1
|
Mathew JKK, Gaikwad P, Pandian RMK, Rebekah G, Rabi S. Relation of Langerhans cell size to buccal carcinoma. Biotech Histochem 2024; 99:84-91. [PMID: 38293759 DOI: 10.1080/10520295.2024.2305499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024] Open
Abstract
Oral cancer decreases quality of life despite timely medical management. The carcinogens in tobacco products and their role in tumorigenesis are well documented. Langerhans cells (LCs) are a subset of antigen-presenting cells (APCs) that monitor the tumor microenvironment and engulf carcinogens and foreign bodies. We investigated the distribution and size of LCs and their relation to the mode of tobacco consumption and clinical outcome in patients with buccal carcinoma. We recruited patients with oral cancer who were scheduled for tumor excision and men with urethral stricture undergoing substitution urethroplasty using buccal mucosa. Normal and tumor-adjacent tissues were stained with CD1a antibody. The distribution and mean diameter of 100 LCs/patient were determined. We found significantly smaller LCs in patients who chewed only tobacco compared to those who consumed tobacco by other means. The size of LCs decreased significantly with progressive stages of malignant disease. We found that patients with larger LCs survived longer than those with smaller LCs during an average follow-up of 24 months. We suggest a relation between the size of LCs and clinical outcomes in patients with buccal carcinoma.
Collapse
Affiliation(s)
| | - Pranay Gaikwad
- Department of General Surgery Unit I, Christian Medical College, Vellore, India
| | | | - Grace Rebekah
- Department of Biostatistics, Christian Medical College, Vellore, India
| | - Suganthy Rabi
- Department of Anatomy, Christian Medical College, Vellore, India
| |
Collapse
|
2
|
Chen J, Wang X, Schmalen A, Haines S, Wolff M, Ma H, Zhang H, Stoleriu MG, Nowak J, Nakayama M, Bueno M, Brands J, Mora AL, Lee JS, Krauss-Etschmann S, Dmitrieva A, Frankenberger M, Hofer TP, Noessner E, Moosmann A, Behr J, Milger K, Deeg CA, Staab-Weijnitz CA, Hauck SM, Adler H, Goldmann T, Gaede KI, Behrends J, Kammerl IE, Meiners S. Antiviral CD8 + T-cell immune responses are impaired by cigarette smoke and in COPD. Eur Respir J 2023; 62:2201374. [PMID: 37385655 PMCID: PMC10397470 DOI: 10.1183/13993003.01374-2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 05/24/2023] [Indexed: 07/01/2023]
Abstract
BACKGROUND Virus infections drive COPD exacerbations and progression. Antiviral immunity centres on the activation of virus-specific CD8+ T-cells by viral epitopes presented on major histocompatibility complex (MHC) class I molecules of infected cells. These epitopes are generated by the immunoproteasome, a specialised intracellular protein degradation machine, which is induced by antiviral cytokines in infected cells. METHODS We analysed the effects of cigarette smoke on cytokine- and virus-mediated induction of the immunoproteasome in vitro, ex vivo and in vivo using RNA and Western blot analyses. CD8+ T-cell activation was determined in co-culture assays with cigarette smoke-exposed influenza A virus (IAV)-infected cells. Mass-spectrometry-based analysis of MHC class I-bound peptides uncovered the effects of cigarette smoke on inflammatory antigen presentation in lung cells. IAV-specific CD8+ T-cell numbers were determined in patients' peripheral blood using tetramer technology. RESULTS Cigarette smoke impaired the induction of the immunoproteasome by cytokine signalling and viral infection in lung cells in vitro, ex vivo and in vivo. In addition, cigarette smoke altered the peptide repertoire of antigens presented on MHC class I molecules under inflammatory conditions. Importantly, MHC class I-mediated activation of IAV-specific CD8+ T-cells was dampened by cigarette smoke. COPD patients exhibited reduced numbers of circulating IAV-specific CD8+ T-cells compared to healthy controls and asthmatics. CONCLUSION Our data indicate that cigarette smoke interferes with MHC class I antigen generation and presentation and thereby contributes to impaired activation of CD8+ T-cells upon virus infection. This adds important mechanistic insight on how cigarette smoke mediates increased susceptibility of smokers and COPD patients to viral infections.
Collapse
Affiliation(s)
- Jie Chen
- Institute of Lung Health and Immunity and Comprehensive Pneumology Center with the CPC-M bioArchive, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, China
- College of Pulmonary and Critical Care Medicine, Chinese PLA General Hospital, Beijing, China
- These authors contributed equally
| | - Xinyuan Wang
- Institute of Lung Health and Immunity and Comprehensive Pneumology Center with the CPC-M bioArchive, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
- Guangzhou Medical University, Guangzhou, China
- These authors contributed equally
| | - Adrian Schmalen
- Department of Veterinary Sciences, LMU Munich, Martinsried, Germany
- Metabolomics and Proteomics Core, Helmholtz Center Munich, Munich, Germany
| | - Sophia Haines
- Institute of Lung Health and Immunity and Comprehensive Pneumology Center with the CPC-M bioArchive, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Martin Wolff
- Institute of Experimental Medicine, Christian-Albrechts University Kiel, Kiel, Germany
| | - Huan Ma
- Institute of Experimental Medicine, Christian-Albrechts University Kiel, Kiel, Germany
| | - Huabin Zhang
- Neurosurgery Department, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Mircea Gabriel Stoleriu
- Institute of Lung Health and Immunity and Comprehensive Pneumology Center with the CPC-M bioArchive, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
- Division of Thoracic Surgery Munich, University Clinic of Ludwig-Maximilians-University of Munich (LMU), Munich, Germany
- Asklepios Pulmonary Hospital, Gauting, Germany
| | - Johannes Nowak
- Institute of Lung Health and Immunity and Comprehensive Pneumology Center with the CPC-M bioArchive, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Misako Nakayama
- Institute of Lung Health and Immunity and Comprehensive Pneumology Center with the CPC-M bioArchive, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Marta Bueno
- Division of Pulmonary and Critical Care Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Judith Brands
- Division of Pulmonary and Critical Care Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ana L Mora
- Division of Pulmonary and Critical Care Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Davis Heart Lung Institute, Ohio State University, Columbus, OH, USA
| | - Janet S Lee
- Division of Pulmonary and Critical Care Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | | | - Anna Dmitrieva
- Institute of Asthma and Allergy Prevention, Helmholtz Center Munich, Member of the German Center of Lung Research (DZL), Munich, Germany
- Walther Straub Institute of Pharmacology and Toxicology, Ludwig-Maximilians-University Munich, Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Marion Frankenberger
- Institute of Lung Health and Immunity and Comprehensive Pneumology Center with the CPC-M bioArchive, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Thomas P Hofer
- Immunoanalytics - Working Group Tissue Control of Immunocytes, Helmholtz Center Munich, Munich, Germany
| | - Elfriede Noessner
- Immunoanalytics - Working Group Tissue Control of Immunocytes, Helmholtz Center Munich, Munich, Germany
| | - Andreas Moosmann
- DZIF Group Host Control of Viral Latency and Reactivation, Department of Medicine III, LMU-Klinikum, Munich, Germany
- DZIF - German Center for Infection Research, Munich, Germany
| | - Jürgen Behr
- Department of Medicine V, University Hospital, LMU Munich, Comprehensive Pneumology Center, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Katrin Milger
- Department of Medicine V, University Hospital, LMU Munich, Comprehensive Pneumology Center, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Cornelia A Deeg
- Department of Veterinary Sciences, LMU Munich, Martinsried, Germany
| | - Claudia A Staab-Weijnitz
- Institute of Lung Health and Immunity and Comprehensive Pneumology Center with the CPC-M bioArchive, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Stefanie M Hauck
- Metabolomics and Proteomics Core, Helmholtz Center Munich, Munich, Germany
| | - Heiko Adler
- Institute of Asthma and Allergy Prevention, Helmholtz Center Munich, Member of the German Center of Lung Research (DZL), Munich, Germany
- Walther Straub Institute of Pharmacology and Toxicology, Ludwig-Maximilians-University Munich, Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Torsten Goldmann
- Histology, Research Center Borstel, Leibniz Lung Center, Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Borstel, Germany
| | - Karoline I Gaede
- BioMaterialBank North, Research Center Borstel, Leibniz Lung Center, Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Popgen 2.0 Network, (P2N), Borstel, Germany
| | - Jochen Behrends
- Core Facility Fluorescence Cytometry, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Ilona E Kammerl
- Institute of Lung Health and Immunity and Comprehensive Pneumology Center with the CPC-M bioArchive, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
- These authors contributed equally
| | - Silke Meiners
- Institute of Lung Health and Immunity and Comprehensive Pneumology Center with the CPC-M bioArchive, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
- Institute of Experimental Medicine, Christian-Albrechts University Kiel, Kiel, Germany
- Research Center Borstel, Leibniz Lung Center, Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Borstel, Germany
- These authors contributed equally
| |
Collapse
|
3
|
Bieber K, Hundt JE, Yu X, Ehlers M, Petersen F, Karsten CM, Köhl J, Kridin K, Kalies K, Kasprick A, Goletz S, Humrich JY, Manz RA, Künstner A, Hammers CM, Akbarzadeh R, Busch H, Sadik CD, Lange T, Grasshoff H, Hackel AM, Erdmann J, König I, Raasch W, Becker M, Kerstein-Stähle A, Lamprecht P, Riemekasten G, Schmidt E, Ludwig RJ. Autoimmune pre-disease. Autoimmun Rev 2023; 22:103236. [PMID: 36436750 DOI: 10.1016/j.autrev.2022.103236] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 11/17/2022] [Indexed: 11/27/2022]
Abstract
Approximately 5% of the world-wide population is affected by autoimmune diseases. Overall, autoimmune diseases are still difficult to treat, impose a high burden on patients, and have a significant economic impact. Like other complex diseases, e.g., cancer, autoimmune diseases develop over several years. Decisive steps in the development of autoimmune diseases are (i) the development of autoantigen-specific lymphocytes and (often) autoantibodies and (ii) potentially clinical disease manifestation at a later stage. However, not all healthy individuals with autoantibodies develop disease manifestations. Identifying autoantibody-positive healthy individuals and monitoring and inhibiting their switch to inflammatory autoimmune disease conditions are currently in their infancy. The switch from harmless to inflammatory autoantigen-specific T and B-cell and autoantibody responses seems to be the hallmark for the decisive factor in inflammatory autoimmune disease conditions. Accordingly, biomarkers allowing us to predict this progression would have a significant impact. Several factors, such as genetics and the environment, especially diet, smoking, exposure to pollutants, infections, stress, and shift work, might influence the progression from harmless to inflammatory autoimmune conditions. To inspire research directed at defining and ultimately targeting autoimmune predisease, here, we review published evidence underlying the progression from health to autoimmune predisease and ultimately to clinically manifest inflammatory autoimmune disease, addressing the following 3 questions: (i) what is the current status, (ii) what is missing, (iii) and what are the future perspectives for defining and modulating autoimmune predisease.
Collapse
Affiliation(s)
- Katja Bieber
- Lübeck Institute of Experimental Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Germany
| | - Jennifer E Hundt
- Lübeck Institute of Experimental Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Germany
| | - Xinhua Yu
- Priority Area Chronic Lung Diseases, Research Center Borstel, Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Borstel, Germany
| | - Marc Ehlers
- Institute of Nutritional Medicine, University of Lübeck and University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Frank Petersen
- Priority Area Chronic Lung Diseases, Research Center Borstel, Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Borstel, Germany
| | - Christian M Karsten
- Institute for Systemic Inflammation Research, University of Lübeck, 23562 Lübeck, Germany
| | - Jörg Köhl
- Institute for Systemic Inflammation Research, University of Lübeck, 23562 Lübeck, Germany; Division of Immunobiology, Cincinnati Children's Hospital and University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Khalaf Kridin
- Lübeck Institute of Experimental Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Germany; Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel; Unit of Dermatology and Skin Research Laboratory, Baruch Padeh Medical Center, Poriya, Israel
| | - Kathrin Kalies
- Institute of Anatomy, University of Lübeck, Lübeck, Germany
| | - Anika Kasprick
- Lübeck Institute of Experimental Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Germany
| | - Stephanie Goletz
- Lübeck Institute of Experimental Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Germany
| | - Jens Y Humrich
- Department of Rheumatology and Clinical Immunology, University of Lübeck, Lübeck, Germany
| | - Rudolf A Manz
- Institute for Systemic Inflammation Research, University of Lübeck, 23562 Lübeck, Germany
| | - Axel Künstner
- Lübeck Institute of Experimental Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Germany
| | - Christoph M Hammers
- Lübeck Institute of Experimental Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Germany
| | - Reza Akbarzadeh
- Department of Rheumatology and Clinical Immunology, University of Lübeck, Lübeck, Germany
| | - Hauke Busch
- Lübeck Institute of Experimental Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Germany
| | | | - Tanja Lange
- Department of Rheumatology and Clinical Immunology, University of Lübeck, Lübeck, Germany
| | - Hanna Grasshoff
- Department of Rheumatology and Clinical Immunology, University of Lübeck, Lübeck, Germany
| | - Alexander M Hackel
- Department of Rheumatology and Clinical Immunology, University of Lübeck, Lübeck, Germany
| | - Jeanette Erdmann
- Institute of Medical Biometry and Statistics, University of Lübeck, Lübeck, Germany
| | - Inke König
- Institute for Cardiogenetics, University of Lübeck, Lübeck, Germany
| | - Walter Raasch
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
| | - Mareike Becker
- Department of Dermatology, University of Lübeck, Lübeck, Germany
| | - Anja Kerstein-Stähle
- Department of Rheumatology and Clinical Immunology, University of Lübeck, Lübeck, Germany
| | - Peter Lamprecht
- Department of Rheumatology and Clinical Immunology, University of Lübeck, Lübeck, Germany
| | - Gabriela Riemekasten
- Department of Rheumatology and Clinical Immunology, University of Lübeck, Lübeck, Germany
| | - Enno Schmidt
- Lübeck Institute of Experimental Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Germany; Department of Dermatology, University of Lübeck, Lübeck, Germany
| | - Ralf J Ludwig
- Lübeck Institute of Experimental Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Germany.
| |
Collapse
|
4
|
Zhang H, Chen B, Waliullah ASM, Aramaki S, Ping Y, Takanashi Y, Zhang C, Zhai Q, Yan J, Oyama S, Kahyo T, Setou M. A New Potential Therapeutic Target for Cancer in Ubiquitin-Like Proteins-UBL3. Int J Mol Sci 2023; 24:ijms24021231. [PMID: 36674743 PMCID: PMC9863382 DOI: 10.3390/ijms24021231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/31/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Ubiquitin-like proteins (Ubls) are involved in a variety of biological processes through the modification of proteins. Dysregulation of Ubl modifications is associated with various diseases, especially cancer. Ubiquitin-like protein 3 (UBL3), a type of Ubl, was revealed to be a key factor in the process of small extracellular vesicle (sEV) protein sorting and major histocompatibility complex class II ubiquitination. A variety of sEV proteins that affects cancer properties has been found to interact with UBL3. An increasing number of studies has implied that UBL3 expression affects cancer cell growth and cancer prognosis. In this review, we provide an overview of the relationship between various Ubls and cancers. We mainly introduce UBL3 and its functions and summarize the current findings of UBL3 and examine its potential as a therapeutic target in cancers.
Collapse
Affiliation(s)
- Hengsen Zhang
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-Ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Bin Chen
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-Ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - A. S. M. Waliullah
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-Ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Shuhei Aramaki
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-Ku, Hamamatsu, Shizuoka 431-3192, Japan
- Department of Radiation Oncology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-Ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Yashuang Ping
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-Ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Yusuke Takanashi
- First Department of Surgery, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-Ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Chi Zhang
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-Ku, Hamamatsu, Shizuoka 431-3192, Japan
- Department of Systems Molecular Anatomy, Institute for Medical Photonics Research, Preeminent Medical Photonics, Education & Research Center, 1-20-1 Handayama, Higashi-Ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Qing Zhai
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-Ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Jing Yan
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-Ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Soho Oyama
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-Ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Tomoaki Kahyo
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-Ku, Hamamatsu, Shizuoka 431-3192, Japan
- International Mass Imaging Center, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-Ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Mitsutoshi Setou
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-Ku, Hamamatsu, Shizuoka 431-3192, Japan
- Department of Systems Molecular Anatomy, Institute for Medical Photonics Research, Preeminent Medical Photonics, Education & Research Center, 1-20-1 Handayama, Higashi-Ku, Hamamatsu, Shizuoka 431-3192, Japan
- International Mass Imaging Center, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-Ku, Hamamatsu, Shizuoka 431-3192, Japan
- Correspondence: ; Tel.: +81-053-435-2086; Fax: +81-053-435-2468
| |
Collapse
|
5
|
Corke LK, Li JJN, Leighl NB, Eng L. Tobacco Use and Response to Immune Checkpoint Inhibitor Therapy in Non-Small Cell Lung Cancer. Curr Oncol 2022; 29:6260-6276. [PMID: 36135061 PMCID: PMC9498279 DOI: 10.3390/curroncol29090492] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/24/2022] [Accepted: 08/24/2022] [Indexed: 11/17/2022] Open
Abstract
Tobacco is a known risk factor for lung cancer, and continued tobacco use is associated with poorer outcomes across multiple lung cancer treatment modalities including surgery, chemotherapy and radiation therapy. Less is known about the association of tobacco use and outcomes with immune checkpoint inhibitors (ICIs), which are becoming an important part of the treatment landscape in lung cancer, both in metastatic and curative settings. We reviewed the literature on the association of tobacco and tumor biology as it relates to immunotherapy. We also reviewed the association of tobacco use on outcomes among phase III randomized clinical trials involving ICIs in non-small cell lung cancer (NSCLC). We identified that patients with a smoking history may have a greater benefit with ICI treatment compared to never smokers in both treatment-naïve (HR 0.82, 95% CI 0.69-0.97, vs. HR 1.06, 95% CI 0.81-1.38) and pre-treated (HR 0.79, 95% CI 0.70-0.90 vs. 1.03, 95% CI 0.74-1.43) settings. In trials where smoking status was further defined, ex-smokers appear to demonstrate greater benefit with ICI therapy compared to current smokers (HR 0.78, 95% CI 0.59-1.01 vs. 0.91, 95% CI 0.72-1.14). We conclude by offering our perspective on future directions in this area of research, including implementation of standardized collection and analysis of tobacco use in clinical trials involving ICI therapy in lung cancer and other disease sites, and also evaluating how tobacco may affect toxicities related to ICI therapy. Based on our review, we believe that a patient's history of tobacco smoking does have a role to play in guiding treatment decision making in patients with lung cancer.
Collapse
Affiliation(s)
- Lucy K. Corke
- Division of Medical Oncology and Hematology, Department of Medicine, Princess Margaret Cancer Centre, University Health Network Toronto, Toronto, ON M5G 2C1, Canada
- Division of Medical Oncology, Department of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Janice J. N. Li
- Division of Medical Oncology and Hematology, Department of Medicine, Princess Margaret Cancer Centre, University Health Network Toronto, Toronto, ON M5G 2C1, Canada
- Division of Medical Oncology, Department of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Natasha B. Leighl
- Division of Medical Oncology and Hematology, Department of Medicine, Princess Margaret Cancer Centre, University Health Network Toronto, Toronto, ON M5G 2C1, Canada
- Division of Medical Oncology, Department of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Lawson Eng
- Division of Medical Oncology and Hematology, Department of Medicine, Princess Margaret Cancer Centre, University Health Network Toronto, Toronto, ON M5G 2C1, Canada
- Division of Medical Oncology, Department of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
6
|
Ho J, Koshibu K, Xia W, Luettich K, Kondylis A, Garcia L, Phillips B, Peitsch M, Hoeng J. Effects of cigarette smoke exposure on a mouse model of multiple sclerosis. Toxicol Rep 2022; 9:597-610. [PMID: 35392156 PMCID: PMC8980708 DOI: 10.1016/j.toxrep.2022.03.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 02/06/2022] [Accepted: 03/26/2022] [Indexed: 10/31/2022] Open
Abstract
Multiple sclerosis (MS) is an inflammatory autoimmune disease associated with genetic and environmental factors. Cigarette smoking is harmful to health and may be one of the risk factors for MS. However, there have been no systematic investigations under controlled experimental conditions linking cigarette smoke (CS) and MS. The present study is the first inhalation study to correlate the pre-clinical and pathological manifestations affected by different doses of CS exposure in a mouse experimental autoimmune encephalomyelitis (EAE) model. Female C57BL/6 mice were whole-body exposed to either fresh air (sham) or three concentrations of CS from a reference cigarette (3R4F) for 2 weeks before and 4 weeks after EAE induction. The effects of exposure on body weight, clinical symptoms, spinal cord pathology, and serum biochemicals were then assessed. Exposure to low and medium concentrations of CS exacerbated the severity of symptoms and spinal cord pathology, while the high concentration had no effect relative to sham exposure in mice with EAE. Interestingly, the clinical chemistry parameters for metabolic profile as well as liver and renal function (e.g. triglycerides and creatinine levels, alkaline phosphatase activity) were lower in these mice than in naïve controls. Although the mouse EAE model does not fully recapitulate the pathology or symptoms of MS in humans, these findings largely corroborate previous epidemiological findings that exposure to CS can worsen the symptoms and pathology of MS. Furthermore, the study newly highlights the possible correlation of clinical chemistry findings such as metabolism and liver and renal function between MS patients and EAE mice.
Collapse
Key Words
- AAALAC, Assessment and Accreditation of Laboratory Animal Care
- BBB, Blood-brain barrier
- CFA, Freund’s complete adjuvant
- CNS, Central nervous system
- CO, Carbon monoxide
- CS, Cigarette smoke
- Cigarette smoke
- Clinical chemistry
- DAPI, 4′,6-diamidino-2-phenylindole
- EAE, Experimental autoimmune encephalomyelitis
- Experimental autoimmune encephalomyelitis
- GAM, generalized additive model
- IACUC, Institutional Animal Care and Use Committee
- ISO, International Organization for Standardization
- Inhalation
- MOG, Myelin oligodendrocyte glycoprotein
- MS, Multiple sclerosis
- Multiple sclerosis
- OCT, Optimal cutting temperature
- PFA, Paraformaldehyde
- PMI, Philip Morris International
- PTX, Pertussis toxin
- QC, Quality control
- STAT3, signal transducer and activator of transcription 3
- TPM, Total particulate matter
- US, United States
- eGFR, estimated glomerular filtration rate
- nAChR, nicotinic acetylcholine receptors
- s.c., Subcutaneous
Collapse
Affiliation(s)
- Jenny Ho
- PMI R&D, Philip Morris International Research Laboratories Pte. Ltd., Science Park II, 117406, Singapore
| | - Kyoko Koshibu
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Wenhao Xia
- PMI R&D, Philip Morris International Research Laboratories Pte. Ltd., Science Park II, 117406, Singapore
| | - Karsta Luettich
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Athanasios Kondylis
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Llenalia Garcia
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Blaine Phillips
- PMI R&D, Philip Morris International Research Laboratories Pte. Ltd., Science Park II, 117406, Singapore
| | - Manuel Peitsch
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Julia Hoeng
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| |
Collapse
|
7
|
Barbieri S, Schuch LF, Cascaes AM, Gomes APN, Tarquinio SBC, Mesquita RA, Vasconcelos ACU, Etges A. Does smoking habit affect dendritic cell expression in oral squamous cell carcinoma? Braz Oral Res 2022; 36:e044. [PMID: 35293509 DOI: 10.1590/1807-3107bor-2022.vol36.0044] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 11/03/2021] [Indexed: 11/22/2022] Open
Abstract
The aim of this study was to determine the presence of immature CD1a+ and mature CD83+ dendritic cells in oral squamous cell carcinoma, to compare immunoreactivity between smokers and nonsmokers, and to correlate the results with histopathological grading. In this observational study, twenty-eight paraffin-embedded biopsies of oral squamous cell carcinoma were retrospectively retrieved and submitted to immunohistochemistry for immature CD1a+ and mature CD83+. Descriptive and statistical analyses were performed. The sample consisted of 18 man (64.3%) and 10 women (35.7%), with a mean age of 64.6 years in the nonsmoker group and 53.2 years in the smoker group. The tongue (11 cases, 39.2%) was the most commonly affected anatomical site, followed by gingiva (6 cases, 21.4%). Histopathological grading revealed 7 low-grade and 7 high-grade malignancy cases in each group, and no correlation with the number of positive DCs. The number of immature CD1a+ was not significantly different between smoker and nonsmoker groups, while a lower number of mature CD83+ was detected in the smoker group (p = 0.001). Smoking changes the oral immune system and decreases the ability to activate and mature dendritic cells, which may influence the development and progression of oral squamous cell carcinoma.
Collapse
Affiliation(s)
- Silene Barbieri
- Universidade Federal de Pelotas - UFPel, School of Dentistry, Diagnostic Centre for Oral Diseases, Pelotas, RS, Brazil
| | - Lauren Frenzel Schuch
- Universidade Estadual de Campinas - Unicamp, Piracicaba Dental School, Department of Oral Diagnosis, Piracicaba, SP, Brazil
| | - Andreia Morales Cascaes
- Universidade Federal de Pelotas - UFPel, School of Dentistry, Diagnostic Centre for Oral Diseases, Pelotas, RS, Brazil
| | - Ana Paula Neutzling Gomes
- Universidade Federal de Pelotas - UFPel, School of Dentistry, Diagnostic Centre for Oral Diseases, Pelotas, RS, Brazil
| | | | - Ricardo Alves Mesquita
- Universidade Federal de Minas Gerais - UFMG, School of Dentistry, Department of Oral Surgery and Pathology, Belo Horizonte, MG, Brazil
| | | | - Adriana Etges
- Universidade Federal de Pelotas - UFPel, School of Dentistry, Diagnostic Centre for Oral Diseases, Pelotas, RS, Brazil
| |
Collapse
|
8
|
Blaskovic S, Donati Y, Ruchonnet-Metrailler I, Avila Y, Schittny D, Schlepütz CM, Schittny JC, Barazzone-Argiroffo C. Early life exposure to nicotine modifies lung gene response after elastase-induced emphysema. Respir Res 2022; 23:44. [PMID: 35241086 PMCID: PMC8895880 DOI: 10.1186/s12931-022-01956-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 02/13/2022] [Indexed: 11/30/2022] Open
Abstract
Background Chronic obstructive pulmonary disease (COPD) is among the top 5 causes of mortality in the world and can develop as a consequence of genetic and/or environmental factors. Current efforts are focused on identifying early life insults and how these contribute to COPD development. In line with this, our study focuses on the influence of early life nicotine exposure and its potential impact on (a) lung pulmonary functions, and (b) elastase-induced emphysema in adulthood.
Methods To address this hypothesis, we developed a model of 2 hits, delivered at different time points: mouse pups were first exposed to nicotine/placebo in utero and during lactation, and then subsequently received elastase/placebo at the age of 11 weeks. The effect of nicotine pretreatment and elastase instillation was assessed by (a) measurement of pulmonary function at post-elastase day (ped) 21, and (b) transcriptomic profiling at ped3 and 21, and complementary protein determination. Statistical significance was determined by 3- and 2-way ANOVA for pulmonary functions, and RNAseq results were analyzed using the R project.
Results We did not observe any impact of nicotine pre- and early post-natal exposure compared to control samples on lung pulmonary functions in adulthood, as measured by FLEXIVENT technology. After elastase instillation, substantial lung damage was detected by x-ray tomography and was accompanied by loss in body weight at ped3 as well as an increase in cell numbers, inflammatory markers in BAL and lung volume at ped21. Lung functions showed a decrease in elastance and an increase in deep inflation volume and pressure volume (pv) loop area in animals with emphysema at ped21. Nicotine had no effect on elastance and deep inflation volume, but did affect the pv loop area in animals with emphysema at ped21. Extensive transcriptomic changes were induced by elastase at ped3 both in the nicotine-pretreated and the control samples, with several pathways common to both groups, such as for cell cycle, DNA adhesion and DNA damage. Nicotine pretreatment affected the number of lymphocytes present in BAL after elastase instillation and some of the complement pathway related proteins, arguing for a slight modification of the immune response, as well as changes related to general body metabolism. The majority of elastase-induced transcriptomic changes detected at ped3 had disappeared at ped21. In addition, transcriptomic profiling singled out a common gene pool that was independently activated by nicotine and elastase. Conclusions Our study reports a broad spectrum of transient transcriptomic changes in mouse emphysema and identifies nicotine as influencing the emphysema-associated immune system response. Supplementary Information The online version contains supplementary material available at 10.1186/s12931-022-01956-4.
Collapse
Affiliation(s)
- Sanja Blaskovic
- Department of Pediatrics, Gynecology and Obstetrics, Faculty of Medicine, University of Geneva, 4 rue Gabrielle-Perret-Gentil, 1211, Genève 14, Switzerland.,Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Institute of Anatomy, University of Bern, Bern, Switzerland
| | - Yves Donati
- Department of Pediatrics, Gynecology and Obstetrics, Faculty of Medicine, University of Geneva, 4 rue Gabrielle-Perret-Gentil, 1211, Genève 14, Switzerland.,Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Isabelle Ruchonnet-Metrailler
- Department of Pediatrics, Gynecology and Obstetrics, Faculty of Medicine, University of Geneva, 4 rue Gabrielle-Perret-Gentil, 1211, Genève 14, Switzerland.,Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Yannick Avila
- Department of Pediatrics, Gynecology and Obstetrics, Faculty of Medicine, University of Geneva, 4 rue Gabrielle-Perret-Gentil, 1211, Genève 14, Switzerland.,Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | | | | | | | - Constance Barazzone-Argiroffo
- Department of Pediatrics, Gynecology and Obstetrics, Faculty of Medicine, University of Geneva, 4 rue Gabrielle-Perret-Gentil, 1211, Genève 14, Switzerland. .,Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
9
|
Russell AE, Liao Z, Tkach M, Tarwater PM, Ostrowski M, Théry C, Witwer KW. Cigarette smoke-induced extracellular vesicles from dendritic cells alter T-cell activation and HIV replication. Toxicol Lett 2022; 360:33-43. [PMID: 35181468 PMCID: PMC9014967 DOI: 10.1016/j.toxlet.2022.02.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/26/2022] [Accepted: 02/12/2022] [Indexed: 10/19/2022]
Abstract
Despite decreased rates of tobacco smoking in many areas, cigarette smoking remains a major contributor to many health problems. Cigarette smoking can reduce immune system functioning while concurrently increasing inflammation. Dendritic cells in the lung exposed to cigarette smoke become stimulated and go on to activate T-cells. Extracellular vesicles (EVs) are nano-sized particles released by cells. They participate in intercellular communication by transferring functional proteins and nucleic acids to recipient cells and have been implicated in immune responses. For example, they can display MHC-peptide complexes to activate T-cells. In the current study, we sought to understand the role of cigarette smoke extract (CSE) on dendritic cell-derived EVs and their capacity to activate and differentiate T-cells. Primary human dendritic cells (iDCs) were exposed to CSE and EVs were separated and characterized. We exposed autologous primary CD4 + T-cells to iDC-EVs and observed T helper cell populations skewing towards Th1 and Th17 phenotypes. As HIV + individuals are disproportionately likely to be current smokers, we also examined the effects of iDC-EVs on acutely infected T-cells as well as on a cell model of HIV latency (ACH-2). We found that in most cases, iDC-CSE EVs tended to reduce p24 release from the acutely infected primary T-cells, albeit with great variability. We did not observe large effects of iDC-EVs or direct CSE exposure on p24 release from the ACH-2 cell line. Together, these data suggest that iDC-CSE EVs have the capacity to modulate the immune responses, in part by pushing T-cells towards Th1 and Th17 phenotypes.
Collapse
Affiliation(s)
- Ashley E Russell
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Biology, School of Science, Penn State Erie, The Behrend College, Erie, PA, United States.
| | - Zhaohao Liao
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Mercedes Tkach
- INSERM U932, Institut Curie Centre de Recherche, PSL Research University, Paris, France
| | - Patrick M Tarwater
- Department of Epidemiology, The Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, United States
| | - Matias Ostrowski
- Instituto INBIRS, Universidad de Buenos Aires-CONICET, Buenos Aires, Argentina
| | - Clotilde Théry
- INSERM U932, Institut Curie Centre de Recherche, PSL Research University, Paris, France
| | - Kenneth W Witwer
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States; The Richman Family Precision Medicine Center of Excellence in Alzheimer's Disease.
| |
Collapse
|
10
|
Qiu SL, Sun QX, Zhou JP, Tang HJ, Chen YQ, Chen FS, Feng T, He ZQ, Qin HJ, Duan MC. IL-27 mediates anti-inflammatory effect in cigarette smoke induced emphysema by negatively regulating IFN-γ producing cytotoxic CD8 + T cells in mice. Eur J Immunol 2022; 52:222-236. [PMID: 34559883 DOI: 10.1002/eji.202049076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 07/02/2021] [Accepted: 09/24/2021] [Indexed: 11/09/2022]
Abstract
Chronic airway inflammation mediated by CD8+ T lymphocytes contributes to the pathogenesis of Chronic obstructive pulmonary disease (COPD). Deciphering the fingerprint of the chronic inflammation orchestrated by CD8+ T cells may allow the development of novel approaches to COPD management. Here, the expression of IL-27 and IFN-γ+ CD8+ Tc1 cells were evaluated in patients with COPD and in cigarette smoke-exposed mice. The production of IL-27 by marrow-derived dendritic cells (mDCs) in response to cigarette smoke extract (CSE) was assessed. The role of IL-27 in IFN-γ+ CD8+ Tc1 cells was explored. We demonstrated that elevated IL-27 was accompanied by an exaggerated IFN-γ+ CD8+ Tc1 response in a smoking mouse model of emphysema. We noted that lung dendritic cells were one of the main sources of IL-27 during chronic cigarette smoke exposure. Moreover, CSE directly induced the production of IL-27 by mDCs in vitro. IL-27 negatively regulated the differentiation of IFN-γ+ CD8+ Tc1 cells isolated from cigarette smoke-exposed mice in a STAT1- and STAT3-independent manner. Systemic administration of recombinant IL-27 attenuated IFN-γ+ CD8+ Tc1 response in the late phase of cigarette smoke exposure. Our results uncovered that IL-27 negatively regulates IFN-γ+ CD8+ Tc1 response in the late stage of chronic cigarette smoke exposure, which may provide a new strategy for the anti-inflammatory treatment of smoking-related COPD/emphysema.
Collapse
Affiliation(s)
- Shi-Lin Qiu
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Guangxi Medical University, Guangxi, China
| | - Qi-Xiang Sun
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Guangxi Medical University, Guangxi, China
| | - Jian-Peng Zhou
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Guangxi Medical University, Guangxi, China
| | - Hai-Juan Tang
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Guangxi Medical University, Guangxi, China
| | - Yan-Qiong Chen
- Department of Respiratory and Critical Care Medicine, Wuming Hospital of Guangxi Medical University, Guangxi, China
| | - Fu-Shou Chen
- Department of Respiratory and Critical Care Medicine, Wuming Hospital of Guangxi Medical University, Guangxi, China
| | - Tao Feng
- Department of Respiratory and Critical Care Medicine, Wuming Hospital of Guangxi Medical University, Guangxi, China
| | - Zai-Qing He
- Department of Respiratory and Critical Care Medicine, Wuming Hospital of Guangxi Medical University, Guangxi, China
| | - Hua-Jiao Qin
- Department of Respiratory and Critical Care Medicine, Wuming Hospital of Guangxi Medical University, Guangxi, China
| | - Min-Chao Duan
- Department of Respiratory and Critical Care Medicine, Wuming Hospital of Guangxi Medical University, Guangxi, China
| |
Collapse
|
11
|
Wang G, Pan C, Cao K, Zhang J, Geng H, Wu K, Wen J, Liu C. Impacts of Cigarette Smoking on the Tumor Immune Microenvironment in Esophageal Squamous Cell Carcinoma. J Cancer 2022; 13:413-425. [PMID: 35069891 PMCID: PMC8771511 DOI: 10.7150/jca.65400] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 11/23/2021] [Indexed: 02/05/2023] Open
Abstract
Objective: Cigarette smoking is a carcinogenic factor for esophageal cancer and evidence also indicates its effects on tumor microenvironment in patients with esophageal squamous cell carcinoma (ESCC). Materials and Methods: In our study, we demonstrated nine immune infiltrating cells and markers in non-smokers and smokers of 189 non-drinking ESCC patients with multiplex fluorescent immunohistochemistry (mflHC) staining and multispectral imaging. The impacts of cigarette smoking on tumor microenvironment and patient prognosis were also analyzed. Results: Among 189 ESCC patients of non-drinker, 86 patients was current smokers, while 34 males and 59 females were non-smokers and 10 former-smokers. Among 34 male non-smokers and 83 smokers, distinct immune infiltrating cells, with increased DCs in stromal regions (P=0.033), elevated infiltration of Treg cells in intraepithelial regions (P=0.010) and reduced activate cytotoxic T lymphocytes (aCTLs) in both intraepithelial (P=0.021) and stromal regions (P=0.017), were observed in tumor specimens of smoking males, implying an immune suppressed response during cigarette smoke exposure. For smoking characters, the level of stromal tumor-associated macrophages (TAMs) infiltration was correlated with smoking year after age adjusted (rs =0.352, P=0.002). Though cigarette smoking did not alter the expression of programmed death ligand 1 (PD-L1) in epithelial cells or TAMs in tumor specimens, higher expression of PD-L1 predicted a worse survival in non-smokers but not smokers. Conclusions: Our findings indicated smoking may impair T cell-mediated immune response and supported the possible impacts of cigarette smoking in PD-L1 related research and therapy of ESCC.
Collapse
Affiliation(s)
- Geng Wang
- Department of Thoracic Surgery, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Chuqing Pan
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Kexin Cao
- Department of Preventive Medicine, Shantou University Medical College, Shantou, Guangdong, China
| | - Jingbing Zhang
- Department of Preventive Medicine, Shantou University Medical College, Shantou, Guangdong, China
| | - Hui Geng
- Department of Preventive Medicine, Shantou University Medical College, Shantou, Guangdong, China
| | - Kusheng Wu
- Department of Preventive Medicine, Shantou University Medical College, Shantou, Guangdong, China
| | - Jing Wen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Guangdong Esophageal Cancer Research Institute, Guangzhou, China
| | - Caixia Liu
- Department of Preventive Medicine, Shantou University Medical College, Shantou, Guangdong, China
- Department of Preventive Medicine, Shantou University Medical College, No.22, Xinling Road. Shantou 515041, Guangdong, People's Republic of China
| |
Collapse
|
12
|
Stähelin H, Francisco ALN, Mariano FV, Kowalski LP, Gondak R. Impact of smoking on dendritic cells in patients with oral squamous cell carcinoma. Braz Oral Res 2021; 35:e075. [PMID: 34495136 DOI: 10.1590/1807-3107bor-2021.vol35.0075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 12/12/2020] [Indexed: 11/22/2022] Open
Abstract
Smoking has been shown to alter innate and adaptive immune responses and is directly associated with the onset of oral squamous cell carcinoma (OSCC). The purpose of this study was to evaluate the effect of cigarette smoke exposure on dendritic cells (DCs) from OSCC patients. CD1a and CD83 antibodies were used to identify immature and mature DCs, respectively, by immunohistochemistry in OSCC samples of 24 smokers and 24 non-smokers. Density of DCs was calculated in intra and peritumoral areas. Clinical and microscopic findings were reviewed and analyzed for all patients. Smokers with OSCC had a lower density of intra and peritumoral DCs when compared to non-smokers. Tumors classified as moderately/poorly differentiated had lower peritumoral CD1a+ DCs than well-differentiated tumors (p < 0.001). Smoking contributed to a depletion of immature and mature DCs in the OSCC.
Collapse
Affiliation(s)
- Heron Stähelin
- Universidade Federal de Santa Catarina - UFSC, Department of Dentistry, Florianópolis, SC, Brazil
| | | | - Fernanda Viviane Mariano
- Universidade Estadual de Campinas - Unicamp, School of Medical Sciences, Department of Pathology, Campinas, SP, Brazil
| | | | - Rogério Gondak
- Universidade Federal de Santa Catarina - UFSC, Department of Pathology, Florianópolis, SC, Brazil
| |
Collapse
|
13
|
Yuan L, Deng C, Xue W, He Y, Wang T, Zhang J, Yang D, Zhou T, Wu Z, Liao Y, Zheng M, Li D, Cao L, Jia Y, Zhang W, Xiao R, Luo L, Tong X, Wu Y, Huang J, Jia W. Association between HLA alleles and Epstein-Barr virus Zta-IgA serological status in healthy males from southern China. J Gene Med 2021; 23:e3375. [PMID: 34164868 PMCID: PMC8596395 DOI: 10.1002/jgm.3375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/22/2021] [Indexed: 11/12/2022] Open
Abstract
Background Nasopharyngeal carcinoma (NPC), an Epstein–Barr virus (EBV) associated cancer, exhibits an extremely high incidence in southern Chinese. Given that human leukocyte antigen (HLA) plays critical roles in antigen presentation and relates to NPC susceptibility, it is speculated that certain HLA variants may affect EBV reactivation, which is a key pathogenic factor of NPC. Therefore, we attempted to identify HLA alleles associated with the indicator of EBV reactivation, Zta‐IgA, in healthy males from NPC endemic area. Methods HLA alleles of 1078 healthy males in southern China from the 21‐RCCP study were imputed using genome‐wide single nucleotide polymorphism data. EBV Zta‐IgA in blood samples were measured using an enzyme‐linked immunosorbent assay. Multiple logistic regression analysis was used to evaluate the effect of HLA allele on Zta‐IgA serological status and its potential joint association with smoking. The binding affinity for Zta‐peptide was predicted using NetMHCIIpan 4.0. Results HLA‐DRB1*09:01 was found to be associated with a higher risk of Zta‐IgA seropositivity (odds ratio = 1.80, 95% confidence interval = 1.32–2.45; p = 1.82 × 10−4). Compared with non‐smokers without HLA‐DRB1*09:01, the effect size increased to 2.19‐ and 3.70‐fold for the light and heavy smokers carrying HLA‐DRB1*09:01, respectively. Furthermore, HLA‐DRB1*09:01 showed a stronger binding affinity to Zta peptide than other HLA‐DRB1 alleles. Conclusions Our study highlighted the pivotal role of genetic HLA variants in EBV reactivation and the etiology of NPC. Smokers with HLA‐DRB1*09:01 have a significantly higher risk of being Zta‐IgA seropositive, which indicates the necessity of smoking cessation in certain high‐risk populations and also provide clues for further research on the etiology of NPC.
Collapse
Affiliation(s)
- Lei‐Lei Yuan
- School of Public HealthSun Yat‐sen UniversityGuangzhouChina
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhouChina
| | - Chang‐Mi Deng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhouChina
| | - Wen‐Qiong Xue
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhouChina
| | - Yong‐Qiao He
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhouChina
| | - Tong‐Min Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhouChina
| | - Jiang‐Bo Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhouChina
| | - Da‐Wei Yang
- School of Public HealthSun Yat‐sen UniversityGuangzhouChina
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhouChina
| | - Ting Zhou
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhouChina
| | - Zi‐Yi Wu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhouChina
| | - Ying Liao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhouChina
| | - Mei‐Qi Zheng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhouChina
| | - Dan‐Hua Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhouChina
| | - Lian‐Jing Cao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhouChina
| | - Yi‐Jing Jia
- School of Public HealthSun Yat‐sen UniversityGuangzhouChina
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhouChina
| | - Wen‐Li Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhouChina
| | - Ruo‐Wen Xiao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhouChina
| | - Lu‐Ting Luo
- School of Public HealthSun Yat‐sen UniversityGuangzhouChina
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhouChina
| | - Xia‐Ting Tong
- School of Public HealthSun Yat‐sen UniversityGuangzhouChina
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhouChina
| | - Yan‐Xia Wu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhouChina
| | - Jing‐Wen Huang
- School of Public HealthSun Yat‐sen UniversityGuangzhouChina
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhouChina
| | - Wei‐Hua Jia
- School of Public HealthSun Yat‐sen UniversityGuangzhouChina
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and TherapySun Yat‐sen University Cancer CenterGuangzhouChina
| |
Collapse
|
14
|
Wu W, Tian L, Zhang W, Booth JL, Ainsua-Enrich E, Kovats S, Brown BR, Metcalf JP. Long-term cigarette smoke exposure dysregulates pulmonary T cell response and IFN-γ protection to influenza virus in mouse. Respir Res 2021; 22:112. [PMID: 33879121 PMCID: PMC8056367 DOI: 10.1186/s12931-021-01713-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/12/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Influenza is a highly contagious, acute, febrile respiratory infection caused by a negative-sense, single-stranded RNA virus, which belongs in the Orthomyxoviridae family. Cigarette smoke (CS) exposure worsens influenza infection in terms of frequency and severity in both human and animal models. METHODS C57BL/6 mice with or without CS exposure for 6 weeks were inoculated intranasally with a single, non-lethal dose of the influenza A virus (IAV) A/Puerto Rico/8/1934 (PR8) strain. At 7 and 10 days after infection, lung and mediastinal lymph nodes (MLN) cells were collected to determine the numbers of total CD4 + and CD8 + T cells, and IAV-specific CD4 + and CD8 + T cells, using flow cytometry. Bronchoalveolar lavage fluid (BALF) was also collected to determine IFN-γ levels and total protein concentration. RESULTS Although long-term CS exposure suppressed early pulmonary IAV-antigen specific CD8 + and CD4 + T cell numbers and IFN-γ production in response to IAV infection on day 7 post-infection, CS enhanced numbers of these cells and IFN-γ production on day 10. The changes of total protein concentration in BALF are consistent with the changes in the IFN-γ amounts between day 7 and 10, which suggested that excessive IFN-γ impaired barrier function and caused lung injury at the later stage of infection. CONCLUSIONS Our results demonstrated that prior CS exposure caused a biphasic T cell and IFN-γ response to subsequent infection with influenza in the lung. Specifically, the number of IAV antigen-specific T cells on day 10 was greatly increased by CS exposure even though CS decreased the number of the same group of cells on day 7. The result suggested that CS affected the kinetics of the T cell response to IAV, which was suppressed at an early stage and exaggerated at a later stage. This study is the first to describe the different effect of long-term CS on T cell responses to IAV at early and late stages of infection in vivo.
Collapse
Affiliation(s)
- Wenxin Wu
- Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Oklahoma Health Sciences Center, Room 425, RP1, 800 N. Research Pkwy., Oklahoma City, OK, 73104, USA.
| | - Lili Tian
- Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Oklahoma Health Sciences Center, Room 425, RP1, 800 N. Research Pkwy., Oklahoma City, OK, 73104, USA
| | - Wei Zhang
- Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Oklahoma Health Sciences Center, Room 425, RP1, 800 N. Research Pkwy., Oklahoma City, OK, 73104, USA
| | - J Leland Booth
- Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Oklahoma Health Sciences Center, Room 425, RP1, 800 N. Research Pkwy., Oklahoma City, OK, 73104, USA
| | - Erola Ainsua-Enrich
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Susan Kovats
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Brent R Brown
- Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Oklahoma Health Sciences Center, Room 425, RP1, 800 N. Research Pkwy., Oklahoma City, OK, 73104, USA
| | - Jordan P Metcalf
- Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Oklahoma Health Sciences Center, Room 425, RP1, 800 N. Research Pkwy., Oklahoma City, OK, 73104, USA.
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Veterans Affairs Medical Center, Oklahoma City, OK, USA.
| |
Collapse
|
15
|
Serré J, Tanjeko AT, Mathyssen C, Vanherwegen AS, Heigl T, Janssen R, Verbeken E, Maes K, Vanaudenaerde B, Janssens W, Gayan-Ramirez G. Enhanced lung inflammatory response in whole-body compared to nose-only cigarette smoke-exposed mice. Respir Res 2021; 22:86. [PMID: 33731130 PMCID: PMC7968299 DOI: 10.1186/s12931-021-01680-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 03/07/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is characterized by a progressive and abnormal inflammatory response in the lungs, mainly caused by cigarette smoking. Animal models exposed to cigarette smoke (CS) are used to mimic human COPD but the use of different CS protocols makes it difficult to compare the immunological and structural consequences of using a nose-only or whole-body CS exposure system. We hypothesized that when using a standardized CS exposure protocol based on particle density and CO (carbon monoxide) levels, the whole-body CS exposure system would generate a more severe inflammatory response than the nose-only system, due to possible sensitization by uptake of CS-components through the skin or via grooming. METHODS In this study focusing on early COPD, mice were exposed twice daily 5 days a week to CS either with a nose-only or whole-body exposure system for 14 weeks to assess lung function, remodeling and inflammation. RESULTS At sacrifice, serum cotinine levels were significantly higher in the whole-body (5.3 (2.3-6.9) ng/ml) compared to the nose-only ((2.0 (1.8-2.5) ng/ml) exposure system and controls (1.0 (0.9-1.0) ng/ml). Both CS exposure systems induced a similar degree of lung function impairment, while inflammation was more severe in whole body exposure system. Slightly more bronchial epithelial damage, mucus and airspace enlargement were observed with the nose-only exposure system. More lymphocytes were present in the bronchoalveolar lavage (BAL) and lymph nodes of the whole-body exposure system while enhanced IgA and IgG production was found in BAL and to a lesser extent in serum with the nose-only exposure system. CONCLUSION The current standardized CS-exposure protocol resulted in a higher internal load of serum cotinine in the whole-body exposure system, which was associated with more inflammation. However, both exposure systems resulted in a similar lung function impairment. Data also highlighted differences between the two models in terms of lung inflammation and remodelling, and potential sensitization to CS. Researchers should be aware of these differences when designing their future studies for an early intervention in COPD.
Collapse
Affiliation(s)
- Jef Serré
- Laboratory of Respiratory Diseases and Thoracic Surgery, Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, Herestraat 49, O&NI bis, box 706, 3000, Leuven, Belgium
| | - Ajime Tom Tanjeko
- Laboratory of Respiratory Diseases and Thoracic Surgery, Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, Herestraat 49, O&NI bis, box 706, 3000, Leuven, Belgium
| | - Carolien Mathyssen
- Laboratory of Respiratory Diseases and Thoracic Surgery, Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, Herestraat 49, O&NI bis, box 706, 3000, Leuven, Belgium
| | - An-Sofie Vanherwegen
- Laboratory of Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, Leuven, Belgium
| | - Tobias Heigl
- Laboratory of Respiratory Diseases and Thoracic Surgery, Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, Herestraat 49, O&NI bis, box 706, 3000, Leuven, Belgium
| | - Rob Janssen
- Department of Pulmonary Medicine, Canisius-Wilhelmina Hospital, Nijmegen, The Netherlands
| | - Eric Verbeken
- Translational Cell & Tissue Research, Department of Imaging & Pathology, KU Leuven, Leuven, Belgium
| | - Karen Maes
- Laboratory of Respiratory Diseases and Thoracic Surgery, Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, Herestraat 49, O&NI bis, box 706, 3000, Leuven, Belgium
| | - Bart Vanaudenaerde
- Laboratory of Respiratory Diseases and Thoracic Surgery, Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, Herestraat 49, O&NI bis, box 706, 3000, Leuven, Belgium
| | - Wim Janssens
- Laboratory of Respiratory Diseases and Thoracic Surgery, Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, Herestraat 49, O&NI bis, box 706, 3000, Leuven, Belgium
| | - Ghislaine Gayan-Ramirez
- Laboratory of Respiratory Diseases and Thoracic Surgery, Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, Herestraat 49, O&NI bis, box 706, 3000, Leuven, Belgium.
| |
Collapse
|
16
|
Scharf P, da Rocha GHO, Sandri S, Heluany CS, Pedreira Filho WR, Farsky SHP. Immunotoxic mechanisms of cigarette smoke and heat-not-burn tobacco vapor on Jurkat T cell functions. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115863. [PMID: 33126161 DOI: 10.1016/j.envpol.2020.115863] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/29/2020] [Accepted: 10/14/2020] [Indexed: 06/11/2023]
Abstract
Cigarette smoke (CS) affects immune functions, leading to severe outcomes in smokers. Robust evidence addresses the immunotoxic effects of combustible tobacco products. As heat-not-burn tobacco products (HNBT) vaporize lower levels of combustible products, we here compared the effects of cigarette smoke (CS) and HNBT vapor on Jurkat T cells. Cells were exposed to air, conventional cigarettes or heatsticks of HNBT for 30 min and were stimulated or not with phorbol myristate acetate (PMA). Cell viability, proliferation, reactive oxygen species (ROS) production, 8-OHdG, MAP-kinases and nuclear factor κB (NFκB) activation and metallothionein expression (MTs) were assessed by flow cytometry; nitric oxide (NO) and cytokine levels were measured by Griess reaction and ELISA, respectively. Levels of metals in the exposure chambers were quantified by inductively coupled plasma mass spectrometry. MT expressions were quantified by immunohistochemistry in the lungs and liver of C57Bl/6 mice exposed to CS, HNBT or air (1 h, twice a day for five days: via inhalation). While both CS and HBNT exposures increased cell death, CS led to a higher number of necrotic cells, increased the production of ROS, NO, inflammatory cytokines and MTs when compared to HNBT-exposed cells, and led to a higher expression of MTs in mice. CS released higher amounts of metals. CS and HNBT exposures decreased PMA-induced interleukin-2 (IL-2) secretion and impaired Jurkat proliferation, effects also seen in cells exposed to nicotine. Although HNBT vapor does not activate T cells as CS does, exposure to both HNBT and CS suppressed proliferation and IL-2 release, a pivotal cytokine involved with T cell proliferation and tolerance, and this effect may be related to nicotine content in both products.
Collapse
Affiliation(s)
- Pablo Scharf
- Department of Clinical & Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, SP, Brazil
| | - Gustavo H O da Rocha
- Department of Clinical & Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, SP, Brazil
| | - Silvana Sandri
- Department of Clinical & Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, SP, Brazil
| | - Cintia S Heluany
- Department of Clinical & Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, SP, Brazil
| | - Walter R Pedreira Filho
- Fundação Jorge Duprat Figueiredo de Segurança e Medicina do Trabalho, Ministério do Trabalho e Previdência Social, Sao Paulo, SP, Brazil
| | - Sandra H P Farsky
- Department of Clinical & Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, SP, Brazil.
| |
Collapse
|
17
|
Danov O, Wolff M, Bartel S, Böhlen S, Obernolte H, Wronski S, Jonigk D, Hammer B, Kovacevic D, Reuter S, Krauss-Etschmann S, Sewald K. Cigarette Smoke Affects Dendritic Cell Populations, Epithelial Barrier Function, and the Immune Response to Viral Infection With H1N1. Front Med (Lausanne) 2020; 7:571003. [PMID: 33240904 PMCID: PMC7678748 DOI: 10.3389/fmed.2020.571003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 08/25/2020] [Indexed: 01/21/2023] Open
Abstract
Smokers with apparently “healthy” lungs suffer from more severe and frequent viral respiratory infections, but the mechanisms underlying this observation are still unclear. Epithelial cells and dendritic cells (DC) form the first line of defense against inhaled noxes such as smoke or viruses. We therefore aimed to obtain insight into how cigarette smoke affects DCs and epithelial cells and how this influences the response to viral infection. Female C57BL/6J mice were exposed to cigarette smoke (CS) for 1 h daily for 24 days and then challenged i.n. with the viral mimic and Toll-like receptor 3 (TLR3) ligand poly (I:C) after the last exposure. DC subpopulations were analyzed 24 h later in whole lung homogenates by flow cytometry. Calu-3 cells or human precision-cut lung slices (PCLS) cultured at air-liquid interface were exposed to CS or air and subsequently inoculated with influenza H1N1. At 48 h post infection cytokines were analyzed by multiplex technology. Cytotoxic effects were measured by release of lactate dehydrogenase (LDH) and confocal imaging. In Calu-3 cells the trans-epithelial electrical resistance (TEER) was assessed. Smoke exposure of mice increased numbers of inflammatory and plasmacytoid DCs in lung tissue. Additional poly (I:C) challenge further increased the population of inflammatory DCs and conventional DCs, especially CD11b+ cDCs. Smoke exposure led to a loss of the barrier function in Calu-3 cells, which was further exaggerated by additional influenza H1N1 infection. Influenza H1N1-induced secretion of antiviral cytokines (IFN-α2a, IFN-λ, interferon-γ-induced protein 10 [IP-10]), pro-inflammatory cytokine IL-6, as well as T cell-associated cytokines (e.g., I-TAC) were completely suppressed in both Calu-3 cells and human PCLS after smoke exposure. In summary, cigarette smoke exposure increased the number of inflammatory DCs in the lung and disrupted epithelial barrier functions, both of which was further enhanced by viral stimulation. Additionally, the antiviral immune response to influenza H1N1 was strongly suppressed by smoke. These data suggest that smoke impairs protective innate mechanisms in the lung, which could be responsible for the increased susceptibility to viral infections in “healthy” smokers.
Collapse
Affiliation(s)
- Olga Danov
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Member of Fraunhofer International Consortium for Anti-Infective Research (iCAIR), Member of Centre for Immune Mediated Diseases (CIMD), Hanover, Germany
| | - Martin Wolff
- Early Origins of Chronic Lung Diseases, Priority Area Asthma and Allergy, Research Center Borstel - Leibniz Lung Center, Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Borstel, Germany
| | - Sabine Bartel
- Early Origins of Chronic Lung Diseases, Priority Area Asthma and Allergy, Research Center Borstel - Leibniz Lung Center, Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Borstel, Germany.,Department of Pathology and Medical Biology, University Medical Center Groningen, GRIAC Research Institute, University of Groningen, Groningen, Netherlands
| | - Sebastian Böhlen
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Member of Fraunhofer International Consortium for Anti-Infective Research (iCAIR), Member of Centre for Immune Mediated Diseases (CIMD), Hanover, Germany
| | - Helena Obernolte
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Member of Fraunhofer International Consortium for Anti-Infective Research (iCAIR), Member of Centre for Immune Mediated Diseases (CIMD), Hanover, Germany
| | - Sabine Wronski
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Member of Fraunhofer International Consortium for Anti-Infective Research (iCAIR), Member of Centre for Immune Mediated Diseases (CIMD), Hanover, Germany
| | - Danny Jonigk
- Department of Pathology, Hannover Medical School, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Hanover, Germany
| | - Barbara Hammer
- Early Origins of Chronic Lung Diseases, Priority Area Asthma and Allergy, Research Center Borstel - Leibniz Lung Center, Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Borstel, Germany
| | - Draginja Kovacevic
- Early Origins of Chronic Lung Diseases, Priority Area Asthma and Allergy, Research Center Borstel - Leibniz Lung Center, Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Borstel, Germany
| | - Sebastian Reuter
- Early Origins of Chronic Lung Diseases, Priority Area Asthma and Allergy, Research Center Borstel - Leibniz Lung Center, Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Borstel, Germany.,Department of Pulmonary Medicine, University Medical Center Essen - Ruhrlandklinik, Essen, Germany
| | - Susanne Krauss-Etschmann
- Early Origins of Chronic Lung Diseases, Priority Area Asthma and Allergy, Research Center Borstel - Leibniz Lung Center, Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Borstel, Germany.,Asthma Research, Institute of Experimental Medicine, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Katherina Sewald
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Member of Fraunhofer International Consortium for Anti-Infective Research (iCAIR), Member of Centre for Immune Mediated Diseases (CIMD), Hanover, Germany
| |
Collapse
|
18
|
The influence of smoking on bacterial resistance after vaccine or antibiotic prophylaxis against recurrent urinary tract infections. Actas Urol Esp 2020; 44:497-504. [PMID: 32595091 DOI: 10.1016/j.acuro.2020.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 02/20/2020] [Accepted: 04/07/2020] [Indexed: 11/22/2022]
Abstract
INTRODUCTION The influence of tobacco on the microbiological spectrum, resistance-sensitivity pattern and evolution in patients with recurrent urinary tract infections (RUTI) is analyzed. Evaluation of the effect of polyvalent bacterial vaccine on the prevention of RUTI and smoking status. MATERIAL AND METHODS Retrospective multicenter study of 855 women with RUTI receiving suppressive antibiotic treatment or bacterial vaccine between 2009 and 2013. Group A (GA): Antibiotic (n=495); Subgroups: GA1 non-smoker (n=417), GA2 smoker (n=78). Group B (GB): Vaccine (n=360); Subgroups: GB1 non-smoker (n=263), GB2 smoker (n=97). VARIABLES Age, pre-treatment UTI, disease-free time (DFT), microbial species, sensitivity and resistance. Follow-up at 3, 6 and 12 months with culture and SF-36 questionnaire. RESULTS Mean age 56.51 years (18-75), similar between groups (P=.2257). No difference in the number of pretreatment UTIs (P=.1329) or in the distribution of the bacterial spectrum (P=.7471). DFT was higher in subgroups B compared with A. Urine cultures in GA1: E. coli 62.71% with 8.10% resistance (33% quinolones; 33% cotrimoxazole; 33% quinolones + cotrimoxazole); in GA2 E. coli 61.53% with 75% resistance (16.66% quinolones; 33.33% quinolones + cotrimoxazole; 16.66% amoxicillin-clavulanate; 16.66% erythromycin + phosphomycin + clindamycin) (P=.0133). There were no differences between patients of GA treated with cotrimoxazole and nitrofurantoin (P=.8724). Urine cultures in GB1: E. coli 47.36% with 22.22% resistance (5.55% ciprofloxacin; 5.55% cotrimoxazole; 5.55% ciprofloxacin + cotrimoxazole; 5.55% amoxicillin/clavulanic acid). In GB2 E. coli 70.02% with 61.90% resistances (30.76% quinolones; 30.76% cotrimoxazole; 30.76% quinolones + cotrimoxazole; 17.69% amoxicillin-clavulanic acid) (P=.0144). CONCLUSIONS The development of bacterial resistance is more frequent among women with smoking habits and recurrent urinary infections. This could influence a worse response to preventive treatments, either with antibiotics or vaccines.
Collapse
|
19
|
Jiang C, Chen Q, Xie M. Smoking increases the risk of infectious diseases: A narrative review. Tob Induc Dis 2020; 18:60. [PMID: 32765200 PMCID: PMC7398598 DOI: 10.18332/tid/123845] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 06/04/2020] [Accepted: 06/09/2020] [Indexed: 01/17/2023] Open
Abstract
Smoking is relevant to infectious diseases resulting in increased prevalence and mortality. In this article, we aim to provide an overview of the effects of smoking in various infections and to explain the potential mechanisms. We searched PubMed and other relevant databases for scientific studies that explored the relationship between smoking and infection. The mechanisms of susceptibility to infection in smokers may include alteration of the structural, functional and immunologic host defences. Smoking is one of the main risk factors for infections in the respiratory tract, digestive tract, reproductive tract, and other systems in humans, increasing the prevalence of HIV, tuberculosis, SARS-CoV, and the current SARS-CoV-2. Smoking cessation can reduce the risk of infection. Smoking increases the incidence of infections and aggravates the progress and prognosis of infectious diseases in a dose-dependent manner. Smoking cessation promotion and education are the most practical and economical preventive measures to reduce aggravation of disease infection owing to tobacco use.
Collapse
Affiliation(s)
- Chen Jiang
- Department of Gerontology and Respirology, Xiangya Hospital, Central South University, Changsha, China
| | - Qiong Chen
- National Clinical Research Centre for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Mingxuan Xie
- Department of Gerontology and Respirology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
20
|
Electronic cigarette vapour moderately stimulates pro-inflammatory signalling pathways and interleukin-6 production by human monocyte-derived dendritic cells. Arch Toxicol 2020; 94:2097-2112. [PMID: 32372213 PMCID: PMC7303083 DOI: 10.1007/s00204-020-02757-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 04/21/2020] [Indexed: 12/11/2022]
Abstract
Dendritic cells (DCs) are professional antigen presenting cells that play a critical role in bridging innate and adaptive immunity. Numerous studies have shown that tobacco constituents present in conventional cigarettes affect the phenotype and function of DCs; however, no studies have examined the effects of vapour from E-cigarettes on human DCs. Here, the effects of E-cigarette vapour extract (ECVE) on the phenotype and function of DCs were investigated by creating an in vitro cell culture model using human monocyte-derived DCs (MoDCs). Immature DCs were generated from peripheral blood monocytes and mature DCs were then produced by treatment with LPS or Poly I:C for 24 h. For LPS-matured DCs, 3% ECVE treatment slightly suppressed HLA-DR and CD86 expression, whereas 1% ECVE treatment enhanced IL-6 production. The overall expression of 29 signalling molecules and other cytoplasmic proteins (mainly associated with DC activation) was significantly upregulated in immature DCs by 1% ECVE, and in LPS-treated DCs by 3% ECVE. In particular, the condition that induced IL-6 production also upregulated MAPK pathway activation. These findings indicate that E-cigarette vapour moderately affects human DCs, but the effects are less pronounced than those reported for tobacco smoke.
Collapse
|
21
|
Wang Z, Xie J, Wu C, Xiao G. Correlation Between Smoking and Passive Smoking with Multiple Sclerosis and the Underlying Molecular Mechanisms. Med Sci Monit 2019; 25:893-902. [PMID: 30703074 PMCID: PMC6367889 DOI: 10.12659/msm.912863] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic immune-mediated disease of the spinal cord and brain. Many studies have shown that smoking and passive smoking are key environmental risk factors for MS. Here, we provide an overview of the human leukocyte antigen (HLA) gene studies on smoking and MS risk, and we discuss recent studies on between epigenetics and smoking-induced MS. In addition, in this review we also summarize current research advances in biological pathways and smoking-induced MS. This review provides an overview of studies on the association between smoking, passive smoking, and MS susceptibility, and the underlying molecular mechanism.
Collapse
Affiliation(s)
- Zhaowei Wang
- Department of Neurology, Shaoxing People's Hospital (Shaoxing Hospital of Zhejiang University), Shaoxing, Zhejiang, China (mainland)
| | - Jianpin Xie
- Department of Neurology, Shaoxing People's Hospital (Shaoxing Hospital of Zhejiang University), Shaoxing, Zhejiang, China (mainland)
| | - Chenglong Wu
- Department of Neurology, Shaoxing People's Hospital (Shaoxing Hospital of Zhejiang University), Shaoxing, Zhejiang, China (mainland)
| | - Guirong Xiao
- Department of Neurology, Shaoxing People's Hospital (Shaoxing Hospital of Zhejiang University), Shaoxing, Zhejiang, China (mainland)
| |
Collapse
|
22
|
Effects of cigarette smoke on immunity, neuroinflammation and multiple sclerosis. J Neuroimmunol 2018; 329:24-34. [PMID: 30361070 DOI: 10.1016/j.jneuroim.2018.10.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 09/30/2018] [Accepted: 10/05/2018] [Indexed: 12/18/2022]
Abstract
Cigarette smoking is the most prominent significant cause of death and morbidity. It is recognised as a risk factor for a number of immune mediated, inflammatory diseases including multiple sclerosis (MS). Here, we review the complex immunological effects of smoking on the immune system, which include enhancement of inflammatory responses with a parallel reduction of some immune defences, resulting in an increased susceptibility to infection and a persistent proinflammatory environment. We discuss the effect of smoking on the susceptibility, clinical course, disability, and mortality in MS, the likely benefits of smoking cessation, and the specific immunological effects of smoking in MS. In conclusion, smoking is an important environmental risk factor for MS occurrence and outcome, and it acts in significant part through immunological mechanisms.
Collapse
|
23
|
Tobacco smoke and nicotine suppress expression of activating signaling molecules in human dendritic cells. Toxicol Lett 2018; 299:40-46. [PMID: 30227238 DOI: 10.1016/j.toxlet.2018.09.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 08/10/2018] [Accepted: 09/11/2018] [Indexed: 12/26/2022]
Abstract
Cigarette smoke has significant toxic effects on the immune system, and increases the risk of developing autoimmune diseases; one immunosuppressive effect of cigarette smoke is that it inhibits the T cell-stimulating, immunogenic properties of myeloid dendritic cells (DCs). As the functions of DCs are regulated by intra-cellular signaling pathways, we investigated the effects of cigarette smoke extract (CSE) and nicotine on multiple signaling molecules and other regulatory proteins in human DCs to elucidate the molecular basis of the inhibition of DC maturation and function by CSE and nicotine. Maturation of monocyte-derived DCs was induced with the TLR3-agonist poly I:C or with the TLR4-agonist lipopolysaccharide, in the absence or presence of CSE or nicotine. Reverse-phase protein microarray was used to quantify multiple signaling molecules and other proteins in cell lysates. Particularly in poly I:C-matured DCs, cigarette smoke constituents and nicotine suppressed the expression of signaling molecules associated with DC maturation and T cell stimulation, cell survival and cell migration. In conclusion, constituents of tobacco smoke suppress the immunogenic potential of DCs at the signaling pathway level.
Collapse
|
24
|
Tejero JD, Armand NC, Finn CM, Dhume K, Strutt TM, Chai KX, Chen LM, McKinstry KK. Cigarette smoke extract acts directly on CD4 T cells to enhance Th1 polarization and reduce memory potential. Cell Immunol 2018; 331:121-129. [PMID: 29935764 PMCID: PMC6092241 DOI: 10.1016/j.cellimm.2018.06.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 06/11/2018] [Accepted: 06/14/2018] [Indexed: 12/12/2022]
Abstract
Although cigarette smoke is known to alter immune responses, whether and how CD4 T cells are affected is not well-described. We aimed to characterize how exposure to cigarette smoke extract impacts CD4 T cell effector generation in vitro under Th1-polarizing conditions. Our results demonstrate that cigarette smoke directly acts on CD4 T cells to impair effector expansion by decreasing division and increasing apoptosis. Furthermore, cigarette smoke enhances Th1-associated cytokine production and increases expression of the transcription factor T-bet, the master regulator of Th1 differentiation. Finally, we show that exposure to cigarette smoke extract during priming impairs the ability of effectors to form memory cells. Our findings thus demonstrate that cigarette smoke simultaneously enhances effector functions but promotes terminal differentiation of CD4 T cell effectors. This study may be relevant to understanding how smoking can both aggravate autoimmune symptoms and reduce vaccine efficacy.
Collapse
Affiliation(s)
- Joanne D Tejero
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Nicole C Armand
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Caroline M Finn
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Kunal Dhume
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Tara M Strutt
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Karl X Chai
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Li-Mei Chen
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - K Kai McKinstry
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA.
| |
Collapse
|
25
|
Souto GR, Matias MDP, Nunes LFM, Ferreira RC, Mesquita RA. Mature dendritic cell density is affected by smoking habit, lesion size, and epithelial dysplasia in oral leukoplakia samples. Arch Oral Biol 2018; 95:51-57. [PMID: 30056280 DOI: 10.1016/j.archoralbio.2018.07.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 05/24/2018] [Accepted: 07/12/2018] [Indexed: 02/08/2023]
Abstract
OBJECTIVE To compare the densities of CD1a + immature and CD83+ mature dendritic cells, and inflammatory infiltrate cells between smokers and non-smokers with oral leukoplakia. Parameters associated with malignant transformation were also evaluated. DESIGN 21 smokers and 23 non-smokers diagnosed with oral leukoplakia were obtained. Densities of inflammatory infiltrate cells were calculated in H&E sections. Immunohistochemistry using anti-CD1a and anti-CD83 was performed and densities were calculated. Comparisons and statistical analyses were performed among the groups and parameters as gender, lesion size, site, and presence of cell dysplasia were analyzed. RESULTS A lower density of CD83+ cells was observed in smokers compared to non-smokers (P < 0.05). For samples of smokers, a lower density of CD1a + cells, CD83+ cells, and inflammatory infiltrate cells was observed in samples with <10 mm compared to samples ≥10 mm of diameter (P < 0.05), and a lower density of CD83+ cells was also observed between samples without dysplasia compared to samples with dysplasia (P < 0.05). CONCLUSION In oral leukoplakia samples, dendritic cell density decreases in the presence of smoking habit, and increases in larger lesions and with epithelial dysplasia. Smoking habit is an external factor that contribute to alteration of the anti-tumoral immune defense system in lesions of oral leucoplakia, reinforcing that smoking elimination is important to control the development of this disease.
Collapse
Affiliation(s)
- Giovanna Ribeiro Souto
- Department of Dentistry, Pontifícia Universidade Católica de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil; Hospital Público Regional de Betim, Betim, Minas Gerais, Brasil.
| | - Michelle Danielle Porto Matias
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| | - Laiz Fernandes Mendes Nunes
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| | - Raquel Conceição Ferreira
- Department of Social and Preventive Dentistry, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| | - Ricardo Alves Mesquita
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
26
|
Kerdidani D, Magkouta S, Chouvardas P, Karavana V, Glynos K, Roumelioti F, Zakynthinos S, Wauters E, Janssens W, Lambrechts D, Kollias G, Tsoumakidou M. Cigarette Smoke-Induced Emphysema Exhausts Early Cytotoxic CD8 + T Cell Responses against Nascent Lung Cancer Cells. THE JOURNAL OF IMMUNOLOGY 2018; 201:1558-1569. [PMID: 30037849 DOI: 10.4049/jimmunol.1700700] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 06/25/2018] [Indexed: 01/08/2023]
Abstract
Chronic obstructive pulmonary disease is a chronic inflammatory disorder with an increased incidence of lung cancer. The emphysema component of chronic obstructive pulmonary disease confers the greatest proportion to lung cancer risk. Although tumors create inflammatory conditions to escape immunity, the immunological responses that control growth of nascent cancer cells in pre-established inflammatory microenvironments are unknown. In this study, we addressed this issue by implanting OVA-expressing cancer cells in the lungs of mice with cigarette smoke-induced emphysema. Emphysema augmented the growth of cancer cells, an effect that was dependent on T cytotoxic cells. OVA-specific OTI T cells showed early signs of exhaustion upon transfer in emphysema tumor hosts that was largely irreversible because sorting, expansion, and adoptive transfer failed to restore their antitumor activity. Increased numbers of PD-L1- and IDO-positive CD11c+ myeloid dendritic cells (DCs) infiltrated emphysema tumors, whereas sorted emphysema tumor DCs poorly stimulated OTI T cells. Upon adoptive transfer in immunocompetent hosts, T cells primed by emphysema tumor DCs were unable to halt tumor growth. DCs exposed to the emphysema tumor microenvironment downregulated MHC class II and costimulatory molecules, whereas they upregulated PD-L1/IDO via oxidative stress-dependent mechanisms. T cell activation increased upon PD-L1 blockade in emphysema DC-T cell cocultures and in emphysema tumor hosts in vivo. Analysis of the transcriptome of primary human lung tumors showed a strong association between computed tomography-based emphysema scoring and downregulation of immunogenic processes. Thus, suppression of adaptive immunity against lung cancer cells links a chronic inflammatory disorder, emphysema, to cancer, with clinical implications for emphysema patients to be considered optimal candidates for cancer immunotherapies.
Collapse
Affiliation(s)
- Dimitra Kerdidani
- Division of Immunology, Biomedical Sciences Research Center 'Alexander Fleming,' 16672 Vari, Athens, Greece.,Department of Intensive Care Medicine, School of Medicine, National and Kapodistrian University of Athens, 10679 Athens, Greece
| | - Sophia Magkouta
- Department of Intensive Care Medicine, School of Medicine, National and Kapodistrian University of Athens, 10679 Athens, Greece
| | - Panagiotis Chouvardas
- Division of Immunology, Biomedical Sciences Research Center 'Alexander Fleming,' 16672 Vari, Athens, Greece.,Department of Physiology, School of Medicine, National and Kapodistrian University of Athens, 10679 Athens, Greece
| | - Vassiliki Karavana
- Department of Intensive Care Medicine, School of Medicine, National and Kapodistrian University of Athens, 10679 Athens, Greece
| | - Konstantinos Glynos
- Department of Intensive Care Medicine, School of Medicine, National and Kapodistrian University of Athens, 10679 Athens, Greece
| | - Fani Roumelioti
- Division of Immunology, Biomedical Sciences Research Center 'Alexander Fleming,' 16672 Vari, Athens, Greece
| | - Spyros Zakynthinos
- Department of Intensive Care Medicine, School of Medicine, National and Kapodistrian University of Athens, 10679 Athens, Greece
| | - Els Wauters
- Respiratory Oncology Unit, University Hospitals KU Leuven, 3000 Leuven, Belgium.,Leuven Lung Cancer Group, University Hospitals KU Leuven, 3000 Leuven, Belgium.,Laboratory of Pneumology, Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, 3000 Leuven, Belgium
| | - Wim Janssens
- Respiratory Oncology Unit, University Hospitals KU Leuven, 3000 Leuven, Belgium.,Leuven Lung Cancer Group, University Hospitals KU Leuven, 3000 Leuven, Belgium.,Laboratory of Pneumology, Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, 3000 Leuven, Belgium
| | - Diether Lambrechts
- VIB Center for Cancer Biology, VIB, 3000 Leuven, Belgium; and.,Laboratory for Translational Genetics, Department of Oncology, KU Leuven, 3000 Leuven, Belgium
| | - George Kollias
- Division of Immunology, Biomedical Sciences Research Center 'Alexander Fleming,' 16672 Vari, Athens, Greece.,Department of Physiology, School of Medicine, National and Kapodistrian University of Athens, 10679 Athens, Greece
| | - Maria Tsoumakidou
- Division of Immunology, Biomedical Sciences Research Center 'Alexander Fleming,' 16672 Vari, Athens, Greece;
| |
Collapse
|
27
|
Strzelak A, Ratajczak A, Adamiec A, Feleszko W. Tobacco Smoke Induces and Alters Immune Responses in the Lung Triggering Inflammation, Allergy, Asthma and Other Lung Diseases: A Mechanistic Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:E1033. [PMID: 29883409 PMCID: PMC5982072 DOI: 10.3390/ijerph15051033] [Citation(s) in RCA: 345] [Impact Index Per Article: 57.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 05/08/2018] [Accepted: 05/09/2018] [Indexed: 02/06/2023]
Abstract
Many studies have been undertaken to reveal how tobacco smoke skews immune responses contributing to the development of chronic obstructive pulmonary disease (COPD) and other lung diseases. Recently, environmental tobacco smoke (ETS) has been linked with asthma and allergic diseases in children. This review presents the most actual knowledge on exact molecular mechanisms responsible for the skewed inflammatory profile that aggravates inflammation, promotes infections, induces tissue damage, and may promote the development of allergy in individuals exposed to ETS. We demonstrate how the imbalance between oxidants and antioxidants resulting from exposure to tobacco smoke leads to oxidative stress, increased mucosal inflammation, and increased expression of inflammatory cytokines (such as interleukin (IL)-8, IL-6 and tumor necrosis factor α ([TNF]-α). Direct cellular effects of ETS on epithelial cells results in increased permeability, mucus overproduction, impaired mucociliary clearance, increased release of proinflammatory cytokines and chemokines, enhanced recruitment of macrophages and neutrophils and disturbed lymphocyte balance towards Th2. The plethora of presented phenomena fully justifies a restrictive policy aiming at limiting the domestic and public exposure to ETS.
Collapse
Affiliation(s)
- Agnieszka Strzelak
- Department of Pediatric Pulmonology and Allergy, Medical University of Warsaw, Zwirki i Wigury 61, 02-091 Warszawa, Poland.
| | - Aleksandra Ratajczak
- Department of Pediatric Pulmonology and Allergy, Medical University of Warsaw, Zwirki i Wigury 61, 02-091 Warszawa, Poland.
| | - Aleksander Adamiec
- Department of Pediatric Pulmonology and Allergy, Medical University of Warsaw, Zwirki i Wigury 61, 02-091 Warszawa, Poland.
| | - Wojciech Feleszko
- Department of Pediatric Pulmonology and Allergy, Medical University of Warsaw, Zwirki i Wigury 61, 02-091 Warszawa, Poland.
| |
Collapse
|
28
|
|
29
|
Mahassni SH, Ali EYI. The Effects of Firsthand and Secondhand Cigarette Smoking on Immune System Cells and Antibodies in Saudi Arabian Males. Indian J Clin Biochem 2018; 34:143-154. [PMID: 31092987 DOI: 10.1007/s12291-018-0739-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Accepted: 02/08/2018] [Indexed: 01/09/2023]
Abstract
Firsthand and, to a lesser degree, secondhand tobacco smoking are considered the greatest causes of preventable illnesses and premature death worldwide. Firsthand and secondhand smoking have adverse consequences on the immune system, although these effects are not fully understood. A few serological studies have been done on firsthand and secondhand smokers in Saudi Arabia. The present study investigates the effects of firsthand and secondhand smoking on the immune system of randomly chosen male firsthand (50 subjects) and secondhand (50 subjects) cigarette smokers, residing in Jeddah, Saudi Arabia, with an age range of 20-40 years. Firsthand smokers were categorized according to the number of cigarettes smoked daily (frequency of smoking). Blood samples were collected and differential complete blood counts, cotinine concentrations, and antibodies (IgG, IgM, and IgA) concentrations were determined. Additionally, T, B, NK, CD4+ and CD8+ cells counts and percentages were determined. Compared to secondhand smokers, firsthand smokers showed a highly significantly higher mean cotinine concentration and a highly significantly lower mean IgA concentration. Additionally, Secondhand smokers had significantly higher mean lymphocyte count and CD4+/CD8+ ratio, and significantly lower mean basophil and NK cells counts. All other parameters showed no significant differences between firsthand and secondhand smokers and there were no differences between the frequency of smoking categories for the firsthand smokers. Therefore, The results show suggest that passive and active smoking have different immunological effects since IgA levels and some white blood cells counts were different in firsthand and secondhand smokers.
Collapse
Affiliation(s)
- Sawsan Hassan Mahassni
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Esraa Yousef Ismail Ali
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
30
|
Mulligan JK, O’Connell BP, Pasquini W, Mulligan RM, Smith S, Soler ZM, Atkinson C, Schlosser RJ. Impact of tobacco smoke on upper airway dendritic cell accumulation and regulation by sinonasal epithelial cells. Int Forum Allergy Rhinol 2017; 7:777-785. [PMID: 28574651 PMCID: PMC5544557 DOI: 10.1002/alr.21955] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 04/10/2017] [Accepted: 04/18/2017] [Indexed: 12/11/2022]
Abstract
BACKGROUND In these studies we examined the impact of environmental tobacco smoke (ETS) and active smoking on sinonasal dendritic cell (DC) subsets in controls or patients with chronic rhinosinusitis with nasal polyps (CRSwNP). In subsequent in-vitro investigations, we examined the influence of cigarette smoke extract (CSE) on human sinonasal epithelial cells' (HSNECs) ability to regulate DC functions. METHODS Sinonasal tissue, blood, and hair were collected from patients undergoing sinus surgery. Smoking status and ETS exposure were determined by hair nicotine. DC subsets were examined by flow cytometric analysis. Monocyte-derived dendritic cells (moDCs) were treated with conditioned medium from non-smoked-exposed HSNECs (NS-HSNECs) or cigarette-smoke-extract-exposed HSNECs (CSE-HSNECs) to assess the impact of CSE exposure on HSNEC regulation of moDC functions. RESULTS Control subjects who were active smokers displayed increased sinonasal moDC and myeloid dendritic 1 (mDC1) cells and reduced mDC2 cells, whereas, in CRSwNP patients, only moDC and mDC2 cells were altered. ETS was found to increase only moDCs in the CRSwNP patients. In vitro, CSE stimulated HSNEC secretion of the moDC regulatory products chemokine (C-C motif) ligand 20, prostaglandin E2 , and granulocyte-macrophage colony-stimulating factor. CSE exposure also promoted HSNECs to stimulate monocyte and moDC migration. moDCs treated with CSE-HSNEC media stimulated an increase in antigen uptake and expression of CD80 and CD86. Last, CSE-HSNEC-treated moDCs secreted increased levels of interleukin-10, interferon-γ, and thymic stromal lymphopoietin. CONCLUSION Active smoking, and to a lesser degree ETS, alters the sinonasal composition of DCs. A potential mechanism to account for this is that cigarette smoke stimulates HSNECs to induce moDC migration, maturation, and activation.
Collapse
Affiliation(s)
- Jennifer K. Mulligan
- Department of Otolaryngology-Head & Neck Surgery, Medical University of South Carolina, Charleston, South Carolina
- Department of Pediatrics, Medical University of South Carolina, Charleston, South Carolina
| | - Brendan P. O’Connell
- Department of Otolaryngology-Head & Neck Surgery, Medical University of South Carolina, Charleston, South Carolina
| | - Whitney Pasquini
- Department of Otolaryngology-Head & Neck Surgery, Medical University of South Carolina, Charleston, South Carolina
| | - Ryan M. Mulligan
- Department of Otolaryngology-Head & Neck Surgery, Medical University of South Carolina, Charleston, South Carolina
| | - Sarah Smith
- Department of Otolaryngology-Head & Neck Surgery, Medical University of South Carolina, Charleston, South Carolina
| | - Zachary M. Soler
- Department of Otolaryngology-Head & Neck Surgery, Medical University of South Carolina, Charleston, South Carolina
| | - Carl Atkinson
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, South Carolina
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina
| | - Rodney J. Schlosser
- Department of Otolaryngology-Head & Neck Surgery, Medical University of South Carolina, Charleston, South Carolina
- Ralph H. Johnson VA Medical Center, Charleston, South Carolina
| |
Collapse
|
31
|
Qiu F, Fan P, Nie GD, Liu H, Liang CL, Yu W, Dai Z. Effects of Cigarette Smoking on Transplant Survival: Extending or Shortening It? Front Immunol 2017; 8:127. [PMID: 28239383 PMCID: PMC5300974 DOI: 10.3389/fimmu.2017.00127] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 01/25/2017] [Indexed: 01/23/2023] Open
Abstract
Cigarette smoking (CS) regulates both innate and adaptive immunity and causes numerous diseases, including cardiovascular, respiratory, and autoimmune diseases, allergies, cancers, and transplant rejection. Therefore, smoking poses a serious challenge to the healthcare system worldwide. Epidemiological studies have always shown that CS is one of the major risk factors for transplant rejection, even though smoking plays redundant roles in regulating immune responses. The complex roles for smoking in immunoregulation are likely due to molecular and functional diversities of cigarette smoke components, including carbon monoxide (CO) and nicotine. Especially, CO has been shown to induce immune tolerance. Although CS has been shown to impact transplantation by causing complications and subsequent rejection, it is overlooked whether CS interferes with transplant tolerance. We have previously demonstrated that cigarette smoke exposure reverses long-term allograft survival induced by costimulatory blockade. Given that CS impacts both adaptive and innate immunity and that it hinders long-term transplant survival, our perspective is that CS impacts transplant tolerance. Here, we review impacts of CS on major immune cells that are critical for transplant outcomes and propose the cellular and molecular mechanisms underlying its effects on alloimmunity and transplant survival. Further investigations are warranted to fully understand why CS exerts deleterious rather than beneficial effects on transplant survival even if some of its components are immunosuppressive.
Collapse
Affiliation(s)
- Feifei Qiu
- Section of Immunology, Guangdong Provincial Academy of Chinese Medical Sciences , Guangzhou , China
| | - Ping Fan
- Department of Nephrology, Shaanxi Provincial Hospital of Chinese Medicine , Xi'an , China
| | - Golay D Nie
- School of Medicine, University of Texas Medical Branch , Galveston, TX , USA
| | - Huazhen Liu
- Section of Immunology, Guangdong Provincial Academy of Chinese Medical Sciences , Guangzhou , China
| | - Chun-Ling Liang
- Section of Immunology, Guangdong Provincial Academy of Chinese Medical Sciences , Guangzhou , China
| | - Wanlin Yu
- Section of Immunology, Guangdong Provincial Academy of Chinese Medical Sciences , Guangzhou , China
| | - Zhenhua Dai
- Section of Immunology, Guangdong Provincial Academy of Chinese Medical Sciences , Guangzhou , China
| |
Collapse
|
32
|
Qiu F, Liang CL, Liu H, Zeng YQ, Hou S, Huang S, Lai X, Dai Z. Impacts of cigarette smoking on immune responsiveness: Up and down or upside down? Oncotarget 2017; 8:268-284. [PMID: 27902485 PMCID: PMC5352117 DOI: 10.18632/oncotarget.13613] [Citation(s) in RCA: 364] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 11/12/2016] [Indexed: 01/08/2023] Open
Abstract
Cigarette smoking is associated with numerous diseases and poses a serious challenge to the current healthcare system worldwide. Smoking impacts both innate and adaptive immunity and plays dual roles in regulating immunity by either exacerbation of pathogenic immune responses or attenuation of defensive immunity. Adaptive immune cells affected by smoking mainly include T helper cells (Th1/Th2/Th17), CD4+CD25+ regulatory T cells, CD8+ T cells, B cells and memory T/B lymphocytes while innate immune cells impacted by smoking are mostly DCs, macrophages and NK cells. Complex roles of cigarette smoke have resulted in numerous diseases, including cardiovascular, respiratory and autoimmune diseases, allergies, cancers and transplant rejection etc. Although previous reviews have described the effects of smoking on various diseases and regional immunity associated with specific diseases, a comprehensive and updated review is rarely seen to demonstrate impacts of smoking on general immunity and, especially on major components of immune cells. Here, we aim to systematically and objectively review the influence of smoking on major components of both innate and adaptive immune cells, and summarize cellular and molecular mechanisms underlying effects of cigarette smoking on the immune system. The molecular pathways impacted by cigarette smoking involve NFκB, MAP kinases and histone modification. Further investigations are warranted to understand the exact mechanisms responsible for smoking-mediated immunopathology and to answer lingering questions over why cigarette smoking is always harmful rather than beneficial even though it exerts dual effects on immune responses.
Collapse
Affiliation(s)
- Feifei Qiu
- Section of Immunology, Guangdong Provincial Academy of Chinese Medical Sciences and Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, China
| | - Chun-Ling Liang
- Section of Immunology, Guangdong Provincial Academy of Chinese Medical Sciences and Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, China
| | - Huazhen Liu
- Section of Immunology, Guangdong Provincial Academy of Chinese Medical Sciences and Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, China
| | - Yu-Qun Zeng
- Department of Nephrology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Shaozhen Hou
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Song Huang
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Xiaoping Lai
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Zhenhua Dai
- Section of Immunology, Guangdong Provincial Academy of Chinese Medical Sciences and Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, China
| |
Collapse
|
33
|
Kuang LJ, Deng TT, Wang Q, Qiu SL, Liang Y, He ZY, Zhang JQ, Bai J, Li MH, Deng JM, Liu GN, Liu JF, Zhong XN. Dendritic cells induce Tc1 cell differentiation via the CD40/CD40L pathway in mice after exposure to cigarette smoke. Am J Physiol Lung Cell Mol Physiol 2016; 311:L581-9. [PMID: 27448664 DOI: 10.1152/ajplung.00002.2016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 07/20/2016] [Indexed: 12/11/2022] Open
Abstract
Dendritic cells and CD8(+) T cells participate in the pathology of chronic obstructive pulmonary disease, including emphysema, but little is known of the involvement of the CD40/CD40L pathway. We investigated the role of the CD40/CD40L pathway in Tc1 cell differentiation induced by dendritic cells in a mouse model of emphysema, and in vitro. C57BL/6J wild-type and CD40(-/-) mice were exposed to cigarette smoke (CS) or not (control), for 24 wk. In vitro experiments involved wild-type and CD40(-/-) dendritic cells treated with CS extract (CSE) or not. Compared with the control groups, the CS mice (both wild type and CD40(-/-)) had a greater percentage of lung dendritic cells and higher levels of major histocompatability complex (MHC) class I molecules and costimulatory molecules CD40 and CD80. Relative to the CS CD40(-/-) mice, the CS wild type showed greater signs of lung damage and Tc1 cell differentiation. In vitro, the CSE-treated wild-type cells evidenced more cytokine release (IL-12/p70) and Tc1 cell differentiation than did the CSE-treated CD40(-/-) cells. Exposure to cigarette smoke increases the percentage of lung dendritic cells and promotes Tc1 cell differentiation via the CD40/CD40L pathway. Blocking the CD40/CD40L pathway may suppress development of emphysema in mice exposed to cigarette smoke.
Collapse
Affiliation(s)
- Liang-Jian Kuang
- Department of Respiratory Medicine, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China; and
| | - Ting-Ting Deng
- Department of Respiratory Medicine, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China; and
| | - Qin Wang
- Department of Respiratory Medicine, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China; and
| | - Shi-Lin Qiu
- Department of Respiratory Medicine, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China; and
| | - Yi Liang
- Department of Respiratory Medicine, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China; and
| | - Zhi-Yi He
- Department of Respiratory Medicine, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China; and
| | - Jian-Quan Zhang
- Department of Respiratory Medicine, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China; and
| | - Jing Bai
- Department of Respiratory Medicine, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China; and
| | - Mei-Hua Li
- Department of Respiratory Medicine, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China; and
| | - Jing-Min Deng
- Department of Respiratory Medicine, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China; and
| | - Guang-Nan Liu
- Department of Respiratory Medicine, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China; and
| | - Ji-Feng Liu
- Department of Respiratory Medicine, Tenth Affiliated Hospital of Guangxi Medical University, Qinzhou, Guangxi, China
| | - Xiao-Ning Zhong
- Department of Respiratory Medicine, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China; and
| |
Collapse
|
34
|
Sun D, Ouyang Y, Gu Y, Liu X. Cigarette smoke-induced chronic obstructive pulmonary disease is attenuated by CCL20-blocker: a rat model. Croat Med J 2016; 57:363-70. [PMID: 27586551 PMCID: PMC5048234 DOI: 10.3325/cmj.2016.57.363] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 07/04/2016] [Indexed: 01/06/2023] Open
Abstract
AIM To evaluate whether the effect of dendritic cells (DCs) on chronic obstructive pulmonary disease (COPD) can be relieved by blocking CCL20. METHODS 30 Wistar rats were randomly divided into three groups: control, COPD, and COPD treated with CCL20 monoclonal antibody. In the latter two groups, COPD was induced by four-week cigarette smoke exposure and trachea injection of lipopolysaccharide solution on two occasions. CCL20 monoclonal antibody was injected intraperitoneally on the first day. All animals were sacrificed on the 29th day. Pathomorphology of the lung and bronchiole was analyzed using hematoxylin and eosin staining. The CCR6 content in the bronchoalveolar lavage fluid was detected using ELISA. DC distribution in the lung was examined by immunohistochemistry for OX62. RESULTS COPD rat models showed pathological alterations similar to those in COPD patients. DCs, CCR6, and the severity of emphysema were significantly increased in the COPD group than in controls (all P values <0.001), and they were significantly reduced after anti-CCL20 treatment compared with the COPD group (all P values <0.05). CONCLUSION The interaction between CCR6 and its ligand CCL20 promotes the effect of DCs in the COPD pathogenesis, which can be reduced by blocking CCL20.
Collapse
Affiliation(s)
| | - Yao Ouyang
- Yao Ouyang, Department of Respiratory Medicine, Affiliated Hospital of Zunyi Medical College, Dalian Road 149, Zunyi City, Guizhou Province, China,
| | | | | |
Collapse
|
35
|
Su MW, Yu SL, Lin WC, Tsai CH, Chen PH, Lee YL. Smoking-related microRNAs and mRNAs in human peripheral blood mononuclear cells. Toxicol Appl Pharmacol 2016; 305:169-175. [PMID: 27321975 DOI: 10.1016/j.taap.2016.06.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 06/14/2016] [Accepted: 06/15/2016] [Indexed: 01/21/2023]
Abstract
Teenager smoking is of great importance in public health. Functional roles of microRNAs have been documented in smoke-induced gene expression changes, but comprehensive mechanisms of microRNA-mRNA regulation and benefits remained poorly understood. We conducted the Teenager Smoking Reduction Trial (TSRT) to investigate the causal association between active smoking reduction and whole-genome microRNA and mRNA expression changes in human peripheral blood mononuclear cells (PBMC). A total of 12 teenagers with a substantial reduction in smoke quantity and a decrease in urine cotinine/creatinine ratio were enrolled in genomic analyses. In Gene Set Enrichment Analysis (GSEA) and Ingenuity Pathway Analysis (IPA), differentially expressed genes altered by smoke reduction were mainly associated with glucocorticoid receptor signaling pathway. The integrative analysis of microRNA and mRNA found eleven differentially expressed microRNAs negatively correlated with predicted target genes. CD83 molecule regulated by miR-4498 in human PBMC, was critical for the canonical pathway of communication between innate and adaptive immune cells. Our data demonstrated that microRNAs could regulate immune responses in human PBMC after habitual smokers quit smoking and support the potential translational value of microRNAs in regulating disease-relevant gene expression caused by tobacco smoke.
Collapse
Affiliation(s)
- Ming-Wei Su
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan; Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Sung-Liang Yu
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Wen-Chang Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Ching-Hui Tsai
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Po-Hua Chen
- School of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yungling Leo Lee
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan; Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
36
|
Bhat TA, Panzica L, Kalathil SG, Thanavala Y. Immune Dysfunction in Patients with Chronic Obstructive Pulmonary Disease. Ann Am Thorac Soc 2015; 12 Suppl 2:S169-75. [PMID: 26595735 PMCID: PMC4722840 DOI: 10.1513/annalsats.201503-126aw] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 05/27/2015] [Indexed: 01/09/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a complex chronic disease. Chronic inflammation is the hallmark of COPD, involving the interplay of a wide variety of cells in the lung microenvironment. Cigarette smoke (CS) induces chronic lung inflammation and is considered a key etiological factor in the development and pathogenesis of COPD. Structural and inflammatory cells in the lung respond to CS exposure by releasing proinflammatory mediators that recruit additional inflammatory immune cells, which collectively contribute to the establishment of a chronic inflammatory microenvironment. Chronic inflammation contributes to lung damage, compromises innate and adaptive immune responses, and facilitates the recurrent episodes of respiratory infection that punctuate and further contribute to the pathological manifestations of the stable disease. A number of studies support the conclusion that immune dysfunction leads to exacerbations and disease severity in COPD. Our group has clearly demonstrated that CS exacerbates lung inflammation and compromises immunity to respiratory pathogens in a mouse model of COPD. We have also investigated the phenotype of immune cells in patients with COPD compared with healthy control subjects and found extensive immune dysfunction due to the presence and functional activity of T regulatory cells, CD4(+)PD-1(+) exhausted effector T cells and myeloid-derived suppressor cells. Manipulation of these immunosuppressive networks in COPD could provide a rational strategy to restore functional immune responses, reduce exacerbations, and improve lung function. In this review, we discuss the role of immune dysfunction in COPD that may contribute to recurrent respiratory infections and disease severity.
Collapse
Affiliation(s)
- Tariq A Bhat
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, New York
| | - Louis Panzica
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, New York
| | | | - Yasmin Thanavala
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, New York
| |
Collapse
|
37
|
Givi ME, Folkerts G, Wagenaar GTM, Redegeld FA, Mortaz E. Cigarette smoke differentially modulates dendritic cell maturation and function in time. Respir Res 2015; 16:131. [PMID: 26498483 PMCID: PMC4619524 DOI: 10.1186/s12931-015-0291-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 10/13/2015] [Indexed: 12/26/2022] Open
Abstract
Background Dendritic cells (DCs) as professional antigen presenting cells (APCs) play a critical role in the regulation of host immune responses. DCs evolve from immature, antigen-capturing cells, to mature antigen-presenting cells. The relative contribution of DCs to cigarette smoke-induced inflammation is not well documented. In the current study, we investigated a modulatory effect of cigarette smoke extract (CSE) on differentiation, maturation and function of DCs. Methods Primary murine DCs were grown from bone marrow cells with GM-CSF. Development of DC was analyzed by expression of CD11c, MHCII, CD86, CD40 and CD83 using flow cytometry. Murine DC’s and human L428 cells were co-cultured with CSE for various periods of time. Functional activity was analyzed by measuring FITC-dextran uptake, cytokine production and the ability to stimulate T cell activation in a mixed lymphocyte reaction. Results Our results show that short-term CSE stimulation (~24 h) influence the maturation status of newly differentiated and immature DCs towards more mature cells as revealed by upregulation of MHCII, CD83, CD86, CD40, reduction in antigen up-take capacity and enhanced secretion of pro-inflammatory (IL-12, IL-6 and TNF-α) cytokines. Interestingly, long-term CSE exposure, time- and concentration-dependently, suppressed the development of functional DCs. This suppression was demonstrated by a decline in CD11c/MHCII, CD83, CD86 and CD40 expression, the production of cytokines and ability to stimulate T lymphocytes. Moreover, CSE significantly suppressed the endocytosis function of mouse DCs which was not due to diminished DC viability. Similar to mouse DCs, long-term co-culturing of the human L428 DC cell line with CSE time-dependently suppressed the expression of CD54. Conclusions The present study provides evidence that CSE modulates DC-mediated immune responses via affecting both the function and maturation of DCs. The suppressive effects of cigarette smoke on DC function might lead to impaired immune responses to various infections. Electronic supplementary material The online version of this article (doi:10.1186/s12931-015-0291-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Masoumeh Ezzati Givi
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, PO BOX 80082, 3508, TB, Utrecht, The Netherlands.,Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Shahid Chamran University, Ahvaz, Iran
| | - Gert Folkerts
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, PO BOX 80082, 3508, TB, Utrecht, The Netherlands
| | - Gerry T M Wagenaar
- Department of Pediatrics, Division of Neonatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Frank A Redegeld
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, PO BOX 80082, 3508, TB, Utrecht, The Netherlands.
| | - Esmaeil Mortaz
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, PO BOX 80082, 3508, TB, Utrecht, The Netherlands.,Chronic Respiratory Diseases Research Center and National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Department of Immunology, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Airways Disease Section, National Heart and Lung Institute, Imperial College London, London, UK
| |
Collapse
|
38
|
Givi ME, Akbari P, Boon L, Puzovic VS, Bezemer GFG, Ricciardolo FLM, Folkerts G, Redegeld FA, Mortaz E. Dendritic cells inversely regulate airway inflammation in cigarette smoke-exposed mice. Am J Physiol Lung Cell Mol Physiol 2015; 310:L95-102. [PMID: 26475733 DOI: 10.1152/ajplung.00251.2014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 10/08/2015] [Indexed: 12/31/2022] Open
Abstract
The recruitment and activation of inflammatory cells into the respiratory system is considered a crucial feature in the pathophysiology of chronic obstructive pulmonary disease (COPD). Because dendritic cells (DCs) have a pivotal role in the onset and regulation of immune responses, we investigated the effect of modulating DC subsets on airway inflammation by acute cigarette smoke (CS) exposure. CS-exposed mice (5 days) were treated with fms-like tyrosine kinase 3 ligand (Flt3L) and 120g8 antibody to increase total DC numbers and deplete plasmacytoid DCs (pDCs), respectively. Flt3L treatment decreased the number of inflammatory cells in the bronchoalveolar lavage (BALF) of the smoke-exposed mice and increased these in lung tissue. DC modulation reduced IL-17 and increased IL-10 levels, which may be responsible for the suppression of the BALF cells. Furthermore, depletion of pDCs led to increased infiltration of alveolar macrophages while restricting the presence of CD103(+) DCs. This study suggests that DC subsets may differentially and compartment-dependent influence the inflammation induced by CS. pDC may play a role in preventing the pathogenesis of CS by inhibiting the alveolar macrophage migration to lung and increasing CD103(+) DCs at inflammatory sites to avoid extensive lung tissue damage.
Collapse
Affiliation(s)
- Masoumeh Ezzati Givi
- Faculty of Science, Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands; Faculty of Veterinary Medicine, Department of Pharmacology and Toxicology, Shahid Chamran University, Ahvaz, Iran
| | - Peyman Akbari
- Faculty of Science, Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | | | - Vladimir S Puzovic
- Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Gillina F G Bezemer
- Faculty of Science, Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Fabio L M Ricciardolo
- Division of Respiratory Disease, Department of Clinical and Biological Sciences, University of Torino, Orbassano (Torino), Italy; and
| | - Gert Folkerts
- Faculty of Science, Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Frank A Redegeld
- Faculty of Science, Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands;
| | - Esmaeil Mortaz
- Faculty of Science, Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands; Faculty of Medicine, Department of Immunology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
39
|
Zhuo S, Li N, Zheng Y, Peng X, Xu A, Ge Y. Expression of the Lymphocyte Chemokine XCL1 in Lung Tissue of COPD Mice, and Its Relationship to CD4+/CD8+ Ratio and IL-2. Cell Biochem Biophys 2015; 73:505-511. [DOI: 10.1007/s12013-015-0690-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
40
|
Keller IE, Vosyka O, Takenaka S, Kloß A, Dahlmann B, Willems LI, Verdoes M, Overkleeft HS, Marcos E, Adnot S, Hauck SM, Ruppert C, Günther A, Herold S, Ohno S, Adler H, Eickelberg O, Meiners S. Regulation of immunoproteasome function in the lung. Sci Rep 2015; 5:10230. [PMID: 25989070 PMCID: PMC4437306 DOI: 10.1038/srep10230] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 04/07/2015] [Indexed: 12/24/2022] Open
Abstract
Impaired immune function contributes to the development of chronic obstructive pulmonary disease (COPD). Disease progression is further exacerbated by pathogen infections due to impaired immune responses. Elimination of infected cells is achieved by cytotoxic CD8+ T cells that are activated by MHC I-mediated presentation of pathogen-derived antigenic peptides. The immunoproteasome, a specialized form of the proteasome, improves generation of antigenic peptides for MHC I presentation thereby facilitating anti-viral immune responses. However, immunoproteasome function in the lung has not been investigated in detail yet. In this study, we comprehensively characterized the function of immunoproteasomes in the human and murine lung. Parenchymal cells of the lung express low constitutive levels of immunoproteasomes, while they are highly and specifically expressed in alveolar macrophages. Immunoproteasome expression is not altered in whole lung tissue of COPD patients. Novel activity-based probes and native gel analysis revealed that immunoproteasome activities are specifically and rapidly induced by IFNγ treatment in respiratory cells in vitro and by virus infection of the lung in mice. Our results suggest that the lung is potentially capable of mounting an immunoproteasome-mediated efficient adaptive immune response to intracellular infections.
Collapse
Affiliation(s)
- Ilona E Keller
- Comprehensive Pneumology Center (CPC), University Hospital, Ludwig-Maximilians University, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Oliver Vosyka
- 1] Comprehensive Pneumology Center (CPC), University Hospital, Ludwig-Maximilians University, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany [2] Research Unit Protein Science, Helmholtz Zentrum München, Munich, Germany
| | - Shinji Takenaka
- Comprehensive Pneumology Center (CPC), University Hospital, Ludwig-Maximilians University, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Alexander Kloß
- Institute of Biochemistry, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Burkhardt Dahlmann
- Institute of Biochemistry, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Lianne I Willems
- Department of Bio-organic Synthesis, Leiden University, Leiden, The Netherlands
| | - Martijn Verdoes
- Department of Bio-organic Synthesis, Leiden University, Leiden, The Netherlands
| | - Hermen S Overkleeft
- Department of Bio-organic Synthesis, Leiden University, Leiden, The Netherlands
| | - Elisabeth Marcos
- INSERM U955, Département de Physiologie, Université Paris-Est Créteil (UPEC), Créteil, France
| | - Serge Adnot
- INSERM U955, Département de Physiologie, Université Paris-Est Créteil (UPEC), Créteil, France
| | - Stefanie M Hauck
- Research Unit Protein Science, Helmholtz Zentrum München, Munich, Germany
| | - Clemens Ruppert
- Department of Internal Medicine, Justus-Liebig-University Giessen, Universities Giessen &Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Andreas Günther
- 1] Department of Internal Medicine, Justus-Liebig-University Giessen, Universities Giessen &Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany [2] Agaplesion Pneumologische Klinik Waldhof-Elgershausen, Greifenstein, Germany
| | - Susanne Herold
- Department of Internal Medicine II, Section of Infectious Diseases, Justus- Liebig-University, Universities Giessen &Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Shinji Ohno
- Research Unit Gene Vectors, Helmholtz Zentrum München, Munich, Germany
| | - Heiko Adler
- Research Unit Gene Vectors, Helmholtz Zentrum München, Munich, Germany
| | - Oliver Eickelberg
- Comprehensive Pneumology Center (CPC), University Hospital, Ludwig-Maximilians University, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Silke Meiners
- Comprehensive Pneumology Center (CPC), University Hospital, Ludwig-Maximilians University, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| |
Collapse
|
41
|
Pezzuto F, Buonaguro L, Caponigro F, Ionna F, Starita N, Annunziata C, Buonaguro FM, Tornesello ML. Update on Head and Neck Cancer: Current Knowledge on Epidemiology, Risk Factors, Molecular Features and Novel Therapies. Oncology 2015; 89:125-136. [PMID: 25967534 DOI: 10.1159/000381717] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 03/16/2015] [Indexed: 11/08/2023]
Abstract
Tobacco use and alcohol consumption are the main risk factors associated with head and neck squamous cell carcinoma (SCC) development due to their cytotoxic and mutagenic effects on the exposed epithelia of the upper aerodigestive tract. Epstein-Barr virus (EBV) and high-risk human papillomaviruses (HPVs), both encoding viral oncoproteins able to interfere with cell cycle control, have been recognized as the etiological agents of nasopharynx carcinoma and a fraction of oropharyngeal carcinoma, respectively. Head and neck SCC is a deadly disease and despite innovative treatments represents a major challenge for patients. Recently, a number of genomic studies have highlighted the molecular heterogeneity of head and neck SCC based on methylation profiles, microRNA expression, mutated genes and new druggable pathways which may represent new targets for cancer-tailored therapies. To date, cetuximab is the only FDA-approved anti-epidermal growth factor receptor therapy for the treatment of head and neck SCC. In addition, a number of monoclonal antibodies targeting AKT, mTOR and PI3K pathways are under evaluation. Several therapeutic vaccines against HPV16 and EBV proteins are also under study. The purpose of this article is to review the epidemiology, pathogenesis and molecular features of head and neck SCC, with an emphasis on new therapies.
Collapse
Affiliation(s)
- Francesca Pezzuto
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori 'Fondazione G. Pascale' - IRCCS, Naples, Italy
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Wright JL, Churg A. Animal models of cigarette smoke-induced chronic obstructive pulmonary disease. Expert Rev Respir Med 2014; 4:723-34. [DOI: 10.1586/ers.10.68] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
43
|
Givi ME, Peck MJ, Boon L, Mortaz E. The role of dendritic cells in the pathogenesis of cigarette smoke-induced emphysema in mice. Eur J Pharmacol 2013; 721:259-66. [PMID: 24120403 DOI: 10.1016/j.ejphar.2013.09.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Revised: 09/01/2013] [Accepted: 09/11/2013] [Indexed: 01/06/2023]
Abstract
Chronic Obstructive Pulmonary Disease (COPD) is an important lung and airway disease which affects the lives of around 200 million people worldwide. The pathological hallmark of COPD is emphysema and bronchiolitis and is based on the inflammatory response of the innate and adaptive immune system to the inhalation of toxic particles and gases. The inflamed airways of COPD patients contain several inflammatory cells including neutrophils, macrophages, T lymphocytes, and dendritic cells (DC). The potential role of DCs as mediators of inflammation in the airways of smokers and COPD patients is poorly understood. The current study investigated the role of DC subsets in an animal model of cigarette smoke-induced lung emphysema through the expansion or depletion of DC subsets. Expansion of both myeloid DC (mDC) and plasmacytoid DC (pDC) by Flt3L treatment induced a decline in macrophage numbers and increased the levels of fibroblast growth factor (FGF) and vascular endothelial growth factor (VEGF) in the bronchoalveolar lavage (BAL) fluid of smoke-exposed animals. The increase in the mean linear intercept (Lm) following Flt3L treatment was decreased by pDC depletion. In conclusion, pharmacological modulation of DC subsets may have an effect on the development of airway responses and emphysema as indicated by the decline in macrophage numbers and the increase in FGF and VEGF levels in the bronchoalveolar lavage fluid. Moreover, the depletion of pDCs decreased the Lm which might suggest a role for pDC in the pathogenesis of lung emphysema.
Collapse
Affiliation(s)
- Masoumeh E Givi
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | | | | | | |
Collapse
|
44
|
Givi ME, Blokhuis BR, Da Silva CA, Adcock I, Garssen J, Folkerts G, Redegeld FA, Mortaz E. Cigarette smoke suppresses the surface expression of c-kit and FcεRI on mast cells. Mediators Inflamm 2013; 2013:813091. [PMID: 23476107 PMCID: PMC3583132 DOI: 10.1155/2013/813091] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 01/01/2013] [Accepted: 01/02/2013] [Indexed: 11/17/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a multicomponent disease characterized by emphysema and/or chronic bronchitis. COPD is mostly associated with cigarette smoking. Cigarette smoke contains over 4,700 chemical compounds, including free radicals and LPS (a Toll-Like Receptor 4 agonist) at concentrations which may contribute to the pathogenesis of diseases like COPD. We have previously shown that short-term exposure to cigarette smoke medium (CSM) can stimulate several inflammatory cells via TLR4 and that CSM reduces the degranulation of bone-marrow-derived mast cells (BMMCs). In the current study, the effect of CSM on mast cells maturation and function was investigated. Coculturing of BMMC with CSM during the development of bone marrow progenitor cells suppressed the granularity and the surface expression of c-kit and Fc ε RI receptors. Stimulation with IgE/antigen resulted in decreased degranulation and release of Th1 and Th2 cytokines. The effects of CSM exposure could not be mimicked by the addition of LPS to the culture medium. In conclusion, this study shows that CSM may affect mast cell development and subsequent response to allergic activation in a TLR4-independent manner.
Collapse
Affiliation(s)
- M. E. Givi
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - B. R. Blokhuis
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - C. A. Da Silva
- Integrative Pharmacology, Department of Biosciences, AstraZeneca R&D Lund Respiratory and Inflammation Research Area, 22 187 Lund, 43183 Mölndal, Sweden
| | - I. Adcock
- Airways Disease Section, National Heart and Lung Institute, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - J. Garssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands
- Danone Research-Centre for Specialised Nutrition, P.O. Box 7005, 6700 CA Wageningen, The Netherlands
| | - G. Folkerts
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - F. A. Redegeld
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - E. Mortaz
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands
- Department of Immunology, Chronic Respiratory Disease Research Center and National Research Institute of Tuberculosis and Lung Disease (NRITLD), Masih Daneshvari Hospital, Shahid Beheshti University of Medical Sciences, P.O. Box 19575/154, Tehran, Iran
| |
Collapse
|
45
|
Chen XQ, Liu XF, Liu WH, Guo W, Yu Q, Wang CY. Comparative analysis of dendritic cell numbers and subsets between smoking and control subjects in the peripheral blood. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2013; 6:290-296. [PMID: 23330015 PMCID: PMC3544240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 11/30/2012] [Indexed: 06/01/2023]
Abstract
It has been well known that smoking alters the property and functionality of a wide range of immune cells including dendritic cells (DCs). However, a great deal of effort in the past has been mainly devoted to dissect the effect of smoking on pulmonary DCs, while its exact impact on circulating DCs remains to be fully addressed. Therefore, in the present report we particularly examined the impact of smoking on the number and subset of DCs in the peripheral blood by multi-parametric flow cytometry analysis. A significant increase for peripheral blood mononuclear cells (PBMCs) was noted in the smoking subjects. Subsequent studies revealed that the percentage for plasmacytoid DCs (pDCs) and total DCs in PBMCs was significantly higher in the smoking subjects as compared with that of control subjects, while the percentage for myeloid DCs (mDCs) did not differ between two groups. It was also found that the absolute number for total DCs, mDCs and pDCs were significantly higher in the smoking subjects than that of control subject. However, the mDC/pDC ratio was significantly reduced, suggesting that smoking impairs the balance of DC subsets. Given that pDCs are in favor of tolerogenic function, our data support that smoking could induce the production of pDCs to manifest immunosuppressive properties in the chronic smokers.
Collapse
Affiliation(s)
- Xue-Qin Chen
- Division of Respiratory Medicine, Renmin Hospital, Wuhan UniversityWuhan, China
| | - Xiao-Fan Liu
- Division of Respiratory Medicine, Renmin Hospital, Wuhan UniversityWuhan, China
| | | | - Wei Guo
- School of Medicine, Wuhan UniversityWuhan, China
| | - Qilin Yu
- The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology1095 Jiefang Ave. Wuhan 430030, China
| | - Cong-Yi Wang
- The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology1095 Jiefang Ave. Wuhan 430030, China
| |
Collapse
|
46
|
Abstract
COPD is a worldwide public health problem that reduces the quality of life. The exact pathways by which CS and other environmental toxins produce COPD are not known. Currently, the leading candidates are (1) the protease-antiprotease hypothesis, (2) the Dutch hypothesis, (3) the British hypothesis, and the (4) autoimmunity hypothesis. Given the heterogeneity of the disease (and phenotypes), it is probably unrealistic that one pathway will fully explain COPD pathophysiology.
Collapse
Affiliation(s)
- Anthony Tam
- Department of Medicine, The UBC James Hogg Research Centre, Providence Heart and Lung Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | | |
Collapse
|
47
|
Tang J, Tian D, Liu G. Immunosuppressive Effect of Cordyceps CS-4 on Human Monocyte-Derived Dendritic Cellsin Vitro. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2012; 38:961-72. [PMID: 20821826 DOI: 10.1142/s0192415x1000838x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Cordyceps CS-4 (C.CS-4), a vegetative form of Cordyceps that contains the same active compounds as the fruit body, is widely used as a substitute of Cordyceps in China. A number of studies have shown that Cordyceps can positively stimulate the activation of T lymphocytes, B lymphocytes, natural killer cells, and macrophages. In our previous study, we found that C.CS-4 could inhibit the proliferation of CD4+ T cells in autoimmune diseases and prevent the lymphocyte infiltration in tissues. However, it is still unclear how the lymphocytes are regulated by C.CS-4. In this study, we investigate the effect of C.CS-4 on human monocyte-derived dendritic cells ( Mo -DCs), which are generated from PBMCs by the treatment with GM-CSF and IL-4. It is observed that Mo -DCs pretreated with C.CS-4 show an immature phenotype. Moreover, C.CS-4 significantly inhibits proliferation of CD4+ T cells, attenuates the production of cytokines in Mo -DCs and balances the Th1 and Th2 response in immune system. Our findings indicate that C.CS-4 exerts the immunosuppressive effect through inhibiting the CD4+ T cells proliferation, regulating cytokine secretions of Th1 and Th2 response ( Mo -DCs) and inducing phenotypic immature of Mo -DCs which may be related to the antigen presenting dysfunction.
Collapse
Affiliation(s)
- Jing Tang
- Department of Pharmacy, Shanghai First People's Hospital, Shanghai Jiao Tong University, Shanghai 200080, China
| | - Dan Tian
- Department of Pathology, Shanghai First People's Hospital, Shanghai Jiao Tong University, Shanghai 200080, China
| | - Gaolin Liu
- Department of Pharmacy, Shanghai First People's Hospital, Shanghai Jiao Tong University, Shanghai 200080, China
| |
Collapse
|
48
|
Wan F, Dai H, Zhang S, Moore Y, Wan N, Dai Z. Cigarette smoke exposure hinders long-term allograft survival by suppressing indoleamine 2, 3-dioxygenase expression. Am J Transplant 2012; 12:610-9. [PMID: 22050701 DOI: 10.1111/j.1600-6143.2011.03820.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Cigarette smoke causes cancer and increases the vulnerability of smokers to infections. Epidemiologic studies have shown that smoking is one of major risk factors for late allograft rejection. Despite statistical data that associate smoking with allograft rejection, no any study has been conducted to prove that cigarette smoke directly causes allograft rejection in a cause-effect manner. In particular, investigation into immunologic mechanisms underlying smoke-related allograft rejection is lacking. Here we found that second hand smoke (SHS) hindered long-term islet allograft survival induced by CD154 costimulatory blockade plus donor-specific splenocyte transfusion (DST), although it failed to alter acute islet allograft rejection. SHS did not directly interfere with vigorously alloreactive T-cell proliferation in vivo and in vitro. Neither naturally occurring nor induced CD4+CD25+ Treg cell numbers were significantly reduced by SHS. However, SHS suppressed mRNA and protein expression of indoleamine 2, 3-dioxygenase (IDO) and its activity upon transplantation while IDO overexpression in islet allografts restored their long-term survival induced by CD154 blockade. Therefore, SHS prevents long-term allograft survival by inhibiting IDO expression and activity. Thus, our study for the first time demonstrates that SHS shortens allograft survival in a cause-effect manner and unveils a novel immunologic mechanism underlying smoking-related allograft rejection.
Collapse
Affiliation(s)
- F Wan
- Department of Immunology and Microbiology, Center for Biomedical Research, University of Texas Health Science Center, Tyler, TX, USA
| | | | | | | | | | | |
Collapse
|
49
|
Nouri-Shirazi M, Guinet E. Exposure to nicotine adversely affects the dendritic cell system and compromises host response to vaccination. THE JOURNAL OF IMMUNOLOGY 2012; 188:2359-70. [PMID: 22279108 DOI: 10.4049/jimmunol.1102552] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The magnitude of Th1 cells response to vaccination is a critical factor in determining protection from clinical disease. Our previous in vitro studies suggested that exposure to the nicotine component of cigarette smoke skews the differentiation of both human and mouse dendritic cell (DC) precursors into atypical DCs (DCs differentiated ex vivo in the presence of nicotine) lacking parameters essential for the development of Th1-mediated immunity. In this study, we determined the causal relationship between nicotine-induced DC alterations and host response to vaccines. We show that animals exposed to nicotine failed to develop and maintain Ag-specific effector memory Th1 cells and Ab production to protein-based vaccine formulated with Th1 adjuvants. Accordingly, both prophylactic and therapeutic vaccines failed to protect and cure the nicotine-exposed mice from disease. More importantly, we demonstrate the nicotine-induced defects in the biological activities of in vivo DCs as an underlying mechanism. Indeed, i.v. administration of DCs differentiated in the presence of nicotine preferentially promoted the development of Ag-specific IL-4-producing effector cells in the challenged mice. In addition, DC subsets isolated from mice exposed to nicotine produced significantly less cytokines in response to Th1 adjuvants and inadequately supported the development of Ag-specific Th1 cells. Collectively, our studies suggest that nicotine-induced defects in the DC system compromises vaccine efficacy in smokers.
Collapse
Affiliation(s)
- Mahyar Nouri-Shirazi
- Clinical Biomedical Science Department, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL 33431, USA.
| | | |
Collapse
|
50
|
Chang CC, Chen CY, Chiu HF, Dai SX, Liu MY, Yang CY. Elastases from inflammatory and dendritic cells mediate ultrafine carbon black induced acute lung destruction in mice. Inhal Toxicol 2012; 23:616-26. [PMID: 21864221 DOI: 10.3109/08958378.2011.598965] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
CONTEXT Exposure to ultrafine particles (<100 nm in diameter) is postulated to cause chronic obstructive pulmonary disease (COPD). However, the mechanism remains to be elucidated. OBJECTIVE We aimed to evaluate whether ultrafine particle exposure causes the infiltration of inflammatory and dendritic cells (DCs) with increased elastase activity, contributing to lung parenchymal destruction. MATERIALS AND METHODS C57BL/6 male mice were intratracheally instilled with 300 µg ultrafine carbon black (ufCB; 14 nm in diameter), and sacrificed at 1, 3, 7 and 14 d post-exposure. Differential cell counts, elastase activities, and desmosine and hydroxyproline in bronchoalveolar (BAL) fluid were determined. Immunofluorescent staining and flow cytometry analysis determined the cell origin of macrophage metalloelastase (MMP-12). Anti-neutrophil antibody was applied to assess the contribution of elastase in ufCB induced lung destruction. RESULTS ufCB exposure led to significant increases in neutrophils, mononuclear cells and total proteins in BAL fluid. Desmosine and hydroxyproline were significantly increased in the ufCB group. Elastase activities were found to be significantly elevated, with both neutrophil elastase and MMP-12 peaking at 3 d post-exposure. Flow cytometry analysis demonstrated that pulmonary infiltrations of MMP-12 positive DCs, including Langerhans cells-derived DCs, occurred at 3 d and 7 d, while macrophage infiltration was obvious starting at 1 d. Anti-neutrophil antibody significantly reduced neutrophil elastase activity and prevented the increases in BAL desmosine and hydroxyproline following ufCB exposure. CONCLUSION For the first time we demonstrate the infiltration of Langerhans and myeloid dendritic cells, and show that elastase production contributes to pulmonary destruction following exposure to ultrafine particles.
Collapse
Affiliation(s)
- Chih-Ching Chang
- Department of Environmental and Occupational Health, National Cheng Kung University, Tainan, Taiwan
| | | | | | | | | | | |
Collapse
|