1
|
Razim A, Zabłocka A, Schmid A, Thaler M, Černý V, Weinmayer T, Whitehead B, Martens A, Skalska M, Morandi M, Schmidt K, Wysmołek ME, Végvári A, Srutkova D, Schwarzer M, Neuninger L, Nejsum P, Hrdý J, Palmfeldt J, Brucale M, Valle F, Górska S, Wisgrill L, Inic‐Kanada A, Wiedermann U, Schabussova I. Bacterial extracellular vesicles as intranasal postbiotics: Detailed characterization and interaction with airway cells. J Extracell Vesicles 2024; 13:e70004. [PMID: 39429019 PMCID: PMC11491762 DOI: 10.1002/jev2.70004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/23/2024] [Accepted: 09/29/2024] [Indexed: 10/22/2024] Open
Abstract
Escherichia coli A0 34/86 (EcO83) is a probiotic strain used in newborns to prevent nosocomial infections and diarrhoea. This bacterium stimulates both pro- and anti-inflammatory cytokine production and its intranasal administration reduces allergic airway inflammation in mice. Despite its benefits, there are concerns about the use of live probiotic bacteria due to potential systemic infections and gene transfer. Extracellular vesicles (EVs) derived from EcO83 (EcO83-EVs) might offer a safer alternative to live bacteria. This study characterizes EcO83-EVs and investigates their interaction with host cells, highlighting their potential as postbiotic therapeutics. EcO83-EVs were isolated, purified, and characterised following the Minimal Information of Studies of Extracellular Vesicles (MISEV) guidelines. Ex vivo studies conducted in human nasal epithelial cells showed that EcO83-EVs increased the expression of proteins linked to oxidative stress and inflammation, indicating an effective interaction between EVs and the host cells. Further in vivo studies in mice demonstrated that EcO83-EVs interact with nasal-associated lymphoid tissue, are internalised by airway macrophages, and stimulate neutrophil recruitment in the lung. Mechanistically, EcO83-EVs activate the NF-κΒ signalling pathway, resulting in the nitric oxide production. EcO83-EVs demonstrate significant potential as a postbiotic alternative to live bacteria, offering a safer option for therapeutic applications. Further research is required to explore their clinical use, particularly in mucosal vaccination and targeted immunotherapy strategies.
Collapse
Affiliation(s)
- Agnieszka Razim
- Institute of Specific Prophylaxis and Tropical Medicine, Centre for PathophysiologyInfectiology and Immunology, Medical University of ViennaViennaAustria
| | - Agnieszka Zabłocka
- Hirszfeld Institute of Immunology and Experimental TherapyPolish Academy of SciencesWroclawPoland
| | - Anna Schmid
- Institute of Specific Prophylaxis and Tropical Medicine, Centre for PathophysiologyInfectiology and Immunology, Medical University of ViennaViennaAustria
| | - Michael Thaler
- Institute of Specific Prophylaxis and Tropical Medicine, Centre for PathophysiologyInfectiology and Immunology, Medical University of ViennaViennaAustria
| | - Viktor Černý
- Institute of Specific Prophylaxis and Tropical Medicine, Centre for PathophysiologyInfectiology and Immunology, Medical University of ViennaViennaAustria
| | - Tamara Weinmayer
- Institute of Specific Prophylaxis and Tropical Medicine, Centre for PathophysiologyInfectiology and Immunology, Medical University of ViennaViennaAustria
| | - Bradley Whitehead
- Department of Infectious DiseasesAarhus University HospitalAarhusDenmark
- Department of Clinical MedicineAarhus UniversityAarhusDenmark
| | - Anke Martens
- Division of Neonatology, Paediatric Intensive Care and Neuropediatric, Department of Paediatrics and Adolescent Medicine, Comprehensive Centre for PaediatricsMedical University of ViennaViennaAustria
| | - Magdalena Skalska
- Department of Medical Physics, M. Smoluchowski Institute of Physics, Faculty of PhysicsAstronomy and Applied Computer Science, Jagiellonian UniversityKrakowPoland
| | - Mattia Morandi
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of SciencePragueCzech Republic
| | - Katy Schmidt
- Research Support Facilities, Imaging Unit CIUS, Faculty of Life SciencesUniversity of ViennaViennaAustria
| | - Magdalena E. Wysmołek
- Institute of Specific Prophylaxis and Tropical Medicine, Centre for PathophysiologyInfectiology and Immunology, Medical University of ViennaViennaAustria
| | - Akos Végvári
- Proteomics Biomedicum, Division of Chemistry I, Department of Medical Biochemistry and BiophysicsKarolinska InstitutetStockholmSweden
- Division of Chemistry I, Department of Medical Biochemistry and BiophysicsKarolinska InstitutetStockholmSweden
| | - Dagmar Srutkova
- Laboratory of GnotobiologyInstitute of Microbiology of the Czech Academy of SciencesNovy HradekCzech Republic
| | - Martin Schwarzer
- Laboratory of GnotobiologyInstitute of Microbiology of the Czech Academy of SciencesNovy HradekCzech Republic
| | - Lukas Neuninger
- Institute of Specific Prophylaxis and Tropical Medicine, Centre for PathophysiologyInfectiology and Immunology, Medical University of ViennaViennaAustria
| | - Peter Nejsum
- Department of Infectious DiseasesAarhus University HospitalAarhusDenmark
- Department of Clinical MedicineAarhus UniversityAarhusDenmark
| | - Jiri Hrdý
- Institute of Immunology and Microbiology, First Faculty of MedicineCharles University and General University HospitalPragueCzech Republic
| | - Johan Palmfeldt
- Research Unit for Molecular Medicine, Department of Clinical MedicineAarhus UniversityAarhusDenmark
| | - Marco Brucale
- Institute of Nanostructured MaterialsCNR‐ISMNBolognaItaly
| | | | - Sabina Górska
- Hirszfeld Institute of Immunology and Experimental TherapyPolish Academy of SciencesWroclawPoland
| | - Lukas Wisgrill
- Division of Neonatology, Paediatric Intensive Care and Neuropediatric, Department of Paediatrics and Adolescent Medicine, Comprehensive Centre for PaediatricsMedical University of ViennaViennaAustria
| | - Aleksandra Inic‐Kanada
- Institute of Specific Prophylaxis and Tropical Medicine, Centre for PathophysiologyInfectiology and Immunology, Medical University of ViennaViennaAustria
| | - Ursula Wiedermann
- Institute of Specific Prophylaxis and Tropical Medicine, Centre for PathophysiologyInfectiology and Immunology, Medical University of ViennaViennaAustria
| | - Irma Schabussova
- Institute of Specific Prophylaxis and Tropical Medicine, Centre for PathophysiologyInfectiology and Immunology, Medical University of ViennaViennaAustria
| |
Collapse
|
2
|
Mizuno N, Shiga S, Tanaka Y, Kimura T, Yanagawa Y. CDK8/19 inhibitor enhances arginase-1 expression in macrophages via STAT6 and p38 MAPK activation. Eur J Pharmacol 2024; 979:176852. [PMID: 39067565 DOI: 10.1016/j.ejphar.2024.176852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 06/25/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
Macrophages polarize into alternatively activated M2 macrophages through interleukin (IL)-4, and they express high levels of arginase-1, which promotes anti-inflammatory responses. Several studies have confirmed the anti-inflammatory effects of cyclin-dependent kinase (CDK) 8/19 inhibition, and hence, numerous CDK8/19 inhibitors, such as BRD6989, have been developed. However, the effects of CDK8/19 inhibitors on arginase-1 expression in macrophages have not yet been elucidated. This study investigated the effects of CDK8/19 inhibitor on arginase-1 expression in IL-4-activated macrophages. The results showed that BRD6989 increased arginase-1 expression transcriptionally in murine peritoneal macrophages and the murine macrophage cell line RAW264.7 in an IL-4-dependent manner. In addition, the results indicated that BRD6989 enhances signal transducer and activator of transcription (STAT) 6 phosphorylation. Meanwhile, BRD6989 exhibited the capability to activate p38 mitogen-activated protein kinase (MAPK) even in the absence of IL-4 stimulation. Moreover, we observed that a p38 MAPK inhibitor suppressed the BRD6989-induced increase in arginase-1 expression. Besides, BRD6989 increased the surface expression of CD206, an M2 macrophage marker. Thus, this study demonstrated for the first time that CDK8/19 inhibition increases arginase-1 expression, suggesting that this mechanism involves the activation of STAT6 and p38 MAPK. This finding implies that CDK8/19 inhibition may facilitate the production of anti-inflammatory M2 macrophages.
Collapse
Affiliation(s)
- Natsumi Mizuno
- Department of Pharmacology, School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Kanazawa 1757, Tobetsu, Ishikari, 061-0293, Japan.
| | - Saki Shiga
- Department of Pharmacology, School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Kanazawa 1757, Tobetsu, Ishikari, 061-0293, Japan
| | - Yoshiyuki Tanaka
- Department of Pharmacology, School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Kanazawa 1757, Tobetsu, Ishikari, 061-0293, Japan
| | - Tatsuki Kimura
- Department of Pharmacology, School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Kanazawa 1757, Tobetsu, Ishikari, 061-0293, Japan
| | - Yoshiki Yanagawa
- Department of Pharmacology, School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Kanazawa 1757, Tobetsu, Ishikari, 061-0293, Japan
| |
Collapse
|
3
|
Lee HJ, Oh JY. Mesenchymal Stem/Stromal Cells Induce Myeloid-Derived Suppressor Cells in the Bone Marrow via the Activation of the c-Jun N-Terminal Kinase Signaling Pathway. Int J Mol Sci 2024; 25:1119. [PMID: 38256195 PMCID: PMC10816501 DOI: 10.3390/ijms25021119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/10/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
Our previous study demonstrated that mesenchymal stem/stromal cells (MSCs) induce the differentiation of myeloid-derived suppressor cells (MDSCs) in the bone marrow (BM) under inflammatory conditions. In this study, we aimed to investigate the signaling pathway involved. RNA-seq revealed that the mitogen-activated protein kinase (MAPK) pathway exhibited the highest number of upregulated genes in MSC-induced MDSCs. Western blot analysis confirmed the strong phosphorylation of c-Jun N-terminal kinase (JNK) in BM cells cocultured with MSCs under granulocyte-macrophage colony-stimulating factor stimulation, whereas p38 kinase activation remained unchanged in MSC-cocultured BM cells. JNK inhibition by SP600125 abolished the expression of Arg1 and Nos2, hallmark genes of MDSCs, as well as Hif1a, a molecule mediating monocyte functional reprogramming toward a suppressive phenotype, in MSC-cocultured BM cells. JNK inhibition also abrogated the effects of MSCs on the production of TGF-β1, TGF-β2 and IL-10 in BM cells. Furthermore, JNK inhibition increased Tnfa expression, while suppressing IL-10 production, in MSC-cocultured BM cells in response to lipopolysaccharides. Collectively, our results suggest that MSCs induce MDSC differentiation and promote immunoregulatory cytokine production in BM cells during inflammation, at least in part, through the activation of the JNK-MAPK signaling pathway.
Collapse
Affiliation(s)
- Hyun Ju Lee
- Laboratory of Ocular Regenerative Medicine and Immunology, Biomedical Research Institute, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea;
| | - Joo Youn Oh
- Laboratory of Ocular Regenerative Medicine and Immunology, Biomedical Research Institute, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea;
- Department of Ophthalmology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea
| |
Collapse
|
4
|
Arpa L, Batlle C, Jiang P, Caelles C, Lloberas J, Celada A. Distinct Responses to IL4 in Macrophages Mediated by JNK. Cells 2023; 12:cells12081127. [PMID: 37190036 DOI: 10.3390/cells12081127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/20/2023] [Accepted: 04/06/2023] [Indexed: 05/17/2023] Open
Abstract
IL(Interleukin)-4 is the main macrophage M2-type activator and induces an anti-inflammatory phenotype called alternative activation. The IL-4 signaling pathway involves the activation of STAT (Signal Transducer and Activator of Transcription)-6 and members of the MAPK (Mitogen-activated protein kinase) family. In primary-bone-marrow-derived macrophages, we observed a strong activation of JNK (Jun N-terminal kinase)-1 at early time points of IL-4 stimulation. Using selective inhibitors and a knockout model, we explored the contribution of JNK-1 activation to macrophages' response to IL-4. Our findings indicate that JNK-1 regulates the IL-4-mediated expression of genes typically involved in alternative activation, such as Arginase 1 or Mannose receptor, but not others, such as SOCS (suppressor of cytokine signaling) 1 or p21Waf-1 (cyclin dependent kinase inhibitor 1A). Interestingly, we have observed that after macrophages are stimulated with IL-4, JNK-1 has the capacity to phosphorylate STAT-6 on serine but not on tyrosine. Chromatin immunoprecipitation assays revealed that functional JNK-1 is required for the recruitment of co-activators such as CBP (CREB-binding protein)/p300 on the promoter of Arginase 1 but not on p21Waf-1. Taken together, these data demonstrate the critical role of STAT-6 serine phosphorylation by JNK-1 in distinct macrophage responses to IL-4.
Collapse
Affiliation(s)
- Luís Arpa
- Biology of Macrophages Group, Department of Cellular Biology, Physiology and Immunology, Universitat de Barcelona, 08007 Barcelona, Spain
| | - Carlos Batlle
- Biology of Macrophages Group, Department of Cellular Biology, Physiology and Immunology, Universitat de Barcelona, 08007 Barcelona, Spain
| | - Peijin Jiang
- Biology of Macrophages Group, Department of Cellular Biology, Physiology and Immunology, Universitat de Barcelona, 08007 Barcelona, Spain
| | - Carme Caelles
- Institute of Biomedicine, Universitat de Barcelona (IBUB), 08028 Barcelona, Spain
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Jorge Lloberas
- Biology of Macrophages Group, Department of Cellular Biology, Physiology and Immunology, Universitat de Barcelona, 08007 Barcelona, Spain
| | - Antonio Celada
- Biology of Macrophages Group, Department of Cellular Biology, Physiology and Immunology, Universitat de Barcelona, 08007 Barcelona, Spain
| |
Collapse
|
5
|
Li S, Zhou B, Xue M, Zhu J, Tong G, Fan J, Zhu K, Hu Z, Chen R, Dong Y, Chen Y, Lee KY, Li X, Jin L, Cong W. Macrophage-specific FGF12 promotes liver fibrosis progression in mice. Hepatology 2023; 77:816-833. [PMID: 35753047 DOI: 10.1002/hep.32640] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 12/08/2022]
Abstract
BACKGROUND AND AIMS Chronic liver diseases are associated with the development of liver fibrosis. Without treatment, liver fibrosis commonly leads to cirrhosis and HCC. FGF12 is an intracrine factor belonging to the FGF superfamily, but its role in liver homeostasis is largely unknown. This study aimed to investigate the role of FGF12 in the regulation of liver fibrosis. APPROACH AND RESULTS FGF12 was up-regulated in bile duct ligation (BDL)-induced and CCL 4 -induced liver fibrosis mouse models. Expression of FGF12 was specifically up-regulated in nonparenchymal liver cells, especially in hepatic macrophages. By constructing myeloid-specific FGF12 knockout mice, we found that deletion of FGF12 in macrophages protected against BDL-induced and CCL 4 -induced liver fibrosis. Further results revealed that FGF12 deletion dramatically decreased the population of lymphocyte antigen 6 complex locus C high macrophages in mouse fibrotic liver tissue and reduced the expression of proinflammatory cytokines and chemokines. Meanwhile, loss-of-function and gain-of-function approaches revealed that FGF12 promoted the proinflammatory activation of macrophages, thus inducing HSC activation mainly through the monocyte chemoattractant protein-1/chemokine (C-C motif) receptor 2 axis. Further experiments indicated that the regulation of macrophage activation by FGF12 was mainly mediated through the Janus kinase-signal transducer of activators of transcription pathway. Finally, the results revealed that FGF12 expression correlates with the severity of fibrosis across the spectrum of fibrogenesis in human liver samples. CONCLUSIONS FGF12 promotes liver fibrosis progression. Therapeutic approaches to inhibit macrophage FGF12 may be used to combat liver fibrosis in the future.
Collapse
Affiliation(s)
- Santie Li
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health) , School of Pharmaceutical Science , Wenzhou Medical University , Wenzhou , People's Republic of China.,College of Pharmacy and Research Institute of Drug Development , Chonnam National University , Gwangju , Republic of Korea
| | - Bin Zhou
- Department of Hepatobiliary Surgery , The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University , Wenzhou , People's Republic of China
| | - Mei Xue
- Central Laboratory , The First Affiliated Hospital of Wenzhou Medical University , Wenzhou , People's Republic of China
| | - Junjie Zhu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health) , School of Pharmaceutical Science , Wenzhou Medical University , Wenzhou , People's Republic of China
| | - Gaozan Tong
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health) , School of Pharmaceutical Science , Wenzhou Medical University , Wenzhou , People's Republic of China
| | - Junfu Fan
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health) , School of Pharmaceutical Science , Wenzhou Medical University , Wenzhou , People's Republic of China
| | - Kunxuan Zhu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health) , School of Pharmaceutical Science , Wenzhou Medical University , Wenzhou , People's Republic of China
| | - Zijing Hu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health) , School of Pharmaceutical Science , Wenzhou Medical University , Wenzhou , People's Republic of China
| | - Rui Chen
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health) , School of Pharmaceutical Science , Wenzhou Medical University , Wenzhou , People's Republic of China
| | - Yonggan Dong
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health) , School of Pharmaceutical Science , Wenzhou Medical University , Wenzhou , People's Republic of China
| | - Yiming Chen
- Department of Hepatobiliary Surgery , The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University , Wenzhou , People's Republic of China
| | - Kwang Youl Lee
- College of Pharmacy and Research Institute of Drug Development , Chonnam National University , Gwangju , Republic of Korea
| | - Xiaokun Li
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health) , School of Pharmaceutical Science , Wenzhou Medical University , Wenzhou , People's Republic of China.,Haihe Laboratory of Cell Ecosystem , School of Pharmaceutical Science , Wenzhou Medical University , Wenzhou , People's Republic of China
| | - Litai Jin
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health) , School of Pharmaceutical Science , Wenzhou Medical University , Wenzhou , People's Republic of China
| | - Weitao Cong
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health) , School of Pharmaceutical Science , Wenzhou Medical University , Wenzhou , People's Republic of China.,Haihe Laboratory of Cell Ecosystem , School of Pharmaceutical Science , Wenzhou Medical University , Wenzhou , People's Republic of China
| |
Collapse
|
6
|
Jiang Y, Chai X, Chen S, Chen Z, Tian H, Liu M, Wu X. Exosomes from the Uterine Cavity Mediate Immune Dysregulation via Inhibiting the JNK Signal Pathway in Endometriosis. Biomedicines 2022; 10:biomedicines10123110. [PMID: 36551866 PMCID: PMC9775046 DOI: 10.3390/biomedicines10123110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/21/2022] [Accepted: 11/28/2022] [Indexed: 12/04/2022] Open
Abstract
Endometriosis is a chronic inflammatory disease with an uncertain pathogenesis. Peritoneal immune dysregulation plays an important role in the pathogenesis of endometriosis. Exosomes are messengers of intercellular communication. This study mainly investigated the role of exosomes from the uterine cavity in endometriosis. Exosomes of the uterine aspirate fluid were isolated and cocultured with macrophages for 48 h. Flow cytometry was used to detect macrophage polarization. A Human MAPK Phosphorylation Antibody Array and Western blot were used to detect the phosphorylation of the MAPK pathway. A microRNA sequencing analysis was used to detect differentially expressed miRNAs. Our research found that exosomes of the uterine aspirate fluid from endometriosis could reduce the proportion of CD80+ macrophages. Additionally, it could inhibit the expression of P-JNK in macrophages. However, the JNK activator anisomycin could increase the proportion of CD80+ macrophages. In addition, exosomes of the uterine aspirate fluid from endometriosis could promote the migration and invasion of endometrial stromal cells by acting on macrophages. The expression of miR-210-3p was increased in both exosomes and the eutopic endometrium in patients with endometriosis through miRNA sequencing, which could also reduce the proportion of CD80+ macrophages. In summary, we propose that exosomes from the uterine cavity in patients with endometriosis may affect the phenotype of macrophages by inhibiting the JNK signaling pathway, thus mediating the formation of an immunological microenvironment conducive to the development of endometriosis.
Collapse
|
7
|
Lee J, Kim S, Kang CH. Immunostimulatory Activity of Lactic Acid Bacteria Cell-Free Supernatants through the Activation of NF-κB and MAPK Signaling Pathways in RAW 264.7 Cells. Microorganisms 2022; 10:2247. [PMID: 36422317 PMCID: PMC9698684 DOI: 10.3390/microorganisms10112247] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 09/29/2023] Open
Abstract
Lactic acid bacteria (LAB) can improve host health and has strong potential for use as a health functional food. Specific strains of LAB have been reported to exert immunostimulatory effects. The primary goal of this study was to evaluate the immunostimulatory activities of novel LAB strains isolated from humans and foods and to investigate the probiotic properties of these strains. Cell-free supernatants (CFS) obtained from selected LAB strains significantly increased phagocytosis and level of nitric oxide (NO) and pro-inflammatory cytokines such as tumor necrosis factor (TNF)-α and interleukin (IL)-6 in RAW264.7 macrophage cells. The protein expression of inducible NO synthase (iNOS) and cyclooxygenase (COX)-2, which are immunomodulators, was also upregulated by CFS treatment. CFS markedly induced the phosphorylation of nuclear factor-κB (NF-κB) and MAPKs (ERK, JNK, and p38). In addition, the safety of the LAB strains used in this study was demonstrated by hemolysis and antibiotic resistance tests. Their stability was confirmed under simulated gastrointestinal conditions. Taken together, these results indicate that the LAB strains selected in this study could be useful as probiotic candidates with immune-stimulating activity.
Collapse
Affiliation(s)
| | | | - Chang-Ho Kang
- MEDIOGEN Co., Ltd., Biovalley 1-ro, Jecheon-si 27159, Korea
| |
Collapse
|
8
|
Allen DZ, Aljabban J, Silverman D, McDermott S, Wanner RA, Rohr M, Hadley D, Panahiazar M. Meta-Analysis illustrates possible role of lipopolysaccharide (LPS)-induced tissue injury in nasopharyngeal carcinoma (NPC) pathogenesis. PLoS One 2021; 16:e0258187. [PMID: 34648530 PMCID: PMC8516236 DOI: 10.1371/journal.pone.0258187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 09/21/2021] [Indexed: 12/20/2022] Open
Abstract
Background Nasopharyngeal carcinoma (NPC) is a cancer of epithelial origin with a high incidence in certain populations. While NPC has a high remission rate with concomitant chemoradiation, recurrences are frequent, and the downstream morbidity of treatment is significant. Thus, it is imperative to find alternative therapies. Methods We employed a Search Tag Analyze Resource (STARGEO) platform to conduct a meta-analysis using the National Center for Biotechnology’s (NCBI) Gene Expression Omnibus (GEO) to define NPC pathogenesis. We identified 111 tumor samples and 43 healthy nasopharyngeal epithelium samples from NPC public patient data. We analyzed associated signatures in Ingenuity Pathway Analysis (IPA), restricting genes that showed statistical significance (p<0.05) and an absolute experimental log ratio greater than 0.15 between disease and control samples. Results Our meta-analysis identified activation of lipopolysaccharide (LPS)-induced tissue injury in NPC tissue. Additionally, interleukin-1 (IL-1) and SB203580 were the top upstream regulators. Tumorigenesis-related genes such as homeobox A10 (HOXA10) and prostaglandin-endoperoxide synthase 2 (PTGS2 or COX-2) as well as those associated with extracellular matrix degradation, such as matrix metalloproteinases 1 and 3 (MMP-1, MMP-3) were also upregulated. Decreased expression of genes that encode proteins associated with maintaining healthy nasal respiratory epithelium structural integrity, including sentan-cilia apical structure protein (SNTN) and lactotransferrin (LTF) was documented. Importantly, we found that etanercept inhibits targets upregulated in NPC and LPS induction, such as MMP-1, PTGS2, and possibly MMP-3. Conclusions Our analysis illustrates that nasal epithelial barrier dysregulation and maladaptive immune responses are key components of NPC pathogenesis along with LPS-induced tissue damage.
Collapse
Affiliation(s)
- David Z. Allen
- The Ohio State College of Medicine, Columbus, Ohio, United States of America
- * E-mail:
| | - Jihad Aljabban
- Department of Medicine, University of Wisconsin Hospital and Clinics, Madison, Wisconsin, United States of America
| | - Dustin Silverman
- Department of Otolaryngology, The Ohio State Wexner Medical Center, Columbus, Ohio, United States of America
| | - Sean McDermott
- The Ohio State College of Medicine, Columbus, Ohio, United States of America
| | - Ross A. Wanner
- The Ohio State College of Medicine, Columbus, Ohio, United States of America
| | - Michael Rohr
- University of Central Florida, Orlando, Florida, United States of America
| | - Dexter Hadley
- Department of Pathology, University of Central Florida, Orlando, Florida, United States of America
| | - Maryam Panahiazar
- Department of Surgery, University of California San Francisco, San Francisco, California, United States of America
| |
Collapse
|
9
|
Tur J, Farrera C, Sánchez-Tilló E, Vico T, Guerrero-Gonzalez P, Fernandez-Elorduy A, Lloberas J, Celada A. Induction of CIITA by IFN-γ in macrophages involves STAT1 activation by JAK and JNK. Immunobiology 2021; 226:152114. [PMID: 34303919 DOI: 10.1016/j.imbio.2021.152114] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 07/02/2021] [Accepted: 07/09/2021] [Indexed: 01/05/2023]
Abstract
The induction of major histocompatibility complex (MHC) class II proteins by interferon gamma (IFN-γ) in macrophages play an important role during immune responses. Here we explore the signaling pathways involved in the induction by IFN-γ of the MHC II transactivator (CIIta) required for MHC II transcriptional activation. Cyclophilin A (CypA) is required for IFN-γ-dependent induction of MHC II in macrophages, but not when it is mediated by GM-CSF. The effect of CypA appears to be specific because it does not affect the expression of other molecules or genes triggered by IFN-γ, such as FcγR, NOS2, Lmp2, and Tap1. We found that CypA inhibition blocked the IFN-γ-induced expression of CIIta at the transcriptional level in two phases. In an early phase, during the first 2 h of IFN-γ treatment, STAT1 is phosphorylated at Tyrosine 701 and Serine 727, residues required for the induction of the transcription factor IRF1. In a later phase, STAT1 phosphorylation and JNK activation are required to trigger CIIta expression. CypA is needed for STAT1 phosphorylation in this last phase and to bind the CIIta promoter. Our findings demonstrate that STAT1 is required in a two-step induction of CIIta, once again highlighting the significance of cross talk between signaling pathways in macrophages.
Collapse
Affiliation(s)
- Juan Tur
- Macrophage Biology Group, Department of Cellular Biology, Physiology and Immunology, Universitat de Barcelona, Barcelona, Spain
| | - Consol Farrera
- Macrophage Biology Group, Department of Cellular Biology, Physiology and Immunology, Universitat de Barcelona, Barcelona, Spain
| | - Ester Sánchez-Tilló
- Macrophage Biology Group, Department of Cellular Biology, Physiology and Immunology, Universitat de Barcelona, Barcelona, Spain
| | - Tania Vico
- Macrophage Biology Group, Department of Cellular Biology, Physiology and Immunology, Universitat de Barcelona, Barcelona, Spain
| | - Paula Guerrero-Gonzalez
- Macrophage Biology Group, Department of Cellular Biology, Physiology and Immunology, Universitat de Barcelona, Barcelona, Spain
| | - Ainhoa Fernandez-Elorduy
- Macrophage Biology Group, Department of Cellular Biology, Physiology and Immunology, Universitat de Barcelona, Barcelona, Spain
| | - Jorge Lloberas
- Macrophage Biology Group, Department of Cellular Biology, Physiology and Immunology, Universitat de Barcelona, Barcelona, Spain.
| | - Antonio Celada
- Macrophage Biology Group, Department of Cellular Biology, Physiology and Immunology, Universitat de Barcelona, Barcelona, Spain.
| |
Collapse
|
10
|
Ho CH, Cheng CH, Huang TW, Peng SY, Lee KM, Cheng PC. Switched phenotypes of macrophages during the different stages of Schistosoma japonicum infection influenced the subsequent trends of immune responses. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2021; 55:503-526. [PMID: 34330662 DOI: 10.1016/j.jmii.2021.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 05/28/2021] [Accepted: 06/24/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Macrophages play crucial roles in immune responses during the course of schistosomal infections. METHODS We currently investigated influence of immunocompetent changes in macrophages via microarray-based analysis, mRNA expression analysis, detection of serum cytokines, and subsequent evaluation of the immune phenotypes following the differentiation of infection-induced lymphocytes in a unique T1/T2 double-transgenic mouse model. RESULTS The gradual upregulation of genes encoding YM1, YM2, and interleukin (IL)-4/IL-13 receptors in infected mice indicated the role of type 2 alternatively activated macrophages (M2, AAMφs) in immune responses after Schistosoma japonicum egg production. FACS analysis showed that surface markers MHC class II (IA/IE) and CD8α+ of the macrophages also exhibited a dramatic change at the various time points before and after egg-production. The transgenic mouse experiments further demonstrated that the shifting of macrophage phenotypes influenced the percentage of helper T (Th)-2 cells, which was observed to be higher than that of Th1 cells, which increased only at 3 and 5 weeks post-infection. The differentiation of effector B cells showed a similar but more significant trend toward type-2 immunity. CONCLUSION These results suggest that the infection of mice with S. japonicum resulted in a final Th2- and Be2-skewed immune response. This may be due to phenotypic changes in the macrophages. The influence of alternatively activated macrophages was also activated by S. japonicum egg production. This study elucidated the existence of variations in immune mechanisms at the schistosome infection stages.
Collapse
Affiliation(s)
- Chen-Hsun Ho
- Division of Urology, Department of Surgery, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan; School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Chia-Hsiung Cheng
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Tzu-Wen Huang
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Shih-Yi Peng
- Department of Biochemistry, College of Medicine, Tzu Chi University, Hualien, Taiwan.
| | - Kin-Mu Lee
- School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Po-Ching Cheng
- Department of Molecular Parasitology and Tropical Diseases, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Center for International Tropical Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
11
|
Cho KM, Kim YS, Lee M, Lee HY, Bae YS. Isovaleric acid ameliorates ovariectomy-induced osteoporosis by inhibiting osteoclast differentiation. J Cell Mol Med 2021; 25:4287-4297. [PMID: 33768674 PMCID: PMC8093970 DOI: 10.1111/jcmm.16482] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 03/03/2021] [Accepted: 03/12/2021] [Indexed: 12/13/2022] Open
Abstract
Osteoclasts (OCs) play important roles in bone remodelling and contribute to bone loss by increasing bone resorption activity. Excessively activated OCs cause diverse bone disorders including osteoporosis. Isovaleric acid (IVA), also known as 3-methylbutanoic acid is a 5-carbon branched-chain fatty acid (BCFA), which can be generated by bacterial fermentation of a leucine-rich diet. Here, we find that IVA suppresses differentiation of bone marrow-derived macrophages into OCs by RANKL. IVA inhibited the expression of OC-related genes. IVA-induced inhibitory effects on OC generation were attenuated by pertussis toxin but not by H89, suggesting a Gi -coupled receptor-dependent but protein kinase A-independent response. Moreover, IVA stimulates AMPK phosphorylation, and treatment with an AMPK inhibitor blocks IVA-induced inhibition of OC generation. In an ovariectomized mouse model, addition of IVA to the drinking water resulted in significant decrease of body weight gain and inhibited the expression of not only OC-related genes but also fusogenic genes in the bone tissue. IVA exposure also blocked bone destruction and OC generation in the bone tissue of ovariectomized mice. Collectively, the results demonstrate that IVA is a novel bioactive BCFA that inhibits OC differentiation, suggesting that IVA can be considered a useful material to control osteoclast-associated bone disorders, including osteoporosis.
Collapse
Affiliation(s)
- Kwang Min Cho
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Korea
| | - Ye Seon Kim
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Korea
| | - Mingyu Lee
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Korea
| | - Ha Young Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Korea
| | - Yoe-Sik Bae
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Korea.,Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Korea
| |
Collapse
|
12
|
Bae HR, Choi MS, Kim S, Young HA, Gershwin ME, Jeon SM, Kwon EY. IFNγ is a Key Link between Obesity and Th1-Mediated AutoImmune Diseases. Int J Mol Sci 2020; 22:ijms22010208. [PMID: 33379198 PMCID: PMC7794719 DOI: 10.3390/ijms22010208] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/23/2020] [Accepted: 12/24/2020] [Indexed: 12/22/2022] Open
Abstract
Obesity, a characteristic of metabolic syndrome, is also associated with chronic inflammation and the development of autoimmune diseases. However, the relationship between obesity and autoimmune diseases remains to be investigated in depth. Here, we compared hepatic gene expression profiles among high-fat diet (HFD) mice using the primary biliary cholangitis (PBC) mouse model based on the chronic expression of interferon gamma (IFNγ) (ARE-Del-/- mice). The top differentially expressed genes affected by upstream transcriptional regulators IFNγ, LPS, and TNFα displayed an overlap in HFD and ARE-Del-/- mice, indicating that obesity-induced liver inflammation may be dependent on signaling via IFNγ. The top pathways altered in HFD mice were mostly involved in the innate immune responses, which overlapped with ARE-Del-/- mice. In contrast, T cell-mediated signaling pathways were exclusively altered in ARE-Del-/- mice. We further evaluated the therapeutic effect of luteolin, known as anti-inflammatory flavonoid, in HFD and ARE-Del-/- mice. Luteolin strongly suppressed the MHC I and II antigen presentation pathways, which were highly activated in both HFD and ARE-Del-/- mice. Conversely, luteolin increased metabolic processes of fatty acid oxidation and oxidative phosphorylation in the liver, which were suppressed in ARE-Del-/- mice. Luteolin also strongly induced PPAR signaling, which was downregulated in HFD and ARE-Del-/- mice. Using human GWAS data, we characterized the genetic interaction between significant obesity-related genes and IFNγ signaling and demonstrated that IFNγ is crucial for obesity-mediated inflammatory responses. Collectively, this study improves our mechanistic understanding of the relationship between obesity and autoimmune diseases. Furthermore, it provides new methodological insights into how immune network-based analyses effectively integrate RNA-seq and microarray data.
Collapse
Affiliation(s)
- Heekyong R. Bae
- Omixplus, LLC., Gaithersburg, MD 20885, USA; (H.R.B.); (S.K.)
- Laboratory of Cancer Immunometabolism, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute-Frederick, Frederick, MD 21701, USA;
- Department of Food Science and Nutrition, Center for Food and Nutritional Genomics Research, Kyungpook National University, Daegu 41566, Korea;
| | - Myung-Sook Choi
- Department of Food Science and Nutrition, Center for Food and Nutritional Genomics Research, Kyungpook National University, Daegu 41566, Korea;
| | - Suntae Kim
- Omixplus, LLC., Gaithersburg, MD 20885, USA; (H.R.B.); (S.K.)
| | - Howard A. Young
- Laboratory of Cancer Immunometabolism, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute-Frederick, Frederick, MD 21701, USA;
| | - M. Eric Gershwin
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis, Davis, CA 95616, USA;
| | - Seon-Min Jeon
- R&D Center, APtechnologies Corp., Gyeonggi-do, Hwaseong-si 18469, Korea
- Correspondence: (S.-M.J.); (E.-Y.K.); Tel.: +82-53-950-7936 (S.-M.J.); +82-53-950-6231 (E.-Y.K.)
| | - Eun-Young Kwon
- Department of Food Science and Nutrition, Center for Food and Nutritional Genomics Research, Kyungpook National University, Daegu 41566, Korea;
- Correspondence: (S.-M.J.); (E.-Y.K.); Tel.: +82-53-950-7936 (S.-M.J.); +82-53-950-6231 (E.-Y.K.)
| |
Collapse
|
13
|
Zhu D, Tang Q, Yu B, Meng M, Liu W, Li J, Zhu T, Vanhoutte PM, Leung SW, Zhang Y, Shi Y. Major histocompatibility complexes are up-regulated in glomerular endothelial cells via activation of c-Jun N-terminal kinase in 5/6 nephrectomy mice. Br J Pharmacol 2020; 177:5131-5147. [PMID: 32830316 PMCID: PMC7589013 DOI: 10.1111/bph.15237] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 07/25/2020] [Accepted: 08/03/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND AND PURPOSE This study aims to explore the mechanism underlying the up-regulation of major histocompatibility complex (MHC) proteins in glomerular endothelial cells in 5/6 nephrectomy mice. EXPERIMENTAL APPROACH C57/BL6 mice were randomly allocated to sham-operated (2K) and 5/6 nephrectomy (5/6Nx) groups. Mouse splenic lymphocytes, from either syngeneic or allogeneic background, were injected into 5/6Nx mice after total body irradiation. Human glomerular endothelial cells (HGECs) were cultured for experiments in vitro. Western blots, PCR, immunohistochemical and fluorescent staining were used, along with assays of tissue cytokines, lymphocyte migration and renal function. KEY RESULTS Four weeks after nephrectomy, expression of both mRNA and protein of MHC II, CD80, and CD86 were increased in 5/6Nx glomerular endothelial cells. After total body irradiation, 5/6Nx mice injected with lymphocytes from Balb/c mice, but not those from C57/BL6 mice, exhibited increased creatinine levels, indicating that allograft lymphocyte transfer impaired renal function. In HGECs, the protein levels of MHC and MHC Class II transactivator (CIITA) were increased by stimulation with TNF-α or IFN-γ, which promoted human lymphocytes movement. These increases were reduced by JNK inhibitors. In the 5/6Nx mice, JNK inhibition down-regulated MHC II protein in glomerular endothelial cells, suggesting that JNK signalling participates in the regulation of MHC II protein. CONCLUSION AND IMPLICATIONS Chronic inflammation in mice subjected to nephrectomy induces the up-regulation of MHC molecules in glomerular endothelial cells. This up-regulation is reduced by inhibition of JNK signalling.
Collapse
Affiliation(s)
- Dong Zhu
- Shanghai Key Laboratory of Organ TransplantationFudan UniversityShanghaiChina
- Department of UrologyZhongshan Hospital Fudan UniversityShanghaiChina
| | - Qunye Tang
- Shanghai Key Laboratory of Organ TransplantationFudan UniversityShanghaiChina
- Department of UrologyZhongshan Hospital Fudan UniversityShanghaiChina
| | - Baixue Yu
- Shanghai Key Laboratory of Organ TransplantationFudan UniversityShanghaiChina
- Institute of Clinical ScienceZhongshan Hospital Fudan UniversityShanghaiChina
| | - Mei Meng
- Shanghai Key Laboratory of Organ TransplantationFudan UniversityShanghaiChina
- Institute of Clinical ScienceZhongshan Hospital Fudan UniversityShanghaiChina
| | - Wenjie Liu
- Shanghai Key Laboratory of Organ TransplantationFudan UniversityShanghaiChina
- Institute of Clinical ScienceZhongshan Hospital Fudan UniversityShanghaiChina
| | - Jiawei Li
- Shanghai Key Laboratory of Organ TransplantationFudan UniversityShanghaiChina
- Department of UrologyZhongshan Hospital Fudan UniversityShanghaiChina
| | - Tongyu Zhu
- Shanghai Key Laboratory of Organ TransplantationFudan UniversityShanghaiChina
- Department of UrologyZhongshan Hospital Fudan UniversityShanghaiChina
| | - Paul M. Vanhoutte
- Department of Pharmacology and PharmacyThe University of Hong KongHong Kong
| | - Susan W.S. Leung
- Department of Pharmacology and PharmacyThe University of Hong KongHong Kong
| | - Yi Zhang
- Shanghai Key Laboratory of Organ TransplantationFudan UniversityShanghaiChina
- Institute of Clinical ScienceZhongshan Hospital Fudan UniversityShanghaiChina
| | - Yi Shi
- Shanghai Key Laboratory of Organ TransplantationFudan UniversityShanghaiChina
- Institute of Clinical ScienceZhongshan Hospital Fudan UniversityShanghaiChina
| |
Collapse
|
14
|
Cortez MA, Masrorpour F, Ivan C, Zhang J, Younes AI, Lu Y, Estecio MR, Barsoumian HB, Menon H, Caetano MDS, Ramapriyan R, Schoenhals JE, Wang X, Skoulidis F, Wasley MD, Calin G, Hwu P, Welsh JW. Bone morphogenetic protein 7 promotes resistance to immunotherapy. Nat Commun 2020; 11:4840. [PMID: 32973129 PMCID: PMC7519103 DOI: 10.1038/s41467-020-18617-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 08/26/2020] [Indexed: 11/24/2022] Open
Abstract
Immunotherapies revolutionized cancer treatment by harnessing the immune system to target cancer cells. However, most patients are resistant to immunotherapies and the mechanisms underlying this resistant is still poorly understood. Here, we report that overexpression of BMP7, a member of the TGFB superfamily, represents a mechanism for resistance to anti-PD1 therapy in preclinical models and in patients with disease progression while on immunotherapies. BMP7 secreted by tumor cells acts on macrophages and CD4+ T cells in the tumor microenvironment, inhibiting MAPK14 expression and impairing pro-inflammatory responses. Knockdown of BMP7 or its neutralization via follistatin in combination with anti-PD1 re-sensitizes resistant tumors to immunotherapies. Thus, we identify the BMP7 signaling pathway as a potential immunotherapeutic target in cancer. The mechanisms underlying resistance to immunotherapy are still poorly understood. Here, the authors show that BMP7, a molecule part of the TGF-beta superfamily, suppresses proinflammatory antitumor responses and may represent a target for overcoming resistance to PD1 inhibitors.
Collapse
Affiliation(s)
- Maria Angelica Cortez
- Departments of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Fatemeh Masrorpour
- Departments of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Cristina Ivan
- Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jie Zhang
- Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ahmed I Younes
- Departments of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yue Lu
- Epigenetic and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Marcos R Estecio
- Epigenetic and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hampartsoum B Barsoumian
- Departments of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hari Menon
- Departments of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mauricio da Silva Caetano
- Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rishab Ramapriyan
- Departments of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jonathan E Schoenhals
- Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiaohong Wang
- Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ferdinandos Skoulidis
- Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mark D Wasley
- Departments of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - George Calin
- Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Patrick Hwu
- Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - James W Welsh
- Departments of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
15
|
Bessa-Gonçalves M, Silva AM, Brás JP, Helmholz H, Luthringer-Feyerabend BJ, Willumeit-Römer R, Barbosa MA, Santos SG. Fibrinogen and magnesium combination biomaterials modulate macrophage phenotype, NF-kB signaling and crosstalk with mesenchymal stem/stromal cells. Acta Biomater 2020; 114:471-484. [PMID: 32688091 DOI: 10.1016/j.actbio.2020.07.028] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 07/10/2020] [Accepted: 07/14/2020] [Indexed: 12/25/2022]
Abstract
Macrophage behavior upon biomaterial implantation conditions the inflammatory response and subsequent tissue repair. The hypothesis behind this work was that fibrinogen (Fg) and magnesium (Mg) biomaterials, used in combination (FgMg) could act synergistically to modulate macrophage activation, promoting a pro-regenerative phenotype. Materials were characterized by scanning electron microscopy, Fg and Mg degradation products were quantified by atomic absorption spectroscopy and ELISA. Whole blood immune cells and primary human monocyte-derived macrophages were exposed to the biomaterials extracts in unstimulated (M0) or pro-inflammatory LPS or LPS-IFNγ (M1) conditions. Macrophage phenotype was evaluated by flow cytometry, cytokines secreted by whole blood cells and macrophages were measured by ELISA, and signaling pathways were probed by Western blotting. The secretomes of macrophages preconditioned with biomaterials extracts were incubated with human mesenchymal stem/stromal cells (MSC) and their effect on osteogenic differentiation was evaluated via Alkaline Phosphatase (ALP) activity and alizarin red staining. Scaffolds of Fg, alone or in the FgMg combination, presented similar 3D porous architectures. Extracts from FgMg materials reduced LPS-induced TNF-α secretion by innate immune cells, and macrophage M1 polarization upon LPS-IFNγ stimulation, resulting in lower cell surface CD86 expression, lower NFκB p65 phosphorylation and reduced TNF-α secretion. Moreover, while biomaterial extracts per se did not enhance MSC osteogenic differentiation, macrophage secretome, particularly from cells exposed to FgMg extracts, increased MSC ALP activity and alizarin red staining, compared with extracts alone. These findings suggest that the combination of Fg and Mg synergistically influences macrophage pro-inflammatory activation and crosstalk with MSC. STATEMENT OF SIGNIFICANCE: Modulating macrophage phenotype by degradable and bioactive biomaterials is an increasingly explored strategy to promote tissue repair/regeneration. Fibrinogen (Fg) and magnesium (Mg)-based materials have been explored in this context. Previous work from our group showed that monocytes interact with fibrinogen adsorbed onto chitosan surfaces through TLR4 and that fibrinogen scaffolds promote in vivo bone regeneration. Also, magnesium ions have been reported to modulate macrophage pro-inflammatory M1 stimulation and to promote bone repair. Here we report, for the first time, the combination of Fg and Mg materials, hypothesizing that it could act synergistically on macrophages, directing them towards a pro-regenerative phenotype. As a first step towards proving/disproving our hypothesis we used extracts obtained from Fg, Mg and FgMg multilayer constructs. We observed that FgMg extracts led to a reduction in the polarization of macrophages towards a pro-inflammatory phenotype. Also, the secretome of macrophages exposed to extracts of the combination material promoted the expression of osteogenic markers by MSCs.
Collapse
|
16
|
Faria CP, Neves BM, Lourenço Á, Cruz MT, Martins JD, Silva A, Pereira S, Sousa MDC. Giardia lamblia Decreases NF-κB p65 RelA Protein Levels and Modulates LPS-Induced Pro-Inflammatory Response in Macrophages. Sci Rep 2020; 10:6234. [PMID: 32277133 PMCID: PMC7148380 DOI: 10.1038/s41598-020-63231-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 03/20/2020] [Indexed: 11/09/2022] Open
Abstract
The protozoan Giardia lamblia is the most common cause of parasitic gastrointestinal infection worldwide. The parasite developed sophisticated, yet not completely disclosed, mechanisms to escape immune system and growth in the intestine. To further understand the interaction of G. lamblia with host immune cells, we investigated the ability of parasites to modulate the canonical activation of mouse macrophages (Raw 264.7 cell line) and human monocyte-derived macrophages triggered by the TLR4 agonist, lipopolysaccharide (LPS). We observed that G. lamblia impairs LPS-evoked pro-inflammatory status in these macrophage-like cells through inhibition of cyclooxygenase-2 and inducible nitric oxide synthase expression and subsequent NO production. This effect was in part due to the activity of three G. lamblia proteases, a 135 kDa metalloprotease and two cysteine proteases with 75 and 63 kDa, that cleave the p65RelA subunit of the nuclear factor-kappa B (NF-κB). Moreover, Tnf and Ccl4 transcription was increased in the presence of the parasite. Overall, our data indicates that G. lamblia modulates macrophages inflammatory response through impairment of the NF-κB, thus silencing a crucial signaling pathway of the host innate immune response.
Collapse
Affiliation(s)
- Clarissa Perez Faria
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.,Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Bruno Miguel Neves
- Department of Medical Sciences and Institute of Biomedicine - iBiMED, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Ágata Lourenço
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.,Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Maria Teresa Cruz
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.,Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - João D Martins
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Ana Silva
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Sónia Pereira
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.,Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Maria do Céu Sousa
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal. .,Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
17
|
Kirk SG, Samavati L, Liu Y. MAP kinase phosphatase-1, a gatekeeper of the acute innate immune response. Life Sci 2020; 241:117157. [PMID: 31837332 PMCID: PMC7480273 DOI: 10.1016/j.lfs.2019.117157] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/05/2019] [Accepted: 12/09/2019] [Indexed: 02/08/2023]
Abstract
Mitogen-activated protein kinase (MAPK)§ cascades are crucial signaling pathways in the regulation of the host immune response to infection. MAPK phosphatase (MKP)-1, an archetypal member of the MKP family, plays a pivotal role in the down-regulation of p38 and JNK. Studies using cultured macrophages have demonstrated a pivotal role of MKP-1 in the restraint of the biosynthesis of both pro-inflammatory and anti-inflammatory cytokines as well as chemokines. Using MKP-1 knockout mice, several groups have not only confirmed the critical importance of MKP-1 in the regulation of the cytokine synthesis in vivo during the acute host response to bacterial infections, but also revealed novel functions of MKP-1 in maintaining bactericidal functions and host metabolic activities. RNA-seq analyses on livers of septic mice infected with E. coli have revealed that MKP-1 deficiency caused substantial perturbation in the expression of over 5000 genes, an impressive >20% of the entire murine genome. Among the genes whose expression are dramatically affected by MKP-1 deficiency are those encoding metabolic regulators and acute phase response proteins. These studies demonstrate that MKP-1 is an essential gate-keeper of the acute innate immune response, facilitating pathogen killing and regulating the metabolic response during pathogenic infection. In this review article, we will summarize the studies on the function of MKP-1 during acute innate immune response in the regulation of inflammation, metabolism, and acute phase response. We will also discuss the role of MKP-1 in the actions of numerous immunomodulatory agents.
Collapse
Affiliation(s)
- Sean G. Kirk
- Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43215, USA
| | - Lobelia Samavati
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Yusen Liu
- Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43215, USA,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43205, USA,Corresponding author at: Center for Perinatal Research The Abigail Wexner Research Institute at Nationwide Children’s Hospital, 575 Children’s Cross Road, Columbus, OH 43215, USA. (Y. Liu)
| |
Collapse
|
18
|
Pemmari A, Paukkeri EL, Hämäläinen M, Leppänen T, Korhonen R, Moilanen E. MKP-1 promotes anti-inflammatory M(IL-4/IL-13) macrophage phenotype and mediates the anti-inflammatory effects of glucocorticoids. Basic Clin Pharmacol Toxicol 2018; 124:404-415. [PMID: 30388313 DOI: 10.1111/bcpt.13163] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 10/29/2018] [Indexed: 12/14/2022]
Abstract
Macrophage polarization refers to the ability of these cells to adopt different functional phenotypes according to their environment. Mitogen-activated protein kinase phosphatase-1 (MKP-1) is known to regulate the classical lipopolysaccharide (LPS)-induced pro-inflammatory macrophage activation and the inflammatory response. Here, we investigated the effects of MKP-1 on the anti-inflammatory and healing-promoting macrophage phenotype induced by cytokines IL-4 and IL-13 and examined the potential mediator role of MKP-1 in glucocorticoid effects on the two macrophage phenotypes. In MKP-1-deficient macrophages treated with IL-4 and IL-13 to induce the anti-inflammatory phenotype, the expression of phenotypic markers arginase 1, Ym-1 and FGF2 was reduced as compared to wild-type cells. In contrast, LPS-induced expression of the pro-inflammatory factors IL-6 and iNOS was significantly higher in MKP-1-deficient macrophages. Dexamethasone suppressed the pro-inflammatory phenotype and enhanced the anti-inflammatory phenotype. Interestingly, both of these glucocorticoid effects were attenuated in macrophages from MKP-1-deficient mice. Accordingly, dexamethasone increased MKP-1 expression in both LPS- and IL4+13-treated wild-type cells. In conclusion, the findings support MKP-1 as an endogenous mechanism able to shift macrophage activation from the classical pro-inflammatory state towards the anti-inflammatory and healing-promoting phenotype. In addition, MKP-1 was found to mediate the anti-inflammatory effects of dexamethasone in a dualistic manner: by suppressing the pro-inflammatory macrophage activation and by enhancing the healing-promoting macrophage phenotype.
Collapse
Affiliation(s)
- Antti Pemmari
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, Tampere, Finland
| | - Erja-Leena Paukkeri
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, Tampere, Finland
| | - Mari Hämäläinen
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, Tampere, Finland
| | - Tiina Leppänen
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, Tampere, Finland
| | - Riku Korhonen
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, Tampere, Finland
| | - Eeva Moilanen
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, Tampere, Finland
| |
Collapse
|
19
|
Liang N, Kitts DD. Chlorogenic Acid (CGA) Isomers Alleviate Interleukin 8 (IL-8) Production in Caco-2 Cells by Decreasing Phosphorylation of p38 and Increasing Cell Integrity. Int J Mol Sci 2018; 19:ijms19123873. [PMID: 30518116 PMCID: PMC6320834 DOI: 10.3390/ijms19123873] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 11/27/2018] [Accepted: 11/30/2018] [Indexed: 12/12/2022] Open
Abstract
The objective of this study was to determine the effect of six chlorogenic acid (CGA) isomers known to be present in coffee and other plant foods on modulating the inflammatory response induced by pro-inflammatory cytokines in the Caco-2 human intestinal epithelial cell line. Compared to caffeoylquinic acids (CQA), dicaffeoylquinic acids (DiCQA) had significantly stronger (p < 0.05) capacities to reduce phosphorylation of one of mitogen-activated protein kinases (MAPK) cascades, namely p38. Compared to the control, CQA isomers treatment resulted in around 50% reduction in an interleukin-8 (IL-8) secretion, whereas DiCQA, at the same concentration, resulted in a 90% reduction in IL-8 secretion, compared to the control cells. CGA isomer treatment also showed a significant effect (p < 0.05) on the up-regulation of NFκB subunit p65 nuclear translocation by more than 1.5 times, compared to the control. We concluded that CGA isomers exert anti-inflammatory activity in a mixture of interferon gamma (IFNγ) and phorbol myristate acetate (PMA)-challenged Caco-2 cells, by decreasing the phosphorylation of p38 cascade and up-regulating NFκB signaling.
Collapse
Affiliation(s)
- Ningjian Liang
- Food, Nutrition, and Health Program, Faculty of Land and Food Systems, The University of British Columbia, 2205 East Mall, Vancouver, BC V6T 1Z4, Canada.
| | - David D Kitts
- Food, Nutrition, and Health Program, Faculty of Land and Food Systems, The University of British Columbia, 2205 East Mall, Vancouver, BC V6T 1Z4, Canada.
| |
Collapse
|
20
|
Saleiro D, Blyth GT, Kosciuczuk EM, Ozark PA, Majchrzak-Kita B, Arslan AD, Fischietti M, Reddy NK, Horvath CM, Davis RJ, Fish EN, Platanias LC. IFN-γ-inducible antiviral responses require ULK1-mediated activation of MLK3 and ERK5. Sci Signal 2018; 11:eaap9921. [PMID: 30459284 PMCID: PMC6684240 DOI: 10.1126/scisignal.aap9921] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
It is well established that activation of the transcription factor signal transducer and activator of transcription 1 (STAT1) is required for the interferon-γ (IFN-γ)-mediated antiviral response. Here, we found that IFN-γ receptor stimulation also activated Unc-51-like kinase 1 (ULK1), an initiator of Beclin-1-mediated autophagy. Furthermore, the interaction between ULK1 and the mitogen-activated protein kinase kinase kinase MLK3 (mixed lineage kinase 3) was necessary for MLK3 phosphorylation and downstream activation of the kinase ERK5. This autophagy-independent activity of ULK1 promoted the transcription of key antiviral IFN-stimulated genes (ISGs) and was essential for IFN-γ-dependent antiviral effects. These findings define a previously unknown IFN-γ pathway that appears to be a key element of the antiviral response.
Collapse
Affiliation(s)
- Diana Saleiro
- Robert H. Lurie Comprehensive Cancer Center and Division of Hematology-Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Gavin T Blyth
- Robert H. Lurie Comprehensive Cancer Center and Division of Hematology-Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Ewa M Kosciuczuk
- Robert H. Lurie Comprehensive Cancer Center and Division of Hematology-Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Division of Hematology-Oncology, Department of Medicine, Jesse Brown Veterans Affairs Medical Center, Chicago, IL 60612, USA
| | - Patrick A Ozark
- Simpson Querrey Center for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Beata Majchrzak-Kita
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 2MI, Canada
- Department of Immunology, University of Toronto, Toronto, ON M5G 2MI, Canada
| | - Ahmet D Arslan
- Robert H. Lurie Comprehensive Cancer Center and Division of Hematology-Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Mariafausta Fischietti
- Robert H. Lurie Comprehensive Cancer Center and Division of Hematology-Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Neha K Reddy
- Robert H. Lurie Comprehensive Cancer Center and Division of Hematology-Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Curt M Horvath
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Roger J Davis
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
- Howard Hughes Medical Institute, Worcester, MA 01605, USA
| | - Eleanor N Fish
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 2MI, Canada
- Department of Immunology, University of Toronto, Toronto, ON M5G 2MI, Canada
| | - Leonidas C Platanias
- Robert H. Lurie Comprehensive Cancer Center and Division of Hematology-Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
- Division of Hematology-Oncology, Department of Medicine, Jesse Brown Veterans Affairs Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
21
|
Lee YM, Choi JH, Min WK, Han JK, Oh JW. Induction of functional erythropoietin and erythropoietin receptor gene expression by gamma-aminobutyric acid and piperine in kidney epithelial cells. Life Sci 2018; 215:207-215. [PMID: 30439377 DOI: 10.1016/j.lfs.2018.11.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 11/02/2018] [Accepted: 11/10/2018] [Indexed: 11/30/2022]
Abstract
AIMS The aim of this study was to evaluate gamma-aminobutyric acid (GABA)- and piperine-induced erythropoietin (EPO) and EPO-receptor expression. MATERIALS AND METHODS The effect of GABA and piperine on cell viability was examined using kidney epithelial cells. Expression levels of EPO and EPO-R mRNA and protein were evaluated in response to GABA and piperine treatments. GABA- and piperine-mediated activation of the mitogen-activated protein kinase (MAPK) signaling pathway was investigated. Additionally, EPO function was evaluated using conditioned media containing EPO. The GABA receptor type involved in this process was identified. KEY FINDINGS Messenger RNA and protein expression levels of EPO and EPO-R significantly increased in response to treatment with GABA, piperine, or the combination of both, compared with control. GABA plus piperine synergistically enhanced EPO and EPO-R expression through p38 and c-Jun N-terminal kinase (JNK) MAPK signaling pathways, but not through the extracellular signal-regulated kinase (ERK) MAPK pathway. SB203580 and SP600125 (p38 and JNK pathway inhibitors, respectively) attenuated GABA plus piperine-induced EPO and EPO-R expression. Treatment of macrophages with EPO-containing conditioned media induced mRNA expression of interleukin (IL)-10 and nuclear factor (NF)-κB due to the interaction between EPO and EPO-R. Interestingly, GABA-induced EPO and EPO-R expression was mediated through GABAA, not GABAB, receptor activation. SIGNIFICANCE These findings demonstrate that GABA plus piperine-mediated p38 and JNK MAPK activation increases EPO and EPO-R expression, resulting in up-regulation of IL-10 and NF-κB.
Collapse
Affiliation(s)
- Yoon-Mi Lee
- Department of Animal Biotechnology, College of Animal Bioscience and Technology, Konkuk University, Seoul 05029, Republic of Korea
| | - Jun-Ha Choi
- Department of Animal Biotechnology, College of Animal Bioscience and Technology, Konkuk University, Seoul 05029, Republic of Korea
| | - Wan-Kwon Min
- Department of Animal Biotechnology, College of Animal Bioscience and Technology, Konkuk University, Seoul 05029, Republic of Korea
| | - Jong-Kwon Han
- Department of Research and Development Center, Milae Resource ML Co. Ltd., Seoul 05836, Republic of Korea
| | - Jae-Wook Oh
- Department of Animal Biotechnology, College of Animal Bioscience and Technology, Konkuk University, Seoul 05029, Republic of Korea.
| |
Collapse
|
22
|
Ma W, Concha-Benavente F, Santegoets SJAM, Welters MJP, Ehsan I, Ferris RL, van der Burg SH. EGFR signaling suppresses type 1 cytokine-induced T-cell attracting chemokine secretion in head and neck cancer. PLoS One 2018; 13:e0203402. [PMID: 30192802 PMCID: PMC6128559 DOI: 10.1371/journal.pone.0203402] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 08/20/2018] [Indexed: 01/10/2023] Open
Abstract
Resistance to antitumor immunity can be promoted by the oncogenic pathways operational in human cancers, including the epidermal growth factor receptor (EGFR) pathway. Here we studied if and how EGFR downstream signaling in head and neck squamous cell carcinoma (HNSCC) can affect the attraction of immune cells. HPV-negative and HPV-positive HNSCC cell lines were analyzed in vitro for CCL2, CCL5, CXCL9, CXCL10, IL-6 and IL-1β expression and the attraction of T cells under different conditions, including cetuximab treatment and stimulation with IFNγ and TNFα using qPCR, ELISA and migration experiments. Biochemical analyses with chemical inhibitors and siRNA transfection were used to pinpoint the underlying mechanisms. Stimulation of HNSCC cells with IFNγ and TNFα triggered the production of T-cell attracting chemokines and required c-RAF activation. Blocking of the EGFR with cetuximab during this stimulation increased chemokine production in vitro, and augmented the attraction of T cells. Mechanistically, cetuximab decreased the phosphorylation of MEK1, ERK1/2, AKT, mTOR, JNK, p38 and ERK5. Chemical inhibition of EGFR signaling showed a consistent and pronounced chemokine production with MEK1/2 inhibitor PD98059 and JNK inhibitor SP600125, but not with inhibitors of p38, PI3K or mTOR. Combination treatment with cetuximab and a MEK1/2 or JNK inhibitor induced the highest chemokine expression. In conclusion, overexpression of EGFR results in the activation of multiple downstream signaling pathways that act simultaneously to suppress type 1 cytokine stimulated production of chemokines required to amplify the attraction of T cells.
Collapse
Affiliation(s)
- Wenbo Ma
- Department of Medical Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | - Fernando Concha-Benavente
- Department of Otolaryngology, University of Pittsburgh, and the University of Pittsburgh Cancer Institute, Pittsburgh, PA, United States of America
| | | | - Marij J. P. Welters
- Department of Medical Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | - Ilina Ehsan
- Department of Medical Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | - Robert L. Ferris
- Department of Otolaryngology, University of Pittsburgh, and the University of Pittsburgh Cancer Institute, Pittsburgh, PA, United States of America
| | - Sjoerd H. van der Burg
- Department of Medical Oncology, Leiden University Medical Center, Leiden, The Netherlands
- * E-mail:
| |
Collapse
|
23
|
Castro F, Cardoso AP, Gonçalves RM, Serre K, Oliveira MJ. Interferon-Gamma at the Crossroads of Tumor Immune Surveillance or Evasion. Front Immunol 2018; 9:847. [PMID: 29780381 PMCID: PMC5945880 DOI: 10.3389/fimmu.2018.00847] [Citation(s) in RCA: 761] [Impact Index Per Article: 126.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 04/05/2018] [Indexed: 12/15/2022] Open
Abstract
Interferon-gamma (IFN-γ) is a pleiotropic molecule with associated antiproliferative, pro-apoptotic and antitumor mechanisms. This effector cytokine, often considered as a major effector of immunity, has been used in the treatment of several diseases, despite its adverse effects. Although broad evidence implicating IFN-γ in tumor immune surveillance, IFN-γ-based therapies undergoing clinical trials have been of limited success. In fact, recent reports suggested that it may also play a protumorigenic role, namely, through IFN-γ signaling insensitivity, downregulation of major histocompatibility complexes, and upregulation of indoleamine 2,3-dioxygenase and of checkpoint inhibitors, as programmed cell-death ligand 1. However, the IFN-γ-mediated responses are still positively associated with patient's survival in several cancers. Consequently, major research efforts are required to understand the immune contexture in which IFN-γ induces its intricate and highly regulated effects in the tumor microenvironment. This review discusses the current knowledge on the pro- and antitumorigenic effects of IFN-γ as part of the complex immune response to cancer, highlighting the relevance to identify IFN-γ responsive patients for the improvement of therapies that exploit associated signaling pathways.
Collapse
Affiliation(s)
- Flávia Castro
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB – Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- ICBAS – Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Ana Patrícia Cardoso
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB – Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | - Raquel Madeira Gonçalves
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB – Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- ICBAS – Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Karine Serre
- IMM – Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Maria José Oliveira
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB – Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- Departamento de Patologia e Oncologia, Faculdade de Medicina, Universidade do Porto, Porto, Portugal
| |
Collapse
|
24
|
Wu C, Liu C, Luo K, Li Y, Jiang J, Yan F. Changes in Expression of the Membrane Receptors CD14, MHC-II, SR-A, and TLR4 in Tissue-Specific Monocytes/Macrophages Following Porphyromonas gingivalis–LPS Stimulation. Inflammation 2017; 41:418-431. [DOI: 10.1007/s10753-017-0698-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
25
|
Zielińska KA, de Cauwer L, Knoops S, Van der Molen K, Sneyers A, Thommis J, De Souza JB, Opdenakker G, De Bosscher K, Van den Steen PE. Plasmodium berghei NK65 in Combination with IFN-γ Induces Endothelial Glucocorticoid Resistance via Sustained Activation of p38 and JNK. Front Immunol 2017; 8:1199. [PMID: 29033931 PMCID: PMC5625030 DOI: 10.3389/fimmu.2017.01199] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 09/11/2017] [Indexed: 01/25/2023] Open
Abstract
Malaria-associated acute respiratory distress syndrome (MA-ARDS) is an often lethal complication of malaria. Currently, no adequate therapy for this syndrome exists. Although glucocorticoids (GCs) have been used to improve clinical outcome of ARDS, their therapeutic benefits remain unclear. We previously developed a mouse model of MA-ARDS, in which dexamethasone treatment revealed GC resistance. In the present study, we investigated GC sensitivity of mouse microvascular lung endothelial cells stimulated with interferon-γ (IFN-γ) and Plasmodium berghei NK65 (PbNK65). Upon challenge with IFN-γ alone, dexamethasone inhibited the expression of CCL5 (RANTES) by 90% and both CCL2 (MCP-1) and CXCL10 (IP-10) by 50%. Accordingly, whole transcriptome analysis revealed that dexamethasone differentially affected several gene clusters and in particular inhibited a large cluster of IFN-γ-induced genes, including chemokines. In contrast, combined stimulation with IFN-γ and PbNK65 extract impaired inhibitory actions of GCs on chemokine release, without affecting the capacity of the GC receptor to accumulate in the nucleus. Subsequently, we investigated the effects of GCs on two signaling pathways activated by IFN-γ. Dexamethasone left phosphorylation and protein levels of signal transducer and activator of transcription 1 (STAT1) unhampered. In contrast, dexamethasone inhibited the IFN-γ-induced activation of two mitogen-activated protein kinases (MAPK), JNK, and p38. However, PbNK65 extract abolished the inhibitory effects of GCs on MAPK signaling, inducing GC resistance. These data provide novel insights into the mechanisms of GC actions in endothelial cells and show how malaria may impair the beneficial effects of GCs.
Collapse
Affiliation(s)
- Karolina A Zielińska
- Laboratory of Immunobiology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Lode de Cauwer
- Receptor Research Laboratories, Nuclear Receptor Lab, VIB-UGent Center for Medical Biotechnology, Ghent, Belgium
| | - Sofie Knoops
- Laboratory of Immunobiology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Kristof Van der Molen
- Laboratory of Immunobiology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Alexander Sneyers
- Laboratory of Immunobiology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Jonathan Thommis
- Receptor Research Laboratories, Nuclear Receptor Lab, VIB-UGent Center for Medical Biotechnology, Ghent, Belgium
| | - J Brian De Souza
- Faculty of Infectious and Tropical Diseases, Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Ghislain Opdenakker
- Laboratory of Immunobiology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Karolien De Bosscher
- Receptor Research Laboratories, Nuclear Receptor Lab, VIB-UGent Center for Medical Biotechnology, Ghent, Belgium
| | - Philippe E Van den Steen
- Laboratory of Immunobiology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| |
Collapse
|
26
|
Preparation and evaluation of visible-light cured glycol chitosan hydrogel dressing containing dual growth factors for accelerated wound healing. J IND ENG CHEM 2017. [DOI: 10.1016/j.jiec.2017.05.007] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
27
|
Kim HS, Asmis R. Mitogen-activated protein kinase phosphatase 1 (MKP-1) in macrophage biology and cardiovascular disease. A redox-regulated master controller of monocyte function and macrophage phenotype. Free Radic Biol Med 2017; 109:75-83. [PMID: 28330703 PMCID: PMC5462841 DOI: 10.1016/j.freeradbiomed.2017.03.020] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 03/03/2017] [Accepted: 03/17/2017] [Indexed: 12/21/2022]
Abstract
MAPK pathways play a critical role in the activation of monocytes and macrophages by pathogens, signaling molecules and environmental cues and in the regulation of macrophage function and plasticity. MAPK phosphatase 1 (MKP-1) has emerged as the main counter-regulator of MAPK signaling in monocytes and macrophages. Loss of MKP-1 in monocytes and macrophages in response to metabolic stress leads to dysregulation of monocyte adhesion and migration, and gives rise to dysfunctional, proatherogenic monocyte-derived macrophages. Here we review the properties of this redox-regulated dual-specificity MAPK phosphatase and the role of MKP-1 in monocyte and macrophage biology and cardiovascular diseases.
Collapse
Affiliation(s)
- Hong Seok Kim
- Department of Molecular Medicine, College of Medicine, Inha University, Incheon 22212, Republic of Korea; Hypoxia-related Disease Research Center, College of Medicine, Inha University, Incheon 22212, Republic of Korea
| | - Reto Asmis
- Department of Clinical Laboratory Sciences, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; Department of Biochemistry, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.
| |
Collapse
|
28
|
Zhang L, Zhang Z, Fu Y, Yang P, Qin Z, Chen Y, Xu Y. Trans-cinnamaldehyde improves memory impairment by blocking microglial activation through the destabilization of iNOS mRNA in mice challenged with lipopolysaccharide. Neuropharmacology 2016; 110:503-518. [DOI: 10.1016/j.neuropharm.2016.08.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Revised: 08/09/2016] [Accepted: 08/14/2016] [Indexed: 12/20/2022]
|
29
|
Lloberas J, Valverde-Estrella L, Tur J, Vico T, Celada A. Mitogen-Activated Protein Kinases and Mitogen Kinase Phosphatase 1: A Critical Interplay in Macrophage Biology. Front Mol Biosci 2016; 3:28. [PMID: 27446931 PMCID: PMC4923182 DOI: 10.3389/fmolb.2016.00028] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 06/13/2016] [Indexed: 12/21/2022] Open
Abstract
Macrophages are necessary in multiple processes during the immune response or inflammation. This review emphasizes the critical role of the mitogen-activated protein kinases (MAPKs) and mitogen kinase phosphatase-1 (MKP-1) in the functional activities of macrophages. While the phosphorylation of MAPKs is required for macrophage activation or proliferation, MKP-1 dephosphorylates these kinases, thus playing a balancing role in the control of macrophage behavior. MKP-1 is a nuclear-localized dual-specificity phosphatase whose expression is regulated at multiple levels, including at the transcriptional and post-transcriptional level. The regulatory role of MKP-1 in the interplay between MAPK phosphorylation/dephosphorylation makes this molecule a critical regulator of macrophage biology and inflammation.
Collapse
Affiliation(s)
- Jorge Lloberas
- Departament of Cell Biology, Physiology and Immunology, Universitat de Barcelona Barcelona, Spain
| | - Lorena Valverde-Estrella
- Departament of Cell Biology, Physiology and Immunology, Universitat de Barcelona Barcelona, Spain
| | - Juan Tur
- Departament of Cell Biology, Physiology and Immunology, Universitat de Barcelona Barcelona, Spain
| | - Tania Vico
- Departament of Cell Biology, Physiology and Immunology, Universitat de Barcelona Barcelona, Spain
| | - Antonio Celada
- Departament of Cell Biology, Physiology and Immunology, Universitat de Barcelona Barcelona, Spain
| |
Collapse
|
30
|
Lisboa LF, Egli A, Fairbanks J, O'Shea D, Manuel O, Husain S, Kumar D, Humar A. CCL8 and the Immune Control of Cytomegalovirus in Organ Transplant Recipients. Am J Transplant 2015; 15:1882-92. [PMID: 25764912 DOI: 10.1111/ajt.13207] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Revised: 12/03/2014] [Accepted: 12/24/2014] [Indexed: 02/06/2023]
Abstract
Monitoring of cytomegalovirus cell-mediated immunity is a promising tool for the refinement of preventative and therapeutic strategies posttransplantation. Typically, the interferon-γ response to T cell stimulation is measured. We evaluated a broad range of cytokine and chemokines to better characterize the ex vivo host-response to CMV peptide stimulation. In a cohort of CMV viremic organ transplant recipients, chemokine expression-specifically CCL8 (AUC 0.849 95% CI 0.721-0.978; p = 0.003) and CXCL10 (AUC 0.841, 95% CI 0.707-0.974; p = 0.004)-was associated with control of viral replication. In a second cohort of transplant recipients at high-risk for CMV, the presence of a polymorphism in the CCL8 promoter conferred an increased risk of viral replication after discontinuation of antiviral prophylaxis (logrank hazard ratio 3.6; 95% CI 2.077-51.88). Using cell-sorting experiments, we determined that the primary cell type producing CCL8 in response to CMV peptide stimulation was the monocyte fraction. Finally, in vitro experiments using standard immunosuppressive agents demonstrated a dose-dependent reduction in CCL8 production. Chemokines appear to be important elements of the cell-mediated response to CMV infection posttransplant, as here suggested for CCL8, and translation of this knowledge may allow for the tailoring and improvement of preventative strategies.
Collapse
Affiliation(s)
- L F Lisboa
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada
| | - A Egli
- Infection Biology Lab, Department Biomedicine, University Hospital and University of Basel, Basel, Switzerland
| | - J Fairbanks
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada
| | - D O'Shea
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada
| | - O Manuel
- Infectious Diseases Service and Transplantation Center, University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - S Husain
- Department of Medicine and Multi-organ Transplant Program, University Health Network, Toronto, Ontario, Canada
| | - D Kumar
- Department of Medicine and Multi-organ Transplant Program, University Health Network, Toronto, Ontario, Canada
| | - A Humar
- Department of Medicine and Multi-organ Transplant Program, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
31
|
Lieskovská J, Páleníková J, Langhansová H, Campos Chagas A, Calvo E, Kotsyfakis M, Kopecký J. Tick sialostatins L and L2 differentially influence dendritic cell responses to Borrelia spirochetes. Parasit Vectors 2015; 8:275. [PMID: 25975355 PMCID: PMC4436792 DOI: 10.1186/s13071-015-0887-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 05/06/2015] [Indexed: 12/02/2022] Open
Abstract
Background Transmission of pathogens by ticks is greatly supported by tick saliva released during feeding. Dendritic cells (DC) act as immunological sentinels and interconnect the innate and adaptive immune system. They control polarization of the immune response towards Th1 or Th2 phenotype. We investigated whether salivary cystatins from the hard tick Ixodes scapularis, sialostatin L (Sialo L) and sialostatin L2 (Sialo L2), influence mouse dendritic cells exposed to Borrelia burgdorferi and relevant Toll-like receptor ligands. Methods DCs derived from bone-marrow by GM-CSF or Flt-3 ligand, were activated with Borrelia spirochetes or TLR ligands in the presence of 3 μM Sialo L and 3 μM Sialo L2. Produced chemokines and IFN-β were measured by ELISA test. The activation of signalling pathways was tested by western blotting using specific antibodies. The maturation of DC was determined by measuring the surface expression of CD86 by flow cytometry. Results We determined the effect of cystatins on the production of chemokines in Borrelia-infected bone-marrow derived DC. The production of MIP-1α was severely suppressed by both cystatins, while IP-10 was selectively inhibited only by Sialo L2. As TLR-2 is a major receptor activated by Borrelia spirochetes, we tested whether cystatins influence signalling pathways activated by TLR-2 ligand, lipoteichoic acid (LTA). Sialo L2 and weakly Sialo L attenuated the extracellular matrix-regulated kinase (Erk1/2) pathway. The activation of phosphatidylinositol-3 kinase (PI3K)/Akt pathway and nuclear factor-κB (NF-κB) was decreased only by Sialo L2. In response to Borrelia burgdorferi, the activation of Erk1/2 was impaired by Sialo L2. Production of IFN-β was analysed in plasmacytoid DC exposed to Borrelia, TLR-7, and TLR-9 ligands. Sialo L, in contrast to Sialo L2, decreased the production of IFN-β in pDC and also impaired the maturation of these cells. Conclusions This study shows that DC responses to Borrelia spirochetes are affected by tick cystatins. Sialo L influences the maturation of DC thus having impact on adaptive immune response. Sialo L2 affects the production of chemokines potentially engaged in the development of inflammatory response. The impact of cystatins on Borrelia growth in vivo is discussed. Electronic supplementary material The online version of this article (doi:10.1186/s13071-015-0887-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jaroslava Lieskovská
- Faculty of Science, University of South Bohemia, Branišovská 1760, CZ-37005, České Budějovice, Czech Republic. .,Institute of Parasitology, Biology Centre of the Academy of Sciences of the Czech Republic, Branišovská 31, CZ-37005, České Budějovice, Czech Republic.
| | - Jana Páleníková
- Faculty of Science, University of South Bohemia, Branišovská 1760, CZ-37005, České Budějovice, Czech Republic. .,Institute of Parasitology, Biology Centre of the Academy of Sciences of the Czech Republic, Branišovská 31, CZ-37005, České Budějovice, Czech Republic.
| | - Helena Langhansová
- Faculty of Science, University of South Bohemia, Branišovská 1760, CZ-37005, České Budějovice, Czech Republic. .,Institute of Parasitology, Biology Centre of the Academy of Sciences of the Czech Republic, Branišovská 31, CZ-37005, České Budějovice, Czech Republic.
| | - Andrezza Campos Chagas
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 12735 Twinbrook Parkway, Rockville, MD, 20852, USA.
| | - Eric Calvo
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 12735 Twinbrook Parkway, Rockville, MD, 20852, USA.
| | - Michalis Kotsyfakis
- Institute of Parasitology, Biology Centre of the Academy of Sciences of the Czech Republic, Branišovská 31, CZ-37005, České Budějovice, Czech Republic.
| | - Jan Kopecký
- Faculty of Science, University of South Bohemia, Branišovská 1760, CZ-37005, České Budějovice, Czech Republic. .,Institute of Parasitology, Biology Centre of the Academy of Sciences of the Czech Republic, Branišovská 31, CZ-37005, České Budějovice, Czech Republic.
| |
Collapse
|
32
|
Gene–gene interaction and RNA splicing profiles of MAP2K4 gene in rheumatoid arthritis. Clin Immunol 2015; 158:19-28. [DOI: 10.1016/j.clim.2015.02.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 02/04/2015] [Accepted: 02/17/2015] [Indexed: 01/12/2023]
|
33
|
Lessard M, Savard C, Deschene K, Lauzon K, Pinilla VA, Gagnon CA, Lapointe J, Guay F, Chorfi Y. Impact of deoxynivalenol (DON) contaminated feed on intestinal integrity and immune response in swine. Food Chem Toxicol 2015; 80:7-16. [PMID: 25701311 DOI: 10.1016/j.fct.2015.02.013] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 01/07/2015] [Accepted: 02/10/2015] [Indexed: 11/18/2022]
Abstract
This study was performed to characterize the influence of consuming DON naturally contaminated feeds on pig's intestinal immune defenses, antibody response and cellular immunity. Sixteen 4-week-old piglets were randomly allocated to two dietary treatments: control diet or diet contaminated with 3.5 mg DON/kg. At days 7 and 21, animals were immunized with ovalbumin (OVA). On day 42, intestinal samples were collected for measurement of gene expression involved in immune response, oxidative status and barrier function. Primary IgG antibody response to OVA was increased in pigs fed DON diet compared to control animals. In the ileum of pigs fed DON diet, claudin, occludin, and vimentin genes involved in integrity and barrier function were down-regulated compared to controls. Results also revealed that expression of two chemokines (IL-8, CXCL10), interferon-γ, and major antioxidant glutathione peroxidase 2 (GPX-2) were up-regulated whereas expression of genes encoding enzymatic antioxidants including GPX-3, GPX-4 and superoxide dismutase 3 (SOD-3) were down-regulated in pigs fed DON-contaminated diet. These results strongly suggest that ingestion of DON naturally contaminated feed impaired intestinal barrier and immunological functions by modulating expression of genes coding for proteins involved in tight junctions, tissue remodelling, inflammatory reaction, oxidative stress reaction and immune response.
Collapse
Affiliation(s)
- Martin Lessard
- Dairy and Swine Research and Development Centre, Agriculture and Agri-Food Canada, 2000 College Street, Sherbrooke, QC, Canada; Swine and Poultry Infectious Diseases Research Center (CRIPA), Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada.
| | - Christian Savard
- Groupe de recherche sur les maladies infectieuses du porc (GREMIP), Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - Karine Deschene
- Dairy and Swine Research and Development Centre, Agriculture and Agri-Food Canada, 2000 College Street, Sherbrooke, QC, Canada
| | - Karoline Lauzon
- Dairy and Swine Research and Development Centre, Agriculture and Agri-Food Canada, 2000 College Street, Sherbrooke, QC, Canada
| | - Vicente A Pinilla
- Groupe de recherche sur les maladies infectieuses du porc (GREMIP), Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - Carl A Gagnon
- Swine and Poultry Infectious Diseases Research Center (CRIPA), Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada; Groupe de recherche sur les maladies infectieuses du porc (GREMIP), Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - Jérôme Lapointe
- Dairy and Swine Research and Development Centre, Agriculture and Agri-Food Canada, 2000 College Street, Sherbrooke, QC, Canada
| | - Frédéric Guay
- Swine and Poultry Infectious Diseases Research Center (CRIPA), Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada; Département des sciences animales, Faculté des sciences de l'agriculture et de l'alimentation, Université Laval, Québec, Canada
| | - Younès Chorfi
- Swine and Poultry Infectious Diseases Research Center (CRIPA), Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada; Département de biomédecine vétérinaire, Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada
| |
Collapse
|
34
|
Wang X, Breeze A, Kulka M. N-3 polyunsaturated fatty acids inhibit IFN-γ-induced IL-18 binding protein production by prostate cancer cells. Cancer Immunol Immunother 2015; 64:249-58. [PMID: 25351720 PMCID: PMC11028839 DOI: 10.1007/s00262-014-1630-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 10/16/2014] [Indexed: 10/24/2022]
Abstract
Prostate cancer cells can produce IL-18 binding protein (IL-18BP) in response to interferon-γ (IFN-γ), which may function to neutralize IL-18, an anti-tumor factor formerly known as IFN-γ inducing factor. The consumption of n-3 polyunsaturated fatty acids (PUFAs) has been associated with a lower risk of certain types of cancer including prostate cancer, although the precise mechanisms of this effect are poorly understood. We hypothesized that n-3 PUFAs could modify IL-18BP production by prostate cancer cells by altering IFN-γ receptor-mediated signal transduction. Here, we demonstrate that n-3 PUFA treatment significantly reduced IFN-γ-induced IL-18BP production by DU-145 and PC-3 prostate cancer cells by inhibiting IL-18BP mRNA expression and was associated with a reduction in IFN-γ receptor expression. Furthermore, IFN-γ-induced phosphorylation of Janus kinase 1 (JAK1), signal transducers and activators of transcription 1 (STAT1), extracellular signal-regulated kinases 1/2 (ERK1/2), and P38 were suppressed by n-3 PUFA treatment. By contrast, n-6 PUFA had no effect on IFN-γ receptor expression, but decreased IFN-γ-induced IL-18BP production and IFN-γ stimulation of JAK1, STAT1, ERK1/2, and JNK phosphorylation. These data indicate that both n-3 and n-6 PUFAs may be beneficial in prostate cancer by altering IFN-γ signaling, thus inhibiting IL-18BP production and thereby rendering prostate cancer cells more sensitive to IL-18-mediated immune responses.
Collapse
Affiliation(s)
- Xiaofeng Wang
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 116 Street and 85 Avenue, Edmonton, AB, T6G 2R3, Canada,
| | | | | |
Collapse
|
35
|
Rakshit S, Chandrasekar BS, Saha B, Victor ES, Majumdar S, Nandi D. Interferon-gamma induced cell death: Regulation and contributions of nitric oxide, cJun N-terminal kinase, reactive oxygen species and peroxynitrite. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:2645-61. [DOI: 10.1016/j.bbamcr.2014.06.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 06/18/2014] [Accepted: 06/23/2014] [Indexed: 12/22/2022]
|
36
|
Fish EN, Platanias LC. Interferon receptor signaling in malignancy: a network of cellular pathways defining biological outcomes. Mol Cancer Res 2014; 12:1691-703. [PMID: 25217450 DOI: 10.1158/1541-7786.mcr-14-0450] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
IFNs are cytokines with important antiproliferative activity and exhibit key roles in immune surveillance against malignancies. Early work initiated over three decades ago led to the discovery of IFN receptor activated Jak-Stat pathways and provided important insights into mechanisms for transcriptional activation of IFN-stimulated genes (ISG) that mediate IFN biologic responses. Since then, additional evidence has established critical roles for other receptor-activated signaling pathways in the induction of IFN activities. These include MAPK pathways, mTOR cascades, and PKC pathways. In addition, specific miRNAs appear to play a significant role in the regulation of IFN signaling responses. This review focuses on the emerging evidence for a model in which IFNs share signaling elements and pathways with growth factors and tumorigenic signals but engage them in a distinctive manner to mediate antiproliferative and antiviral responses.
Collapse
Affiliation(s)
- Eleanor N Fish
- Toronto General Research Institute, University Health Network and Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Leonidas C Platanias
- Robert H. Lurie Comprehensive Cancer Center and Division of Hematology-Oncology, Northwestern University Medical School and Jesse Brown VA Medical Center, Chicago, Illinois.
| |
Collapse
|
37
|
Walia R, Dardari R, Chaiyakul M, Czub M. Porcine circovirus-2 capsid protein induces cell death in PK15 cells. Virology 2014; 468-470:126-132. [PMID: 25169152 DOI: 10.1016/j.virol.2014.07.051] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 06/06/2014] [Accepted: 07/28/2014] [Indexed: 01/31/2023]
Abstract
Studies have shown that Porcine circovirus (PCV)-2 induces apoptosis in PK15 cells. Here we report that cell death is induced in PCV2b-infected PK15 cells that express Capsid (Cap) protein and this effect is enhanced in interferon gamma (IFN-γ)-treated cells. We further show that transient PCV2a and 2b-Cap protein expression induces cell death in PK15 cells at rate similar to PCV2 infection, regardless of Cap protein localization. These data suggest that Cap protein may have the capacity to trigger different signaling pathways involved in cell death. Although further investigation is needed to gain deeper insights into the nature of the pathways involved in Cap-induced cell death, this study provides evidence that PCV2-induced cell death in kidney epithelial PK15 cells can be mapped to the Cap protein and establishes the need for future research regarding the role of Cap-induced cell death in PCV2 pathogenesis.
Collapse
Affiliation(s)
- Rupali Walia
- Faculty of Veterinary Medicine, University of Calgary, Alberta, Canada
| | - Rkia Dardari
- Faculty of Veterinary Medicine, University of Calgary, Alberta, Canada.
| | - Mark Chaiyakul
- Faculty of Veterinary Medicine, University of Calgary, Alberta, Canada
| | - Markus Czub
- Faculty of Veterinary Medicine, University of Calgary, Alberta, Canada
| |
Collapse
|
38
|
Kuss M, Adamopoulou E, Kahle PJ. Interferon-γ induces leucine-rich repeat kinase LRRK2 via extracellular signal-regulated kinase ERK5 in macrophages. J Neurochem 2014; 129:980-7. [PMID: 24479685 DOI: 10.1111/jnc.12668] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 01/17/2014] [Accepted: 01/19/2014] [Indexed: 01/15/2023]
Abstract
The gene encoding leucine-rich repeat kinase 2 (LRRK2) comprises a major risk factor for Parkinson's disease. Recently, it has emerged that LRRK2 plays important roles in the immune system. LRRK2 is induced by interferon-γ (IFN-γ) in monocytes, but the signaling pathway is not known. Here, we show that IFN-γ-mediated induction of LRRK2 was suppressed by pharmacological inhibition and RNA interference of the extracellular signal-regulated kinase 5 (ERK5). This was confirmed by LRRK2 immunostaining, which also revealed that the morphological responses to IFN-γ were suppressed by ERK5 inhibitor treatment. Both human acute monocytic leukemia THP-1 cells and human peripheral blood monocytes stimulated the ERK5-LRRK2 pathway after differentiation into macrophages. Thus, LRRK2 is induced via a novel, ERK5-dependent IFN-γ signal transduction pathway, pointing to new functions of ERK5 and LRRK2 in human macrophages. Leucine-rich repeat kinase 2 (LRRK2) is a major risk factor for the development of Parkinson's disease (PD). However, the role of LRRK2 in the affected neurons remains enigmatic. Recently, LRRK2 has been reported to be strongly expressed in the immune system. Here, we demonstrate that LRRK2 is induced by Interferon gamma via extracellular signal-regulated kinase 5 (ERK5) in macrophages, thus providing new insights in LRRK2 and ERK5 biology.
Collapse
Affiliation(s)
- Martin Kuss
- Graduate School of Cellular and Molecular Neuroscience, University of Tübingen, Tübingen, Germany; German Center for Neurodegenerative Diseases, University of Tübingen, Tübingen, Germany
| | | | | |
Collapse
|
39
|
Matsuzawa T, Fujiwara E, Washi Y. Autophagy activation by interferon-γ via the p38 mitogen-activated protein kinase signalling pathway is involved in macrophage bactericidal activity. Immunology 2014; 141:61-9. [PMID: 24032631 DOI: 10.1111/imm.12168] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 08/15/2013] [Accepted: 08/30/2013] [Indexed: 12/26/2022] Open
Abstract
Macrophages are involved in many essential immune functions. Their role in cell-autonomous innate immunity is reinforced by interferon-γ (IFN-γ), which is mainly secreted by proliferating type 1 T helper cells and natural killer cells. Previously, we showed that IFN-γ activates autophagy via p38 mitogen-activated protein kinase (p38 MAPK), but the biological importance of this signalling pathway has not been clear. Here, we found that macrophage bactericidal activity increased by 4 hr after IFN-γ stimulation. Inducible nitric oxide synthase (NOS2) is a major downstream effector of the Janus kinase-signal transducer and activator of transcription 1 signalling pathway that contributes to macrophage bactericidal activity via nitric oxide (NO) generation. However, no NO generation was observed after 4 hr of IFN-γ stimulation, and macrophage bactericidal activity at early stages after IFN-γ stimulation was not affected by the NOS inhibitors, NG-methyl-l-arginine acetate salt and diphenyleneiodonium chloride. These results suggest that an NOS2-independent signalling pathway is involved in IFN-γ-mediated bactericidal activity. We also found that this macrophage activity was attenuated by the addition of the p38 MAPK inhibitors, PD 169316, SB 202190, and SB 203580, or by the expression of short hairpin RNA against p38α or the essential factors for autophagy, Atg5 and Atg7. Collectively, our results suggest that the IFN-γ-mediated autophagy via p38 MAPK, without the involvement of NOS2, also contributes to the ability of macrophages to kill intracellular bacteria. These observations provide direct evidence that p38 MAPK-mediated autophagy can support IFN-γ-mediated cell-autonomous innate immunity.
Collapse
Affiliation(s)
- Takeshi Matsuzawa
- Division of Veterinary Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Izumisano, Osaka, Japan
| | | | | |
Collapse
|
40
|
IFN-γ-induced IL-27 and IL-27p28 expression are differentially regulated through JNK MAPK and PI3K pathways independent of Jak/STAT in human monocytic cells. Immunobiology 2014; 219:1-8. [DOI: 10.1016/j.imbio.2013.06.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 05/22/2013] [Accepted: 06/05/2013] [Indexed: 01/10/2023]
|
41
|
Serrat N, Sebastian C, Pereira-Lopes S, Valverde-Estrella L, Lloberas J, Celada A. The Response of Secondary Genes to Lipopolysaccharides in Macrophages Depends on Histone Deacetylase and Phosphorylation of C/EBPβ. THE JOURNAL OF IMMUNOLOGY 2013; 192:418-26. [DOI: 10.4049/jimmunol.1203500] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
42
|
Yamamoto H, Fara AF, Dasgupta P, Kemper C. CD46: the 'multitasker' of complement proteins. Int J Biochem Cell Biol 2013; 45:2808-20. [PMID: 24120647 DOI: 10.1016/j.biocel.2013.09.016] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2013] [Revised: 09/23/2013] [Accepted: 09/30/2013] [Indexed: 12/12/2022]
Abstract
Complement is undeniably quintessential for innate immunity by detecting and eliminating infectious microorganisms. Recent work, however, highlights an equally profound impact of complement on the induction and regulation of a wide range of immune cells. In particular, the complement regulator CD46 emerges as a key sensor of immune activation and a vital modulator of adaptive immunity. In this review, we summarize the current knowledge of CD46-mediated signalling events and their functional consequences on immune-competent cells with a specific focus on those in CD4(+) T cells. We will also discuss the promises and challenges that potential therapeutic modulation of CD46 may hold and pose.
Collapse
Affiliation(s)
- Hidekazu Yamamoto
- Division of Transplant Immunology and Mucosal Biology, MRC Centre for Transplantation, King's College London, Guy's Hospital, London SE1 9RT, UK; The Urology Centre, Guy's and St. Thomas' NHS Foundations Trust, London SE1 9RT, UK
| | | | | | | |
Collapse
|
43
|
Blahoianu MA, Rahimi AAR, Gajanayaka N, Kozlowski M, Angel JB, Kumar A. Engagement of CD14 sensitizes primary monocytes to IFN-γ to produce IL-12/23p40 and IL-23 through p38 mitogen-activated protein kinase and independent of the janus kinase/signal transducers and activators of transcription signaling. J Interferon Cytokine Res 2013; 33:434-45. [PMID: 23679818 DOI: 10.1089/jir.2012.0058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Interferon (IFN)-γ is a potent stimulator of the IL-12 family Th1 cytokines, including IL-12/23p40 and IL-23, responsible for coordinating the innate and adaptive immune responses. Our results show that IFN-γ induced the production of IL-12/23p40 and IL-23p19 mRNA as well as IL-12p40 and IL-23 proteins in primary human monocytes isolated by positive selection through anti-CD14 microbeads. These results were confirmed by IFN-γ stimulation of CD14-activated monocytes resulting in IL-12/23p40 and IL-23 production. We investigated the signaling pathways governing the regulation of IL-23 and its subunits IL-23p40 and IL-23p19 following IFN-γ stimulation. We observed a differential regulation of IL-23p19, IL-12/23p40, and IL-23 following IFN-γ stimulation. IFN-γ-induced IL-23 and IL-12/23p40 expression was positively regulated by the p38 mitogen-activated protein kinases (MAPKs), independent of the Janus kinase (Jak)/signal transducers and activators of transcription (STAT) signaling. In contrast, IL-12 and IL-23 were negatively regulated by the Jak/STAT, phosphatidylinositol 3-kinase (PI3K), and the c-Jun-N-terminal kinase (JNK) MAPKs in IFN-γ-stimulated monocytes. Overall, our results suggest for the first time a differential positive regulation of IL-12p40 and IL-23 by p38 MAPKs independent of the Jak/STAT pathways and negative regulation by the Jak/STAT, JNK, and PI3K pathways in CD14-activated primary human monocytes stimulated with IFN-γ.
Collapse
Affiliation(s)
- Maria A Blahoianu
- Department of Pathology and Laboratory Medicine, Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario K1H 8L1, Canada.
| | | | | | | | | | | |
Collapse
|
44
|
Observation of autophagosome maturation in the interferon-γ-primed and lipopolysaccharide-activated macrophages using a tandem fluorescent tagged LC3. J Immunol Methods 2013; 394:100-6. [PMID: 23727153 DOI: 10.1016/j.jim.2013.05.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 05/22/2013] [Accepted: 05/22/2013] [Indexed: 12/12/2022]
Abstract
Macrophages are engaged in many essential host functions, and their activation is a dynamic process that results in diverse functional outcomes such as the potentiation of bactericidal activity and production of chemokines, cytokines, and mediators that coordinate the inflammatory response. This pro-inflammatory response is bimodal, comprising a "prime" event, classically through interferon-γ (IFN-γ), and a "trigger," such as lipopolysaccharide (LPS). Recently, autophagy, which is one of the major degradative pathways in eukaryotic cells, has been shown to play an important role in both IFN-γ-primed and LPS-activated macrophages. In this study, we sought to characterize the mechanisms of autophagy activation in primed and activated macrophages. To this end, we established a macrophage RAW 264.7 cell line that expressed high levels of a tandem fluorescently tagged LC3 (tfLC3) autophagy marker. By using this macrophage cell line, autophagosome formation was observed in both IFN-γ- and LPS-stimulated cells. Moreover, our data demonstrated that IFN-γ, but not LPS, facilitated autophagosome maturation to autophagolysosomes, suggesting that 2 distinct mechanisms regulating autophagy exist in IFN-γ-primed and LPS-activated macrophages.
Collapse
|
45
|
Spalinger MR, Lang S, Weber A, Frei P, Fried M, Rogler G, Scharl M. Loss of protein tyrosine phosphatase nonreceptor type 22 regulates interferon-γ-induced signaling in human monocytes. Gastroenterology 2013; 144:978-988.e10. [PMID: 23380085 DOI: 10.1053/j.gastro.2013.01.048] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Revised: 01/04/2013] [Accepted: 01/10/2013] [Indexed: 12/27/2022]
Abstract
BACKGROUND & AIMS A gain-of-function variation within the locus that encodes protein tyrosine phosphatase nonreceptor type (PTPN)22 is associated with a reduced risk for Crohn's disease (CD), whereas a loss-of-function variant seems to promote autoimmune disorders. We investigated how loss of PTPN22 could contribute to chronic inflammation of the intestine. METHODS Intestinal tissue samples from patients with or without inflammatory bowel disease (controls) were analyzed for levels of PTPN22 messenger RNA (mRNA) and protein. In human THP-1 monocytes, protein levels were analyzed by immunoblotting, mRNA levels by real-time polymerase chain reaction, and cytokine release by enzyme-linked immunosorbent assay. RESULTS Intestinal tissue samples from patients with CD had reduced levels of PTPN22 mRNA and protein, compared with samples from controls. In human THP-1 monocytes, interferon-γ (IFN-γ) induced expression and activity of PTPN22. Loss of PTPN22 increased levels of p38-mitogen-activated protein kinase, but reduced phosphorylation of nuclear factor-κB subunits. Increased activity of suppressor of cytokine signaling-1 was accompanied by reduced phosphorylation of signal-transducer and activator of transcription protein 1 and signal-transducer and activator of transcription protein 3 in PTPN22-deficient cells incubated with cytokines. PTPN22 knockdown increased secretion of the inflammatory cytokines interleukin (IL)-6 and IL-17, but reduced expression or secretion of T-bet, intercellular adhesion molecule-1, nucleotide-binding oligomerization domain containing-2, monocyte chemoattractant protein-1, IL-2, and IL-12p40 in response to IFN-γ. CONCLUSIONS PTPN22 expression is reduced in intestinal tissues of patients with active CD. PTPN22 regulates intracellular signaling events and is induced by IFN-γ in human monocytes. Knockdown of PTPN22 alters activation of inflammatory signal transducers, increasing secretion of T-helper 17-related inflammatory mediators. Genetic variants that reduce PTPN22 activity might contribute to the pathogenesis of CD by these mechanisms.
Collapse
Affiliation(s)
- Marianne R Spalinger
- Division of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
46
|
Chandrasekar B, Deobagkar-Lele M, Victor ES, Nandi D. Regulation of Chemokines, CCL3 and CCL4, by Interferon γ and Nitric Oxide Synthase 2 in Mouse Macrophages and During Salmonella enterica Serovar Typhimurium Infection. J Infect Dis 2013; 207:1556-68. [DOI: 10.1093/infdis/jit067] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
47
|
Comalada M, Lloberas J, Celada A. MKP-1: A critical phosphatase in the biology of macrophages controlling the switch between proliferation and activation. Eur J Immunol 2012; 42:1938-48. [DOI: 10.1002/eji.201242441] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Mònica Comalada
- Macrophage Biology Group; Institute for Research in Biomedicine (IRB Barcelona); Barcelona; Spain
| | | | | |
Collapse
|
48
|
Wakabayashi H, Ito T, Fushimi S, Nakashima Y, Itakura J, Qiuying L, Win MM, Cuiming S, Chen C, Sato M, Mino M, Ogino T, Makino H, Yoshimura A, Matsukawa A. Spred-2 deficiency exacerbates acetaminophen-induced hepatotoxicity in mice. Clin Immunol 2012; 144:272-82. [PMID: 22868447 DOI: 10.1016/j.clim.2012.07.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 06/30/2012] [Accepted: 07/03/2012] [Indexed: 02/06/2023]
Abstract
MAPKs are involved in acetaminophen (APAP)-hepatotoxicity, but the regulatory mechanism remains unknown. Here, we explored the role of Spred-2 that negatively regulates Ras/ERK pathway in APAP-hepatotoxicity. Spred-2 knockout (KO) mice demonstrated exacerbated liver injury, an event that was associated with increased numbers of CD4(+) T, CD8(+) T and NK cells in the liver compared to the control. Levels of CXCL9/CXCL10 that attract and activate these cells were increased in Spred-2 KO-liver. Kupffer cells isolated from Spred-2 KO mice after APAP challenge expressed higher levels of CXCL9/CXCL10 than those from the control. Upon stimulation with APAP or IFNγ, naïve Kupffer cells from Spred-2 KO mice expressed higher levels of CXCL9/CXCL10. NK cell-depletion attenuated APAP-hepatotoxicity with lowered hepatic IFNγ and decreased numbers of not only NK cells but also CD4(+) T and CD8(+) T cells in the liver. These results suggest that Spred-2 negatively regulates APAP-hepatotoxicity under the control of Kupffer cells and NK cells.
Collapse
Affiliation(s)
- Hiroshi Wakabayashi
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Matsuzawa T, Kim BH, Shenoy AR, Kamitani S, Miyake M, Macmicking JD. IFN-γ elicits macrophage autophagy via the p38 MAPK signaling pathway. THE JOURNAL OF IMMUNOLOGY 2012; 189:813-8. [PMID: 22675202 DOI: 10.4049/jimmunol.1102041] [Citation(s) in RCA: 136] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Autophagy is a major innate immune defense pathway in both plants and animals. In mammals, this cascade can be elicited by cytokines (IFN-γ) or pattern recognition receptors (TLRs and nucleotide-binding oligomerization domain-like receptors). Many signaling components in TLR- and nucleotide-binding oligomerization domain-like receptor-induced autophagy are now known; however, those involved in activating autophagy via IFN-γ remain to be elucidated. In this study, we engineered macrophages encoding a tandem fluorescently tagged LC3b (tfLC3) autophagosome reporter along with stably integrated short hairpin RNAs to demonstrate IFN-γ-induced autophagy required JAK 1/2, PI3K, and p38 MAPK but not STAT1. Moreover, the autophagy-related guanosine triphosphatase Irgm1 proved dispensable in both stable tfLC3-expressing RAW 264.7 and tfLC3-transduced Irgm1(-/-) primary macrophages, revealing a novel p38 MAPK-dependent, STAT1-independent autophagy pathway that bypasses Irgm1. These unexpected findings have implications for understanding how IFN-γ-induced autophagy is mobilized within macrophages for inflammation and host defense.
Collapse
|
50
|
Wancket LM, Frazier WJ, Liu Y. Mitogen-activated protein kinase phosphatase (MKP)-1 in immunology, physiology, and disease. Life Sci 2012; 90:237-48. [PMID: 22197448 PMCID: PMC3465723 DOI: 10.1016/j.lfs.2011.11.017] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 11/18/2011] [Accepted: 11/30/2011] [Indexed: 11/16/2022]
Abstract
Mitogen-activated protein kinases (MAPKs) are key regulators of cellular physiology and immune responses, and abnormalities in MAPKs are implicated in many diseases. MAPKs are activated by MAPK kinases through phosphorylation of the threonine and tyrosine residues in the conserved Thr-Xaa-Tyr domain, where Xaa represents amino acid residues characteristic of distinct MAPK subfamilies. Since MAPKs play a crucial role in a variety of cellular processes, a delicate regulatory network has evolved to control their activities. Over the past two decades, a group of dual specificity MAPK phosphatases (MKPs) has been identified that deactivates MAPKs. Since MAPKs can enhance MKP activities, MKPs are considered as an important feedback control mechanism that limits the MAPK cascades. This review outlines the role of MKP-1, a prototypical MKP family member, in physiology and disease. We will first discuss the basic biochemistry and regulation of MKP-1. Next, we will present the current consensus on the immunological and physiological functions of MKP-1 in infectious, inflammatory, metabolic, and nervous system diseases as revealed by studies using animal models. We will also discuss the emerging evidence implicating MKP-1 in human disorders. Finally, we will conclude with a discussion of the potential for pharmacomodulation of MKP-1 expression.
Collapse
Affiliation(s)
- Lyn M. Wancket
- Department of Veterinary Bioscience, The Ohio State University College of Veterinary Medicine, Columbus, OH 43221
- Center for Perinatal Research, The Research Institute at Nationwide Children’s Hospital, Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43205
| | - W. Joshua Frazier
- Center for Perinatal Research, The Research Institute at Nationwide Children’s Hospital, Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43205
| | - Yusen Liu
- Department of Veterinary Bioscience, The Ohio State University College of Veterinary Medicine, Columbus, OH 43221
- Center for Perinatal Research, The Research Institute at Nationwide Children’s Hospital, Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43205
| |
Collapse
|