," and HMW-HA, predominant in healing or intact tissues, functions in an inverse manner. Our data suggest that HMW-HA actively promotes immune tolerance by augmenting CD4+CD25+ T(Reg) function, and LMW-HA does not. Using a human iT(Reg) model, we demonstrate that HMW-HA but not LMW-HA provides a costimulatory signal through cross-linking CD44 which promotes Foxp3 expression, a critical signaling molecule associated with T(Reg). This effect, in part, may be mediated by a role for intact HMW-HA in IL-2 production, as T(Reg) are highly IL-2-dependent for their survival and function. We propose that HMW-HA contributes to the maintenance of immune homeostasis in uninjured tissue and effectively communicates an "all-clear" signal to down-regulate the adaptive immune system through T(Reg) after tissue matrix integrity has been restored.
Collapse
|
38
|
Vigetti D, Rizzi M, Viola M, Karousou E, Genasetti A, Clerici M, Bartolini B, Hascall VC, De Luca G, Passi A. The effects of 4-methylumbelliferone on hyaluronan synthesis, MMP2 activity, proliferation, and motility of human aortic smooth muscle cells. Glycobiology 2009; 19:537-46. [DOI: 10.1093/glycob/cwp022] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|