1
|
Li M, Zhou X, Li Y, Zhu X, Li Y, Hitosugi T, Zeng H. CPT2-mediated Fatty Acid Oxidation Is Dispensable for Humoral Immunity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:1139-1149. [PMID: 39258879 PMCID: PMC11458349 DOI: 10.4049/jimmunol.2400285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/16/2024] [Indexed: 09/12/2024]
Abstract
B cell activation is accompanied by dynamic metabolic reprogramming, supported by a multitude of nutrients that include glucose, amino acids, and fatty acids. Although several studies have indicated that fatty acid mitochondrial oxidation is critical for immune cell functions, contradictory findings have been reported. Carnitine palmitoyltransferase II (CPT2) is a critical enzyme for long-chain fatty acid oxidation in mitochondria. In this study, we test the requirement of CPT2 for humoral immunity using a mouse model with a lymphocyte-specific deletion of CPT2. Stable [13C] isotope tracing reveals highly reduced fatty acid-derived citrate production in CPT2-deficient B cells. Yet, CPT2 deficiency has no significant impact on B cell development, B cell activation, germinal center formation, and Ab production upon either thymus-dependent or -independent Ag challenges. Together, our findings indicate that CPT2-mediated fatty acid oxidation is dispensable for humoral immunity, highlighting the metabolic flexibility of lymphocytes.
Collapse
Affiliation(s)
- Meilu Li
- Division of Rheumatology, Department of Medicine, Mayo Clinic Rochester, MN 55905, USA
- Department of Dermatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, P. R. China
| | - Xian Zhou
- Division of Rheumatology, Department of Medicine, Mayo Clinic Rochester, MN 55905, USA
| | - Yanfeng Li
- Division of Rheumatology, Department of Medicine, Mayo Clinic Rochester, MN 55905, USA
| | - Xingxing Zhu
- Division of Rheumatology, Department of Medicine, Mayo Clinic Rochester, MN 55905, USA
| | - Yuzhen Li
- Department of Dermatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, P. R. China
| | - Taro Hitosugi
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Hu Zeng
- Division of Rheumatology, Department of Medicine, Mayo Clinic Rochester, MN 55905, USA
- Department of Immunology, Mayo Clinic Rochester, MN 55905, USA
| |
Collapse
|
2
|
Yi Y, Zhang H, An Y, Chen Z. A Live Attenuated H1N1 Influenza Vaccine Based on the Mutated M Gene. Vaccines (Basel) 2024; 12:725. [PMID: 39066364 PMCID: PMC11281364 DOI: 10.3390/vaccines12070725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/23/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
The influenza vaccines currently approved for clinical use mainly include inactivated influenza virus vaccines and live attenuated influenza vaccines (LAIVs). LAIVs have multiple advantages, such as ease of use and strong immunogenicity, and can provide cross-protection. In this study, the M gene of the PR8 virus was mutated as follows (G11T, C79G, G82C, C85G, and C1016A), and a live attenuated influenza virus containing the mutated M gene was rescued and obtained using reverse genetic technology as a vaccine candidate. The replication ability of the rescued virus was significantly weakened in both MDCK cells and mice with attenuated virulence. Studies on immunogenicity found that 1000 TCID50 of mutated PR8 (mPR8) can prime strong humoral and cellular immune responses. Single-dose immunization of 1000 TCID50 mPR8 was not only able to counter the challenge of the homologous PR8 virus but also provided cross-protection against the heterologous H9N2 virus.
Collapse
Affiliation(s)
- Yinglei Yi
- Shanghai Institute of Biological Products, Shanghai 200052, China;
| | - Hongbo Zhang
- Department of Basic Research, Ab & B Bio-Tech Co., Ltd. JS, Taizhou 225300, China;
| | - Youcai An
- Department of Basic Research, Ab & B Bio-Tech Co., Ltd. JS, Taizhou 225300, China;
| | - Ze Chen
- Department of Basic Research, Ab & B Bio-Tech Co., Ltd. JS, Taizhou 225300, China;
| |
Collapse
|
3
|
Li M, Zhou X, Zhu X, Li Y, Hitosugi T, Li Y, Zeng H. CPT2 mediated fatty acid oxidation is dispensable for humoral immunity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.15.594133. [PMID: 38798358 PMCID: PMC11118297 DOI: 10.1101/2024.05.15.594133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
B cell activation is accompanied by dynamic metabolic reprogramming, supported by a multitude of nutrients that include glucose, amino acids and fatty acids. While several studies have indicated that fatty acid mitochondrial oxidation is critical for immune cell functions, contradictory findings have been reported. Carnitine palmitoyltransferase II (CPT2) is a critical enzyme for long-chain fatty acid oxidation in mitochondria. Here, we test the requirement of CPT2 for humoral immunity using a mouse model with a lymphocyte specific deletion of CPT2. Stable 13C isotope tracing reveals highly reduced fatty acid-derived citrate production in CPT2 deficient B cells. Yet, CPT2 deficiency has no significant impact on B cell development, B cell activation, germinal center formation, and antibody production upon either thymus-dependent or -independent antigen challenges. Together, our findings indicate that CPT2 mediated fatty acid oxidation is dispensable for humoral immunity, highlighting the metabolic flexibility of lymphocytes.
Collapse
Affiliation(s)
- Meilu Li
- Division of Rheumatology, Department of Medicine, Mayo Clinic Rochester, MN 55905, USA
- Department of Dermatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, P. R. China
| | - Xian Zhou
- Division of Rheumatology, Department of Medicine, Mayo Clinic Rochester, MN 55905, USA
| | - Xingxing Zhu
- Division of Rheumatology, Department of Medicine, Mayo Clinic Rochester, MN 55905, USA
| | - Yanfeng Li
- Division of Rheumatology, Department of Medicine, Mayo Clinic Rochester, MN 55905, USA
| | - Taro Hitosugi
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Yuzhen Li
- Department of Dermatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, P. R. China
| | - Hu Zeng
- Division of Rheumatology, Department of Medicine, Mayo Clinic Rochester, MN 55905, USA
- Department of Immunology, Mayo Clinic Rochester, MN 55905, USA
| |
Collapse
|
4
|
Trujillo E, Monreal-Escalante E, Angulo C. Microalgae-made human vaccines and therapeutics: A decade of advances. Biotechnol J 2024; 19:e2400091. [PMID: 38719615 DOI: 10.1002/biot.202400091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/05/2024] [Accepted: 04/22/2024] [Indexed: 06/05/2024]
Abstract
Microalgal emergence is a promising platform with two-decade historical background for producing vaccines and biopharmaceuticals. During that period, microalgal-based vaccines have reported successful production for various diseases. Thus, species selection is important for genetic transformation and delivery methods that have been developed. Although many vaccine prototypes have been produced for infectious and non-infectious diseases, fewer studies have reached immunological and immunoprotective evaluations. Microalgae-made vaccines for Staphylococcus aureus, malaria, influenza, human papilloma, and Zika viruses have been explored in their capacity to induce humoral or cellular immune responses and protective efficacies against experimental challenges. Therefore, specific pathogen antigens and immune system role are important and addressed in controlling these infections. Regarding non-communicable diseases, these vaccines have been investigated for breast cancer; microalgal-produced therapeutic molecules and microalgal-made interferon-α have been explored for hypertension and potential applications in treating viral infections and cancer, respectively. Thus, conducting immunological trials is emphasized, discussing the promising results observed in terms of immunogenicity, desired immune response for controlling affections, and challenges for achieving the desired protection levels. The potential advantages and hurdles associated with this innovative approach are highlighted, underlining the relevance of assessing immune responses in preclinical and clinical trials to validate the efficacy of these biopharmaceuticals. The promising future of this healthcare technology is also envisaged.
Collapse
Affiliation(s)
- Edgar Trujillo
- Immunology & Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste, S.C. (CIBNOR), Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, B.C.S., México
| | - Elizabeth Monreal-Escalante
- Immunology & Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste, S.C. (CIBNOR), Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, B.C.S., México
- CONAHCYT-Centro de Investigaciones Biológicas del Noroeste, S.C. (CIBNOR), Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, B.C.S., México
| | - Carlos Angulo
- Immunology & Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste, S.C. (CIBNOR), Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, B.C.S., México
| |
Collapse
|
5
|
Rijnink WF, Stadlbauer D, Puente-Massaguer E, Okba NMA, Kirkpatrick Roubidoux E, Strohmeier S, Mudd PA, Schmitz A, Ellebedy A, McMahon M, Krammer F. Characterization of non-neutralizing human monoclonal antibodies that target the M1 and NP of influenza A viruses. J Virol 2023; 97:e0164622. [PMID: 37916834 PMCID: PMC10688359 DOI: 10.1128/jvi.01646-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 10/08/2023] [Indexed: 11/03/2023] Open
Abstract
IMPORTANCE Currently, many groups are focusing on isolating both neutralizing and non-neutralizing antibodies to the mutation-prone hemagglutinin as a tool to treat or prevent influenza virus infection. Less is known about the level of protection induced by non-neutralizing antibodies that target conserved internal influenza virus proteins. Such non-neutralizing antibodies could provide an alternative pathway to induce broad cross-reactive protection against multiple influenza virus serotypes and subtypes by partially overcoming influenza virus escape mediated by antigenic drift and shift. Accordingly, more information about the level of protection and potential mechanism(s) of action of non-neutralizing antibodies targeting internal influenza virus proteins could be useful for the design of broadly protective and universal influenza virus vaccines.
Collapse
Affiliation(s)
| | - Daniel Stadlbauer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Eduard Puente-Massaguer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Nisreen M. A. Okba
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Ericka Kirkpatrick Roubidoux
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Shirin Strohmeier
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Philip A. Mudd
- Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Aaron Schmitz
- Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Ali Ellebedy
- Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Meagan McMahon
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Pathology, Molecular and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
6
|
Painter MM, Johnston TS, Lundgreen KA, Santos JJS, Qin JS, Goel RR, Apostolidis SA, Mathew D, Fulmer B, Williams JC, McKeague ML, Pattekar A, Goode A, Nasta S, Baxter AE, Giles JR, Skelly AN, Felley LE, McLaughlin M, Weaver J, Kuthuru O, Dougherty J, Adamski S, Long S, Kee M, Clendenin C, da Silva Antunes R, Grifoni A, Weiskopf D, Sette A, Huang AC, Rader DJ, Hensley SE, Bates P, Greenplate AR, Wherry EJ. Prior vaccination promotes early activation of memory T cells and enhances immune responses during SARS-CoV-2 breakthrough infection. Nat Immunol 2023; 24:1711-1724. [PMID: 37735592 DOI: 10.1038/s41590-023-01613-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 08/07/2023] [Indexed: 09/23/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection of vaccinated individuals is increasingly common but rarely results in severe disease, likely due to the enhanced potency and accelerated kinetics of memory immune responses. However, there have been few opportunities to rigorously study early recall responses during human viral infection. To better understand human immune memory and identify potential mediators of lasting vaccine efficacy, we used high-dimensional flow cytometry and SARS-CoV-2 antigen probes to examine immune responses in longitudinal samples from vaccinated individuals infected during the Omicron wave. These studies revealed heightened spike-specific responses during infection of vaccinated compared to unvaccinated individuals. Spike-specific cluster of differentiation (CD)4 T cells and plasmablasts expanded and CD8 T cells were robustly activated during the first week. In contrast, memory B cell activation, neutralizing antibody production and primary responses to nonspike antigens occurred during the second week. Collectively, these data demonstrate the functionality of vaccine-primed immune memory and highlight memory T cells as rapid responders during SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Mark M Painter
- Institute for Immunology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
- Immune Health, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Timothy S Johnston
- Institute for Immunology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Immunology Graduate Group, University of Pennsylvania, Philadelphia, PA, USA
| | - Kendall A Lundgreen
- Department of Microbiology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Jefferson J S Santos
- Department of Microbiology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Juliana S Qin
- Immune Health, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Rishi R Goel
- Institute for Immunology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
- Immune Health, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Sokratis A Apostolidis
- Institute for Immunology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
- Immune Health, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
- Division of Rheumatology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Divij Mathew
- Institute for Immunology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Bria Fulmer
- Institute for Immunology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Justine C Williams
- Immune Health, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Michelle L McKeague
- Immune Health, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Ajinkya Pattekar
- Immune Health, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Ahmad Goode
- Immune Health, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Sean Nasta
- Immune Health, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Amy E Baxter
- Institute for Immunology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Josephine R Giles
- Institute for Immunology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
- Parker Institute for Cancer Immunotherapy, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Ashwin N Skelly
- Institute for Immunology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Laura E Felley
- Division of Infectious Disease, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Maura McLaughlin
- Institute for Immunology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Joellen Weaver
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Oliva Kuthuru
- Institute for Immunology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Jeanette Dougherty
- Immune Health, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Sharon Adamski
- Immune Health, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Sherea Long
- Immune Health, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Macy Kee
- Immune Health, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Cynthia Clendenin
- Immune Health, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Ricardo da Silva Antunes
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA, USA
| | - Alba Grifoni
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA, USA
| | - Daniela Weiskopf
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA, USA
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA, USA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA, USA
| | - Alexander C Huang
- Institute for Immunology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
- Parker Institute for Cancer Immunotherapy, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
- Division of Hematology/Oncology, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Daniel J Rader
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
- Penn Medicine Biobank, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Scott E Hensley
- Department of Microbiology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Paul Bates
- Department of Microbiology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Allison R Greenplate
- Institute for Immunology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
- Immune Health, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - E John Wherry
- Institute for Immunology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA.
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA.
- Immune Health, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA.
- Parker Institute for Cancer Immunotherapy, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
7
|
Longet S, Paul S. Pivotal role of tissue-resident memory lymphocytes in the control of mucosal infections: can mucosal vaccination induce protective tissue-resident memory T and B cells? Front Immunol 2023; 14:1216402. [PMID: 37753095 PMCID: PMC10518612 DOI: 10.3389/fimmu.2023.1216402] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 08/28/2023] [Indexed: 09/28/2023] Open
Affiliation(s)
- Stephanie Longet
- Centre International de Recherche en Infectiologie, Team Groupe sur l'immunité des muqueuses et agents pathogènes (GIMAP), Université Jean Monnet, Université Claude Bernard Lyon, Inserm, Saint-Etienne, France
| | - Stephane Paul
- Centre International de Recherche en Infectiologie, Team Groupe sur l'immunité des muqueuses et agents pathogènes (GIMAP), Université Jean Monnet, Université Claude Bernard Lyon, Inserm, Saint-Etienne, France
- Centre d'investigation clinique (CIC) 1408 Inserm Vaccinology, University Hospital of Saint-Etienne, Saint-Etienne, France
- Immunology Department, iBiothera Reference Center, University Hospital of Saint-Etienne, Saint-Etienne, France
| |
Collapse
|
8
|
Ng T, Malavet VF, Mansoor MA, Arvelo AC, Dhume K, Prokop E, McKinstry KK, Strutt TM. Intermediate Levels of Pre-Existing Protective Antibody Allow Priming of Protective T Cell Immunity against Influenza. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:628-639. [PMID: 36645384 PMCID: PMC9998374 DOI: 10.4049/jimmunol.2200393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 12/23/2022] [Indexed: 01/17/2023]
Abstract
Overcoming interfering impacts of pre-existing immunity to generate universally protective influenza A virus (IAV)-specific T cell immunity through vaccination is a high priority. In this study, we passively transfer varied amounts of H1N1-IAV-specific immune serum before H1N1-IAV infection to determine how different levels of pre-existing Ab influence the generation and protective potential of heterosubtypic T cell responses in a murine model. Surprisingly, IAV nucleoprotein-specific CD4 and CD8 T cell responses are readily detected in infected recipients of IAV-specific immune serum regardless of the amount transferred. When compared with responses in control groups and recipients of low and intermediate levels of convalescent serum, nucleoprotein-specific T cell responses in recipients of high levels of IAV-specific serum, which prevent overt weight loss and reduce peak viral titers in the lungs, are, however, markedly reduced. Although detectable at priming, this response recalls poorly and is unable to mediate protection against a lethal heterotypic (H3N2) virus challenge at later memory time points. A similar failure to generate protective heterosubtypic T cell immunity during IAV priming is seen in offspring of IAV-primed mothers that naturally receive high titers of IAV-specific Ab through maternal transfer. Our findings support that priming of protective heterosubtypic T cell responses can occur in the presence of intermediate levels of pre-existing Ab. These results have high relevance to vaccine approaches aiming to incorporate and evaluate cellular and humoral immunity towards IAV and other viral pathogens against which T cells can protect against variants escaping Ab-mediated protection.
Collapse
Affiliation(s)
- Terry Ng
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences College of Medicine, University of Central Florida, FL, USA
| | - Valeria Flores Malavet
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences College of Medicine, University of Central Florida, FL, USA
| | - Mishfak A.M. Mansoor
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences College of Medicine, University of Central Florida, FL, USA
| | - Andrea C. Arvelo
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences College of Medicine, University of Central Florida, FL, USA
| | - Kunal Dhume
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences College of Medicine, University of Central Florida, FL, USA
| | - Emily Prokop
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences College of Medicine, University of Central Florida, FL, USA
| | - K. Kai McKinstry
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences College of Medicine, University of Central Florida, FL, USA
| | - Tara M. Strutt
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences College of Medicine, University of Central Florida, FL, USA
| |
Collapse
|
9
|
Humphries DC, O’Connor RA, Stewart HL, Quinn TM, Gaughan EE, Mills B, Williams GO, Stone JM, Finlayson K, Chabaud-Riou M, Boudet F, Dhaliwal K, Pavot V. Specific in situ immuno-imaging of pulmonary-resident memory lymphocytes in human lungs. Front Immunol 2023; 14:1100161. [PMID: 36845117 PMCID: PMC9951616 DOI: 10.3389/fimmu.2023.1100161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/30/2023] [Indexed: 02/12/2023] Open
Abstract
Introduction Pulmonary-resident memory T cells (TRM) and B cells (BRM) orchestrate protective immunity to reinfection with respiratory pathogens. Developing methods for the in situ detection of these populations would benefit both research and clinical settings. Methods To address this need, we developed a novel in situ immunolabelling approach combined with clinic-ready fibre-based optical endomicroscopy (OEM) to detect canonical markers of lymphocyte tissue residency in situ in human lungs undergoing ex vivo lung ventilation (EVLV). Results Initially, cells from human lung digests (confirmed to contain TRM/BRM populations using flow cytometry) were stained with CD69 and CD103/CD20 fluorescent antibodies and imaged in vitro using KronoScan, demonstrating it's ability to detect antibody labelled cells. We next instilled these pre-labelled cells into human lungs undergoing EVLV and confirmed they could still be visualised using both fluorescence intensity and lifetime imaging against background lung architecture. Finally, we instilled fluorescent CD69 and CD103/CD20 antibodies directly into the lung and were able to detect TRM/BRM following in situ labelling within seconds of direct intra-alveolar delivery of microdoses of fluorescently labelled antibodies. Discussion In situ, no wash, immunolabelling with intra-alveolar OEM imaging is a novel methodology with the potential to expand the experimental utility of EVLV and pre-clinical models.
Collapse
Affiliation(s)
- Duncan C. Humphries
- Translational Healthcare Technologies Group, Centre for Inflammation Research, Queen’s Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom,Research & Development, Sanofi, Marcy L’Etoile, France
| | - Richard A. O’Connor
- Translational Healthcare Technologies Group, Centre for Inflammation Research, Queen’s Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Hazel L. Stewart
- Translational Healthcare Technologies Group, Centre for Inflammation Research, Queen’s Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Tom M. Quinn
- Translational Healthcare Technologies Group, Centre for Inflammation Research, Queen’s Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Erin E. Gaughan
- Translational Healthcare Technologies Group, Centre for Inflammation Research, Queen’s Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Beth Mills
- Translational Healthcare Technologies Group, Centre for Inflammation Research, Queen’s Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Gareth O.S. Williams
- Translational Healthcare Technologies Group, Centre for Inflammation Research, Queen’s Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - James M. Stone
- Translational Healthcare Technologies Group, Centre for Inflammation Research, Queen’s Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom,Centre for Photonic and Physics, Bath University, Bath, United Kingdom
| | - Keith Finlayson
- Translational Healthcare Technologies Group, Centre for Inflammation Research, Queen’s Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | | | | | - Kevin Dhaliwal
- Translational Healthcare Technologies Group, Centre for Inflammation Research, Queen’s Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom,*Correspondence: Kevin Dhaliwal, ; Vincent Pavot,
| | - Vincent Pavot
- Research & Development, Sanofi, Marcy L’Etoile, France,*Correspondence: Kevin Dhaliwal, ; Vincent Pavot,
| |
Collapse
|
10
|
Painter MM, Johnston TS, Lundgreen KA, Santos JJS, Qin JS, Goel RR, Apostolidis SA, Mathew D, Fulmer B, Williams JC, McKeague ML, Pattekar A, Goode A, Nasta S, Baxter AE, Giles JR, Skelly AN, Felley LE, McLaughlin M, Weaver J, Kuthuru O, Dougherty J, Adamski S, Long S, Kee M, Clendenin C, da Silva Antunes R, Grifoni A, Weiskopf D, Sette A, Huang AC, Rader DJ, Hensley SE, Bates P, Greenplate AR, Wherry EJ. Prior vaccination enhances immune responses during SARS-CoV-2 breakthrough infection with early activation of memory T cells followed by production of potent neutralizing antibodies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.05.527215. [PMID: 36798171 PMCID: PMC9934532 DOI: 10.1101/2023.02.05.527215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
SARS-CoV-2 infection of vaccinated individuals is increasingly common but rarely results in severe disease, likely due to the enhanced potency and accelerated kinetics of memory immune responses. However, there have been few opportunities to rigorously study early recall responses during human viral infection. To better understand human immune memory and identify potential mediators of lasting vaccine efficacy, we used high-dimensional flow cytometry and SARS-CoV-2 antigen probes to examine immune responses in longitudinal samples from vaccinated individuals infected during the Omicron wave. These studies revealed heightened Spike-specific responses during infection of vaccinated compared to unvaccinated individuals. Spike-specific CD4 T cells and plasmablasts expanded and CD8 T cells were robustly activated during the first week. In contrast, memory B cell activation, neutralizing antibody production, and primary responses to non-Spike antigens occurred during the second week. Collectively, these data demonstrate the functionality of vaccine-primed immune memory and highlight memory T cells as rapid responders during SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Mark M Painter
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine; Philadelphia, PA, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine; Philadelphia, PA, USA
- Immune Health, University of Pennsylvania Perelman School of Medicine; Philadelphia, PA, USA
| | - Timothy S Johnston
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine; Philadelphia, PA, USA
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA; Immunology Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kendall A Lundgreen
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine; Philadelphia, PA, USA
| | - Jefferson J S Santos
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine; Philadelphia, PA, USA
| | - Juliana S Qin
- Immune Health, University of Pennsylvania Perelman School of Medicine; Philadelphia, PA, USA
| | - Rishi R Goel
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine; Philadelphia, PA, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine; Philadelphia, PA, USA
- Immune Health, University of Pennsylvania Perelman School of Medicine; Philadelphia, PA, USA
| | - Sokratis A Apostolidis
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine; Philadelphia, PA, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine; Philadelphia, PA, USA
- Immune Health, University of Pennsylvania Perelman School of Medicine; Philadelphia, PA, USA
- Division of Rheumatology, University of Pennsylvania Perelman School of Medicine; Philadelphia, PA, USA
| | - Divij Mathew
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine; Philadelphia, PA, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine; Philadelphia, PA, USA
| | - Bria Fulmer
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine; Philadelphia, PA, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine; Philadelphia, PA, USA
| | - Justine C Williams
- Immune Health, University of Pennsylvania Perelman School of Medicine; Philadelphia, PA, USA
| | - Michelle L McKeague
- Immune Health, University of Pennsylvania Perelman School of Medicine; Philadelphia, PA, USA
| | - Ajinkya Pattekar
- Immune Health, University of Pennsylvania Perelman School of Medicine; Philadelphia, PA, USA
| | - Ahmad Goode
- Immune Health, University of Pennsylvania Perelman School of Medicine; Philadelphia, PA, USA
| | - Sean Nasta
- Immune Health, University of Pennsylvania Perelman School of Medicine; Philadelphia, PA, USA
| | - Amy E Baxter
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine; Philadelphia, PA, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine; Philadelphia, PA, USA
| | - Josephine R Giles
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine; Philadelphia, PA, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine; Philadelphia, PA, USA
- Parker Institute for Cancer Immunotherapy, University of Pennsylvania Perelman School of Medicine; Philadelphia, PA, USA
| | - Ashwin N Skelly
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine; Philadelphia, PA, USA
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Laura E Felley
- Division of Infectious Disease, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Maura McLaughlin
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine; Philadelphia, PA, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine; Philadelphia, PA, USA
| | - Joellen Weaver
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Oliva Kuthuru
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine; Philadelphia, PA, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine; Philadelphia, PA, USA
| | - Jeanette Dougherty
- Immune Health, University of Pennsylvania Perelman School of Medicine; Philadelphia, PA, USA
| | - Sharon Adamski
- Immune Health, University of Pennsylvania Perelman School of Medicine; Philadelphia, PA, USA
| | - Sherea Long
- Immune Health, University of Pennsylvania Perelman School of Medicine; Philadelphia, PA, USA
| | - Macy Kee
- Immune Health, University of Pennsylvania Perelman School of Medicine; Philadelphia, PA, USA
| | - Cynthia Clendenin
- Immune Health, University of Pennsylvania Perelman School of Medicine; Philadelphia, PA, USA
| | - Ricardo da Silva Antunes
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI); La Jolla, CA, USA
| | - Alba Grifoni
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI); La Jolla, CA, USA
| | - Daniela Weiskopf
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI); La Jolla, CA, USA
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI); La Jolla, CA, USA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA, USA
| | - Alexander C Huang
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine; Philadelphia, PA, USA
- Parker Institute for Cancer Immunotherapy, University of Pennsylvania Perelman School of Medicine; Philadelphia, PA, USA
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Daniel J Rader
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Scott E Hensley
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine; Philadelphia, PA, USA
| | - Paul Bates
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine; Philadelphia, PA, USA
| | - Allison R Greenplate
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine; Philadelphia, PA, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine; Philadelphia, PA, USA
- Immune Health, University of Pennsylvania Perelman School of Medicine; Philadelphia, PA, USA
| | - E John Wherry
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine; Philadelphia, PA, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine; Philadelphia, PA, USA
- Immune Health, University of Pennsylvania Perelman School of Medicine; Philadelphia, PA, USA
- Parker Institute for Cancer Immunotherapy, University of Pennsylvania Perelman School of Medicine; Philadelphia, PA, USA
| |
Collapse
|
11
|
Varghese PM, Kishore U, Rajkumari R. Innate and adaptive immune responses against Influenza A Virus: Immune evasion and vaccination strategies. Immunobiology 2022; 227:152279. [DOI: 10.1016/j.imbio.2022.152279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 08/31/2022] [Accepted: 09/07/2022] [Indexed: 11/25/2022]
|
12
|
Mettelman RC, Allen EK, Thomas PG. Mucosal immune responses to infection and vaccination in the respiratory tract. Immunity 2022; 55:749-780. [PMID: 35545027 PMCID: PMC9087965 DOI: 10.1016/j.immuni.2022.04.013] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/12/2022] [Accepted: 04/15/2022] [Indexed: 01/25/2023]
Abstract
The lungs are constantly exposed to inhaled debris, allergens, pollutants, commensal or pathogenic microorganisms, and respiratory viruses. As a result, innate and adaptive immune responses in the respiratory tract are tightly regulated and are in continual flux between states of enhanced pathogen clearance, immune-modulation, and tissue repair. New single-cell-sequencing techniques are expanding our knowledge of airway cellular complexity and the nuanced connections between structural and immune cell compartments. Understanding these varied interactions is critical in treatment of human pulmonary disease and infections and in next-generation vaccine design. Here, we review the innate and adaptive immune responses in the lung and airways following infection and vaccination, with particular focus on influenza virus and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The ongoing SARS-CoV-2 pandemic has put pulmonary research firmly into the global spotlight, challenging previously held notions of respiratory immunity and helping identify new populations at high risk for respiratory distress.
Collapse
Affiliation(s)
- Robert C Mettelman
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - E Kaitlynn Allen
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Paul G Thomas
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
13
|
Reed SG, Ager A. Immune Responses to IAV Infection and the Roles of L-Selectin and ADAM17 in Lymphocyte Homing. Pathogens 2022; 11:pathogens11020150. [PMID: 35215094 PMCID: PMC8878872 DOI: 10.3390/pathogens11020150] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/14/2022] [Accepted: 01/21/2022] [Indexed: 02/04/2023] Open
Abstract
Influenza A virus (IAV) infection is a global public health burden causing up to 650,000 deaths per year. Yearly vaccination programmes and anti-viral drugs currently have limited benefits; therefore, research into IAV is fundamental. Leukocyte trafficking is a crucial process which orchestrates the immune response to infection to protect the host. It involves several homing molecules and receptors on both blood vessels and leukocytes. A key mediator of this process is the transmembrane glycoprotein L-selectin, which binds to vascular addressins on blood vessel endothelial cells. L-selectin classically mediates homing of naïve and central memory lymphocytes to lymph nodes via high endothelial venules (HEVs). Recent studies have found that L-selectin is essential for homing of activated CD8+ T cells to influenza-infected lungs and reduction in virus load. A disintegrin and metalloproteinase 17 (ADAM17) is the primary regulator of cell surface levels of L-selectin. Understanding the mechanisms that regulate these two proteins are central to comprehending recruitment of T cells to sites of IAV infection. This review summarises the immune response to IAV infection in humans and mice and discusses the roles of L-selectin and ADAM17 in T lymphocyte homing during IAV infection.
Collapse
Affiliation(s)
| | - Ann Ager
- Correspondence: (S.G.R.); (A.A.)
| |
Collapse
|
14
|
Kozlovski S, Regev O, Sapoznikov A, Kizner M, Achdout H, Petrovich-Kopitman E, Elkahal J, Addadi Y, Silva Castanheira FVE, Feigelson SW, Kubes P, Erez N, Garbi N, Alon R. ICAMs are dispensable for influenza clearance and anti-viral humoral and cellular immunity. Front Immunol 2022; 13:1041552. [PMID: 36895258 PMCID: PMC9988921 DOI: 10.3389/fimmu.2022.1041552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 12/12/2022] [Indexed: 02/25/2023] Open
Abstract
αLβ2 (LFA-1) mediated interactions with ICAM-1 and ICAM-2 predominate leukocyte-vascular interactions, but their functions in extravascular cell-cell communications is still debated. The roles of these two ligands in leukocyte trafficking, lymphocyte differentiation, and immunity to influenza infections were dissected in the present study. Surprisingly, double ICAM-1 and ICAM-2 knock out mice (herein ICAM-1/2-/- mice) infected with a lab adapted H1N1 influenza A virus fully recovered from infection, elicited potent humoral immunity, and generated normal long lasting anti-viral CD8+ T cell memory. Furthermore, lung capillary ICAMs were dispensable for both NK and neutrophil entry to virus infected lungs. Mediastinal lymph nodes (MedLNs) of ICAM-1/2-/- mice poorly recruited naïve T cells and B lymphocytes but elicited normal humoral immunity critical for viral clearance and effective CD8+ differentiation into IFN-γ producing T cells. Furthermore, whereas reduced numbers of virus specific effector CD8+ T cells accumulated inside infected ICAM-1/2-/- lungs, normal virus-specific TRM CD8+ cells were generated inside these lungs and fully protected ICAM-1/2-/- mice from secondary heterosubtypic infections. B lymphocyte entry to the MedLNs and differentiation into extrafollicular plasmablasts, producing high affinity anti-influenza IgG2a antibodies, were also ICAM-1 and ICAM-2 independent. A potent antiviral humoral response was associated with accumulation of hyper-stimulated cDC2s in ICAM null MedLNs and higher numbers of virus-specific T follicular helper (Tfh) cells generated following lung infection. Mice selectively depleted of cDC ICAM-1 expression supported, however, normal CTL and Tfh differentiation following influenza infection, ruling out essential co-stimulatory functions of DC ICAM-1 in CD8+ and CD4+ T cell differentiation. Collectively our findings suggest that lung ICAMs are dispensable for innate leukocyte trafficking to influenza infected lungs, for the generation of peri-epithelial TRM CD8+ cells, and long term anti-viral cellular immunity. In lung draining LNs, although ICAMs promote lymphocyte homing, these key integrin ligands are not required for influenza-specific humoral immunity or generation of IFN-γ effector CD8+ T cells. In conclusion, our findings suggest unexpected compensatory mechanisms that orchestrate protective anti-influenza immunity in the absence of vascular and extravascular ICAMs.
Collapse
Affiliation(s)
- Stav Kozlovski
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Ofer Regev
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Anita Sapoznikov
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Marina Kizner
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Hagit Achdout
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | | | - Jacob Elkahal
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Yoseph Addadi
- Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | | | - Sara W Feigelson
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Paul Kubes
- Department of Pharmacology and Physiology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Noam Erez
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Natalio Garbi
- Department of Cellular Immunology, Institute of Experimental Immunology Medical Faculty, University of Bonn, Bonn, Germany
| | - Ronen Alon
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
15
|
Humphries DC, O’Connor RA, Larocque D, Chabaud-Riou M, Dhaliwal K, Pavot V. Pulmonary-Resident Memory Lymphocytes: Pivotal Orchestrators of Local Immunity Against Respiratory Infections. Front Immunol 2021; 12:738955. [PMID: 34603321 PMCID: PMC8485048 DOI: 10.3389/fimmu.2021.738955] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 09/01/2021] [Indexed: 12/12/2022] Open
Abstract
There is increasing evidence that lung-resident memory T and B cells play a critical role in protecting against respiratory reinfection. With a unique transcriptional and phenotypic profile, resident memory lymphocytes are maintained in a quiescent state, constantly surveying the lung for microbial intruders. Upon reactivation with cognate antigen, these cells provide rapid effector function to enhance immunity and prevent infection. Immunization strategies designed to induce their formation, alongside novel techniques enabling their detection, have the potential to accelerate and transform vaccine development. Despite most data originating from murine studies, this review will discuss recent insights into the generation, maintenance and characterisation of pulmonary resident memory lymphocytes in the context of respiratory infection and vaccination using recent findings from human and non-human primate studies.
Collapse
Affiliation(s)
- Duncan C. Humphries
- Centre for Inflammation Research, Queen’s Medical Research Institute, Edinburgh BioQuarter, The University of Edinburgh, Edinburgh, United Kingdom
- Sanofi Pasteur, R&D, Marcy l’Etoile, Lyon, France
| | - Richard A. O’Connor
- Centre for Inflammation Research, Queen’s Medical Research Institute, Edinburgh BioQuarter, The University of Edinburgh, Edinburgh, United Kingdom
| | | | | | - Kevin Dhaliwal
- Centre for Inflammation Research, Queen’s Medical Research Institute, Edinburgh BioQuarter, The University of Edinburgh, Edinburgh, United Kingdom
| | | |
Collapse
|
16
|
Swarnalekha N, Schreiner D, Litzler LC, Iftikhar S, Kirchmeier D, Künzli M, Son YM, Sun J, Moreira EA, King CG. T resident helper cells promote humoral responses in the lung. Sci Immunol 2021; 6:6/55/eabb6808. [PMID: 33419790 DOI: 10.1126/sciimmunol.abb6808] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 11/11/2020] [Indexed: 12/12/2022]
Abstract
Influenza is a deadly and costly infectious disease, even during flu seasons when an effective vaccine has been developed. To improve vaccines against respiratory viruses, a better understanding of the immune response at the site of infection is crucial. After influenza infection, clonally expanded T cells take up permanent residence in the lung, poised to rapidly respond to subsequent infection. Here, we characterized the dynamics and transcriptional regulation of lung-resident CD4+ T cells during influenza infection and identified a long-lived, Bcl6-dependent population that we have termed T resident helper (TRH) cells. TRH cells arise in the lung independently of lymph node T follicular helper cells but are dependent on B cells, with which they tightly colocalize in inducible bronchus-associated lymphoid tissue (iBALT). Deletion of Bcl6 in CD4+ T cells before heterotypic challenge infection resulted in redistribution of CD4+ T cells outside of iBALT areas and impaired local antibody production. These results highlight iBALT as a homeostatic niche for TRH cells and advocate for vaccination strategies that induce TRH cells in the lung.
Collapse
Affiliation(s)
- Nivedya Swarnalekha
- Immune Cell Biology Laboratory, Department of Biomedicine, University of Basel, University Hospital Basel, CH-4031 Basel, Switzerland
| | - David Schreiner
- Immune Cell Biology Laboratory, Department of Biomedicine, University of Basel, University Hospital Basel, CH-4031 Basel, Switzerland
| | - Ludivine C Litzler
- Immune Cell Biology Laboratory, Department of Biomedicine, University of Basel, University Hospital Basel, CH-4031 Basel, Switzerland
| | - Saadia Iftikhar
- Personalised Health Basel- Oncology Cluster Basel, University of Basel, Basel, Switzerland
| | - Daniel Kirchmeier
- Immune Cell Biology Laboratory, Department of Biomedicine, University of Basel, University Hospital Basel, CH-4031 Basel, Switzerland
| | - Marco Künzli
- Immune Cell Biology Laboratory, Department of Biomedicine, University of Basel, University Hospital Basel, CH-4031 Basel, Switzerland
| | - Young Min Son
- Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA.,Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
| | - Jie Sun
- Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA.,Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Carolyn G King
- Immune Cell Biology Laboratory, Department of Biomedicine, University of Basel, University Hospital Basel, CH-4031 Basel, Switzerland.
| |
Collapse
|
17
|
Stearoyl-CoA Desaturase-Mediated Monounsaturated Fatty Acid Availability Supports Humoral Immunity. Cell Rep 2021; 34:108601. [PMID: 33406440 PMCID: PMC7839063 DOI: 10.1016/j.celrep.2020.108601] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 11/13/2020] [Accepted: 12/14/2020] [Indexed: 01/23/2023] Open
Abstract
Immune cells can metabolize glucose, amino acids, and fatty acids (FAs) to generate energy. The roles of different FA species and their impacts on humoral immunity remain poorly understood. Here, we report that proliferating B cells require monounsaturated FAs (MUFAs) to maintain mitochondrial metabolism and mTOR activity and to prevent excessive autophagy and endoplasmic reticulum (ER) stress. Furthermore, B cell-extrinsic stearoyl-CoA desaturase (SCD) activity generates MUFA to support early B cell development and germinal center (GC) formation in vivo during immunization and influenza infection. Thus, SCD-mediated MUFA production is critical for humoral immunity. Zhou et al. show that monounsaturated fatty acids (MUFAs), generated by stearoyl-CoA desaturase (SCD), support B cell mitochondrial metabolism and mTOR activity and promote B cell development and humoral immune responses. These data establish MUFA availability as a key regulator for humoral immunity and a potential therapeutic target.
Collapse
|
18
|
Asha K, Khanna M, Kumar B. Current Insights into the Host Immune Response to Respiratory Viral Infections. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1313:59-83. [PMID: 34661891 DOI: 10.1007/978-3-030-67452-6_4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Respiratory viral infections often lead to severe illnesses varying from mild or asymptomatic upper respiratory tract infections to severe bronchiolitis and pneumonia or/and chronic obstructive pulmonary disease. Common viral infections, including but not limited to influenza virus, respiratory syncytial virus, rhinovirus and coronavirus, are often the leading cause of morbidity and mortality. Since the lungs are continuously exposed to foreign particles, including respiratory pathogens, it is also well equipped for recognition and antiviral defense utilizing the complex network of innate and adaptive immune cells. Immediately upon infection, a range of proinflammatory cytokines, chemokines and an interferon response is generated, thereby making the immune response a two edged sword, on one hand it is required to eliminate viral pathogens while on other hand it's prolonged response can lead to chronic infection and significant pulmonary damage. Since vaccines to all respiratory viruses are not available, a better understanding of the virus-host interactions, leading to the development of immune response, is critically needed to design effective therapies to limit the severity of inflammatory damage, enhance viral clearance and to compliment the current strategies targeting the virus. In this chapter, we discuss the host responses to common respiratory viral infections, the key players of adaptive and innate immunity and the fine balance that exists between the viral clearance and immune-mediated damage.
Collapse
Affiliation(s)
- Kumari Asha
- Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Madhu Khanna
- Department of Virology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
| | - Binod Kumar
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL, USA
| |
Collapse
|
19
|
Tang S, Zhu W, Wang BZ. Influenza Vaccines toward Universality through Nanoplatforms and Given by Microneedle Patches. Viruses 2020; 12:E1212. [PMID: 33114336 PMCID: PMC7690886 DOI: 10.3390/v12111212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/20/2020] [Accepted: 10/22/2020] [Indexed: 12/25/2022] Open
Abstract
Influenza is one of the top threats to public health. The best strategy to prevent influenza is vaccination. Because of the antigenic changes in the major surface antigens of influenza viruses, current seasonal influenza vaccines need to be updated every year to match the circulating strains and are suboptimal for protection. Furthermore, seasonal vaccines do not protect against potential influenza pandemics. A universal influenza vaccine will eliminate the threat of both influenza epidemics and pandemics. Due to the massive challenge in realizing influenza vaccine universality, a single vaccine strategy cannot meet the need. A comprehensive approach that integrates advances in immunogen designs, vaccine and adjuvant nanoplatforms, and vaccine delivery and controlled release has the potential to achieve an effective universal influenza vaccine. This review will summarize the advances in the research and development of an affordable universal influenza vaccine.
Collapse
Affiliation(s)
| | | | - Bao-Zhong Wang
- Center for Inflammation, Immunity & Infection, Georgia State University, Atlanta, GA 30303, USA; (S.T.); (W.Z.)
| |
Collapse
|
20
|
Cookenham T, Lanzer KG, Gage E, Lorenzo EC, Carter D, Coler RN, Baldwin SL, Haynes L, Reiley WW, Blackman MA. Vaccination of aged mice with adjuvanted recombinant influenza nucleoprotein enhances protective immunity. Vaccine 2020; 38:5256-5267. [PMID: 32540272 DOI: 10.1016/j.vaccine.2020.05.085] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 04/18/2020] [Accepted: 05/29/2020] [Indexed: 12/18/2022]
Abstract
Elderly individuals are highly susceptible to influenza virus (IAV) infection and respond poorly to influenza vaccines. Although the generally accepted correlate of protection following influenza vaccination is neutralizing antibody titers, cytotoxic T cell activity has been found to be a better correlate in the elderly. This suggests that vaccines designed to protect against influenza in the elderly should induce both humoral and cellular immunity. The co-induction of T cell immunity is additionally advantageous, as virus-specific T cells are frequently cross-reactive against different strains of IAV. Here, we tested the capacity of a synthetic TLR-4 adjuvant, SLA-SE (second-generation lipid adjuvant formulated in a squalene-based oil-in-water emulsion) to elicit T cell immunity to a recombinant influenza nucleoprotein (rNP), in both young and aged mice. IAV challenge of vaccinated mice resulted in a modest increase in the numbers of NP-specific CD4 and CD8 effector T cells in the spleen, but did not increase numbers of memory phenotype CD8 T cells generated following viral clearance (compared to control vaccinated mice). Cytotoxic activity of CD8, but not CD4 T cells was increased. In addition, SLA-SE adjuvanted vaccination specifically enhanced the production of NP-specific IgG2c antibodies in both young and aged mice. Although NP-specific antibodies are not neutralizing, they can cooperate with CD8 T cells and antigen-presenting cells to enhance protective immunity. Importantly, SLA-SE adjuvanted rNP-vaccination of aged mice resulted in significantly enhanced viral clearance. In addition, vaccination of aged mice resulted in enhanced survival after lethal challenge compared to control vaccination, that approached statistical significance. These data demonstrate the potential of SLA-SE adjuvanted rNP vaccines to (i) generate both cellular and humoral immunity to relatively conserved IAV proteins and (ii) elicit protective immunity to IAV in aged mice.
Collapse
Affiliation(s)
| | | | - Emily Gage
- Infectious Disease Research Institute, Seattle, WA, USA
| | - Erica C Lorenzo
- University of Connecticut School of Medicine, Department of Immunology and Center on Aging, Farmington, CT, USA
| | | | - Rhea N Coler
- Infectious Disease Research Institute, Seattle, WA, USA
| | | | - Laura Haynes
- University of Connecticut School of Medicine, Department of Immunology and Center on Aging, Farmington, CT, USA
| | | | | |
Collapse
|
21
|
Leach S, Shinnakasu R, Adachi Y, Momota M, Makino-Okamura C, Yamamoto T, Ishii KJ, Fukuyama H, Takahashi Y, Kurosaki T. Requirement for memory B-cell activation in protection from heterologous influenza virus reinfection. Int Immunol 2020; 31:771-779. [PMID: 31231764 DOI: 10.1093/intimm/dxz049] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 06/19/2019] [Indexed: 02/07/2023] Open
Abstract
While two memory compartments, memory B cells and long-lived plasma cells, are thought to contribute to the successful establishment of memory recall responses, the unique roles of each cellular compartment are still unclear. Herein, by tracing influenza anti-hemagglutinin (HA)-specific antibodies in mice, we demonstrate that pre-existing antibodies secreted by long-lived plasma cells are essential for protection from reinfection with the same influenza virus, whereas protection from secondary infection with an antigenically distinct influenza virus requires memory B-cell activation. These activated memory B cells were largely specific for the conserved HA stem region, and generated sufficient levels of antibodies for protection from heterologous reinfection. Given that the anti-stem plasmablasts derived from the memory B cells were higher affinity than those from naive B cells, our results suggest that maturation of anti-stem memory B cells during primary influenza infection and their subsequent activation are required for protection from reinfection by mutant viruses.
Collapse
Affiliation(s)
- Sarah Leach
- Graduate School of Frontier Biosciences, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan.,Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| | - Ryo Shinnakasu
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| | - Yu Adachi
- Department of Immunology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Masatoshi Momota
- Laboratory of Adjuvant Innovation, National Institute of Biomedical Innovation, Osaka, Japan
| | - Chieko Makino-Okamura
- Laboratory of Lymphocyte Differentiation, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Kanagawa, Japan
| | - Takuya Yamamoto
- Laboratory of Immunosenescence, National Institute of Biomedical Innovation, Osaka, Japan
| | - Ken J Ishii
- Laboratory of Adjuvant Innovation, National Institute of Biomedical Innovation, Osaka, Japan
| | - Hidehiro Fukuyama
- Laboratory of Lymphocyte Differentiation, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Kanagawa, Japan
| | - Yoshimasa Takahashi
- Department of Immunology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tomohiro Kurosaki
- Graduate School of Frontier Biosciences, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan.,Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan.,Laboratory of Lymphocyte Differentiation, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Kanagawa, Japan
| |
Collapse
|
22
|
Host-Virus Interaction: How Host Cells Defend against Influenza A Virus Infection. Viruses 2020; 12:v12040376. [PMID: 32235330 PMCID: PMC7232439 DOI: 10.3390/v12040376] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/19/2020] [Accepted: 03/25/2020] [Indexed: 02/07/2023] Open
Abstract
Influenza A viruses (IAVs) are highly contagious pathogens infecting human and numerous animals. The viruses cause millions of infection cases and thousands of deaths every year, thus making IAVs a continual threat to global health. Upon IAV infection, host innate immune system is triggered and activated to restrict virus replication and clear pathogens. Subsequently, host adaptive immunity is involved in specific virus clearance. On the other hand, to achieve a successful infection, IAVs also apply multiple strategies to avoid be detected and eliminated by the host immunity. In the current review, we present a general description on recent work regarding different host cells and molecules facilitating antiviral defenses against IAV infection and how IAVs antagonize host immune responses.
Collapse
|
23
|
Padilla-Quirarte HO, Lopez-Guerrero DV, Gutierrez-Xicotencatl L, Esquivel-Guadarrama F. Protective Antibodies Against Influenza Proteins. Front Immunol 2019; 10:1677. [PMID: 31379866 PMCID: PMC6657620 DOI: 10.3389/fimmu.2019.01677] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Accepted: 07/04/2019] [Indexed: 12/21/2022] Open
Abstract
The influenza A virus infection continues to be a threat to the human population. The seasonal variation of the virus and the likelihood of periodical pandemics caused by completely new virus strains make it difficult to produce vaccines that efficiently protect against this infection. Antibodies (Abs) are very important in preventing the infection and in blocking virus propagation once the infection has taken place. However, the precise protection mechanism provided by these Abs still needs to be established. Furthermore, most research has focused on Abs directed to the globular head domain of hemagglutinin (HA). However, other domains of HA (like the stem) and other proteins are also able to elicit protective Ab responses. In this article, we review the current knowledge about the role of both neutralizing and non-neutralizing anti-influenza proteins Abs that play a protective role during infection or vaccination.
Collapse
Affiliation(s)
- Herbey O Padilla-Quirarte
- LIV, Facultad de Medicina, Universidad Autonoma del Estado de Morelos, Cuernavaca, Mexico.,Instituto de Biotecnologia, Universidad Nacional Autonoma de Mexico, Cuernavaca, Mexico
| | | | | | | |
Collapse
|
24
|
Del Campo J, Pizzorno A, Djebali S, Bouley J, Haller M, Pérez-Vargas J, Lina B, Boivin G, Hamelin ME, Nicolas F, Le Vert A, Leverrier Y, Rosa-Calatrava M, Marvel J, Hill F. OVX836 a recombinant nucleoprotein vaccine inducing cellular responses and protective efficacy against multiple influenza A subtypes. NPJ Vaccines 2019; 4:4. [PMID: 30701093 PMCID: PMC6344521 DOI: 10.1038/s41541-019-0098-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 12/21/2018] [Indexed: 11/18/2022] Open
Abstract
Inactivated influenza vaccines (IIVs) lack broad efficacy. Cellular immunity to a conserved internal antigen, the nucleoprotein (NP), has been correlated to protection against pandemic and seasonal influenza and thus could have the potential to broaden vaccine efficacy. We developed OVX836, a recombinant protein vaccine based on an oligomerized NP, which shows increased uptake by dendritic cells and immunogenicity compared with NP. Intramuscular immunization in mice with OVX836 induced strong NP-specific CD4+ and CD8+ T-cell systemic responses and established CD8+ tissue memory T cells in the lung parenchyma. Strikingly, OVX836 protected mice against viral challenge with three different influenza A subtypes, isolated several decades apart and induced a reduction in viral load. When co-administered with IIV, OVX836 was even more effective in reducing lung viral load. Circulating influenza A virus (IAV) strains differ in their surface proteins each year, and vaccines eliciting an immune response to these proteins are often only partially protective. Internal viral proteins, such as the nucleoprotein (NP), are highly conserved, and cellular immunity to NP has been correlated with protection from diverse strains. However, current IAV vaccines induce a poor immune response to NP. In this study, led by Fergal Hill from Osivax, researchers develop an oligomeric version of NP with improved immunogenicity. Vaccination of mice with oligomeric NP results in an improved NP-specific T-cell response, including CD8+ tissue memory T cells in the lung, and protects mice against three different IAV subtypes. Co-administration with the currently used inactivated influenza vaccine further improves protection against virus infection in mice. These results encourage further pre-clinical and clinical development for this vaccine candidate.
Collapse
Affiliation(s)
| | - Andres Pizzorno
- 2Virologie et Pathologie Humaine - VirPath Team, Centre International de Recherche en Infectiologie, INSERM U1111, CNRS UMR5308, École Normale Supérieure de Lyon, Université Claude Bernard Lyon 1. Université de Lyon, Lyon, F- 69008 France
| | - Sophia Djebali
- 3Immunity and Cytotoxic Lymphocytes, Centre International de Recherche en Infectiologie, INSERM, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon. Université de Lyon, F-69007 Lyon, France
| | | | | | - Jimena Pérez-Vargas
- Osivax, 99, rue de Gerland, 69007 Lyon, France.,6Present Address: Enveloped Viruses, Vectors and Immunotherapy Team, Centre International de Recherché en Infectiologie (CIRI), INSERM U1111, Université de Lyon, Lyon, France
| | - Bruno Lina
- 2Virologie et Pathologie Humaine - VirPath Team, Centre International de Recherche en Infectiologie, INSERM U1111, CNRS UMR5308, École Normale Supérieure de Lyon, Université Claude Bernard Lyon 1. Université de Lyon, Lyon, F- 69008 France.,Hospices Civils de Lyon, Centre National de Référence des Virus Influenza France Sud, Laboratoire de Virologie, Groupement Hospitalier Nord, Lyon, France
| | - Guy Boivin
- 5Centre de Recherche en Infectiologie of the Centre Hospitalier Universitaire de Québec and Université Laval, Québec, Canada
| | - Marie-Eve Hamelin
- 5Centre de Recherche en Infectiologie of the Centre Hospitalier Universitaire de Québec and Université Laval, Québec, Canada
| | | | | | - Yann Leverrier
- 3Immunity and Cytotoxic Lymphocytes, Centre International de Recherche en Infectiologie, INSERM, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon. Université de Lyon, F-69007 Lyon, France
| | - Manuel Rosa-Calatrava
- 2Virologie et Pathologie Humaine - VirPath Team, Centre International de Recherche en Infectiologie, INSERM U1111, CNRS UMR5308, École Normale Supérieure de Lyon, Université Claude Bernard Lyon 1. Université de Lyon, Lyon, F- 69008 France
| | - Jacqueline Marvel
- 3Immunity and Cytotoxic Lymphocytes, Centre International de Recherche en Infectiologie, INSERM, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon. Université de Lyon, F-69007 Lyon, France
| | - Fergal Hill
- Osivax, 99, rue de Gerland, 69007 Lyon, France
| |
Collapse
|
25
|
Chen X, Liu S, Goraya MU, Maarouf M, Huang S, Chen JL. Host Immune Response to Influenza A Virus Infection. Front Immunol 2018; 9:320. [PMID: 29556226 PMCID: PMC5845129 DOI: 10.3389/fimmu.2018.00320] [Citation(s) in RCA: 294] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 02/05/2018] [Indexed: 12/25/2022] Open
Abstract
Influenza A viruses (IAVs) are contagious pathogens responsible for severe respiratory infection in humans and animals worldwide. Upon detection of IAV infection, host immune system aims to defend against and clear the viral infection. Innate immune system is comprised of physical barriers (mucus and collectins), various phagocytic cells, group of cytokines, interferons (IFNs), and IFN-stimulated genes, which provide first line of defense against IAV infection. The adaptive immunity is mediated by B cells and T cells, characterized with antigen-specific memory cells, capturing and neutralizing the pathogen. The humoral immune response functions through hemagglutinin-specific circulating antibodies to neutralize IAV. In addition, antibodies can bind to the surface of infected cells and induce antibody-dependent cell-mediated cytotoxicity or complement activation. Although there are neutralizing antibodies against the virus, cellular immunity also plays a crucial role in the fight against IAVs. On the other hand, IAVs have developed multiple strategies to escape from host immune surveillance for successful replication. In this review, we discuss how immune system, especially innate immune system and critical molecules are involved in the antiviral defense against IAVs. In addition, we highlight how IAVs antagonize different immune responses to achieve a successful infection.
Collapse
Affiliation(s)
- Xiaoyong Chen
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shasha Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Mohsan Ullah Goraya
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Mohamed Maarouf
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Shile Huang
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA, United States
| | - Ji-Long Chen
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China.,CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| |
Collapse
|
26
|
Pulmonary immunity to viruses. Clin Sci (Lond) 2017; 131:1737-1762. [PMID: 28667071 DOI: 10.1042/cs20160259] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 03/31/2017] [Accepted: 04/06/2017] [Indexed: 12/28/2022]
Abstract
Mucosal surfaces, such as the respiratory epithelium, are directly exposed to the external environment and therefore, are highly susceptible to viral infection. As a result, the respiratory tract has evolved a variety of innate and adaptive immune defenses in order to prevent viral infection or promote the rapid destruction of infected cells and facilitate the clearance of the infecting virus. Successful adaptive immune responses often lead to a functional state of immune memory, in which memory lymphocytes and circulating antibodies entirely prevent or lessen the severity of subsequent infections with the same virus. This is also the goal of vaccination, although it is difficult to vaccinate in a way that mimics respiratory infection. Consequently, some vaccines lead to robust systemic immune responses, but relatively poor mucosal immune responses that protect the respiratory tract. In addition, adaptive immunity is not without its drawbacks, as overly robust inflammatory responses may lead to lung damage and impair gas exchange or exacerbate other conditions, such as asthma or chronic obstructive pulmonary disease (COPD). Thus, immune responses to respiratory viral infections must be strong enough to eliminate infection, but also have mechanisms to limit damage and promote tissue repair in order to maintain pulmonary homeostasis. Here, we will discuss the components of the adaptive immune system that defend the host against respiratory viral infections.
Collapse
|
27
|
The immune correlates of protection for an avian influenza H5N1 vaccine in the ferret model using oil-in-water adjuvants. Sci Rep 2017; 7:44727. [PMID: 28303960 PMCID: PMC5381113 DOI: 10.1038/srep44727] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 02/14/2017] [Indexed: 02/03/2023] Open
Abstract
Because of the pathogenicity and low incidence of avian influenza virus infections in humans, the immune correlates of protection for avian influenza vaccines cannot be determined from clinical studies. Here, we used the ferret model to address this for an avian influenza H5N1 vaccine. Using oil-in-water adjuvants, we generated groups of ferrets with undetectable (geometric mean titer [GMT] < 10), low (GMT = 28.3), or high (GMT > 761.1) hemagglutination-inhibition (HAI) titers to the A/Viet Nam/1203/2004 (H5N1) virus. Ferrets were then challenged with the wild-type virus and disease severity and immunologic parameters were studied. The severity of infection and symptom profile were inversely associated with pre-challenge HAI titers in a dose-dependent manner. A vaccinated ferret with no detectable HAI-antibodies but high flu-specific IgG-antibody titers mounted rapid functional antibodies after infection and experienced milder disease compared to other ferrets in the group. Compared to naïve ferrets, all vaccinated ferrets showed improved cellular immunity in the lungs and peripheral blood. High number of IFNγ+ CD8- T cells in the airways was associated with early viral clearance. Thus, while neutralizing antibodies are the best correlate of protection, non-neutralizing antibodies can also be protective. This should be taken into consideration in future avian influenza vaccine trials.
Collapse
|
28
|
Kim JH, Reber AJ, Kumar A, Ramos P, Sica G, Music N, Guo Z, Mishina M, Stevens J, York IA, Jacob J, Sambhara S. Non-neutralizing antibodies induced by seasonal influenza vaccine prevent, not exacerbate A(H1N1)pdm09 disease. Sci Rep 2016; 6:37341. [PMID: 27849030 PMCID: PMC5110975 DOI: 10.1038/srep37341] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 10/25/2016] [Indexed: 11/12/2022] Open
Abstract
The association of seasonal trivalent influenza vaccine (TIV) with increased infection by 2009 pandemic H1N1 (A(H1N1)pdm09) virus, initially observed in Canada, has elicited numerous investigations on the possibility of vaccine-associated enhanced disease, but the potential mechanisms remain largely unresolved. Here, we investigated if prior immunization with TIV enhanced disease upon A(H1N1)pdm09 infection in mice. We found that A(H1N1)pdm09 infection in TIV-immunized mice did not enhance the disease, as measured by morbidity and mortality. Instead, TIV-immunized mice cleared A(H1N1)pdm09 virus and recovered at an accelerated rate compared to control mice. Prior TIV immunization was associated with potent inflammatory mediators and virus-specific CD8 T cell activation, but efficient immune regulation, partially mediated by IL-10R-signaling, prevented enhanced disease. Furthermore, in contrast to suggested pathological roles, pre-existing non-neutralizing antibodies (NNAbs) were not associated with enhanced virus replication, but rather with promoted antigen presentation through FcR-bearing cells that led to potent activation of virus-specific CD8 T cells. These findings provide new insights into interactions between pre-existing immunity and pandemic viruses.
Collapse
Affiliation(s)
- Jin Hyang Kim
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Rd, Atlanta, GA 30329, USA
| | - Adrian J Reber
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Rd, Atlanta, GA 30329, USA
| | - Amrita Kumar
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Rd, Atlanta, GA 30329, USA
| | - Patricia Ramos
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Rd, Atlanta, GA 30329, USA
| | - Gabriel Sica
- Department of Pathology and Laboratory Medicine, School of Medicine, Emory University, 1364 Clifton Rd, N.E. Atlanta, GA 30322, USA
| | - Nedzad Music
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Rd, Atlanta, GA 30329, USA
| | - Zhu Guo
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Rd, Atlanta, GA 30329, USA
| | - Margarita Mishina
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Rd, Atlanta, GA 30329, USA.,Batelle Memorial Institute, Atlanta, GA 30322, USA
| | - James Stevens
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Rd, Atlanta, GA 30329, USA
| | - Ian A York
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Rd, Atlanta, GA 30329, USA
| | - Joshy Jacob
- Department of Microbiology and Immunology, Emory Vaccine Center, Yerkes National Primate Center, Emory University, 954 Gatewood Rd, Atlanta, GA, USA
| | - Suryaprakash Sambhara
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Rd, Atlanta, GA 30329, USA
| |
Collapse
|
29
|
Barone F, Gardner DH, Nayar S, Steinthal N, Buckley CD, Luther SA. Stromal Fibroblasts in Tertiary Lymphoid Structures: A Novel Target in Chronic Inflammation. Front Immunol 2016; 7:477. [PMID: 27877173 PMCID: PMC5100680 DOI: 10.3389/fimmu.2016.00477] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 10/20/2016] [Indexed: 12/14/2022] Open
Abstract
Tertiary lymphoid structures (TLS) are organized aggregates of lymphocytes, myeloid, and stromal cells that provide ectopic hubs for acquired immune responses. TLS share phenotypical and functional features with secondary lymphoid organs (SLO); however, they require persistent inflammatory signals to arise and are often observed at target sites of autoimmune disease, chronic infection, cancer, and organ transplantation. Over the past 10 years, important progress has been made in our understanding of the role of stromal fibroblasts in SLO development, organization, and function. A complex and stereotyped series of events regulate fibroblast differentiation from embryonic life in SLOs to lymphoid organ architecture observed in adults. In contrast, TLS-associated fibroblasts differentiate from postnatal, locally activated mesenchyme, predominantly in settings of inflammation and persistent antigen presentation. Therefore, there are critical differences in the cellular and molecular requirements that regulate SLO versus TLS development that ultimately impact on stromal and hematopoietic cell function. These differences may contribute to the pathogenic nature of TLS in the context of chronic inflammation and malignant transformation and offer a window of opportunity for therapeutic interventions in TLS associated pathologies.
Collapse
Affiliation(s)
- Francesca Barone
- Rheumatology Research Group, Institute of Inflammation and Ageing, University of Birmingham , Birmingham , UK
| | - David H Gardner
- Rheumatology Research Group, Institute of Inflammation and Ageing, University of Birmingham , Birmingham , UK
| | - Saba Nayar
- Rheumatology Research Group, Institute of Inflammation and Ageing, University of Birmingham , Birmingham , UK
| | - Nathalie Steinthal
- Rheumatology Research Group, Institute of Inflammation and Ageing, University of Birmingham , Birmingham , UK
| | - Christopher D Buckley
- Rheumatology Research Group, Institute of Inflammation and Ageing, University of Birmingham , Birmingham , UK
| | - Sanjiv A Luther
- Department of Biochemistry, Center for Immunity and Infection, University of Lausanne , Lausanne , Switzerland
| |
Collapse
|
30
|
Wang Z, Kedzierski L, Nuessing S, Chua BYL, Quiñones-Parra SM, Huber VC, Jackson DC, Thomas PG, Kedzierska K. Establishment of memory CD8+ T cells with live attenuated influenza virus across different vaccination doses. J Gen Virol 2016; 97:3205-3214. [PMID: 27902386 DOI: 10.1099/jgv.0.000651] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
FluMist has been used in children and adults for more than 10 years. As pre-existing CD8+ T cell memory pools can provide heterologous immunity against distinct influenza viruses, it is important to understand influenza-specific CD8+ T cell responses elicited by different live attenuated influenza virus (LAIV) regimens. In this study, we immunized mice intranasally with two different doses of live-attenuated PR8 virus (PR8 ts, H1N1), low and high, and then assessed protective efficacy by challenging animals with heterosubtypic X31-H3N2 virus at 6 weeks post-vaccination. Different LAIV doses elicited influenza-specific CD8+ T cell responses in lungs and spleen, but unexpectedly not in bronchoalveolar lavage. Interestingly, the immunodominance hierarchy at the acute phase after immunization varied depending on the LAIV dose; however, these differences disappeared at 6 weeks post-vaccination, resulting in generation of comparable CD8+ T cell memory pools. After vaccination with either dose, sufficient numbers of specific CD8+ T cells were generated for recall and protection of mice against heterosubtypic H1N1→H3N2 challenge. As a result, immunized mice displayed reduced weight loss, diminished inflammatory responses and lower viral titres in lungs, when compared to unvaccinated animals. Interestingly, the higher dose led to enhanced viral clearance on day 5 post-challenge, though this was not associated with increased CD8+ T cell responses, but with higher levels of non-neutralizing antibodies against the priming virus. Our study suggests that, while different LAIV doses result in distinct immune profiles, even a low dose produces sufficient protective CD8+ T cell memory against challenge infection, though the high dose results in more rapid viral clearance and reduced inflammation.
Collapse
MESH Headings
- Animals
- Antibodies, Viral/immunology
- CD8-Positive T-Lymphocytes/immunology
- Humans
- Immunologic Memory
- Influenza A Virus, H1N1 Subtype/genetics
- Influenza A Virus, H1N1 Subtype/immunology
- Influenza A Virus, H3N2 Subtype/genetics
- Influenza A Virus, H3N2 Subtype/immunology
- Influenza Vaccines/administration & dosage
- Influenza Vaccines/immunology
- Influenza, Human/immunology
- Influenza, Human/prevention & control
- Influenza, Human/virology
- Lung/virology
- Mice
- Mice, Inbred C57BL
- Vaccines, Attenuated/administration & dosage
- Vaccines, Attenuated/immunology
Collapse
Affiliation(s)
- Zhongfang Wang
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC 3010, Australia
| | - Lukasz Kedzierski
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC 3010, Australia
| | - Simone Nuessing
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC 3010, Australia
| | - Brendon Yew Loong Chua
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC 3010, Australia
| | - Sergio M Quiñones-Parra
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC 3010, Australia
| | - Victor C Huber
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, USA
| | - David C Jackson
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC 3010, Australia
| | - Paul G Thomas
- Department of Immunology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC 3010, Australia
| |
Collapse
|
31
|
Duan S, Thomas PG. Balancing Immune Protection and Immune Pathology by CD8(+) T-Cell Responses to Influenza Infection. Front Immunol 2016; 7:25. [PMID: 26904022 PMCID: PMC4742794 DOI: 10.3389/fimmu.2016.00025] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 01/18/2016] [Indexed: 02/05/2023] Open
Abstract
Influenza A virus (IAV) is a significant human pathogen causing annual epidemics and periodic pandemics. CD8+ cytotoxic T lymphocyte (CTL)-mediated immunity contributes to the clearance of virus-infected cells, and CTL immunity targeting the conserved internal proteins of IAVs is a key protection mechanism when neutralizing antibodies are absent during heterosubtypic IAV infection. However, CTL infiltration into the airways, its cytotoxicity, and the effects of produced proinflammatory cytokines can cause severe lung tissue injury, thereby contributing to immunopathology. Studies have discovered complicated and exquisite stimulatory and inhibitory mechanisms that regulate CTL magnitude and effector activities during IAV infection. Here, we review the state of knowledge on the roles of IAV-specific CTLs in immune protection and immunopathology during IAV infection in animal models, highlighting the key findings of various requirements and constraints regulating the balance of immune protection and pathology involved in CTL immunity. We also discuss the evidence of cross-reactive CTL immunity as a positive correlate of cross-subtype protection during secondary IAV infection in both animal and human studies. We argue that the effects of CTL immunity on protection and immunopathology depend on multiple layers of host and viral factors, including complex host mechanisms to regulate CTL magnitude and effector activity, the pathogenic nature of the IAV, the innate response milieu, and the host historical immune context of influenza infection. Future efforts are needed to further understand these key host and viral factors, especially to differentiate those that constrain optimally effective CTL antiviral immunity from those necessary to restrain CTL-mediated non-specific immunopathology in the various contexts of IAV infection, in order to develop better vaccination and therapeutic strategies for modifying protective CTL immunity.
Collapse
Affiliation(s)
- Susu Duan
- Department of Immunology, St. Jude Children's Research Hospital , Memphis, TN , USA
| | - Paul G Thomas
- Department of Immunology, St. Jude Children's Research Hospital , Memphis, TN , USA
| |
Collapse
|
32
|
Rangel-Moreno J, de la Luz Garcia-Hernandez M, Ramos-Payan R, Biear J, Hernady E, Sangster MY, Randall TD, Johnston CJ, Finkelstein JN, Williams JP. Long-Lasting Impact of Neonatal Exposure to Total Body Gamma Radiation on Secondary Lymphoid Organ Structure and Function. Radiat Res 2015; 184:352-66. [PMID: 26397175 DOI: 10.1667/rr14047.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The acute period after total body irradiation (TBI) is associated with an increased risk of infection, principally resulting from the loss of hematopoietic stem cells, as well as disruption of mucosal epithelial barriers. Although there is a return to baseline infection control coinciding with the apparent progressive recovery of hematopoietic cell populations, late susceptibility to infection in radiation-sensitive organs such as lung and kidney is known to occur. Indeed, pulmonary infections are particularly prevalent in hematopoietic cell transplant (HCT) survivors, in both adult and pediatric patient populations. Preclinical studies investigating late outcomes from localized thoracic irradiation have indicated that the mechanisms underlying pulmonary delayed effects are multifactorial, including exacerbated and persistent production of pro-inflammatory molecules and abnormal cross-talk among parenchymal and infiltrating immune and inflammatory cell populations. However, in the context of low-dose TBI, it is not clear whether the observed exacerbated response to infection remains contingent on these same mechanisms. It is possible instead, that after systemic radiation-induced injury, the susceptibility to infection may be independently related to defects in alternative organs that are revealed only through the challenge itself; indeed, we have hypothesized that this defect may be due to radiation-induced chronic effects in the structure and function of secondary lymphoid organs (SLO). In this study, we investigated the molecular and cellular alterations in SLO (i.e., spleen, mediastinal, inguinal and mesenteric lymph nodes) after TBI, and the time points when there appears to be immune competence. Furthermore, due to the high incidence of pulmonary infections in the late post-transplantation period of bone marrow transplant survivors, particularly in children, we focused on outcomes in mice irradiated as neonates, which served as a model for a pediatric population, and used the induction of adaptive immunity against influenza virus as a functional end point. We demonstrated that, in adult animals irradiated as neonates, high endothelial venule (HEV) expansion, generation of follicular helper T cells (TFH) and formation of splenic germinal centers (GC) were rapidly and, more importantly, persistently impaired in SLO, suggesting that the early-life exposure to sublethal radiation had long-lasting effects on the induction of humoral immunity. Although the neonatal TBI did not affect the overall outcome from influenza infection in the adults at the earlier time points assessed, we believe that they nonetheless contribute significantly to the increased mortality observed at subsequent late time points. Furthermore, we speculate that the detrimental and persistent impact on the induction of CD4 T- and B-cell responses in the mediastinal lymph nodes will decrease the animals' ability to respond to other aerial pathogens. Since many of these pathogens are normally cleared by antibodies, our findings provide an explanation for the susceptibility of survivors of childhood HCT to life-threatening respiratory tract infections. These findings have implications regarding the need for increased monitoring in pediatric hematopoietic cell transplant patients, since they indicate that there are ongoing and cumulative defects in SLO, which, importantly, develop during the immediate and early postirradiation period when patients may appear immunologically competent. The identification of changes in immune-related signals may offer bioindicators of progressive dysfunction, and of potential mechanisms that could be targeted so as to reduce the risk of infection from extracellular pathogens. Furthermore, these results support the potential susceptibility of the pediatric population to infection after sublethal irradiation in the context of a nuclear or radiological event.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Troy D Randall
- f Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, Alabama
| | | | | | - Jacqueline P Williams
- b Environmental Medicine.,e Radiation Oncology, University of Rochester Medical Center, Rochester, New York; and
| |
Collapse
|
33
|
Wang Z, Chua BY, Ramos JV, Parra SMQ, Fairmaid E, Brown LE, Jackson DC, Kedzierska K. Establishment of functional influenza virus-specific CD8+ T cell memory pools after intramuscular immunization. Vaccine 2015; 33:5148-54. [DOI: 10.1016/j.vaccine.2015.08.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 07/10/2015] [Accepted: 08/02/2015] [Indexed: 11/26/2022]
|
34
|
Epitope-specific regulation of memory programming by differential duration of antigen presentation to influenza-specific CD8(+) T cells. Immunity 2014; 41:127-40. [PMID: 25035957 DOI: 10.1016/j.immuni.2014.06.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 05/28/2014] [Indexed: 01/05/2023]
Abstract
Memory CD8(+) T cells are programmed during the primary response for robust secondary responsiveness. Here we show that CD8(+) T cells responding to different epitopes of influenza virus received qualitatively different signals during the primary response that altered their secondary responsiveness. Nucleoprotein (NP)-specific CD8(+) T cells encountered antigen on CD40-licensed, CD70-expressing, CD103(-)CD11b(hi) dendritic cells (DCs) at later times in the primary response. As a consequence, they maintained CD25 expression and responded to interleukin-2 (IL-2) and CD27, which together programmed their robust secondary proliferative capacity and interferon-γ (IFN-γ)-producing ability. In contrast, polymerase (PA)-specific CD8(+) T cells did not encounter antigen-bearing, CD40-activated DCs at later times in the primary response, did not receive CD27 and CD25 signals, and were not programmed to become memory CD8(+) T cells with strong proliferative and cytokine-producing ability. As a result, CD8(+) T cells responding to abundant antigens, like NP, dominated the secondary response.
Collapse
|
35
|
Wang W, Huang B, Jiang T, Wang X, Qi X, Tan W, Ruan L. Maximal immune response and cross protection by influenza virus nucleoprotein derived from E. coli using an optimized formulation. Virology 2014; 468-470:265-273. [PMID: 25213406 DOI: 10.1016/j.virol.2014.08.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 07/11/2014] [Accepted: 08/09/2014] [Indexed: 12/16/2022]
Abstract
The highly conserved internal nucleoprotein (NP) is a promising antigen to develop a universal influenza A virus vaccine. In this study, mice were injected intramuscularly with Escherichia coli-derived NP protein alone or in combination with adjuvant alum (Al(OH)3), CpG or both. The results showed that the NP protein formulated with adjuvant was effective in inducing a protective immune response. Additionally, the adjuvant efficacy of Al(OH)3 was stronger than that of CpG. Optimal immune responses were observed in BALB/c mice immunized with a combination of NP protein plus Al(OH)3 and CpG. These mice also showed maximal resistance following challenge with influenza A virus PR8 strain. Most importantly, 10 µg NP formulated with Al(OH)3 and CpG induced higher protection than did 90 µg NP. These findings indicated that a combination of Al(OH)3 and CpG may be an efficient adjuvant in the NP formulation.
Collapse
Affiliation(s)
- Wenling Wang
- National Institute for Viral Disease Control & Prevention, Chinese Center for Disease Control and Prevention (China CDC), 155# Chang Bai Road, Chang Ping District, Beijing 102206, China
| | - Baoying Huang
- National Institute for Viral Disease Control & Prevention, Chinese Center for Disease Control and Prevention (China CDC), 155# Chang Bai Road, Chang Ping District, Beijing 102206, China
| | - Tao Jiang
- National Institute for Viral Disease Control & Prevention, Chinese Center for Disease Control and Prevention (China CDC), 155# Chang Bai Road, Chang Ping District, Beijing 102206, China
| | - Xiuping Wang
- National Institute for Viral Disease Control & Prevention, Chinese Center for Disease Control and Prevention (China CDC), 155# Chang Bai Road, Chang Ping District, Beijing 102206, China
| | - Xiangrong Qi
- National Institute for Viral Disease Control & Prevention, Chinese Center for Disease Control and Prevention (China CDC), 155# Chang Bai Road, Chang Ping District, Beijing 102206, China
| | - Wenjie Tan
- National Institute for Viral Disease Control & Prevention, Chinese Center for Disease Control and Prevention (China CDC), 155# Chang Bai Road, Chang Ping District, Beijing 102206, China
| | - Li Ruan
- National Institute for Viral Disease Control & Prevention, Chinese Center for Disease Control and Prevention (China CDC), 155# Chang Bai Road, Chang Ping District, Beijing 102206, China.
| |
Collapse
|
36
|
Sanchez MV, Ebensen T, Schulze K, Cargnelutti D, Blazejewska P, Scodeller EA, Guzmán CA. Intranasal delivery of influenza rNP adjuvanted with c-di-AMP induces strong humoral and cellular immune responses and provides protection against virus challenge. PLoS One 2014; 9:e104824. [PMID: 25140692 PMCID: PMC4139298 DOI: 10.1371/journal.pone.0104824] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 07/17/2014] [Indexed: 12/17/2022] Open
Abstract
There is a critical need for new influenza vaccines able to protect against constantly emerging divergent virus strains. This will be sustained by the induction of vigorous cellular responses and humoral immunity capable of acting at the portal of entry of this pathogen. In this study we evaluate the protective efficacy of intranasal vaccination with recombinant influenza nucleoprotein (rNP) co-administrated with bis-(3′,5′)-cyclic dimeric adenosine monophosphate (c-di-AMP) as adjuvant. Immunization of BALB/c mice with two doses of the formulation stimulates high titers of NP-specific IgG in serum and secretory IgA at mucosal sites. This formulation also promotes a strong Th1 response characterized by high secretion of INF-γ and IL-2. The immune response elicited promotes efficient protection against virus challenge. These results suggest that c-di-AMP is a potent mucosal adjuvant which may significantly contribute towards the development of innovative mucosal vaccines against influenza.
Collapse
Affiliation(s)
- Maria Victoria Sanchez
- Laboratory of Virology, Institute of Experimental Medicine and Biology of Cuyo (IMBECU-CCT, CONICET), Mendoza, Argentina
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Thomas Ebensen
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- * E-mail:
| | - Kai Schulze
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Diego Cargnelutti
- Laboratory of Virology, Institute of Experimental Medicine and Biology of Cuyo (IMBECU-CCT, CONICET), Mendoza, Argentina
| | - Paulina Blazejewska
- Boehringer Ingelheim Veterinary Research Center GmbH & Co. KG, Hannover, Germany
| | - Eduardo A. Scodeller
- Laboratory of Virology, Institute of Experimental Medicine and Biology of Cuyo (IMBECU-CCT, CONICET), Mendoza, Argentina
| | - Carlos A. Guzmán
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| |
Collapse
|
37
|
León B, Ballesteros-Tato A, Randall TD, Lund FE. Prolonged antigen presentation by immune complex-binding dendritic cells programs the proliferative capacity of memory CD8 T cells. ACTA ACUST UNITED AC 2014; 211:1637-55. [PMID: 25002751 PMCID: PMC4113940 DOI: 10.1084/jem.20131692] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Antibodies can regulate the quality and functionality of a subset of antiviral CD8+ T cell memory responses to influenza by promoting sustained DC antigen presentation during the contraction phase of primary responses. The commitment of naive CD8 T cells to effector or memory cell fates can occur after a single day of antigenic stimulation even though virus-derived antigens (Ags) are still presented by DCs long after acute infection is resolved. However, the effects of extended Ag presentation on CD8 T cells are undefined and the mechanisms that regulate prolonged Ag presentation are unknown. We showed that the sustained presentation of two different epitopes from influenza virus by DCs prevented the premature contraction of the primary virus-specific CD8 T cell response. Although prolonged Ag presentation did not alter the number of memory CD8 T cells that developed, it was essential for programming the capacity of these cells to proliferate, produce cytokines, and protect the host after secondary challenge. Importantly, prolonged Ag presentation by DCs was dependent on virus-specific, isotype-switched antibodies (Abs) that facilitated the capture and cross-presentation of viral Ags by FcγR-expressing DCs. Collectively, our results demonstrate that B cells and Abs can regulate the quality and functionality of a subset of antiviral CD8 T cell memory responses and do so by promoting sustained Ag presentation by DCs during the contraction phase of the primary T cell response.
Collapse
Affiliation(s)
- Beatriz León
- Division of Allergy, Immunology, and Rheumatology, Department of Medicine, University of Rochester Medical Center, Rochester, NY 14642
| | - André Ballesteros-Tato
- Division of Allergy, Immunology, and Rheumatology, Department of Medicine, University of Rochester Medical Center, Rochester, NY 14642
| | - Troy D Randall
- Division of Allergy, Immunology, and Rheumatology, Department of Medicine, University of Rochester Medical Center, Rochester, NY 14642
| | - Frances E Lund
- Division of Allergy, Immunology, and Rheumatology, Department of Medicine, University of Rochester Medical Center, Rochester, NY 14642
| |
Collapse
|
38
|
Primary and long-term B-cell responses in the upper airway and lung after influenza A virus infection. Immunol Res 2014; 59:73-80. [DOI: 10.1007/s12026-014-8541-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
39
|
Zhang RH, Li CH, He WX, Wang CL, Xu T, Jin ML, Chen HC. Development of latex agglutination test with nucleoprotein as antigen for detection of antibodies to swine influenza virus. Int Immunopharmacol 2014; 19:201-5. [DOI: 10.1016/j.intimp.2014.01.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Revised: 01/11/2014] [Accepted: 01/28/2014] [Indexed: 11/28/2022]
|
40
|
Vander Veen RL, Mogler MA, Russell BJ, Loynachan AT, Harris DLH, Kamrud KI. Haemagglutinin and nucleoprotein replicon particle vaccination of swine protects against the pandemic H1N1 2009 virus. Vet Rec 2013; 173:344. [DOI: 10.1136/vr.101741] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- R. L. Vander Veen
- Harrisvaccines; Inc; 1102 Southern Hills Drive Ames IA 50010 USA
- Zoetis Lincoln NE 50010 USA
| | - M. A. Mogler
- Harrisvaccines; Inc; 1102 Southern Hills Drive Ames IA 50010 USA
| | - B. J. Russell
- Immunobiology Program; Iowa State University; Ames IA 50011 USA
| | - A. T. Loynachan
- University of Kentucky Veterinary Diagnostic Laboratory; Lexington KY 40511 USA
| | - D. L. H. Harris
- Harrisvaccines; Inc; 1102 Southern Hills Drive Ames IA 50010 USA
- Department of Animal Science; College of Agriculture; Iowa State University; Ames IA 50011 USA
| | - K. I. Kamrud
- Harrisvaccines; Inc; 1102 Southern Hills Drive Ames IA 50010 USA
- Synthetic Genomics Vaccines, Inc; La Jolla CA USA
| |
Collapse
|
41
|
B cell production of tumor necrosis factor in response to Pneumocystis murina infection in mice. Infect Immun 2013; 81:4252-60. [PMID: 24002064 DOI: 10.1128/iai.00744-13] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pneumocystis species are opportunistic fungal pathogens that induce tumor necrosis factor (TNF) production by alveolar macrophages. Here we report that B cells from the draining lymph nodes as well as lung CD4(+) T cells are important producers of TNF upon Pneumocystis murina infection. To determine the importance of B cell-derived TNF in the primary response to P. murina, we generated bone marrow chimeras whose B cells were unable to produce TNF. The lung P. murina burden at 10 days postinfection in TNF knockout (TNFKO) chimeras was significantly higher than that in wild-type (WT) chimeras, which corresponded to reduced numbers of activated CD4(+) T cells in the lungs at this early time point. Furthermore, CD4(+) T cells isolated from P. murina-infected TNFKO chimeras were unable to stimulate clearance of P. murina upon adoptive transfer to recombinase-deficient (RAG1KO) hosts. Together, these data indicate that B cell-derived TNF plays an important function in promoting CD4(+) T cell expansion and production of TNF and facilitating protection against P. murina infection.
Collapse
|
42
|
Single-dose vaccination of a recombinant parainfluenza virus 5 expressing NP from H5N1 virus provides broad immunity against influenza A viruses. J Virol 2013; 87:5985-93. [PMID: 23514880 DOI: 10.1128/jvi.00120-13] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Influenza viruses often evade host immunity via antigenic drift and shift despite previous influenza virus infection and/or vaccination. Vaccines that match circulating virus strains are needed for optimal protection. Development of a universal influenza virus vaccine providing broadly cross-protective immunity will be of great importance. The nucleoprotein (NP) of influenza A virus is highly conserved among all strains of influenza A viruses and has been explored as an antigen for developing a universal influenza virus vaccine. In this work, we generated a recombinant parainfluenza virus 5 (PIV5) containing NP from H5N1 (A/Vietnam/1203/2004), a highly pathogenic avian influenza (HPAI) virus, between HN and L (PIV5-NP-HN/L) and tested its efficacy. PIV5-NP-HN/L induced humoral and T cell responses in mice. A single inoculation of PIV5-NP-HN/L provided complete protection against lethal heterosubtypic H1N1 challenge and 50% protection against lethal H5N1 HPAI virus challenge. To improve efficacy, NP was inserted into different locations within the PIV5 genome. Recombinant PIV5 containing NP between F and SH (PIV5-NP-F/SH) or between SH and HN (PIV5-NP-SH/HN) provided better protection against H5N1 HPAI virus challenge than did PIV5-NP-HN/L. These results suggest that PIV5 expressing NP from H5N1 has the potential to be utilized as a universal influenza virus vaccine.
Collapse
|
43
|
Laidlaw BJ, Decman V, Ali MAA, Abt MC, Wolf AI, Monticelli LA, Mozdzanowska K, Angelosanto JM, Artis D, Erikson J, Wherry EJ. Cooperativity between CD8+ T cells, non-neutralizing antibodies, and alveolar macrophages is important for heterosubtypic influenza virus immunity. PLoS Pathog 2013; 9:e1003207. [PMID: 23516357 PMCID: PMC3597515 DOI: 10.1371/journal.ppat.1003207] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Accepted: 01/10/2013] [Indexed: 11/29/2022] Open
Abstract
Seasonal epidemics of influenza virus result in ∼36,000 deaths annually in the United States. Current vaccines against influenza virus elicit an antibody response specific for the envelope glycoproteins. However, high mutation rates result in the emergence of new viral serotypes, which elude neutralization by preexisting antibodies. T lymphocytes have been reported to be capable of mediating heterosubtypic protection through recognition of internal, more conserved, influenza virus proteins. Here, we demonstrate using a recombinant influenza virus expressing the LCMV GP33-41 epitope that influenza virus-specific CD8+ T cells and virus-specific non-neutralizing antibodies each are relatively ineffective at conferring heterosubtypic protective immunity alone. However, when combined virus-specific CD8 T cells and non-neutralizing antibodies cooperatively elicit robust protective immunity. This synergistic improvement in protective immunity is dependent, at least in part, on alveolar macrophages and/or other lung phagocytes. Overall, our studies suggest that an influenza vaccine capable of eliciting both CD8+ T cells and antibodies specific for highly conserved influenza proteins may be able to provide heterosubtypic protection in humans, and act as the basis for a potential “universal” vaccine. Influenza virus continues to pose a significant risk to global health and is responsible for thousands of deaths each year in the United States. This threat is largely due to the ability of the influenza virus to undergo rapid changes, allowing it to escape from immune responses elicited by previous infections or vaccinations. Certain internal determinants of the influenza virus are largely conserved across different viral strains and represent attractive targets for potential “universal” influenza vaccines. Here, we demonstrated that cross-subtype protection against the influenza virus could be obtained through simultaneous priming of multiple arms of the immune response against conserved elements of the influenza virus. These results suggest a novel strategy that could potentially form a primary component of a universal influenza vaccine capable of providing long-lasting protection.
Collapse
Affiliation(s)
- Brian J. Laidlaw
- Department of Microbiology and Institute for Immunology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Vilma Decman
- The Wistar Institute, Philadelphia, Pennsylvania, United States of America
| | - Mohammed-Alkhatim A. Ali
- Department of Microbiology and Institute for Immunology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Michael C. Abt
- Department of Microbiology and Institute for Immunology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Amaya I. Wolf
- The Wistar Institute, Philadelphia, Pennsylvania, United States of America
| | - Laurel A. Monticelli
- Department of Microbiology and Institute for Immunology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | | | - Jill M. Angelosanto
- Department of Microbiology and Institute for Immunology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - David Artis
- Department of Microbiology and Institute for Immunology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Jan Erikson
- The Wistar Institute, Philadelphia, Pennsylvania, United States of America
| | - E. John Wherry
- Department of Microbiology and Institute for Immunology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
44
|
Abstract
The desired effect of vaccination is to elicit protective immune responses against infection with pathogenic agents. An inactivated influenza vaccine is able to induce the neutralizing antibodies directed primarily against two surface antigens, hemagglutinin and neuraminidase. These two antigens undergo frequent antigenic drift and hence necessitate the annual update of a new vaccine strain. Besides the antigenic drift, the unpredictable emergence of the pandemic influenza strain, as seen in the 2009 pandemic H1N1, underscores the development of a new influenza vaccine that elicits broadly protective immunity against the diverse influenza strains. Cold-adapted live attenuated influenza vaccines (CAIVs) are advocated as a more appropriate strategy for cross-protection than inactivated vaccines and extensive studies have been conducted to address the issues in animal models. Here, we briefly describe experimental and clinical evidence for cross-protection by the CAIVs against antigenically distant strains and discuss possible explanations for cross-protective immune responses afforded by CAIVs. Potential barriers to the achievement of a universal influenza vaccine are also discussed, which will provide useful guidelines for future research on designing an ideal influenza vaccine with broad protection without causing pathogenic effects such as autoimmunity or attrition of protective immunity against homologous infection.
Collapse
Affiliation(s)
- Yo Han Jang
- Laboratory of Molecular Medicine, Department of Biotechnology, College of Life Science and Biotechnology, Seoul, Korea
| | - Baik Lin Seong
- Laboratory of Molecular Medicine, Department of Biotechnology, College of Life Science and Biotechnology, Seoul, Korea
- Translational Research Center for Protein Function Control, Yonsei University, Seoul, Korea
| |
Collapse
|
45
|
Huang B, Wang W, Li R, Wang X, Jiang T, Qi X, Gao Y, Tan W, Ruan L. Influenza A virus nucleoprotein derived from Escherichia coli or recombinant vaccinia (Tiantan) virus elicits robust cross-protection in mice. Virol J 2012; 9:322. [PMID: 23272943 PMCID: PMC3547759 DOI: 10.1186/1743-422x-9-322] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 12/12/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Immunity to conserved viral antigens is an attractive approach to develop a universal vaccine against epidemic and pandemic influenza. A nucleoprotein (NP)-based vaccine has been explored and preliminary studies have shown promise. However, no study has explored the immunity and cross-protective efficacy of recombinant NP derived from Escherichia coli compared with recombinant vaccinia virus (Tiantan). METHODS Recombinant NP protein (rNP) from influenza virus A/Jingke/30/95(H3N2) was obtained from E. coli and recombinant vaccinia virus (Tiantan) RVJ1175NP. Purified rNP without adjuvant and RVJ1175NP were used to immunize BALB/c mice intramuscularly. Humoral immune responses were detected by ELISA, while cell-mediated immune responses were measured by ex vivo IFN-γ ELISPOT and in vivo cytotoxicity assays. The cross-protective efficacy was assessed by a challenge with a heterosubtype of influenza virus A/PR/8/34(H1N1). RESULTS Our results demonstrate that a high dose (90 μg) of rNP induced NP-specific antibodies and T cell responses that were comparable with those of RVJ1175NP in mice. Importantly, the survival ratio (36, 73, and 78%) of the vaccinated mice after the influenza virus A/PR/8/34(H1N1) challenge was rNP vaccine dose-dependent (10, 30, and 90 μg, respectively), and no significant differences were observed between the rNP- and RVJ1175NP-immunized (91%) mice. CONCLUSIONS Influenza A virus NP derived from E. coli or recombinant vaccinia (Tiantan) virus elicited cross-protection against influenza virus in mice, and the immune response and protective efficacy of rNP were comparable to RVJ1175NP. These data provide a basis for the use of prokaryotically expressed NP as a candidate universal influenza vaccine.
Collapse
Affiliation(s)
- Baoying Huang
- Biotech Center for Viral Disease Emergency, National Institute for Viral Disease Control and Prevention (IVDC), Chinese Center for Disease Control and Prevention (CCDC), Changbai Road 155, Changping District, Beijing, 102206, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Humphreys IR, Clement M, Marsden M, Ladell K, McLaren JE, Smart K, Hindley JP, Bridgeman HM, van den Berg HA, Price DA, Ager A, Wooldridge L, Godkin A, Gallimore AM. Avidity of influenza-specific memory CD8+ T-cell populations decays over time compromising antiviral immunity. Eur J Immunol 2012; 42:3235-42. [PMID: 22965681 PMCID: PMC3657127 DOI: 10.1002/eji.201242575] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 07/30/2012] [Accepted: 09/06/2012] [Indexed: 11/16/2022]
Abstract
Decline of cell-mediated immunity is often attributed to decaying T-cell numbers and their distribution in peripheral organs. This study examined the hypothesis that qualitative as well as quantitative changes contribute to the declining efficacy of CD8(+) T-cell memory. Using a model of influenza virus infection, where loss of protective CD8(+) T-cell immunity was observed 6 months postinfection, we found no decline in antigen-specific T-cell numbers or migration to the site of secondary infection. There was, however, a large reduction in antigen-specific CD8(+) T-cell degranulation, cytokine secretion, and polyfunctionality. A profound loss of high-avidity T cells over time indicated that failure to confer protective immunity resulted from the inferior functional capacity of remaining low avidity cells. These data imply that high-avidity central memory T cells wane with declining antigen levels, leaving lower avidity T cells with reduced functional capabilities.
Collapse
Affiliation(s)
- Ian R Humphreys
- Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Rituximab-treated patients have a poor response to influenza vaccination. J Clin Immunol 2012; 33:388-96. [PMID: 23064976 DOI: 10.1007/s10875-012-9813-x] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 09/26/2012] [Indexed: 12/12/2022]
Abstract
The efficacy of influenza vaccination in patients treated with rituximab is a clinically important question. Rheumatology clinics are populated with patients receiving rituximab for a broad array of disorders. Although several studies have explored the efficacy of other vaccines in rituximab-treated populations, results have been conflicting. We wished to define influenza vaccine efficacy in a rituximab-treated cohort. We examined 17 evaluable subjects treated with rituximab for rheumatologic conditions. T cell subsets, B cells subsets, T cell function, and B cell function were evaluated at specific time points along with hemagglutinination inhibition titers after receiving the standard inactivated influenza vaccine. T cell subset counts were significantly different than controls but did not change with rituximab. B cells depleted in all patients but were in various stages of recovery at the time of vaccination. Influenza vaccine responsiveness was poor overall, with only 16 % of subjects having a four-fold increase in titer. Pre-existing titers were retained throughout the study, however. The ability to respond to the influenza vaccine appeared to be related to the degree of B cell recovery at the time of vaccination. This study emphasizes that antibody responses to vaccine are impaired in subjects treated with rituximab and supports the concept that B cell recovery influences influenza vaccine responsiveness.
Collapse
|
48
|
Haynes L, Szaba FM, Eaton SM, Kummer LW, Lanthier PA, Petell AH, Duso DK, Luo D, Lin JS, Lefebvre JS, Randall TD, Johnson LL, Kohlmeier JE, Woodland DL, Smiley ST. Immunity to the conserved influenza nucleoprotein reduces susceptibility to secondary bacterial infections. THE JOURNAL OF IMMUNOLOGY 2012; 189:4921-9. [PMID: 23028058 DOI: 10.4049/jimmunol.1201916] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Influenza causes >250,000 deaths annually in the industrialized world, and bacterial infections frequently cause secondary illnesses during influenza outbreaks, including pneumonia, bronchitis, sinusitis, and otitis media. In this study, we demonstrate that cross-reactive immunity to mismatched influenza strains can reduce susceptibility to secondary bacterial infections, even though this fails to prevent influenza infection. Specifically, infecting mice with H3N2 influenza before challenging with mismatched H1N1 influenza reduces susceptibility to either Gram-positive Streptococcus pneumoniae or Gram-negative Klebsiella pneumoniae. Vaccinating mice with the highly conserved nucleoprotein of influenza also reduces H1N1-induced susceptibility to lethal bacterial infections. Both T cells and Abs contribute to defense against influenza-induced bacterial diseases; influenza cross-reactive T cells reduce viral titers, whereas Abs to nucleoprotein suppress induction of inflammation in the lung. These findings suggest that nonneutralizing influenza vaccines that fail to prevent influenza infection may nevertheless protect the public from secondary bacterial diseases when neutralizing vaccines are not available.
Collapse
|
49
|
van Riet E, Ainai A, Suzuki T, Hasegawa H. Mucosal IgA responses in influenza virus infections; thoughts for vaccine design. Vaccine 2012; 30:5893-900. [DOI: 10.1016/j.vaccine.2012.04.109] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Accepted: 04/20/2012] [Indexed: 10/28/2022]
|
50
|
McKinstry KK, Strutt TM, Kuang Y, Brown DM, Sell S, Dutton RW, Swain SL. Memory CD4+ T cells protect against influenza through multiple synergizing mechanisms. J Clin Invest 2012; 122:2847-56. [PMID: 22820287 DOI: 10.1172/jci63689] [Citation(s) in RCA: 170] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Accepted: 06/07/2012] [Indexed: 01/25/2023] Open
Abstract
Memory CD4+ T cells combat viral infection and contribute to protective immune responses through multiple mechanisms, but how these pathways interact is unclear. We found that several pathways involving memory CD4+ T cells act together to effectively clear influenza A virus (IAV) in otherwise unprimed mice. Memory CD4+ T cell protection was enhanced through synergy with naive B cells or CD8+ T cells and maximized when both were present. However, memory CD4+ T cells protected against lower viral doses independently of other lymphocytes through production of IFN-γ. Moreover, memory CD4+ T cells selected for epitope-specific viral escape mutants via a perforin-dependent pathway. By deconstructing protective immunity mediated by memory CD4+ T cells, we demonstrated that this population simultaneously acts through multiple pathways to provide a high level of protection that ensures eradication of rapidly mutating pathogens such as IAV. This redundancy indicates the need for reductionist approaches for delineating the individual mechanisms of protection mediated by memory CD4+ T cells responding to pathogens.
Collapse
Affiliation(s)
- K Kai McKinstry
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01655, USA.
| | | | | | | | | | | | | |
Collapse
|