1
|
Chen L, Yin J, Xu K, Cui Y, Zhu S, Li T, Lv T, Song Y, Zhan P. Novel bioengineered drugs with immunotherapies for malignant pleural effusion: remodulate tumor immune microenvironment and activate immune system. Crit Rev Oncol Hematol 2025:104717. [PMID: 40194717 DOI: 10.1016/j.critrevonc.2025.104717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/21/2025] [Accepted: 03/31/2025] [Indexed: 04/09/2025] Open
Abstract
Malignant pleural effusion (MPE) remains a clinical issue since it is associated with advanced-stage cancers and dismal survival, with immunosuppressive tumor microenvironment (TME) and ineffective drug delivery. Conventional therapies such as thoracentesis and pleurodesis are for symptom relief but palliative, without inducing immunity and prolonging survival. Emerging new bioengineered drugs, synergizing with immunotherapies, offer a new paradigm by dual-targeting TME remodeling and immune activation. These technologies leverage nanotechnology, gene editing, and biomaterials to offer precise spatiotemporal control. This review illustrates the molecular mechanism of the immunosuppressive TME in MPE. It examines the newest bioengineering platforms-such as cytokine-encapsulated nanoparticles and oncolytic viruses-that can reactivate immune mechanisms. We highlight preclinical and clinical evidence of the effectiveness of combinatorial strategies in overcoming local immune tolerance and potential risks in adverse events. While the clinical transformation challenge remains, future directions necessitate cross-disciplinary convergence to engineer intelligent delivery vehicles and predictive biomarkers for patient stratification. By integrating immunotherapy with bioengineering, this strategy not only restores antitumor immunity but also portends a new epoch of precision medicine for MPE.
Collapse
Affiliation(s)
- Lu Chen
- Department of Respiratory and Critical Care Medicine, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Jie Yin
- Department of Respiratory and Critical Care Medicine, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Ke Xu
- Department of Respiratory and Critical Care Medicine, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - YuTing Cui
- Department of Respiratory and Critical Care Medicine, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - SuHua Zhu
- Department of Respiratory and Critical Care Medicine, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Tian Li
- Tianjin Key Laboratory of Acute Abdomen Disease-Associated Organ Injury and ITCWM Repair, Institute of Integrative Medicine of Acute Abdominal Diseases, Tianjin Nankai Hospital, Tianjin Medical University, 8 Changjiang Avenue, Tianjin 300100, China.
| | - Tangfeng Lv
- Department of Respiratory and Critical Care Medicine, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| | - Yong Song
- Department of Respiratory and Critical Care Medicine, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| | - Ping Zhan
- Department of Respiratory and Critical Care Medicine, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| |
Collapse
|
2
|
Wang H, Xu F, Wang C. Metabolic reprogramming of tumor microenviroment by engineered bacteria. Semin Cancer Biol 2025; 112:58-70. [PMID: 40157514 DOI: 10.1016/j.semcancer.2025.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/16/2025] [Accepted: 03/21/2025] [Indexed: 04/01/2025]
Abstract
The tumor microenvironment (TME) is a complex ecosystem that plays a crucial role in tumor progression and response to therapy. The metabolic characteristics of the TME are fundamental to its function, influencing not only cancer cell proliferation and survival but also the behavior of immune cells within the tumor. Metabolic reprogramming-where cancer cells adapt their metabolic pathways to support rapid growth and immune evasion-has emerged as a key factor in cancer immunotherapy. Recently, the potential of engineered bacteria in cancer immunotherapy has gained increasing recognition, offering a novel strategy to modulate TME metabolism and enhance antitumor immunity. This review summarizes the metabolic properties and adaptations of tumor and immune cells within the TME and summarizes the strategies by which engineered bacteria regulate tumor metabolism. We discuss how engineered bacteria can overcome the immunosuppressive TME by reprogramming its metabolism to improve antitumor therapy. Furthermore, we examine the advantages, potential challenges, and future clinical translation of engineered bacteria in reshaping TME metabolism.
Collapse
Affiliation(s)
- Heng Wang
- Laboratory for Biomaterial and Immunoengineering, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, China
| | - Fang Xu
- Laboratory for Biomaterial and Immunoengineering, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, China
| | - Chao Wang
- Laboratory for Biomaterial and Immunoengineering, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, China.
| |
Collapse
|
3
|
Sholevar CJ, Liu NM, Mukarrama T, Kim J, Lawrence J, Canter RJ. Myeloid Cells in the Immunosuppressive Microenvironment as Immunotargets in Osteosarcoma. Immunotargets Ther 2025; 14:247-258. [PMID: 40125425 PMCID: PMC11930235 DOI: 10.2147/itt.s485672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Accepted: 03/11/2025] [Indexed: 03/25/2025] Open
Abstract
Osteosarcoma is an aggressive primary malignant bone tumor associated with high rates of metastasis and poor 5-year survival rates with limited improvements in approximately 40 years. Standard multimodality treatment includes chemotherapy and surgery, and survival rates have remained stagnant. Overall, response rates to immunotherapy like immune checkpoint inhibitors have been disappointing in osteosarcoma despite exciting results in other epithelial tumor types. The poor response of osteosarcoma to current immunotherapies is multifactorial, but a key observation is that the tumor microenvironment in osteosarcoma is profoundly immunosuppressive, and increasing evidence suggests a significant role of suppressive myeloid cells in tumor progression and immune evasion, particularly by myeloid-derived suppressor cells. Targeting suppressive myeloid cells via novel agents are attractive strategies to develop novel immunotherapies for osteosarcoma, and combination strategies will likely be important for durable responses. In this review, we will examine mechanisms of the immunosuppressive microenvironment, highlight pre-clinical and clinical data of combination strategies including colony-stimulating factor 1 (CSF-1) receptor, phosphoinositide 3-kinase (PI3K), CXCR4, and checkpoint inhibition, as well as the role of canine models in elucidating myeloid cells as targets in osteosarcoma immunotherapy.
Collapse
Affiliation(s)
- Cyrus J Sholevar
- Department of Surgery, Division of Surgical Oncology, University of California Davis, Sacramento, CA, USA
| | - Natalie M Liu
- Department of Surgery, Division of Surgical Oncology, University of California Davis, Sacramento, CA, USA
| | - Tasneem Mukarrama
- Biomedical Engineering, University of California Davis, Sacramento, CA, USA
| | - Jinhwan Kim
- Biomedical Engineering, University of California Davis, Sacramento, CA, USA
| | - Jessica Lawrence
- Department of Surgical & Radiological Sciences, School of Veterinary Medicine, University of California Davis, Davis, CA, USA
| | - Robert J Canter
- Department of Surgery, Division of Surgical Oncology, University of California Davis, Sacramento, CA, USA
| |
Collapse
|
4
|
Salminen A. Cooperation between inhibitory immune checkpoints of senescent cells with immunosuppressive network to promote immunosenescence and the aging process. Ageing Res Rev 2025; 106:102694. [PMID: 39984130 DOI: 10.1016/j.arr.2025.102694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/30/2024] [Accepted: 02/14/2025] [Indexed: 02/23/2025]
Abstract
The accumulation of senescent cells within tissues promotes the aging process by remodelling the functions of the immune system. For many years, it has been known that senescent cells secrete pro-inflammatory cytokines and chemokines, a phenotype called the senescence-associated secretory phenotype (SASP). Chemokines and colony-stimulating factors stimulate myelopoiesis and recruit myeloid cells into aging tissues. Interestingly, recent studies have demonstrated that senescent cells are not only secretory but they also express an increased level of ligand proteins for many inhibitory immune checkpoint receptors. These ligands represent "don't eat me" markers in senescent cells and moreover, they are able to induce an exhaustion of many immune cells, such as surveying natural killer (NK) cells, cytotoxic CD8+ T cells, and macrophages. The programmed cell death protein-1 (PD-1) and its ligand PD-L1 represent the best known inhibitory immune checkpoint pathway. Importantly, the activation of inhibitory checkpoint receptors, e.g., in chronic inflammatory states, can also induce certain immune cells to differentiate toward their immunosuppressive phenotype. This can be observed in myeloid derived suppressor cells (MDSC), tissue regulatory T cells (Treg), and M2 macrophages. Conversely, these immunosuppressive cells stimulate in senescent cells the expression of many ligand proteins for inhibitory checkpoint receptors. Paradoxically, senescent cells not only promote the pro-inflammatory state but they maintain it at a low-grade level by expressing ligands for inhibitory immune checkpoint receptors. Thus, the cooperation between senescent cells and immunosuppressive cells enhances the senescence state of immune cells, i.e., immune senescence/exhaustion, and cellular senescence within tissues via bystander effects.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, Kuopio FI-70211, Finland.
| |
Collapse
|
5
|
Zhang W, Ge L, Zhang Y, Zhang Z, Zhang W, Song F, Huang P, Xu T. Targeted intervention of tumor microenvironment with HDAC inhibitors and their combination therapy strategies. Eur J Med Res 2025; 30:69. [PMID: 39905506 DOI: 10.1186/s40001-025-02326-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 01/23/2025] [Indexed: 02/06/2025] Open
Abstract
Histone deacetylation represents a significant epigenetic mechanism that involves the removal of acetyl groups from histones, subsequently influencing gene transcription. Overexpression of histone deacetylases (HDACs) is prevalent across various cancer types, positioning HDAC inhibitors as broadly applicable therapeutic agents. These inhibitors are known to enhance tumor immune antigenicity, potentially slowing tumor progression. Furthermore, the tumor microenvironment, which is intricately linked to cancer development, acts as a mediator in the proliferation of numerous cancers and presents a viable target for oncological therapies. This paper primarily explores how HDAC inhibitors can regulate cancer progression via the tumor microenvironment and suppress tumor growth through multiple pathways, in addition to examining the synergistic effects of combined drug therapies involving HDAC inhibitors.
Collapse
Affiliation(s)
- Wanli Zhang
- Department of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Luqi Ge
- Department of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Yiwen Zhang
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital(Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, 310014, China
- Clinical Research Center for Cancer of Zhejiang Province, Hangzhou, China
| | - Zhentao Zhang
- Department of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Wen Zhang
- Department of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Feifeng Song
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital(Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China.
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, 310014, China.
| | - Ping Huang
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital(Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China.
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, 310014, China.
- Clinical Research Center for Cancer of Zhejiang Province, Hangzhou, China.
| | - Tong Xu
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital(Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China.
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, 310014, China.
| |
Collapse
|
6
|
Hiraga T. Immune microenvironment of cancer bone metastasis. Bone 2025; 191:117328. [PMID: 39549899 DOI: 10.1016/j.bone.2024.117328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/06/2024] [Accepted: 11/08/2024] [Indexed: 11/18/2024]
Abstract
Bone is a common and frequent site of metastasis in cancer patients, leading to a significant reduction in quality of life and increased mortality. Bone marrow, the primary site of hematopoiesis, also serves as both a primary and secondary lymphoid organ. It harbors and supports a diverse array of immune cells, thereby creating a distinct immune microenvironment. These immune cells engage in a range of activities, including anti-tumor, pro-tumor, or a combination of both, which influence the development and progression of bone metastases. Rapid advances in cancer immunotherapy have underscored its potential to eradicate bone metastases. However, clinical outcomes have not yet met expectations. To improve the efficacy of immunotherapy, it is crucial to gain a comprehensive and in-depth understanding of the immune microenvironment within bone metastases. This review provides an overview of the current understanding of the role of different immune cells, their anti-tumor and pro-tumor activities, and their overall contribution to bone metastasis.
Collapse
Affiliation(s)
- Toru Hiraga
- Department of Histology and Cell Biology, Matsumoto Dental University, Shiojiri, Nagano, Japan.
| |
Collapse
|
7
|
Evans ST, Jani Y, Jansen CS, Yildirim A, Kalemoglu E, Bilen MA. Understanding and overcoming resistance to immunotherapy in genitourinary cancers. Cancer Biol Ther 2024; 25:2342599. [PMID: 38629578 PMCID: PMC11028033 DOI: 10.1080/15384047.2024.2342599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024] Open
Abstract
The introduction of novel immunotherapies has significantly transformed the treatment landscape of genitourinary (GU) cancers, even becoming the standard of care in some settings. One such type of immunotherapy, immune checkpoint inhibitors (ICIs) like nivolumab, ipilimumab, pembrolizumab, and atezolizumab play a pivotal role by disturbing signaling pathways that limit the immune system's ability to fight tumor cells. Despite the profound impact of these treatments, not all tumors are responsive. Recent research efforts have been focused on understanding how cancer cells manage to evade the immune response and identifying the possible mechanisms behind resistance to immunotherapy. In response, ICIs are being combined with other treatments to reduce resistance and attack cancer cells through multiple cellular pathways. Additionally, novel, targeted strategies are currently being investigated to develop innovative methods of overcoming resistance and treatment failure. This article presents a comprehensive overview of the mechanisms of immunotherapy resistance in GU cancers as currently described in the literature. It explores studies that have identified genetic markers, cytokines, and proteins that may predict resistance or response to immunotherapy. Additionally, we review current efforts to overcome this resistance, which include combination ICIs and sequential therapies, novel insights into the host immune profile, and new targeted therapies. Various approaches that combine immunotherapy with chemotherapy, targeted therapy, vaccines, and radiation have been studied in an effort to more effectively overcome resistance to immunotherapy. While each of these combination therapies has shown some efficacy in clinical trials, a deeper understanding of the immune system's role underscores the potential of novel targeted therapies as a particularly promising area of current research. Currently, several targeted agents are in development, along with the identification of key immune mediators involved in immunotherapy resistance. Further research is necessary to identify predictors of response.
Collapse
Affiliation(s)
- Sean T Evans
- Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Yash Jani
- Undergraduate studies, Mercer University, Macon, GA, USA
| | - Caroline S Jansen
- Medical Scientist Training Program, Emory University School of Medicine, Atlanta, GA, USA
- Genitourinary Medical Oncology Program, Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Ahmet Yildirim
- Genitourinary Medical Oncology Program, Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA, USA
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | - Ecem Kalemoglu
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
- Department of Basic Oncology, Health Institute of Ege University, Izmir, Turkey
| | - Mehmet Asim Bilen
- Genitourinary Medical Oncology Program, Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA, USA
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
8
|
Karlsson V, Stål E, Stoopendahl E, Ivarsson A, Leffler H, Lycke M, Sundqvist M, Sundfeldt K, Christenson K, Bernson E. Elevated Galectin-3 levels in the tumor microenvironment of ovarian cancer - implication of ROS mediated suppression of NK cell antitumor response via tumor-associated neutrophils. Front Immunol 2024; 15:1506236. [PMID: 39759523 PMCID: PMC11695286 DOI: 10.3389/fimmu.2024.1506236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 12/09/2024] [Indexed: 01/07/2025] Open
Abstract
Introduction Ovarian cancer is a lethal disease with low survival rates for women diagnosed in advanced stages. Current cancer immunotherapies are not efficient in ovarian cancer, and there is therefore a significant need for novel treatment options. The β-galactoside-binding lectin, Galectin-3, is involved in different immune processes and has been associated with poor outcome in various cancer diagnoses. Here, we investigated how Galectin-3 affects the interaction between natural killer (NK) cells and neutrophils in the tumor microenvironment of ovarian cancer. Method Ascites from the metastatic tumor microenvironment and cyst fluid from the primary tumor site were collected from patients with high-grade serous carcinoma (HGSC) together with peripheral blood samples. Galectin-3 concentration was measured in ascites, cyst fluid and serum or plasma. Neutrophils isolated from HGSC ascites and autologous blood were analyzed to evaluate priming status and production of reactive oxygen species. In vitro co-culture assays with NK cells, neutrophils and K562 target cells (cancer cell line) were conducted to evaluate NK cell viability, degranulation and cytotoxicity. Results High levels of Galectin-3 were observed in cyst fluid and ascites from patients with HGSC. Neutrophils present in HGSC ascites showed signs of priming; however, the priming status varied greatly among the patient samples. Galectin-3 induced production of reactive oxygen species in ascites neutrophils, but only from a fraction of the patient samples, which is in line with the heterogenous priming status of the ascites neutrophils. In co-cultures with NK cells and K562 target cells, we observed that Galectin-3-induced production of reactive oxygen species in neutrophils resulted in decreased NK cell viability and lowered anti-tumor responses. Conclusion Taken together, our results demonstrate high levels of Galectin-3 in the tumormicroenvironment of HGSC. High levels of Galectin-3 may induce production of reactiveoxygen species in ascites neutrophils in some patients. In turn, reactive oxygen species produced by neutrophils may modulate the NK cell anti-tumor immunity. Together, this study suggests further investigation to evaluate if a Galectin-3-targeting therapy may be used in ovarian cancer.
Collapse
Affiliation(s)
- Veronika Karlsson
- Sahlgrenska Center for Cancer Research, University of Gothenburg, Gothenburg, Sweden
- Department of Oral Microbiology and Immunology, Institute of Odontology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ebba Stål
- Sahlgrenska Center for Cancer Research, University of Gothenburg, Gothenburg, Sweden
| | - Emma Stoopendahl
- Sahlgrenska Center for Cancer Research, University of Gothenburg, Gothenburg, Sweden
| | - Anton Ivarsson
- Sahlgrenska Center for Cancer Research, University of Gothenburg, Gothenburg, Sweden
| | - Hakon Leffler
- Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Maria Lycke
- Department of Obstetrics and Gynecology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Martina Sundqvist
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Karin Sundfeldt
- Sahlgrenska Center for Cancer Research, University of Gothenburg, Gothenburg, Sweden
- Department of Obstetrics and Gynecology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Karin Christenson
- Department of Oral Microbiology and Immunology, Institute of Odontology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Elin Bernson
- Sahlgrenska Center for Cancer Research, University of Gothenburg, Gothenburg, Sweden
- Department of Obstetrics and Gynecology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
9
|
Elguindy MM, Young JS, Ho WS, Lu RO. Co-evolution of glioma and immune microenvironment. J Immunother Cancer 2024; 12:e009175. [PMID: 39631850 PMCID: PMC11624716 DOI: 10.1136/jitc-2024-009175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 11/03/2024] [Indexed: 12/07/2024] Open
Abstract
Glioma evolution is governed by a multitude of dynamic interactions between tumor cells and heterogenous neighboring, non-cancerous cells. This complex ecosystem, termed the tumor microenvironment (TME), includes diverse immune cell types that have gained increasing attention for their critical and paradoxical roles in tumor control and tumorigenesis. Recent work has revealed that the cellular composition and functional state of immune cells in the TME can evolve extensively depending on the tumor stage and intrinsic features of surrounding glioma cells. Concurrently, adaptations to the glioma cellular phenotype, including activation of various cellular states, occur in the context of these immune cell alterations. In this review, we summarize important features of the immune TME that play key roles during each stage of glioma progression, from initiation to immune escape, invasion and recurrence. Understanding the complex interplay between tumor and immune cells is critical for the development of effective immunotherapies for glioma treatment.
Collapse
Affiliation(s)
- Mahmoud M Elguindy
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California, USA
| | - Jacob S Young
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California, USA
| | - Winson S Ho
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California, USA
| | - Rongze O Lu
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
10
|
Wakabayashi H, Hattori N, Uzawa A, Ito M, Hasegawa H, Mimura N, Empitu M, Aizawa M, Kuwabara S, Asanuma K, Oda S. Tryptophan-immunoadsorption plasmapheresis regulates polymorphonuclear-myeloid-derived suppressor cells and pro-inflammatory cytokines. Ther Apher Dial 2024. [PMID: 39508126 DOI: 10.1111/1744-9987.14228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/20/2024] [Accepted: 10/25/2024] [Indexed: 11/08/2024]
Abstract
INTRODUCTION Immunoadsorption plasmapheresis (IA) has been reported to have immunoregulatory effects, in addition to the removal of autoantibodies. This study aimed to investigate the effects of IA on the proportion of myeloid-derived suppressor cells (MDSCs) that potentially suppress autoimmune responses and regulate immunity. METHODS The study included 21 patients with autoimmune neurological diseases and 8 healthy participants. We measured polymorphonuclear (PMN)-MDSCs (CD14-CD11b+CD33+) and inflammation-related mediators before and after a single session of tryptophan-IA. We also investigated whether an increase in PMN-MDSCs after initial IA was a predictor of clinical efficacy in nine patients with myasthenia gravis based on the Quantitative Myasthenia Gravis score. RESULTS For a total of 36 times of IA procedures, the number of PMN-MDSCs significantly increased after IA. Interleukin-10, monocyte chemoattractant protein-1 and macrophage inflammatory protein-1β levels showed significant increases after IA. Despite similar severity at admission, the Quantitative Myasthenia Gravis scores at discharge were significantly lower in the group in which IA increased PMN-MDSCs to a level of 20% of peripheral blood mononuclear cells or more. CONCLUSION Tryptophan-IA regulates PMN-MDSCs and pro-inflammatory cytokines, possibly leading to suppression of autoimmune responses and tissue damage in neuroimmunological disorders.
Collapse
Affiliation(s)
- Hanae Wakabayashi
- Department of Nephrology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Noriyuki Hattori
- Department of Emergency and Critical Care Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Akiyuki Uzawa
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Michihiro Ito
- Department of Transfusion Medicine and Cell Therapy, Chiba University Hospital, Chiba, Japan
| | - Hiroko Hasegawa
- Department of Transfusion Medicine and Cell Therapy, Chiba University Hospital, Chiba, Japan
| | - Naoya Mimura
- Department of Transfusion Medicine and Cell Therapy, Chiba University Hospital, Chiba, Japan
| | - Maulana Empitu
- Department of Nephrology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Masashi Aizawa
- Department of Nephrology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Satoshi Kuwabara
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Katsuhiko Asanuma
- Department of Nephrology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Shigeto Oda
- Department of Emergency and Critical Care Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
11
|
Ghemiș L, Goriuc A, Minea B, Botnariu GE, Mârțu MA, Ențuc M, Cioloca D, Foia LG. Myeloid-Derived Suppressor Cells (MDSCs) and Obesity-Induced Inflammation in Type 2 Diabetes. Diagnostics (Basel) 2024; 14:2453. [PMID: 39518420 PMCID: PMC11544947 DOI: 10.3390/diagnostics14212453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 10/25/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Type 2 diabetes mellitus is a complex metabolic disorder characterized by insulin resistance and, subsequently, decreased insulin secretion. This condition is closely linked to obesity, a major risk factor that boosts the development of chronic systemic inflammation, which, in turn, is recognized for its crucial role in the onset of insulin resistance. Under conditions of obesity, adipose tissue, particularly visceral fat, becomes an active endocrine organ that releases a wide range of pro-inflammatory mediators, including cytokines, chemokines, and adipokines. These mediators, along with cluster of differentiation (CD) markers, contribute to the maintenance of systemic low-grade inflammation, promote cellular signaling and facilitate the infiltration of inflammatory cells into tissues. Emerging studies have indicated the accumulation of a new cell population in the adipose tissue in these conditions, known as myeloid-derived suppressor cells (MDSCs). These cells possess the ability to suppress the immune system, impacting obesity-related chronic inflammation. Given the limited literature addressing the role of MDSCs in the context of type 2 diabetes, this article aims to explore the complex interaction between inflammation, obesity, and MDSC activity. Identifying and understanding the role of these immature cells is essential not only for improving the management of type 2 diabetes but also for the potential development of targeted therapeutic strategies aimed at both glycemic control and the reduction in associated inflammation.
Collapse
Affiliation(s)
- Larisa Ghemiș
- Department of Biochemistry, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universității Street, 700115 Iasi, Romania; (L.G.); (A.G.); (B.M.); (L.G.F.)
| | - Ancuța Goriuc
- Department of Biochemistry, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universității Street, 700115 Iasi, Romania; (L.G.); (A.G.); (B.M.); (L.G.F.)
| | - Bogdan Minea
- Department of Biochemistry, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universității Street, 700115 Iasi, Romania; (L.G.); (A.G.); (B.M.); (L.G.F.)
| | - Gina Eosefina Botnariu
- Department of Internal Medicine II, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universității Street, 700115 Iasi, Romania
- Department of Diabetes, Nutrition and Metabolic Diseases, “St. Spiridon” Emergency County Hospital, 700111 Iasi, Romania
| | - Maria-Alexandra Mârțu
- Department of Periodontology, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universității Street, 700115 Iasi, Romania;
| | - Melissa Ențuc
- Faculty of General Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universității Street, 700115 Iasi, Romania;
| | - Daniel Cioloca
- Department of Oro-Dental Prevention, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universității Street, 700115 Iasi, Romania;
| | - Liliana Georgeta Foia
- Department of Biochemistry, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universității Street, 700115 Iasi, Romania; (L.G.); (A.G.); (B.M.); (L.G.F.)
| |
Collapse
|
12
|
Nicholson T, Belli A, Lord JM, Hazeldine J. The impact of trauma relevant concentrations of prostaglandin E 2 on the anti-microbial activity of the innate immune system. Front Immunol 2024; 15:1401185. [PMID: 39502706 PMCID: PMC11535544 DOI: 10.3389/fimmu.2024.1401185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 07/30/2024] [Indexed: 11/08/2024] Open
Abstract
Background The mechanisms underlying the state of systemic immune suppression that develops following major trauma are poorly understood. A post-injury increase in circulating levels of prostaglandin E2 (PGE2) has been proposed as a contributory factor, yet few studies have addressed how trauma influences PGE2 biology. Methods Blood samples from 95 traumatically-injured patients (injury severity score ≥8) were collected across the pre-hospital (≤2 hours), acute (4-12 hours) and subacute (48-72 hours) post-injury settings. Alongside ex vivo assessments of lipopolysaccharide (LPS)-induced cytokine production by monocytes, neutrophil reactive oxygen species production and phagocytosis, serum concentrations of PGE2 and its scavenger albumin were measured, and the expression of enzymes and receptors involved in PGE2 synthesis and signalling analysed. Leukocytes from trauma patients were treated with cyclooxygenase (COX) inhibitors (indomethacin or NS-398), or the protein kinase A inhibitor H89, to determine whether injury-induced immune suppression could be reversed by targeting the PGE2 pathway. The effect that trauma relevant concentrations of PGE2 had on the anti-microbial functions of neutrophils, monocytes and monocyte-derived macrophages (MDMs) from healthy controls (HC) was examined, as was the effect of PGE2 on efferocytosis. To identify factors that may trigger PGE2 production post-trauma, leukocytes from HC were treated with mitochondrial-derived damage associated molecular patterns (mtDAMPs) and COX-2 expression and PGE2 generation measured. Results PGE2 concentrations peaked in blood samples acquired ≤2 hours post-injury and coincided with significantly reduced levels of albumin and impaired LPS-induced cytokine production by monocytes. Significantly higher COX-2 and phospholipase A2 expression was detected in neutrophils and/or peripheral blood mononuclear cells isolated from trauma patients. Treatment of patient leukocytes with indomethacin, NS-398 or H89 enhanced LPS-induced cytokine production and neutrophil extracellular trap generation. Exposure to physiological concentrations of PGE2 suppressed the anti-microbial activity of monocytes, neutrophils and MDMs of HC, but did not influence efferocytosis. In a formyl-peptide receptor-1 dependent manner, mtDAMP treatment significantly increased COX-2 protein expression in neutrophils and monocytes, which resulted in increased PGE2 production. Conclusions Physiological concentrations of PGE2 suppress the anti-microbial activities of neutrophils, monocytes and MDMs. Targeting the PGE2 pathway could be a therapeutic approach by which to enhance innate immune function post-injury.
Collapse
Affiliation(s)
- Thomas Nicholson
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Antonio Belli
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
- National Institute for Health Research Surgical Reconstruction and Microbiology Research Centre, Queen Elizabeth Hospital Birmingham, Birmingham, United Kingdom
| | - Janet M. Lord
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
- National Institute for Health Research Surgical Reconstruction and Microbiology Research Centre, Queen Elizabeth Hospital Birmingham, Birmingham, United Kingdom
- Medical Research Council (MRC)-Versus Arthritis Centre for Musculoskeletal Ageing Research, University of Birmingham, Birmingham, United Kingdom
| | - Jon Hazeldine
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
- National Institute for Health Research Surgical Reconstruction and Microbiology Research Centre, Queen Elizabeth Hospital Birmingham, Birmingham, United Kingdom
| |
Collapse
|
13
|
Bellotti P, Ladd Z, Leroy V, Su G, Sharma S, Hartman JB, Krebs J, Viscardi C, Maile R, Moldawer LL, Efron PA, Sharma AK, Upchurch GR. Resolvin D2/GPR18 signaling enhances monocytic myeloid-derived suppressor cell function to mitigate abdominal aortic aneurysm formation. FASEB J 2024; 38:e70067. [PMID: 39320982 PMCID: PMC11433576 DOI: 10.1096/fj.202400414rrr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 08/30/2024] [Accepted: 09/10/2024] [Indexed: 09/27/2024]
Abstract
Abdominal aortic aneurysm (AAA) formation is a chronic vascular pathology characterized by inflammation, leukocyte infiltration, and vascular remodeling. The aim of this study was to delineate the protective role of Resolvin D2 (RvD2), a bioactive isoform of specialized pro-resolving lipid mediators, via G-protein-coupled receptor 18 (GPR18) receptor signaling in attenuating AAAs. Importantly, RvD2 and GPR18 levels were significantly decreased in aortic tissue of AAA patients compared with controls. Furthermore, using an established murine model of AAA in C57BL/6 (WT) mice, we observed that treatment with RvD2 significantly attenuated aortic diameter, pro-inflammatory cytokine production, immune cell infiltration (neutrophils and macrophages), elastic fiber disruption, and increased smooth muscle cell α-actin expression as well as increased TGF-β2 and IL-10 expressions compared to untreated mice. Moreover, the RvD2-mediated protection from vascular remodeling and AAA formation was blocked when mice were previously treated with siRNA for GPR18 signifying the importance of RvD2/GPR18 signaling in vascular inflammation. Mechanistically, RvD2-mediated protection significantly enhanced infiltration and activation of monocytic myeloid-derived suppressor cells (M-MDSCs) by increasing TGF-β2 and IL-10 secretions in a GPR18-dependent manner to attenuate aortic inflammation and vascular remodeling. Collectively, this study demonstrates that RvD2 treatment induces an expansion of myeloid-lineage committed progenitors, such as M-MDSCs, activates GPR18-dependent signaling to enhance TGF-β2 and IL-10 secretion, and mitigates SMC activation that contributes to resolution of aortic inflammation and remodeling during AAA formation.
Collapse
Affiliation(s)
- Paolo Bellotti
- Department of Surgery, University of Florida, Gainesville, FL, 32610, USA
| | - Zachary Ladd
- Department of Surgery, University of Florida, Gainesville, FL, 32610, USA
| | - Victoria Leroy
- Department of Surgery, University of Florida, Gainesville, FL, 32610, USA
| | - Gang Su
- Department of Surgery, University of Florida, Gainesville, FL, 32610, USA
| | - Shiven Sharma
- Department of Surgery, University of Florida, Gainesville, FL, 32610, USA
| | - Joseph B. Hartman
- Department of Surgery, University of Florida, Gainesville, FL, 32610, USA
| | - Jonathan Krebs
- Department of Surgery, University of Florida, Gainesville, FL, 32610, USA
| | - Chelsea Viscardi
- Department of Surgery, University of Florida, Gainesville, FL, 32610, USA
| | - Robert Maile
- Department of Surgery, University of Florida, Gainesville, FL, 32610, USA
| | - Lyle L. Moldawer
- Department of Surgery, University of Florida, Gainesville, FL, 32610, USA
| | - Phillip A. Efron
- Department of Surgery, University of Florida, Gainesville, FL, 32610, USA
| | - Ashish K. Sharma
- Department of Surgery, University of Florida, Gainesville, FL, 32610, USA
- Department of Pharmacology & Therapeutics, University of Florida, Gainesville, FL, 32610, USA
| | - Gilbert R. Upchurch
- Department of Surgery, University of Florida, Gainesville, FL, 32610, USA
- Department of Pharmacology & Therapeutics, University of Florida, Gainesville, FL, 32610, USA
| |
Collapse
|
14
|
Vacca P, Bilotta MT, Moretta L, Tumino N. Myeloid-derived suppressor cells: Identification and function. Methods Cell Biol 2024; 190:151-169. [PMID: 39515878 DOI: 10.1016/bs.mcb.2024.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Myeloid-derived suppressor cells (MDSCs) are cells that play a regulatory role in immune responses and inflammation. They can have both positive and negative effects on various diseases, including cancer, infections, sepsis, and trauma. MDSCs inhibit immune cells by releasing immunosuppressive factors and can be categorized as monocytic (M) or polymorphonuclear (PMN) cell lineages. Most MDSCs are PMN-MDSC and are found in the peripheral blood (PB) and in the tissue microenvironment of tumor and inflamed patients, where they can directly inhibit immune cell activity and promote tumor progression. Various markers have been suggested for their identification, but in order to be defined as MDSC, their inhibitory capacity has to be certified. In this article, we summarize the identification and functional protocol for characterizing MDSCs, focusing on PMN-MDSC.
Collapse
Affiliation(s)
- Paola Vacca
- Innate lymphoid cells Unit, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | | | - Lorenzo Moretta
- Tumor Immunology Unit, Bambino Gesù Children's Hospital IRCCS, Rome, Italy.
| | - Nicola Tumino
- Innate lymphoid cells Unit, Bambino Gesù Children's Hospital IRCCS, Rome, Italy.
| |
Collapse
|
15
|
Sezginer O, Unver N. Dissection of pro-tumoral macrophage subtypes and immunosuppressive cells participating in M2 polarization. Inflamm Res 2024; 73:1411-1423. [PMID: 38935134 PMCID: PMC11349836 DOI: 10.1007/s00011-024-01907-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/06/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Alternatively activated macrophage (M2) polarization can result in one of four subtypes based on cytokines and signaling pathways associated with macrophage activation: M2a, M2b, M2c, and M2d macrophages. The majority of M2 subtypes are anti-inflammatory and pro-angiogenic, secreting growth factors (VEGF, PDGF) and matrix metalloproteinases (MMP2, MMP9) which boost tumor growth, metastasis, and invasion. M2-polarized macrophages are associated with immune suppressor cells harboring Myeloid derived suppressor cells, Regulatory T cells (Tregs), Regulatory B cells as well as alternatively activated (N2) neutrophils. Treg cells selectively support the metabolic stability, mitochondrial integrity, and survival rate of M2-like TAMs in an indirect environment. Also, the contribution of Breg cells influences macrophage polarization towards the M2 direction. TAM is activated when TAN levels in the tumor microenvironment are insufficient or vice versa, suggesting that macrophage and its polarization are fine-tuned. Understanding the functions of immune suppressive cells, mediators, and signaling pathways involved with M2 polarization will allow us to identify potential strategies for targeting the TAM repolarization phenotype for innovative immunotherapy approaches. In this review, we have highlighted the critical factors for M2 macrophage polarization, differential cytokine/chemokine profiles of M1 and M2 macrophage subtypes, and other immune cells' impact on the polarization within the immunosuppressive niche.
Collapse
Affiliation(s)
- Onurcan Sezginer
- Department of Basic Oncology, Cancer Institute, Hacettepe University, Sihhiye, Ankara, 06100, Türkiye
| | - Nese Unver
- Department of Basic Oncology, Cancer Institute, Hacettepe University, Sihhiye, Ankara, 06100, Türkiye.
| |
Collapse
|
16
|
Xin Z, Qin L, Tang Y, Guo S, Li F, Fang Y, Li G, Yao Y, Zheng B, Zhang B, Wu D, Xiao J, Ni C, Wei Q, Zhang T. Immune mediated support of metastasis: Implication for bone invasion. Cancer Commun (Lond) 2024; 44:967-991. [PMID: 39003618 PMCID: PMC11492328 DOI: 10.1002/cac2.12584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 06/05/2024] [Accepted: 06/18/2024] [Indexed: 07/15/2024] Open
Abstract
Bone is a common organ affected by metastasis in various advanced cancers, including lung, breast, prostate, colorectal, and melanoma. Once a patient is diagnosed with bone metastasis, the patient's quality of life and overall survival are significantly reduced owing to a wide range of morbidities and the increasing difficulty of treatment. Many studies have shown that bone metastasis is closely related to bone microenvironment, especially bone immune microenvironment. However, the effects of various immune cells in the bone microenvironment on bone metastasis remain unclear. Here, we described the changes in various immune cells during bone metastasis and discussed their related mechanisms. Osteoblasts, adipocytes, and other non-immune cells closely related to bone metastasis were also included. This review also summarized the existing treatment methods and potential therapeutic targets, and provided insights for future studies of cancer bone metastasis.
Collapse
Affiliation(s)
- Zengfeng Xin
- Department of Orthopedic SurgerySecond Affiliated HospitalZhejiang University School of MedicineZhejiang UniversityHangzhouZhejiangP. R. China
| | - Luying Qin
- Cancer Institute (Key Laboratory of Cancer Prevention and InterventionNational Ministry of Education)Second Affiliated HospitalZhejiang University School of MedicineZhejiang UniversityHangzhouZhejiangP. R. China
| | - Yang Tang
- Cancer Institute (Key Laboratory of Cancer Prevention and InterventionNational Ministry of Education)Second Affiliated HospitalZhejiang University School of MedicineZhejiang UniversityHangzhouZhejiangP. R. China
| | - Siyu Guo
- Cancer Institute (Key Laboratory of Cancer Prevention and InterventionNational Ministry of Education)Second Affiliated HospitalZhejiang University School of MedicineZhejiang UniversityHangzhouZhejiangP. R. China
- Department of Radiation OncologySecond Affiliated HospitalZhejiang University School of MedicineZhejiang UniversityHangzhouZhejiangP. R. China
| | - Fangfang Li
- Cancer Institute (Key Laboratory of Cancer Prevention and InterventionNational Ministry of Education)Second Affiliated HospitalZhejiang University School of MedicineZhejiang UniversityHangzhouZhejiangP. R. China
| | - Yuan Fang
- Cancer Institute (Key Laboratory of Cancer Prevention and InterventionNational Ministry of Education)Second Affiliated HospitalZhejiang University School of MedicineZhejiang UniversityHangzhouZhejiangP. R. China
| | - Gege Li
- Cancer Institute (Key Laboratory of Cancer Prevention and InterventionNational Ministry of Education)Second Affiliated HospitalZhejiang University School of MedicineZhejiang UniversityHangzhouZhejiangP. R. China
| | - Yihan Yao
- Cancer Institute (Key Laboratory of Cancer Prevention and InterventionNational Ministry of Education)Second Affiliated HospitalZhejiang University School of MedicineZhejiang UniversityHangzhouZhejiangP. R. China
| | - Binbin Zheng
- Department of Respiratory MedicineNingbo Hangzhou Bay HospitalNingboZhejiangP. R. China
| | - Bicheng Zhang
- Cancer Institute (Key Laboratory of Cancer Prevention and InterventionNational Ministry of Education)Second Affiliated HospitalZhejiang University School of MedicineZhejiang UniversityHangzhouZhejiangP. R. China
- Department of Radiation OncologySecond Affiliated HospitalZhejiang University School of MedicineZhejiang UniversityHangzhouZhejiangP. R. China
| | - Dang Wu
- Cancer Institute (Key Laboratory of Cancer Prevention and InterventionNational Ministry of Education)Second Affiliated HospitalZhejiang University School of MedicineZhejiang UniversityHangzhouZhejiangP. R. China
- Department of Radiation OncologySecond Affiliated HospitalZhejiang University School of MedicineZhejiang UniversityHangzhouZhejiangP. R. China
| | - Jie Xiao
- Department of Orthopedic SurgerySecond Affiliated Hospital (Jiande Branch)Zhejiang University School of MedicineHangzhouZhejiangP. R. China
| | - Chao Ni
- Cancer Institute (Key Laboratory of Cancer Prevention and InterventionNational Ministry of Education)Second Affiliated HospitalZhejiang University School of MedicineZhejiang UniversityHangzhouZhejiangP. R. China
- Department of Breast SurgerySecond Affiliated HospitalZhejiang University School of MedicineZhejiang UniversityHangzhouZhejiangP. R. China
| | - Qichun Wei
- Cancer Institute (Key Laboratory of Cancer Prevention and InterventionNational Ministry of Education)Second Affiliated HospitalZhejiang University School of MedicineZhejiang UniversityHangzhouZhejiangP. R. China
- Department of Radiation OncologySecond Affiliated HospitalZhejiang University School of MedicineZhejiang UniversityHangzhouZhejiangP. R. China
| | - Ting Zhang
- Cancer Institute (Key Laboratory of Cancer Prevention and InterventionNational Ministry of Education)Second Affiliated HospitalZhejiang University School of MedicineZhejiang UniversityHangzhouZhejiangP. R. China
- Department of Radiation OncologySecond Affiliated HospitalZhejiang University School of MedicineZhejiang UniversityHangzhouZhejiangP. R. China
| |
Collapse
|
17
|
Leroy V, Manual Kollareth DJ, Tu Z, Valisno JAC, Woolet-Stockton M, Saha B, Emtiazjoo AM, Rackauskas M, Moldawer LL, Efron PA, Cai G, Atkinson C, Upchurch GR, Sharma AK. MerTK-dependent efferocytosis by monocytic-MDSCs mediates resolution of ischemia/reperfusion injury after lung transplant. JCI Insight 2024; 9:e179876. [PMID: 39172530 PMCID: PMC11466183 DOI: 10.1172/jci.insight.179876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 08/15/2024] [Indexed: 08/24/2024] Open
Abstract
Lung transplantation (LTx) outcomes are impeded by ischemia/reperfusion injury (IRI) and subsequent chronic lung allograft dysfunction (CLAD). We examined the undefined role of receptor Mer tyrosine kinase (MerTK) on monocytic myeloid-derived suppressor cells (M-MDSCs) in efferocytosis to facilitate resolution of lung IRI. Single-cell RNA sequencing of lung tissue and bronchoalveolar lavage (BAL) from patients after LTx were analyzed. Murine lung hilar ligation and allogeneic orthotopic LTx models of IRI were used with BALB/c (WT), Cebpb-/- (MDSC-deficient), Mertk-/-, or MerTK-cleavage-resistant mice. A significant downregulation in MerTK-related efferocytosis genes in M-MDSC populations of patients with CLAD was observed compared with healthy individuals. In the murine IRI model, a significant increase in M-MDSCs, MerTK expression, and efferocytosis and attenuation of lung dysfunction was observed in WT mice during injury resolution that was absent in Cebpb-/- and Mertk-/- mice. Adoptive transfer of M-MDSCs in Cebpb-/- mice significantly attenuated lung dysfunction and inflammation. Additionally, in a murine orthotopic LTx model, increases in M-MDSCs were associated with resolution of lung IRI in the transplant recipients. In vitro studies demonstrated the ability of M-MDSCs to efferocytose apoptotic neutrophils in a MerTK-dependent manner. Our results suggest that MerTK-dependent efferocytosis by M-MDSCs can substantially contribute to the resolution of post-LTx IRI.
Collapse
Affiliation(s)
- Victoria Leroy
- Department of Surgery
- Department of Pharmacology and Therapeutics
| | | | - Zhenxiao Tu
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, College of Medicine, University of Florida, Gainesville, Florida, USA
| | | | | | - Biplab Saha
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Amir M. Emtiazjoo
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, College of Medicine, University of Florida, Gainesville, Florida, USA
| | | | | | | | - Guoshuai Cai
- Department of Surgery
- Department of Biostatistics, College of Public Health and Health Professions and College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Carl Atkinson
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, College of Medicine, University of Florida, Gainesville, Florida, USA
| | | | - Ashish K. Sharma
- Department of Surgery
- Department of Pharmacology and Therapeutics
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, College of Medicine, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
18
|
Lee MS, Park SM, Kim YJ. Photothermal treatment-based heat stress regulates function of myeloid-derived suppressor cells. Sci Rep 2024; 14:18847. [PMID: 39143087 PMCID: PMC11324874 DOI: 10.1038/s41598-024-69074-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/31/2024] [Indexed: 08/16/2024] Open
Abstract
Photothermal therapy is an alternative cancer therapy that uses a photothermal agent with light irradiation to induce fatal hyperthermia in cancer cells. In a previous study, we found that ex vivo photothermal (PT) treatment induced expression of heat shock proteins (HSPs), such as HSP70, HSP27, and HSP90, in cancer cells; moreover, immunization with lysates from PT-treated tumor cells resulted in significant tumor growth inhibition in tumor-bearing mice. In this study, we hypothesized that sublethal PT treatment of antigen-presenting cells regulates their immunogenicity. We observed the upregulation of expression of intracellular HSP70 and surface activation markers, such as CD40, CD80, CD86, and MHC class II, in sublethal PT-treated cells. The protumoral activity of myeloid-derived suppressor cells (MDSCs) was reduced by sublethal hyperthermia. Furthermore, poorly immunogenic MDSCs were converted into immunogenic antigen-presenting cells by PT treatment. The differences in immunogenicity between MDSCs untreated or treated with the PT technique were evaluated using the Student's t-test or Mann-Whitney rank sum test. Collectively, direct hyperthermic treatment resulted in phenotypic changes and the functional regulation of immune cells.
Collapse
Affiliation(s)
- Min-Seob Lee
- Laboratory of Microbiology and Immunology, College of Pharmacy, Inje University, 197, Inje-Ro, Gimhae, Gyeongnam, 50834, Republic of Korea
| | - Seon Mi Park
- Laboratory of Microbiology and Immunology, College of Pharmacy, Inje University, 197, Inje-Ro, Gimhae, Gyeongnam, 50834, Republic of Korea
| | - Yeon-Jeong Kim
- Laboratory of Microbiology and Immunology, College of Pharmacy, Inje University, 197, Inje-Ro, Gimhae, Gyeongnam, 50834, Republic of Korea.
- Inje Institute of Pharmaceutical Science and Research, Inje University, Gimhae, Gyeongnam, Republic of Korea.
- Smart Marine Therapeutic Center, Inje University, Gimhae, Gyeongnam, Republic of Korea.
| |
Collapse
|
19
|
Mpekris F, Panagi M, Charalambous A, Voutouri C, Stylianopoulos T. Modulating cancer mechanopathology to restore vascular function and enhance immunotherapy. Cell Rep Med 2024; 5:101626. [PMID: 38944037 PMCID: PMC11293360 DOI: 10.1016/j.xcrm.2024.101626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/12/2024] [Accepted: 06/07/2024] [Indexed: 07/01/2024]
Abstract
Solid tumor pathology, characterized by abnormalities in the tumor microenvironment (TME), challenges therapeutic effectiveness. Mechanical factors, including increased tumor stiffness and accumulation of intratumoral forces, can determine the success of cancer treatments, defining the tumor's "mechanopathology" profile. These abnormalities cause extensive vascular compression, leading to hypoperfusion and hypoxia. Hypoperfusion hinders drug delivery, while hypoxia creates an unfavorable TME, promoting tumor progression through immunosuppression, heightened metastatic potential, drug resistance, and chaotic angiogenesis. Strategies targeting TME mechanopathology, such as vascular and stroma normalization, hold promise in enhancing cancer therapies with some already advancing to the clinic. Normalization can be achieved using anti-angiogenic agents, mechanotherapeutics, immune checkpoint inhibitors, engineered bacterial therapeutics, metronomic nanomedicine, and ultrasound sonopermeation. Here, we review the methods developed to rectify tumor mechanopathology, which have even led to cures in preclinical models, and discuss their bench-to-bedside translation, including the derivation of biomarkers from tumor mechanopathology for personalized therapy.
Collapse
Affiliation(s)
- Fotios Mpekris
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus.
| | - Myrofora Panagi
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus
| | - Antonia Charalambous
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus
| | - Chrysovalantis Voutouri
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus
| | - Triantafyllos Stylianopoulos
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus.
| |
Collapse
|
20
|
Rodríguez-Bejarano OH, Parra-López C, Patarroyo MA. A review concerning the breast cancer-related tumour microenvironment. Crit Rev Oncol Hematol 2024; 199:104389. [PMID: 38734280 DOI: 10.1016/j.critrevonc.2024.104389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/29/2024] [Accepted: 05/06/2024] [Indexed: 05/13/2024] Open
Abstract
Breast cancer (BC) is currently the most common malignant tumour in women and one of the leading causes of their death around the world. New and increasingly personalised diagnostic and therapeutic tools have been introduced over the last few decades, along with significant advances regarding the study and knowledge related to BC. The tumour microenvironment (TME) refers to the tumour cell-associated cellular and molecular environment which can influence conditions affecting tumour development and progression. The TME is composed of immune cells, stromal cells, extracellular matrix (ECM) and signalling molecules secreted by these different cell types. Ever deeper understanding of TME composition changes during tumour development and progression will enable new and more innovative therapeutic strategies to become developed for targeting tumours during specific stages of its evolution. This review summarises the role of BC-related TME components and their influence on tumour progression and the development of resistance to therapy. In addition, an account on the modifications in BC-related TME components associated with therapy is given, and the completed or ongoing clinical trials related to this topic are presented.
Collapse
Affiliation(s)
- Oscar Hernán Rodríguez-Bejarano
- Health Sciences Faculty, Universidad de Ciencias Aplicadas y Ambientales (U.D.C.A), Calle 222#55-37, Bogotá 111166, Colombia; Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50#26-20, Bogotá 111321, Colombia; PhD Programme in Biotechnology, Faculty of Sciences, Universidad Nacional de Colombia, Carrera 45#26-85, Bogotá 111321, Colombia
| | - Carlos Parra-López
- Microbiology Department, Faculty of Medicine, Universidad Nacional de Colombia, Carrera 45#26-85, Bogotá 111321, Colombia.
| | - Manuel Alfonso Patarroyo
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50#26-20, Bogotá 111321, Colombia; Microbiology Department, Faculty of Medicine, Universidad Nacional de Colombia, Carrera 45#26-85, Bogotá 111321, Colombia.
| |
Collapse
|
21
|
Wang Z, Chang Y, Sun H, Li Y, Tang T. Advances in molecular mechanisms of inflammatory bowel disease‑associated colorectal cancer (Review). Oncol Lett 2024; 27:257. [PMID: 38646499 PMCID: PMC11027113 DOI: 10.3892/ol.2024.14390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 03/15/2024] [Indexed: 04/23/2024] Open
Abstract
The link between inflammation and cancer is well documented and colonic inflammation caused by inflammatory bowel disease (IBD) is thought to be a high-risk factor for the development of colorectal cancer (CRC). The complex crosstalk between epithelial and inflammatory cells is thought to underlie the progression from inflammation to cancer. The present review collates and summarises recent advances in the understanding of the pathogenesis of IBD-associated CRC (IBD-CRC), including the oncogenic mechanisms of the main inflammatory signalling pathways and genetic alterations induced by oxidative stress during colonic inflammation, and discusses the crosstalk between the tumour microenvironment, intestinal flora and host immune factors during inflammatory oncogenesis in colitis-associated CRC. In addition, the therapeutic implications of anti-inflammatory therapy for IBD-CRC were discussed, intending to provide new insight into improve clinical practice.
Collapse
Affiliation(s)
- Zhi Wang
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| | - Yu Chang
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| | - Haibo Sun
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| | - Yuqin Li
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| | - Tongyu Tang
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| |
Collapse
|
22
|
Qin S, Xie B, Wang Q, Yang R, Sun J, Hu C, Liu S, Tao Y, Xiao D. New insights into immune cells in cancer immunotherapy: from epigenetic modification, metabolic modulation to cell communication. MedComm (Beijing) 2024; 5:e551. [PMID: 38783893 PMCID: PMC11112485 DOI: 10.1002/mco2.551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 03/24/2024] [Accepted: 04/02/2024] [Indexed: 05/25/2024] Open
Abstract
Cancer is one of the leading causes of death worldwide, and more effective ways of attacking cancer are being sought. Cancer immunotherapy is a new and effective therapeutic method after surgery, radiotherapy, chemotherapy, and targeted therapy. Cancer immunotherapy aims to kill tumor cells by stimulating or rebuilding the body's immune system, with specific efficiency and high safety. However, only few tumor patients respond to immunotherapy and due to the complex and variable characters of cancer immune escape, the behavior and regulatory mechanisms of immune cells need to be deeply explored from more dimensions. Epigenetic modifications, metabolic modulation, and cell-to-cell communication are key factors in immune cell adaptation and response to the complex tumor microenvironment. They collectively determine the state and function of immune cells through modulating gene expression, changing in energy and nutrient demands. In addition, immune cells engage in complex communication networks with other immune components, which are mediated by exosomes, cytokines, and chemokines, and are pivotal in shaping the tumor progression and therapeutic response. Understanding the interactions and combined effects of such multidimensions mechanisms in immune cell modulation is important for revealing the mechanisms of immunotherapy failure and developing new therapeutic targets and strategies.
Collapse
Affiliation(s)
- Sha Qin
- Department of PathologyXiangya HospitalCentral South UniversityChangshaHunanChina
- Department of PathologySchool of Basic Medical ScienceXiangya School of MedicineCentral South UniversityChangshaHunanChina
| | - Bin Xie
- Department of PathologyXiangya HospitalCentral South UniversityChangshaHunanChina
| | - Qingyi Wang
- Department of PathologyXiangya HospitalCentral South UniversityChangshaHunanChina
- Department of PathologySchool of Basic Medical ScienceXiangya School of MedicineCentral South UniversityChangshaHunanChina
| | - Rui Yang
- Department of PathologyXiangya HospitalCentral South UniversityChangshaHunanChina
- Department of PathologySchool of Basic Medical ScienceXiangya School of MedicineCentral South UniversityChangshaHunanChina
| | - Jingyue Sun
- Department of PathologyXiangya HospitalCentral South UniversityChangshaHunanChina
- Department of PathologySchool of Basic Medical ScienceXiangya School of MedicineCentral South UniversityChangshaHunanChina
| | - Chaotao Hu
- Regenerative Medicine, Medical SchoolUniversity of Chinese Academy of SciencesBeijingChina
| | - Shuang Liu
- Department of OncologyInstitute of Medical SciencesNational Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangsha, Hunan, China. UniversityChangshaHunanChina
| | - Yongguang Tao
- Department of PathologyXiangya HospitalCentral South UniversityChangshaHunanChina
- NHC Key Laboratory of CarcinogenesisCancer Research Institute and School of Basic MedicineCentral South universityChangshaHunanChina
| | - Desheng Xiao
- Department of PathologyXiangya HospitalCentral South UniversityChangshaHunanChina
- Department of PathologySchool of Basic Medical ScienceXiangya School of MedicineCentral South UniversityChangshaHunanChina
| |
Collapse
|
23
|
Halpert MM, Burns BA, Rosario SR, Withers HG, Trivedi AJ, Hofferek CJ, Gephart BD, Wang H, Vazquez-Perez J, Amanya SB, Hyslop ST, Yang J, Kemnade JO, Sandulache VC, Konduri V, Decker WK. Multifactoral immune modulation potentiates durable remission in multiple models of aggressive malignancy. FASEB J 2024; 38:e23644. [PMID: 38738472 PMCID: PMC11155525 DOI: 10.1096/fj.202302675r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 04/05/2024] [Accepted: 04/22/2024] [Indexed: 05/14/2024]
Abstract
Tumors typically lack canonical danger signals required to activate adaptive immunity and also frequently employ substantial immunomodulatory mechanisms that downregulate adaptive responses and contribute to escape from immune surveillance. Given the variety of mechanisms involved in shielding tumors from immune recognition, it is not surprising that single-agent immunomodulatory approaches have been largely unsuccessful in generating durable antitumor responses. Here we report a unique combination of immunomodulatory and cytostatic agents that recondition the tumor microenvironment and eliminate complex and/or poor-prognosis tumor types including the non-immunogenic 4T-1 model of TNBC, the aggressive MOC-2 model of HNSCC, and the high-risk MYCN-amplified model of neuroblastoma. A course of therapy optimized for TNBC cured a majority of tumors in both ectopic and orthotopic settings and eliminated metastatic spread in all animals tested at the highest doses. Immune responses were transferable between therapeutic donor and naïve recipient through adoptive transfer, and a sizeable abscopal effect on distant, untreated lesions could be demonstrated experimentally. Similar results were observed in HNSCC and neuroblastoma models, with characteristic remodeling of the tumor microenvironment documented in all model systems. scRNA-seq analysis implicated upregulation of innate immune responses and antigen presentation in tumor cells and the myeloid cell compartment as critical early events. This analysis also highlighted the potential importance of the autonomic nervous system in the governance of inflammatory processes. The data indicate that the targeting of multiple pathways and mechanisms of action can result in substantial synergistic antitumor effects and suggest follow-up in the neoadjuvant setting may be warranted.
Collapse
Affiliation(s)
- MM Halpert
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030 United States
| | - BA Burns
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030 United States
| | - SR Rosario
- Department of Biostatistics and Bioinformatics, Baylor College of Medicine, Houston, TX 77030 United States
- Acquired Resistance to Therapy Network (ARTNet) U24/U54 Investigator, Baylor College of Medicine, Houston, TX 77030 United States
| | - HG Withers
- Department of Biostatistics and Bioinformatics, Baylor College of Medicine, Houston, TX 77030 United States
| | - AJ Trivedi
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030 United States
| | - CJ Hofferek
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030 United States
| | - BD Gephart
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030 United States
| | - H Wang
- Department of Medicine, Section of Hematology & Oncology, Baylor College of Medicine, Houston, TX 77030 United States
| | - J Vazquez-Perez
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030 United States
| | - SB Amanya
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030 United States
| | - ST Hyslop
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030 United States
| | - J Yang
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030 United States
| | - JO Kemnade
- Department of Medicine, Section of Hematology & Oncology, Baylor College of Medicine, Houston, TX 77030 United States
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030 United States
| | - VC Sandulache
- Acquired Resistance to Therapy Network (ARTNet) U24/U54 Investigator, Baylor College of Medicine, Houston, TX 77030 United States
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030 United States
- Bobby R. Alford Department of Otolaryngology - Head and Neck Surgery, Baylor College of Medicine, Houston, TX 77030 United States
| | - V Konduri
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030 United States
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030 United States
| | - WK Decker
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030 United States
- Acquired Resistance to Therapy Network (ARTNet) U24/U54 Investigator, Baylor College of Medicine, Houston, TX 77030 United States
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030 United States
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030 United States
| |
Collapse
|
24
|
Huang X, Nepovimova E, Adam V, Sivak L, Heger Z, Valko M, Wu Q, Kuca K. Neutrophils in Cancer immunotherapy: friends or foes? Mol Cancer 2024; 23:107. [PMID: 38760815 PMCID: PMC11102125 DOI: 10.1186/s12943-024-02004-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 04/16/2024] [Indexed: 05/19/2024] Open
Abstract
Neutrophils play a Janus-faced role in the complex landscape of cancer pathogenesis and immunotherapy. As immune defense cells, neutrophils release toxic substances, including reactive oxygen species and matrix metalloproteinase 9, within the tumor microenvironment. They also modulate the expression of tumor necrosis factor-related apoptosis-inducing ligand and Fas ligand, augmenting their capacity to induce tumor cell apoptosis. Their involvement in antitumor immune regulation synergistically activates a network of immune cells, bolstering anticancer effects. Paradoxically, neutrophils can succumb to the influence of tumors, triggering signaling cascades such as JAK/STAT, which deactivate the immune system network, thereby promoting immune evasion by malignant cells. Additionally, neutrophil granular constituents, such as neutrophil elastase and vascular endothelial growth factor, intricately fuel tumor cell proliferation, metastasis, and angiogenesis. Understanding the mechanisms that guide neutrophils to collaborate with other immune cells for comprehensive tumor eradication is crucial to enhancing the efficacy of cancer therapeutics. In this review, we illuminate the underlying mechanisms governing neutrophil-mediated support or inhibition of tumor progression, with a particular focus on elucidating the internal and external factors that influence neutrophil polarization. We provide an overview of recent advances in clinical research regarding the involvement of neutrophils in cancer therapy. Moreover, the future prospects and limitations of neutrophil research are discussed, aiming to provide fresh insights for the development of innovative cancer treatment strategies targeting neutrophils.
Collapse
Affiliation(s)
- Xueqin Huang
- College of Life Science, Yangtze University, Jingzhou, 434025, China
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Králové, 500 03, Hradec Králové, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, 613 00, Brno, Czech Republic
| | - Ladislav Sivak
- Department of Chemistry and Biochemistry, Mendel University in Brno, 613 00, Brno, Czech Republic
| | - Zbynek Heger
- Department of Chemistry and Biochemistry, Mendel University in Brno, 613 00, Brno, Czech Republic
| | - Marian Valko
- Faculty of Chemical and Food Technology, Slovak University of Technology, 812 37, Bratislava, Slovakia
| | - Qinghua Wu
- College of Life Science, Yangtze University, Jingzhou, 434025, China.
- Department of Chemistry, Faculty of Science, University of Hradec Králové, 500 03, Hradec Králové, Czech Republic.
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Králové, 500 03, Hradec Králové, Czech Republic.
- Biomedical Research Center, University Hospital Hradec Kralove, 500 05, Hradec Kralove, Czech Republic.
- Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI), University of Granada, Granada, Spain.
| |
Collapse
|
25
|
Larson AC, Doty KR, Solheim JC. The double life of a chemotherapy drug: Immunomodulatory functions of gemcitabine in cancer. Cancer Med 2024; 13:e7287. [PMID: 38770637 PMCID: PMC11106691 DOI: 10.1002/cam4.7287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 04/19/2024] [Accepted: 04/28/2024] [Indexed: 05/22/2024] Open
Abstract
Although the development of immunotherapies has been revolutionary in the treatment of several cancers, many cancer types remain unresponsive to immune-based treatment and are largely managed by chemotherapy drugs. However, chemotherapeutics are not infallible and are frequently rendered ineffective as resistance develops from prolonged exposure. Recent investigations have indicated that some chemotherapy drugs have additional functions beyond their normative cytotoxic capacity and are in fact immune-modifying agents. Of the pharmaceuticals with identified immune-editing properties, gemcitabine is well-studied and of interest to clinicians and scientists alike. Gemcitabine is a chemotherapy drug approved for the treatment of multiple cancers, including breast, lung, pancreatic, and ovarian. Because of its broad applications, relatively low toxicity profile, and history as a favorable combinatory partner, there is promise in the recharacterization of gemcitabine in the context of the immune system. Such efforts may allow the identification of suitable immunotherapeutic combinations, wherein gemcitabine can be used as a priming agent to improve immunotherapy efficacy in traditionally insensitive cancers. This review looks to highlight documented immunomodulatory abilities of one of the most well-known chemotherapy agents, gemcitabine, relating to its influence on cells and proteins of the immune system.
Collapse
Affiliation(s)
- Alaina C. Larson
- Eppley Institute for Research in Cancer & Allied DiseasesUniversity of Nebraska Medical CenterOmahaNebraskaUSA
- Fred & Pamela Buffett Cancer CenterUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - Kenadie R. Doty
- Eppley Institute for Research in Cancer & Allied DiseasesUniversity of Nebraska Medical CenterOmahaNebraskaUSA
- Fred & Pamela Buffett Cancer CenterUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - Joyce C. Solheim
- Eppley Institute for Research in Cancer & Allied DiseasesUniversity of Nebraska Medical CenterOmahaNebraskaUSA
- Fred & Pamela Buffett Cancer CenterUniversity of Nebraska Medical CenterOmahaNebraskaUSA
- Department of Biochemistry & Molecular BiologyUniversity of Nebraska Medical CenterOmahaNebraskaUSA
- Department of Pathology, Microbiology, & ImmunologyUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| |
Collapse
|
26
|
Zhang Y, Lei Y, Ou Q, Chen M, Tian S, Tang J, Li R, Liang Q, Chen Z, Wang C. Listeria-vectored cervical cancer vaccine candidate strains reduce MDSCs via the JAK-STAT signaling pathway. BMC Biol 2024; 22:88. [PMID: 38641823 PMCID: PMC11031962 DOI: 10.1186/s12915-024-01876-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 03/28/2024] [Indexed: 04/21/2024] Open
Abstract
BACKGROUND Immunosuppressive status is prevalent in cancer patients and increases the complexity of tumor immunotherapy. It has been found that Listeria-vectored tumor vaccines had the potential ability of two-side regulatory effect on the immune response during immunotherapy. RESULTS The results show that the combined immunotherapy with the LM∆E6E7 and LI∆E6E7, the two cervical cancer vaccine candidate strains constructed by our lab, improves the antitumor immune response and inhibits the suppressive immune response in tumor-bearing mice in vivo, confirming the two-sided regulatory ability of the immune response caused by Listeria-vectored tumor vaccines. The immunotherapy reduces the expression level of myeloid-derived suppressor cells (MDSCs)-inducing factors and then inhibits the phosphorylation level of STAT3 protein, the regulatory factor of MDSCs differentiation, to reduce the MDSCs formation ability. Moreover, vaccines reduce the expression of functional molecules associated with MDSCs may by inhibiting the phosphorylation level of the JAK1-STAT1 and JAK2-STAT3 pathways in tumor tissues to attenuate the immunosuppressive function of MDSCs. CONCLUSIONS Immunotherapy with Listeria-vectored cervical cancer vaccines significantly reduces the level and function of MDSCs in vivo, which is the key point to the destruction of immunosuppression. The study for the first to elucidate the mechanism of breaking the immunosuppression.
Collapse
Affiliation(s)
- Yunwen Zhang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
- Shen Zhen Biomed Alliance Biotech Group Co., Ltd, Shenzhen, China
| | - Yao Lei
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Qian Ou
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Mengdie Chen
- Shen Zhen Biomed Alliance Biotech Group Co., Ltd, Shenzhen, China
| | - Sicheng Tian
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
- Shen Zhen Biomed Alliance Biotech Group Co., Ltd, Shenzhen, China
| | - Jing Tang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Ruidan Li
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Qian Liang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Zhaobin Chen
- Shen Zhen Biomed Alliance Biotech Group Co., Ltd, Shenzhen, China.
| | - Chuan Wang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
27
|
Wang ZT, Deng ZM, Dai FF, Yuan MQ, Liu SY, Li BS, Cheng YX. Tumor immunity: A brief overview of tumor‑infiltrating immune cells and research advances into tumor‑infiltrating lymphocytes in gynecological malignancies (Review). Exp Ther Med 2024; 27:166. [PMID: 38476909 PMCID: PMC10928974 DOI: 10.3892/etm.2024.12453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 01/03/2023] [Indexed: 03/14/2024] Open
Abstract
Tumor immunity is a promising topic in the area of cancer therapy. The 'soil' function of the tumor microenvironment (TME) for tumor growth has attracted wide attention from scientists. Tumor-infiltrating immune cells in the TME, especially the tumor-infiltrating lymphocytes (TILs), serve a key role in cancer. Firstly, relevant literature was searched in the PubMed and Web of Science databases with the following key words: 'Tumor microenvironment'; 'TME'; 'tumor-infiltrating immunity cells'; 'gynecologic malignancies'; 'the adoptive cell therapy (ACT) of TILs'; and 'TIL-ACT' (https://pubmed.ncbi.nlm.nih.gov/). According to the title and abstract of the articles, relevant items were screened out in the preliminary screening. The most relevant selected items were of two types: All kinds of tumor-infiltrating immune cells; and advanced research on TILs in gynecological malignancies. The results showed that the subsets of TILs were various and complex, while each subpopulation influenced each other and their effects on tumor prognosis were diverse. Moreover, the related research and clinical trials on TILs were mostly concentrated in melanoma and breast cancer, but relatively few focused on gynecological tumors. In conclusion, the present review summarized the biological classification of TILs and the mechanisms of their involvement in the regulation of the immune microenvironment, and subsequently analyzed the development of tumor immunotherapy for TILs. Collectively, the present review provides ideas for the current treatment dilemma of gynecological tumor immune checkpoints, such as adverse reactions, safety, personal specificity and efficacy.
Collapse
Affiliation(s)
- Zi-Tao Wang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Zhi-Min Deng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Fang-Fang Dai
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Meng-Qin Yuan
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Shi-Yi Liu
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Bing-Shu Li
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Yan-Xiang Cheng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
28
|
Gao F, You X, Yang L, Zou X, Sui B. Boosting immune responses in lung tumor immune microenvironment: A comprehensive review of strategies and adjuvants. Int Rev Immunol 2024; 43:280-308. [PMID: 38525925 DOI: 10.1080/08830185.2024.2333275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 02/12/2024] [Accepted: 03/15/2024] [Indexed: 03/26/2024]
Abstract
The immune system has a substantial impact on the growth and expansion of lung malignancies. Immune cells are encompassed by a stroma comprising an extracellular matrix (ECM) and different cells like stromal cells, which are known as the tumor immune microenvironment (TIME). TME is marked by the presence of immunosuppressive factors, which inhibit the function of immune cells and expand tumor growth. In recent years, numerous strategies and adjuvants have been developed to extend immune responses in the TIME, to improve the efficacy of immunotherapy. In this comprehensive review, we outline the present knowledge of immune evasion mechanisms in lung TIME, explain the biology of immune cells and diverse effectors on these components, and discuss various approaches for overcoming suppressive barriers. We highlight the potential of novel adjuvants, including toll-like receptor (TLR) agonists, cytokines, phytochemicals, nanocarriers, and oncolytic viruses, for enhancing immune responses in the TME. Ultimately, we provide a summary of ongoing clinical trials investigating these strategies and adjuvants in lung cancer patients. This review also provides a broad overview of the current state-of-the-art in boosting immune responses in the TIME and highlights the potential of these approaches for improving outcomes in lung cancer patients.
Collapse
Affiliation(s)
- Fei Gao
- Department of Oncology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China
| | - Xiaoqing You
- Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China
| | - Liu Yang
- Department of Oncology, Da Qing Long Nan Hospital, Daqing, Heilongjiang Province, China
| | - Xiangni Zou
- Department of Nursing, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China
| | - Bowen Sui
- Department of Oncology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China
| |
Collapse
|
29
|
Ge S, Zhao Y, Liang J, He Z, Li K, Zhang G, Hua B, Zheng H, Guo Q, Qi R, Shi Z. Immune modulation in malignant pleural effusion: from microenvironment to therapeutic implications. Cancer Cell Int 2024; 24:105. [PMID: 38475858 PMCID: PMC10936107 DOI: 10.1186/s12935-024-03211-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 01/03/2024] [Indexed: 03/14/2024] Open
Abstract
Immune microenvironment and immunotherapy have become the focus and frontier of tumor research, and the immune checkpoint inhibitors has provided novel strategies for tumor treatment. Malignant pleural effusion (MPE) is a common end-stage manifestation of lung cancer, malignant pleural mesothelioma and other thoracic malignancies, which is invasive and often accompanied by poor prognosis, affecting the quality of life of affected patients. Currently, clinical therapy for MPE is limited to pleural puncture, pleural fixation, catheter drainage, and other palliative therapies. Immunization is a new direction for rehabilitation and treatment of MPE. The effusion caused by cancer cells establishes its own immune microenvironment during its formation. Immune cells, cytokines, signal pathways of microenvironment affect the MPE progress and prognosis of patients. The interaction between them have been proved. The relevant studies were obtained through a systematic search of PubMed database according to keywords search method. Then through screening and sorting and reading full-text, 300 literatures were screened out. Exclude irrelevant and poor quality articles, 238 literatures were cited in the references. In this study, the mechanism of immune microenvironment affecting malignant pleural effusion was discussed from the perspectives of adaptive immune cells, innate immune cells, cytokines and molecular targets. Meanwhile, this study focused on the clinical value of microenvironmental components in the immunotherapy and prognosis of malignant pleural effusion.
Collapse
Affiliation(s)
- Shan Ge
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, No. 16, Nanxiao Street, Dongzhimen, Dongcheng District, Beijing, 100700, China
| | - Yuwei Zhao
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No. 5 Beixiange, Xicheng District, Beijing, 100053, China
| | - Jun Liang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No. 5 Beixiange, Xicheng District, Beijing, 100053, China
| | - Zhongning He
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No. 5 Beixiange, Xicheng District, Beijing, 100053, China
| | - Kai Li
- Beijing Shijitan Hospital, No.10 Yangfangdiantieyilu, Haidian District, Beijing, 100038, China
| | - Guanghui Zhang
- Beijing University of Chinese Medicine, Chaoyang District, Beijing, 100029, China
| | - Baojin Hua
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No. 5 Beixiange, Xicheng District, Beijing, 100053, China
| | - Honggang Zheng
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No. 5 Beixiange, Xicheng District, Beijing, 100053, China
| | - Qiujun Guo
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No. 5 Beixiange, Xicheng District, Beijing, 100053, China
| | - Runzhi Qi
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No. 5 Beixiange, Xicheng District, Beijing, 100053, China.
| | - Zhan Shi
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, No. 16, Nanxiao Street, Dongzhimen, Dongcheng District, Beijing, 100700, China.
| |
Collapse
|
30
|
Bellotti P, Ladd Z, Leroy V, Su G, Sharma S, Hartman JB, Krebs J, Viscardi C, Maile R, Moldawer LL, Efron P, Sharma AK, Upchurch GR. Resolvin D2/GPR18 signaling enhances monocytic myeloid-derived suppressor cell function to mitigate abdominal aortic aneurysm formation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.23.581672. [PMID: 38464077 PMCID: PMC10925138 DOI: 10.1101/2024.02.23.581672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Abdominal aortic aneurysm (AAA) formation is a chronic vascular pathology characterized by inflammation, leukocyte infiltration and vascular remodeling. The aim of this study was to delineate the protective role of Resolvin D2 (RvD2), a bioactive isoform of specialized proresolving lipid mediators, via G-protein coupled receptor 18 (GPR18) receptor signaling in attenuating AAAs. Importantly, RvD2 and GPR18 levels were significantly decreased in aortic tissue of AAA patients compared with controls. Furthermore, using an established murine model of AAA in C57BL/6 (WT) mice, we observed that treatment with RvD2 significantly attenuated aortic diameter, pro-inflammatory cytokine production, immune cell infiltration (neutrophils and macrophages), elastic fiber disruption and increased smooth muscle cell α-actin expression as well as increased TGF-β2 and IL-10 expressions compared to untreated mice. Moreover, the RvD2-mediated protection from vascular remodeling and AAA formation was blocked when mice were previously treated with siRNA for GPR18 signifying the importance of RvD2/GPR18 signaling in vascular inflammation. Mechanistically, RvD2-mediated protection significantly enhanced infiltration and activation of monocytic myeloid-derived suppressor cells (M-MDSCs) by increasing TGF-β2 and IL-10 secretions that mitigated smooth muscle cell activation in a GPR18-dependent manner to attenuate aortic inflammation and vascular remodeling via this intercellular crosstalk. Collectively, this study demonstrates RvD2 treatment induces an expansion of myeloid-lineage committed progenitors, such as M-MDSCs, and activates GPR18-dependent signaling to enhance TGF-β2 and IL-10 secretion that contributes to resolution of aortic inflammation and remodeling during AAA formation.
Collapse
|
31
|
Del Pilar C, Garrido-Matilla L, Del Pozo-Filíu L, Lebrón-Galán R, Arias RF, Clemente D, Alonso JR, Weruaga E, Díaz D. Intracerebellar injection of monocytic immature myeloid cells prevents the adverse effects caused by stereotactic surgery in a model of cerebellar neurodegeneration. J Neuroinflammation 2024; 21:49. [PMID: 38355633 PMCID: PMC10867997 DOI: 10.1186/s12974-023-03000-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 12/18/2023] [Indexed: 02/16/2024] Open
Abstract
BACKGROUND Myeloid-derived suppressor cells (MDSCs) constitute a recently discovered bone-marrow-derived cell type useful for dealing with neuroinflammatory disorders. However, these cells are only formed during inflammatory conditions from immature myeloid cells (IMCs) that acquire immunosuppressive activity, thus being commonly gathered from diseased animals. Then, to obtain a more clinically feasible source, we characterized IMCs directly derived from healthy bone marrow and proved their potential immunosuppressive activity under pathological conditions in vitro. We then explored their neuroprotective potential in a model of human cerebellar ataxia, the Purkinje Cell Degeneration (PCD) mouse, as it displays a well-defined neurodegenerative and neuroinflammatory process that can be also aggravated by invasive surgeries. METHODS IMCs were obtained from healthy bone marrow and co-cultured with activated T cells. The proliferation and apoptotic rate of the later were analyzed with Tag-it Violet. For in vivo studies, IMCs were transplanted by stereotactic surgery into the cerebellum of PCD mice. We also used sham-operated animals as controls of the surgical effects, as well as their untreated counterparts. Motor behavior of mice was assessed by rotarod test. The Purkinje cell density was measured by immunohistochemistry and cell death assessed with the TUNEL technique. We also analyzed the microglial phenotype by immunofluorescence and the expression pattern of inflammation-related genes by qPCR. Parametric tests were applied depending on the specific experiment: one or two way ANOVA and Student's T test. RESULTS IMCs were proven to effectively acquire immunosuppressive activity under pathological conditions in vitro, thus acting as MDSCs. Concerning in vivo studios, sham-operated PCD mice suffered detrimental effects in motor coordination, Purkinje cell survival and microglial activation. After intracranial administration of IMCs into the cerebellum of PCD mice, no special benefits were detected in the transplanted animals when compared to untreated mice. Nonetheless, this transplant almost completely prevented the impairments caused by the surgery in PCD mice, probably by the modulation of the inflammatory patterns. CONCLUSIONS Our work comprise two main translational findings: (1) IMCs can be directly used as they behave as MDSCs under pathological conditions, thus avoiding their gathering from diseased subjects; (2) IMCs are promising adjuvants when performing neurosurgery.
Collapse
Affiliation(s)
- Carlos Del Pilar
- Institute for Neuroscience of Castile and Leon, INCyL, Universidad de Salamanca, C/Pintor Fernando Gallego 1, 37007, Salamanca, Spain
- Institute of Biomedical Research of Salamanca, IBSAL, Salamanca, Spain
| | - Lucía Garrido-Matilla
- Institute for Neuroscience of Castile and Leon, INCyL, Universidad de Salamanca, C/Pintor Fernando Gallego 1, 37007, Salamanca, Spain
- Departamento de Psicobiología, Facultad de Psicología, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain
| | - Lucía Del Pozo-Filíu
- Institute for Neuroscience of Castile and Leon, INCyL, Universidad de Salamanca, C/Pintor Fernando Gallego 1, 37007, Salamanca, Spain
- Translational Stroke Laboratory (TREAT), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Rafael Lebrón-Galán
- Neuroimmuno-Repair Group, Hospital Nacional de Parapléjicos-SESCAM, Finca La Peraleda s/n, 45004, Toledo, Spain
- Hospital Universitario de Toledo, Avd. Río Guadiana, s/n, 45007, Toledo, Spain
| | - Raúl F Arias
- Institute for Neuroscience of Castile and Leon, INCyL, Universidad de Salamanca, C/Pintor Fernando Gallego 1, 37007, Salamanca, Spain
- Institute of Biomedical Research of Salamanca, IBSAL, Salamanca, Spain
| | - Diego Clemente
- Neuroimmuno-Repair Group, Hospital Nacional de Parapléjicos-SESCAM, Finca La Peraleda s/n, 45004, Toledo, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Carlos III Health Institute, Av. Monforte de Lemos, 3-5, 28029, Madrid, Spain
| | - José Ramón Alonso
- Institute for Neuroscience of Castile and Leon, INCyL, Universidad de Salamanca, C/Pintor Fernando Gallego 1, 37007, Salamanca, Spain
- Institute of Biomedical Research of Salamanca, IBSAL, Salamanca, Spain
| | - Eduardo Weruaga
- Institute for Neuroscience of Castile and Leon, INCyL, Universidad de Salamanca, C/Pintor Fernando Gallego 1, 37007, Salamanca, Spain.
- Institute of Biomedical Research of Salamanca, IBSAL, Salamanca, Spain.
| | - David Díaz
- Institute for Neuroscience of Castile and Leon, INCyL, Universidad de Salamanca, C/Pintor Fernando Gallego 1, 37007, Salamanca, Spain.
- Institute of Biomedical Research of Salamanca, IBSAL, Salamanca, Spain.
| |
Collapse
|
32
|
Lasser SA, Ozbay Kurt FG, Arkhypov I, Utikal J, Umansky V. Myeloid-derived suppressor cells in cancer and cancer therapy. Nat Rev Clin Oncol 2024; 21:147-164. [PMID: 38191922 DOI: 10.1038/s41571-023-00846-y] [Citation(s) in RCA: 58] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2023] [Indexed: 01/10/2024]
Abstract
Anticancer agents continue to dominate the list of newly approved drugs, approximately half of which are immunotherapies. This trend illustrates the considerable promise of cancer treatments that modulate the immune system. However, the immune system is complex and dynamic, and can have both tumour-suppressive and tumour-promoting effects. Understanding the full range of immune modulation in cancer is crucial to identifying more effective treatment strategies. Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of myeloid cells that develop in association with chronic inflammation, which is a hallmark of cancer. Indeed, MDSCs accumulate in the tumour microenvironment, where they strongly inhibit anticancer functions of T cells and natural killer cells and exert a variety of other tumour-promoting effects. Emerging evidence indicates that MDSCs also contribute to resistance to cancer treatments, particularly immunotherapies. Conversely, treatment approaches designed to eliminate cancer cells can have important additional effects on MDSC function, which can be either positive or negative. In this Review, we discuss the interplay between MDSCs and various other cell types found in tumours as well as the mechanisms by which MDSCs promote tumour progression. We also discuss the relevance and implications of MDSCs for cancer therapy.
Collapse
Affiliation(s)
- Samantha A Lasser
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany
- Skin Cancer Unit, German Cancer Research Center (Deutsches Krebsforschungszentrum (DKFZ)), Heidelberg, Germany
- DKFZ-Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany
| | - Feyza G Ozbay Kurt
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany
- Skin Cancer Unit, German Cancer Research Center (Deutsches Krebsforschungszentrum (DKFZ)), Heidelberg, Germany
- DKFZ-Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany
| | - Ihor Arkhypov
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany
- Skin Cancer Unit, German Cancer Research Center (Deutsches Krebsforschungszentrum (DKFZ)), Heidelberg, Germany
- DKFZ-Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany
| | - Jochen Utikal
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany
- Skin Cancer Unit, German Cancer Research Center (Deutsches Krebsforschungszentrum (DKFZ)), Heidelberg, Germany
- DKFZ-Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany
| | - Viktor Umansky
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany.
- Skin Cancer Unit, German Cancer Research Center (Deutsches Krebsforschungszentrum (DKFZ)), Heidelberg, Germany.
- DKFZ-Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany.
| |
Collapse
|
33
|
Gu M, Ren B, Fang Y, Ren J, Liu X, Wang X, Zhou F, Xiao R, Luo X, You L, Zhao Y. Epigenetic regulation in cancer. MedComm (Beijing) 2024; 5:e495. [PMID: 38374872 PMCID: PMC10876210 DOI: 10.1002/mco2.495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 01/26/2024] [Accepted: 01/30/2024] [Indexed: 02/21/2024] Open
Abstract
Epigenetic modifications are defined as heritable changes in gene activity that do not involve changes in the underlying DNA sequence. The oncogenic process is driven by the accumulation of alterations that impact genome's structure and function. Genetic mutations, which directly disrupt the DNA sequence, are complemented by epigenetic modifications that modulate gene expression, thereby facilitating the acquisition of malignant characteristics. Principals among these epigenetic changes are shifts in DNA methylation and histone mark patterns, which promote tumor development and metastasis. Notably, the reversible nature of epigenetic alterations, as opposed to the permanence of genetic changes, positions the epigenetic machinery as a prime target in the discovery of novel therapeutics. Our review delves into the complexities of epigenetic regulation, exploring its profound effects on tumor initiation, metastatic behavior, metabolic pathways, and the tumor microenvironment. We place a particular emphasis on the dysregulation at each level of epigenetic modulation, including but not limited to, the aberrations in enzymes responsible for DNA methylation and histone modification, subunit loss or fusions in chromatin remodeling complexes, and the disturbances in higher-order chromatin structure. Finally, we also evaluate therapeutic approaches that leverage the growing understanding of chromatin dysregulation, offering new avenues for cancer treatment.
Collapse
Affiliation(s)
- Minzhi Gu
- Department of General SurgeryPeking Union Medical College HospitalPeking Union Medical CollegeChinese Academy of Medical SciencesBeijingP. R. China
- Key Laboratory of Research in Pancreatic TumorChinese Academy of Medical SciencesBeijingP. R. China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College HospitalBeijingP. R. China
| | - Bo Ren
- Department of General SurgeryPeking Union Medical College HospitalPeking Union Medical CollegeChinese Academy of Medical SciencesBeijingP. R. China
- Key Laboratory of Research in Pancreatic TumorChinese Academy of Medical SciencesBeijingP. R. China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College HospitalBeijingP. R. China
| | - Yuan Fang
- Department of General SurgeryPeking Union Medical College HospitalPeking Union Medical CollegeChinese Academy of Medical SciencesBeijingP. R. China
- Key Laboratory of Research in Pancreatic TumorChinese Academy of Medical SciencesBeijingP. R. China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College HospitalBeijingP. R. China
| | - Jie Ren
- Department of General SurgeryPeking Union Medical College HospitalPeking Union Medical CollegeChinese Academy of Medical SciencesBeijingP. R. China
- Key Laboratory of Research in Pancreatic TumorChinese Academy of Medical SciencesBeijingP. R. China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College HospitalBeijingP. R. China
| | - Xiaohong Liu
- Department of General SurgeryPeking Union Medical College HospitalPeking Union Medical CollegeChinese Academy of Medical SciencesBeijingP. R. China
- Key Laboratory of Research in Pancreatic TumorChinese Academy of Medical SciencesBeijingP. R. China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College HospitalBeijingP. R. China
| | - Xing Wang
- Department of General SurgeryPeking Union Medical College HospitalPeking Union Medical CollegeChinese Academy of Medical SciencesBeijingP. R. China
- Key Laboratory of Research in Pancreatic TumorChinese Academy of Medical SciencesBeijingP. R. China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College HospitalBeijingP. R. China
| | - Feihan Zhou
- Department of General SurgeryPeking Union Medical College HospitalPeking Union Medical CollegeChinese Academy of Medical SciencesBeijingP. R. China
- Key Laboratory of Research in Pancreatic TumorChinese Academy of Medical SciencesBeijingP. R. China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College HospitalBeijingP. R. China
| | - Ruiling Xiao
- Department of General SurgeryPeking Union Medical College HospitalPeking Union Medical CollegeChinese Academy of Medical SciencesBeijingP. R. China
- Key Laboratory of Research in Pancreatic TumorChinese Academy of Medical SciencesBeijingP. R. China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College HospitalBeijingP. R. China
| | - Xiyuan Luo
- Department of General SurgeryPeking Union Medical College HospitalPeking Union Medical CollegeChinese Academy of Medical SciencesBeijingP. R. China
- Key Laboratory of Research in Pancreatic TumorChinese Academy of Medical SciencesBeijingP. R. China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College HospitalBeijingP. R. China
| | - Lei You
- Department of General SurgeryPeking Union Medical College HospitalPeking Union Medical CollegeChinese Academy of Medical SciencesBeijingP. R. China
- Key Laboratory of Research in Pancreatic TumorChinese Academy of Medical SciencesBeijingP. R. China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College HospitalBeijingP. R. China
| | - Yupei Zhao
- Department of General SurgeryPeking Union Medical College HospitalPeking Union Medical CollegeChinese Academy of Medical SciencesBeijingP. R. China
- Key Laboratory of Research in Pancreatic TumorChinese Academy of Medical SciencesBeijingP. R. China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College HospitalBeijingP. R. China
| |
Collapse
|
34
|
Cuenca-Escalona J, Subtil B, Garcia-Perez A, Cambi A, de Vries IJM, Flórez-Grau G. EP2 and EP4 blockade prevents tumor-induced suppressive features in human monocytic myeloid-derived suppressor cells. Front Immunol 2024; 15:1355769. [PMID: 38343540 PMCID: PMC10853404 DOI: 10.3389/fimmu.2024.1355769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 01/12/2024] [Indexed: 02/15/2024] Open
Abstract
Tumors educate their environment to prime the occurrence of suppressive cell subsets, which enable tumor evasion and favors tumor progression. Among these, there are the myeloid-derived suppressor cells (MDSCs), their presence being associated with the poor clinical outcome of cancer patients. Tumor-derived prostaglandin E2 (PGE2) is known to mediate MDSC differentiation and the acquisition of pro-tumor features. In myeloid cells, PGE2 signaling is mediated via E-prostanoid receptor type 2 (EP2) and EP4. Although the suppressive role of PGE2 is well established in MDSCs, the role of EP2/4 on human MDSCs or whether EP2/4 modulation can prevent MDSCs suppressive features upon exposure to tumor-derived PGE2 is poorly defined. In this study, using an in vitro model of human monocytic-MDSCs (M-MDSCs) we demonstrate that EP2 and EP4 signaling contribute to the induction of a pro-tumor phenotype and function on M-MDSCs. PGE2 signaling via EP2 and EP4 boosted M-MDSC ability to suppress T and NK cell responses. Combined EP2/4 blockade on M-MDSCs during PGE2 exposure prevented the occurrence of these suppressive features. Additionally, EP2/4 blockade attenuated the suppressive phenotype of M-MDSCs in a 3D coculture with colorectal cancer patient-derived organoids. Together, these results identify the role of tumor-derived PGE2 signaling via EP2 and EP4 in this human M-MDSC model, supporting the therapeutic value of targeting PGE2-EP2/4 axis in M-MDSCs to alleviate immunosuppression and facilitate the development of anti-tumor immunity.
Collapse
|
35
|
Santry LA, van Vloten JP, AuYeung AWK, Mould RC, Yates JGE, McAusland TM, Petrik JJ, Major PP, Bridle BW, Wootton SK. Recombinant Newcastle disease viruses expressing immunological checkpoint inhibitors induce a pro-inflammatory state and enhance tumor-specific immune responses in two murine models of cancer. Front Microbiol 2024; 15:1325558. [PMID: 38328418 PMCID: PMC10847535 DOI: 10.3389/fmicb.2024.1325558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 01/02/2024] [Indexed: 02/09/2024] Open
Abstract
Introduction Tumor microenvironments are immunosuppressive due to progressive accumulation of mutations in cancer cells that can drive expression of a range of inhibitory ligands and cytokines, and recruitment of immunomodulatory cells, including myeloid-derived suppressor cells (MDSC), tumor-associated macrophages, and regulatory T cells (Tregs). Methods To reverse this immunosuppression, we engineered mesogenic Newcastle disease virus (NDV) to express immunological checkpoint inhibitors anti-cytotoxic T lymphocyte antigen-4 and soluble programmed death protein-1. Results Intratumoral administration of recombinant NDV (rNDV) to mice bearing intradermal B16-F10 melanomas or subcutaneous CT26LacZ colon carcinomas led to significant changes in the tumor-infiltrating lymphocyte profiles. Vectorizing immunological checkpoint inhibitors in NDV increased activation of intratumoral natural killer cells and cytotoxic T cells and decreased Tregs and MDSCs, suggesting induction of a pro-inflammatory state with greater infiltration of activated CD8+ T cells. These notable changes translated to higher ratios of activated effector/suppressor tumor-infiltrating lymphocytes in both cancer models, which is a promising prognostic marker. Whereas all rNDV-treated groups showed evidence of tumor regression and increased survival in the CT26LacZ and B16-F10, only treatment with NDV expressing immunological checkpoint blockades led to complete responses compared to tumors treated with NDV only. Discussion These data demonstrated that NDV expressing immunological checkpoint inhibitors could reverse the immunosuppressive state of tumor microenvironments and enhance tumor-specific T cell responses.
Collapse
Affiliation(s)
- Lisa A. Santry
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Jacob P. van Vloten
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Amanda W. K. AuYeung
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Robert C. Mould
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Jacob G. E. Yates
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Thomas M. McAusland
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - James J. Petrik
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | | | - Byram W. Bridle
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Sarah K. Wootton
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
36
|
Leroy V, Manual Kollareth DJ, Tu Z, Valisno JAC, Woolet-Stockton M, Saha B, Emtiazjoo AM, Rackauskas M, Moldawer LL, Efron PA, Cai G, Atkinson C, Upchurch GR, Sharma AK. MerTK-dependent efferocytosis by monocytic-MDSCs mediates resolution of post-lung transplant injury. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.18.576261. [PMID: 38328174 PMCID: PMC10849528 DOI: 10.1101/2024.01.18.576261] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Rationale Patients with end stage lung diseases require lung transplantation (LTx) that can be impeded by ischemia-reperfusion injury (IRI) leading to subsequent chronic lung allograft dysfunction (CLAD) and inadequate outcomes. Objectives We examined the undefined role of MerTK (receptor Mer tyrosine kinase) on monocytic myeloid-derived suppressor cells (M-MDSCs) in efferocytosis (phagocytosis of apoptotic cells) to facilitate resolution of lung IRI. Methods Single-cell RNA sequencing of lung tissue and BAL from post-LTx patients was analyzed. Murine lung hilar ligation and allogeneic orthotopic LTx models of IRI were used with Balb/c (WT), cebpb -/- (MDSC-deficient), Mertk -/- or MerTK-CR (cleavage resistant) mice. Lung function, IRI (inflammatory cytokine and myeloperoxidase expression, immunohistology for neutrophil infiltration), and flow cytometry of lung tissue for efferocytosis of apoptotic neutrophils were assessed in mice. Measurements and Main Results A significant downregulation in MerTK-related efferocytosis genes in M-MDSC populations of CLAD patients compared to healthy subjects was observed. In the murine IRI model, significant increase in M-MDSCs, MerTK expression and efferocytosis was observed in WT mice during resolution phase that was absent in cebpb -/- Land Mertk -/- mice. Adoptive transfer of M-MDSCs in cebpb -/- mice significantly attenuated lung dysfunction, and inflammation leading to resolution of IRI. Additionally, in a preclinical murine orthotopic LTx model, increases in M-MDSCs were associated with resolution of lung IRI in the transplant recipients. In vitro studies demonstrated the ability of M-MDSCs to efferocytose apoptotic neutrophils in a MerTK-dependent manner. Conclusions Our results suggest that MerTK-dependent efferocytosis by M-MDSCs can significantly contribute to the resolution of post-LTx IRI.
Collapse
|
37
|
Elguindy M, Young JS, Mondal I, Lu RO, Ho WS. Glioma-Immune Cell Crosstalk in Tumor Progression. Cancers (Basel) 2024; 16:308. [PMID: 38254796 PMCID: PMC10813573 DOI: 10.3390/cancers16020308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/21/2023] [Accepted: 01/06/2024] [Indexed: 01/24/2024] Open
Abstract
Glioma progression is a complex process controlled by molecular factors that coordinate the crosstalk between tumor cells and components of the tumor microenvironment (TME). Among these, immune cells play a critical role in cancer survival and progression. The complex interplay between cancer cells and the immune TME influences the outcome of immunotherapy and other anti-cancer therapies. Here, we present an updated view of the pro- and anti-tumor activities of the main myeloid and lymphocyte cell populations in the glioma TME. We review the underlying mechanisms involved in crosstalk between cancer cells and immune cells that enable gliomas to evade the immune system and co-opt these cells for tumor growth. Lastly, we discuss the current and experimental therapeutic options being developed to revert the immunosuppressive activity of the glioma TME. Knowledge of the complex interplay that elapses between tumor and immune cells may help develop new combination treatments able to overcome tumor immune evasion mechanisms and enhance response to immunotherapies.
Collapse
Affiliation(s)
| | | | | | | | - Winson S. Ho
- Department of Neurological Surgery, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
38
|
Kostecki KL, Iida M, Crossman BE, Salgia R, Harari PM, Bruce JY, Wheeler DL. Immune Escape Strategies in Head and Neck Cancer: Evade, Resist, Inhibit, Recruit. Cancers (Basel) 2024; 16:312. [PMID: 38254801 PMCID: PMC10814769 DOI: 10.3390/cancers16020312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Head and neck cancers (HNCs) arise from the mucosal lining of the aerodigestive tract and are often associated with alcohol use, tobacco use, and/or human papillomavirus (HPV) infection. Over 600,000 new cases of HNC are diagnosed each year, making it the sixth most common cancer worldwide. Historically, treatments have included surgery, radiation, and chemotherapy, and while these treatments are still the backbone of current therapy, several immunotherapies have recently been approved by the Food and Drug Administration (FDA) for use in HNC. The role of the immune system in tumorigenesis and cancer progression has been explored since the early 20th century, eventually coalescing into the current three-phase model of cancer immunoediting. During each of the three phases-elimination, equilibrium, and escape-cancer cells develop and utilize multiple strategies to either reach or remain in the final phase, escape, at which point the tumor is able to grow and metastasize with little to no detrimental interference from the immune system. In this review, we summarize the many strategies used by HNC to escape the immune system, which include ways to evade immune detection, resist immune cell attacks, inhibit immune cell functions, and recruit pro-tumor immune cells.
Collapse
Affiliation(s)
- Kourtney L. Kostecki
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA; (K.L.K.); (M.I.); (B.E.C.)
| | - Mari Iida
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA; (K.L.K.); (M.I.); (B.E.C.)
| | - Bridget E. Crossman
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA; (K.L.K.); (M.I.); (B.E.C.)
| | - Ravi Salgia
- Department of Medical Oncology and Experimental Therapeutics, Comprehensive Cancer Center, City of Hope, Duarte, CA 91010, USA;
| | - Paul M. Harari
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA; (K.L.K.); (M.I.); (B.E.C.)
- University of Wisconsin Carbone Cancer Center, Madison, WI 53705, USA;
| | - Justine Y. Bruce
- University of Wisconsin Carbone Cancer Center, Madison, WI 53705, USA;
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Deric L. Wheeler
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA; (K.L.K.); (M.I.); (B.E.C.)
- University of Wisconsin Carbone Cancer Center, Madison, WI 53705, USA;
| |
Collapse
|
39
|
Wang Y, Li YR. Harnessing Chimeric Antigen Receptor-engineered Invariant Natural Killer T Cells: Therapeutic Strategies for Cancer and the Tumor Microenvironment. Curr Pharm Biotechnol 2024; 25:2001-2011. [PMID: 38310449 DOI: 10.2174/0113892010265228231116073012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/17/2023] [Accepted: 10/04/2023] [Indexed: 02/05/2024]
Abstract
Chimeric antigen receptor (CAR)-engineered T (CAR-T) cell therapy has emerged as a revolutionary approach for cancer treatment, especially for hematologic cancers. However, CAR-T therapy has some limitations, including cytokine release syndrome (CRS), immune cellassociated neurologic syndrome (ICANS), and difficulty in targeting solid tumors and delivering allogeneic cell therapy due to graft-versus-host disease (GvHD). Therefore, it is important to explore other cell sources for CAR engineering. Invariant natural killer T (iNKT) cells are a potential target, as they possess powerful antitumor ability and do not recognize mismatched major histocompatibility complexes (MHCs) and protein antigens, thus avoiding the risk of GvHD. CAR-engineered iNKT (CAR-iNKT) cell therapy offers a promising new approach to cancer immunotherapy by overcoming the drawbacks of CAR-T cell therapy while retaining potent antitumor capabilities. This review summarizes the current CAR-iNKT cell products, their functions and phenotypes, and their potential for off-the-shelf cancer immunotherapy.
Collapse
Affiliation(s)
- Yiqing Wang
- Department of Chemistry, Biochemistry, University of Washington, Seattle, WA 98105, USA
| | - Yan-Ruide Li
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
40
|
Bizymi N, Matthaiou AM, Mavroudi I, Batsali A, Papadaki HA. Immunomodulatory actions of myeloid-derived suppressor cells in the context of innate immunity. Innate Immun 2024; 30:2-10. [PMID: 38018014 PMCID: PMC10720601 DOI: 10.1177/17534259231215581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 10/27/2023] [Accepted: 11/02/2023] [Indexed: 11/30/2023] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are notable innate immune cells, which are further divided into two subpopulations, i.e., monocytic and granulocytic. These cells are traditionally considered to mainly suppress the T-cell responses. However, more updated data indicate that their properties are rather immunomodulatory than solely immunosuppressive. Indeed, MDSCs display extensive crosstalk with other either innate or adaptive immune cells, and, according to the situation under which they are triggered, they may enhance or attenuate the immune response. However, their positive role in host's defense mechanisms under specific conditions is rarely discussed in the literature. In this mini-review, the authors briefly summarise the mechanisms of action of MDSCs under distinct conditions, such as infections and malignancies, with a particular emphasis on their role as components of the innate immunity system.
Collapse
Affiliation(s)
- Nikoleta Bizymi
- Department of Haematology, University Hospital of Heraklion, Heraklion, Crete, Greece
- Haemopoiesis Research Laboratory, School of Medicine, University of Crete, Heraklion, Crete, Greece
- Laboratory of Molecular and Cellular Pneumonology, School of Medicine, University of Crete, Heraklion, Crete, Greece
| | - Andreas M. Matthaiou
- Laboratory of Molecular and Cellular Pneumonology, School of Medicine, University of Crete, Heraklion, Crete, Greece
- Respiratory Physiology Laboratory, Medical School, University of Cyprus, Nicosia, Cyprus
| | - Irene Mavroudi
- Department of Haematology, University Hospital of Heraklion, Heraklion, Crete, Greece
- Haemopoiesis Research Laboratory, School of Medicine, University of Crete, Heraklion, Crete, Greece
| | - Aristea Batsali
- Department of Haematology, University Hospital of Heraklion, Heraklion, Crete, Greece
- Haemopoiesis Research Laboratory, School of Medicine, University of Crete, Heraklion, Crete, Greece
| | - Helen A. Papadaki
- Department of Haematology, University Hospital of Heraklion, Heraklion, Crete, Greece
- Haemopoiesis Research Laboratory, School of Medicine, University of Crete, Heraklion, Crete, Greece
| |
Collapse
|
41
|
Blanc-Durand F, Clemence Wei Xian L, Tan DSP. Targeting the immune microenvironment for ovarian cancer therapy. Front Immunol 2023; 14:1328651. [PMID: 38164130 PMCID: PMC10757966 DOI: 10.3389/fimmu.2023.1328651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 12/05/2023] [Indexed: 01/03/2024] Open
Abstract
Ovarian cancer (OC) is an aggressive malignancy characterized by a complex immunosuppressive tumor microenvironment (TME). Immune checkpoint inhibitors have emerged as a breakthrough in cancer therapy by reactivating the antitumor immune response suppressed by tumor cells. However, in the case of OC, these inhibitors have failed to demonstrate significant improvements in patient outcomes, and existing biomarkers have not yet identified promising subgroups. Consequently, there remains a pressing need to understand the interplay between OC tumor cells and their surrounding microenvironment to develop effective immunotherapeutic approaches. This review aims to provide an overview of the OC TME and explore its potential as a therapeutic strategy. Tumor-infiltrating lymphocytes (TILs) are major actors in OC TME. Evidence has been accumulating regarding the spontaneous TILS response against OC antigens. Activated T-helpers secrete a wide range of inflammatory cytokines with a supportive action on cytotoxic T-cells. Simultaneously, mature B-cells are recruited and play a significant antitumor role through opsonization of target antigens and T-cell recruitment. Macrophages also form an important subset of innate immunity (M1-macrophages) while participating in the immune-stimulation context. Finally, OC has shown to engage a significant natural-killer-cells immune response, exerting direct cytotoxicity without prior sensitization. Despite this initial cytotoxicity, OC cells develop various strategies to induce an immune-tolerant state. To this end, multiple immunosuppressive molecules are secreted to impair cytotoxic cells, recruit regulatory cells, alter antigen presentation, and effectively evade immune response. Consequently, OC TME is predominantly infiltrated by immunosuppressive cells such as FOXP3+ regulatory T-cells, M2-polarized macrophages and myeloid-derived suppressor cells. Despite this strong immunosuppressive state, PD-1/PD-L1 inhibitors have failed to improve outcomes. Beyond PD-1/PD-L1, OC expresses multiple other immune checkpoints that contribute to immune evasion, and each representing potential immune targets. Novel immunotherapies are attempting to overcome the immunosuppressive state and induce specific immune responses using antibodies adoptive cell therapy or vaccines. Overall, the OC TME presents both opportunities and obstacles. Immunotherapeutic approaches continue to show promise, and next-generation inhibitors offer exciting opportunities. However, tailoring therapies to individual immune characteristics will be critical for the success of these treatments.
Collapse
Affiliation(s)
- Felix Blanc-Durand
- Department of Haematology-Oncology, National University Cancer Institute, Singapore (NCIS), National University Hospital, Singapore, Singapore
- Yong Loo Lin School of Medicine and Cancer Science Institute (CSI), National University of Singapore (NUS), Singapore, Singapore
| | - Lai Clemence Wei Xian
- Department of Haematology-Oncology, National University Cancer Institute, Singapore (NCIS), National University Hospital, Singapore, Singapore
- Yong Loo Lin School of Medicine and Cancer Science Institute (CSI), National University of Singapore (NUS), Singapore, Singapore
| | - David S. P. Tan
- Department of Haematology-Oncology, National University Cancer Institute, Singapore (NCIS), National University Hospital, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University Centre for Cancer Research (N2CR) and Cancer Science Institute (CSI), National University of Singapore, Singapore, Singapore
| |
Collapse
|
42
|
Nip C, Wang L, Liu C. CD200/CD200R: Bidirectional Role in Cancer Progression and Immunotherapy. Biomedicines 2023; 11:3326. [PMID: 38137547 PMCID: PMC10741515 DOI: 10.3390/biomedicines11123326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/01/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
As an immune checkpoint molecule, CD200 serves a foundational role in regulating immune homeostasis and promoting self-tolerance. While CD200 expression occurs in various immune cell subsets and normal tissues, its aberrant expression patterns in hematologic malignancies and solid tumors have been linked to immune evasion and cancer progression under pathological conditions, particularly through interactions with its cognate receptor, CD200R. Through this CD200/CD200R signaling pathway, CD200 exerts its immunosuppressive effects by inhibiting natural killer (NK) cell activation, cytotoxic T cell functions, and M1-polarized macrophage activity, while also facilitating expansion of myeloid-derived suppressor cells (MDSCs) and Tregs. Moreover, CD200/CD200R expression has been linked to epithelial-to-mesenchymal transition and distant metastasis, further illustrating its role in cancer progression. Conversely, CD200 has also been shown to exert anti-tumor effects in certain cancer types, such as breast carcinoma and melanoma, indicating that CD200 may exert bidirectional effects on cancer progression depending on the specific tumor microenvironment (TME). Regardless, modulating the CD200/CD200R axis has garnered clinical interest as a potential immunotherapeutic strategy for cancer therapy, as demonstrated by early-phase clinical trials. However, further research is necessary to fully understand the complex interactions of CD200 in the tumor microenvironment and to optimize its therapeutic potential in cancer immunotherapy.
Collapse
Affiliation(s)
- Christopher Nip
- Department of Urologic Surgery, University of California, Davis, CA 95817, USA; (C.N.); (L.W.)
| | - Leyi Wang
- Department of Urologic Surgery, University of California, Davis, CA 95817, USA; (C.N.); (L.W.)
- Graduate Group in Integrative Pathobiology, University of California, Davis, CA 95817, USA
| | - Chengfei Liu
- Department of Urologic Surgery, University of California, Davis, CA 95817, USA; (C.N.); (L.W.)
- Graduate Group in Integrative Pathobiology, University of California, Davis, CA 95817, USA
- UC Davis Comprehensive Cancer Center, University of California, Davis, CA 95817, USA
| |
Collapse
|
43
|
Liu Z, Zhang Y, Wu C. Single-cell sequencing in pancreatic cancer research: A deeper understanding of heterogeneity and therapy. Biomed Pharmacother 2023; 168:115664. [PMID: 37837881 DOI: 10.1016/j.biopha.2023.115664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/28/2023] [Accepted: 10/06/2023] [Indexed: 10/16/2023] Open
Abstract
Pancreatic cancer, including pancreatic ductal adenocarcinomas (PDACs), is a malignant tumor with characteristics of tumor-stroma interactions. Patients often have a poor prognosis and a poor long-term survival rate. In recent years, rapidly-developing single-cell sequencing techniques have been used to analyze cell populations at a single-cell resolution, so that it is now possible to have a more in-depth and clearer understanding of the genetic composition of pancreatic cancer. In this review, we provide an overview of the current single-cell sequencing techniques and their applications in the exploration of intratumoral heterogeneity, the tumor microenvironment, therapy resistance, and novel treatments. Our hope is to provide new insight into the potential of precision therapy, which will perhaps one day lead to significant advances in PDAC treatment.
Collapse
Affiliation(s)
- Zhuomiao Liu
- Department of Radiation Oncology, the Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Yalin Zhang
- Department of Radiation Oncology, the Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Chunli Wu
- Department of Radiation Oncology, the Fourth Affiliated Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
44
|
Liu H, Yeung WHO, Pang L, Liu J, Liu XB, Pan Ng KT, Zhang Q, Qiu WQ, Zhu Y, Ding T, Wang Z, Zhu JY, Lo CM, Man K. Arachidonic acid activates NLRP3 inflammasome in MDSCs via FATP2 to promote post-transplant tumour recurrence in steatotic liver grafts. JHEP Rep 2023; 5:100895. [PMID: 37916155 PMCID: PMC10616418 DOI: 10.1016/j.jhepr.2023.100895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 07/06/2023] [Accepted: 08/16/2023] [Indexed: 11/03/2023] Open
Abstract
Background & Aims The steatotic grafts have been applied in liver transplantation frequently owing to the high incidence of non-alcoholic fatty liver disease. However, fatty livers are vulnerable to graft injury. Myeloid-derived suppressor cell (MDSC) recruitment during liver graft injury promotes tumour recurrence. Lipid metabolism exerts the immunological influence on MDSCs in tumour progression. Here, we aimed to explore the role and mechanism of inflammasome activation in MDSCs induced by lipid metabolism during fatty liver graft injury and the subsequent effects on tumour recurrence. Methods MDSC populations and nucleotide-binding oligomerisation domain-like receptor family pyrin domain containing 3 (NLRP3) inflammasome levels were investigated in a clinical cohort and a rat liver transplantation model. The mechanism of NLRP3 activation by specific fatty acids was explored in mouse hepatic ischaemia/reperfusion injury (IRI) with tumour recurrence model and in vitro studies. Results MDSC populations and NLRP3 levels were increased with higher tumour recurrent rate in patients using steatotic grafts. NLRP3 was upregulated in MDSCs with lipid accumulation post mouse fatty liver IRI. Mechanistically, arachidonic acid was discovered to activate NLRP3 inflammasome in MDSCs through fatty acid transport protein 2 (FATP2), which was identified by screening lipid uptake receptors. The mitochondrial dysfunction with enhanced reactive oxygen species bridged arachidonic acid uptake and NLRP3 activation in MDSCs, which subsequently stimulated CD4+ T cells producing more IL-17 in fatty liver IRI. Blockade of FATP2 inhibited NLRP3 activation in MDSCs, IL-17 production in CD4+ T cells, and the tumour recurrence post fatty liver IRI. Conclusions During fatty liver graft injury, arachidonic acid activated NLRP3 inflammasome in MDSCs through FATP2, which subsequently stimulated CD4+ T cells producing IL-17 to promote tumour recurrence post transplantation. Impact and implications The high incidence of non-alcoholic fatty liver disease resulted in the frequent application of steatotic donors in liver transplantation. Our data showed that the patients who underwent liver transplantation using fatty grafts experienced higher tumour recurrence. We found that arachidonic acid activated NLRP3 inflammasome in MDSCs through FATP2 during fatty liver graft injury, which led to more IL-17 secretion of CD4+ T cells and promoted tumour recurrence post transplantation. The inflammasome activation by aberrant fatty acid metabolism in MDSCs bridged the acute-phase fatty liver graft injury and liver tumour recurrence.
Collapse
Affiliation(s)
- Hui Liu
- Department of Surgery, School of Clinical Medicine, HKU-SZH and LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wai Ho Oscar Yeung
- Department of Surgery, School of Clinical Medicine, HKU-SZH and LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Li Pang
- Department of Surgery, School of Clinical Medicine, HKU-SZH and LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Jiang Liu
- Department of Surgery, School of Clinical Medicine, HKU-SZH and LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Xiao Bing Liu
- Department of Surgery, School of Clinical Medicine, HKU-SZH and LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Kevin Tak Pan Ng
- Department of Surgery, School of Clinical Medicine, HKU-SZH and LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Qingmei Zhang
- Department of Surgery, School of Clinical Medicine, HKU-SZH and LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Wen Qi Qiu
- Department of Surgery, School of Clinical Medicine, HKU-SZH and LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yueqin Zhu
- Department of Surgery, School of Clinical Medicine, HKU-SZH and LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Tao Ding
- Department of Surgery, School of Clinical Medicine, HKU-SZH and LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Zhe Wang
- Department of Surgery, School of Clinical Medicine, HKU-SZH and LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Ji Ye Zhu
- Department of Surgery, School of Clinical Medicine, HKU-SZH and LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Chung Mau Lo
- Department of Surgery, School of Clinical Medicine, HKU-SZH and LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Kwan Man
- Department of Surgery, School of Clinical Medicine, HKU-SZH and LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
45
|
Davis MA, Cho E, Teplensky MH. Harnessing biomaterial architecture to drive anticancer innate immunity. J Mater Chem B 2023; 11:10982-11005. [PMID: 37955201 DOI: 10.1039/d3tb01677c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Immunomodulation is a powerful therapeutic approach that harnesses the body's own immune system and reprograms it to treat diseases, such as cancer. Innate immunity is key in mobilizing the rest of the immune system to respond to disease and is thus an attractive target for immunomodulation. Biomaterials have widely been employed as vehicles to deliver immunomodulatory therapeutic cargo to immune cells and raise robust antitumor immunity. However, it is key to consider the design of biomaterial chemical and physical structure, as it has direct impacts on innate immune activation and antigen presentation to stimulate downstream adaptive immunity. Herein, we highlight the widespread importance of structure-driven biomaterial design for the delivery of immunomodulatory cargo to innate immune cells. The incorporation of precise structural elements can be harnessed to improve delivery kinetics, uptake, and the targeting of biomaterials into innate immune cells, and enhance immune activation against cancer through temporal and spatial processing of cargo to overcome the immunosuppressive tumor microenvironment. Structural design of immunomodulatory biomaterials will profoundly improve the efficacy of current cancer immunotherapies by maximizing the impact of the innate immune system and thus has far-reaching translational potential against other diseases.
Collapse
Affiliation(s)
- Meredith A Davis
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, 02215, USA.
| | - Ezra Cho
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, 02215, USA.
| | - Michelle H Teplensky
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, 02215, USA.
- Department of Materials Science and Engineering, Boston University, Boston, Massachusetts, 02215, USA
| |
Collapse
|
46
|
Jiménez-Cortegana C, Salamanca E, Palazón-Carrión N, Sánchez-Jiménez F, Pérez-Pérez A, Vilariño-García T, Fuentes S, Martín S, Jiménez M, Galván R, Rodríguez-Chacón C, Sánchez-Mora C, Moreno-Mellado E, Gutiérrez-Gutiérrez B, Álvarez N, Sosa A, Garnacho-Montero J, de la Cruz-Merino L, Rodríguez-Baño J, Sánchez-Margalet V. Circulating myeloid-derived suppressor cells may be a useful biomarker in the follow-up of unvaccinated COVID-19 patients after hospitalization. Front Immunol 2023; 14:1266659. [PMID: 38035104 PMCID: PMC10685891 DOI: 10.3389/fimmu.2023.1266659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023] Open
Abstract
SARS-CoV-2 infection is the cause of the disease named COVID-19, a major public health challenge worldwide. Differences in the severity, complications and outcomes of the COVID-19 are intriguing and, patients with similar baseline clinical conditions may have very different evolution. Myeloid-derived suppressor cells (MDSCs) have been previously found to be recruited by the SARS-CoV-2 infection and may be a marker of clinical evolution in these patients. We have studied 90 consecutive patients admitted in the hospital before the vaccination program started in the general population, to measure MDSCs and lymphocyte subpopulations at admission and one week after to assess the possible association with unfavorable outcomes (dead or Intensive Care Unit admission). We analyzed MDSCs and lymphocyte subpopulations by flow cytometry. In the 72 patients discharged from the hospital, there were significant decreases in the monocytic and total MDSC populations measured in peripheral blood after one week but, most importantly, the number of MDSCs (total and both monocytic and granulocytic subsets) were much higher in the 18 patients with unfavorable outcome. In conclusion, the number of circulating MDSCs may be a good marker of evolution in the follow-up of unvaccinated patients admitted in the hospital with the diagnosis of COVID-19.
Collapse
Affiliation(s)
- Carlos Jiménez-Cortegana
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Virgen Macarena University Hospital, University of Seville, Seville, Spain
- Department of Laboratory Medicine, Virgen Macarena University Hospital, Seville, Spain
| | - Elena Salamanca
- Infectious Diseases and, Microbiology and Preventive Medicine Unit, Virgen Macarena University Hospital/Departments of Medicine and Microbiology, University of Seville/Biomedicine Institute of Seville (IBiS), Seville, Spain
- CIBERINFEC, Instituto de Salud Carlos III, Madrid, Spain
| | - Natalia Palazón-Carrión
- Clinical Oncology Service, Virgen Macarena University Hospital, University of Seville, Seville, Spain
| | - Flora Sánchez-Jiménez
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Virgen Macarena University Hospital, University of Seville, Seville, Spain
- Department of Laboratory Medicine, Virgen Macarena University Hospital, Seville, Spain
| | - Antonio Pérez-Pérez
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Virgen Macarena University Hospital, University of Seville, Seville, Spain
- Department of Laboratory Medicine, Virgen Macarena University Hospital, Seville, Spain
| | - Teresa Vilariño-García
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Virgen Macarena University Hospital, University of Seville, Seville, Spain
| | - Sandra Fuentes
- Department of Laboratory Medicine, Virgen Macarena University Hospital, Seville, Spain
| | - Salomón Martín
- Department of Laboratory Medicine, Virgen Macarena University Hospital, Seville, Spain
| | - Marta Jiménez
- Department of Laboratory Medicine, Virgen Macarena University Hospital, Seville, Spain
| | - Raquel Galván
- Department of Laboratory Medicine, Virgen Macarena University Hospital, Seville, Spain
| | | | - Catalina Sánchez-Mora
- Department of Laboratory Medicine, Virgen Macarena University Hospital, Seville, Spain
| | - Elisa Moreno-Mellado
- Infectious Diseases and, Microbiology and Preventive Medicine Unit, Virgen Macarena University Hospital/Departments of Medicine and Microbiology, University of Seville/Biomedicine Institute of Seville (IBiS), Seville, Spain
- CIBERINFEC, Instituto de Salud Carlos III, Madrid, Spain
| | - Belén Gutiérrez-Gutiérrez
- Infectious Diseases and, Microbiology and Preventive Medicine Unit, Virgen Macarena University Hospital/Departments of Medicine and Microbiology, University of Seville/Biomedicine Institute of Seville (IBiS), Seville, Spain
- CIBERINFEC, Instituto de Salud Carlos III, Madrid, Spain
| | - Nerissa Álvarez
- Intensive Care Unit, Virgen Macarena University Hospital, Seville, Spain
| | - Alberto Sosa
- Intensive Care Unit, Virgen Macarena University Hospital, Seville, Spain
| | | | - Luis de la Cruz-Merino
- Clinical Oncology Service, Virgen Macarena University Hospital, University of Seville, Seville, Spain
| | - Jesús Rodríguez-Baño
- Infectious Diseases and, Microbiology and Preventive Medicine Unit, Virgen Macarena University Hospital/Departments of Medicine and Microbiology, University of Seville/Biomedicine Institute of Seville (IBiS), Seville, Spain
- CIBERINFEC, Instituto de Salud Carlos III, Madrid, Spain
| | - Víctor Sánchez-Margalet
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Virgen Macarena University Hospital, University of Seville, Seville, Spain
- Department of Laboratory Medicine, Virgen Macarena University Hospital, Seville, Spain
| |
Collapse
|
47
|
Sartorius D, Blume ML, Fleischer JR, Ghadimi M, Conradi LC, De Oliveira T. Implications of Rectal Cancer Radiotherapy on the Immune Microenvironment: Allies and Foes to Therapy Resistance and Patients' Outcome. Cancers (Basel) 2023; 15:5124. [PMID: 37958298 PMCID: PMC10650490 DOI: 10.3390/cancers15215124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/16/2023] [Accepted: 10/19/2023] [Indexed: 11/15/2023] Open
Abstract
Aside from surgical resection, locally advanced rectal cancer is regularly treated with neoadjuvant chemoradiotherapy. Since the concept of cancer treatment has shifted from only focusing on tumor cells as drivers of disease progression towards a broader understanding including the dynamic tumor microenvironment (TME), the impact of radiotherapy on the TME and specifically the tumor immune microenvironment (TIME) is increasingly recognized. Both promoting as well as suppressing effects on anti-tumor immunity have been reported in response to rectal cancer (chemo-)radiotherapy and various targets for combination therapies are under investigation. A literature review was conducted searching the PubMed database for evidence regarding the pleiotropic effects of (chemo-)radiotherapy on the rectal cancer TIME, including alterations in cytokine levels, immune cell populations and activity as well as changes in immune checkpoint proteins. Radiotherapy can induce immune-stimulating and -suppressive alterations, potentially mediating radioresistance. The response is influenced by treatment modalities, including the dosage administered and the highly individual intrinsic pre-treatment immune status. Directly addressing the main immune cells of the TME, this review aims to highlight therapeutical implications since efficient rectal cancer treatment relies on personalized strategies combining conventional therapies with immune-modulating approaches, such as immune checkpoint inhibitors.
Collapse
Affiliation(s)
| | | | | | | | - Lena-Christin Conradi
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Robert-Koch-Straβe 40, 37075 Göttingen, Germany; (D.S.); (M.L.B.); (J.R.F.); (M.G.)
| | - Tiago De Oliveira
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Robert-Koch-Straβe 40, 37075 Göttingen, Germany; (D.S.); (M.L.B.); (J.R.F.); (M.G.)
| |
Collapse
|
48
|
Sun Q, Dai H, Wang S, Chen Y, Shi H. Progress in research on the role played by myeloid-derived suppressor cells in liver diseases. Scand J Immunol 2023; 98:e13312. [PMID: 38441348 DOI: 10.1111/sji.13312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 06/23/2023] [Accepted: 07/02/2023] [Indexed: 03/07/2024]
Abstract
Myeloid-derived suppressor cells (MDSCs) refer to a group of immature myeloid cells with potent immunosuppressive capacity upon activation by pathological conditions. Because of their potent immunosuppressive ability, MDSCs have garnered extensive attention in the past few years in the fields of oncology, infection, chronic inflammation and autoimmune diseases. Research on MDSCs in liver diseases has gradually increased, and their potential therapeutic roles will be further explored. This review presents a summary of the involvement and the role played by MDSCs in liver diseases, thus identifying their potential targets for the treatment of liver diseases and providing new directions for liver disease-related research.
Collapse
Affiliation(s)
- Qianqian Sun
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Heng Dai
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Siliang Wang
- Department of Pharmacy, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Yuanyuan Chen
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, China
| | - Huilian Shi
- Department of Infectious Diseases, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
49
|
Yan W, Li Y, Zou Y, Zhu R, Wu T, Sun X, Yuan W, Lang T, Yin Q, Li Y. Breaking Tumor Immunosuppressive Network by Regulating Multiple Nodes with Triadic Drug Delivery Nanoparticles. ACS NANO 2023; 17:17826-17844. [PMID: 37690028 DOI: 10.1021/acsnano.3c03387] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Inside the tumor microenvironment, a complicated immunosuppressive network is constituted by tumor cells and suppressive immune cells as its nodes, including myeloid-derived suppressor cells (MDSCs), tumor-associated macrophages (TAMs), and regulatory T cells, which have mutual promotion on each other and superimposed inhibition on natural killer (NK) cells and cytotoxic T cells. Breaking the whole balance of this web is critical to tumor immunotherapy since modulation on a single node may be diluted by other factors in the network. To achieve multifaceted regulation on antitumor immunity against triple-negative breast cancer, in this work, a micelle, termed BEM, co-delivering the MDSC inhibitor, entinostat (ENT), and the immune checkpoint inhibitor, BMS-1, was constructed with pH-sensitive amphiphilic poly(β-amino ester) derivatives. Then, BEM and the scavenger receptor A (SR-A) ligand dextran sulfate (DXS) formed a negatively charged nanoparticle (BEN). DXS detached from BEN in the weakly acidic tumor microenvironment and blocked SR-A on TAMs, reprogramming TAMs toward the M1 type. The positively charged BEM with facilitated intratumoral penetration and cellular uptake dissociated in the lysosomes, accompanied by the release of ENT and BMS-1 to suppress MDSCs and block the programmed cell death protein (PD)-1/PD-ligand 1 pathway, respectively. As a result, NK cells and CD8+ T cells in tumors were increased, as were their effector cytokines. The activated innate and adaptive antitumor immune responses suppressed the growth and metastasis of tumors and prolonged survival of 4T1 tumor-bearing mice. BEN provides a reliable approach for improving cancer immunotherapy by destroying the immunosuppression web in tumors via multinode regulation.
Collapse
Affiliation(s)
- Wenlu Yan
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Yantai 264000, China
| | - Yu Li
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yiting Zou
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Runqi Zhu
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ting Wu
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing 211116, China
| | - Xujie Sun
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenhui Yuan
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tianqun Lang
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Qi Yin
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Yantai 264000, China
| | - Yaping Li
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Yantai 264000, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai rim Advanced Research Institute for Drug Discovery, Yantai 264117, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
50
|
Nie Y, Xu L, Bai Z, Liu Y, Wang S, Zeng Q, Gao X, Xia X, Chang D. Prognostic utility of TME-associated genes in pancreatic cancer. Front Genet 2023; 14:1218774. [PMID: 37727377 PMCID: PMC10505756 DOI: 10.3389/fgene.2023.1218774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 08/15/2023] [Indexed: 09/21/2023] Open
Abstract
Background: Pancreatic cancer (PC) is a deadly disease. The tumor microenvironment (TME) participates in PC oncogenesis. This study focuses on the assessment of the prognostic and treatment utility of TME-associated genes in PC. Methods: After obtaining the differentially expressed TME-related genes, univariate and multivariate Cox analyses and least absolute shrinkage and selection operator (LASSO) were performed to identify genes related to prognosis, and a risk model was established to evaluate risk scores, based on The Cancer Genome Atlas (TCGA) data set, and it was validated by external data sets from the Gene Expression Omnibus (GEO) and Clinical Proteomic Tumor Analysis Consortium (CPTAC). Multiomics analyses were adopted to explore the potential mechanisms, discover novel treatment targets, and assess the sensitivities of immunotherapy and chemotherapy. Results: Five TME-associated genes, namely, FERMT1, CARD9, IL20RB, MET, and MMP3, were identified and a risk score formula constructed. Next, their mRNA expressions were verified in cancer and normal pancreatic cells. Multiple algorithms confirmed that the risk model displayed a reliable ability of prognosis prediction and was an independent prognostic factor, indicating that high-risk patients had poor outcomes. Immunocyte infiltration, gene set enrichment analysis (GSEA), and single-cell analysis all showed a strong relationship between immune mechanism and low-risk samples. The risk score could predict the sensitivity of immunotherapy and some chemotherapy regimens, which included oxaliplatin and irinotecan. Various latent treatment targets (LAG3, TIGIT, and ARID1A) were addressed by mutation landscape based on the risk model. Conclusion: The risk model based on TME-related genes can reflect the prognosis of PC patients and functions as a novel set of biomarkers for PC therapy.
Collapse
Affiliation(s)
- Yuanhua Nie
- Department of Surgical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Longwen Xu
- Department of Surgical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Zilong Bai
- Department of Surgical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Yaoyao Liu
- Geneplus-Beijing, Co., Ltd., Beijing, China
| | - Shilong Wang
- Department of Surgical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Qingnuo Zeng
- Department of Surgical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Xuan Gao
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- GenePlus- Shenzhen Clinical Laboratory, Shenzhen, China
| | | | - Dongmin Chang
- Department of Surgical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| |
Collapse
|